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Abstract

Stellarators have historically suffered from high levels of neoclassical transport, which has limited
their ability to confine energy. However, with the introduction of optimised stellarators such as
W7-X, HSX, etc., neoclassical transport is not the main limiting factor anymore. The current
expectation is that turbulence will be the dominant transport channel. It also sets the energy
confinement time in a reactor. Therefore, it is crucial that stellarators are optimised for a lower
level of turbulent transport. Stellarators have approximately 10 times more degrees of freedom in
shaping the magnetic surfaces, when compared to a tokamak. This gives us the opportunity to
change properties of the magnetic field of the stellarator, to reduce the level of turbulent transport.

Turbulence is driven by gradients in both density and temperature. This work aims to shift the
density gradient at which turbulence starts to grow i.e., the critical gradient, to a higher value of
the density gradient. This thesis focuses on the Trapped Electron Mode (TEM) turbulent transport
channel driven by density gradients. A specialised code could be used to carry out the optimisation
process, which reshapes the magnetic surfaces to have higher critical gradients. This will allow
stellarators to operate at higher density gradients without TEM turbulence playing a significant
limiting role. A gyrokinetic code can be used as the cost function in such a code. However, it is
computationally prohibitive to use gyrokinetic codes to calculate the critical gradients within an
optimisation loop. Therefore, a dispersion relation of the TEM at the critical gradient is used to
relate the critical gradient and the magnetic geometry. This relation is then used as a proxy, for
the optimisation process. Then, the resulting magnetic configuration with a shifted TEM critical
gradient can be validated using linear runs of a gyrokinetic code.

The derived proxy was then calculated for multiple devices, and compared to gyrokinetic sim-
ulations. However, it yielded a weak negative correlation. This is most likely due to the choice of
frequency orderings that were made to obtain the proxy. An alternative pathway to obtain a proxy
has been proposed, which does not rely on making the same frequency ordering choices.
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1 Introduction

The demand for energy is ever growing, as more people around the world experience a liberation from
poverty. Energy consumption is an indicator of quality of life. As such, it is very important that we
continue to meet the ever increasing energy demands of the world as more countries aim to lift their
standards of living, and consume more energy along the way. However, this creates a unique problem
for policy makers in light of global warming. Although increasing fossil fuel based plants is an option,
it is not a good one as it contributes quite heavily to global warming. So it is crucial that we supply
the said increase in energy, in the cleanest, and carbon free/neutral way possible. Renewable energy
technologies like solar or wind have come a long way since their introduction, but they still suffer
from intermittency and unreliable energy production. The key is energy density, which determines
the amount of energy a source can produce given an area of land. Although solar and other renewable
technology are excellent sources, they suffer from being a low energy density source of energy (Layton,
2008). Nuclear fission reactors on the other hand, offers very high energy density, but is generally held
in low esteem by the general public.

Therefore, we need a source that has high energy density, is carbon free/neutral, is safe, and does
not have a negative connotation attached to it. This is where fusion enters the fray. Although the
public’s perception of fusion is ever so slightly tainted due to its "nuclear" nature, it does not suffer
from it as badly as nuclear fission. Thus it satisfies all the requirements that we are looking for in
an energy source except for one, which is that it does not exist in a commercial capacity as of yet.
However, considering the unforgiving deadline that we have set upon ourselves due to global warming,
the world has come together to fund research into fusion, and make it a commercial reality as soon as
possible. The ’Fusion Roadmap’ compiled by the European Fusion Development Agreement (EFDA)
cites 2050 as the possible target for commercially available fusion reactors (Romanelli et al., 2013).

In 1957, Lawson showed that magnetically confined fusion plasmas can indeed give net energy, if it
meets the triple product, niTiτE > 4× 1021keV m−3s, (ni is the ion density, Ti is the ion temperature,
and τE is the energy confinement time) for a Deuterium-Tritium based plasma (Lawson, 1957). Toka-
maks showed great promise when it came to confinement properties, but a second method to achieve
magnetic confinement fusion, the stellarator was not far behind. Currently, stellarators are widely
considered to be a generation behind the tokamak.

Although tokamaks and stellarators both use helical magnetic fields to confine the plasma, the
magnetic geometry of the two concepts is fundamentally different. In a tokamak, the magnetic field
strength is constant in the toroidal direction giving us an axisymmetric device. Stellarators lack
this toroidal symmetry. While both types of reactors have magnetic minima where particles can be
trapped, the tokamak has only one such region while the stellarator could have multiple regions that
act as magnetic mirrors. But seeing as tokamkas require a current in the plasma to produce the helical
field, stellarators have many features that are advantageous, compared to tokamaks such as disruption
free performance, and the absence of a current drive. Although the fusion roadmap (Romanelli et al.,
2013) mainly deals with tokamaks, and the time-line relevant to the development of tokamaks as fusion
power plants. However, they do also include stellarators and predict that the first burning plasma
stellarator will begin operations, or at least be built in the 2040s.
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Figure 1: A comparison between a typical tokamak geometry, and the geometry of Wendelstein 7-X.
(The Economist, 2015)

There are many combinations of isotopes we can use to achieve fusion. By far the easiest way to
achieve fusion is to use deuterium and tritium heated to temperatures of around 15 keV,

2
1D +3

1 T →4
2 He+1

0 n+ 17.6MeV. (1.1)

But there are many challenges we face in achieving that goal. One of those challenges is to do
with turbulent heat and particle transport, which sets the energy confinement time in a reactor and
is driven by pressure and density gradients. Therefore it is critical that we have the ability to predict
turbulent transport levels in a reactor. Turbulence causes the transport of particles, momentum, and
energy. This is believed to originate from plasma microinstabilities (chapter 2.1). It is important to
note that even if the plasma is stable to MHD instabilities, drift waves can be destabilised by high
density and temperature gradients (Tang, 1978; Horton, 1999). This is characterised by what is known
as the critical gradient (threshold). It is a point in the normalised density (or temperature gradient)
beyond which these instabilities grow, which is defined as

R

Ln
= − R

na
∇na, (1.2)

where R is the major radius of the magnetic confinement device, and na is the density of the particle
species ’a’. Stellarator turbulence growth rates display a different behaviour to that of tokamaks
(figure 2). We notice that while tokamaks have a higher critical gradient, while also having a higher
growth rate. Conversely stellarators have a lower threshold, but also a lower growth rate.
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Figure 2: The graph displays the comparison of growth rates between tokamaks (DIII-D) and stellara-
tors (W7-X, low mirror configuration, triangle flux tube). While tokamaks have a higher threshold,
they also display a higher growth rate. The inverse is true of the stellarators. Here, the ’a’ in a/Ln is
the minor radius of the reactor.

1.1 Motivation

Historically, stellarators have been plagued with bad confinement properties. But the advent of opti-
mised stellarators have shown that neo-classical (NC) transport can be suppressed, and improved upon
(Mynick, 2006). Due to its strong temperature dependence (Helander and Sigmar, 2005), neoclassical
transport is expected to still be predominant in the high temperature plasma core, but as the tem-
perature decreases strongly towards the plasma edge, neoclassical transport is reduced and turbulent
transport becomes important. However, this means that turbulent transport in stellarators is now
expected to be the significant channel of transport that has to be suppressed. As confinement time
is limited by the energy transport we must possess the ability to manipulate and suppress turbulent
transport in stellarators if we are to consider stellarators as a viable competitor for a fusion power
plant.

In stellarator plasmas, two turbulent channels which are thought to be responsible for anomalous
transport are the ITG (Ion Temperature Gradient) mode, and the TEM (Trapped Electron Mode)
(Warmer et al., 2017). Figure (3) shows these regimes, and where they are unstable. We notice that
for lower density and temperature gradients, the system is stable to turbulent transport. But once
we hit the threshold in either temperature gradients or density gradients, turbulence starts to play a
role. The TEMs that we are investigating here are mainly driven unstable by high density gradients
as shown in figure (3). Although, when simulated using non-linear simulations, the threshold is more
of a ’knee’ (Dimits shift) in the temperature gradient driven channels, like the ITG (Dimits et al.,
2000). However, others have also noticed an analogous effect in the density gradient driven TEMs
(Ernst et al., 2009). But this effect is not relevant to this thesis, as this thesis only deals with linear
simulations.

In the outer third of the minor radius, it is shown that the turbulent losses overcome NC transport
in Wendelstein 7-AS (W7-AS), even in plasmas with optimum confinement (Hirsch et al., 2008). The
outer regions of the plasma also showcase high density gradients, driving a high level of TEM turblence.
Therefore, the main mode that we will focus on is the Trapped Electron Mode.

If the temperature gradients are small compared to the density gradients, while ignoring collisions,
there are stellarator designs (quasi-isodynamic) that are automatically immune to the ordinary TEM
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and to all lower frequency electrostatic instabilities (Proll et al., 2012).

Figure 3: The figure describes the regions of stability/instability as a function of the logarithmic
temperature and density gradients (Garbet et al., 2004).

There are two possible ways in which we could approach this problem. The first would be to lower
the slope of the growth rate of the TEM past the critical gradient as done in (Proll et al., 2015).
The alternative to this approach would be to move the critical gradient to higher density gradients
such that the TEM turbulent transport is not a significant factor in a larger part of the stellarator’s
operational parameter space. In stellarators this can potentially be achieved by manipulating the
magnetic surfaces to influence the critical gradient. This is possible as the magnetic surfaces of
stellarators can be configured in more ways than a tokamak. Tokamaks have roughly 10 times the
number of degrees of freedom (Boozer, 2005) with which it’s magnetic field may be manipulated,
when compared to a stellarator. The following work compliments the work carried out by Proll et al.
(2015), where they have demonstrated a lower slope for the instability growth rate in HSX (Helically
Symmetric Experiment).

