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Abstract

Quantum computation is on her way to change the fields of physics and chemistry. Within quantum
computation, decoherence is one of the biggest challenges. A method to tackle decoherence is by
replacing the old fashioned way of entangling with CNOT gates. Entangling multiple qubits with
a single operation, reduces operation time and the number of operations. The idea has been men-
tioned by for example Kandala et al. They state a quantum processor to be more efficient utilizing
the naturally available interactions possessed by the system itself.

In this thesis entanglement properties of Heisenberg XY interactions are investigated. This is
done in two different ways. The first method has been set up by Zhang et al. for three qubits and
a generalization of his method is discussed. This is proven to be an incorrect manner of solving
systems with more than three qubits. The second method of solving the Schrödinger equation and
the belonging differential equations for multi-qubit systems with the Heisenberg XY interaction is
also discussed and simulated. This results in oscillating states for which entanglement is checked.
Lastly, a boundary condition is applied to a four qubit system. This boundary condition connects
the first to the last qubit as if they are positioned in a circle. Adding this boundary condition
changes the evolution of the system however still creates entanglement.
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Chapter 1

Introduction

Computers have revolutionized society and science. Since the first version of the classical computer,
the Turing machine, computers have made steady advancement throughout the years. Computing
power of these machines got its own theory in 1972 by Gordon Moore, Moores law, predicting fu-
ture capabilities of these classical computing machines. Up until now Moores law has been proven
to be true [1]. However, Moores law is meeting its limit due to physical limits belonging to the
chip industry.

The capabilities of the computers as we know them are immense. Scientific simulations can
be run in seconds, which opened new doors for science. Yet, some scientific fields run simulations
not capable for these machines. The problem cannot be expressed in the means of the classical
computers, bits [2]. For example, finding the prime factors for very large integers or problems
where quantum mechanics play a role.

A machine to deal with this problem has been suggested in the 50’s by Richard Feynman[3]
and later by Paul Benioff and Yuri Manin in more detail. A processor based on the principles of
quantum-mechanical phenomena such as superposition and entanglement. Using quantum mech-
anics within the processor allows for smarter algorithms to solve these difficult problems.

Using the quantum computer brings new challenges such as error rates and decoherence. The
quantum bits, or qubits in short, used to calculate can only be used for a very short period of
time. Therefore, preparing a state must take as short as possible to save time to do the actual
calculation. An important aspect of preparation is creating entanglement in the system.

Kandala et al. [4] mentions an entanglement operation utilizing natural interactions present in the
system. Therefore minimizing gate operations and operation times. This can play an important
role in the reduction of decoherence within a quantum computer.

One of these natural existing interactions is the Heisenberg XY interaction. K. Groenland and K
Schoutens [5] show the number of 2-qubit and single qubit gates needed for certain operations can
be reduced with the help of this interaction. Furthermore, the interaction can be used to create
iSWAP gates [6].

In this paper, entanglement properties of the Heisenberg XY interaction has been studied. In
chapter 2, introductory information is provided. In chapter 3, a known method for three-qubit
entanglement is given and generalization is tried. A simulation of this generalization is made
showing inconsistency. In chapter 4, a different approaches is discussed and simulated. Moreover,
for these results the presence of entanglement is checked. Lastly, in chapter 5, a conclusion of the
results is given with recommendations and an outlook.
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Chapter 2

Quantum computation

2.1 Schrödinger equation

The Schrödinger equation is an equation to describe the changes over time of a physical system
in which quantum effects are significant. These systems are referred to as quantum (mechanical)
systems. The form of the Schrödinger equation depends on the physical situation. The most
general form is the time-dependent Schrödinger equation, which gives a description of a system
evolving with time,

ih̄
∂

∂t
|Ψ(r, t)〉 = Ĥ|Ψ(r, t)〉 (2.1)

where i is the imaginary unit and h̄ is the reduced Planck constant which is equal to the Planck
constant divided by 2π, ∂

∂t indicate the partial derivative with respect to time, Ψ is the wave

function of the quantum system, r and t are the position vector and time respectively and Ĥ is
the hamiltonian operator. In the systems discussed here the position vector does not play a role
reducing Ψ(r, t) to ψ(t) in equation 2.1.

