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Abstract

The eukaryotic cell, the building block for humans, is a widely studied system both experimentally
and theoretically. In this report, we pave the way for the use of machine learning techniques to
investigate cytoskeletal development within the eukaryotic cell. The underlying motivation is that
if we can show that machine learning techniques can be used to describe the spatial evolution of
simulated data, then perhaps this can be done for experimental data as well. Using the open source
simulation engine cytosim, a naive model is simulated of fibers that can nucleate and crosslink at
the cell surface. Increase in fiber length in the cytosim model is achieved by nucleation at the
plus-ends of polarized fibers and the formation of new fibers that attach to existing fibers at the
point of attachment. For this cytosim model a theoretical model is proposed which is then fitted
to the network. The model can successfully describe the evolution of the total fiber length as
function of time as well as the number of active plus-ends as function of time. The DeepMoD
neural network, as of yet fails, to capture the cytosim model well. This has brought to light
that DeepMoD, though it can deal with partial differential equations well, struggles to correctly
predict underlying ordinary differential equations, and points to promising directions for additional
research to improve the performance of DeepMoD.
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1 Introduction

Over the last decade data-driven discovery methods and in particular neural networks have expe-
rienced a great boom in research. This is largely due to technological advances such as improved
data storage and computational power paired with a decrease in its associated costs. While neural
networks in itself are hardly a novel concept, its application in physics is fairly new. It has already
proven to be a potent tool in model fitting and solving numerical equations in various domains of
physics such as temperature modelling [5], image processing in fluorescence microscopy [12] and
atomistic material modelling [10].

A neural network is trained to find the correct parameters for the physical problem of which it
uses the trainingdata. A neural network that finds parameters of physical equations is called a
physics informed neural network, or PINN for short. Trainingdata can be gathered in multiple
ways, both experimentally and by simulation. Here the training data is retrieved from simulations
of an eukaryotic cell using an open source simulation engine called cytosim.

Figure 1: A screenshot taken from a cytosim simulation. Growth of filaments
are simulated that nucleate from the surface. The simulation is axis symmetric.

The aim of this research is proof of concept. That is, known machine learning techniques are
applied to a spatiotemporal dataset generated using cytosim. Then the parameters of the equa-
tions that describe the biophysical problem found by machine learning should be consistent with
those parameters that the model in cytosim uses as input. Here we simulate the growth of the
cytoskeleton of a cell (see figure [I)), it is a simple model with only few parameters. If it can be
shown that a PINN can be used to find the parameters of the system for this simple system then
hopefully this paves the way for more complicated and realistic models.



2 Theory

In this section we explore all relevant theory. First, we briefly sketch the situation from a biological
point of view. It might not be the focus of this report, however, for almost every problem a
computer solves there is a real world problem that is central to it. More importantly, and in
slightly more detail, the physics on which the software is based that generates data is reviewed as
well as the workings of the applied machine learning techniques.

2.1 Biological context

The origin of this report lies within the fundamental structure of life for humans, the eurkaryotic
cell. Cell mechanics is a highly investigated and broad subject with research done both in and
outside of the cell. Research is done on both macroscopic and microscopic cellular processes alike,
ranging from maintenance of the shape, cell motility, adhesion and the transduction of mechanical
signals into biochemical signals leading to biological responses [§]. Here the focus is on the cy-
toskeleton, that is, the network of dynamic and interlinked protein filaments encapsulated between
the cell membranes and nucleus within a cell. The cytoskeleton is comprised of three components:
microtubili, intermediate filaments and actin filaments. Each with distinct mechanical characteris-
tics. Microtubuli are polymerized filaments of a- and - tubulin in a helical arrangement, forming
a hollow cylinder. Intermediate filaments constitute a superfamily of proteins of over 50 different
members.
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Figure 2: Schematic overview of an actin filament. An actin filament is polar-
ized fiber built up out of monomers. From here the term fiber is used when
referred to actin filaments.

In this report the focus is on actin filaments of which a schematic overview is displayed in figure
above. Actin filaments make up 1 to 10 percent of all the protein in most cells are the percentage
is even higher in muscle cells.



