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Abstract

It was not immediately evident that organic electronics would be a breakthrough technology,
however organic light emitting diodes (OLEDs) have gained market share rapidly, thanks to
their wide colour gamut and high efficiency. Unfortunately, the theoretical efficiency limit
is not yet reached in practice. This work will combine two approaches used to characterize
organic light emitting diodes such that the present-day model, which uses the conventional
rate equation for triplet exciton decay, can be improved. The first approach assumes a
Gaussian distribution of energy states as basis for charge transport, whereas the second
approach uses optical thin film analysis as a basis. The electrical simulations used a numer-
ically efficient one-dimensional continuum drift-diffusion model. For the optical approach
Setfos was used. To analyse the photoluminescence caused by a laser source and measured
with a photo detector. The goal is, to combine polaron density simulations and an op-
tical analysis of real world devices in order to investigate the validity of the conventional
rate equation. It is first shown in this work that the measured electrical characteristics of
symmetric tris(4-carbazoyl-9-ylphenyl)amine (TCTA) devices are in good agreement with
the electrical simulation results at voltages starting from 5 V up to 10 V. With help of the
optical model, it is shown that the effective triplet-polaron rate coefficient is not constant as
function of the current density. This implies that current analysis methods, which are based
on the rate equation, might not give a meaningful prediction of the efficiency of OLEDs.
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1 Introduction

In this chapter, the field of organic semiconductors and OLEDs will be introduced. Firstly, the
important terminology used in OLED device physics will be explained. Secondly, the motivation
of this work will be given. Lastly, the aim of this work will be defined.

1.1 OLEDs a light source and their applications

Artificial light sources like fire [1], incandescent lights, light-emitting diodes (LEDs) and now
Organic light-emitting diodes (OLEDs) have been important light sources for humanity.

Nowadays OLEDS are widely used in televisions, smartphones, tablets and smartwatches.
They are used in favor of their counterparts e.g. LCD, because of their wider color gamut and
superior contrast ratio. Besides their better color reproduction characteristics, OLEDs also have
superior energy efficiency. Lastly, OLEDs generally require less space (no need for backlight)
and can be produced on flexible substrates, which allows curved screens. In general there are
two types of OLEDs. The first type is based on polymers. The second type is based on small
molecules, which most of the commercially available OLEDs, as well as the OLEDs studied in
this paper are.

OLEDs are LEDs with an organic material as semiconductor, instead of typical semicon-
ductors e.g. Gallium arsenide (GaAs). In order to create a suitable organic semiconductor,
a high conductivity needs to be reached. This was achieved already in 1977 by π-conjugated
polymers. For this discovery, the Nobel price was awarded in 2000 to Heeger, MacDiarmid, and
Shirakawa. [2;3]

1.2 Organic semiconductors

Most of the organic semiconductors used nowadays are more or less disordered and are held
together by van der Waals forces. This prevents charges to move like in semiconductor crys-
tals like GaAs, but jump (hop) from one part of the polymer chain to the other. In normal
semiconductors the electrons and holes, the counterpart of electrons, are delocalized (free) over
the conduction and valence band. An electron in the valence band can be excited, by e.g.
photon absorption, to the conduction band and it will leave a hole in the valence band. In
organic semiconductors something similar happens. However the energy gap is due to a lowest
unoccupied molecular orbital and highest occupied molecular orbital, in shorthand
LUMO, HOMO respectively. The LUMO and HOMO are similar to conduction and valence
band respectively.

1.3 OLED device structure

In order to achieve a completer picture of how OLED looks like, it is helpful to look at one of the
early (and more simple) design of OLEDs depicted in Figure 1.1. Going from outside inwards,
the outermost layer is the electrode. Usually the anode is optically transparent and cathode
reflective. Most of the time ITO is used as the anode material. It has a high transparency
in thin layers of tens up to a few hundreds of nm and has good hole injecting capability. [5]

The following layers are the hole and electron injection layers (EIL and HIL). These layers
improve device efficiency by decreasing or eliminating loss processes e.g. for hole injection. In
this situation the HOMO of the EML is matched with the Fermi level of the anode, that is to
bridge the gap of the energy levels between these two layers. The last layer is an emissive layer
(EML), the organic layer. In the organic layer charges can recombine or interact with other
charges or -typically- triplet excitons. In the case it interacts with a charge or a triplet exciton
the energy is generally considered lost. This is called triplet-triplet annihilation (TTA) and
triplet-polaron quenching (TPQ), respectively. In the case of charge recombination, the excess
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Figure 1.1: A schematic energy level diagram of a multilayer monochrome OLED stack. From left to
right: the anode, the hole injection layer (HIL), the emissive layer (EML), electron injection layer (EIL)
and cathode. The black arrows indicate the path of electrons and holes, it should be noted that the emissive
layer consists out of both a hole and electron transporting layer, doped with dye molecules, of which the
energy lives are indicated by the green dotted lines. Adapted from Ref. [4]

energy will be used for optical light radiation. Sometimes another layer between the HIL and
EML is deposited for better device efficiency. These are called blocking layers.
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1.4 Motivation of this work

In literature it is questioned whether the conventional rate equation describes exciton physics
adequately. In this rate equation the loss processes are modelled to be linear with their respec-
tive densities. For triplet-polaron quenching studied in this work, it would be linear with the
triplet and polaron density. This proportionality factor (rate coefficient) would include all other
physical processes. However, there are strong indications that this view is oversimplified. For
example, Coehoorn et al. [6] has shown there is a strong polaron density and field dependence
in the exciton-polaron quenching rate coefficient.

Furthermore, in 2014 Van Eersel et al. [7] has shown by kinetic Monte Carlo (MC) simulations
that, contrary to what often is assumed, not TTA, but TPQ is the leading loss process causing
the roll-off for phosphorescent OLEDs. This implies an incorrect rate coefficient has been found
in the works which consider TTA to be the leading loss process.