2.2 Qubit

Compared to the classical computers’ bits, the quantum computer uses qubits. A qubit is the basic
unit of quantum information. The information is described by a two state quantum-mechanical
system. The quantum-mechanical system allows the qubit to be in a superposition of both states
at the same time. The states are usually denoted as

|0〉 =

[
1
0

]
(2.2)

|1〉 =

[
0
1

]
(2.3)

These two basis states are said to span the two-dimensional linear vector space of the qubit
and can be represented as follows,

|ψ〉 = α|0〉+ β|1〉 (2.4)

where α and β are probability amplitudes and can be complex numbers. According to the Born
rule, the probability of measuring the qubit in state |0〉 is |α|2 and the probability of measuring the
qubit in state |1〉 is |β|2. Because the absolute squares of the amplitudes equate to probabilities,
it follows that α and β are constrained by the equation
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CHAPTER 2. QUANTUM COMPUTATION

α2 + β2 = 1 (2.5)

Qubit basis states can also be combined to form product basis states. The combined state is

equal to the tensor product of the constituent qubits. If we take qubit 1,

[
α
β

]
, and qubit 2,

[
κ
τ

]
,

the corresponding two-qubit state can be determined by

[
α
β

]
⊗
[
κ
τ

]
=


α

[
κ
τ

]
β

[
κ
τ

]
 =


ακ
ατ
βκ
βτ

 (2.6)

Following the operation in equation 2.6, two qubits can be represented in a four-dimensional
linear vector space spanned by the following basis states

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1

 (2.7)

Adding probability coefficients to the basis states, the system can be expressed as a combination
of the basis states. This can be represented by a matrix containing the coefficients per basis state

ψ = ν00|00〉+ ν01|01〉+ ν10|10〉+ ν11|11〉 =


ν00

ν01

ν10

ν11

 (2.8)

Entanglement check

If multiple states are present at a certain time, the system does not necessarily have to be entangled.
Entanglement can be checked by trying to write the system as tensor products. For a two-qubit
system the total system is described by a tensor product of the separate qubits as can be seen
in equation 2.6. If we multiply the coefficient of state |00〉, ακ, with the coefficient of state |11〉,
βτ , we find a combination of all one-qubit coefficients αβκτ . The same can be done multiplying
the coefficients of states |01〉 and |10〉. Both multiplications give αβκτ , however, they do not
have to be the same. If the multiplications of the same terms do not yield the same value, then
the information within the system is not confined to any of the qubits individually, but is in the
correlation between the states.

2.2.1 The Bloch Sphere

The Bloch Sphere can be used to visualize the quantum state of a two-level quantum system.
Equation 2.4 seems to be having four degrees of freedom. However, one degree of freedom can
be eliminated by the constraint described in equation 2.5. The result can now be described by
Hopf coordinates. Furthermore, the overall phase of a single qubit has no observable consequence
resulting in two degrees of freedom,

α = cos
θ

2
, β = eiφ sin

θ

2
(2.9)

where eiφ is the relative phase. As can be seen in Figure 2.1 the parameters φ and θ describe a
unique point on the unit sphere. In this representation the state |0〉 is mapped onto the northpole
and |1〉 is mapped onto the Southpole.
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Figure 2.1: The Bloch Sphere as a visualization of a two level system, where the states |0〉 and |1〉
are assigned to the north and south pole respectively. Source: Wikipedia

2.3 Quantum gates

Where classical computing uses logic gates to process information quantum computation uses
quantum gates to do the same to information within the quantum state.

A quantum logic gate is represented by a unitary matrix. A matrix U is unitary when its con-
jugate is also its own inverse so if U∗U = UU∗ = I, where I is the identity matrix. The identity
matrix is a representation of the gate that maps every state to itself. A quantum gate can be
described by a 2n by 2n size matrix, where n is the number of qubits the gate must act upon. The
variables that the gate acts upon, the quantum states, is a vector in 2n complex dimensions, where
n again is the number of qubits. The base vectors are the possible outcomes if the state is measured.