Therefore, it is desirable to have simplified expressions that can approximate these non-linear fluxes
to a great deal of accuracy. Such that we may then use these simplified expressions in optimisation
studies of the trapped electron mode.
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1.2 Research Question

Is it possible to optimise stellarators to have increased critical gradients for the
Trapped-Electron Mode?

This can be achieved by answering the following questions:

1. Is it possible to derive a relation for the critical gradient of the TEM instability, from a dispersion
relation?

2. Can this relation then be implemented in STELLOPT (Reiman et al., 1999), to obtain an
optimised configuration?

3. Can the resulting geometry be validated for a higher critical gradient using a gyrokinetic code?

The general procedure to achieve this is to implement a gyrokinetic into an optimiser algorithm
(STELLOPT) to achieve the desired magnetic geometry. However, this is infeasible as it is computa-
tionally prohibitive. Therefore, the alternative route is chosen where a proxy is used instead of the
gyrokinetic code in the optimisation process. The proxy is a simplified expression designed to be in-
cluded in an optimisation loop that will give an estimate of the critical gradient based on the magnetic
geometry of the stellarator. The aim of the proxy function is to provide a means of estimating the
stability of a configuration towards TEMs efficiently (Proll et al., 2015). TEMs are explained further
in chapter 2.

We can obtain such a proxy by deriving a dispersion relation for the TEM. The critical gradient is
then extracted from this dispersion relation. We expect this to depend on quantities of the magnetic
field (like the curvature, trapped particle fraction, etc.), and quantities of the plasma like density
gradient.

Cg = f(λ, κ,Bmin, Bmax, ωdrift, ...) (1.3)

where Cg is the critical gradient, λ is the pitch angle, κ is the curvature, and ωdrift is the drift
frequency. Effectively giving us a relation for the threshold as a function of the geometry parameters
of the stellarator,

thershold = f(geometry) (1.4)

Such a proxy function is of course just an estimate of the actual critical gradient. Therefore,
an estimate of its accuracy is required before such a proxy is implemented with any optimisation
algorithm, testing it with multiple stellarator geometries. A good correlation here would see the proxy
implemented in STELLOPT, whose results can then be validated using linear runs of a gyrokinetic
code.
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Figure 4: The graph shows the curvature on the left axis, and the magnetic field strength on the
right axis for DIII-D (General Atomics, 2018). The data for this graph has been acquired from GIST
(Geometry Interface for Stellarators and Tokamaks) output files (Xanthopoulos et al., 2009).

TEMs could be stabilised in multiple ways. Of course the most obvious way to stabilise TEMs
is with lower density gradients, and a lower electron temperature gradient, but this is not always an
option. Romanelli et al. (2007) describe how TEMs could be stabilised, via collisions, as it effectively
decreases the total number of trapped particles due to a de-trapping effect. However, the following
work deals with the collisionless regime only. The local shear was put forth as possibly a very important
factor in Mynick et al. (2011). Figure (4) hints at a further way in which TEMs could be stabilised
in instances where the magnetic field, and the local curvature are out of phase. Proll et al. (2015)
explains how many of the trapped particles will have an average bad curvature, if the they are mainly
trapped in regions of local bad curvature. Therefore, we expect configurations that have the magnetic
field and the curvatures out of phase to have lower TEM growth rates, which does not necessarily
result in a higher critical gradient.

Further chapters of this work delve into microinstabilities, and an outline of the derivation of
the gyrokinetic equation (chapter 2). After which, the dispersion relation (chapter 3) and the proxy
function (chapter 4) is derived. It then goes through the results (chapter 5) obtained, and a brief
discussion (chapter 6) of the results. The work concludes by providing an outlook (chapter 7), and a
conclusion (chapter 8).
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2 Gyrokinetics

As we have discussed in the past, turbulent transport is a very important branch of fusion energy to
spend time and effort on, as the confinement time (τE) is set by level of energy transport, this can be
expressed as

τE ∼
τcL

2

∆2
, (2.1)

where τE is the energy confinement time, ∆ is the typical cross field eddy size, τc is the turbulent
correlation time, and L is the size of the plasma (Cowley, 2018).

We can improve confinement times by breaking up the size of the cross field eddy, such that the
random walk of heat and particles across the field is lowered to an acceptable level. This can be
achieved via shear flows like zonal flows shown in figure (5), that break up the size of the cross field
eddies, and are shown to have a stabilising effect (Biglari et al., 1990; Hahm and Burrell, 1995; Terry,
2000).

Regardless of which, we do require a way to predict turbulent transport. A major branch of
transport theory is dedicated to the numerical analysis of turbulent fluxes, and the underlying physics.
High temperature plasmas contain a large variety of fluctuations across different spatio-temporal scales
(Figure 6). While gyro motion evolves on the scale of ∼GHz, the macroscopic phenomenon tend to
evolve at the ∼Hz scales. This makes it highly infeasible to calculate the full system of equations,
as it is computationally taxing. The time and spatial scales involved allow us to use gyrokinetics, a
kinetic treatment of the plasma.

Figure 5: The images show the potential fluctuations in a poloidal cross section of a tokamak as found
in the steady state of nonlinear global gyrokinetic simulations. The figure on the left has zonal flows
which breaks up the size of the cross field eddies. To highlight differences in the turbulent eddy size,
the zonal flow component is filtered out in the plots.(Lin et al., 1998)
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Figure 6: The figure on the left describes the phenomenon present in a fusion plasma as a function of
the spacial and temporal scales (Garbet et al., 2010).

In the coming chapter, we will first start with an explanation of microinstabilities that drive the
turbulence considered here, move on to outlining the derivation of the gyrokinetic derivation, and close
the system of equations with the quasi-neutrality condition.

2.1 Microinstabilities

High temperature plasmas contain a large variety of fluctuations across different spatio-temporal scales.
This turbulent behaviour causes the transport of particles, momentum, and energy. This originates
from plasma microinstabilities. It is important to note that even if the plasma is stable to MHD
instabilities, drift waves can be destabilised by high density and temperature gradients (Tang, 1978;
Horton, 1999). Microinstabilities mainly draw their energy from gradients in temperature and density.
At the point of marginal stability, they are driven by one particle species, and are stabilised by the
other.

In fusion core plasmas, there are two types of instability modes that are responsible for turbulent
transport, the curvature and slab instabilities. Both these modes arise in the presence of particle drift
perpendicular to the particle’s motion along the field line, and only the passing particle are affected by
the slab mode instability as the development of the slab type instability is independent of the toroidal
plasma geometry.

As opposed to the slab type instability, the curvature type instability develops in the presence of
an inhomogeneous magnetic field (∇B). This introduces a dependency between the diamagnetic drift
frequency, curvature, and the magnetic drift frequency. The instability condition for curvature type
instabilities can be given as

∇p · ∇B > 0 (2.2)

Consequently, the curvature type instabilities are only found in places where both the pressure
gradient and the magnetic field gradient point in the same direction. In tokamaks, this condition is
met only on the outboard i.e., the Low Field Side (LFS) of the tokamak, but it is possible for this
condition to be met at multiple places in a stellarator. Figure (7) shows how these curvature type
instabilities are driven. The images show two different scenarios, on the the LFS of the tokamak, and
the High Field Side (HFS) of the tokamak. The regions of high pressures are displayed in dark blue,
and conversely for the regions of low pressure. As curved magnetic fields are present in this scenario,
the ions and electrons experience a drift in the vertical direction but in opposite directions. Due to a
pressure gradient, this creates an accumulation of charges on the boundary between the two regions
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(first image in figure 7), which in turn creates an electric field and an E × B drift (second image in
figure 7).

Figure 7: The image describes two different scenarios, to illustrate how microinstabilities are driven,
on the LFS and the HFS. The instability criterion as described by equation (2.2) is only met on the
LFS. Image Source: Mr. O. Linder

This initial perturbation is reinforced when charge independent fluxes given by

ΓE×B = n
E×B

B2
(2.3)

where n is the particle density. These (E×B) drifts transport plasma from regions of higher pressure
into regions of lower pressure, and similarly transporting plasma from regions of lower pressure into
regions of higher pressure (third image in figure 7). Following a similar argument, we can also see that
the instabilities are stabilised on the HFS. The perturbations on the HFS cause the E ×B drifts to
transport plasma into their respective regions, stabilising the instability (last two images in figure 7).

There are four branches of electrostatic microinstabilities that exist, the Ion Temperature Gradient
mode (ITG), Electron Temperature Gradient (ETG), Trapped Ion Mode (TIM), and the Trapped
Electron Mode (TEM). But TIMs can be ignored as they are suppressed by other nonlinear effects
(LaQuey et al., 1975; Cohen et al., 1976). For a given toroidal geometry, several branches of instabilities
can potentially be unstable. As shown by figure (3), the instability of the branches depends on the
gradients that exist in the system. It shows that no branch is unstable at lower gradients, however,
branches are driven unstable past the critical gradient. We also notice that TEMs are primarily driven
unstable due to density gradients.

If we consider the same situation as the one considered in figure (7) on the HFS, we can say that
the particles will experience a perpendicular drift in the poloidal (perpendicular) direction due to the
magnetic curvature drift for example. For passing particles, the parallel velocity is so large that the
perpendicular drifts are averaged out while travelling around the torus. However, the perpendicular
drift does not average out for trapped particles. Therefore, the trapped electron mode can simply be
described as a drift wave that has been driven unstable.