All of the above lead to this work, where the exciton physics as it is known to date is reassessed.

1.5 Aim of this work

In this work it is aimed to develop a optical OLED model and combine this with results of
electrical simulations based on mechanistic models. That is, a model described by physical
processes without any use of fitting parameters. Moreover, the optical model can be applied
to improve stack design and the experimental method. The combined model will be used to
characterize the underlying exciton physics of materials in OLEDs. The approach is a careful
analysis of real-world measurement scenarios.
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2 Theoretical background

In this chapter the theoretical background needed to have a basic understanding of the physics
in organic light emitting diodes is given. Firstly, two key terminologies are explained. Secondly,
a short introduction into charge transport is given. Thirdly, two types of charge transfer will
be explained and its consequences in loss processes. Fourthly, a short overview of the formulas
used in the calculation method is given. Lastly photon generation in OLEDs will be described
and analysed in an au courant manner.

2.1 Polaron and exciton

Before discussing the loss processes observed in organic light emitting diodes (OLEDs), a short
introduction to the charge carrier transport in organic semiconductors will follow, beginning
with two important terminologies.

In condensed matter a polaron is a quasi-particle used to describe the combination of a
moving lattice distortion and a charge. However, in the field of organic semiconductors a
missing or an additional electron on a chromophore is often referred to as negative polaron or
positive polaron. [8] Where the term chromophore refers to the part of a molecule where optical
transitions are possible. The distortion (in case of organic semiconductors) is of intra-molecular
nature.

The term exciton was coined to describe electron-hole pairs which are strongly bound to the
molecules. For typical organic molecular materials, the permittivity is low so that Coulomb
and exchange interaction have a significant influence. As a result, excitation leads to so-called
Frenkel excitons, or in other words, strongly bound electron-hole pairs. [9] In this work only one
process that leads to excitons are considered: optical excitation. Optical excitation might occur
when light is absorbed by the molecule, while electrical creation of a exciton might occur when
a carrier hops to a preoccupied molecule with a carrier of opposite charge. This however will
not occur in the single carrier (hole-only) devices studied in this work. Following up will be an
explanation of the charge transport inside disordered organic materials.

2.2 Charge transport

The structure of organic semiconductors used nowadays is generally disordered due to irregular
deposition of molecules and structural distortion in polymer chains. [10] The disorder causes
charges to be localized on single molecules or parts of the molecule, these are then identified as
sites whose energy is Gaussian distributed. For organic semiconductors the standard deviation
(σ) is typically 80 - 150 meV [11]. Charges are able to move from site i to j by hopping. The
hopping rate (ri,j) in the Miller-Abrahams formalism is given as, [12]

ri,j = ν0 exp
(
−2γ|Rij |

)exp
(
−Ej−Ei

kBT

)
, if Ej > Ei

1, else.
(2.1)

Here ν0 is a hopping attempt rate, γ the inverse localization radius, Rij the distance between
sites, Ei and Ej are the energy of the respective sites, kB the Boltzmann constant and T the
temperature.

The charges in the symmetric device depicted in Figure 2.1 will be injected from the anode
into the HOMO. Due to the high energy gap between the LUMO and the cathode, no electron
charge carriers will be injected. Therefore, these symmetric devices are also called hole-only
devices. These holes or rather hole-polarons are then transported through the active layer by
either diffusion or drift, which results in a current to flow. Diffusion transport is a result of
gradients in the charge carrier density or carrier density in short (np(x)) and drift transport is
as a result of applied electric field (F (x)).
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Figure 2.1: Schematic energy level diagram of a ideal symmetric device, i.e. no energy barrier between
active layer and electrodes. With the electrodes in gray and the active layer in blue. The energy level for
the guest molecules are given in green.

In phosphorescent OLEDs, organometallic dye molecules are introduced into the host, the
material of the active layer. These typically have a different HOMO than their host. When a
current is passed through a device, e.g. an OLED, charge carriers will become trapped at the
dye molecules and eventually recombine with their opposite charge carriers. However, in the
device in Figure 2.1 and studied in this work, no electrons are injected and the charges stay for
very long times on the guest molecules. The long trapping times lead to a reduced mobility in
doped materials. Despite the reduced mobility, organometallic dye molecules are used in order
to achieve a 100% internal quantum efficiency. [13]

2.3 Quenching mechanism

The excitons can be in two states called: singlet and triplet excitons. Singlet excitons have a
spin quantum number of 0 and triplet excitons have a spin quantum number of 1. Quenching
of an exciton mainly occurs for triplet state excitons due, but not limited, to short singlet state
exciton-lifetime and rapid intersystem crossing in typical phosphorescent OLED devices. When
excitons interact with polarons the excitons are quenched, this means the energy is not available
any more for a radiative decay. The interaction between exciton and polaron is governed by two
possible mechanisms. Both mechanisms follow a non-radiative energy transfer and are different
in their quantum chemical coupling interaction. This energy transfer can be given oversimplified
as,

D∗ + A
coupling interaction−−−−−−−−−−−−→ D + A∗, (2.2)

with D the donor molecule, A the acceptor molecule and ∗ indicating an excited state. [8]

One of the possible mechanisms is Förster-mediated energy transfer. In Förster mediated
transfer, the excitation energy will be transferred to an acceptor molecule via dipole-dipole cou-
pling. This interaction is often considered a long range interaction. [14] In order to quantitatively
describe this process, it is useful to know the rate. The Förster rate is defined as,

rF = τ−1
f

(
RF
R

)6

, (2.3)
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with τf lifetime of the donor in the absence of an acceptor, RF the Förster radius and R the
distance between donor-acceptor. [15]

The second mechanism is a Dexter-mediated energy transfer. Here the energy transfer hap-
pens through an exchange-type of coupling. In order to achieve a non-zero exchange, wave-
function overlap is necessary. [15] For Dexter transfer the rate is given by,

rD = h ·K2 · J · exp

(
−2R

λex

)
, (2.4)

with h Planck’s constant, K a constant in terms of energy, λex the wavefuntion decay length
for excitons and J the spectral overlap between donor and acceptor.

