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Abstract

The behaviour of interacting active particles on curved surfaces is an interesting novel research
topic, as the collective motion properties of active systems are non-trivially influenced by the
intrinsic curvature of their environment. Especially scarcely understood is the behaviour of
active crystals on these curved surfaces, which form at dense packing fractions close to unity.
Using numerical simulations of active non-aligning interacting particles subjected to overdamped
Brownian dynamics on the surface of a sphere, the short-term non-equilibrium effects of activity
and temperature are investigated in relation to crystal formation. It is found that active crystals,
in the absence of thermal fluctuations, perform a quasi steady collective rotation where the defects
in the crystal act as attractors for the collective rotation axis. Furthermore, it is established that
thermal fluctuations have an irrefutable effect on the scar formation in a passive crystal, with
an increasing preference of smaller scars over isolated defects or longer scars. The present work
serves as a foundation for future research on real active crystal formation at finite temperatures,
which could be applied to study the behaviour of e.g. Volvox colonies or active colloids attached
to a spherical droplet.



Contents

1 Introduction 2

2 Theory 4
2.1 Particle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Equations of motion in the local tangent plane . . . . . . . . . . . . . . . . . . . 9

3 Methods 13
3.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Numerical integration of the equations of motion . . . . . . . . . . . . . . . . . . 14
3.3 Force calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Computational details of simulations . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Results 23
4.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 The role of activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 The role of temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Conclusions, discussion and outlook 48

A The Euler characteristic on a sphere 59

B Derivation of the EoM for Brownian motion 60

C Determining the constraint force 62

D Spherical coordinates 64

E Details of cell listing on sphere 65

F Supplementary data and results 74
F.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
F.2 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
F.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

1



Chapter 1

Introduction

From a mathematical point of view, the problem of finding the minimum energy configuration for
interacting particles on a sphere is extremely complicated, and besides for some trivial cases for a
handful of particles, analytically impossible [1]. In fact the problem of distributing points on the
surface of a sphere has even been quoted to be one of the profound mathematical problems of this
century [2]. From a historical and physical point of view, the most notorious of these problems is
the Thomson problem, which tries to find the minimal energy configuration of N electrons on a
the surface of a sphere mutually, repelling each other through the Coulomb potential as an early
toy model for the atom [3].

By contrast, the solution to the problem of stacking as many mutually repulsive particles as
closely together as possible on a flat plane, is simply by forming a hexagonal lattice with equidis-
tant particle spacing, resulting in a crystal [4]. A crystal can still be formed on the surface of a
sphere by tiling its surface with hexagons, however it is impossible to completely tile the surface
of a sphere solely with hexagons. To completely tile the surface of the sphere using regular
polygons 12 pentagons are needed as dictated by the Euler characteristic for the surface of a
sphere [5], see appendix A. These 12 pentagons correspond to 12 particles at the centroid of the
pentagon which have merely 5 nearest neighbours as opposed to the 6 nearest neighbours of their
hexagonal counterparts. Deviations from this preferable six-fold coordination are called defects,
and are the source of impurities in crystals [6].

The problem of crystal formation on the surface of a sphere becomes even more intriguing when
considering active matter Active matter is a relatively ’new’ class of matter, which is capable of
converting excess forms of energy into self driven motion [7]. Since active matter needs a contin-
uous supply of energy to sustain its self-propulsion, active matter systems are purely dissipative
and are constantly out of equilibrium. These local non-equilibrium processes can combine into a
plethora of collective motion phenomena, including but not limited to: swarming [8, 9, 10], col-
lective translation [9, 11], collective rotation [8], ageing [8] and turbulence [9, 12], where the type
of emerging collective behaviour is dependent on the strength of the self-propulsion (the activity)
and the density of active particles. Unlike passive matter which requires explicit alignment inter-
actions to undergo any collective motion, self-propulsion alone is already a sufficient condition in
active matter [13]. At sufficiently high densities, active matter crystallises [11, 13, 14], although
the majority of reported effects and research are on less dense active liquid states.
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A considerable amount of the early research in active matter was performed on systems of ac-
tive rods, since rods most closely resemble the shapes of bacterial microswimmers, which are
accurately described by an active matter model [8, 9, 15, 16]. Research on active point particles
has also caught a great deal of attention [10, 11, 13, 14, 17, 18, 19, 20], although its application
to real life situations is more limited. Interestingly, systems of active rods and active particles
are not completely decoupled, as some researchers have modelled the defects in active nematic
colloidal suspensions of rods as being active particles themselves. This analogy is justified since
the collective motion properties of the nematic suspension propagate down to motion of the
defects, although in those cases the ’particle’ density is low [15, 21]. More recently research on
active matter has also been performed on curved surfaces, showing that the presence of curvature
non-trivially affects the collective motion properties and produces phenomena impossible on a
flat plane (e.g. collective rotation instead of collective translation) [8, 20].

There is no standard approach to simulate active particles, or active matter in general. Some
researches adopt a field theory approach [11, 14, 20], but most numerical research is performed
within the framework of overdamped Brownian dynamics. In the latter category there is a
noticeable division in three classes between the complexity of the used dynamical model.

(i) Simulations of interacting particles, in the absence of stochastic fluctuations, as in [8, 9, 15].

(ii) Simulations of non-interacting particles, affected only by thermal fluctuations, as in [17,
19, 20].

(iii) Simulations of both interacting and diffusing particles, as in [13, 16, 18].

In the current report, method (iii) will be applied using a soft repulsive interaction between
active Brownian particles on the surface of a sphere at the packing fraction of unity. It should
be noted that the interactions used in [13, 16, 18] are respectively a hard potential, an elastic
spring interaction, and a screened Yukawa potential [22]. Additionally, those previous interaction
potentials were all applied on a flat 2 dimensional plane, as opposed to the curved surface
presented here. Furthermore, in this report the focus is on the short-term response of the system
with minimal equilibration to better understand the non-equilibrium processes, as oppose to the
long equilibration times in literature where the focus is on steady-state properties. hlThe aim of
this work is to increase our understanding of the scarcely investigated high density solid phase of
active matter on a sphere, by investigating the effects of thermal fluctuations and activity on a
spherical crystal, by performing numerical simulations. The remainder of the report is structured
as follows, in chapter 2 after a short mathematical description of the spherical manifold, the
physical model of the particles, and the equations of motion will be discussed. In chapter 3 the
numerical implementation of this model and the tools used for data analysis will be discussed.
Next in chapter 4 the primary results regarding the simulations of interacting passive particles at
absolute zero, interacting passive particles at finite temperature, and interacting active particles
at absolute zero are presented. Lastly in chapter 5 a brief summary and discussion of these
results is given along with the outlook for further research possibilities.
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Chapter 2

Theory

Formally, the surface of the sphere is a two dimensional manifoldM, as any point onM can be
uniquely specified by its polar and azimuthal angle θa, φa, whereM = R×S2, with S2 denoting
the unit sphere, and R the radius of the sphere. The line element describing distances between
any two points on M is given by

ds2 = R2dθ2 +R2 sin(θ)
2
dφ2 (2.1)

for which no transformation x = f(θ, φ), y = g(θ, φ) exists, such that the line element reduces
to ds2 = dx2 + dy2, thus representing an intrinsically curved surface [23]. Another way of in-
terpreting this statement is that it is impossible to fold a sphere out of a flat piece of paper
without deforming it, and thus the results of physics which hold on the flat plane need not hold
on the spherical surface. By contrast with the sphere, the surface of a cylinder of radius ρ is
characterised by ds2 = dz2 + ρ2dφ2 with φ the polar angle in the xy-plane, can be reduced to
the form ds2 = dx2 + dy2 by simply letting x = ρφ, y = z, and indeed on a cylindrical surface
particles arrange in a purely hexagonal structure as on the flat plane [24].

The 12 five-fold defects as imposed by the Euler characteristic for the sphere are the mere
minimum number of defects as required by the topology, and form a highly idealistic picture
of a spherical crystal [25]. The curvature of the sphere itself also imposes strain and stresses
on the crystal, which increases the overall energy [26]. To mitigate this stress, the crystal can
form additional defects by expiring this additional energy to deform the lattice, which although
locally increasing the stress at the defect site, will overall add up to a global stress relief over
the crystal itself [6]. This behaviour is unique to curved surfaces since on the flat plane adding
defects will increase the global stress [5, 24]. However, these additional defects cannot be added
at random as the Euler characteristic dictates that the total topological charge (which is +1/3 for
a five-fold defect and −1/3 for a seven-fold defect) should be +2, which results in the formation
of 5− 7 defect pairs, functioning like a defect dipole with zero net topological charge [5, 24, 26].
These topological dipoles then produce chains of 5− 7 defects often terminating in one of the 12
five-fold defects required by the topology, called scars [25].
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2.1 Particle model

The activity of each particle a is described by its orientation ûa, which is determined by the
direction of the self-propulsion force

~Fact,a = γvactûa = Factûa (2.2)

with γ the friction coefficient (see below) and vact is the speed of the self-propulsion, where the
magnitude of the self-propulsion is constant, according to the Active Brownian Particle (ABP)
model [27]. For the remainder of this report, the term activity will be used to refer to the
magnitude of the self-propulsion force. The appearance of the friction coefficient arises from the
fact that in order to sustain constant motion along a straight line (determined by the direction
of ûa), the self-propulsion force must balance the friction force induced by the active motion:
~Ffric = −γ~vact. On a flat plane, the orientation vector ûa is given by

ûa =

(
cos(ϕa)
sin(ϕa)

)
(2.3)

where ϕa is the angle ûa makes with respect to the x-axis, see figure 2.1. 1. On the surface of the
sphere implementing equation (2.3) is less straightforward since there is no fixed x-axis, but the
orientation vector will always lie in the local tangent plane Ta to the position of particle a. Tensor
calculus states that for an arbitrary Riemannian manifoldM, the manifold can always locally be
described by pseudo-Cartesian coordinates, by performing suitable coordinate transformations,
where the pseudo-Cartesian coordinate axes are formed by the local basis vectors [23]. On the
sphere this means that for each particle a, the tangent plane at the position ~ra is represented
by a Cartesian coordinate system (x̃, ỹ), with the x̃-axis coinciding with θ̂(θa, φa) and the ỹ-axis

coinciding with φ̂(θa, φa), see figure 2.2, such that equation (2.3) still describes the direction of

the orientation vector for each particle on the sphere, with θ̂ and φ̂ the unit vectors in the θ and φ
directions respectively.

The particles are modelled as soft spheres of diameter σ, and each particle pair (a, b) interacts
through a Lennard-Jones potential

VLJ(rab) = 4ε

[
(
σ

rab
)12 − (

σ

rab
)6
]

(2.4)

where ε is the potential strength, and rab = ‖~ra − ~rb‖ denotes the distance between the centres
of mass of the particles. The first term in the Lennard-Jones potential represents the short range
repulsion due to the excluded volume of each particle, whereas the second term represents the
long rang attraction by the Vanderwaals interaction. A graph of V

ε versus r
σ is shown in figure

2.3. The force particle b then exerts on particle a is

~Fba = −∇~raVLJ = −24ε
σ6(r6ab − 2σ6)

r13ab
r̂ab (2.5)

where r̂ab is the unit vector pointing from particle a in the direction of particle b. The energy
minimum corresponds to the point rc where dVLJ

drab
|rc = 0 which from equation (2.5) follows that

1In figure 2.1 û⊥,a refers to the vector perpendicular to ûa The perpendicular vector to ûa was obtained by
considering a coordinate rotation by ϕa about the x-axis, such that (ûa, û⊥,a) spans the flat plane. In principle
−û⊥,a is also a vector perpendicular to ûa, but the basis (ûa,−û⊥,a) does not correspond to a right-handed
coordinate system obtained from (x, y) by a rotation, and is thus an ill choice.
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ϕa

ûa

û⊥,a

x

y

Figure 2.1: The model for activity on a flat plane. The orientation vector ûa indicating the
direction of the active self-propulsion force of particle a and vector û⊥,a perpendicular to ûa are
shown.

rc = 21/6σ. From equation (2.5) it also follows that for rab < rc the force is repulsive and for
rab > rc the force is attractive, as indicated by blue and red respectively in figure 2.3. The
Cartesian components of the force can be found by the chain rule as

Fba,β = −dVLJ
drab

∂rab
∂βa

= −24ε
σ6(r6ab − 2σ6)

r14ab
(βa − βb) (2.6)

where β = (x, y, z) and rab =
√

(xa − xb)2 + (ya − yb)2 + (za − zb)2 is used to evaluate the
partial derivative. Since rab is the same for the interaction pairs (a, b) and (b, a), similarly the
force particle a exerts on b is given by

Fab,β = −24ε
σ6(r6ab − 2σ6)

r14ab
(βb − βa) = −Fba,β (2.7)

which is simply Newton’s third law for pairwise interaction forces.

Since crystallisation is the main topic of interest, the particles are densely packed and predom-
inantly feel the repulsion of their nearest neighbours and next nearest neighbours, whereas the
attraction of particles in the intermediate range will be negligible compared to the repulsion.
Therefore it is suitable to only consider the repulsive part of the Lennard-Jones potential, and
by convention shift the potential upwards such that the truncated potential is purely positive and
continuous. This truncated Lennard-Jones potential is known as the Weeks-Chander-Andersen
(WCA) potential [28], where the shift follows from VLJ(rc) = −ε, and is given by

VWCA(rab) =

{
VLJ + ε rab ≤ rc
0 rab > rc

. (2.8)
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x
xaya
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ra

𝒯a

Figure 2.2: The tangent plane Ta of particle a at the position ~ra, with the local x̃a-axis coinciding
with the θ̂ direction, and the local ỹa-axis coinciding with the φ̂ direction at the coordinates
(ra, θa, φa).
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Dimensionless Lennard-Jones potential

Figure 2.3: Plot of the dimensionless Lennard-Jones potential versus dimensionless interparticle
distance. The blue colour of the graph corresponds to the region of repulsion, and the red colour
of the graph corresponds to the region of attraction.

2.2 Equations of motion

The equations of motion for a non-interacting passive particle undergoing Brownian motion are
given by the Langevin equations

ma~̈ra(t) =− γ~̇ra(t) +
√

2γkbTδ(t) ∗ ~ζa (2.9a)

γRϕ̇a(t) =
√

2γRkbTδ(t) ∗ ηa (2.9b)

where ma denotes the mass of particle a, ~ra its position, γ the translational friction coefficient, kb
the Boltzmann constant, T the temperature, γR the rotational friction coefficient, and ζa, ηa two
random numbers representing the magnitude of the thermal fluctuations, which are uncorrelated
between particles. The δ(t) function in equation (2.9) is due to the uncorrelated nature of
the fluctuations at subsequent times (since the random kicks form a Wiener process [29]), see
appendix B.
In general, when considering activity and interactions, these equations will be supplemented by
the acting forces and torques

ma~̈ra(t) =− γ~̇ra(t) + ~Fact,a + ~Fint,a + ~Fcon +
√

2γkbTδ(t) ∗ ~ζa (2.10a)

γRϕ̇a(t) =
(
~ra(t)×

∑
~F
)

+
√

2γRkbTδ(t) ∗ ηa (2.10b)

where ~Fint,a is the total interaction force on particle a from all pairs (a, b) given by

~Fint,a = −∇~raVtot = −∇~ra
(1

2

∑
a

∑
b

VWCA(rab)
)
, (2.11)
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~Fact,a the active self-propulsion force given by equation (2.2), and ~Fcon the constraint force
keeping the particles constrained to the surface of the sphere. The constraint of the spherical
surface is given by g(xa, ya, za) = x2a + y2a + z2a − R2 = 0, which is time independent. For such
a time independent constraint dependent only the particle positions, the constraint force will be
perpendicular to the surface and thus ~Fcon = −λ∇g where λ has the same functionality as a
Lagrange multiplier for optimisation under a constraint [30]. This prefactor λ can be determined

by considering dg
dt and taking the inner product of equation (2.10a) with ~̇r, see appendix C, to

yield

ma~̈ra(t) =− γ~̇ra(t) + ~Fact,a +

[
~Fint,a −

(
~Fint,a · r̂

)
r̂

]
+ (2.12)[√

2γkbTδ(t) ∗ ~ζa −
(√

2γkbTδ(t) ∗ ~ζa · r̂
)
r̂

]
−maṙ

2
a(t)r̂.

Equation (2.12) shows that any radial component of the interaction force or thermal fluctuations
is projected out, such that the motion will always be constrained to the spherical surface.
Lastly, since the motion is frictional and thus dissipative the inertia term will be negligible with
respect to the friction term, such that the overdamped limit can be considered, reducing the
translational equations of motion to

γ~̇ra =~Fact,a +

[
~Fint,a −

(
~Fint,a · r̂

)
r̂

]
+

[√
2γkbTδ(t) ∗ ~ζa −

(√
2γkbTδ(t) ∗ ~ζa · r̂

)
r̂

]
. (2.13)

2.3 Equations of motion in the local tangent plane

As equation (2.13) and the discussion in appendix C demonstrate that all motion stays con-
strained to the spherical surface, the equations of motion can be equivalently solved in the local
tangent plane Ta of each particle a, without the need of accounting for the constraint force,
making the equations of motion more compact. Furthermore, since Ta is characterised by local
Cartesian coordinates, the behaviour of the equations of motion can be understood more clearly
in terms of their vectorial components. The computational implementation of this tangent plane
assumption is discussed in chapter 3.