2.2 Cytosim

For the generation of data cytosim is used. Cytosim is an open source simulation engine that is
based on Brownian dynamics [9]. Tt offers users a toolkit to work with various cellular structures
in a virtual cell without having to learn the underlying code which is developed in C++. Cytosim
has already seen various applications such as investigation of contractile disordered cytoskeletal
networks [1], actin filament organization [6] and the effect of actin-myosin interaction on the cell
cortex [14].

2.2.1 Equation of motion

The physics behind cytosim simulations have already been described in much detail [9], here a brief
review is given of the relevant equations. In simulation every object is described by a collection
of points. Fibers of length L consist of p 4+ 1 equidistant points distance L/p apart from each
other. Growth of fibers can introduce new points which will be added under the minimization of
|pseg — ﬁ\ where p,eq is the segmentation length specified in the model. A vector « of size Nd
collects the points for a model with size N in dimension d. The equation of motion is the Langevin
equation given by:

dx = pF(x,t)dt + dB(t). (2.1)

Mobility coefficients are contained within the matrix p. Forces acting upon the points at time ¢
are contained in matrix F'(x,t) which is size Nd. And lastly dB(t), also of size Nd, summarizes
the random molecular collisions leading to Brownian motions. This term actually introduces
randomness to simulations since values are different for every simulation. For dB(t) cytosim uses
a pseudo random number generator (PRNG) for which the random seed is calculated from clock
time at initialization.

2.2.2 Cytosim model

During simulations a simple cytosim model is used. Fibers start uniformly distributed at the x-
axis with negligible length at a random orientation. Crosslinkers can attach to a fiber and initiate
growth of a new fiber at the point of attachment under an angle of 70°. So growth of a fiber only
occurs at the plus-ends or at attachment points. Cappers can bind to plus-ends of fibers to halt
growth, if they detach they can bind again to plus-ends. In figure [3]it it can be seen how this all
actually translates to a simulation.

2.2.3 Simulation

Central to any simulation are the timestep ts, the number of simulations sim and the number
of frames frames. The ts determine the timestep that is used in equation [2.1] for calculating the
motion of the points within a simulation. The total running time of a simulation is

tiot = Sim - ts. (2.2)

The number of frames is important for the actual output of the model. Suppose a simulation is
ran with ts = 0.001s, sim = 1000 and frames = 10. This yield a simulation with ;,; = 1s and

the output is given for every frame 7 at time t; = frt;;tws <(i—1) fori=1,2 ... (frames —1). So




Figure 3: Above 3 screenshots displayed of a simulation in cytosim. Fibers
are displayed as green strings while crosslinkers are both green and white dots.
This is because in cytosim a crosslinker is formed by constructing a particle
that consists of two other particles, a nucleator in white and a activator in
green. The plus-ends of fibers are red or green. A red plus-end has stopped
growing and is effectivly capped, a green plus-end is an active, growing plus
end. Free red dots can also be seen, these are cappers.

output can be retrieved at time t; = 0s,t5 = 0.1s, ... ,t19 = 0.9s.

Cytosim has its own binaries for retrieving the actual data using the command ./report. Partic-
ularly interesting is the output of the fibers since this is the basis for creating a spatio-temporal
dataset. For full options on the report command see cytosim the documentation. Here it is used
to extract a .tzt file of the fiber points and their positions per frame.

In this report the word model is often used. Now, briefly the nomenclature is discussed so that
it is clear when a reference is made to the cytosim model or any other model. When a model
is mentioned, a physical model is meant (e.g. equation ?7?). Cytosim model refers to models in
cytosim evidently. All cytosim model parameters can be found in the script in appendix yet
only few are ever varied in simulations. Hence a simulation can be denoted

Q(ts, sim, frames, cl, fib), (2.3)

where ts is the timestep, sim the number of simulation steps, frames the number of frames, cl
the number of crosslinkers and fib the number of initial fibers. This allows for a brief notation.
Suppose a simulation is ran with ts = 0.001, sim = 1000, frames = 10, ¢l = 250 and fib = 100
this is denoted €2(0.001, 1000, 10, 250, 100).