Comparing Equation (2.3) and (2.4), it can be noted that a Förster-mediated energy transfer
is generally seen as a long-range energy transfer process and a Dexter-mediated energy transfer
is generally seen as a short-range energy transfer process. Furthermore, it should be noted that
due to the organometallic phosphorescent dye molecules. Consequently, the devices studied in
this work, show a strong spin-orbit coupling. This results in mixing of singlet and triplet states,
breaking spin-selection rules. [14]

2.4 Triplet-polaron quenching and triplet-triplet annihilation

The aforementioned mechanisms in Section 2.3, lead to a loss of excitons. This will be collec-
tively called triplet-polaron quenching (TPQ) if this donor is an exciton with triplet character
and the acceptor of the polaronic species. It is called triplet-triplet annihilation (TTA) if both
donor and acceptor are excitons with triplet character.

2.5 Photon generation in phosphorescent organic devices

Consider a system of (only) triplet excitons, characterized by a time and position dependent
concentration. [16] The time evolution of the triplet density is generally given by the rate equa-
tion [9;14;16],

∂nT (x, t)

∂t
= G(x, t)− Γ · nT (x, t)− kTTA · n2

T − kTPQ · nT · nP , (2.5)

with x the position, t the time, G a triplet generation term, nT (x, t) the triplet density, Γ =
Γr + Γnr the overall exciton decay rate in absence of any losses, also known as 1

Γ = τ the
phosphorescent recombination lifetime of a triplet state, with Γr, Γnr the radiative and non
radiative decay rate respectively, the loss processes are then given by TPQ and TTA with kTTA

the TTA rate coefficient, kTPQ the TPQ rate coefficient and np the polaron density. [17]

2.6 Electrical calculation model

The same calculation method for the Gaussian disorder model (GDM) as described in the
paper of Van Mensfoort and Coehoorn [11] is used. Their method was used in order to simulate
hole-charge transport in single-layer devices.

In the GDM model it is assumed, that transport in organic semiconductor devices follow
a Gaussian distribution of energy states. In this model the energy level at neighboring sites
are assumed to be uncorrelated. The corresponding Gaussian density of states (DOS) can be
formulated as,

N(E) =
Nt√
2πσ2

exp

(
−E2

2σ2

)
, (2.6)

with Nt the site density, σ the width of the Gaussian DOS (standard deviation) and E the
energy of a certain level.
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In the extended Gaussian disorder model the carrier density as function of the position (n(x)),
enhances the diffusion and mobility. Since there is a carrier concentration dependence, careful
analysis is needed in order to solve the drift-diffusion equation, given as,

J = eµ(x)n(x)F (x)− eD(x)
dn(x)

dx
, (2.7)

with J the current density, µ(x) the enhanced mobility as function of x, F (x) the electric field
and D(x) the diffusion coefficient as function of x, which follows from the generalized Einstein
equation for a Gaussian DOS, see Appendix A in the work of Van Mensfoort and Coehoorn [11].

The carrier density and field are related via the Poisson equation,

ε
dF (x)

dx
= e · n(x), (2.8)

with ε the permittivity and e the electron charge.
Similar to Pasveer et al. [18], Van Mensfoort and Coehoorn [11] factorized the enhanced mobility

function such that,
µ(T, n, F ) = µ∗0 exp (−Cσ̂2) · g1(c, T ) · g2(F, T ), (2.9)

with g1(c, T ) the dimensionless carrier density dependent mobility enhancement factor, c = n
Nt

the carrier concentration, µ∗0 the mobility in the limit of zero electric field and zero carrier
density and infinite temperature, C a parameter and σ̂ the dimensionless disorder parameter
given by,

σ̂ =
σ

kBT
. (2.10)

The dimensionless carrier density dependent mobility enhancement factor is given by,

g1(c, T ) = exp

[
1

2
(σ̂2 − σ̂) (2c)δ

]
for c ≤ 0.1, (2.11a)

g1(c, T ) = g1(T, 0.1) for c > 0.1, (2.11b)

and the dimensionless field dependent mobility enhancement factor is given by,

g2(F, T ) = exp

A(σ̂3/2 − 2.2)

√1 +B

(
Fea

σ

)2

− 1


 for F ≤ 2σ

ea
, (2.12a)

g2(F, T ) = g2

(
2σ

ea
, T

)
for F >

2σ

ea
, (2.12b)

with a = N
−1/3
t the average inter-site distance, c the carrier concentration and δ is given by,

δ = 2 · ln (σ̂2 − σ̂)− ln (ln (4))

σ̂2
(2.13)

The A, B and C parameters can be retrieved from ab initio calculations, these can include
the morphology, the molecular on-site energies, reorganization energies and charge transfer
integrals. [19]
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2.7 Optical Analysis

Figure 2.2: Schematic overview of a typical photoluminescence experiment. A pulsed laser is shot at the
sample. The laser light travels through ambient air into a neutral density filter (ND). Afterwards, the
beam width is limited by an aperture in order to fit within the active device area. The reflected laser light
is reflected off the sample and the emitted phosphorescent light is captured by an detector. Furthermore,
the sample bias voltage is varied.

In an TPQ experiment a short laser pulse travels through a neutral density filter (ND) which
allows the laser intensity to be varied using different ND filters. Then the laser pulse travels
through a aperture such that the laser spot stays within the active region of the device. The
reflected laser light escapes, while the phosphorescent light is captured by a detector. This
process -light emission after photon absorption- is called photoluminescence (PL). Therefore,
this setup will be called a PL setup and is depicted in Figure 2.2.