For the angular equations of motion (2.10b) it is especially useful to consider the application of
the local tangent plane, as ϕa is the angle of the orientation vector û with respect to the local
x̃-axis. Spherical particles as considered here experience no torque about their axis, such that the
angular equations of motion simply reduces to angular diffusion by Brownian motion (equation
(2.9b)). The effects of rotational diffusion is best understood by considering its effects on the
components of the orientation vector. By the chain rule

dûa
dt

=
d

dt

(
cosϕa
sinϕa

)
=

(
− sinϕa
cosϕa

)
dϕa
dt

, (2.14)

which shows that random kicks can only change the direction of ûa, as the evolution of ûa is in
the direction of û⊥,a, such that ‖ûa‖ = 1 at all times, see figure 2.4.
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ûa(t)

ûa(t+∆t)

∆ûa

ûa(t)

∆ûa

ûa(t+∆t)

Figure 2.4: The effects of kicks (denoted by ∆ûa) perpendicular and parallel to ûa. Any kicks
perpendicular to ûa still lie on the same unit circle as ûa, whereas kicks parallel to ûa result in
a new orientation no longer on the unit circle, since ûa simply gains in magnitude.

The equations for the components of ûa are then found by dividing equation (2.9b) by γR

dûa,x̃
dt

=− ûa,ỹ
√

2kbTD0,rδ(t) ∗ ηa (2.15a)

dûa,ỹ
dt

=ûa,x̃

√
2kbTD0,rδ(t) ∗ ηa (2.15b)

where D0,R is the rotational mobility coefficient given by

D0,R =
DR

kbT
=

1

γR
(2.16)

where equation (B.14) was used for the rotational diffusion coefficient DR.

In a similar fashion equation (2.13) can be rewritten into differential equations for x̃, ỹ, but
this requires some extra subtlety. The rotational friction coefficient γR is a scalar on the flat
plane since there is only one rotation axis in the plane, but in general the translational friction
coefficient γ will be a friction tensor γ describing the degree of friction in each direction. For

anisotropic particles friction will be non-uniform, causing the Brownian motion to be stronger
in the direction of lowest friction coefficient. Although the spherical particles considered are
completely isotropic such that γ = γI2, where I2 denotes the unit matrix in two dimensions, it is

instructive to derive the differential equations for x̃, ỹ under Brownian motion of an anisotropic
object which has a different friction coefficients γ‖, γ⊥ for movement parallel and perpendicular
to its polar axis. These equations then reduce to the proper equations for spherical point-like
particles by letting γ‖ = γ⊥. The polar axis is taken to be the direction of the self-propulsion
force, i.e. the direction of ûa, see figure 2.5. Letting (Va,Wa) denote the coordinates along ûa
and û⊥,a respectively, equation (2.13) becomes

dVa
dt

=
√

2D0,‖kbTδ(t)ζV,a (2.17a)

dWa

dt
=
√

2D0,⊥kbTδ(t)ζW,a (2.17b)
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where ζV,a = ~ζa · ûa, ζW,a = ~ζa · ûa,⊥ and D0,β is the translational mobility coefficient according
to

D0,β =
Dβ

kbT
=

1

γβ
(2.18)

where β = (⊥, ‖). In equation (2.17) the forces have been left as their magnitude does not depend
on the friction coefficient, and the forces can always decomposed with respect the new basis of
the local tangent plane. From figure 2.1 and the definition of Va,Wa it follows that

x̃a = cosϕaVa − sinϕaWa =ûa,x̃Va − ûa,ỹWa (2.19a)

ỹa = sinϕaVa + cosϕaWa =ûa,x̃Va + ûa,x̃Wa (2.19b)

such that equation (2.17) in terms of the local Cartesian coordinates becomes

dx̃a
dt

=
√

2D0,‖kbTδ(t)ûa,x̃ζV,a −
√

2D0,⊥kbTδ(t)ûa,ỹζW,a (2.20a)

dỹa
dt

=
√

2D0,‖kbTδ(t)ûa,ỹζV,a +
√

2D0,⊥kbTδ(t)ûa,x̃ζW,a. (2.20b)

By letting D0,‖ = D0,⊥ = D0,T , and adding the forces again, the full translational equations of
motion in the tangent plane reads

dx̃a
dt

=D0,TFa,x̃ +
√

2D0,T kbTδ(t)
(
ûa,x̃ζ‖,a − ûa,ỹζ⊥,a

)
(2.21a)

dỹa
dt

=D0,TFa,ỹ +
√

2D0,T kbTδ(t)
(
ûa,ỹζ‖,a + ûa,x̃ζ⊥,a

)
(2.21b)

where the interaction force and self-propulsion force in each direction have been bundled into the
single variable F , and the substitution (ζV,a, ζW,a)→ (ζ‖,a, ζ⊥,a) has been made for clarity. The
fruitfulness of this detour derivation lies in the term in between parentheses, which shows the
dependence of Brownian motion on the orientation vector which would not have been obtained
if γ had been treated as a scalar in the translational equations of motion. 2

2Although one could argue that since û is normalised and ζ‖,a, ζ⊥,a are uncorrelated random
numbers,ûa,x̃ζ‖,a− ûa,ỹζ⊥,a and ûa,ỹζ‖,a + ûa,x̃ζ⊥,a also form two independent random numbers, (say ζa,x̃, ζa,ỹ)
with the same first and second moments. However, this method is devoid of generality as it cannot be applied to
situations of anisotropic particles.
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û
γ⊥

γ⫽

Figure 2.5: Example of an anisotropic object which has 2 different friction coefficients: one
parallel to its axis of self-propulsion and one perpendicular to its axis of self-propulsion. The ge-
ometry of the object will largely determine which of these friction is dominant [9]. The difference
between γ‖ and γ⊥ has been exaggerated for clarity.
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Chapter 3

Methods

To investigate the effects of activity and temperature on the crystallisation on a spherical surface,
the equations of motion are integrated numerically using the Euler-Maruyama method [10] in
the local tangent plane of each particle, for a system of N particles on a sphere of radius R.
The equations of motion are non dimensionalised by choosing a characteristic scales for length,
time, energy and the mobility coefficient. However, as the equations of motion only involve
the three fundamental units for mass, length and time, only three of these characteristic scales
can be chosen independently. The fourth characteristic scale can then completely be expressed
in the other three characteristic scales, according to the Buckingham Π theorem [31]. For the
independent characteristic scales σ,ε and DM are chosen, such that the characteristic time scale

follows from dimensional analysis as τ = σ2

εDM
.

Another important dimensionless parameter in active matter simulations is the packing fraction

φ = Nπ(σ/2)2

4πR2 , which gives the ratio between the surface occupied by the particles and the
surface of the sphere, thus serving as a metric for the density of the system. As discussed in
chapter 1 the value of φ has a significant influence on the type of collective motion observed.
Since crystallisation is the topic of interest, all simulations are performed at the dense packing
fraction of φ = 1, such that particle interactions will dominate over the self-propulsion or thermal
fluctuations, preventing the system from forming a liquid or gas [11]. For the remainder of this
chapter all quantities refer to their dimensionless counterparts without any explicit notation to
differentiate between them, unless explicitly stated.

3.1 Initialisation

The simulation begins by either reading in the (xa, ya, za) positions of each particle from an equi-
librated dataset belonging to special magic particle numbers (see chapter 4) or by generating a
random initial configuration. The initial (xa, ya, za) coordinates of each particle are obtained by
drawing two random numbers, n1 and n2, from a uniform distribution ranging between 0 and
1, such that the polar- and azimuthal angle of each particle is given by θa = arccos(2πn1 − 1)
and φa = 2πn2, corresponding to the conventional ranges of θ ∈ [0, π] and φ ∈ [0, 2π) re-
spectively. From these initial angles, the (xa, ya, za) are then obtained by the standard trans-
formation rules for spherical coordinate systems, see appendix D. Next the orientation vector
ûa = (ux,a, uy,a, uz,a) of each particle is determined by drawing another two random numbers

13



n3, n4 to determine the angles θ̃, φ̃ in a similar fashion as the polar- and azimuthal angles for
the positions. Here tildes have been used to explicitly distinguish them from the angles used for
positions, since each were drawn with a different set of random numbers.
Due to the random aspect of the initialisation ûa will not lie completely in the local tangent
plane Ta of each particle, which is in contrast with the particles being confined to move on the
spherical surface. Therefore the radial part of ûa is filtered out, such that ûa will lie completely
in the local tangent plane spun by (x̃a, ỹa). Lastly ûa is subsequently renormalised after the
radial component has been filtered out to satisfy ‖ûa‖ = 1. The local components of ûa are then

given by ua,x̃ = ûa · θ̂, ua,ỹ = ûa · φ̂. This random initial configuration is generated on a sphere
of radius r′ > R corresponding to a dilute packing fraction of φ = 0.1, such that the initial
configuration is relatively stress free with large inter-particle distances, and any overlaps arising
from randomisation are removed by displacing one of the overlapping particles over a distance
of maximum σ

2 without causing new overlaps.

After all positions have been initialised and any initial overlap has been removed, the sphere is
gradually shrunk from the initial radius r′ to the desired radius R corresponding to a packing
fraction of 1, in 100 steps. In each shrinking step the (xa, ya, za) coordinates are rescaled to the
new size of the shrunken sphere. After each shrinking step the sphere is briefly integrated during
100 time steps to allow the system to respond to the shrinking, where the time integration is
discussed further below. During the first 30 shrinking steps, the system is checked and corrected
for unphysical overlaps.

Alternatively, if the system is initialised by loading in the (xa, ya, za) coordinates for special
magic particle numbers, the sphere is already at the desired radius R and only the orientation
vector of each particle ûa is randomly generated by the same method as described above.

3.2 Numerical integration of the equations of motion

The numerical integration of the equation of motion follows by applying an Euler integration
scheme to the deterministic part containing the forces, and then adding the stochastic noise term,
at each time step. Thus, at each timestep of size ∆t, the following equations are solved:

x̃a(t+ ∆t) = x̃a(t) +D?
TFa,x̃(t)∆t+

√
2D?

TT
?∆t

(
ua,x̃(t) ∗ ζa,‖ − ua,ỹ(t) ∗ ζa,⊥

)
(3.1a)

ỹa(t+ ∆t) = ỹa(t) +D?
TFa,ỹ(t)∆t+

√
2D?

TT
?∆t

(
ua,ỹ(t) ∗ ζa,‖ + ua,x̃(t) ∗ ζa,⊥

)
(3.1b)

ua,x̃(t+ ∆t) = ua,x̃(t)− ua,ỹ(t)
√

2D?
RT

?∆t ∗ η (3.1c)

ua,ỹ(t+ ∆t) = ua,ỹ(t) + ua,x̃(t)
√

2D?
RT

?∆t ∗ η (3.1d)

where D?
T represents the translational mobility coefficient (D?

T = DT /DM ), D?
R the rescaled

rotational mobility coefficient (D?
R = DR/DM ), T ? the rescaled temperature (T ? = kbT/ε), η

and ζ are two distinct random variables from a Gaussian distribution with a first moment of 0
and second moment of 1 [32]. The substitution of δ(t) → ∆t results from the discretisation of
equations (2.15) and (2.21) and is valid for small timesteps ∆t� τ .
Since the local tangent planes do not form a global reference system as each particle has its own
origin and local direction of θ̂, φ̂, the displacements in the local tangent plane are translated to
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displacements in the global Cartesian coordinate system:
∆xa = ∆~̃ra · x̂
∆ya = ∆~̃ra · ŷ
∆za = ∆~̃ra · ẑ

(3.2)

such that the global (xa, ya, za) coordinates can be updated, where ∆~̃ra = ∆x̃aθ̂a + ∆ỹaφ̂a.
Since the displacements ∆x̃ and ∆ỹ are linear in the local tangent plane, and Ta only perfectly
coincides with the spherical surface at the initial location (ra, θa, φa) itself, the new (xa, ya, za)
coordinates will not lie perfectly on the surface of the sphere. This discrepancy is corrected
by properly renormalising the coordinates by the factor R/

√
x2a + y2a + z2a to project them back

on the surface. Lastly, these projected and updated coordinates are used to calculate the new
polar- and azimuthal angle of each particle after the displacement according to the relations in
appendix D. These translation and projection steps may seem cumbersome, but are also applied
in literature [10], since the alternative for solving the equations of motion for the azimuthal- and
polar angles is significantly more complicated, including explicit coupling terms of the derivatives
in the differential equations [19].

For the orientation vectors a similar technique is applied: after the orientation vector is rotated
by the thermal fluctuation, the change of the components in the local tangent plane is translated
back into its Cartesian components. The components of the orientation vector in the local tangent
plane have to be solved anyway, since they couple to the thermal noise terms in the translational
equations of (3.1). Lastly, these Cartesian components are then subsequently projected back
onto the sphere by projecting out their radial component and subsequently renormalising û, as
described above.

3.3 Force calculation

The force calculation involves both the interaction force and the self-propulsion force, for which
the opposite strategy as the calculation of the displacements is applied. That is, first the global
Cartesian components of the forces are calculated to facilitate vectorial addition, and these
Cartesian components are then transformed into the components in the local tangent plane.
Since the self-propulsion force is modelled as ~Fact,a = Factûa, the Cartesian components of
the self-propulsion force simply follow from the Cartesian components of the orientation vector:
Fact,a,β = Factua,β , with β = x, y, z. The interaction force between a particle pair (a, b) follows
from equation (2.5), but since the WCA potential has a cutoff at rc = 21/6σ, the force between
any pair (a, b) is zero if rab > rc. For a system of large N computing the total interaction force
directly from equation (2.11) is thus inefficient since only a fraction of all particles will lie in the
cutoff range. Regardless of this cutoff, since the Cartesian components of the force obey

Fba,β = −Fab,β (3.3)

where β = x, y, z. The force calculation routine does not require to calculate the force between
all particle pairs (a, b), instead it suffices to only consider the pairs where a > b and use equation
(3.3) to determine the force which particle a exerts on particle b.
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The components of the total force in the local tangent plane is then obtained by{
Fa,x̃ = ~Fa · θ̂a
Fa,ỹ = ~Fa · φ̂a

, (3.4)

where ~F =
∑
β Fβ β̂ with β = x, y, z.

However the cutoff range gives an elegant method to bypass the force calculation for particles pairs
outside the cutoff range. By dividing the surface into cells with a size of rc× rc, the interactions
of a particle inside a cell will always be limited to the other particles in the same cell, and the
particles in directly neighbouring cells. For clarity, this method will first be illustrated on the
Euclidean plane. Consider a box of size L×L on the Euclidean plane and let L be m× rc, such
that the box can be perfectly divided into m2 cells of size rc×rc, where m ∈ Z. 3 As each particle
is characterised by its coordinates (xa, ya) ∈ [0, L], each particle can be assigned to a particular
cell, based on its coordinates. Let each cell be indexed by (i, j), where i refers to the cell number
on the x-axis and j refers to the cell number on the y-axis, then each particle can be assigned to a
cell with index (i, j) with i = dxa

rc
e, j = dyarc e. Then, a circle of radius rc drawn from every particle

inside the cell (i, j) will always be confined to the cells i′ ∈ {i− 1, i+ 1}, j′ ∈ {j − 1, j + 1}. To
compute the total interaction force on particle a in cell (i, j), the distance rab between particles
a and b only has to be evaluated over 9 cells, and only if rab < rc the force has to be computed,
see figure 3.1.
As a comparison, if no cell listing is employed the force calculation on each particle requires would
require N − 1 inter-particle distances to be evaluated, leading to a total of O

(
N2
)

operations
assessing whether particles lie within the each other cutoff range. If a cell listing is used and the
particles were homogeneously distributed in the plane, each cell contains N/m2 particles, which is
independent of the system size N , as for a fixed packing fraction the box size grows proportional
to N . The total number of neighbouring cells is proportional to m2, which is proportional to the
box size. Thus in total for a cell listing only O

(
N2/m2

)
v O(N) operations are used assessing

whether particles lie within each other cutoff range, which is significantly less than O
(
N2
)

in
the absence of a cell listing for large N .

Cell list on the spherical manifold

In principle the method discussed above could be extended to a 3D Euclidean space with particle
positions (xa, ya, za), such that the space is filled by m3 cubes of size rc × rc × rc. However, this
would be inefficient for the force calculation on the surface of a sphere as most cubes would lie
completely in the interior and exterior of the sphere, containing zero particles. Instead, as the
particles are constrained to the 2D manifold M = R × S2, a 2D cell listing is more suitable.
However this is accompanied by some subtleties:

(i) The manifold M is non-Euclidean, but Riemannian. This implies that concepts such as
distances are no longer given by the Pythagorean theorem, but by geodesics, and the size
of a cell will no longer correspond with rc.