2.2 An Outline of the Gyrokinetic Equation

Turbulence is driven by pressure gradients, which results in a change in the distribution function
of particles, such as their density, temperature, momentum, and flux. In order to predict plasma
turbulence, the 6D Fokker-Planck equation,

∂fa
∂t

+ v · ∇xfa +
ea
ma

(E + v ×B) · ∇vfa = Ca(fa) (2.4)
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needs to be solved for each species, where ma and ea are the mass and charge of the particle species
’a’, Ca is the collisional operator that describes small scale Coulomb interactions between particles
species denoted by ’a’, and fa is the particle distribution function (Maxwellian) (Barnes, 2009), which
when integrated about the velocity space gives density.

na =

ˆ
fadv (2.5)

As long as the potential energy of nearest neighbour interaction is much less than the kinetic energy
of the particles, the Fokker-Planck equation describes the full range of dynamics in a six dimensional
phase space and time for particles of species ’a’ moving in a self-consistent electromagnetic field.
However, it does not take into account the effect of external sources of particles.

The 6D Fokker-Planck equation, as it stands, results in a major practical issue, when it comes
to the simulation of fusion plasmas. The spatio-temporal scales in fusion plasmas span an enormous
range of orders, this makes it practically infeasible to simulate all phenomena in a tractable time-scale.

Gyrokinetics aims to solve the temporal issue by reducing the Fokker-Planck equation to a 5D
problem, which is a lot easier to solve when compared to the previous 6D problem. It achieves this
by eliminating the fast cyclotron time scale, as most interesting turbulent phenomena occur at much
slower time scales. The procedure to achieve this is, at its core, a change of coordinates. That leaves
three coordinates to describe the gyro-centre, one for the velocity that is parallel to the background
magnetic field, and one for the magnetic moment, an adiabatic invariant which effectively describes
the velocity perpendicular to the magnetic field. This leads on to the generalised gyro-kinetic equation
(Garbet et al., 2010; Barnes, 2009). The gyrokinetic equation and the quasi-neutrality condition is
derived here following the methodology set out in Proll (2014) and elements taken from Cowley (2018).

To begin the outline, we now consider a magnetised plasma where we know that charged particles
will gyrate about a magnetic field line with the gyro-radius given by

ρa =

√
2maTa
eaB

(2.6)

where Ta is the temperature.
One of the key assumptions to be made is that ε ≡ ρa/L << 1, where L is the typical scale length

of the plasma. It is safe to assume this in most magnetically confined plasmas. It is also assumed that

ω

Ωa
∼ ρa

L
∼ δna

n0
∼ O(ε) (2.7)

where ω is the mode frequency, Ωa is the cyclotron frequency, δna is the density perturbation, and n0

is the initial density (Garbet et al., 2010).
To progress, some convenient variables are defined below.

ε =
mav

2

2
+ eaφ (2.8)

is the energy, composed of both the kinetic and the electrostatic potential energy.

µ =
mav

2
⊥

2B
(2.9)

is the magnetic moment, and

R = r +
b̂× v

Ωa
(2.10)

is the position of the gyro-centre (figure 8). Here b̂ is the unit vector along the magnetic field, and
Ωa is the cyclotron frequency. This is sometimes called the Catto Transformation, after its inventor
(Catto, 1978).
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Figure 8: A description of the gyro-centre, where R is the gyro-centre, and r is the position of the
particle. Image inspired by Cowley (2018)

Figure 9: We can eliminate the fast cyclotron time scale by applying the gyro-centre transform, and the
problem is reduced from 6D to 5D while keeping kinetic effects such as the finite larmor radius effects
(Garbet et al., 2010). Reduces the trajectory of the particle to ’discs’ centred about the gyrocentre of
the radius ρ, given by equation 2.6.

Depending on the system we are trying to describe, we can change the collisional operator to suit
our needs. Equation (2.4) would be called the Fokker-Planck equation if the dominant collisional
process in the plasma being described is via the Coulomb interactions. In that case, Ca would be
the Fokker-Planck operator. However, in most fusion plasmas (very hot plasmas) the frequency of
collision is very small. So we can get away with assuming Ca = 0, which then makes equation (2.4)
the Vlasov equation. If we choose to change the coordinates, and use ϑ as the gyro-angle, the Vlasov
equation can be written as,

∂fa
∂t

+ Ṙ · ∂fa
∂R

+ ϑ̇
∂fa
∂ϑ

+ ε̇
∂fa
∂ε

+ µ̇
∂fa
∂µ

= 0 (2.11)

By noting that ϑ̇ ' −Ωa and that mv̇ = ea(E + v ×B), we get

ε̇ = ea

(
∂φ

∂t

)
r

(2.12)

We then decompose the distribution function as

fa = fa0 + ga + ... (2.13)
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where ga is the non-adiabatic part of the distribution function, and fa0 is defined as a Maxwellian
given by,

fa0 = na(ψ)

(
ma

2πTa(ψ)

)3/2

exp

{
−ε
Ta(ψ)

}
' na(ψ)

(
ma

2πTa(ψ)

)3/2

exp

{
−mav

2

2Ta(ψ)

}(
1− eaφ

Ta

) (2.14)

where ψ is the flux surface label, and eaφ/Ta << 1. The adiabatic response is captured within fa0.
We can also say that ga << fa0.

∂fa0

∂t
+
∂ga
∂t

+ Ṙ · ∂
∂R

(fa0 + ga)− Ωa
∂ga
∂ϑ

+ ea

(
∂φ

∂t

)
r

∂fa0

∂ε
+ µ̇

∂fa0

∂µ
= 0 (2.15)

where it is assumed that the lowest order of the distribution function is independent of the gyro-angle.
We can now see that the distribution function is independent of both time, and the magnetic

moment. But also that ∂fa0/∂ε = −fa0/Ta.

∂ga
∂t

+ Ṙ · ∂
∂R

(fa0 + ga)− Ωa
∂ga
∂ϑ

+
ea
Ta

(
∂φ

∂t

)
r

fa0 = 0 (2.16)

At fixed R, we can now perform a gyro-averaging (equation 2.17) to describe the motion of the
gyro-centre (R). Here the integration is carried by also keeping a constant µ and ε. This is essentially
an average over the ’disc’ (as shown in figure 9) centred about R.

〈f(v, r, t, ...)〉R =
1

2π

ˆ 2π

0
f (v, r, t, ...) dϑ (2.17)

If we expand ga as ga = ga0 + ga1, by deducing that Ωa
∂ga
∂ϑ is the largest term in equation (2.16),

we can approximate Ωa
∂ga0
∂ϑ = 0.

∂ga0

∂t
+ 〈Ṙ〉R ·

∂

∂R
(fa0 + ga) +

ea
Ta

〈(
∂φ

∂t

)
r

〉
R

fa0 = 0 (2.18)

〈Ṙ〉R = v‖b̂ + vE + vda (2.19)

where vE is given by

vE =
b̂×∇〈φ〉R

B
(2.20)

is the ExB drift velocity, and vda given by

vda =
b̂

2Ωa
×
(
v2
⊥∇lnB + v2

‖κ
)

(2.21)

is the magnetic drift velocity, and κ = b̂ · ∇b̂ which is the curvature component.

∂ga0

∂t
+ (v‖b̂ + vE + vda) · ∇ga0 + (vE + vda) · ∇fa0 −

ea
Ta

〈(
∂φ

∂t

)
r

〉
R

fa0 = 0 (2.22)

Here, we can ignore vE · ∇ga0 as it is non-linear in its fluctuations, and vda · ∇fa0 as is gives the
neoclassical response in ga0 which simply adds to the fluctuations driven by the last two terms.

In addition to which, since we know that fluctuations vary slowly along the field lines and rapidly
across them, it is convenient to write the perturbed quantities such as φ or ga0 in terms of a slowly
varying amplitude and a fast varying phase,

φ(r, t) = φ̂(r, ω) exp

{
iS(r)

δ − ωt

}
(2.23)
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ga0(R, ε, µ, t) = ĝa(R, ε, µ) exp

{
iS(R)

δ − ωt

}
(2.24)

where S(r) is an eikonal (Cooper et al., 1996), which is assumed to satisfy B ·∇S = 0 so as to guarantee
that the modes vary slowly along the magnetic field line (Cooper, 1988). φ̂(r), ĝa(R), S(R), and S(r)
are assumed to vary on the long (equilibrium) spatial scale, and the fast variation is found in the
phase factor. These results are obtained from the Ballooning formalism, which is simply assumed and
will not be explored any further as it is outside the scope of this work.

Using the ballooning formalism it is possible to write〈(
∂φ

∂t

)
r

〉
R

= −iωJ0

(
k⊥v⊥

Ωa

)
φ(R, t) (2.25)

where J0 is a Bessel function of the zeroth order.
If we now represent the magnetic field in Clebsch coordinate representation as

B = ∇ψ ×∇α

where ψ is the flux surface label, and α is the magnetic field line label, and the perpendicular wave
vector can be written as

k⊥ = kψ∇ψ + kα∇α

Using this coordinate transformation, we can now say that

− vE · ∇fa0 = iJ0

(
k⊥v⊥

Ωa

)
eaφ

Ta
ωT∗afa0 (2.26)

where ωT∗a, the velocity dependant drift frequency is given by

ωT∗a = ω∗a

[
1 + ηa

(
ε

Ta
− 3

2

)]
(2.27)

and ω∗a, the diamagnetic drift frequency is given by

ω∗a =
Takα
ea

dlnna
dψ

(2.28)

and finally ηa, is the ration between the temperature gradient to the density gradient.

ηa =
dln(Ta)

dψ

/
dln(na)

dψ
(2.29)

By combining all of these terms, we obtain the gyrokinetic relation.

v‖∇‖ĝa − i(ω − ωda)ĝa = − iea
Ta
J0φ̂(ω − ωT∗a)fa0 (2.30)

where ωda = k⊥ · vda.
As the dependence of ĝa and φ̂ in frequency, and their slow variation in space is implied, we can

now drop the hats.

v‖∇‖ga − i(ω − ωda)ga = − iea
Ta
J0φ(ω − ωT∗a)fa0 (2.31)

Due to the low mass of the electrons, they tend to move very quickly along the magnetic field
line, therefore we can say that the first term is dominant. If we then expand ga = ga0 + ga1 + ... with
ga1 << ga0, in the lowest order we find that ∇‖ga0 = 0.