There are 3 Pauli gates, Pauli-X, Pauli-Y and Pauli-Z. The Pauli X gate is the equivalent of
the classical NOT gate and acts on a single qubit. It maps the |0〉 state to |1〉 and state |1〉 to
|0〉. This can be visualized by a rotation of π radians around the X-axis of the Bloch Sphere. The
Pauli-X gate is represented by the Pauli X matrix,

X or σx =

[
0 1
1 0

]
(2.10)

The Pauli-Y gate maps the |0〉 state to i|1〉 and |1〉 to i|0〉. This gate can be visualized by
a rotation around the Y-axis of the Bloch Sphere of π radians. The gate is represented by the
Pauli-Y matrix,

Y or σy =

[
0 −i
i 0

]
(2.11)

Lastly the Pauli-Z gate leaves the state |0〉 as it is and maps |1〉 to -|1〉. It equates to a rotation
of π radians around the Z axis of the Bloch Sphere. This gate can be represented by the Pauli-Z
matrix,

Z or σz =

[
1 0
0 −1

]
(2.12)
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If a quantum gate applies on m < n qubits in the set, we will have to extend the gate to take
all n qubits. This can be done by combining the gate with an identity matrix such that their
tensor product becomes a gate acting on all n qubits.

2.4 Heisenberg XY interaction

Interactions between qubits are necessary for quantum computation. The Heisenberg interactions
are naturally existing interactions in spin systems. Di Vincenzo et al.[7] even state that the Heis-
enberg interaction can be universal for quantum computation.

The Heisenberg interaction Hamiltonian is given by

Ĥn =
1

2

n∑
j=1

(Jxσ
j
xσ

j+1
x + Jyσ

j
yσ

j+1
y + Jzσ

j
zσ

j+1
z + hσjz) (2.13)

where Jx, Jy and Jz are coupling constants and σjx, σjy and σjz are the Pauli matrices defined
in equation 2.10 till 2.12 acting on qubit j. The h on the right indicates the external magnetic fields.

It has been simulated by Zhang et al.[8] that the Heisenberg XY nearest-neighbor interaction
can be used to entangle a system of three qubits which will be discussed in the next chapter.
Furthermore K. Koteswara Rao and A. Kumar [9] analyzed this simulation and the entanglement
within the system. Showing entanglement measurements and describing the entanglement dynam-
ics.

The nearest-neighbor Heisenberg XY interaction can be found by setting the Jz coupling con-
stant and h to ”0” and equalling Jx = Jy in equation 2.13. This results in a 2D system without
interaction of external magnetic fields,

Ĥn
XY =

1

2
J

n−1∑
j=1

(σjxσ
j+1
x + σjyσ

j+1
y ) (2.14)

This type of interaction can as stated by N. Schuch and J. Siewert [6] be used for quantum
dot spins coupled by a cavity [10], for Josephson charge qubits coupled by Josephson junctions
[11], and for nuclear spins interacting via a two-dimensional electron gas [12].
An extreme example of strong natural interaction can be found with Rydberg atoms. Coherent
control of these interactions combined with their relatively long lifetime makes them a suitable
candidate to realize a quantum computer[13]. Therefore the applications of these atoms are also
being studied at the TU/e within the Coherence and Quantum Technology group.

These hamiltonians can easily be expressed in matrix terms as they are build by the Pauli-matrices.
For n = 3 the Heisenberg XY nearest-neighbor interaction given above in equation 2.14 can be
defined by a matrix as

Ĥ3
XY =



0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0


(2.15)

Simulating multi-qubit Heisenberg XY interaction entanglement 5



CHAPTER 2. QUANTUM COMPUTATION

For n = 4 the matrix defined by equation 2.14 is as follows

Ĥ4
XY =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(2.16)

6 Simulating multi-qubit Heisenberg XY interaction entanglement



Chapter 3

Multi-qubit entanglement with
Heisenberg XY interaction by
Zhang et al.