3The following arguments can all be extended to the case where L is not divisible by rc, where the number of
cells will still be m2, but the size of the cells are d × d where d > rc such that L

d
=m. The choice of d > rc still

ensures that all interactions are limited to particles in the same cell and the directly neighbouring cells.
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Figure 3.1: Cell list in a flat 2D Euclidean plane, only for particles neighbouring cells is the
distance computed, and only for for those distances within rc the force is computed. The variables
of all other particles are completely ignored, saving computation time. Adapted from [33].

(ii) The sphere is simply the geometry of the crystal, but does not correspond to a physical
object. Therefore the interaction of the particles is not screened by the presence of the
sphere, and the cutoff distance rc hence remains Euclidean.

(iii) The poles are singular points called topological defects, which cause the cells to converge
to a single point at the poles.

(iv) A mapping using 2 indices will not be sufficient, as this does not allow to differentiate
between the ’front’ and the ’back’ of the sphere. Consider a hemisphere cut in the z-axis
of a Cartesian coordinate system (i.e. the collection of points 0 < x < R, |y| ≤ R, |z| ≤ R).
Particles near the cut at x = 0 lie within rc of mirror particles at the other hemisphere
with the same ya, za coordinate (corresponding to particle positions −R < xa < 0) whereas
particles near x = R are separated by a distance of ∼ 2R from mirror particles at the other
hemisphere, thus differentiating between the ’front’ and ’back’ of the sphere is relevant.

The solution to these subtleties is as follows: instead of the physical dimensions of the cell, the
angular width α of a cell is used to specify the cell properties. The angular width α corresponds
to a cell with the dimensions of lr × lr where lr ≥ rc is the arc-length of along the cell boundary.
Since the sphere is a highly symmetrical object, any cut in the equatorial plane (z = 0) or in
the polar plane (x = 0 ∨ y = 0) results in two identical objects. By requiring the numbers of
cells in the i, j, k ’directions’ to be even, this symmetry will be reflected in the cell listing. Since
the surface of the sphere is characterised by two angles θ, φ this gives two obvious metrics for
assigning the indices. Letting k be assigned based on the azimuthal angle k can be used to
distinguish between the ’front’ and the ’back’ of the sphere (thus choosing for a cut in the polar
plane at y = 0) by setting

k = d φ
2π
e. (3.5)

Then letting the i be assigned based on the polar angle, the index i can be determined uniquely
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Figure 3.2: Three dimensional representation of the cell listing on the surface of the sphere for
n = 6. The blue lines correspond to the boundaries of cells with index i, the red lines correspond
to the boundaries of cells with index j, and the green line is the boundary of cells with index k.
Indicated in dark gray is the cell with index (3, 2, 1).

by

i = d θ
α
e, (3.6)

representing cuts of the planes z = C with the sphere. Thus (i, k) represents a coupling to the
y, z coordinates respectively, and by assigning i, k, the j cannot be chosen be independently,
since j has to be coupled to the remaining x coordinate. This dependency on (i, k) originates
from x2 = R2− y2− z2 for a given y, z. Interaction with the other side of the sphere (the mirror
cell (i, j, k) with different k value) is possible if (i, j) obey

min(i, n− i+ 1) + min(j, n− j + 1) =
n

2
+ 1 ∨ n

2
+ 2 (3.7)

where n denotes the number of cells in both the (i, j) ’direction’. For more details about the cell
listing on the spherical surface, see appendix E. The resulting cell list of this method is shown
in figure 3.2.
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Figure 3.3: The crystal of the smallest simulated magic number configuration of N = 122
corresponding to m = n = 2 in the Delaunay triangulation of the particle positions (see section
3.5). The 12 five-fold defects are placed perfectly symmetric over the sphere and tagged by a
pink marker.

3.4 Computational details of simulations

Using the procedures mentioned above, simulations are performed for both randomly initialised
starting configurations for N = 300, 500, 800 particles, and special magic number configurations
of N = 122, 272, 482, 752 particles. These magic number configurations have a particle number
given by N = 10(m2 +mn+n2) + 2, which for m = n precisely produce the minimal 12 five-fold
defects placed symmetrically and equidistantly over the surface of the sphere [34], see figure 3.3.
These magic particle numbers are generated and relaxed in a r−12ab potential in the Thomson
applet of Syracuse university [35].

The relaxation could only be performed for a regular power-law potential, where the r−12ab po-
tential is chosen as this most closely resembles the actual WCA used in the simulation. This
pre-relaxation is done to investigate the effects of the random initialisation, by comparing the
dynamics of passive particles in the absence of thermal fluctuations of these pre-relaxed magic
number configurations with randomly initialised configurations of the same number of particles.
In all simulations the characteristic scales σ, ε,DM = 1 are chosen such that the characteristic
time scale τ = 1, the timestep size has been set to ∆t = 5× 10−4τ , and the mobility coefficients
have been set to D?

T = D?
R = 0.3. With the exception of the calibration stage, all simulations are

performed over a period of 3000τ after equilibration, with the system’s state (~ra, ûa, ~̇ra) exported
as a trajectory for data analysis with intervals of 20τ .
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(a) (b)

Figure 3.4: A snapshot of the crystal showing in a) the particle positions, and in b) the resulting
Delaunay triangulation, where the vertices of the triangles correspond to particle positions. In
b) the five-fold and seven-fold defects are marked by a pink and blue marker respectively. The
particles marked in red in a) correspond to the scar of 7 defects Northwest from the equator
marked by alternating five-fold and seven-fold defects in b). Comparison of figures a) and b)
shows that defects can be visually identified in the crystal by irregular gaps, but are significantly
harder to spot than in the triangulation diagram.

3.5 Data analysis

Because the main aspects of interests of this research is how temperature and activity influence
the properties of the crystal, the structural defects in the lattice, the organisation of defects
into scars, the dynamics of particles, and the angular velocity are monitored using the exported
trajectories. The latter is monitored in the anticipation of a collective rotation of the crystal
when considering active particles.

To measure the structural defects, a Delaunay triangulation is applied to the particle positions
~ra, where each particle a is triangulated with its nearest neighbours [36]. The number of times
particle a is then a vertex of a triangle corresponds to the coordination number of particle a,
and this coordination number allows to identify a particle as a five-fold or seven-fold defect. If
a particle is identified as a defect it is given a pink or blue marker for a five-fold and seven-fold
defect respectively, which is used for visual inspection of the crystal, see figure 3.4 The number
of five-fold defects and seven-fold defects are then measured separately over time, as well as the
total number of defects. With the distribution of the defects on the sphere known, an adjacency
list of defects is created to determine the lengths of the scars, and the composition of scars is
tracked over time by counting the number of scars with lengths ranging from 1 to 10 defects,
with a scar of length 1 corresponding to an isolated defect.

With the total numbers of defects known, the crystal could be characterised by the number of
defects, but as the number of defects will increase with the number of particles this does not
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give a means to compare the effects of activity and temperature for different system sizes [25].
However, the number of defects is still a useful metric for considering the effects of temperature
and activity at fixed N .To then uniformly quantify the state of the system independent of system
size N , two order parameters are considered. To measure the degree of crystallinity the global
bond orientational order parameter ψ6

ψ6 =
1

N

∑
a

q6(a) (3.8)

measures the degree of hexagonal order in the system, such that |ψ6| has a value of 1 for a perfect
hexagonal lattice, whereas a completely disordered system without any repeated structure has a
|ψ6| value of 0 [18, 25].
The local bond orientational order parameter q6(a) in equation (3.8) is defined as

q6(a) =
1

P

P∑
m=1

exp(i6θma) (3.9)

where P is the number of nearest neighbours of particle a and θma is the angle between the bonds
of particles m and a. The angle θma between the bonds of particles m and a is evaluated in
the local tangent plane of the central particle by projecting the neighbour positions ~rm onto Ta,
and taking the local x̃ coordinate as a reference axis, such that |q6(a)| serves the same purpose
as |ψ6| on the single particle level [37]. To measure the orientational order of the particles the
polarisation order parameter ψp

ψp =
1

N

∥∥∥∥∥∑
a

ûa

∥∥∥∥∥ (3.10)

measures the degree of alignment of the orientation vectors of all particles, where ‖· · ·‖ denotes
the Euclidean norm of a vector. The polarisation order parameter has a value of 1 if all orien-
tation vectors ûa are aligned perfectly and a value of 0 if the orientation vectors are randomly
orientated, [13].

To measure the particle dynamics the mean squared displacement (MSD) of each particle a

∆r2a(t) = (xa(t)− xa(0))2 + (ya(t)− ya(0))2 + (za(t)− za(0))2 (3.11)

is tracked over time, and the average mean squared displacement of the system〈
∆r2

〉
(t) =

1

N

∑
a

∆r2a(t) (3.12)

is indicative for the type of process dominating the dynamics. In the ballistic start-up regime〈
∆r2

〉
(t) ∝ t2, whereas in the diffusive regime where thermal fluctuations have dominated the

dynamics
〈
∆r2

〉
(t) ∝ t. In the sub-diffusive regime

〈
∆r2

〉
∝ tn, with n < 1, the system starts

to quench into its equilibrium state, indicated by a plateau value in
〈
∆r2

〉
as the particles are

trapped in their final crystalline state [38, 37]. To improve the statistics on the MSD, equation
(3.11) is evaluated over multiple time origins by shifting the origin from t0 = 0 to arbitrary t0,
which represent statistically independent measurement origins. The average over all time origins
is then used in the summation of equation (3.12). For larger times, fewer time origins exist for
which equation (3.11) can be evaluated, such that the MSD will be less accurate at larger times.
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To quantify the degree of collective motion, which due to the tangent constrain cannot manifest
as a collective translation, but will be a collective rotation, the normalised angular velocities
of the particles (ω̂a) and the total angular velocity of the crystal (~ω) are autocorrelated. The
angular velocity of a particle a at position ~ra with velocity ~va is

~ωa =
~ra × ~va
‖~ra‖2

(3.13)

such that the normalised angular velocity becomes

ω̂a =
‖~ra‖
‖~va‖

~ωa. (3.14)

The total angular velocity of the crystal is simply the vectorial sum of the angular velocities of
all particles

~ω =
∑
a

~ωa. (3.15)

The collective autocorrelation function is defined as

Ccol(∆t) =
〈~ω(t) · ~ω(t+ ∆t)〉
〈~ω(t) · ~ω(t)〉

(3.16)

where the time translational invariance property of the autocorrelation is used to express the
autocorrelation as function of the delay time ∆t only, and the average 〈· · ·〉 denotes averaging
over different time origins. For a perfectly coherent rotation about a fixed axis Ccol retains the
constant value of 1 for all delay times [8].
The self-part of the autocorrelation function is defined as

Cs(∆t) =

∑
a 〈ω̂a(t) · ω̂a(t+ ∆t)〉∑

a 〈ω̂a(t) · ω̂a(t)〉
(3.17)

where again the time translational invariance property of the autocorrelation function has been
used. For a perfectly coherent rotation about a fixed axis, particles near the equator have a
constant angular velocity throughout the period of rotation, whereas particles at the poles have
an anti-correlated angular velocity after a the rotation has performed a half period. Assuming a
uniform particle coverage over the sphere and accounting for the difference in particle occupation
near the equator and poles, Cs(∆t) will perform an oscillation between the values of 1 and 1/3
for a fixed rotation axis [8].

However, as the initialisation process and the thermal fluctuations are completely random, in
total 30 simulations are performed over different random seeds. Each random seed corresponds
to a statistically independent realisation for the same simulation parameters of particle number
(N), non-dimensionalised activity (F ), and non-dimensionalised temperature (T ?). All the above
quantities are then evaluated for each of the randomly initialised starting configurations and
subsequently ensemble averaged to obtain the true average quantities, which are presented in
the next chapter.
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Chapter 4

Results

In this chapter the results of the lattice defects, scar composition, MSD, correlation functions and
order parameters are presented separately for each performed simulation set. Firstly in section
4.1 the effects of the random initialisation is investigated by comparing the pre-relaxed magic
number configurations with the randomly initialised configurations for the same number of par-
ticles. These calibration simulations are performed on athermal passive particles, corresponding
to a zero non-dimensionalised temperature (T ?) and a zero self-propulsion strength (F ).
Next the results of interest, namely the effects of activity and temperature on the system prop-
erties mentioned above, are presented in sections 4.2-4.3, where a distinction is made between
active athermal systems (corresponding to F > 0, T ? = 0) to isolate the influence of activity,
and non-active thermal system (corresponding to T ? = 0, F > 0) to isolate the influence of
temperature.

All plots in this chapter show the data of every 10th trajectory with the errorbars corresponding
to 68% uncertainty intervals over the 30 statistically independent starting configurations. An
exception to this are the plots for the order parameters, which are either plotted for the full
activity or temperature range, where the errorbars have been omitted to increase the clarity of
the graphs. As a tradeoff to this, the data has been plotted for all trajectories to increase the
smoothness of the graph as the ensemble average is the only information shown.

4.1 Calibration

To determine the effects of the random initialisation and the proper equilibration time, simu-
lations of athermal passive particles (corresponding to F = 0, T ? = 0) are performed for both
randomly initialised and magic number configurations for N = 122, 272, 482, 752 particles. In
this context the equilibration time is defined at the time required for the interaction potential to
organise the system from a random unphysical initial configuration to an equilibrium configura-
tion. The MSD and number of defects is used as a metric for determining the equilibration time,
which both plateau in equilibrium. Despite the fact that the magic number configurations are
pre-relaxed, a modest reorganisation is expected as the power-law potential used for relaxation
is purely repulsive and has no cutoff.
For the randomly initialised configurations, the total simulation time has been set to 10τ . The
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Figure 4.1: Evolution of the number of defects and mean squared displacement in time for
the randomly initialised configurations of 272 particles at F = 0, T ? = 0, averaged over 30
independent random seeds, where errorbars correspond to 68% uncertainty intervals.

plot of the average defect number and MSD for randomly the initialised configuration of 272
particles is shown in figure 4.1. Similar results for the randomly initialised configurations for
122, 482, 752 particles can be found in appendix F.1. From figure 4.1 it can be seen that the
plateau in MSD occurs at approximately 2τ , which is independent of particle number as ap-
pendix F.1 confirms. The universality of relaxation is expected since the potential and cutoff
distance are both fixed physical parameters, and for a constant packing fraction roughly the
same number of particles will fall within a range of rc independent of the system size. This
relaxation time of 2τ also corresponds to the minimum plateau of the defects, which sets into
equilibrium sooner than the particles themselves, since the crystal must first rearrange from its
random initial configuration to a state of hexagonal order before it can set into equilibrium.

For the pre-relaxed configurations of particles, simulations are performed for the duration of
2τ . The relaxation time is found to be two order of magnitude smaller and roughly 0.02τ , see
figure 4.2, or appendix F.1. No averaging procedure over different realisations is applied since to
these pre-relaxed initial configurations as in for non-active athermal particles the dynamics are
completely governed by the particle positions, which for the magic number configurations are
fixed over all realisations of independent orientations, and hence the dynamics are completely
deterministic. As expected the relaxation time is smaller, but non-zero as the particles are
already relaxed in an r−12 potential without cutoff, such that at the start of the simulation the
strain on the system loosens up corresponding to the observed MSD which is several orders of
magnitude lower than in the randomised case.

For comparison, plots of the bond orientational order parameter |ψ6| for both the randomly ini-
tialised configuration and the magic number configuration for 272 particles are shown in figure
4.3. A comparison of figures 4.1-4.2 with figure 4.3 shows that the number of defect is directly
related to the bond orientational order parameter, since pentagons and heptagons have signifi-
cantly small |q6| values, reducing the overall |ψ6| value of the crystal. For the randomly initialised
configuration |ψ6| starts at 0.55 and then quickly increases to 0.88 in the same interval as the
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Figure 4.2: Evolution of defects and mean squared displacement for the magic number config-
uration of 272 particles already equilibrated to an r−12 potential. No errorbars are shown as
the dynamics for the magic number configuration are completely deterministic in the absence of
active self-propulsion or thermal fluctuations. The plot for the total number of defects is not
shown as this precisely coincides with the plot of the 5-five fold defects.

total amount of defects decrease from 90 to 38. The non-zero start value of 0.55 indicates that
despite the disorder in the initial configuration, the system is tending towards a crystalline struc-
ture and hence shows the properties of a solid. For the magic number configuration, |ψ6| remains
virtually constant and only decreases slightly during the first few time steps of the simulation,
which can be attributed to the relaxation of the system from a non cut-off r−12ab potential to the
WCA potential, as indicated by the non-zero MSD. Both of these values are in perfect agreement
with the earlier found value of |ψ6| = 0.87 for densely packed passive particles on a sphere [25].

For all subsequent simulations discussed below, the randomly initialised configurations are equi-
librated for 2τ before the simulation run of 3000τ for collecting data begins, and the magic
number configurations are equilibrated for 0.02τ before the simulation run for collecting data
starts. These equilibration times ensure that the system is relaxed by particle interactions such
that the results are only caused by either the active self-propulsion or the thermal fluctuations.