2.3 Theoretical description model

For the theoretical description of the outcome of a cytosim simulation a model is suggested. The
suggested model is a system of two ordinary differential equations based on conservation of par-
ticles, equations and Here the change of total fiber length dN/dt is the product of the
polymerization rate k, and number of active ends N*:

dN

dt
The change of active plus ends dN 7T /dt is equal to the branching rate k;, at which crosslinkers
attach to fibers to initiate growth of a new fiber and the total fiber length IV, minus the product
of the capping rate k. and the number of active plus ends:

= k,N*. (2.4)

ANt
dt
An additional benefit of this simple model is that the exact solutions can be found. If it turns
out that there is no similarity between the cytosim results and the exact solutions one can hardly
expect to obtain valid results from machine learning techniques. More on this in section

= kyN — kNt (2.5)

2.4 Neural Networks

The concepts on which neural networks are based were pioneered in the 1940’s 7, 4] and orig-
inate from the study of neural connections in the brain, hence the name. How they work has
been well documented and can be found nowadays in various textbooks [3, [I5], [13]. Here, the
free online book written by Michael Nielsen is used to describe how neural network work (see:
neuralnetworksanddeeplearning.com). Also, the liberty was taken to adapt the notation used in
this book.

2.4.1 Neural Network Mechanisms

Neural networks are formed by multiple layers of so called neurons that transform input into out-
put (see figure . The output @ of a neuron is determined weighted input z which is related to
the inputs x1, ...., z, = X, a weighing matrix w and bias b according to

z=wX —b. (2.6)

z is then mapped to value between 0 and 1 using an activation function o

a=o0(z) =oc(wX —b). (2.7)

Various functions can be used, and have been used to map the weighted input z such as the
sigmoid-, softplus- and tanh function. It is the actvation function that introduces non linearity to
the system.

What a neural network then tries to find is the correct weights and biases in each layer such that
the output of the neural network matches the desired output. In order to evaluate the difference
between the predicted and the desired output we define the cost function
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Figure 4: Here a generic neural network is displayed. A neural network in
essence is a collection of many connected neurons. The first layer is called the
input layer and the last layer is the output layer. Any layer in between is part
of the hidden layers.
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Which is a function of the number of samples n, the desired output of sample i, y;. aF is the
activation which using expression we can write for a layer [:

al = o(wla! =t + bh). (2.9)

Equation [2.8] is the mean squared error which has the benefit that it is smooth so that differenti-
ation is easier. However, a cost function need not to be equal to the mean squared error and later
on it turns out that by this cost function the physics can be introduced into the neural network by
feeding it the relevant physical equations directly into the cost function. More on this in section
2.4.9)

Ultimately, minimizing the cost function is that which yields the results for a neural network. A
common technique to find the minimum of the cost function is gradient descent. It is not uncom-
mon to have weights and biases in the millions or even billions therefor finding the minimum is
not done in the classical way. That is, it is not done by setting all derivatives equal to zero and
finding the appropriate values since this is too complicated.

Suppose we have a function f(x) that is to be minimized with respect to x. Then, given an
initial position z,, gradient techniques find the minimum by following the direction of the steepest
descent. Given that a function increases maximally in a point in the direction of it’s gradient at
that point, x,, is iteratively updated:

Tnt1 = Tp — NV f(xy). (2.10)



Here 7 is the stepsize. Gradient descent techniques converge to a minimum. If the function is
convex, such that it has no local minima, there is only one outcome possible. Still, the questions
remains how to find the derivatives of the cost function. This is discussed in the upcoming section.

2.4.2 Minimizing the cost function

Here the back propagation algorithm is introduced. The aim here is to understand how a cost
function C' is changed by the weights and biases of the network. Ultimately it is about finding the
partial derivatives 9C/ 8wé- , and 0C/ bé». In these derivatives wé . is the weight of the k' neuron

in the (I — 1)*" layer to the j** neuron in the I** layer and béth the j** bias in the [*" layer. The
error (5; of neuron j in layer [ is defined as

oC
8 = PER (2.11)
J
Here 6! is the vector of errors associated with layer I. Back propagation provides a way to compute
§! for every layer and relating them to parameters of interest AC/ 8w§ . and 0C/ bé. Before we see
how the back propagation algorithm works, the equations that it uses are evaluated. It comes
down to 4 equations. First the equation for the error in the output layer is

57 = —0'(z)). (2.12)