3.1 3 qubit XY interaction

For 3 qubits as discussed by Zhang et al. the neighboring Heisenberg interaction is given by

Ĥ3
XY =

1

2
J(σ1

xσ
2
x + σ1

yσ
2
y + σ2

xσ
3
x + σ2

yσ
3
y) (3.1)

where σix/y are Pauli matrices acting on qubit i. The evolution caused by this hamiltonian can
be expressed as

U(t) = e−iĤ
3
XY t/h̄ (3.2)

here t is the time for the system to evolve and h̄ is the reduced Planck constant. After which
they introduce two operators A = (σ1

xσ
2
x + σ2

yσ
3
y)/2 and B = (σ1

yσ
2
y + σ2

xσ
3
x)/2 so U(t) can be

written as UA(t) UB(t), where

UA(t) = e−iJtA/h̄ ≡ e−iJt(σ
1
xσ

2
x+σ2

yσ
3
y)/2h̄ (3.3)

UB(t) = e−iJtB/h̄ ≡ e−iJt(σ
1
yσ

2
y+σ2

xσ
3
x)/2h̄ (3.4)

Then they define three operators to solve UA(t) which can be viewed as three components
of an angular momentum vector LA because they satisfy the corresponding angular momentum
commutation relations. Using these operators UA(t) can be written as

UA(t) = e−iJt(L
A
x +LA

y )/h̄ = e−i(
√

2Jt/h̄)LA·n (3.5)

Where n is a unit vector defined by (1/
√

2, 1/
√

2, 0) and denotes the rotation axis of UA(t).
Applying a rotation around an arbitrary axis can be described as

eiθM = cos θI − i sin θM (3.6)

if M satisfies the relation M2 = I. For our operator A described by equation 3.3 a rotation
around the n axis will result in

UA(t) = cos

(
Jt

h̄
√

2

)
I − i√

2
sin

(
Jt

h̄
√

2

)
(σ1
xσ

2
x + σ2

yσ
3
y) (3.7)
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as [(σ1
xσ

2
x + σ2

yσ
3
y)/
√

2]2 = 1. The same steps can be taken for B, this will result in

UB(t) = cos

(
Jt

h̄
√

2

)
I − i√

2
sin

(
Jt

h̄
√

2

)
(σ1
yσ

2
y + σ2

xσ
3
x) (3.8)

After multiplication of UA(t) and UB(t) in the forms of equations 3.7 and 3.8 we obtain the
following matrix

1 0 0 0 0 0 0 0

0 cos (x)
2 − sin(2 x) i√

2
0 −sin (x)

2
0 0 0

0 − sin(2 x) i√
2

cos (2x) 0 − sin(2 x) i√
2

0 0 0

0 0 0 cos (x)
2

0 − sin(2 x) i√
2

−sin (x)
2

0

0 −sin (x)
2 − sin(2 x) i√

2
0 cos (x)

2
0 0 0

0 0 0 − sin(2 x) i√
2

0 cos (2x) − sin(2 x) i√
2

0

0 0 0 −sin (x)
2

0 − sin(2 x) i√
2

cos (x)
2

0

0 0 0 0 0 0 0 1


(3.9)

3.2 Multi-qubit XY interaction

To generalize the solution given in equation 3.9 to a solution for more than three qubits, the
general Heisenberg XY interaction hamiltonian of a system is given by 2.14. For this Hamiltonian
it seems impossible to find operators to split the Hamiltonian to small parts as has been done by
Zhang et al. The σx and σy operator pairs in the middle must be shared with both neighbors
while the interaction with the first and last qubit are not shared. The middle terms are given by

(σj−1
y σjy + σjxσ

j+1
x )/4 and (σjxσ

j+1
x + σj+1

y σj+2
y )/4 (3.10)

which share the σjxσ
j+1
x term. This needs to be compensated by dividing by 4 to end with the

factor 1
2 in front of equation 2.14. Whereas the terms in the beginning and the end of the spin

chain do not have to be shared, as can bee seen

(σ1
yσ

2
y + σ2

xσ
3
x)/4 and (σ1

xσ
2
x + σ2

yσ
3
y)/4 (3.11)

This results in a shortage of the σ1
x/yσ

2
x/y terms since the σ2

x/yσ
3
x/y terms need the factor 1

4 as
mentioned already. It is clear that a boundary condition must be set to add the missing terms.
This can be done by placing the spins in a circle instead of a straight line. Hereby we give the
first and last spin of the former system the ability to interact with each other. The Hamiltonian
will therefore change to

Ĥn
XY =

1

2
J

n∑
j=1

(σjxσ
j+1
x + σjyσ

j+1
y ) (3.12)

where σn+1
x/y = σ1

x/y. This results in 2n operators to work out. Hereby U(t) can be written

as UA(t) UB(t) . . . U2n(t) where the operators A up until 2n are described in equations 3.10 and
3.11. For all operators A to 2n it is possible to define 3 operators Lix, Liy and Liz which satisfy the
angular momentum commutation relations. By defining the operations as