If the gyrokinetic equation (2.31) is divided by v‖ and integrated along the field line, we obtain
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¸
dl
v‖

(v‖∇‖ga0 − i(ω − ωda)ga0)¸
dl
v‖

=

¸
dl
v‖

(
− iea
Ta
J0φ(ω − ωT∗a)fa0

)
¸
dl
v‖

(2.32)

where the equation has been divided by
¸
dl
v‖

for normalisation. This operation can be written as,

f =
2

τb

ˆ l2

l1

f
dl

|v‖|
(2.33)

which can be described as a bounce averaging for trapped particles. Here, l1 and l2 are the bounce
points for the particle (figure 10), and τb is the bounce time, given by

τb = 2

ˆ l2

l1

dl

|v‖|
(2.34)

where v‖ is the parallel velocity of the particle.

Figure 10: The figure shows a helical field line within a Tokamak, where a particle is bouncing between
the two bounce points l1 and l2. These points are determined by the parallel velocity that the particle
is carrying, and the magnetic field strength of the Tokamak.

It can be proven that v‖∇‖ga0 = 0, for both passing and trapped particles (Proll, 2014). We also
know that only ωda, φ, and J0 vary along the field line, so we can write equation (2.32) as

(ω − ωda)ga0 =
ea
Ta
J0φ(ω − ωT∗a)fa0 (2.35)

When equation (2.35) is re-arranged, we obtain the solution for fast moving particles along the
field line (ω << k‖vTa).

ga =
ea
Ta
J0φ

(ω − ωT∗a)
(ω − ω̄da)

fa0 (2.36)

We can now re-visit TEM theory where, one of the more important factors to be considered is the
local radial curvature. We know from Proll et al. (2015) that

ωdeω∗e > 0 (2.37)

is a criteria for the electrons to have a destabilising effect on the TEM, where ωde is the magnetic
drift frequency averaged over the magnetic field line, and ω∗e is the diamagnetic drift frequency (Proll
et al., 2015).
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In figure (4) we see regions where κ is positive, and regions where it is negative. Figure (11) shows
a stable scenario where the two frequencies are in the opposite directions. ωde(∝ κ) must be negative
(as ω∗e ∝ dn/dr is negative by definition), if TEMs are to be driven unstable. Such regions, where
the particle mainly sees negative curvature is called a ’bad curvature region’, and vice-versa.

Figure 11: The image shows the magnetic field strength of the quasi-isodynamic stellarator QIPC
(Subbotin et al., 2006; Proll, 2014). While the arrows indicate the directions of the diamagnetic drift
frequency, and the bounce averaged magnetic drift frequency.

2.3 Quasi-neutrality

We will now introduce quasi-neutrality by using the poisson equation to close our system of equations.

∇2ϕ =
e2(ne − ni)

ε0T0
(2.38)

where ϕ = eφ/T0, ne and ni are the electron and ion densities, and T0 is the temperature.
We now assume that the electron and ion densities are approximately equal to the density n0, with

small perturbations, written as

na = n0 + δna

where ’a’ denotes the particle species. This leads us to,

∇2ϕ =
δne − δni
n0λ2

D

(2.39)

where λ2
D = ε0T0/n0e

2, the Debye length.
In fusion plasmas, the Debye length is one of the smallest scale lengths. We also know that the

potential varies on a length scale which can be approximated as ∇ϕ ∼ L, which gives us

δne − δni
n0

∼
(
λD
L

)2

(2.40)

If the length scales of the potential are large compared to the Debye length (L >> λD), the density
increments must cancel each other to satisfy equation (2.40). Using this information, we can write the
quasi-neutrality equation as
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∑
a

eaδna = 0 (2.41)

where the density perturbation can be written as

δna(r, t) =

ˆ
r=const

(fa0 + ga0)dv − na(r) (2.42)

where, ˆ
fa0dv = na

(
1− eaφ

Ta

)
(2.43)

and ˆ
ga0dv = exp

{
iS(R)

δ − ωt

}ˆ
ga(R, ε, µ)J0

(
k⊥v⊥

Ωa

)
dv (2.44)

which is obtained by using the definition of ga0 given by equation (2.24). We would also need to
remember that we have dropped the hats because a slow variation in space is implied. Which gives
us the quasi-neutrality condition, when we also use the definition of φ given by equation (2.23).

∑
a

nae
2
a

Ta
φ =

∑
a

ea

ˆ
ga(R, ε, µ)J0

(
k⊥v⊥

Ωa

)
dv (2.45)

GENE (Gyrokinetic Electromagnetic Numerical Experiment) (Jenko et al., 2000; Xanthopoulos
et al., 2009; Jenko, 2000; Merz, 2008) is a code that can be used to solve the gyrokinetic equations
outlined in this chapter. GENE can be used either in a nonlinear or a linear form, both of which
have been shown to yield reliable results (Jenko, 2000). The particle distribution function is evaluated
in five-dimensional phase space, and includes the calculation of both passing particle and trapped
particles. While GENE does have the potential to simulate entire flux surface in a stellarator, the
data has been extracted from a flux tube simulation, where a small annulus around a given field line
is simulated, and the background density and temperature profiles are assumed to be constant. To
simplify calculations, a flat temperature profile can be assumed. This is true of all GENE graphs
presented in this work.

GENE treats different geometries by coupling itself to GIST (Geometry Interface for Stellarators
and Tokamaks) (Xanthopoulos et al., 2009). This is highly process intensive and takes up to ≈ 106

CPUs (1 CPUs = 1 real time processing second on one CPU) for strong instabilities. However, the
calculations can be sped up by process parallelisation across five phase space dimensions as well as
across the number of particles considered.
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3 Derivation of the Dispersion Relation

In order to analyse TEM stability in a plasma and predict the threshold, we will first need to derive a
dispersion relation based on the gyrokinetic framework that has been outlined in the previous chapter.
It is important to note that the following derivation has been carried out from the perspective of
a tokamak, but it is adaptable to stellarators by substituting alternate magnetic geometries. In this
chapter, an outline of the initial parameters have been provided, before embarking upon the derivation
of the dispersion relation for the TEM.

3.1 Outline of Assumptions

We first assume that the frequency of the mode is much smaller than the bounce frequencies of both
the ions, and the electrons.

ω << ωbi << ωbe (3.1)

We then assume the non-adiabatic part of the perturbed equation given by 3.2, as passing particles
are treated adiabatically. Therefore, the adiabatic part is not included here.

ga =
ea
Ta
J0φ

(ω − ωT∗a)
(ω − ω̄da)

fa0 (3.2)

where ωT∗a is the velocity dependent drift frequency, given by equation (3.3).

ωT∗a = ω∗a

[
1 + ηa

(
ε

Ta
− 3

2

)]
(3.3)

where ω∗a is the diamagnetic drift frequency given by,

ω∗a =
Ta
Bea

dln(na)

dr

(
b̂×∇r

)
· k⊥ (3.4)

and ηa is the ratio between the temperature gradient and the density gradient, given by

ηa =
dln(Ta)

dψ

/
dln(na)

dψ
(3.5)

We also assume the bounce averaged magnetic drift frequency

ωda = k⊥ · vda (3.6)

and the quasi-neutrality condition.

∑
a

nae
2
a

Ta
φ =

∑
a

ea

ˆ
ga(R, ε, µ)J0

(
k⊥v⊥

Ωa

)
dv (3.7)

In addition to which, the Maxwellian has been assumed to be

fa0 = na(ψ)

(
ma

2πTa(ψ)

)3/2

exp

{
−mav

2

2Ta(ψ)

}
(3.8)

Here, as with equation (3.2), only the non-adiabatic part is included.

3.2 The Dispersion Relation

To start off, we first consider the quasi-neutrality condition (equation 3.7), and approximate the zeroth
order Bessel function (J0) to 1, as we are considering long perpendicular wavelengths (k⊥ρa << 1).
When equation (3.2) is substituted in equation (3.7), we get
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∑
a

nae
2
a

Ta
φ =

∑
a

ea

ˆ
trapped

ga(R, ε, µ)dv

=
√

2ε
∑
a

ea

ˆ
trapped

ea
Ta
φ

(ω − ωT∗a)
(ω − ωda)

fa0dv

=
√

2ε
∑
a

ea

ˆ
trapped

ea
Ta
φ

(ω − ωT∗a)
(ω − ωda)

fa0dv

(3.9)

where the factor of
√

2ε denotes the fraction of trapped particles, which is included so as to only for
the trapped particles, and ε is the inverse aspect ratio (a/R).

Here, a further approximation is made where we consider that the electrostatic potential does
not depend on the position along the field line, which implies that φ = φ. This is quite a brutal
approximation, as it does indeed depend on the position along the field line, yet it simplifies the
mathematics considerably. It is also important to note that,

ˆ
fa0dv = na (3.10)

When we implement these approximations in equation (3.9), we get

∑
a

nae
2
a

Ta
=
√

2ε
∑
a

ea

ˆ
trapped

ea
Ta

(ω − ωT∗a)
(ω − ωda)

fa0dv (3.11)

∑
a

nae
2
a

Ta
=
√

2ε
∑
a

e2
a

Ta

(ω − ω∗a)
(ω − ω̃da)

na (3.12)

where we have effectively fixed the definition of ω̃da. When following previous works (Proll, 2014), ωda
disappears when the integral in equation (3.11) is evaluated with a frequency ordering (ωda << ω).
But seeing as curvature is an important component in turbulence studies, ω̃da is re-introduced as a
reminder of the direction of the curvature.