The term 3C/BaJL is a measure of the change in cost function as function of the j** output

activation. The term o’ (ZJL) is a measure for the change in activation function o at sz Notice
that equation [2.12]is a rewritten form of equation using the chain rule. For the use in back

propagation equation [2.12]is written in matrix form:

st =v,C o8 h. (2.13)

Secondly, an equation is needed that relates the error §' to the error in the next layer §'*1:

8t = ("™ o' (21). (2.14)

Here (w!t1)T is the transpose of the weight matrix of layer [ 4+ 1. Suppose that the error §'*!
is known of layer [ + 1, then applying (w'*!)? can be interpreted as moving the error backwards
through the network, providing a measure of error in layer [. Then by taking the Hadamarkt
product ®o’(z%) gives the error 6! in the weighted input layer I through the activation function.
Together equations and can give the error 6 for any layer. Equation gives 6%, then
after applying equation error 671, Then, equation is applied again and again to find
§5=2, 6173 and so one until the error of every layers if found.

Thirdly, an equation is needed for the rate of change of the cost with respect to any bias in the
network.

oc
o = st (2.15)
J



Finally there is an equation for the rate of change of the cost with respect to any weight in the
network.

oC

I
8wjk

= aj "6} (2.16)

The back propagation algorithm is described for a single point. Equations It consists of 5 steps:

1. Input: activation a' for the input layer is set according to equation
2. Feedforward: for every layer | = 1,2,3...L compute a' = o(w'a'~! +b).
3. Output error: compute the vector 6% = V,C ® ¢ (2F).

4. Back propagation of the error: For each | = L — 1, L — 2...2 compute
St = ((wl+1)T5l+1) o 5/(ZL)

5. Output: the gradient of the cost function by 9C/dw!, = aj 6% and
aC /b = 4!

2.4.3 Physics Informed Neural Networks

A neural network is transformed to a physics informed neural network (PINN) by altering the cost
function. Suppose that by either simulation or experimentation on a certain physical system a
spatio-temporal dataset y({z,t}) is retrieved such that the system, for unknown constants 61, 65
and 63, obeys:

Opy = 017y + oy + 03V7y. (2.17)

Then, rewriting equation [2.17]

[ =01y + 02y +05Vy — Oy, (2.18)

it can directly be inserted in the cost function of the neural network. Subsequently, for a PINN,
an extra term is added to the cost function [2.8] resulting in a new cost function:

1 L2 K 2
Lopinn = o Z |y —a;i’|* + - Z |017vi + O2vi + 03V y; — Opvil,
" : (2.19)

Epinn = Emse + ﬁ Z |fi|2'

Here & is a constant that sets the strength of the contribution of the second term in comparison to
first term. Now the physics are encoded within the network. By inserting f into the cost function
physically feasible solutions can be found by training the network. The cost function 2:19]is a
function of the weights, biases and parameters 61, 65 and 03, these are inferred by training the
network. Hence, equation 2.17] coupled with the inferred coefficients gives the underlying model

10



for the dataset y({z,t}).

Evidently, equation [2.17] is a generic equation so that the concept of a PINN can be illustrated
easily. Actual physical equations have been employed successfully such as the Navier-Stokes equa-
tion [11].

A quick glance at [2.19] also reveals two major shortcomings of PINNs. First, it requires some prior
knowledge of the system so that a model can be proposed to transform the neural network to a
PINN by altering the cost function. Secondly, given the data and the proposed model, the PINN
retrieves coefficients without actually providing information about why these are the coefficients. In
a sense, it is a purely mathematical construct that provides no further information about casuality.

2.5 Deepmod

DeepMoD is a deep learning based model discovery algorithm that seeks partial differential equa-
tions (PDEs) underlying a spatio-temperal dataset [2] (the explanation of DeepMod presented in
this section is largely based on the arguments presented in that paper). It performs particulary
well for noisy datasets. It has already proven to be able to correctly predict PDEs for various
equations such as the Burgers’ equation and the Keller-Segel equations. The key concepts are
discussed here. This subsection can be interpreted as a summary of it’s original paper, to which
we refer for more details.