4.2 The role of activity

To determine the effects activity has on the system properties, the influence of activity is isolated
by performing simulations on athermal active particles, corresponding to T ? = 0 and a range of
activity values F = 0.5, 1.5, 2.5, 3.5, such that no thermal fluctuations are present. To characterise
the effects of activity then, the MSD is used as a metric for the system dynamics, and the structure
of the crystal is quantified by monitoring the number of defects, with the added detail of explicitly
tracking the composition of the scars. Additionally, the bond orientational order parameter |ψ6|
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Figure 4.3: Evolution of the bond orientational order parameter |ψ6| during calibration, for a)
the randomly initialised configuration of 272 particles, b) the magic number configuration of 272
particles.

is used to quantify the crystallinity of the system and is used a measure for comparing the effects
of low activity and high activity on the crystal.
As activity is considered, the orientation vectors of the particles start to play a role and the
polarisation order parameter ψp is also tracked to quantify the degree of orientational order.
Lastly, to monitor the collective motion property, a mix of the correlation functions and visual
inspection of the trajectories is used, where for visual inspection the crystal is observed from a
front- and top view to maximise the surface coverage. For the randomly initialised configurations
N = 300, 500, 800 particles have been simulated where the case of N = 500 particles is treated
in detail below, and similar results for the other simulations can be found in appendix F.2.

Defect structure and MSD

The dynamics of the system in terms of the MSD and number of defects are plotted in figure
4.4 for the two extremal cases F = 0.5 and F = 3.5. In each case the number of defects remains
statistically constant. The MSD in the case of low activity shows a smooth sinusoidal pattern
characteristic of collective motion, which has a period of roughly 2000τ . For the high activity
case the MSD is not smooth at all, and after an initial rise performs a small oscillation around
the peak value, the reason behind which will be discussed below when considering the collective
motion of the crystal. The number of defects remains fixed after an initial decrease, with a
gradual but statistically insignificant decrease in defects over time for the high activity case.
A more complete picture of the defect evolution is obtained when also considering the evolution of
the scars in the crystal as shown in figure 4.5. Whereas in the low activity case the composition of
the scars remain completely frozen, in the high activity case the scar composition slightly changes
over time, but remains statistically steady. Visual inspection of the defects in the triangulated
lattice does confirm this behaviour where the scars do not noticeably change, except near the
rotation axis where closely situated defect dipoles and/or isolated defects can temporarily merge
to form a scar of length 3.
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The general trend of activity on the crystal is captured in figure 4.6, where the bond orientational
order parameter is plotted for all considered values of the activity. The value of |ψ6| remains
virtually constant after a quick increase due to the initial drop in total defects, with a slight
increase in the plateau value of |ψ6| as a result from the gradual decrease in defects over time.
Although the increase in |ψ6| due to activity is a relatively small effect (∼ 2− 3× 10−3 increase
over a base value of ∼ 0.91) it it is distinct from numerical noise since its behaviour is smooth
and monotonic.
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Figure 4.4: MSD and evolution of the defects for the randomly initialised system of 500 athermal
active particles corresponding to T ? = 0 for the extremal cases of a) F = 0.5 and b) F = 3.5.
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Figure 4.5: Evolution of the defect scars for for the randomly initialised system of 500 athermal
active particles corresponding to T ? = 0 for the extremal cases of a) F = 0.5 and b) F = 3.5.
The legend of figure c) applies to figures a)-b).
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Figure 4.6: The effects of activity on the bond orientational order parameter |ψ6| for the randomly
initialised system of 500 athermal active particles, corresponding to T ? = 0 .

Collective rotation

The self-propulsion of the particles along their orientation vectors is the key cause of the collective
motion property of the crystal. A typical snapshot showing the orientation vectors of the particles
in the crystal is shown in figure 4.7a, which shows that the orientation vectors are disordered,
corresponding to the random initialisation. The collective motion property is shown in figure
4.7b where the instantaneous normalised angular field ω̂a is plotted. Also shown in this figure
is the collective angular velocity vector ~ω indicated by the red arrow in the normalised angular
velocity field. The normalised angular velocity in figure 4.7b shows a clear sink, which coincides
with the direction of the collective angular velocity, indicating that the angular velocities of the
particles organise to perform collective rotation.

However, visual inspection shows this neatly organised rotation is not yet established after the
equilibration of 2τ , as the first frame still has a relatively disordered angular velocity field. One
effect of activity on the self ordering ability of the system is that increasing the activity acceler-
ates the self ordering to a neat collective rotation, as shown in figure 4.8 where the normalised
angular velocity field of the first frame for the extremal cases of F = 0.5 and F = 3.5 are shown.
In the low activity case, some disordered aspects are still noticeable in between small domains
of locally ordered angular velocities, whereas in the high activity case large domains of local
order are clearly visible and the system is close to performing a coherent collective rotation. In
both cases the collective angular velocity is also shown as a red arrow, which for the low activity
case cannot easily be coupled to the shape of the normalised angular velocity field, unlike the
snapshot of figure 4.7b. Even at the lowest considered activity of F = 0.5 the normalised angular
velocity field at the next trajectory (corresponding to t = 20τ) has the canonical shape of figure
4.7b indicating collective motion.
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(a) (b)

Figure 4.7: Typical snapshots for the randomly initialised system of 500 athermal active particles
showing in a) the particles along with their orientation vector on the sphere, and in b) the
instantaneous normalised angular velocity field ω̂a, where the red arrow indicates the rescaled
collective angular velocity vector ~ω. A rescaling has been applied to the collective angular velocity
vector to ensure its magnitude is larger than the radius of the sphere such that it always points
out of the surface of the sphere and is not concealed inside the sphere.

However, figure 4.7b should be interpreted with care, as the angular velocity field implies a con-
sistent rotation about a fixed axis, but this is a misleading conclusion. Visual inspection of the
trajectories shows that neither the rotation axis, nor the magnitude of ~ω remain fixed. Instead
~ω translates over the sphere, changing the direction of the rotation axis, and the rotation speed
fluctuates between relatively fast and slow rotations corresponding to changes in magnitude of
~ω. This behaviour is shown in figure 4.9, where ~ω has been plotted for multiple frames of a single
realisation, both for the extremal cases of F = 0.5 and F = 3.5. As ~ω has not been rescaled
in these plots, the arrow lengths directly represent the rotation speed, and vector directions
represent the location of the rotation axes. Since the trajectories are snapshots of the system’s
state at equally spaced intervals of 20τ , the density of arrows is a measure for the stability of
a rotational state. From figure 4.9 it can be seen that the system goes through a multitude
of rotation states, and never reaches a true equilibrium state where ~ω remains fixed. For the
low activity case ~ω has gradually changes in magnitude and translates over the surface of the
sphere at a moderate and smooth rate, such that ~ω sweeps out a cone. For the high activity
case ~ω shows drastically different behaviour, although traces of this coning are still present, ~ω
both increases and decreases in magnitude and even switches sign in one or multiple components.
This non-steady behaviour of ~ω is intriguing since the simulations are performed for athermal
active particles, such that thermal fluctuations which would intuitively be the first cause for the
changes in ~ω are not present. All the observed dynamics of the collective rotation is due to the
active self-propulsion of each particle and the particle interactions, which aside from the random
initialisation of the orientation vectors is completely deterministic.
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(a) (b)

Figure 4.8: Normalised angular velocity field at the first frame (corresponding to t = 0 after
equilibration) of a single realisation of the random initialisation of 500 athermal active particles
(corresponding to T ? = 0) for the extremal cases of a) F = 0.5, and b) F = 3.5. The red arrow
indicates the rescaled total angular velocity ~ω, where rescaling ensures that the vector can point
out of the spherical surface.

Correlation functions

The correlation functions for the angular velocity provide a means to quantify these observed
dynamics in the angular velocity, and differentiate between the low and high activity cases. The
correlation functions for the extremal cases of F = 0.5 and F = 3.5 are shown in 4.10, where the
difference between low and high activity is clearly visible. For the low activity case of F = 0.5 the
statistical average of the collective correlation function Ccol(∆t) remains 1 for long time delays,
up until 2500τ , where a small decrease occurs due to the small window of time origins over which
can be averaged. The self part of the correlation function Cs(∆t) initially follows the predicted
oscillation between the values of 1 and 1/3 for a steady rotation, but plateaus near the value of
1/2. At the largest time delays, Cs shows a decrease for the same reasons as mentioned above.
For the high activity case the collective correlation decreases to 0 over time, due to the high
translational rate which causes ~ω to cover a vast majority of the surface of the sphere, causing ~ω
to become uncorrelated with its past if averaged out over independent realisations, as ~ω can be
thought of performing a quasi-random walk over the surface of the sphere. For short time delays,
~ω does show a correlation with its past as a result of the coning effect during periods of steady
translation rate and relatively constant magnitude. The striking increase in uncertainty of the
collective correlation function over time arises from the definition of the collective correlation
function from equation (3.16). Unlike the ω̂a which are normalised at each timestep such that
only the direction of the ω̂a influences the value of Cs(∆t), the collective correlation function
depends on the dot product of ~ω with its future incarnations which unlike ω̂a do not have a fixed
magnitude. As shown in figure 4.9 the magnitude of ~ω for small time delays is virtually constant,
but for long time delays can be differ significantly. Since each realisation is independent and
develops a different evolution of ~ω this results in an increasing variance over time. Although
for longer delay times, the decrease in available time origins for averaging is also a source of
increased uncertainty, but this alone cannot cause the significant growth of the uncertainty in
between small and intermediate delay times.
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(a) (b)

Figure 4.9: The collective angular velocity vector ~ω of each trajectory plotted from the origin for
a single realisation of randomly initialised system of 500 athermal active particles (corresponding
to T ? = 0) and activity of a) F = 0.5, and b) F = 3.5. To increase the visibility only 1 in every
4th vector has been plotted in a), whereas b) shows ~ω for all trajectories.
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Figure 4.10: Autocorrelation functions for the collective rotation and normalised angular veloc-
ities of individual particles for the randomly initialised system of 500 athermal active particles
(corresponding to T ? = 0), shown for the extremal cases of a) F = 0.5, and b) F = 3.5.
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Figure 4.11: The evolution of the polarisation order parameter ψp over time as a function of the
active self-propulsion strength for the system of 500 athermal active particles (corresponding to
T ? = 0).

As the simulations are performed for athermal active particles, rotational Brownian motion
caused by the angular kicks from equation (2.9b) cannot explain the observed translational
behaviour of the rotation axis on the sphere. This is further emphasised by the polarisation
order parameter ψp, which remains virtually fixed at a value of 0.04, see figure 4.11. The near
zero value of ψp indicates a disordered orientation field consistent with the random initialisation
and the snapshot of figure 4.7a. The fluctuations in ψp are numerical noise resulting from the
projection of the orientation vectors onto the sphere during the rotation, since ûa must lie in
the tangent plane of each particle, slightly altering its Cartesian components. All the dynamics
occur under the influence of the active self-propulsion in the ’frozen-in’ direction of the initialised
orientation vector 4 and the interaction forces. An exchange in particle positions could explain
the translation of the rotation axis as the orientation field changes under particle swaps, but are
unlikely as the repulsive interaction force will prevent particles from approaching each other and
crossing paths. Simulations for a small system of 50 athermal active particles confirm that such
particle swaps do not occur.

The active self-propulsion force however, can the cause of the gradual changes in the angular
velocity field, as the addition of the self-propulsion force will frustrate the lattice since the di-
rections of the self-propulsion forces are randomised. In the absence of any self-propulsion the
crystal forms a primarily ideal hexagonal lattice with the repulsive interaction forces balancing
out on each particle, see figure 4.12a.

4Frozen-in refers in this context to the direction of the orientation in the local tangent plane, not to the
Cartesian components of the orientation vector which are subjected to small changes as a result from the projection
onto the tangent plane.
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Figure 4.12: Force balance for a single hexagonal unit in the crystal, where for simplicity only
the pair interaction forces involving the central particle are shown. The dotted lines denote the
ideal hexagonal unit positions and distances, portrayed are: a) the passive system at T ? = 0,
and b) its active counter part.

If activity is now added and each particle exerts an additional constant self-propulsion force in
an arbitrary direction, the force balance of this ideal hexagonal lattice will be broken, and the
particles will propagate in the direction of the self-propulsion force. This propagation cannot
continue indefinitely as the repulsive interaction force between particles will grow as they ap-
proach each other, whereas their active self-propulsion forces remains constant. A new force
balance will then be reached at slightly displaced positions and angles with respect to the ideal
hexagonal lattice, see figure 4.12b. This new equilibrium configuration is more fragile than the
equilibrium situation of the ideal hexagonal lattice due to the random nature of the direction of
the self-propulsion forces of each particle, as each particle must find its new equilibrium position
with respect to the particles within its cut-off radius, which each has a self-propulsion force in
an arbitrary direction. The addition of activity thus frustrates the lattice since it cannot occupy
its preferred stable equilibrium configuration dictated by the repulsive WCA interaction, but
instead must compensate for all active forces of nearby particles. Visual inspection of the tra-
jectories shows that as a result of these frustrations the lattice vibrates as small displacements
are visible in the triangulation diagram for low activity which corresponds to slowest dynamics.
These lattice vibrations then introduce small deviations from the ideal normalised angular ve-
locity field for a constant collective angular velocity ~ω which explains the gradual translation of
the rotation axis as observed.

Interplay of defects and rotation axis

Interestingly, and unexpectedly, it is found that the axis of rotation tends to be attracted towards
the defects and scars in the crystal. By careful visual inspection of the trajectories the following
observations are made:

O.1 The rotation axis is stabilised by defect structures. The rotation axis tends to stay close to
scars after the rotation axis has coincided with on the defects in the scars, as opposed to
the steady translation which occurs if the rotation axis is at a regular part of the lattice.
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O.2 Likewise scars can stabilise the rotation axis in between them. If the rotation axis ap-
proaches equally sized and shaped scars (e.g. 2 scars of length 3 as a linear chain like the
water molecule rather than forming a closed triangle) the rotation axis is stabilised in the
centre of gravity of these identical scars. If the symmetry of this situation is broken, then
the rotation axis is not stabilised at the centre of gravity of these identical scars, but moves
towards one of these scars, or moves on to translate over the defect-free part of the lattice.

O.3 If the rotation axis approaches an area containing multiple closely situated scars, it has the
tendency to move towards the largest of these scars.

O.4 The rotation axis prefers symmetric scars. If the rotation axis approaches an area with
multiple scars of the same length, but with a different shape, then the rotation axis tends
to move towards the most symmetric of these scars.

O.5 The translational rate of the rotation axis on the sphere is proportional to the magnitude
of the angular velocity. This behaviour is intuitive to understand as a larger magnitude
of the collective angular velocity corresponds to faster dynamics on the sphere, where the
translation of the rotation axis is a clear dynamic effect.

O.6 Islands of closely situated isolated defects can be turned into defect scars as the rotation axis
passes through these islands of isolated defects. However the additional scars created by
this mechanism are not stable and dissolve back into the island of closely situated isolated
defect they originated from, some time after the rotation axis has moved away from the
newly formed scar. This behaviour results in the measured fluctuations of isolated defects
observed in the high activity case of figure 4.5.

O.7 The stabilisation of the rotation axis is never permanent. The rotation axis does not stick
at a scar forever, but will eventually disconnect from the scar and continue to translate
over the defect-free area of the crystal until it is stabilised again by another scar.

A movie for a simulation at an intermediate activity of F = 2.5, such that the dynamics
are fast enough to show multiple of these observations but not too fast such that transla-
tions dominate over the stabilisation effects by scars, is available on YouTube via https:

//youtu.be/dMgyvnp7S2s, which shows the triangulated lattice with the rotation axis indicated
by a red arrow, and the normalised angular velocity field.

Specialities for the magic number configurations

For the magic number configurations 122, 272, 482, and 752 athermal active particles have been
simulated at T ? = 0 and for the same range of activity values as the randomly initialised config-
urations. The case of 482 particles is compared in detail to the randomly initialised case below,
with similar results for 122, 272, 752 particles available in appendix F.2.
On the contrary, for the magic number configurations, activity does not have any effect on the
number defects or the crystallinity. Even up to the highest considered activity of F = 3.5 the
total number of defects remained the 12 original five-fold defects. This is also reflected in the
behaviour of the bond orientational order parameter |ψ6| which remains identically constant for
all considered activity values, see figure 4.13.
The MSD follows a similar trend of transforming from a smooth oscillation to an inconsistent os-
cillation about an initial peak value, see figure 4.14. The identical behaviour of MSD at increased
activity implies that ~ω behaves in an identical manner with coning behaviour and changes in

34

https://youtu.be/dMgyvnp7S2s
https://youtu.be/dMgyvnp7S2s


magnitude. However the collective correlation function does not show completely identical be-
haviour to the randomly initialised case, see figure 4.15. This shows that the collective motion
property of the system does not simply depend on the strength of the active self-propulsion
force but is also dependent on the particle positions, since in both cases the strength of the
self-propulsion is equal and the orientation vector of each particle is randomised according to the
same protocol as described in chapter 3.
This difference in behaviour can be understood by realising that the observations discussed above
involve the behaviour of ~ω near scars, which are absent for the magic number configurations,
where only isolated defects occur. Observations O.1 O.2 O.4 still remain applicable to describe
the behaviour of ~ω for the magic number configurations. Careful visual inspection of the tra-
jectories shows these observations are indeed maintained and that the following observation can
encapsulate all of these observations for the magic number configurations:

MO.1 The rotation axis is stabilised in the centre of gravity of the equidistant defects. This
stabilisation occurs either in the centre of gravity of the triangle spun by 3 isolated defects
or the centre of gravity of the diamond spun by 4 isolated defects. However just for the
randomly initialised case, these stabilisations are never permanent and the

A movie for a simulation at an intermediate activity of F = 2.5, such that the dynamics are
fast enough to show this observation but not too fast such that translations dominate over the
stabilisation effects by defects, is available on YouTube via https://youtu.be/f6H24CWkKwc

which shows the triangulated lattice with the rotation axis indicated by a red arrow, and the
normalised angular velocity field.