The exact definition of ω̃da can be derived by considering the denominator of equation (3.9), and
using the approximation ωda << ω (and a taylor expansion), to obtain an identity.

1

ω − ωda
=

1

ω

(
ω − ωda

ω

)−1

=
1

ω

(
1− ωda

ω

)−1

≈ 1

ω

(
1 +

ωda
ω

+ ...

) (3.13)

This is a very crucial ordering approximation, but not entirely accurate. The magnetic drift
frequency is typically not that small. However, it is an ordering that needs to be made for the integral
to be evaluated at all. By employing this identity in equation (3.11) to obtain

ˆ
trapped

(ω − ω∗a)
1

ω
(1 +

ωda
ω

+HO)fa0dv = (ω − ω∗a)
1

ω
(1 +

ω̃da
ω

+HO)na (3.14)

where HO are the higher order terms which will be ignored for this evaluation. Thus, this equality
can be evaluated as

ω̃da =
1(

1− ω∗a
ω

)
na

[ˆ
tr
ωdafa0dv −

ˆ
tr

ωT∗aωda
ω

fa0dv

]
(3.15)

We now carry on again from equation (3.12), which can be written as

∑
a

[
nae

2
a

Ta
−
√

2ε
e2
a

Ta
na

(ω − ω∗a)
(ω − ω̃da)

]
= 0 (3.16)
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By expanding the summation, and assuming that ni = ne, we obtain

1√
2ε

(
1

Te
+

1

Ti

)
=

1

Te

(ω − ω∗e)
(ω − ω̃de)

+
1

Ti

(ω − ω∗i)
(ω − ω̃di)

(3.17)

We now make the assumption that Te = Ti. We also make the observation that ω∗e = −ω∗i (from
equation 3.3), and that ω̃de = −ω̃di (from equation 4.13).√

2

ε
=

(ω − ω∗e)
(ω − ω̃de)

+
(ω + ω∗e)

(ω + ω̃de)√
2

ε
=

2ω2 − 2ω∗eω̃de
ω2 − ω̃2

de

(3.18)

Which gives us a dispersion relation of the form,

ω2(1−
√

2ε) = (ω̃de −
√

2εω∗e)ω̃de (3.19)

which is exactly the one found in Proll (2014).
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4 Derivation of the Proxy

We now pick up from the dispersion relation that was derived in the previous chapter (equation 3.19).
To derive the criterion for instability, we notice that ω2 can only be imaginary if ω̃de and ω∗e have the
same sign, and when

√
2εω∗e > ω̃de (4.1)

is satisfied. Equation (3.19) varies slightly the dispersion relation given in Wesson and Campbell
(2011),

ω2 = ωde(ωde +
√

2εω∗e) (4.2)

However, the argument (equation 4.1) is still valid in both versions of the dispersion relation (ω∗ is
defined with an extra negative sign in Wesson and Campbell (2011)). Therefore we can be confident
with the argument made, and carry on with the derivation by finding the point of marginal stability,
which is defined as the point at which the turbulence instability growth rate (γ) tends to 0+, for
ω = ωr + iγ. This point effectively provides us with the critical gradient. This criteria can be written
(following on from equation 4.1) as

ω̃de =
√

2εω∗e (4.3)

where
ω∗a =

Ta
Bea

(
b̂×∇(na)

)
· k⊥

=
Ta
Bea

dln(na)

dr

(
b̂×∇r

)
· k⊥

(4.4)

is the diamagnetic drift frequency, dln(na)
dr is the logarithmic density gradient which in this case is the

critical gradient.

ωda = k⊥ · vda

=
v2
‖ + v2

⊥/2

Ωa

(
b̂× κ

)
· k⊥

(4.5)

is the magnetic drift frequency, v‖ is the parallel velocity of the particle and v⊥ is the perpendicular
velocity.

κ = ∇lnB =
∇B
B

(4.6)

is the curvature.
I will now outline a few more definitions that are required for us to evaluate equation (4.3). The

bounce average of a function is given by,

v‖ = v
√

1− λB (4.7)

where v‖ is the is derived using,

v2 = v2
‖ + v2

⊥ (4.8)

and

λ =
v2
⊥

v2B
(4.9)

where λ is the pitch angle.
We know from Xanthopoulos et al. (2009) that (b̂ × κ) · k⊥ can be boiled down to καkα (k⊥ =

kψ∇ψ+kα∇α), where α is simply the filed line label as given in Clebsch coordinates. We now elaborate
on the LHS of equation (4.3) now, from where we left off in equation (4.5). At this point, we will also
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re-scale the velocity variable by using x = v
vTa

, where vTa is the thermal velocity of the particle given

by vTa =
√

kBTa
ma

.
When these are used in equation (4.5), we get

ωda = (xvTa)2

(
1− λB

2

)
καkα
Ωa

(4.10)

We can now bounce average this relation as defined by equation (2.33), leading to

ωda = (xvTa)2 1

τb

ˆ l2

l1

(
1− λB(l)

2

)
κα(l)kα

Ωa

dl

|v‖|

= (xvTa)2 1
1

xvTa

´ l2
l1

dl√
1−λB(l)

ˆ l2

l1

(
1− λB(l)

2

)
κα(l)kα

Ωe

dl

xvTa
√

1− λB(l)

=
(xvTa)2

´
l2

l1

(
1−λB(l)

2

)
√

1−λB(l)

κα(l)kα
Ωa

dl

´ l2
l1

dl√
1−λB(l)

(4.11)

By now using the full definition of ω̃da given by equation (3.14), we now obtain a more verbose
form of ω̃da.

ω̃da =
ω

´
trapped

ωdafa0dv −
´
trapped

ωdaω∗a

[
1 + ηa

(
ε
Ta
− 3

2

)]
fa0dv

(ω − ω∗a)na

=
ω

´
trapped

ωdafa0dv − ω∗a
´
trapped

ωdafa0dv − ηaω∗a
´
trapped

ωda

(
ε
Ta
− 3

2

)
fa0dv

(ω − ω∗a)na

=
1

na

ˆ
trapped

ωdafa0dv −
ηaω∗a

(ω − ω∗a)na

ˆ
trapped

ωda

(
ε

Ta
− 3

2

)
fa0dv

(4.12)

Equation (3.15) was expanded as such so that we can separate ω∗a from the first term. Where we
can now get rid of the second term by assuming a flat temperature profile (ηa = 0). This assumption
is justified in this case, as all of the simulation data that we will be comparing the proxy to have also
assumed a flat temperature profile. It is worth mentioning here that the modes driven unstable by
trapped electrons are found to be stable in perfectly quasi-isodynamic (W7-X is a quasi-isodynamic
stellarator, albeit not a pefectly quasi-isodynamic stellarator) stellarators while it satisfies the condition
0 < ηa < 2/3, at the electrostatic and collisionless limit (Proll et al., 2012).

ω̃da =
1

na

ˆ
trapped

ωdafa0dv =
I1

na
(4.13)

where dv is given by

dv = 2πv⊥dv⊥dv‖ =
∑
σ

Bπv3dvdλ

|v‖|
=
∑
σ

Bπ(xvTa)3vTadxdλ

xvTa
√

1− λB
(4.14)

and σ is given by

σ =
v‖

v‖
(4.15)

As a side note, it is important to remember that
ˆ v2=∞

v1=0
fa0dv = na (4.16)

But getting back to equation (4.13),
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ˆ v2

v1

ωdafa0dv =

ˆ
x2

x1

(xvTa)2fa0

´
l2

l1

(
1−λB(l)

2

)
√

1−λB(l)

κα(l)kα
Ωe

dl
∑

σ
Bπ(xvTa )3vTadxdλ

xvTa
√

1−λB´ l2
l1

dl√
1−λB

=
2πv5

Ta
ma

ea

ˆ x2

x1

fa0x
4dx

ˆ
1/Bmin

1/Bmax

´
l2

l1
κα(l)kα

(
1−λB(l)

2

)
(1−λB(l)) dl´

l2

l1

dl√
1−λB(l)

dλ

(4.17)

where the summation has been reduced to the factor of 2 (
∑

σ=±1 = 2).
This now gives us

ω̃da =
2πv5

Ta
ma

naea

ˆ x2

x1

x4fa0dx

ˆ
1/Bmin

1/Bmax

´
l2

l1
κα(l)kα

(
1−λB(l)

2

)
(1−λB(l)) dl´

l2

l1

dl√
1−λB(l)

dλ (4.18)

For the sake of brevity, this shall be written as

ω̃da =
2πv5

Te
ma

naea

ˆ x2

x1

...dx

ˆ 1/Bmin

1/Bmax

´ l2
l1
...dl´ l2

l1
...dl

dλ (4.19)

We can now combine this with equation (4.3), and equation (4.4), giving us

2πv5
Te
ma

neee

ˆ x2

x1

...dx

ˆ 1/Bmin

1/Bmax

´ l2
l1
...dl´ l2

l1
...dl

dλ =
Te
√

2ε

Bee

dln(ne)

dr

(
b̂×∇r

)
· k⊥ (4.20)

where dv is given by

dv = 2πv⊥dv⊥dv‖ =
∑
σ

Bπv3dvdλ

|v‖|
=
∑
σ

Bπ(xvTa)3vTadxdλ

xvTa
√

1− λB
(4.21)

and σ is given by

σ =
v‖

|v‖|
(4.22)

which captures the direction of travel, of the trapped particle. Hence, the summation can be reduced
to the factor of 2 (

∑
σ=±1 = 2).where we have set dln(ne)

dr = Cg, the critical gradient.
We can also simplify the last term on the right hand side of the equation as

(b̂×∇r) · k⊥ = (
B

B
×∇ψ) · k⊥

= (
B

B
×∇ψ) · (kψ∇ψ + kα∇α)

= (
B

B
×∇ψ) · (kψ∇ψ + kα∇α)

= (
B

B
×∇ψ) · (kα∇α)

= (∇ψ × kα∇α) · B
B

= Bkα

(4.23)

where the definition of the magnetic field in Clebsch coordinates has been used (B = ∇ψ×∇α), giving
us
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where the first integral was evaluated to be
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4πT
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(4.26)

giving us the final TEM threshold proxy in the form
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3

2
√

2ε

ˆ
1/Bmin
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´
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l1

(
1−λB(l)

2

)
(1−λB(l)) κα(l)dl
´ l2
l1

dl√
1−λB(l)

dλ (4.27)
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5 Results

We are finally at a position where we can code in the proxy, and obtain preliminary results that
indicate the accuracy of the derived proxy. We will now modify equation (4.27) to include a heaviside
function (Proll et al., 2015). This defines the trapped particle region of the magnetic field that is
to be considered for the integration of the inner integral. It is equal to unity inside the trapped
particle region (1/Bmax < λ < 1/Bmin). Figure (12) shows how the inner integral determines the
bounce average for trapped particles characterised by a specific pitch angles. The outer integral then
integrates over all such possible cases, to give the threshold.