The problem at hand is that for a dataset u({x,t}) DeepMoD wishes to solve:

Opu(x,t) = F(u, Uy, Uiy, Ugy, -..).- (2.20)

Hence the problem boils down to finding the correct PDEs underlying a spatio-temporal dataset
u({z,t}). The task of finding the correct PDEs is approached by writing down the task as a
regression problem:

Oru = O¢. (2.21)

Here 0,u is a column vector of size n containing the time derivatives of each sample, © is a matrix
containing a library of polynomial and spatial derivative functions given by:

1 ou({z,tho) - wPuge({z,tho)
0=: : :
U ou({@,thn) - wPuge({z,t}n)

Here it can also directly be seen that this matrix contains more elements for PDEs. If two systems
have the same order of derivatives, a system that is only described by its spatial derivatives has less
columns than a system that is described by both its spatial- and time derivatives. ODEs therefor
are more restricting than PDEs.
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¢ is the coefficient vector for which the aim is to find a sparse representation. This means that
the coefficient vector £ has many zeros in it, the sparsity is not be confused with data sparsity!
This regression task is solved using Lasso, a sparsity promoting regression method within a neural
network.

A densely-connected feed-forward neural network is employed that takes the spatio-temporal co-
ordinates of the problem such that from input {z,t} it outputs an approximation of u at {z,t},
4. Now, the cost function differs from a cost function that is applied in regular PINNs since it
contains a term Ly, that ensures sparsity of the coefficient vector £. The cost function is given by:

L= ﬁmse + Eregression + ELI . (222)

The first term on the right, L., is the mean squared error (MSE) of the output of the neural
network @ with respect to the dataset u({z,t}),

1 « X
‘Cmse = ﬁ Z; ‘U({I, t} - ui)|2' (223)
The second term on the right,
1< .
Eregression = E El |®Z]€j - atui|2a (224)

performs regression to find the coefficient vector £. The final term on the right represents a L
regularizer on £, which is given by:

Lr, =AY I (2.25)
=2

Here X is a constant that determines the strength of the regularization. DeepMoD updates the
coeflicient vector ¢ alongside the weights and biases of the neural network. The terms in ©
are computed from the output of the neural network. The combination of L,,se and Lyegression
constrain the network in a way such that it converges to the right solution. Since the MSE
converges before ¢ does, a convergence criterion is established based on the convergence of &:

a2 10
9 |10

This convergence criterion states that the maximum value of the gradient of the loss function with
respect to the coefficients must be smaller than a given tolerance value. Given that there is no
guarantee that a coefficient vector £ that satisfies is retrieved, the network is trained until the
specified tolerance value is reached or if a maximum amount of iterations has been reached.

If training the neural network is executed successfully, the sparse coefficient vector ¢ is retrieved.
Still, this is not yet the true sparse vector representation. Even after regularization, most terms
will be non-zero so the small coefficients must be tresholded. Each term in equation has a
different dimension hence they are made dimensionless using;:

) < tol. (2.26)

oru o lol|
u— 95 2 and £ e 2 9.97
" 9] Gl o] (2:27)
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Here ||©|| is the norm of each column of © and ||Opul| is the norm of the time-derivative vector.
Components of ¢ will typically be O(1) as a result of this transformation. Then, the network is
trained one final time without L; pentalty and with the regression term only containing terms
selected in the first cycle. Ultimately this result in an unbiased estimate of the coefficients of the
PDEs underlying the physical problem at hand.

13



3 Methods

3.1 Collecting data

Cytosim outputs plain .txt files. While nearly everything that happens within a model can be
retrieved as output in the form of .tzt file, implementation of the data such that it can be used as
trainingdata for a PINN requires a bit more effort.

For the cytosim model that is used in this research the output that cytosim gives for the fiber
points and end points of fibers are sufficient to retrieve a spatio-temporal dataset that can be
used as a training set for a neural network. All fiber points and end points are given using the
commands . /report fiber:points and ./report fiber:ends respectively. In appendixit can be seen
what the output looks like.

3.2 Data preparation

After the model data has been collected it must be parsed such that it is suitable for deep learning.
This is done using the python language in jupyter notebooks. Full credit goes to Gert-Jan Both
for writing this code. The code together with the appropriate amount of comments is displayed
in appendix [6.3] If one is familiar with python, a brief scan through the code might already be
sufficient to comprehend the data parsing process.

The parsing basically comes down to creating one pandas dataframe using three functions: points_parser,
ends_parser and merger. This can be seen as three steps that are executed in order to form the
dataframe.