For a photodiode detector at reverse bias, the measured photo current (signal) is linear with
the irradiance and also linear with the intensity when the detector is stationary. It is expected
that the photoluminescence (PL) will decrease with increasing current density. [20] It is also
expected that the leading loss process in phosphorescent devices is TPQ. [7] This implies that
TPQ is significantly larger than TTA, because TTA is negligible at the low exciton concentration
of the studied devices. Accordingly, the time evolution of the triplet density in the studied
devices can be approximated as,

∂nT (x, t)

∂t
= G(x, t)− Γ · nT (x, t)− kTPQ · nT · nP , (2.14)

Furthermore, it is measured that the PL intensity at a certain J decreases exponentially over
time, hence the solution of Equation (2.14) is,

nT (x, J, t) = n0(x) exp

(
−t
τ ′

)
, (2.15a)
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1

τ ′
≡ 1

τ
+ kTPQ · np(x, J), (2.15b)

with n0(x) the triplet density profile at t = 0 as function of the position, which is called
incoupling from now on. The triplet density profile at t = 0 profile is generated as consequence
of a short laser pulse. That means the illumination time is much smaller than the triplet lifetime
(τ = 1.37 µs), but also assumes the absorption time to be much smaller than the triplet lifetime.

It should be noted that the triplet lifetime in real devices is modified by the well known
Purcell effect [21], which has not been taken into account here.

The emission intensity (IPL) is proportional to nT . [14] If the dye molecules are homogeneous
doped into the active layer with thickness L, the resulting emission is from the whole active
layer. Therefore, the relation between intensity measurements combined with Equation (2.14)
can be given as,

IPL(t, J) ∝
∫ L

0
ηout(x)n0(x)

exp(−tτ ′ )

τ
dx, (2.16)

with ηout(x) the outcoupling efficiency as function of the position, i.e. the efficiency of conversion
of internally generated radiation into far-field measurable optical power.

The PL efficiency is found by the time integral of the intensity from 0 to ∞ and can be
normalized by a reference measurement at J = 0, which results in,

ηPL(J)

ηPL(J = 0)
=

∫ L
0 ηout(x)n0(x) τ

′

τ dx∫ L
0 ηout(x)n0(x) dx

. (2.17)

The left-hand side is a quantity that can be measured by a PL experiment by integrating the
transient measurement. The outcoupling and incoupling will follow from optical simulations
in Section 4.5. Furthermore, the effective lifetime of a triplet state is modified due to TPQ.
However, in case of the reference measurement (J = 0), TPQ is expected to be 0. All unknowns
are determined by either measurement or optical simulations and only leaves kTPQ to be de-
termined. It should be noted that the τ ′ is a function of the position, hence Equation 2.17 can
not be simplified any further. As a consequence, the TPQ rate coefficient needs be solved with
a numerical solver, e.g. Mathematica.
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3 Experimental setup

The aim of this work is to extend the calculational model with an optical model. First, the
materials and machine used will be enumerated, the calibration method will be explained.
Furthermore, the processed OLED device will be described. Next, the electrical characterization
method. Lastly, an analysis of a PL setup and the needed optical simulation will be given.

3.1 Equipment device fabrication

An Ångström vacuum deposition system, with serial number: 01818-2 was used to deposit
the following materials: tris(4-carbazoyl-9-ylphenyl)amine (TCTA) produced by Luminescence
Technology, product number: LT-E 207; molybdenum trioxide (MoOx); aluminium; Ir(ppy)2acac.
The spinner was made by Headway Research, has the serial number: PW3202199-D and was
used to spincoat Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) pro-
duced by Heraeus, product number: Clevios P VP.AI 4083. Next, a Bruker DektakXT, with
serial number: 10089828 was used to determine the thickness of a layer.

3.2 Equipment device characterization

Firstly, for the steady state current-voltage measurements a Keithley sourcemeter 2400, with
serial number ELI 5901-1130 was used. Secondly, for the impedance measurements a Solartron
SI 1260 impedance/gain-phase analyzer was used. Lastly an Omega Engineering monogram,
with serial number: ELI 6101-0067 was used to determine the temperature of the thermocouple.

3.3 Calibration

To set up the organic deposition by evaporation machine the correct tooling number is needed
for accurate deposition. The aforementioned machine will be called evaporator from now on.
To find the tooling number, clean blank glass samples were used. The cleaning procedure can
be found in Table 2 in Appendix A.1. On the samples a thin piece of kapton tape was applied.
Afterwards a layer with an certain material was evaporated on the samples, by removing the
kapton tape and analysing these samples with the Dektak, the measured thickness can be
determined. With the measured thickness the new tooling number can be determined according
to,

[tooling number]new =
[measured thickness]

[theoretical thickness]
· [tooling number]old. (3.1)

TCTA
The following settings were used for the tooling of TCTA, a deposition layer of 100 nm, with
an old tooling number of 36.5. The average thickness of the glass samples with TCTA is
71.5± 1.2nm. With help of Equation (3.1), a tooling number of 26.1± 0.4 is found.

MoOx
The following settings were used for the tooling of MoOx, a deposition layer of 50 nm, with
an old tooling number of 61. An average thickness of 38 ± 2 nm is found. Again with help of
Equation (3.1), a tooling number of 53± 3 is found.

Aluminum
The following settings were used for the tooling of aluminum, a deposition layer of 50 nm, with
an old tooling number of 32. An average thickness of 29 ± 1 nm is found. Again with help of
Equation (3.1), a tooling number of 38± 1 is found.
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3.4 Molecular orbitals of materials

In order to gain insight whether the layers have good or bad injection into the following layers,
the energy levels of molecular orbitals will be given below. The injection into the following
layers will be considered good if the difference between energy levels of the materials is up to a
few tenths of eV’s.

The energy levels of the molecular orbitals of the materials TCTA and Ir(ppy)2acac can be
found in Table 1. It should be noted that from previous ultraviolet photoelectron spectroscopy
(UPS) an HOMO of 5.1 eV has been found for Ir(ppy)2acac, contrary to the value of 5.6 eV
found in literature. [22]

In Figure 3.1 the structural formula of PEDOT:PSS as well as TCTA can be found. These
organic materials indeed show π-conjugated molecules.