Cg =
3

2
√

2ε

ˆ
1/Bmin

1/Bmax

´
l2

l1
H
[

1
λ −B(l)

] (
1−λB(l)

2

)
(1−λB(l)) κα(l)dl

´ l2
l1
H
[

1
λ −B(l)

]
dl√

1−λB(l)

dλ (5.1)

where H[f(λ,B)] denotes a heaviside function.
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Figure 12: The images display the magnetic field line, and the corresponding curvature of the HSX
bean flux tube overlayed on the same graph. In addition to this, the influence of the heaviside
function is also plotted. Graph (a) displays what a particle with the pitch angle λ = 0.801 will see,
and correspondingly, graph (b) shows what a particle with the pitch angle λ = 1.061 will see.

The integrals were implemented in python using the composite trapezoidal rule (Appendix A).
The data for κα was obtained from GIST output files, just like the magnetic field line data, and the
data to calculate the inverse aspect ratio (ε). When the proxy was calculated for the stellarators and
flux tubes in question, it was then compared to the GENE results. However, it is important to note
that the conversion from GIST data to κα is given by

κα = L− 1

2

dp/dx

B
(5.2)

where L is the output column in GIST for curvature, and dp/dx is the pressure gradient. As we deal
with vacuum configurations, the second term is almost always zero.

Eleven different toroidal devices and flux tubes/magnetic configurations were considered in this
part of the study. Below, sets of graphs and images (figure 13 to figure 23) are presented for each
of them. The top left shows the curvature on the left axis, and the magnetic field strength on the
right axis for multiple stellarators and flux tubes. The data for this graph has been acquired from
GIST output files (Xanthopoulos et al., 2009). The top right shows the growth rates of the TEM
instability on the y-axis, and the density gradient on the x-axis for multiple stellarators and flux
tubes. The results are procured linear runs of GENE. The bottom graph shows the magnetic surface
of the relevant device and a cut of the different flux tubes that were analysed.
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Device/Configuration Flux Tube
DIII-D Midplane
HSX Bean
HSX Triangle

W7-X HM Bean
W7-X HM Triangle
W7-X SC Bean
W7-X SC Triangle
W7-X LM Bean
W7-X LM Triangle
NCSX Bean
NCSX Bullet

Table 1: The table details all the of the devices, device configurations, and flux tubes used in this
study.
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(a) The figure shows the magnetic field line, and the
curvature for DIII-D.
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DIII-D Critical Gradient

Linear GENE
Polynomial Fit
Critical gradient

(b) The graph shows the Normalised density gradient
v/s the growth rate for DIII-D. It also displays the
critical gradient for this geometry.

(c) The image shows a magnetic surface plot of DIII-D.
The red indicates magnetic maxima, and blue indicates
magnetic minima.

Figure 13: The figures above are relevant to DII-D (Luxon, 2002).
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(a) The figure shows the magnetic field line, and the
curvature for the bean flux tube in HSX.
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HSX Bean Flux Tube Critical Gradient
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(b) The graph shows the Normalised density gradient
v/s the growth rate for the bean flux tube in HSX. It
also displays the critical gradient for this geometry.

(c) The image shows a magnetic surface plot of HSX,
and a cut of the bean flux tube in HSX. The red in-
dicates magnetic maxima, and blue indicates magnetic
minima.

Figure 14: The figures above are relevant to the bean flux tube in HSX (Helically Symmetric Experi-
ment). (Almagri et al., 1999)
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(a) The figure shows the magnetic field line, and the
curvature for the triangle flux tube in HSX.
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(b) The graph shows the Normalised density gradient
v/s the growth rate for the triangle flux tube in HSX.
It also displays the critical gradient for this geometry.

(c) The image shows a magnetic surface plot of HSX,
and a cut of the triangle flux tube in HSX. The red in-
dicates magnetic maxima, and blue indicates magnetic
minima.

Figure 15: The figures above are relevant to the triangle flux tube in HSX (Helically Symmetric
Experiment). (Almagri et al., 1999)
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(a) The figure shows the magnetic field line, and the
curvature for the bean flux tube in the high mirror
configuration of W7-X.
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(b) The graph shows the Normalised density gradient
v/s the growth rate for the bean flux tube in the high
mirror configuration of W7-X. It also displays the crit-
ical gradient for this geometry.

(c) The image shows a magnetic surface plot of W7-
X, and a cut of the bean flux tube in the high mir-
ror configuration of W7-X. The red indicates magnetic
maxima, and blue indicates magnetic minima.

Figure 16: The figures above are relevant to the triangle flux tube in the High Mirror configuration
of W7-X (Wendelstein 7-X) (Nührenberg et al., 1995).
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(a) The figure shows the magnetic field line, and the
curvature for the triangle flux tube in the high mirror
configuration of W7-X.
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(b) The graph shows the Normalised density gradient
v/s the growth rate for the triangle flux tube in the
high mirror configuration of W7-X. It also displays the
critical gradient for this geometry.

(c) The image shows a magnetic surface plot of W7-X,
and a cut of the triangle flux tube in the high mir-
ror configuration of W7-X. The red indicates magnetic
maxima, and blue indicates magnetic minima.

Figure 17: The figures above are relevant to the triangle flux tube in the High Mirror configuration
of W7-X (Wendelstein 7-X) (Nührenberg et al., 1995).
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(a) The figure shows the magnetic field line, and the
curvature for the bean flux tube in the low mirror con-
figuration of W7-X.
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(b) The graph shows the Normalised density gradient
v/s the growth rate for the bean flux tube in the low
mirror configuration of W7-X. It also displays the crit-
ical gradient for this geometry.

(c) The image shows a magnetic surface plot of W7-X,
and a cut of the bean flux tube in the low mirror config-
uration of W7-X. The red indicates magnetic maxima,
and blue indicates magnetic minima.

Figure 18: The figures above are relevant to the bean flux tube in the Low Mirror configuration of
W7-X (Wendelstein 7-X) (Nührenberg et al., 1995).
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(a) The figure shows the magnetic field line, and the
curvature for the triangle flux tube in the low mirror
configuration of W7-X.
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(b) The graph shows the Normalised density gradient
v/s the growth rate for the triangle flux tube in the
low mirror configuration of W7-X. It also displays the
critical gradient for this geometry.

(c) The image shows a magnetic surface plot of W7-
X, and a cut of the triangle flux tube in the low mir-
ror configuration of W7-X. The red indicates magnetic
maxima, and blue indicates magnetic minima.

Figure 19: The figures above are relevant to the triangle flux tube in the Low Mirror configuration of
W7-X (Wendelstein 7-X) (Nührenberg et al., 1995).
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(a) The figure shows the magnetic field line, and the
curvature for the bean flux tube in the standard con-
figuration of W7-X.
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W7-X SC Bean Flux Tube Critical Gradient

Linear GENE
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Critical gradient

(b) The graph shows the Normalised density gradient
v/s the growth rate for the bean flux tube in the stan-
dard configuration of W7-X. It also displays the critical
gradient for this geometry.

(c) The image shows a magnetic surface plot of W7-X,
and a cut of the bean flux tube in the standard config-
uration of W7-X. The red indicates magnetic maxima,
and blue indicates magnetic minima.

Figure 20: The figures above are relevant to the bean flux tube in the Standard Configuration of W7-X
(Wendelstein 7-X) (Nührenberg et al., 1995).
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(a) The figure shows the magnetic field line, and the
curvature for the triangle flux tube in the standard
configuration of W7-X.
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W7-X SC Triangle Flux Tube Critical Gradient

Linear GENE
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(b) The graph shows the Normalised density gradient
v/s the growth rate for the triangle flux tube in the
standard configuration of W7-X. It also displays the
critical gradient for this geometry.

(c) The image shows a magnetic surface plot of W7-X,
and a cut of the triangle flux tube in the standard con-
figuration of W7-X. The red indicates magnetic max-
ima, and blue indicates magnetic minima.

Figure 21: The figures above are relevant to the triangle flux tube in the Standard Configuration of
W7-X (Wendelstein 7-X) (Nührenberg et al., 1995).
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(a) The figure shows the magnetic field line, and the
curvature for the bean flux tube in NCSX.
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NCSX Bean Flux Tube Critical Gradient
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(b) The graph shows the Normalised density gradient
v/s the growth rate for the bean flux tube in NCSX. It
also displays the critical gradient for this geometry.

(c) The image shows a magnetic surface plot of NCSX,
and a cut of the bean flux tube in NCSX. The red in-
dicates magnetic maxima, and blue indicates magnetic
minima.