Lastly the effect of activity on the polarisation order parameter for the magic number configu-
ration of 482 particles is shown in figure 4.16, which shows practically identical behaviour to its
random counterpart of 500 particles, with a slightly higher initial value, which is a result of the
decreased system size.

Summary

Overall, the role of activity for athermal systems can be summarised as follows:

i Activity has a negligible effect on the number of defects and scar composition, although
for the randomly initialised configurations a marginal and gradual decrease in the number
of defects occurs at high activity, corresponding to the marginal increase in the bond
orientational order parameter |ψ6|. The degree of crystallinity of the system thus remains
statistically constant when activity is increased.

ii Activity causes the spherical to perform a collective rotation, where the speed of the dy-
namics is proportional to the strength of the self-propulsion force.

iii The rotational dynamics has an interesting interplay with the scars in the crystal, where
the scars seem to function like an attractor for the rotation axis.

iv Due to the increase in the speed of the dynamics as activity increases and the attraction of
the rotation axis by the scars, the collective angular velocity is correlated at low activity,
but decorrelates over time at high activity.

v The correlated angular velocity at low activity corresponds to a smooth sinusoidal MSD,
but at high activity the decorrelation of the angular velocity leads to an initial increase of
MSD after which the MSD oscillates about this peak value.
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Figure 4.13: Evolution of the bond orientational order parameter |ψ6| as a function of activity
for the magic number configuration of 482 athermal active particles (corresponding to T ? = 0).
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Figure 4.14: Number of total defects and MSD for the magic number of 482 athermal active
particles (corresponding to T ? = 0) for the extremal cases of a) F = 0.5, and b) F = 3.5.
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Figure 4.15: Autocorrelation functions for the collective rotation and normalised angular veloc-
ities of individual particles of the magic number configuration of 482 athermal active particles
(corresponding to T ? = 0), shown for the extremal cases of a) F = 0.5, and b) F = 3.5.
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Figure 4.16: Effect of activity on the polarisation order parameter ψp for the magic number
configuration of 482 athermal particles (corresponding to T ? = 0).

37



4.3 The role of temperature

To determine the effects temperature has on the system properties, the influence of temperature
is isolated by performing simulations on Brownian passive particles, corresponding to F = 0
and a range of temperature values T ? = 0.5, 1.0, 1.5, 2.0, 2.5, such that no self-propulsion is
present. To make a fair comparison between the effects of activity and temperature the same
metrics, namely the MSD, total number of defects, the composition of scars, correlation functions
and order parameters are tracked over time to quantify the system’s dynamics and crystalline
structure. The polarisation order parameter ψp does not have the same physical meaning as it
does for activity, but since each particle has been initialised with an orientation vector according
to the method discussed in chapter 3, ψp is a useful tool for measuring the effects of the angular
diffusion in equation (2.15). Analogous to the simulations for active athermal particles, visual
inspection of the trajectories is performed from both a top and front view of the sphere to support
these findings on a visual level. For the randomly initialised configurations N = 300, 500, 800
particles have been simulated, where the case for 500 particles will be discussed in detail below,
and similar results for the other simulations can be found in appendix F.3.

Correlation functions

In stark contrast to the activity simulations, no collective motion emerges for passive Brownian
particles, which is quantised by the time dependent normalised angular velocity field and the trace
the collective rotation vector ~ω sweeps out over time, see figure 4.17. The normalised angular
velocity field ω̂a is completely unorganised and shows no signs of collectivity or domain forming,
with the resulting collective rotation vector ~ω pointing in a random direction with respect to the
normalised angular velocity field. The different rotation states swept out by ~ω over time further
illustrates the randomness of ~ω, which spans out a vast majority of different directions, forming a
sphere of uniform occupancy, with no signs of the observed coning behaviour present during the
activity simulations. The random uniform nature of ~ω is perfectly captured by the correlation
functions, which are both practically zero for all time delays with sufficient time origins for
reasonable averaging. The correlation functions attain the value of 1 at zero time delay, since
any vector is perfectly correlated with a copy of itself, see figure 4.18. This is also confirmed
by visual inspection of the trajectories, which shows that the crystal on the sphere performs
jerky movements, as a result of the net random kick of all particles, which correspond to small,
but uncorrelated, rotations because the motion is confined to the surface to the sphere. Since
this random behaviour occurs for both randomly intialised configurations and magic number
configurations, further results about the correlation functions are not shown.
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(a) (b)

Figure 4.17: Typical snapshots for the behaviour of the angular velocities for the randomly
initialised system of 500 passive Brownian particles (corresponding to F = 0), showing a) the
normalised angular velocity field with the red arrow indicating ~ω, and b) the collective angular
velocity vector ~ω of each frame plotted from the origin.
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Figure 4.18: Correlation functions for both the individual normalised angular velocities and the
collective angular velocity for the randomly initialised system of 500 passive Brownian particles
(corresponding to F = 0) , for the extremal cases of a) T ? = 0.5, and b) T ? = 2.5. The growth
in uncertainty for the delay time of ∆t̃ = 3000τ is due to a lack time origins for averaging, such
that the statistics are only over a single time origin for the 30 independent realisations.

Defect structure and MSD

The effects of temperature on the crystal are once again monitored by the total defects, scar com-
position and the bond orientational order parameter. For the randomly initialised configurations
the total number of defects shows a decrease as temperature increases, and for all temperatures
the curve of the MSD starts off linearly according to the diffusion driven regime, but eventually
subdues to the sublinear regime as a result of the restoring force of the potential, see figure 4.19.
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A clear trend in the increase of the MSD with increasing temperature is visible, corresponding to
greater thermal fluctuations. This behaviour is directly noticeable in the visual inspection of the
trajectories, where the paths of some tagged particles have been trailed, showing a clear increase
in the surface patch traced out by these tagged particles, see figure 4.20. For low temperatures
the tagged particles have very weak diffusion and practically leave circular traces around their
initial positions. At higher temperatures the shape of traces loses its regular character with the
random walk feature becoming more prevalent, and the traces significantly increase in area.

The statistically significant decrease in the total number of defects shown in figure 4.19 is also
reflected in the scar compositions, where increasing the temperature results in the promotion of
smaller scars of length 3 at the cost of larger scars of length 5 and 7, see figure 4.21. These scar
compositions also show that isolated defects are not favourable, as these are quickly converted to
scars of length 3 by the thermal fluctuations of the lattice surrounding them. These scar dynamics
follow from the requirement of the Euler characteristic that there must be a net topological charge
of +2 on the sphere, corresponding to 12 five-fold defects. As scars of an odd length always have
one excess five-fold defect over the seven-fold defects, they correspond to a net topological charge
of +1/6 identical to an isolated defect, whereas defect dipoles contribute a net topological charge
of zero and do not contribute at all to screen the curvature, making them highly unfavourable.
Although figure 4.21 is a useful and accurate statistical representation of the scar dynamics,
it does not encompass the complete scar dynamics. Visual inspection of the trajectories show
that under the influence of fluctuations the lattice is continuously stretching and compressing
the hexagonal, pentagonal and heptagonal units which results in a reshaping of the scars. Since
both five-fold and seven-fold defects disrupt hexagonal order, the hexagonal units close to a scar
will be slightly stronger deformed, which in combination with the stretching and compression
from thermal fluctuations can cause the defect to ’hop’ from one particle to one of its neighbours
in the deformed hexagonal unit. This effectively does not contribute to a decrease or increase
in the number of scars, but a change in orientation of the scar. For the larger scars (of length
5 and up) reshaping is not the only response to the fluctuations, but the scars can also break
up into smaller scars, often dissolving into defect dipoles or isolated defects. If two scars are
located closely next to each other, the preference of the system for scars of length 3 and 5 allows
for a fusion of these detached subscars, thus resulting in an exchange of defects between scars.
These effects are illustrated in figure 4.22, which shows the lattice of 3 subsequent trajectories
and displays the dissolving and reshaping behaviour of the scars. The scar of length 5 shown
near the equator initially consist out of a 5 − 7 defect dipole and scar of length 3, which then
merge to form a linear stretched out scar of length 5, and then reshape to a more compact form
consisting of a closed triangle with 2 attached ’limbs’ of 1 defect long at each side. The scar
of length 3 beneath the equator on the other hand, only changes its orientation but does not
reshape of dissolve at all, since these are the smallest possible scars.

Order parameters

Overall, despite the decrease of the number of defects for increasing temperature, which results in
an increase in the bond orientational order parameter, |ψ6| monotonically decreases as tempera-
ture increases, see figure 4.23. This decrease in |ψ6| can be attributed to the other effects caused
by thermal fluctuations, namely the constant reshaping of the scars, the additional deformations
a scar imposes on its neighbouring hexagonal units, and the overall increase of thermal fluctu-
ations throughout the crystal. All these factors lead to stronger deformations of the hexagonal
units which in turn lower |ψ6|.
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Figure 4.19: The evolution of the MSD and total number of defects for the randomly initialised
system of 500 passive Brownian particles (corresponding to F = 0) and the extremal cases of a)
T ? = 0.5, and b) T ? = 2.5.

Lastly, the polarisation order parameter ψp is virtually zero as a result from the random ini-
tialisation, with small chaotic fluctuations caused by the random angular kicks, confirming that
random kicks can neither increase nor decrease the order of particle orientations, see figure 4.24.

A movie for a simulation at a intermediate temperature of T ? = 1.5, is available on YouTube via
https://youtu.be/M2kcy342osI which shows the triangulated lattice, and the corresponding
particles on the sphere, where some particles have been tagged and their paths have been traced.
In this movie the thermal fluctuations over the whole lattice and the reshaping/reorientation
of the scars is clearly visible in the triangulation diagram, along with the jerky rotation of the
sphere.

(a) (b)

Figure 4.20: Paths traced by the tagged by the tagged particles of a single realisation for a
randomly initialised system of 500 passive Brownian particles (corresponding to F = 0), for the
extremal cases of a) T ? = 0.5, and b) T ? = 2.5.
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Figure 4.21: Evolution of the scar composition over time for the randomly initialised system of
500 passive Brownian particles (corresponding to F = 0) for temperatures of a) T ? = 0.5, b)
T ? = 1.5, and c) T ? = 2.5. The legend of figure d) applies to figures a)-c).

Figure 4.22: Snapshots of the triangulation of the diagram for 3 subsequent trajectories of a
realisation for randomly initialised 500 passive Brownian particles (corresponding to F = 0),with
a time difference of 20τ in between snapshots.
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Figure 4.23: Evolution of the bond-orientational order parameter |ψ6| for the randomly initialised
system of 500 passive Brownian particles (corresponding to F = 0) as a function of temperature.
The initial increase at short times is due to the steep decrease in total defects shortly after
equilibration.
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Figure 4.24: Evolution of the polarisation order parameter |ψp| for the randomly initialised
system of 500 passive Brownian particles (corresponding to F = 0) as a function of temperature.
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Specialities for the magic number configurations

For the magic number configurations 122, 272, 482, and 752 passive Brownian particles have been
simulated at F = 0 over the same range of temperature values as the randomly initialised config-
urations. The case of 482 particles is compared to the randomly initialised case of 500 particles
below, with similar results for 122, 272, 752 particles available in appendix F.3.
For the magic number configurations the influence of temperature is in most regards identical
to the randomly initialised configurations, with the exception of the response of the number of
defects to thermal fluctuations. For the lowest temperature considered of T ? = 0.5 the thermal
fluctuations are unable deform the lattice sufficiently to spawn additional defects, and the num-
ber of defects remain the original 12 five-fold defects, see figure 4.25. As temperature increases
to T ? = 1.0 the stretching and compression effects are strong enough to introduce additional
defects, with some of the initial 12 defects being converted into scars of length 3 or greater, with
a strong preference for scars of length 3, see figure 4.26. As the temperature is increased beyond
T ? = 1.0 the generation of scars of rapidly increases until almost all isolated defects have van-
ished. Visual inspection of the trajectories shows that the scars introduced by these increasing
fluctuations stay close to the initial lattice site of the original five-fold defect from which they
emerged, and do not always include the particle which was the original five-fold defect as one of
the defects in the scar, as a result of the hopping mechanism explained above. This is in contrast
with the low temperature case where the original 12 five-fold defects remain fixed throughout
the whole simulation range of 3000τ without hopping.

For the magic number configurations the bond orientational order parameter |ψ6| does not follow
a mononotic relation with temperature in contrast to the randomly initialised configurations, see
figure 4.27. For the low temperature case of T ? = 0.5 |ψ6| remains virtually constant with
negligible fluctuations due to small lattice reformations. For the next temperature value of T ?

|ψ6| initially follows the trend as in the low temperature simulation, but starts to increase after
∼ 1700τ . Inspection of the scar composition for the T ? = 1 shows that at around ∼ 1700τ
the fluctuations manage to statistically convert 1 isolated defect into a scar of length 3, after
which a gradual conversion of statistical conversion of another isolated defect into a scar of
length 3 occurs, whereafter the scar composition remains statistically steady at ∼ 10 isolated
defects and ∼ 2 scars of length 3, see figure 4.26. Identically for the higher temperatures, the
increase in |ψ6| after the initial drop is due to the emergence of scars of length 3 created from the
original 12 five-folds defects. This result is counter-intuitive; the degree of crystallinity increases
due to an increase in topological defects. This result is however warranted, since the visual
inspection of the trajectories show that in this transition regime of T ? = {1.0, 1.5} the thermal
fluctuations can distort the lattice sufficiently to sternly deform the hexagonal units, which result
in a low local bond orientational order parameter |q6|. The additional defects resulting from
these increasing deformations are not perfect pentagons or hexagons either, but are deformed
as well, where the degree of deformation on the hexagonal units is large enough to have a lower
|q6| value than these deformed pentagons or hexagons, resulting in an overall increase of |ψ6|
by the introduction of defects. However, when only considering the temperatures for which
the scar formation dynamics are slow T ? = {0.5, 1.0} or fast (T ? = {1.5, 2.0, 2.5}), the same
general decreasing trend of |ψ6| with an increase in temperature is obtained as for the randomly
initialised configurations. For the magic number configurations the angular kicks produce the
same effects as for the randomly initialised configurations resulting in an evenly chaotically
fluctuating polarisation order parameter with a mean value of virtually zero indicating total
orientational disorder, see figure 4.28.
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Figure 4.25: The evolution of the MSD and total number of defects for the magic number
configuration of 482 passive Brownian particles (corresponding to F = 0) and the cases of a)
T ? = 0.5, b) T ? = 1.0, c) T ? = 1.5, and d) T ? = 2.5. In figure a) the plot for the total number
of defects is not shown as it precisely coincides with the plot for the 5-fold defects.

A movie for a simulation at the threshold temperature for scar formation of T ? = 1.5, is available
on YouTube via https://youtu.be/RDn_2-0mVJo which shows the triangulated lattice, and
the corresponding particles on the sphere, where some particles have been tagged and their
paths have been traced. In this movie the thermal fluctuations over the whole lattice and the
emergence of scars of length 3 and 5 are visible in the triangulation diagram after about 50
seconds, corresponding to a simulation time of 2000τ .

Summary

Overall the role of temperature for passive Brownian systems can be summarised as follows:

i The thermal fluctuations cause the sphere to perform an uncorrelated jerky rotation as
result from the net thermal fluctuation being non-zero as the crystal consists of a finite
number of particles.

ii Temperature has a significant effect on the structural defects of the crystal. As temperature
increases the scar composition shows a clear preference for short scars of length 3.
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iii For the randomly initialised configuration increasing temperature leads to a monotonic
decrease in the total number of defects and the degree of crystallinity (quantified by the
bond orientational order parameters |ψ6|).

iv For the magic number configurations there is threshold temperature at which these minimal
defect configurations start to form scars, and when the temperature is increased above this
threshold |ψ6| and the scar composition behave identically as for the randomly initialised
configurations.