The HOMOs of the matrix stack depicted in Figure 3.3 is given in Figure 3.2. It should be
noted that the energy gap between TCTA and MoOx is relatively small and a good injection of
holes is expected.

Table 1: Energy levels of the highest occupied molecular orbital (HOMO) and lowest occupied molecular
orbital (LUMO) of TCTA and Ir(ppy)2acac. Data retrieved from Ref. [22;23].

Material TCTA Ir(ppy)2acac

HOMO (eV) 5.6 5.1/5.6

LUMO (eV) 2.4 3

Figure 3.1: Structural molecule formulas for (a) Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
(PEDOT:PSS) and (b) tris(4-carbazoyl-9-ylphenyl)amine (TCTA).

Figure 3.2: Schematic energy level diagram of the stack given in Figure 3.3. The Fermi energies of ITO,
PEDOT:PSS, MoOx and aluminium (Al) are given by a dark blue bar. The HOMO of TCTA is also
given by a dark blue bar and the HOMO of the dopant Ir(ppy)2acac is given by light green dots. The ITO
layer is used as the anode and Al as the cathode. Adapted from Ref. [24]
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3.5 Device fabrication

The clean ITO samples were transferred into an inert atmosphere (nitrogen). Inside the glove-
box, PEDOT:PSS of 50 nm thickness was spin coated, with the spinner set at 3000 RPM and
a rotation time of 60 seconds. Afterwards they were annealed in the same atmosphere for 20
minutes at 135 ◦ C. After annealing the samples were transferred into the Ångström vacuum
deposition system also in nitrogen atmosphere. With a square mask two layers of MoOx (10
nm) with one layer of TCTA in between was deposited. Afterwards an patterned mask was
used to deposit a patterned layer of 100 nm aluminum. The devices either had 150 nm or 135
nm TCTA. While some of the 150 nm devices had a 4 wt. % doping of Ir(ppy)2acac, these
will be referred as devices with dye molecules and the undoped devices as devices without dye
molecules. The deposition rate of the materials was, in the same order, 0 5Å/s, 2Å/s and 2Å/s.
The described order of layers follows the order given graphically in Figure 3.3.

Figure 3.3: (a) Cross section of the matrix stack, (b) schematic energy level diagram of the matrix stack.
In order of deposition which is from (a) bottom to top, (b) left to right, ITO, PEDOT:PSS, MoOx,
TCTA, MoOx and aluminum, with thicknesses of 150 nm, 50 nm, 10 nm, various, 10 nm and 100 nm
respectively.

3.6 Device pattern and numbering

Every substrate has four anode’s and cathode’s, resulting in four cross-sections, with two differ-
ent area’s, due to different electrode area. These will be numbered according to ”area-index”,
with area the area of the device in mm and index the first or second device of a certain area.
Starting from the upper-left corner the numbering clockwise, will be 9-1, 16-1, 9-2 and 16-2. A
graphical representation can be found in Figure 3.4.
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Figure 3.4: In blue ITO, in yellow MoOx and in gray aluminum. The order of layers is from bottom to
top, blue, yellow, gray. The blue lines on the MoOX layer shows the ITO underneath TCTA. Whereas
the colors are chosen according to their mask as described in Section 3.6. The order of device numbering
started at the left corner and is clockwise: 9-1, 16-1, 9-2 and 16-2. Adapted from Ref. [25]

3.7 Phasor analysis

In order to measure the capacitance and resistance of devices, one can use phasor calculus as
a tool. After exciting devices with a sinusoidal signal and measuring the current and voltage
characteristics the impedance can be found.

To represent the complex ratio of voltage to current, the impedance (~Z) is used and is given
as,

~Z =
~V

~I
, (3.2)

with ~V the voltage in volt, ~I the current in ampere. In Cartesian form, the impedance can be
written as a vector in the complex plane as,

~Z = R+ iX, (3.3)

with R the resistance, i =
√
−1 and X the reactance. An equally valid formulation of Equation

(3.3) as a complex valued function is,

~Z = Z · eiθ. (3.4)

The formulation of Equation (3.4) follows from Euler’s formula where any complex quantity
can be expressed as a complex exponential, with θ the angle of ~Z.

Ideal capacitive and inductive elements induce a phase shift with respect to a sinusoidal
varying voltage these elements decrease or increase the reactance. A capacitor causes the
current to phase shift +90◦ relative to the voltage, while an inductor causes to phase shift −90◦

relative to the voltage. The reactance of a capacitor can be defined as,

XC = − 1

ωC
, (3.5)

with ω the angular frequency and C the capacitance. For completeness the reactance of an
inductor is given,

XL = ωL, (3.6)

with ω as defined before and L is the inductance.

13



3.8 Electrical characterization

In order to verify to calculation model, current density-voltage (J-V ) measurements are done
at various temperatures. The measurements will be then compared to simulation results of
the calculation model, the parameters of the calculation model concerning the enhancement
functions for TCTA were retrieved from the work of Massé et al. [19], these are as follows,
B = 1.9, C = 0.4, A · B = 0.81, σ = 0.136 eV and µ∗0 = 7.6× 10−6 m2/Vs. The other
parameters, which are device quantities are chosen to be, T = 300 K and εr = 3 for TCTA.
Furthermore, the L of the devices with 135 nm TCTA and 150 nm TCTA doped with 4 wt. %
Ir(ppy)2acac is confirmed by impedance measurement.

3.8.1 Ambient temperature measurement

For J-V measurements at ambient temperature a box made out of black plastic was used. This
box was hermetically sealed. Furthermore, the electrodes at the inside were connected with
BNC connectors on the outside. The box was hooked up via a coax cable with a sourcemeter
and the data was saved with a custom Labview program.