Uj(t) = e−i(
Jt
2h̄ )(σj

xσ
j+1
x +σk

yσ
l
y)/2 (3.13)

where only σkyσ
l
y = σj−1

y σjy and σkyσ
l
y = σj+1

y σj+2
y are allowed, one can follow the steps taken

by Zhang et al. with a small change in front of the Pauli terms. This will result in a change of the
angle as defined in equation 3.6. Which will develop into a combination of operations in line with

8 Simulating multi-qubit Heisenberg XY interaction entanglement
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Uj+(t) = cos

(
Jt

2h̄
√

2

)
I − i√

2
sin

(
Jt

2h̄
√

2

)
(σjxσ

j+1
x + σj+1

y σj+2
y )

Uj−(t) = cos

(
Jt

2h̄
√

2

)
I − i√

2
sin

(
Jt

2h̄
√

2

)
(σjxσ

j+1
x + σj−1

y σjy)

(3.14)

By multiplying all allowed terms described in equation 3.14, U(t) can be found

U(t) =

n∏
j=1

Uj+(t) Uj−(t) (3.15)

As one can notice, the operators defined in the beginning by equation 3.10 do not commute
with all other operators. This results in multiple evolutions for one hamiltonian as will be shown
in the next section. Therefore, the steps taken by Zhang et al. are only applicable to systems of
3 qubits and can not be used for larger systems.

3.3 4 qubit simulation by Zhang plan

For a system of 4 qubits in a circle, the hamiltonian of the Heisenberg XY interaction is given by

Ĥ4
XY =

1

2
J(σ1

xσ
2
x + σ1

yσ
2
y + σ2

xσ
3
x + σ2

yσ
3
y + σ3

xσ
4
x + σ3

yσ
4
y + σ4

xσ
1
x + σ4

yσ
1
y) (3.16)

The time evolution of three different multiplication orders is visualized in figure 3.1. For all
three evolutions the input state ψ = 1√

2
(|0001〉 + |0011〉) is taken. The multiplication orders of

the figures are:

Figure 3.1a : U1+(t) U1−(t) U2+(t) U2−(t) U3+(t) U3−(t) U4+(t) U4−(t),

F igure 3.1b : U2+(t) U2−(t) U4+(t) U4−(t) U3+(t) U3−(t) U1+(t) U1−(t),

F igure 3.1c : U3+(t) U3−(t) U2+(t) U2−(t) U1+(t) U1−(t) U4+(t) U4−(t)

(3.17)

Here the x-axis is given as a unit of time where x is equal to Jt
2h̄
√

2
. On the y-axis the probability

of the different states are plotted.

As can be seen in the legend of figure 3.1 all the present states through time contain the same
number of 1’s and 0’s as the input state. It has been known that the Heisenberg XY interaction
can be used to perform Swap operations [14].

Simulating multi-qubit Heisenberg XY interaction entanglement 9
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Figure 3.1: The evolution of the same four qubit hamiltonian as described by equation 3.16, with
input state |ψ〉 = 1√

2
(|0001〉 + |0011〉) for 3 different multiplication orders described by equation

3.17

10 Simulating multi-qubit Heisenberg XY interaction entanglement



Chapter 4

Multi-qubit entanglement with
Heisenberg XY interaction by
solving the Schrödinger equation

The system can also be evaluated by the Schrödinger equation shown in equation 2.1. For Ĥ the
hamiltonian described by equation 2.14 or equation 3.12 must be taken. The matrix form of the
hamiltonian is given in equation 2.15 and equation 2.16 for 3 and 4 qubits respectively.

By substituting Ĥ and ψ into the Schrödinger equation in matrix form, where the matrix for
ψ is described by equation 2.8, a set of 2n linked differential equation can be found. Solving these
differential equation results in the time evolution of the system described by the hamiltonian. This
can be done for any number of qubits.

Solving these differential equations can best be done by Mathematica. The scripts used to solve
these differential equations can be found in the appendix. In order to export the answers from
Mathematica to Matlab one must use the ”ToMatlab”[15] program developed by Harri Ojanen
in 1999. Adjusting some of the outdated Matlab operations to newer versions allows for perfect
transfer of information.