0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

(a)

0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

(b)

0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

(c)

0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

(d)

Isolated

2 defects

3 defects

4 defects

5 defects

(e)

Figure 4.26: Evolution of the scar composition over time for the magic number configuration of
482 passive Brownian particles (corresponding to F = 0) for temperatures of a) T ? = 0.5, b)
T ? = 1.0, c) T ? = 1.5, and d) T ? = 2.5. At the temperature of T ? = 1.0 thermal fluctuations
become strong enough to introduce additional defects to the lattice. The legend of figure e)
applies to figures a)-d).
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Figure 4.27: Evolution of the bond-orientational order parameter |ψ6| for the magic number
configuration of 482 passive Brownian particles (corresponding to F = 0) as a function of tem-
perature.
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Figure 4.28: Evolution of the polarisation order parameter ψp for the magic number configuration
of 482 passive Brownian particles (corresponding to F = 0) as a function of temperature.
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Chapter 5

Conclusions, discussion and
outlook

In this final chapter of the report, the main results from the simulations presented in chapter
4 will be briefly recapitulated, and these results will be put in a broader context. The results
for the magic number configurations will be compared to the results fro the randomly initialised
configurations, and the results for passive Brownian particles and athermal active particles will
be compared to see if one can act as a proxy for the other. Lastly, suggestions for improvement
on the present work and an outlook for future research are given.

Main conclusions

For the simulations on athermal active particles presented in section 4.2, it was found that
activity has negligible influence on the number of defects and scar composition of the crystal,
but introduces a collective rotation of the sphere. By visual inspection of the trajectories it has
been observed that the scars in the crystal act like an attractor for the axis of this collective
rotation, which is non-steady and translates over the surface of the sphere. For the simulations
on passive Brownian particles presented in section 4.3, it was found that temperature influences
the scar composition of the crystal, with a preference of the crystal to form shorter scars as the
temperature is increased. Additionally, as a result from the net random walk of the particles,
the spherical crystal was found to perform an uncorrelated jerky rotation.

Contrast between magic number configurations and randomly initialised
configurations

The magic number configurations are already interesting in their own right as they are a sym-
metric and equidistantly minimal structural defect crystal on the sphere, the magic number
configurations have also shown interesting results in the performed simulations when compared
to their randomly initialised counterparts. In the calibration simulations presented in section
4.1, which are performed for athermal passive particles to determine the equilibration time of
the potential, the uniqueness of the magic number configurations already emerge. Both starting
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Figure 5.1: Snapshot of the Delaunay triangulation diagram for one of the randomly initialised
configurations of 482 particles used to obtain the calibration time at t̃ = 0. Besides the vast
amount of defects, most of the non-defect particles are organised in severely deformed hexagonal
units, corresponding to an unphysical highly stressed crystal.

configurations were simulated for the same number of particles and the equations of motion are
completely deterministic, such that only initial positions determine the dynamics. Whereas the
initial positions for the magic numbers correspond to the minimally required 12 five-fold defects,
the initial positions of the randomly initialised configurations correspond to unphysical situations
with many closely situated defects and severely deformed hexagonal units, see figure 5.1. In both
cases the potential will relax the system to the lowest accessible energy minimum. However, the
energy landscape for a system of large N will have a complicated rugged shape with a collection
of local minima separated by energy barriers [8], see figure 5.2. In the case of magic number
configurations the initial positions already corresponds to one of these local energy minima and
the system cannot traverse through different states, whereas the unphysical initial configuration
for the completely randomly initialised systems does not correspond to a local minimum, and will
have a high initial energy resulting from the large stress generated by the unphysical state of the
crystal. Therefore, these randomly initialised configurations can traverse to a multitude of local
energy minima until it reaches a local minimum state, where it will remain. The configuration
of 12 five-fold defects, which should be attainable for both configurations since they contain the
same number of particles, thus corresponds to a deeper local minimum which is inaccessible for
the randomly initialised configurations, and could possibly be the global energy minimum of the
ground state [34].
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Figure 5.2: Example of a rugged potential energy landscape, showing multiple local minima and
the global minimum corresponding to the ground state. The solid black arrows correspond to
allowed transitions to another local minimum, whereas the dotted lines correspond to forbidden
transitions to another local minimum barred by an energy barrier greater than the initial energy of
the system. The conformation is a one dimensional representation of the 3N particle coordinates.
Figure adapted from [39].

Additonally, the temperature simulations for passive Brownian particles reveal that the magic
number configurations do not all correspond the system ground state. For the largest magic
number configuration of 752 particles a temperature of T ? = 1.0 is sufficient to generate scars
from the onset of the simulation, whereas for the magic number of 482 a temperature of T ? = 1.0
is only marginally able to produce scars after a period of ∼ 1700τ . This trend is continued onto
the next magic number configuration of 272 contains scars after a temperature of T ? = 1.5 is
reached. This behaviour is consistent with the observation that for colloidal systems of the order
N ∼ 300 scar formation becomes increasingly relevant for curved surfaces [24, 38]. Furthermore
N ∼ 300 is also the boundary for which the magic number configurations are believed to become
meta stable, as introducing additional defects for large N systems can effectively lower the over-
all energy if the number of original defects is low [34], which is in perfect agreement with the
emergence of scars for the magic number configuration of 272 particles and above, but not for
the magic number configuration of 122 particles.
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The magic number configurations also provided an unique opportunity to determine the attractor-
like property of defects and scars on the axis of collective rotation observed in the simulations
of athermal active particles. As activity has no effect on the structural defects in the crystal,
the defects in the crystal remain the 12 five-fold defects which are spread symmetrically and
equidistantly over the sphere. As for the randomly initialised configurations it was found that
the rotation axis is attracted towards the longest scars, suggesting that the attractor strength is
proportional to the length of the scar. If this is true, then it is to be expected that for symmet-
rically and equidistantly isolated defects the attractors stabilise the rotation axis in their centre
of gravity, as is observed in the magic number simulations.

Activity versus temperature

A comparison of the activity simulations for athermal active particles and temperature simu-
lations of passive Brownian particles between systems of identical size show that there is no
activity equivalence for temperature, i.e. there is no mapping between activity and temperature
that allows one to predict the behaviour of an active system if the response of the equivalent
passive system to temperature is known. This is captured by the opposing trend in the bond
orientational order parameter |ψ6| which is increasing for increasing activity, but decreasing for
increasing temperatures. The scar decomposition also show vastly different behaviours, whereas
the scar composition in active systems is practically frozen and undergoes only marginal changes,
the scar composition noticeably changes when the temperature increases, with a favouritism for
shorter scars over longer scars or isolated defects, and a strong suppression of defect dipoles.
Additionally, the fluctuations in the polarisation order parameter ψp significantly differ: whereas
the gradual fluctuations in the case of activity is caused by the projection of the orientation
vectors ûa onto the local tangent while the sphere rotates, the fluctuations in ψp for the tem-
perature simulations are due to the random angular kicks and fluctuate chaotically as a result of
the uncorrelated nature of the fluctuations. However, the mean values of ψp of each system size
coincide for both simulations as a result from statistical averaging and the central limit theorem.
Furthermore, a comparison of the correlation functions between activity and temperature shows
that the striking increase in the uncertainty in the activity simulations results from the inde-
pendent evolutions of the rotational states ~ω spans for each realisation. For the temperature
simulations there is a random independent jerky rotation of the sphere, but the uncertainty in
the correlation nevertheless remains constant, showing that this increase in uncertainty over time
is a result from the unexpected translation of ~ω over the sphere under the influence of scars. The
changes in the bond orientational order parameter |ψ6| are marginal, with differences confined
to 0.01 and 0.03 for the activity and temperature simulations respectively. The degree of crys-
tallinity thus remains statistically constant as either activity or temperature is increased, which
can be verified experimentally.

Improvements on present work

The most interesting results of the present work is the unexpected behaviour of the translation
of the rotation axis under the influence of what most reasonably is an attractor property of
scars and defects. This behaviour is peculiar as the equations of motion for athermal active
particles are completely deterministic and eventually these should converge to an equilibrium
state where the rotation axis should remain fixed. Prolonged time simulations up to 10000τ were
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performed for the systems of 482 and 500 particles to verify whether a rotational equilibrium will
emerge outside the considered timescale of 3000τ . However, even after a period of 10000τ the
translational motion of ~ω over the sphere persisted. However, observations alone are not sufficient
to understand the complete behaviour of the rotation axis, as the attractor-like property of defects
cannot explain the increases and decreases in magnitude in ~ω nor can it be explained why the
rotation axis does not remain steadily at a scar, but eventually continues to translate over the
defect-free region of the crystal until it is attracted and stabilised by another scar. To improve
one this, the position of the rotation axis could be spatially correlated with the location of scars
to quantify and formally proof the attractor property of the scars. Additionally, it should be
noted the simulations for these active systems were performed at zero temperature, as this is the
most systematic method of investigating the role of activity on the system properties by isolating
any activity from temperature. However, it should be noted that such an active matter system
at zero temperature is an unphysical phenomena, as dissipative systems cannot be sustained at
absolute zero.

In the present work scars up to a length of 10 defects have been tracked in the present work
for all simulations. This criterion is amply sufficient to track all regular scars in the crystal for
all simulated systems. In the figures for the scar composition scars up to a length of 5 defects
have been shown as larger scars do not significantly exist in the crystal, with the exception of
the largest system of 800 particles presented in appendix F.3, where scars up to a length of 7
defects noticeably appear. Furthermore, as it has been found that higher temperatures further
suppress the existence of larger scars in favour of smaller scars, there is no need to track scars of
greater length. However, the lattice deformations caused by stretching and compression of the
hexagons, pentagons and heptagons can introduce rare occurrences of extremely compact large
defect structures up to a size of 11, which happen more often as temperature increases and larger
systems are considered, 5 see figure 5.3.
Finally, it should be also noted that the analysis method used to find the length of scars is not
100% infallible. For all regular scars the correct length is found, and even the rare occurrence of
the star-shaped defect of length 11 is handled correctly, however when large compact closed defect
structures have a tail consisting of a linear sub-scar, the code used for finding the length of all scars
cannot correctly resolve the scar length and is terminated for that trajectory. A similar problem
occurs for scars consisting almost purely out of connected triangles and squares, see figure 5.4.
However, since these situations of highly compact large scars are energetically unfavourable,
these rare situations have no impact on the presented results as the scar composition is ensemble
averaged over all 30 independent realisations.

Outlook

The original goal of this work was to investigate the unexplored combined effect of activity and
temperature on a crystal of active particles, however in order to do this first the isolated effects of
temperature and activity themselves had to be known in absence of the other, which required an
extensive amount of simulations. It remains thus unknown what the effect of thermal fluctuations
on the active crystal would be. It might be that thermal fluctuations are able to bring balance
to the rotation axis through angular diffusion and get the system into a rotational equilibrium
state.

5More often in this context still amounts to occurring at most at 4 trajectories in less than 20% of the
independent configurations for the largest system of 800 particles at the highest temperature of T ? = 2.5
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Figure 5.3: The extremely compact scar of length 11 which takes the form of a star, occurring
in a realisation of the system for 800 particles as a result of fluctuations at a temperature of
T ? = 2.5.

(a) (b)

Figure 5.4: Two examples rare occurrences of complicated scars which are not resolved correctly
in the analysis, a) a long scar build up from closed triangles and closed squares in the system
of 500 particles, and b) a compact closed structure of 6 scars with a tailing linear scar in the
system of 800 particles.
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Future work should focus on this coupling of temperature and activity, to see if this might pro-
duce a significant effect on the bond orientational order parameter |ψ6|, especially since F and
T ? have opposite effects. When performing these simulations it becomes important to consider
a range of mobility coefficients D?

T , D
?
R to differentiate between the relative influences of the

rotational fluctuations, influencing the direction of the self-propulsion, and the Brownian motion
which results in the local stretching and compression of the lattice.

For future simulations of the active crystal it might also be fruitful to consider the effect a sim-
plistic minimal alignment rule might have on the behaviour of the rotation axis. In the original
Vicsek model for active matter each particle is equipped with the simple alignment rule that
its orientation angle ϕa should be the average of the orientation angles of its neighbours, which
results into the collective motion properties of the Vicsek model [40]. This alignment rule one
its own also presents an interesting situation when applied to the sphere. According to the hairy
ball theorem it is impossible to obtain a continuously aligned vector field on the sphere, as the
topology of the sphere requires two singularities to occur in the vector field [14, 21]. Thus sup-
plying an alignment rule to these particles will result in additional geometrical frustration of the
system.
Consistent collective rotation behaviour has been reported for active rods which experience
torques about their axis, where the torques act as an aligning agent, indicating that the lack of
alignment interaction can be a plausible cause in the interesting behaviour of the translation of
~ω over the sphere [8]. Such a minimal alignment rule like in the Vicsek model could mimic the
effect of a torque for the active particles considered here, and change this unexpected behaviour
of the collective rotation to a coherent steady rotation.
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I would like to thank G. Bonné for sharing useful applications, settings and tips for getting
started in Linux. Furthermore, I would like to thanks B. de Braaf and S. Ciarella for sharing
feedback on the usage of the computer cluster. Additionally I would like to express my gratitude
towards the Stack Overflow and MatLab Answer communities for actively posing and answering
questions.

Last, but definitively not least, I would like to give my special thanks to Dr. L.M.C. Janssen for
sharing her extensive knowledge and expertise on the field of active matter, and foremost her
flexibility in allowing me to define, shape and execute this research project according to my own
vision.

58



Appendix A

The Euler characteristic on a
sphere

The Euler characteristic is a number which describes the surface of objects build out of polyhe-
drons and is given by

χ = F − E + V (A.1)

where χ is the Euler characteristic, F the total number of faces, E the total number of edges,
and V the number total of vertices [1]. If the surface would be build solely out of m hexagons
and n pentagons, then F,E, V take on the values [41]

F = m+ n

E = 5m+6n
2

V = 5m+6n
3

(A.2)

as the total number of faces is simply the total number of polygons tiled on the surface, each
hexagon has 6 vertices and each pentagon has 5 vertices, but since the total surface is covered
by these polygons, each edge of a polygon is connected to the edge of another, and each vertex
also serves as the vertices of 2 neighbouring polygons. Substituting equation (A.2) into equation
(A.1) gives

χ = m
(
1− 6

2
+

6

3

)
+ n

(
1− 5

2
+

5

3

)
=
n

6
. (A.3)

As the value of the Euler characteristic takes on the value χ = 2 on the sphere, equation (A.3)
gives there are 12 pentagons needed to tile the surface of a sphere.
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Appendix B

Derivation of the EoM for
Brownian motion

As a point of departure consider the Ornstein–Uhlenbeck process for Brownian motion of a non
interacting passive particle [42], labelled by a

~̇ra(t) =
~pa(t)

ma
(B.1a)

~̇pa(t) =− ξ~pa(t) + ~̃σa(t) (B.1b)

where ~ra denotes a particle position, ~pa its momentum, ma its mass, ξ denotes the momentum
friction coefficient, and ~σa denotes the influence from momentum fluctuations. In the delta
function approximation the fluctuations caused by ~̃σa occur on a much fast scale than the diffusive
motion and are correlated by 〈

~̃σa(0) · ~̃σa(t)
〉

= 2makbTξδ(t) (B.2)

where kb denotes the Boltzmann constant and T the temperature. Taking the dot product of
equation (B.1b) with ~pa(0) and averaging gives

d 〈~pa(0) · ~pa(t)〉
dt

= −ξ 〈~pa(0) · ~pa(t)〉+
〈
~pa(0) · ~̃σa

〉
(B.3)

however, since the fluctuations are random they are uncorrelated with respect to any determin-

istic variable:
〈
~pa(0) · ~̃σa

〉
= 〈~pa(0)〉 ·

〈
~̃σa

〉
= 0 since the expectation of a fluctuation term

always vanishes. Then equation (B.3) reduces to a simple ODE and can be integrated to give
the autocorrelation

〈~pa(0) · ~pa(t)〉 =
〈
p2a(0)

〉
exp(−ξt). (B.4)

The value of
〈
p2a(0)

〉
can be expressed in terms of the translational diffusion constant D via the

Green-Kubbo relation [43]

D =
1

3

∫ ∞
0

dt 〈~va(t) · ~va(0)〉 =
1

3m2
a

∫ ∞
0

dt 〈~pa(t) · ~pa(0)〉 =
1

3ξm2
a

〈
p2a
〉

(B.5)
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where in equation (B.1a) was substituted in going from the second to third equality. And the
value of

〈
p2a
〉

can be obtained from the Maxwell-Boltzmann distribution

P (~v)d3~v =
( m

2πkbT

)3/2
exp

(
−
m
∑
i v

2
i

2kbT

)
d3~v (B.6)

where d3~v = dvxdvydvz. This velocity distribution can be converted to a momentum distribution
according to

P (~p)d3~p = P (~v)
d3~v

d3~p
d3~p =

( 1

2mπkbT

)3/2
exp

(
−
∑
i p

2
i

2mkbT

)
d3~p. (B.7)

By performing a coordinate transformation to substitute the components of ~p for the length of
the momentum ‖~p‖ ≡ p by d3~v = 4πp2dp,

〈
p2
〉
a

is given by

〈
p2a
〉

=

∫ ∞
0

dp p2P (p) = 4π
( 1

2mπkbT

)3/2 ∫ ∞
0

dp p4 exp

(
− p2

2makbT

)
. (B.8)

Performing the substitution u = p√
2makbT

to rewrite this into the standard integral
∫∞
0
du u4 exp

(
−u2

)
=

3
√
π

8 yields 〈
p2a
〉

= 3makbT (B.9)

such that the diffusion constant is given by

D =
kbT

maξ
. (B.10)