3.8.2 Temperature dependent measurement

For J-V measurements at below ambient temperatures a steel box was used. The sample is
cooled by a cooling plate with heat pipes connected to a heat sink. The heat sink is sealed from
the sample and is cooled by a nitrogen flow. The nitrogen flow came from a dewar filled with
liquid nitrogen and was manually regulated with a valve. Furthermore, the cooling plate was
connected to a thermocouple with its output connected to a monogram. It is also connected to
a sourcemeter and the data was saved with another custom Labview program.

3.8.3 Impedance characterization

The same box as in Section 4.2 was used, however now it was connected with a coax cable
to the Solartron. At high frequencies the impedance of TCTA becomes negligible, thus the
device starts behaving as an capacitor constructed of two parallel plates. From the phase
and impedance measured by the Solartron the capacitance C ′ can be determined, whereas the
capacitance (C ′) of 2 parallel plates is given by,

C ′ =
ε0εrA

L
, (3.7)

with ε0 the vacuum permittivity, εr the relative permittivity, A the area and L the thickness of
the active layer. Equation (3.7) can be rewritten to,

L =
ε0εrA

C ′
. (3.8)

Which is an explicit equation for the thickness of the active layer.
Concerning the measurement settings, the devices will be measured at various bias voltages,

ranging from -2 V to 2 V in steps of 1 V, the perturbation voltage is set at 10 mV. The frequency
will as well be varied in order to verify whether the capacitance will converge to one value.

3.9 Optical simulation

In order to do thin film optical simulations, Setfos 3.2 of Fluxim was used. The matrix stack in
Figure 3.3 was created in Setfos, with another layer of 10 nm between glass and ITO of SiO2.
In the software settings the option quenching was turned off and the complex refractive indices
of aluminum and glass were retrieved from the Setfos program. Whereas the complex refractive
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index of MoOx was retrieved from previous experiments. Furthermore, the refractive index of
TCTA was calculated with Cauchy’s equation, given as,

n(λ) = A∗ +
B∗

λ2
+
C∗

λ4
, (3.9)

with λ the wavelength in meters, n the real part of the complex refractive index, A∗ = 1.726,
B∗ = 0.005 and C∗ = 0.003 for TCTA. Also the complex part of the refractive index (k)
was found by first calculating the attenuation coefficient (α) from absorbance measurements.
Assuming linear attenuation in the active layer, α is given as,

α =
10A

†

ln (10)
, (3.10)

with A† the absorbance. Then k can be found by,

k =
λ0 · α

4π
(3.11)

Do note usually refractive indices of thin film materials are usually found by a more accurate
technique called, spectroscopic ellipsometry. [26] They can as well be determined from transmit-
tance and reflectance measurement, preferably in a integrating sphere. [27]

Kim et al. [28] reported that Ir(ppy)2acac had a preferential horizontal dipole moment. Since
Setfos allows only a horizontal or a vertical dipole transition moment, it was assumed the
emission was through (only) horizontal dipoles in Setfos. Furthermore, this simplification also
simplified the interpretation of the complex refractive index of PEDOT:PSS. van Mensfoort
et al. [29] reported different complex refractive indices for s or p polarized light. The refractive
index was retrieved from Figure 5 of their work. Lastly, the experimental setup was fixed at an
angle of 0 degrees with respect to the normal of the sample. As a consequence of this, vertical
dipoles do not contribute to the emission anyway.
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4 Results and discussion

The goal of this study is to confirm the calculation model and to be able to use the calculated
position dependent polaron density as input of the optical model. This chapter focuses on the
results of the experiment described in Section 3. Firstly, the thicknesses of the devices will be
measured by impedance measurements. Secondly, results of transport measurement at various
temperatures will be given. Thirdly, the results of the optical simulations will be explained.
Lastly, the results of calculation model will be combined with the results of the optical model
to characterize TPQ.

4.1 Device thickness

Figure 4.1: The capacitance as function of the frequency at various bias voltages. The perturbation voltage
was chosen to have an amplitude of 10 mV. The devices used in (a) and (b) have 135 nm TCTA ideally
and 9 mm and 16 mm active area, respectively. The devices used in (c) and (d) have 150 nm TCTA
ideally and 9 mm and 16 mm active area, respectively. All devices, at various bias voltages converge to
a certain capacitance given in grey.

Before verifying the calculational model with J-V measurements, the thickness needs to be
confirmed by electrical characterization.

In Figure 4.1 it can be seen that the devices indeed converge to a certain capacitance at high
frequencies for various bias voltages. The thicknesses of the active layers follows from Equation
3.8. For every device thickness one 9 and 16 mm area device were measured, furthermore εr
is chosen to be 3. For the devices without dye molecules and ideally 135 nm thickness, a L of
(134 ±) 1 nm was found. For the devices with dye molecules and ideally a 150 nm thickness, a
L of (150 ± 1) nm was found.
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Figure 4.2: The current density as function of the voltage for various devices with 135 nm TCTA. In
black devices with 9 mm active area and in red the devices with 16 mm active area.

Figure 4.3: The current density as function of the voltage for various devices with 150 nm TCTA. In
black devices with 9 mm active area and in red the devices with 16 mm active area.
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Figure 4.4: The current density as function of the voltage for various devices with 150 nm TCTA doped
with 4 wt. % Ir(ppy)2acac. In black devices with 9 mm active area and in red the devices with 16 mm
active area.

4.2 Ambient J-V measurements

Previous experiments have shown a device yield of around 40-50%, while the J-V measurements
between devices were inconsistent. It was suggested PEDOT:PSS could even out the surface
roughness the ITO and MoOx interface, this lead to the new design studied in this work. In
this new design, depicted in Figure 3.3, a PEDOT:PSS layer was brought between the ITO and
MoOx. With this new device design the overlap of J-V characteristics between different devices
on the same substrate should be improved.