The solutions to the differential equation need to be evaluated as they are not immediately values
of the operator U(t). The manner of organizing the information imported from Mathematica can
be found in the Appendix.

4.1 Validation of solving via differential equations

A simple check of the model can be done by comparing the results for three qubits with results
generated by the matrix provided by Zhang et al. This comparison is shown in figure 4.1. As can
clearly be seen, the system evolves the same. Therefore we can conclude the evolution resulted by
solving the Schrödinger equation to be correct.

Simulating multi-qubit Heisenberg XY interaction entanglement 11
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Figure 4.1: The evolution of a three qubit system with input state |ψ〉 =
√

2
3 |001〉 +

√
1
3 |011〉

through time for solutions to a.) the Schrödinger equation and b.) the matrix provided by Zhang.

4.2 Multi-qubit evolution simulations

The procedure described above can be followed for more than three qubits. However, it must
be mentioned that the complexity of the system grows exponentially. The amount of differential
equations and the complexity of these equations rise by raising the number of qubits in the system.
This results in tremendous calculating times. Therefore, systems up until 5 qubits are investigated.

For three, four and five qubits the differential equations have been defined and solved. For
solving the differential equations the coupling constant, J , and the reduced Planck constant,
h̄, have both been set to 1. The evolutions caused by the hamiltonian described in equation
2.14 for n = 3, n = 4 and n = 5 have been plotted in figure 4.2. The evolutions start with
the input states |ψ〉 = 1√

2
(|001〉 + |011〉) for n = 3, |ψ〉 = 1√

2
(|0001〉 + |0011〉) for n = 4 and

|ψ〉 = 1√
2
(|00001〉+ |00011〉) for n = 5.

As with the evolution build via the Zhang method, these evolutions have the same states
present in time. The evolutions visualized in figure 4.2 only contain states with the same numbers
of 1’s and 0’s as the initial state. In the case of figure 4.2 these are states containing one or two
1’s.

12 Simulating multi-qubit Heisenberg XY interaction entanglement
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Figure 4.2: The evolution of a three(a), four(b) and five(c) qubit hamiltonian as defined by
equation 2.14 through time, where the systems have the input states |ψ〉 = 1√

2
(|001〉+ |011〉) for

n = 3, |ψ〉 = 1√
2
(|0001〉+ |0011〉) for n = 4 and |ψ〉 = 1√

2
(|00001〉+ |00011〉) for n = 5.

4.2.1 System entanglement

As can clearly be seen, in all evolutions a time can be set for which more states are present than
the number of initial states. However, this does not necessarily mean these states are entangled.
The procedure to check for entanglement has been described in chapter 2.2. This has been done
for all evolutions, for the four qubit system the results can be seen below in table 4.1 for t = 1.5.

For a four qubit system, first the states need to be defined as a tensor product of the separ-
ate qubit states,

|ψ〉 = (α|0〉+ β|1〉)⊗ (γ|0〉+ δ|1〉)⊗ (ε|0〉+ θ|1〉)⊗ (κ|0〉+ λ|1〉) (4.1)

By multiplying coefficients of a state with the state where all 0’s become 1’s and 1’s are 0’s, we
always find a multiplication of all the coefficients ”αβγδεθκλ”. Evidently, from table 4.1 can be
concluded that there is indeed entanglement in the system at t = 1.5s as the values are not equal.

Simulating multi-qubit Heisenberg XY interaction entanglement 13
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state multiplication total coefficients value
|0000〉 × |1111〉 αβγδεθκλ 0
|0001〉 × |1110〉 αβγδεθκλ 0
|0010〉 × |1101〉 αβγδεθκλ 0
|0011〉 × |1100〉 αβγδεθκλ 0.04505
|0100〉 × |1011〉 αβγδεθκλ 0
|0101〉 × |1010〉 αβγδεθκλ 0.1233
|0110〉 × |1001〉 αβγδεθκλ 0.07821
|0111〉 × |1000〉 αβγδεθκλ 0

Table 4.1: Entanglement check for a four qubit system

This has been done for multiple initial states and multiple system sizes. It can be concluded that
entanglement is only created if the input contains multiple states which cover a certain presence of
1’s. If the system contains five qubits and the input state is defined as |ψ〉 = 1√

2
(|00001〉+|00011〉),

there will never be states containing three or four 1’s present. Following the entanglement check,
every present state will be multiplied with 0 resulting in αβγδεθκλφζ being zero in every case.
Therefore, the input must contain a ≥ n

2 number of states with different numbers of 1’s.