To obtain the Langevin equation, equation (B.1a) is substituted into equation (B.1b) giving

dma~̇ra
dt

= −γ~̇ra + ~σa (B.11)

where γ ≡ maξ is the velocity drag coefficient. The fluctuations ~σa can be expressed using
equation (B.2) and considering a small interval ∆t ≈ 0 such that δ(t) ≈ ∆t, such that ~σa =√

2γkbT∆t ∗ ~ζ where ~ζ is a random vector whose components have zero mean and unity variance
[32]. Then the equation Langevin equation for a non-interacting passive particle is obtained

ma~̈ra = −γ~̇ra +
√

2γkbT∆t ∗ ~ζ. (B.12)

For the angular dynamics a similar analysis can be done where the instead of the momenta,
angular velocities ωa are considered [44], and the result is expressed in terms of the orientation
angle ϕa, yielding

γRϕ̇a =
√

2γRkbT∆t ∗ η (B.13)

where γR is the rotational friction coefficient and η is again a random variable of zero mean and
unity variance, but is uncorrelated to the components of ~ζ. Similarly to the translational case
(equation (B.10)), the rotational diffusion coefficient is then given by

DR =
kbT

γR
. (B.14)
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Appendix C

Determining the constraint force

The constraint that all particles should lie in the sphere is given by

g(xa, ya, za) = x2a + y2a + z2a −R2 = 0 (C.1)

which, despite the implicit time dependence of the particle’s coordinates, does not explicitly
depend on time, since the radius of the sphere itself is fixed. For such a holonomic, scleronomic
constraint the corresponding constraint force is given by

~Fcon = −λ∇g(~r) (C.2)

where λ is an unknown parameter depending on the constraint and the EoM itself, similarly
to how an undetermined Lagrange multiplier depends on the constraint and the function to be
optimised in an optimisation problem. The minus sign in equation (C.2) has been introduced

as convenience and similarity with ~F = −∇V for interaction forces, such that by analogy the
constraint can be interpreted as an equipotential surface of an iso-potential described by g.
Since ∇g described the direction of steepest ascend, the constraint force will always be normal
to the (iso) equipotential surface. An intuitive example of a constraint force obeying (C.2) is the

gravitational force, ~Fg = mg∇Φ, where Φ is the gravitational potential, and the gravitational
mass mg is the λ, which keeps all objects without any excess kinetic energy bound to the surface
of Earth, and thus clearly acts perpendicular to the surface described by the equipotential surface
of Φ.
Consider the derivative of g

dg(~ra)

dt
=∇g · d~ra

dt
=∇g · ~̇ra = 0 (C.3)

which confirms the intuition that any motion under a constraint force is tangential to the equipo-
tential surface, as∇g is normal to the equipotential surface. For the constraint of equation (C.1)

∇g = 2~ra, and thus ~ra · ~̇ra = 0. Plugging the constraint force into the EoM (equation (2.10a))
gives

ma~̈ra =− γ~̇ra + ~Fact,a + ~Fint,a − 2λ~ra +
√

2γkbTδ(t) ∗ ~ζ (C.4)

and then taking the dot product of equation (C.4) with ~̇ra gives

ma~̈ra · ~ra =
(
~Fint,a +

√
2γkbTδ(t) ∗ ~ζ

)
· ~ra − 2λr2a (C.5)
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where ~ra ·~̇ra = 0 and the fact that û lies in the tangent plane of each particle (such that û ·~ra = 0)
were used to cancel the contributions of the friction force and activity. Now using the product
rule

~̈ra · ~ra =
d~̇ra
dt
· ~ra =

d~̇ra · ~ra
dt

− ~̇ra ·
d~ra
dt

= −ṙ2a (C.6)

such that equation (C.5) can be solved for λ

2λ =
1

r2a

[
maṙ

2
a +

(
~Fint,a +

√
2γkbTδ(t) ∗ ~ζ

)
· ~ra
]
. (C.7)

Substituting the solution for λ back into the EoM of (C.4) and using ~ra
ra

= r̂ the EoM has been
rewritten without any unknowns:

ma~̈ra =− γ~̇ra + ~Fact +

[
~F −

(
~F · r̂

)
r̂

]
−maṙ

2
ar̂ (C.8)

where F = ~Fint,a +
√

2γkbTδ(t) ∗ ~ζ has been used a short hand notation. Equation (C.8) gives
the intuitive results that the constraint force cancels the radial components of the interaction
force and thermal fluctuations, such that at all times all motion remains constraint to the surface
of the sphere.
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Appendix D

Spherical coordinates

Throughout this report, an extensive amount of coordinate transformations between spherical
coordinates (r, θ, φ) and Cartesian coordinates (x, y, z) is used to translate quantities between
these reference frames. The advantage of doing this is that the Cartesian basis vectors are
position independent and thus serve as an absolute measure of e.g. the force or the position at
every point in space in these directions. However on the spherical manifold, it is more convenient
to express quantities in terms of the radius, polar angle (θ), and azimuthal angle (φ).
Here a short overview is given about the relations between these coordinate transformations:

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ)


r =

√
x2 + y2 + z2

θ = arccos
(
z
r

)
φ = arctan

(
y
x

) , (D.1)

and their normalised unit vectors:
x̂ = sin(θ) cos(φ) r̂ + sin(θ) sin(φ) θ̂ − sin(φ) φ̂

ŷ = cos(θ) cos(φ) r̂ + cos(θ) sin(φ) θ̂ + cos(φ) φ̂

ẑ = cos(θ) r̂ − sin(θ) θ̂
r̂ = sin(θ) cos(φ) x̂+ sin(θ) cos(φ) ŷ + cos(θ) ẑ

θ̂ = cos(θ) cos(φ) x̂+ cos(θ) cos(φ) ŷ − sin(θ) ẑ

φ̂ = − sin(φ) x̂+ cos(φ) ŷ

. (D.2)

These relations can be found in just about any textbook involving vector calculus, e.g. [45].
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Appendix E

Details of cell listing on sphere

As described in section 3.3 of the main text, the sphere is subdivided into segments of arc length
lr, which is motivated by the fact that three particles separated by the Euclidean distance rc are
separated by a distance l ≥ 3rc on the spherical surface. For convenience lr is chosen such that
l = 3lr exactly. Thus unlike the flat Euclidean plane where all interactions are limited to the
square box of 3rc × 3rc centred around the cell (i, j), on the sphere the interactions are limited
to the area spun by 3lr × 3lr centred around the cell (i, j). The angular width of a cell follows
from trigonometry for two particles separated by rc on a sphere of radius R

α = 2 arcsin
( rc

2R

)
, (E.1)

and the arc length lr is then given by the fraction of the great circle encompassed by the angular
width α

lr = 2πR
α

2π
. (E.2)

See figure E.1a and E.1b.

A straightforward method for dividing the surface of the sphere into cells is by using the in-
tersections of Cartesian planes with the surface as cell boundaries. Then cuts in the z axis are
determined by the intersection of the sphere with planes parallel to the xy plane, and correspond
to cuts at constant z, and constant spacing ∆z. By analogy with geography, these intersections
form lines of constant latitude, e.g. the Tropic of Cancer, the Tropic of Capricorn, the Arctic
circle and the Antarctic circle, and hence give a way of identifying i. By analogy one would be
quick to identify j with a line of constant φ, i.e. a meridian at the Earth surface, see figure E.2.
Then practically the same situation as for the 2D flat Euclidean plane is recovered where each
cell i, j can only interact with the cells i′ ∈ {i− 1, i+ 1}, j′ ∈ {j − 1, j + 1}, with the exceptions
at the poles where at the North- and South pole respectively i− 1, i+ 1 do not exist.

However for a given (i, j) the cell is located both at the ’front’ and in the ’back’ of the sphere,
which in case R < rc

2 are able to interact over the surface sphere. If however R > rc
2 , cells

around the equator and prime meridian will not have an interaction with their counterparts on
the opposite side. See figure
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Figure E.1: Determination of arclength segment lr, a) gives an exaggerated representation of
the difference between the arclength and Euclidean distance of 3rc and b) portrays the geometry
with the angular width α.

Figure E.2: Left: circles of latitude at Earth’s surface corresponding to planes of constant z.
Right: meridians at Earth’s surface corresponding to planes of constant φ. Source: https:

//courses.lumenlearning.com/geophysical/chapter/geographic-grid-system/
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𝑗

𝑖 {

}
Figure E.3: The problem with sampling the surface of the sphere with only two indices: 2 cells
appear at the front and in the back with the same (i, j) index whereas the distance between
these cells can exceed rc.

This can be solved by choosing a different measure for j, e.g. the boundaries of a cell j are
determined by the intersection of the surface with yz planes of constant x and separation ∆x.
Then it is clear that for particles at the equator for which (za = 0, |ya| � |xa|, i.e. particles near
the ’East’ and ’West’ can interact with their counterparts, where particles for which za = 0, |ya| ≈
|xa| will be out of range to interact with their counterparts at the opposite side (where a sphere
of radius R = rc is begin considered). Then a third measure is required to differentiate between
the ’front’ and ’back’ of the sphere. Since cuts in the x axis and z axis have already been used,
the only available option is a cut in the y axis, however only one cut is required since the sphere
needs only be divided into two hemispheres to distinguish between the ’front’ and the ’back’.
Mathematically this is because y is not an independent coordinate but depends on x, z according
to y = ±

√
R2 − x2 − z2, and the distinction between the ’front’ and ’back’ of the sphere is

equivalent to the distinction between the positive and negative root. As y = r sin(θ) sin(φ), and
θ is already linked to i since z = r cos(θ), the distinction between the positive and negative root
is caused by the sign of sin(φ), which changes sign at φ = nπ,where n ∈ N. Since physically
φ ∈ [0, 2π), the cut thus occurs at φ = π and hence k can be identified as

k = dφ
π
e, (E.3)

using k = 1 as definition for the ’front’ of the sphere and k = 2 as definition for the ’back’ of the
sphere.

Now the problem remains to identify i, j given the particle coordinates. In order to (ab)use the
symmetry of the sphere, i and j should be even, such that a cut always occurs at z = 0 and x = 0
respectively. The easiest way of dividing the sphere into cells is by choosing imax = jmax = n
with n and even positive integer, i.e. n = 2m,where m ∈ N. As each cell has an arc length lr at
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Figure E.4: Projection of the cell listing on the xz plane for the case n = 6, where each cell
has an angular width α according to equation (E.6), and the i index of the cells is mapped by
equation (E.7).

both sides, n is determined by the amount of times lr fits on the great circle

narc = b2πR
lr
c, (E.4)

where the floor function ensures lr ≥ rc. Then since this in both directions6,

n =
narc

2
. (E.5)

The corrected angular width corresponding to n cells each in the i, j direction is then

α′ =
2π

narc
=
π

n
. (E.6)

From now on, for notational convenience, whenever α is used it refers to the corrected value of α′

to keep all equations neat. Since the z = r cos(θ), i is sampled by the intersection of the sphere
with a plane of constant z it follows that i can be identified as

i = d θ
α
e (E.7)

such that all particles with R cos(α) < za ≤ R are inside the cell with index i = 1, all particles
with R cos(2α) < za ≤ R cos(α) are inside the cell with index i = 2, etc., etc., etc., see figure
E.4.

Now only a measure for j is still needed. As explained above k is linked to sign of the Cartesian
coordinate ya and i is linked to the Cartesian coordinate za. In the upper half of the xy plane

6Here it was assumed that narc is divisible by 4, such that n is an even integer, but if this is not cased narc

has to be corrected for its remainder after dividing by 4.
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k = 1 is valid and the angle spun between the positive and negative x-axis is π, which is precisely
the range for θ which is divisible into n segments of α, thus the same can be done for the angle
φ in the upper half of the xy plane. For clarity let’s consider the specific example of n = 6
in the equatorial plane (z = 0). The left most x coordinate x = −R is used as the origin for
j, corresponding to φ = π = 6α, then rotating by an angle of α to the right denotes the first
cut in the x direction on the sphere, thus corresponding to an angle of φ = 5α. The region
−R = R cos(6α) < x ≤ R cos(5α) then corresponds to cells with index j = 1. Next rotating by
α again, the region enclosed by R cos(5α) < x ≤ R cos(4α) then corresponds to cells with index
j = 2, etc., etc., see figure E.5. Evidently particles with x < 0 are always in cells with index
1 ≤ j ≤ n

2 , and particles with x > 0 are always in cells with index n
2 + 1 ≤ j ≤ n. It may

seem like the angle φ is used as metric again, however this is not true, since the index j cannot
take any value but is constrained by the value of i. Furthermore, unlike the cells with index i
and k which are defined by an angle, the cells with index j do not have a fixed size. To see this
dependence on the value of i, lets consider the projection of the cells (i, k) in the xy plane, since
x = R sin(θ) cos(φ), y = R sin(θ) sin(φ), and for a given i, θ = iα, the equations for x and y
become

x = r̃ cos(φ), y = r̃ sin(φ) (E.8)

where r̃ = R sin(iα). But these are just the standard equations for the parametrisation in polar
coordinates. Since i is discrete these projections from circles of radii r ≤ R in the equatorial
plane, with all the area enclosed between 2 consecutive circles belonging to cells with index i,
see figure E.6. The values for i = 1, 2, 3 are only visible, since the values of i = 4, 5, 6 overlap
these correspond to negative z coordinate which yield the same projection in the xy plane. By
inversion symmetry the projection of cells for i = 3, 4; i = 2, 5; i = 1, 6 overlap. From the figure
it can be seen that the values of j are constrained according to

j =


3 | 4 if i = 1 ∨ 6

2, 3 | 4, 5 if i = 2 ∨ 5

1, 2, 3 | 4, 5, 6 if i = 3 ∨ 4

(E.9)

where | is used to explicitly differentiate between x < 0 | x > 0. Generalising the above scheme
for arbitrary n we have jmin ≤ j ≤ jmax where

jmin =
n

2
−min(i− 1, n− i) x < 0 (E.10a)

jmax =
n

2
x < 0 (E.10b)

jmin =
n

2
+ 1 x > 0 (E.10c)

jmax =
n

2
+ min(i, n− i+ 1) x > 0 (E.10d)

where the min function has to be used to distinguish between cases of i < n
2 , i >

n
2 . Using the

discussion above of using multiples of α to determine the cuts in the x-axis, the bin edge of a
cell j is determined by

BE = R cos((n− j)α), (E.11)

which combined with the conditions of E.10 on i finally give a method for assigning a particle
with coordinate xa to the cell j according to:

xa ∈ cell (i,j,k) if x < BE ∧ j ≤ jmax(i) (E.12)
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Figure E.5: Determination of the j index value in the equatorial plane, where the projection of
the sphere onto the xy plane has a radius of R. Each cell boundary has an angular width α, but
in contrast to the i and k cell boundaries, the cells do not have a fixed size, but vary with x.

where the condition in equation (E.12) is evaluated starting at j = jmin(i), and when not satisfied
the value of j is increased by 1 and the statement is reassessed.

Finally, now that (i, j, k) can be determined, all that remains is to consider the values of (i, j)
for which an interaction with the other side of the sphere is possible. Again here the situation
for n = 6 is considered and the results are then generalised to arbitrary n. The cell list for n = 6
is indicated in figure E.7. Interaction with the other side of the sphere become relevant if the
cell (i, j, 1) lies adjacent to cells of (i, j, 2).