Figures 4.2, 4.3 and 4.4 shows the J-V measurements of all four devices on three different
substrates, these substrates have an active layer thickness of 135 nm without any dye molecules,
150 nm without dye molecules, 150 nm with dye molecules, respectively. All of the devices on a
certain substrate are identical except for their dimensions. However, the current density is not
a function of the area of the device. Hence, the devices with different area should show similar
J-V characteristics.

In Figure 4.2 and Figure 4.3 the measurements between different devices show a lot of overlap.
While the the measurement points are not exactly on top of each other, they have fairly similar
J-V characteristics. The small disagreement between different devices can be due to, but not
limited to, device heating, misaligned pattern mask or dust. Increase in the temperature can
increase the current density. While a skewed pattern mask can decrease the area by 10%.

In Figure 4.4 all of the measurement points overlap each other very well, as expected of
identical devices with different areas.

Next, In Figure 4.5 the experimental data is compared to the simulated J-V curve, found
according to the method proposed in Section 2.6. The simulated J-V curve and the experimental
data show good agreement at high voltages (V > 5 V), with progressively worse agreement at
low voltages (V < 5 V). Since the parameters were chosen such that the resulting curves had
good agreement with the 3D model (master equation) in the work of Massé et al. [19], the used
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Figure 4.5: The current density as function of the voltage for a 135 nm TCTA device in black compared
with simulation in green. The parameters used were as described in Section 3.8, the device parameters
for the simulation was L = 135.

calculation method (1D model) does not take charge repulsion into account. This could imply
that a higher mobility is expected than it will be found experimentally, resulting in a higher
current density at low voltages, which is the case here.

Furthermore, in Figure 4.6 the devices with and without PEDOT:PSS are compared. The
devices without PEDOT:PSS have a layer thickness of 160 nm, while the devices with PE-
DOT:PSS have a layer thickness of 150 nm. The devices with and without PEDOT:PSS have
a similar change of slope of the J-V curve. It can be seen from Figure 4.6 that a higher cur-
rent density is found for devices with PEDOT:PSS than without, this is in accordance with
J ∝ L−3. [11] However, the difference between thicknesses is minimal and should not increase
the current density for a thinner device by a factor 2. Consequently, this implies that using
PEDOT:PSS indeed decreases possible ITO-MoOx interface defects by smoothing any irreg-
ularities which inhibit charge transport. This slight increase in current density for a thinner
device can be seen as well in Figure 4.6 as the curved lines, with the same parameters as before
with 150 and 160 nm layer thicknesses.

For the devices with PEDOT:PSS, with and without dye molecules are compared in Figure
4.7. For the simulations the same parameters are used as before, but with an active layer
thickness of 150 nm. Once again for the devices without dye molecules good agreement is found
with the simulations at high voltages. What this also implies, given that the calculation method
described in Section 2.6 is correct, reliable polaron densities at high voltages can be extracted
from this method. Meaning that kTPQ can reliably be found with the analysis method described
in Section 2.7 when the polaron density is used from the calculation method.

Lastly, in the devices with dye molecules, trap sites are introduced as a result of these dye
molecules. Because of trap sites, the amount of polarons are quenched, however a good overlap
of the HOMO TCTA and Ir(ppy)2acac will result in a low degree of trapping. A low degree of
trapping implies that the the permittivity basically stays the same and the current density does
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Figure 4.6: The current density as function of the voltage for a 150 and 160 nm TCTA device in black and
red respectively, measurement are symbols and simulations are drawn with a solid line. The parameters
used were as described in Section 3.8, the device parameters for the simulation was L = 150 and L = 160,
respectively.

Figure 4.7: The current density as function of the voltage for a 150 nm TCTA device with (doped) and
a device without (undoped) 4 wt. % ir(ppy)2acac, measurement are black (doped) and red (undoped)
symbols and the simulation is drawn with a green solid line. The parameters used were as described in
Section 3.8, the device parameters for the simulation was L = 150.
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not decrease a lot due to these trap sites. Previous UPS experiments have shown HOMO of
5.1 eV for Ir(ppy)2acac, which leads to bad overlap of the HOMO of TCTA and Ir(ppy)2acac.
Hence a high degree of trapping was expected for Ir(ppy)2acac in TCTA. However, the current
density of devices with dye molecule at 10 V in Figure 4.7 is only decreased by a factor 2 in
comparison with the devices without dye molecules. Lastly, it should be noted that the degree
of trapping should decrease at higher voltages, due to shifting of the energy level landscape.
This effect is not observed and appears to be much more complicated in the case of organic
semiconductors.

4.3 Temperature dependent steady state measurements

Figure 4.8: The current density as function of the voltage for a 150 nm TCTA device with 4 wt. %
ir(ppy)2acac at various temperatures. The 9 mm device is given in black and the 16 mm device is
given in red, with the symbol square 300 K, circle 270 K, triangle 250 K, diamond 230 K, star 210 K and
pentagon 190 K. The parameters used were as described in Section 3.8, the device parameters for the
simulation was L = 150.

To verify the correct choice of σ, the width of the Gaussian DOS, temperature dependent
measurements have been done. When scaling the temperature e.g. down, similar agreement
with simulations and measurements need to be found as in Section 4.2. But, first the devices
with different area are compared in Figure 4.8. After decreasing the temperature in steps,
the J-V measurement points overlap each other less after every step, this is most notable in
the low voltage region. It shows similar characteristics with a ferroelectric material, which
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can show a spontaneous non-zero polarization when the applied electric fields are zero. After
measuring at a certain temperature, the devices were not reverse biased before continuing to
the next temperature. This implies, if indeed the material acts like a ferroelectric material, the
measurement at low fields all show spontaneous polarization. This hysteresis effect becomes
more noticeable at low temperatures, because the molecules are less disordered and the dipole
moment of the molecules will become more ordered.