1. First, points_parser is used to for the fiber points. They are split per frame
and put in a dataframe.

2. In the second step ends_parser is used for the fiber ends. These are also
split per frame and put in a dataframe.

3. Finally, as the name suggests, merger is used to combine the dataframes
from step 1 and 2 into one big dataframe. This contains all points for all
frames and contains informationa about the polarity of a point.

Following the steps above a dataframe that holds all fiber points as can be seen in figure [5] is
obtained. This dataframe is that which ultimately enables us to find results. First, it allows
investigations of the effects of variation in model parameters (see figures |§| and . Also, it prepares
the data so that it can be used for the deep learning described in sections [2:4.3] and 2.5

14



frame ID X y type M_state P_state length

0 0 1 422147 -0.0845T1 min 0.0 NaN  0.005
1 0 1 421351 -0.078509 middle NaN NaN  0.010
2 0 1 420556 -0.072446 middle NaN NaN  0.010

Figure 5: A screenshot of a dataframe that can be retrieved in a jupyter note-
book using the data parsing code. The first four terms speak for itself. The
type can indicate a middle, plus or minus segment of a fiber. The M _state is
0.0 for minus ends, since there is no nucleation on the minus ends of fibers. For
middle- or plus ends it is Na/N. Similarly, the P_state only exists for plus ends,
it is 1.0 for growing ends and 4.0 for inactive ends. For middle- and minus ends
it is NaN. The length gives the length of point.

Figure 6: A screenshot from a simulation in cytosim at t = 0.4s. For this
particular simulation there are 100 fibers initiated at the center. The simulation
takes 1 second, so simul = 100 and timestep = 0.1s. In figure[7]it can be seen
that in python the same image can be reconstructed.
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4 Results

4.1 Cytosim model behaviour

First some basic results of the model are evaluated. The aim is to describe the behaviour qualita-

tively in order to demonstrate that the cytosim model behaves as expected.

Recall that a simulation can be denoted € as described in section[2.2.3] Given that a relative simple
model is simulated expected behaviour is observed. By constructing histograms it is confirmed
that there axial symmetry as displayed in figure Furthermore it can be seen in figure [J] that

fibers seems to be uniformly distributed in the z-direction.

-2 0 2 4 -4

Figure 8: Three normalized histograms are displayed for a simulation
©(0.01, 100, 10, 500, 200) on frame 1, 5 and 10 (left to right). In section
it can be seen how model output can be prepared. These histograms take as
input for all points their y-position, which is the distance from the z-axis in
the cytosim model. Symmetry around the origin is observed in the histogram
implying axial symmetry around the z-axis in the cytosim model.
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Figure O: Three histograms are displayed for three different
simulations €(0.01, 100, 10, 250, 100), ©(0.01, 100, 10, 500, 200) and
Q(0.01,100, 10,1000,400) (left to right). The histograms are from all
data points in their respective simulations of the z-coordinate. The orange
histogram is from frame 1 and the blue from frame 10. The histograms are
more or less uniform and it is can be seen that as the number of initial fibers
and crosslinkers increase, uniformity increases too.
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4.2 Model fitting
To recapitulate, in section [2.3] the suggested model was proposed via equations [2.4] and

dN

~— =k,N*
dt L

dNt
Y g N —k.N*T.
dt b

Using some technical computing system such as mathematica the model can be solved using the
initial conditions N(0) = 0 and N*(0) = ng. Also, it is assumed that {k., ky, kp,no} > 0. For
N(t) and N*(t) the following results are obtained:

_ 2Exp(—%t)kynoSinh(5t\/k2 + 4kyk,)

VEZF dkok,

N(t) : (4.1)

k 1 k.Sinh(Lt\/k2 + 4kyk,)
Nt (t) = Exp(— ~<t)no(Cosh(=t4/k2 + 4kpk,) — 2V ¢ P 4.2
(t) = Exp( 2 )no(Cos (2 \/ ke vkp) RS ) (4.2)

Here, t is the time and ng is the initial number of active plus-ends. The proposed model consists
of ordinary differential equations instead of partial differential equation(s). In section it can
be seen how data was collected for every fiberpoint and endpoint, for every frame. If grouped
by frame for a simulation N(t) and N7 (¢) can be retrieved. With the true values known, a non
linear fit with equations[d.1]and [£.2]is performed. The results are displayed in figures[I0]} [[1]and