Figure 22: The figures above are relevant to the bean flux tube in NCSX (National Compact Stellarator
Experiment) (Zarnstorff et al., 2001).
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(a) he figure shows the magnetic field line, and the
curvature for the bullet flux tube in NCSX.
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(b) he graph shows the Normalised density gradient
v/s the growth rate for the bullet flux tube in NCSX.
It also displays the critical gradient for this geometry.

(c) The image shows a magnetic surface plot of NCSX,
and a cut of the bullet flux tube in NCSX. The red in-
dicates magnetic maxima, and blue indicates magnetic
minima.

Figure 23: The figures above are relevant to the bean flux tube in NCSX (National Compact Stellara-
torExperiment) (Zarnstorff et al., 2001).
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By using the data and methods mentioned in this chapter, the thresholds were calculated. Once
the results from the proxy were obtained, they were compared to the threshold data as calculated
by GENE, and plotted against each other (figure 24). To do so, Cg was converted to a/Ln,proxy by
multiplying it with ’−a’ (minor radius). However, DIII-D was omitted from figure (24) as it was
off-scale. A table (table 2) is given to provide more detail. The results are discussed in the next
chapter.
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Comparison of Proxy and GENE predictions for the Threshold

Figure 24: The graph displays a comparison between the threshold prediction from both the proxy,
and GENE. The results from the proxy are on the x-axis, while the GENE results are on the y-axis.
The red line indicates a linear fit on the data, a trend line.

Device/Configuration Flux Tube Simulation Threshold Proxy Threshold
DIII-D Midplane 0.3263 8.82×10−3

HSX Bean 0.1722 1.07×10−4

HSX Triangle 0.2422 1.11×10−4

W7-X HM Bean 0.1702 2.62×10−4

W7-X HM Triangle 0.0681 2.21×10−4

W7-X SC Bean 0.1962 1.93×10−4

W7-X SC Triangle 0.1201 1.29×10−4

W7-X LM Bean 0.2603 3.07×10−4

W7-X LM Triangle 0.1481 1.69×10−4

NCSX Bean 0.2663 -6.87×10−5

NCSX Bullet 0.3163 -4.44×10−6

Table 2: The table provides an overview of the results of the proxy, compared to the thresholds as
calculated by GENE.
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6 Discussion

It is clear from figure (24) that the proxy produces a weak inverse correlation when compared with
the GENE results. It is suspected that this is due to the ordering assumption that were made during
the derivation of the proxy itself. In particular, when it was assumed that ωda << ω in order to derive
the identity equation (3.13). This assumption was found not to be true at marginal stability, as the
magnetic drift frequency is not typically that small. It was made only for the purpose of being able
to derive a workable form of the proxy. If a reasonable result is to be obtained, a correction to this
derivation would have to avoid that ordering (chapter 7).

However, we also notice a smaller trend within the results (figure 25). Within a particular config-
uration of a stellarator, the proxy captures the differences accurately between the different flux tubes.
Although only NCSX is displayed in figure (25), such a trend is visible for all stellarators, except for
HSX. The proxy calculates the threshold at almost exactly the same value for HSX, between the bean
and triangle flux tubes. This is not surprising as the magnetic field line structure, and the curvature
are very similar between the bean and triangle flux tubes. This offers very little for the proxy to
differentiate between the two flux tubes.

It is reasonable to think that the proxy predicts the correct threshold between flux tubes, as long
as we restrict it to a particular magnetic configuration. However, the lack an of overall trend is still
highly discouraging. Leading to the conclusion that the simplest version of the dispersion relation is
not suitable for this purpose.
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Figure 25: A cropped out section of figure (24).

We also notice that the proxy predicts the thresholds very close to zero, while GENE predicts them
to be higher by 3 orders of magnitude for most cases. While the proxy is not expected to be highly
accurate, this behaviour is very peculiar. Which leads to the conjecture that the proxy is possibly
calculating ω̃de as a very small quantity. This is possibly because we ordered the frequencies as such
in the derivation.

It is important to also consider how a stellarator that has been optimised for the TEM threshold
may behave. We know that tokamaks have higher thresholds but also a higher growth rate, while
stellarators have a lower threshold but also a lower growth rate (figure 2). Therefore, the emphasis
should also lie on ensuring that the optimised geometry does not inadvertently provide a magnetic
geometry with lower thresholds, or with higher growth rates. However, the higher growth rates might
not be a prohibitive factor, if the threshold is high enough from an operational standpoint. An ideal
geometry, from the perspective of TEMs, would provide us with higher thresholds and a lower growth
rates. Although, finding this point in the optimisation parameter space might be difficult, if at all
possible.
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7 An Alternative Approach

While the course followed in this work may have yielded a negative result, there are alternative ways
to evaluate the integral as written in equation (3.11). The alternative method was suggested by Beer
and Hammett (1996), where a dispersion relation was obtained using the distribution function given
by

g = F0
(ω − ωT∗ )

(ω − ωdv)
J0
eφ

T
(7.1)

and substituting it in the quasi-neutrality condition to give us

− n0a
eaφ

Ta
= −n0s

esφ

Ts

ˆ
F0

(ω − ωT∗ )

(ω − ωdv)
dv (7.2)

where F0 is a Maxwellian, the subscript ’a’ refers to the adiabatic species, and ’s’ refers to the kinetic
species (Shi et al., 2015; Biglari et al., 1989). And ωT∗ is given by

ωT∗ = ω∗

[
1 +
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(
v2
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2v2
T

+
µB

v2
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and

ωdv = ωd
(v2
‖ + µB)

v2
T

(7.4)

and

ωd =
kyρevT
R

(7.5)

By using closure approximations, equation (7.2) can be written as
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where the factor of R0(y), R1(y), and R2(y) (while neglecting Finite Larmor Radius effects) are given
by
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where y = ω/ωd, and Z(ζ) is given by the plasma dispersion relation,

Z(ζ) = π−1/2

ˆ ∞
−∞

exp
{
−t2
}

t− ζ
dt = 2i exp

{
−ζ2

} ˆ iζ

−∞
exp
{
−t2
}
dt (7.10)

We notice that the last term in equation (7.6) can be neglected as we have assumed a flat temper-
ature profile, simplifying things considerably. This also helps speed up the computational component
with fewer integrals to calculate. However, the original derivation is done from the perspective of the
ITG instability. To do so, it ignores trapped particle effects, carried out at the toroidal limit (k‖ = 0),
and the the distribution function used to carry out the work (without the adiabatic part), given by
equation (7.1) is more suited to ions, as found by Proll (2014).
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However, the methodology can of course be adapted towards solving the research questions posed
in this project. This can be achieved by starting with the appropriate distribution function as given
by

ga =
ea
Ta
J0φ

(ω − ωT∗a)
(ω − ω̄da)

fa0 (7.11)

as described in chapter 3. From here, we may go forward with similar steps to what is described in
this work until the crux of the issue as presented in equation (3.11). At this point, one ought to carry
out a treatment similar to the one presented by Beer and Hammett (1996), which puts equation (7.6)
in the form
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(7.12)

where the R0, R1, and R2 factors take the form given by figures (26)a, (26)b, and (26)c. Which is an
exact match to the result shown in Beer and Hammett (1996). Of course this is not surprising, as the
magnitude and shape of the factors should not change between the two relations.
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Figure 26: The three figures show the shape and magnitude of equations (7.7), (7.8), and (7.9). They
cross-validates Beer and Hammett (1996) before carrying on to perform further work.

We can now calculate the dispersion relation which is given by,

0 = D(ω) = R0
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+
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(7.13)
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where it is assumed that n0a = n0s, and that qa = qs.
Equation (7.13) can be further simplified when considering a flat temperature profile (1/LT = 0),

as in all of the simulations that this work is comparing with. In order to find the critical gradient, we
will also re-write the equation in terms of R/Ln, giving us,

R

Ln
= y − 4

Z2(
√

y
2 )

(7.14)

which is calculated using equations (7.7) and (7.8), and y = ω/ωd. Using this relation, we may now
have a look at what the function looks like (figure 27), such that we may know what to do next.
Figure (27) show the real and imaginary parts of equation (7.14), however, we are interested in the
imaginary part of the result as this is the part that gives us the growth rate.
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Figure 27: The image displays the real and imaginary parts of equation (7.14).

As is clear from figure (27), there is a minima in the imaginary part which relates to a specific
R/Ln. However, to be able to integrate this into an optimisation algorithm, we need to eliminate
mode frequency dependency from the relation as we would not have prior information about the mode
frequency in a particular device/geometry during the optimisation process.

We may achieve this by using variational principle analysis (Gelfand et al., 2000; Russak, 2002)
to obtain an approximation for the mode structure. This could then be used to circumvent the need
to know the mode frequency in advance, whilst performing the optimisation process. The process has
been used previously in Helander et al. (2013) and Proll (2014). However, this has not been calculated
here, as it is outside the scope of this thesis.

40



8 Conclusion

Considering the harsh deadline imposed on humanity by global warming, and the ever-growing need
for energy, we require a continuous source of energy that is also energy dense. Nuclear fusion is
something that satisfies all of the requirements that we have, except for one, which is that it does not
yet exist at a commercial scale. To achieve this goal, our ability to predict and control turbulence is
crucial, as it sets the energy confinement time in a magnetically confined fusion reactor. Although
there are multiple ways to achieve fusion, we focused on the stellarator type design, and on optimising
it to a higher critical gradient in the TEM. We aimed to achieve this by deriving a dispersion relation
that describes TEMs, and to then use it to obtain a simplified expression for the critical gradient.

Whilst we were successful in obtaining such a relation, the results indicated a weak inverse correla-
tion with the simulation results by GENE. This is most likely the result of using the wrong frequency
ordering choices when attempting to solve a crucial integral. The proxy also tends to estimate thresh-
olds close to zero, which is not the case in reality. This is also most likely due to the ordering
assumptions made in the derivation of the proxy.