First consider the north pole where i = 1 and j can take on the values j = 3, 4. Both cells are
direct neighbours with their counterparts at the other side of the sphere and an interaction is
possible. In the next layer of i = 2 j can take on the values j = 2, 3, 4, 5. Visible at the western
edge of the sphere is that the cell of (2, 2, 1) is in contact with the cells (1, 3, 2), (2, 2, 2), (3, 2, 2)
at the other side and the cell (2, 3, 1) is in contact with the cell (2, 2, 2), (1, 4, 2), and thus for
indices j = 2, 3 an interaction with the other side of the sphere is possible. Next for the layer of
i = 3 the possible values for j are j = 1, 2, 3, 4, 5, 6. Visible at the western edge of the sphere is
that the cell of (3, 1, 1) is in contact with the cells (3, 1, 2), (4, 1, 2), (2, 2, 2) and the cell (3, 2, 1)
is in contact with the cell (2, 2, 2). Thus the cells with an interaction with the other side of the
sphere on the North-Western half of the hemisphere are obtained and listened in table E.1.
Due to the symmetry of the sphere, for cells beneath the equator this list is vertically mirrored,

and for cells at the Eastern edge (not visible in figure due to orientation) the values of j are
merely shifted to j′ = n + 1 − j giving the full list of cells which can have an interaction with
the other side of the sphere as in table E.2. Using the allowed values of j on the west side of the
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Figure E.6: Projection of the cell list onto the xy plane, where the cells for i = 1, 2, 3 correspond
to the drawn circles, but the cells for i = 6, 5, 4 have identical projections corresponding to the
hemisphere of z < 0.
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Figure E.7: Three dimensional representation of the cell listing on the surface of the sphere for
n = 6. The blue lines correspond to the boundaries of cells with index i, the red lines correspond
to the boundaries of cells with index j, and the green line is the boundary of cells with index k.
Indicated in dark gray is the cell with index (3, 2, 1).
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Table E.1: List of i and j indices where interaction with the other side of possible, in the
North-Western part of the hemisphere.

i index Corresponding j index
1 3, 4
2 2, 3
3 1, 2

Table E.2: List of i and j indices where interaction with the other side of possible, in the
North-Western part of the hemisphere.

i index Corresponding j index west Corresponding j index east
1 3, 4 4, 3
2 2, 3 5, 4
3 1, 2 6, 5
4 3, 4 4, 3
5 2, 3 5, 4
6 1, 2 6, 5

sphere the following rule is obtained

n

2
∨ n

2
+ 2 =

{
i+ j if i ≤ n

2

(n− i+ 1) + j if i ≥ n
2 + 1

(E.13)

for cells which can have an interaction with the other side. Or by using the earlier states fact that
at the east side of the hemisphere j is given by j′ = n+ 1− j, the general rule that interaction
with the other side of the sphere is possible when

min(i, n− i+ 1) + min(j, n− j + 1) =
n

2
+ 1 ∨ n

2
+ 2. (E.14)

Which is precisely equation (3.7) as listed in section 3.3.
Finally in the ’bulk’ it holds that the cell (i, j, k) can have interactions with the cell (i′, j′, k′)
where i′ ∈ {i− 1, i+ 1}, j′ ∈ j − 1, j + 1, and k′ determined by the condition in (E.14), however
at the edges of the sphere i− 1, i+ 1, j − 1, j + 1 make no sense at the North pole (i = 1), South
pole (i = n), westernmost edge (j = 1) and easternmost edge (j = n), thus these conditions have
to be replaced by i′min ≤ i′ ≤ i′max, j′min ≤ j′ ≤ j′max, k′min ≤ k′ ≤ k′max where

i′min = min(1, i− 1)

i′max = min(i+ 1, n)

j′min = min(1, j − 1)

j′max = min(j + 1, n)

k′min = k′max = k if (E.14)not holds

k′min = 1, k′max = 2 if (E.14)holds

. (E.15)
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Appendix F

Supplementary data and results

In this appendix supplementary graphs for results are presented, which show the behaviour of
the systems simulated, but not presented in chapter 4.

F.1 Calibration

For the randomly initialised systems of N = 122, 482, 752 the defect evolution and MSD in the
passive static limit are given in figure F.1. For the pre-relaxed magic number configurations of
N = 122, 482, 752 the results are in figure F.2. With the exception of the randomly initialisedN =
122 configuration, the order parameter asymptomatically reaches the 0.88 ∼ 0.89 value, whereas
the N = 122 case only reaches a value of 0.80. This difference can be explained by considering
the relative defect fraction (number of defects per particle), which is substantially higher in
the N = 122 case (0.14) as compared to the N = 482, 752 cases (0.11, 0.10), corresponding to
less overall crystalline order. The |ψ6| results of the pre-relaxed magic number configurations
can also be understood in terms of the relative defect fraction, since all these configurations
have exactly 12 five-fold defects, the plateau value of |ψ6| will increase with particle number.
Interestingly however is the case for the magic number of N = 752, which seems to increase
rather than decrease from its initial value. Possible situations which can cause an increase in the
bond orientational parameter are a decrease in the defects or a reorganisation at local particle
level of bonds towards a more perfect hexagon. As the number of defects is constant only the
latter option is possible and a visual inspection of the triangulation over time confirms that the
crystal indeed reshapes from some coarse-grained hexagons to more fine-grained hexagons.
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Figure F.1: Calibration results for the randomly intialised configurations of a)-b) 122 particles,
c)-d) 482 particles, e)-f)752 particles. In the leftmost figure the number of defects and MSD are
shown, in the rightmost figure the bond orientational order parameter |ψ6| is shown.
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Figure F.2: Calibration results for pre-relaxed systems of a)-b) 122 particles, c)-d) 482 particles,
e)-f) 752 particles. In the leftmost figure the number of defects and MSD are shown, in the
rightmost figure the bond orientational order parameter |ψ6| is shown. For the defect figures the
plot for the total defects is not shown, since for the magic number configurations this precisely
coincides with the plot for the 5-fold defects.
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F.2 Activity

For the randomly initialised configurations of 300 and 800, the evolution of MSD and defect num-
ber, evolution of scar composition, and evolution correlation functions for the extremal cases of
F = 0.5 and F = 3.5 are shown in figure F.3 and figure F.4 respectively. The behaviour of the
bond orientational order parameter and polarisation order parameter as a function of activity
are shown in figures F.5 and F.6 for 300 and 800 particles respectively. Just like the case of
500 particles, for low activity the number of defects remains constant after 200τ , but gradually
decreases for high activity. In the low activity, the mean of the correlation functions follow the
trends of being roughly 1 in case of the collective autocorrelation function and decreasing from 1
to 1

3 for the self-part of the autocorrelation function. The uncertainties of both autocorrelation
functions grow significantly over time due to the independent of the different random configura-
tions where ~ω traces out its own unique shape, similar to figure 4.9. The composition of scars
shows a preference for larger scars over smaller scars as activity increases, and with the exception
of dipole scars, only odd scar lengths are encountered. The surprisingly large number of dipole
scars for 800 particles is confirmed by visual inspection to stem directly from the crystal structure
itself. Many larger sized scars have a small dipole scar as a tail directly surrounding them, with
a single hexagonal unit connecting the dipole scar and the larger scar, with the dipole and scar
taking opposite vertices, see figure F.7. These relatively many defect dipoles are also reported in
literature and emerge for larger spheres as the curvature becomes smaller [14]. For both system
sizes, activity does increase the crystallinity of the lattice, as seen by the slight, but noticeable
growth in |ψ6| which increases monotically with the self-propulsion strength.

For the remaining magic number configurations of 122, 272, 752 particles, the number of defects
remained 12 five-fold defects throughout all 30 independent realisations for orientation vectors at
all considered self-propulsion strengths, also resulting in an identically constant behaviour of the
bond orientational order parameter |ψ6| for all considered activity, see figure F.8. Remarkably,
the plateau value of |ψ6| in each case is close to their respective plateau values in the passive static
limit as described in above. Plots of the MSD, total defects and correlation functions can be found
in figures F.9, F.10 , and F.11 respectively for 122, 272, 752 particles. An interesting property of
the magic number configurations at high activity can be seen in the autocorrelation function for
the collective rotation, which unlike the completely randomised configurations does not have a
monotonically increasing uncertainty, but can in fact even decrease, although the exact cause of
this is unknown. The polarisation order parameter ψp in each case shows the usual fluctuations
and remains close to zero, ruling out the possibility of any alignment interaction, see figure F.8.
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Figure F.3: Results of activity simulations for the the randomly initialised system of 300 athermal
active particles (corresponding to T ? = 0), showing a)-b): evolution of defects and MSD, c)-d):
the composition of scars, f)-g): the correlation functions for the collective angular velocity and
individual normalised angular velocities. The legend in figure e) applies to the scar composition
plots of figures c)-d). Figures in the left column correspond to the extremal case of F = 0.5 and
figures in the right column correspond to the extremal case of F = 3.5.
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Figure F.4: Results of activity simulations for the the randomly initialised system of 800 athermal
active particles (corresponding to T ? = 0), showing a)-b): evolution of defects and MSD, c)-d):
the composition of scars, f)-g): the correlation functions for the collective angular velocity and
individual normalised angular velocities. The legend in figure e) applies to the scar composition
plots of figures c)-d). Figures in the left column correspond to the extremal case of F = 0.5 and
figures in the right column correspond to the extremal case of F = 3.5.
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Figure F.5: Behaviour of the order parameters as function of activity for 300 athermal active
particles (corresponding to T ? = 0), showing a) the bond orientational order parameter |ψ6|, and
b) the polarisation order parameter ψp. Errorbars have been suppressed for visibility.
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Figure F.6: Behaviour of the order parameters as function of activity for 800 athermal active
particles (corresponding to T ? = 0), showing a) the bond orientational order parameter |ψ6|, and
b) the polarisation order parameter ψp. Errorbars have been suppressed for visibility.
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Figure F.7: Triangulated crystal and defects, clearly showing the existence of tails of dipole
defects after larger scars, explaining the relatively large number of dipole scars. Both the dipole
and scar terminate as opposing vertices of a regular hexagonal unit.
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Figure F.8: Behaviour of the bond orientational order parameter |ψ6| and polarisation order
parameter ψp as a function of activity for the magic number configurations at T ? = 0 of a)-
b) 122 particles, c)-d) 272 particles, and e)-f) 752 particles. Plateau values of |ψ6| roughly
correspond to their passive static limit counterpart values.
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Figure F.9: Results of activity simulations for the magic number configuration of 122 athermal
active particles (corresponding to T ? = 0), showing a)-b) evolution of MSD and defects, c)-
d) correlation functions for the collective angular velocity and individual normalised angular
velocities. Figures in the left column correspond to the extremal case of F = 0.5, and figures in
the right column correspond to the extremal case of F = 3.5. In figures a) and b) the plot for
the total number of defects is not shown as this coincides with the plot for the 5-fold defects.
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Figure F.10: Results of activity simulations for the magic number configuration of 272 athermal
active particles (corresponding to T ? = 0), showing a)-b) evolution of MSD and defects, c)-
d) correlation functions for the collective angular velocity and individual normalised angular
velocities. Figures in the left column correspond to the extremal case of F = 0.5, and figures in
the right column correspond to the extremal case of F = 3.5. In figures a) and b) the plot for
the total number of defects is not shown as this coincides with the plot for the 5-fold defects.
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Figure F.11: Results of activity simulations for the magic number configuration of 752 athermal
active particles (corresponding to T ? = 0), showing a)-b) evolution of MSD and defects, c)-
d) correlation functions for the collective angular velocity and individual normalised angular
velocities. Figures in the left column correspond to the extremal case of F = 0.5, and figures in
the right column correspond to the extremal case of F = 3.5. In figures a) and b) the plot for
the total number of defects is not shown as this coincides with the plot for the 5-fold defects.

F.3 Temperature

For the randomly initialised configurations of N = 300, 800 increasing the temperature results in
a decrease of the total defects, with a stronger decrease for N = 800 than for N = 300 which is
due to the fact that the net topological charge must be +2 which must be satisfied by both scars
and isolated defects, rendering fewer options for reorganising scars available for small systems.
For N = 300 this boils to a transition from ∼ 10 scars of length 3, ∼ 1 isolated defects and ∼ 1
scar of length 5 to ∼ 11 scars of length 3 and ∼ 1 isolated defects. In the low temperature case
∼ 1 defect dipole is present, which is suppressed in the high temperature case as a defect dipole
has a net topological charge of 0 and only adds strain to the crystal without aiding in screening
the curvature of the sphere. This behaviour is also visible for N = 800 where the number of defect
dipoles is initially high due to the tailing of defect dipoles behind scars as discussed above, but
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Figure F.12: Results of temperature simulations for N = 300 passive Brownian particles (corre-
sponding to F = 0), showing a)-b) evolution of MSD and defects, and c)-d) composition of scars.
Figures in the left column correspond to the extremal case of T ? = 0.5, and figures in the right
column correspond to the extremal case of T ? = 2.5. The legend in figure e) applies to the plots
of the scar composition of figures c)-d).

is quenched for higher temperatures. Combined with the results for N = 500 particles discussed
in 4.3, the intuitive that larger scars can be sustained by larger systems is easily obtained by
comparing figures F.12 F.13 4.21. Overall the effects of temperature on the randomly initialised
configurations of particles is a reduction in hexagonal crystallinity reflected in a reduction of
|ψ6|, and a chaotically fluctuating random order as reflected in the polarisation order parameter
ψp, see figure

For the magic numbers of N = 122, 272, 752 temperature has a non uniform effect in contrast
to activity. Over all 30 independent realisations for fluctuations the effects of temperature are
identical, however the effect of temperature is dependent on the system size. In each case how-
ever, for the lowest temperature considered T ? = 0.5 the number of defects remained 12. For
the the smallest magic number of 122 the number of defects remained virtually 12 throughout
the full temperature range, where only at the highest temperature of T ? = 2.5, fluctuations were
strong enough to momentarily generate additional defects, turning some of the isolated defects
into scars of length 3, but in each case, the restoring power of the potential is able to revert the
system back to its original state, see figure F.16. This behaviour is also reflected in the bond
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Figure F.13: Results of temperature simulations for N = 800 passive Brownian particles (cor-
responding to F = 0), showing a)-b) evolution of MSD and defects, and c)-d) composition of
scars. Figures in the left column correspond to the extremal case of T ? = 0.5, and figures in the
right column correspond to the extremal case of T ? = 2.5. For the case of T ? = 0.5 1 realisation
became unstable over the simulation and was not considered in data analysis, whereas for the
case of T ? = 2.5 2 realisations became unstable and were not considered in data analysis. The
legend in figure e) applies to the plots of the scar composition of figures c)-d).
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Figure F.14: Order parameters for the temperature simulations for the randomly initialised
system of 300 particles, showing a) the bond orientational order parameter |ψ6|, and b) the
polarisation order parameter ψp.
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Figure F.15: Order parameters for the temperature simulations for the randomly initialised
system of 800 particles, showing a) the bond orientational order parameter |ψ6|, and b) the
polarisation order parameter ψp.

89



orientational order parameter, which after a short decrease at all temperatures remains steady
at low temperatures, but fluctuates increasingly around a steady value higher temperatures, see
figures F.17. For the magic number system of 272 particles, for temperatures of T ? = 1.5 and
above, scars of length 3 can be sustained without the potential being able to restore the lat-
tice. For increased temperature, scars of greater length do no occur, but the number of scars of
length 3 increases, see figure F.18. This behaviour is also represented by the bond orientational
order parameter, which decreases initially for all temperatures, but then stays approximately
constant for T ? = (0.5, 1.0), whereas for higher temperature |ψ6| increases after the initial de-
crease, consistent with the discussion in section 4.3, see figure F.19. For the largest system of 752
particles, the number of isolated defects sharply decreases with increasing temperatures, with
scars of length 3 and 5 predominantly emerging, with an increasing dominance of scars of length
5 over scars of length 3, see figure F.20. The emergence of defect dipoles is due to the fact that
scars of length 5 are relatively unstable, and tend to constantly reorganise from a stretched out
linear chain, to a compact triangle, or break into a scar of length 3 and a defect dipole. This
constant reformation and breaking is also the reason for the observed monotonic decrease in |ψ6|,
although small scars can increase |ψ6| by lifting the deformations on hexagonal units, larger scars
will eventually destroy this healing effect, since their presence influences a large section of the
surrounding lattice to induce additional deformations, see figure F.21.

For both the randomly initialised configurations and magic number configurations the MSD starts
of in the diffusive regime, but subdues into the sub-diffusive regime as the restoring power of the
potential does not allow the particles to move about freely, with increasing size of the MSD as
temperature increases, as expected for stronger fluctuations. Furthermore, the larger the systems
size, the longer the diffusive regime holds because of the increased dynamical complexity of the
fluctuations.
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Figure F.16: Results of temperature simulations for the magic number configuration of 122
passive Brownian particles (corresponding to F = 0) , showing a)-b) evolution of MSD and
defects, and c)-d) composition of scars. Figures in the left column correspond to the extremal
case of T ? = 0.5, and figures in the right column correspond to the extremal case of T ? = 2.5. In
figure a) the plot for the total number of defects is not shown as this coincides with the plot for
the 5-fold defects. The legend in figure e) applies to the plots of the scar composition of figures
c)-d). Small deviations from precisely 12 five-fold defects by a formation of a scar can be seen
as a result from the Brownian motion of the lattice at high temperature, but these are quickly
quenched back to a five-fold defect..
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Figure F.17: Order parameters for the temperature simulations on the magic number configura-
tion of 122 passive Brownian particles (corresponding to F = 0), showing a) the bond orienta-
tional order parameter |ψ6|, and b) the polarisation order parameter ψp.
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Figure F.18: Results of temperature simulations for the magic number configuration of 272
passive Brownian particles (corresponding to F = 0), showing a)-b) evolution of MSD and
defects, and c)-d) composition of scars. Figures in the left column correspond to the case of
T ? = 1.5 where scars first start to form, and figures in the right column correspond to the
extremal case of T ? = 2.5. The legend in figure e) applies to the plots of the scar composition of
figures c)-d).
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Figure F.19: Order parameters for the temperature simulations on the magic number config-
uration of 272 passive Brownian particles (corresponding to F = 0) , showing a) the bond
orientational order parameter |ψ6|, and b) the polarisation order parameter ψp.
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Figure F.20: Results of temperature simulations for the magic number configuration of 752
passive Brownian particles (corresponding to F = 0), showing a)-b) evolution of MSD and
defects, andls c)-d) composition of scars. Figures in the left column correspond to the case of
T ? = 1.0 where scars first start to form, and figures in the right column correspond to the
extremal case of T ? = 2.5.
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Figure F.21: Order parameters for the temperature simulations on the magic number configura-
tion of 752 passive Brownian particles (corresponding to F = 0), showing a) the bond orienta-
tional order parameter |ψ6|, and b) the polarisation order parameter ψp. The legend in figure e)
applies to the plots of the scar composition of figures c)-d).96
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