In figure [I0] it can be seen that equation [{.I] describes the evolution of total fiber length well.
However, it seems that equation [£.2] does not seem to describe the evolution of plus ends well.
But, both figures [10] and [L1] are constructed using one simulation only. If more simulations are ran
and averaged, it can be observed that the fit works better as displayed in figure

4.3 DeepMoD

Unfortunately no results from DeepMoD can be displayed due to technical difficulties. DeepMoD as
of yet does not work well ordinary differential equations. It was found that for ordinary differential
equations, the elements of the sparse regression vector & do not go to zero, or not go to zero fast
enough. With ordinary differential equation DeepMoD struggles to drop terms.
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Figure 10: Here the total fiber length is plotted against the time in frames for a
simulation ©(0.01, 100, 100, 1000, 400). Orange dots are the actual data points
while the blue line is the fit.
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Figure 11: Here the number of active ends is plotted against the time in frames
for a simulation €2(0.01,100, 100, 1000, 400). Orange dots are the actual data
points while the blue line is the fit.
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Figure 12: Here in orange the average for 5 simulations 2(0.01, 100, 100, 1000, 400) is plotted. In
blue the fit is plotted
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5 Conclusion and outlook

This report consists of two parts: data generation using cytosim, and machine learning using
DeepMoD. Cytosim exhibits desirable behaviour in the context of data generation. First of all,
data is essentially near infinite with the bottle neck being processing power. Secondly, data is
reproducible. While each simulation actually gives slightly different output for the same cytosim
model, they can never differ too much. Also, if simulations are averaged it can be seen that the
suggested model describes the evolution of total fiber length and active plus ends well. Finally,
it is relatively easy to work with cytosim output since the files are exported as .txt files that are
straightforwardly parsed for further processing.

The machine learning results were not as anticipated. We have found, that DeepMoD struggles to
correctly predict underlying ordinary differential equations, and in particular does notably worse
than it performs with partial differential equations. We conjecture that the reason for this is that
a system based on ordinary differential equations has fewer degrees of freedom as discussed in
section 2.5] DeepMoD uses the spatial and temporal derivatives to regularize the cost function
but fails to do so for the system of coupled ordinary differential equations in this report.

To improve the performance of DeepMoD for ordinary differential equations two suggestions are
made. First, extra trajectories can be added in so that an extra constant is added artificially.
Also, DeepMoD could first train using only the mean squared error as the cost function. Then,
separately, equations that describe the model can be fitted. Using these results, better starting
parameters can be taken. Intuitively this can be seen as making an educated guess of where to
start the gradient descent.

In hindsight one may cautiously state that within the available time it was a rather ambitious
project. In this report only one model was proposed that is comprised of ODEs. Given that
DeepMoD struggles to make correct predictions for ODEs in future work PDEs can be used. For
example, one could use a continuum approach with spatial as well as time derivatives. Further
more, noise can be added to simulation results to test the robustness of DeepMoD for the suggested
model(s). Also, from this simple model of fiber growth, the extension can easily be made to a more
complex system that bears closer resemblance to an actual eukaryotic cell. Other particles and
fibers can be added to capture the effects of molecular motors and microtubili.
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6 Appendices

6.1 Cytosim code
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6.2 Cytosim output
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Figure 13: As example to see the output that cytosim provides, output can be
seen for a simple model which has 5 non-interacting fibers that diffuse in space.
Output is displayed for 1 fiber in the first frame. The output for the model for
cytoskeletal growth is the same with simply more fibers and thus more points.
Top: A screenshot from the terminal of the output of the fiber points. For
every frame and for every fiber, cytosim outputs the fiber points and coupled
with their z— and y — coordinate. Bottom: A screenshot from the terminal
of the output of the fiber ends. For both the minus-ends and plus-ends it gives
the their z— and y — coordinate aswell as their orientation. Also, the state
of the minus-end and plus-end, stateM and stateP respectively, is given. For
this particular simulation it is 0 for both meaning that on both ends their is
no nucleation.
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6.3 Python script for dataparsing
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