4.2.2 Evolution time

The time for the system to evolve to entangled states can be observed from figure 4.2. It can
be seen that the time increases with the number of qubits. Furthermore, the system is mirrored
around t = 0s which can be explained as all terms contain combinations of sinuses and cosines.
The periodicity of the evolution depends on the amount of the qubits. For three qubits a period
can clearly be defined as can be found underneath in figure 4.3. For four qubits, this is more
complicated. The states oscillate with a certain period. However, the evolution does not perfectly
repeat itself as can be seen in figure 4.4.

Figure 4.3: The evolution of a three qubit hamiltonian described by equation 2.14 with initial
state ψ = 1√

2
(|001〉+ |011〉) over a longer period of time.
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Figure 4.4: The evolution of a four qubit hamiltonian described by equation 2.14 with initial state
ψ = 1√

2
(|0001〉+ |0011〉) over a longer period of time.

4.3 Circular boundary condition

For finding solutions via the Zhang way, a circular boundary conditions was introduced. This
changed the hamiltonian from equation 2.14 to equation 3.12. For four qubits the evolution
caused by equation 3.16 is plotted and can be compared in figure 4.5, with the evolution caused
by the hamiltonian without the circular boundary.
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Figure 4.5: The evolution of a four qubit system with input state ψ = 1√
2
(|0001〉 + |0011〉)

through time for a.) a straight system where the hamiltonian is described by equation 2.14 and
b.) a circular system where the hamiltonian can be described by equation 3.16.

Clearly, the boundary condition changes the way the system behaves through time. The system
has been checked for entangled and different results were found than stated in table 4.1. Still, the
presence of entanglement can be confirmed.

16 Simulating multi-qubit Heisenberg XY interaction entanglement



Chapter 5

Conclusions and outlook

5.1 Conclusions

The goal of this paper was to develop a model to simulate multi-qubit entanglement generated
by the Heisenberg XY interaction. This has been tried by following two different methods. First,
by generalizing the three qubit entanglement found by Zhang et al. This theory can not be
generalized to systems containing more than three qubits due to not commutable operators which
have to be defined. The second methond is by solving the Schrödinger equation for the Heisenberg
XY hamiltonian. The evolution of states through time caused by this hamiltonian is plotted for
three, four and five qubits. These simulations clearly show that only states with the same number
of 1’s and 0’s as the initial state can be present at all times. Furthermore, the entanglement of the
system is checked by trying to write the solution as tensor products. This showed the presence
of entanglement for certain times. Lastly, an extra boundary condition is tested. The boundary
condition states that the qubits lie in a circle providing contact between the first and last qubit
in the system. Applying the boundary condition resulted in different scenarios while still creating
entanglement.

5.2 Outlook

To realize quantum supremacy, a lot still has to be done. Luckily, records in the field of quantum
mechanics are being broken monthly. Personally, I am convinced multi-qubit entanglement will be
the standard in a few years. The theory of creating entanglement with the help of the Heisenberg
XY interaction entanglement investigated in this paper still needs extra work. The level of entan-
glement must be investigated by for example expressing the concurrence of the system through
time. This way the efficiency of the system can be tested and one can search for the maximally
entangled states. Furthermore, comparisons with other methods of creating entanglement can be
made. The theory can truly be useful if it proves to be better than the ordinary CNOT-gate
entanglement. Additionally, the practical implementation of this theory must be worked out. A
theory is only the start, the use of this theory within a real quantum computer must be thought
through to find the added value of this paper. Lastly, error must be added to the simulations.
This can be done by adding offsets in some steps within the calculation. Error plays a crucial role
within quantum computation and remains one of the biggest challenges we face.
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Appendix A

Codes

A.1 Matlab

Codes can be provided on request : l.p.v.rijn@student.tue.nl

A.2 Mathematica

Codes can be provided on request : l.p.v.rijn@student.tue.nl
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