An alternative way of obtaining a proxy has been suggested, but ridding the final relation of the
mode frequency dependency is key. We can achieve this by using the variational principle to obtain an
approximate mode structure. This structure can then be used in the optimisation process. Although
this approach will not rid the relation of the mode frequency, it will provide us with an approximation
that enables us to proceed with the optimisation process.

It is important that we preserve the quasi-symmetry or other unique properties (like quasi-
isodynamicity in W7-X) of the devices we aim to optimise, as the loss of these properties might
lead to higher levels of NC transport, which is not desirable. Proll et al. (2015) details how the NC
effective ripple went up by an order of magnitude due to the loss of quasi-symmetry in HSX. But
Mynick et al. (2011) have found configurations for NCSX where both turbulent, and NC transport
levels were reduced. Although the simulations were carried out over the ITG instability, there is rea-
son to believe that this will help TEM instabilities too, due to the improved average curvature. In
fact, any channel that benefits from an improved average curvature stands to be stabilised. This was
confirmed with the ETG mode simulations that were carried out (Mynick et al., 2011). They have
also found that the improved average curvature is achieved by deformations which displace inner flux
surfaces outward more than the outer ones, similar to the effect of raising the plasma β, which also
has an affect in reducing turbulence levels.

From the perspective of this particular thesis, an optimised geometry would provide us with higher
thresholds and a lower growth rates for the TEM. The next logical step would then be to incorporate
the ITG and ETG channels in the optimisation process. The ultimate goal however, is a holistically
optimised stellarator, which can reduce heat flux but retain particle flux to flush out impurities.
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A The Numerical Calculation of the Proxy

1 #!/ usr /bin /env python3
2 # −∗− coding : utf−8 −∗−
3

4 """
5 This f i l e i s wr i t t en in order to p r ed i c t a c r i t i c a l g rad i en t
6 from an example magnetic geometry , such that i t can be
7 compared to s imu la t i on data .
8

9 This s p e c i f i c s c r i p t only produces the va lue s o f
10 the i n t e g r a l s . I t c y c l e s through a l l the geometr i e s
11 that have been chosen , and c a l c u l a t e s the de s i r ed
12 i n t e g r a l s in a loop .
13

14 This s c r i p t has not been p a r a l l e l i s e d .
15 """
16

17 import numpy as np
18 import s c ipy . i n t e r p o l a t e as i n t e rp
19 from datet ime import datet ime
20

21

22 #Al l o f the a v a i l a b l e GIST output f i l e s
23 geo = [ ’ gist_ncsx_vac_2_s05 . dat ’ ,
24 ’ gist_ncsx_vac_s05 . dat ’ ,
25 ’ gist_d3d_s05 . dat ’ ,
26 ’ gist_hsx_vac_s05_bean . dat ’ ,
27 ’ g ist_hsx_vac_s05_triangle . dat ’ ,
28 ’ gist_w7xsc1_vac_s05_bean . dat ’ ,
29 ’ gist_w7xsc1_vac_s05_triangle . dat ’ ,
30 ’ gist_w7x_vac_s05 . dat ’ ,
31 ’ gist_w7x_vac_2_s05 . dat ’ ,
32 ’ gist_w7xlm1_vac_s05_bean . dat ’ ,
33 ’ gist_w7xlm1_vac_s05_triangle . dat ’ ]
34

35 startTime = datet ime . now( )
36

37 ############
38

39 #The pre s su r e g rad i ent data , taken from the GIST f i l e s mentioned above
40 mydpdx = {geo [ 0 ] [ : − 4 ] : 0 .0003669 ,
41 geo [ 1 ] [ : − 4 ] : 0 .0003669 ,
42 geo [ 2 ] [ : − 4 ] : −0.0087216 ,
43 geo [ 3 ] [ : − 4 ] : 0 .0000000 ,
44 geo [ 4 ] [ : − 4 ] : 0 .0000000 ,
45 geo [ 5 ] [ : − 4 ] : −0.0000696 ,
46 geo [ 6 ] [ : − 4 ] : −0.0000696 ,
47 geo [ 7 ] [ : − 4 ] : 0 .0000000 ,
48 geo [ 8 ] [ : − 4 ] : 0 .0000000 ,
49 geo [ 9 ] [ : − 4 ] : −0.0000399 ,
50 geo [ 1 0 ] [ : − 4 ] : −0.0000399}
51

52 #Def in ing the number o f samples to be i n t e g r a t ed over , f o r the composite
53 #trap e z o i d a l r u l e .
54 samples = 1e5
55 samples_2 = 1e5
56 ############
57

58 """
59 f un c t i on s
60 """
61

62 #Heav i s ide func t i on
63 de f we l l ( lamb ) :
64 re turn np . h eav i s i d e ( ( 0 . 999/ lamb )−B,B)
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65

66 #Bounce time i n t e g r a l
67 de f tau (x ) :
68 m = we l l ( x ) / np . s q r t (1−(x∗B) )
69 m[ np . i snan (m) ] = 0
70 re turn m
71

72 #In t e g r a l 2
73 de f omb(x ) :
74 m = ( we l l ( x ) ∗kap∗(1−((x∗B) /2) ) ) / (1−(x∗B) )
75 m[ np . i snan (m) ] = 0
76 re turn m
77

78 #In t e g r a l 3
79 de f lambda_int (x , y ) :
80 st_int = np . d i v id e (x , y )
81 st_int [ np . i snan ( st_int ) ] = 0
82 i n t e g r a l = np . t rapz ( st_int , x=lamb_samples , ax i s=−1) / l en ( B l i s t )
83 re turn i n t e g r a l
84

85 """
86 Loop
87 """
88

89 n=0
90 whi le n in range (0 , l en ( geo ) ) :
91

92 mini_timer = datet ime . now( )
93

94 data = np . l oadtx t ( ’ . . / geometr i e s / ’+geo [ n ] , sk iprows=10)
95

96 #Dis c r e e t B, to be i n t e r p o l a t ed
97 B l i s t = data [ : , 3 ]
98 b0 = 0 .5∗ (max( B l i s t )+min ( B l i s t ) )
99 bamp = 0 .5∗ (max( B l i s t )−min( B l i s t ) )

100

101 #Samples pre sent cu r r en t l y
102 nz = np . l i n s p a c e (0 , l en ( B l i s t ) , l en ( B l i s t ) )
103 #Samples f o r I n t e r p o l a t i o n
104 nz1 = np . l i n s p a c e (0 , l en ( B l i s t ) , samples )
105

106 #In t e r p o l a t i o n
107 B = in t e rp . sp l r ep ( nz , B l i s t , s=0)
108 B = in t e rp . sp l ev ( nz1 , B, der=0)
109

110 #In t e r p o l a t i o n
111 k l i s t = data [ : , 5 ] − ( 0 . 5∗ (mydpdx [ geo [ n ] [ : − 4 ] ] / data [ : , 3 ] ) )
112 kap = in t e rp . sp l ev ( nz1 , i n t e rp . sp l r ep ( nz , k l i s t , s=0) , der=0)
113

114 #Creat ing samples f o r lamda
115 lamb_samples = np . arange (1/(max( B l i s t ) ) −(0.0000001∗max( B l i s t ) ) ,
116 1/min ( B l i s t ) , (1/min ( B l i s t )−1/max( B l i s t ) ) /( samples_2−1) )
117

118 tau_val = [ ]
119

120 #In t e g r a t i n g bounce time i n t e g r a l
121 f o r lamb in lamb_samples :
122 I = np . t rapz ( tau ( lamb ) , x=nz1 , ax i s=−1) / l en ( B l i s t )
123 tau_val . append ( I )
124

125 omb_val = [ ]
126

127 #In t e g r a t i n g i n t e g r a l 2
128 f o r lamb in lamb_samples :
129 I1 = np . t rapz (omb( lamb ) , x=nz1 , ax i s=−1) / l en ( B l i s t )
130 omb_val . append ( I1 )
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131

132 st_int = np . d i v id e (omb_val , tau_val )
133 st_int [ np . i snan ( st_int ) ] = 0
134

135 #In t e g r a t i n g i n t e g r a l 3
136 i n t e g r a l = np . t rapz ( st_int , x=lamb_samples , ax i s=−1) / l en ( B l i s t )
137

138 pr in t ( ’The i n t e g r a l va lue f o r ’+ geo [ n ] [ : − 4 ] +’ i s : ’ ,
139 lambda_int (omb_val , tau_val ) )
140

141 n += 1
142

143 pr in t ( ’Time taken f o r t h i s run : ’ , datet ime . now( ) − mini_timer )
144

145

146

147 pr in t ( ’Time taken o v e r a l l : ’ , datet ime . now( ) − startTime )

47



B Discrepancies in the Numerical Solutions

In the process of analysing scripts for the calculation of the proxy, numerical discrepancies were
discovered between different coding languages. In this case, between mathematica and python.

To highlight this better, we will first solve a problem with a heaviside step function, for which we
already know an analytical solution.

f(x) =

ˆ 4

1
H[x− 2]x3dx = 60 (B.1)

We can now compare this to the results we obtain from both mathematica and python. When the
trapezoidal rule is used in both cases, mathematica provides us with a result of 59.99. However, python
provides a much more accurate answer of 60. Although there are floating point errors in the answer
calculated by python (at the fifth decimal point), it is considerably more accurate when compared to
the value calculated by mathematica.

It is important to note that the black box nature of mathematica prevents further investigation
into this issue. However, it does seem as though the two languages approach the heaviside function
from a fundamentally different approach. Mathematica tends to consistently underestimate the value,
while python tends to overestimate the value ever so slightly. This is reflected in the data, when
further decimal points are displayed.

Although this would not change the results of the thesis, it would considerably change the magni-
tude of the thresholds that have been obtained from the proxy. Therefore, it is something to be aware
of when trying to replicate this work.
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