Figure 4.9: The current density as function of the voltage for a 150 nm TCTA device with 4 wt. %
Ir(ppy)2acac at various temperatures. The measurement is given in symbols, the simulation is given as
a solid line and the temperature in various colours. This was colour coded according to, black 300 K, red
270 K, turquoise 250 K, orange 230 K, green 210 K and grey 190 K.The parameters used were as described
in Section 3.8, the device parameters for the simulation was L = 150. It should be noted these parameters
does not take Ir(ppy)2acac into account.

In Figure 4.9 the measurements show the same agreement with the simulation as in Figure
4.7, however this is less clear for the measurements at a temperature of 250 K and 230 K. This
might be due to the hysteresis effect of forward and backward scans solely under positive bias.

4.4 Carrier density

In Figure 4.10, the effect of higher current densities on the polaron (carrier) density at T = 300
across the active layer is shown. Comparison of the curves in Figure 4.10, in the order of
increasing J , shows that the point of minimal carrier density moves away from the middle of
the active layer [11]. This effect is as a result of higher electric fields at higher current densities.
A explanation could be: a higher electric field, increases the drift contribution in Equation
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(2.7), it pushes the charge carriers, in case for holes, from anode to cathode. Hence, shifting
the minimum to the right.

The position of the minimum polaron density shows where possibly the point of minimal TPQ
could be. Since TPQ is linear with the polaron density as well as the triplet density, optical
simulations were ran in order to determine the triplet density profile at t = 0 in the active
layer. Furthermore, to determine the photoluminescence efficiency, not only the TPQ needs to
be determined, but the outcoupling as well.

Figure 4.10: The polaron density in TCTA at various current densities, for L = 160. The device which
contains TCTA is symmetric. In black the polaron density at 80 A/m2, red at 160 A/m2, turquoise at
300 A/m2 and orange at 640 A/m2.

4.5 Optical simulation

Firstly the results of the optical outcoupling of the matrix stack is given and discussed. Next
the incoupling of the matrix stack is used to calculate the triplet density profile at t = 0.

Outcoupling
In order to simulate the outcoupling of light out of the active layer Setfos was configured as
explained in Section 4.5. The software was then used to determine the radiance as function of
the measurement angle and emitter location, for a given emitter spectrum shown in Appendix
C. This can also be done as a post-processing step, by selecting a white emitter spectra in
Setfos and taking the convolution of the Setfos spectrum and emitter spectrum. The resulting
spectrally integrated Figure is shown in Figure 4.11, in this Figure the emitter location with
high radiance slightly moves to the left with increasing angle. This can be due to a longer
optical path length inside the media at increasing angles, as well as consequence of refraction
between layers.
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Figure 4.11: Heat map of radiance as function of normalized dipole position and angle w.r.t. normal
of substrate. Colour of the heat map changes gradually from purple to red, with purple indicating no
radiance and red indicating maximal radiance. Data was retrieved from Setfos, with the settings of Setfos
as described in Section 3.9 and an active layer thickness of 160 nm.

Figure 4.12: The outcoupling normalized at the maximum as function of the wavelength and normalized
position (x/L), with L = 160 nm. Data was retrieved from Setfos, with the settings of Setfos as described
in Section 3.9 and an active layer thickness of 160 nm.
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Next, the angle is fixed at 0 degrees analogous to the experimental setup of a typical PL
measurement setup. At an angle of 0 degrees the radiance can then be simulated as function
of the wavelength and position, yielding Figure 4.12. It can be seen that the position where
maximal outcoupling occurs moves as function of the wavelength, this is due to the wavelength
dependent attenuation of the materials in the stack.

Figure 4.13: The outcoupling normalized at the maximum as function of the normalized position (x/L).
Data was retrieved from Setfos, with the settings of Setfos as described in Section 3.9 for devices with
160 nm active layer. The data was then integrated over the wavelength.

The outcoupling efficiency for an ideal detector, can be found by spectrally integrating Fig-
ure 4.12, resulting Figure 4.13. However, if the used detector isn’t equally sensitive for all
wavelengths, the outcoupling can be defined as,

ηout(x) =

∫ ∞
0

S(λ) · ηout(x, λ) dλ, (4.1)

with S(λ) the sensitivity of the detector and ηout(x, λ) the outcoupling factor as function of λ
and x.

The first anti node is expected to be a quarter of the internal emission wavelength (75 nm). [30]

However, the aluminium cathode does not act a perfect electric conductor and light or electro-
magnetic waves will penetrate this material. This results in the first antinode to be placed a bit
closer to the aluminum cathode, less than 75 nm. Indeed Figure 4.13 shows that the maximal
outcoupling is less than 75 nm away from the cathode. It is determined from Figure 4.13 that
the first antinode is 57 nm away from the aluminium cathode.

Incoupling
With the same settings as described in Section 4.5, Setfos was configured and used to determine
the position where most of the absorption occurs inside the active layer. Furthermore, Setfos
was configured for a laser, with a laser wavelength of 337 nm. This laser is set to hit the
sample 45 degrees w.r.t. the normal of the sample, so the angle is fixed at 45 degrees. The
resulting incoupling profile can be found in Figure 4.14, there it is shown that the incoupling
has a high triplet density near the interface anode-active layer. While the polaron density is
highest a bit away from the electrode-active layer interface, this leads to a lot of quenching at
the anode-active layer interface according to Equation (2.5). There is a global maximum at x =
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Figure 4.14: The incoupling or triplet density profile at t=0 as function of the normalized position (x/L),
calculated for devices with active layer of 160 nm. The settings used were as described in Section 4.5

133 nm. Whereas the carrier density at x = 133 nm at all J ’s in Figure 4.10 are low, these two
effects combined leads, according to Equation (2.5), to a relatively low quenching at the point
of maximal incoupling. The point of maximal incoupling is also the point where the triplet
density is the highest, this could lead to a high TPQ, however due to the low polaron density
it is relatively low. The high carrier density found near the anode-active layer interface shows
up to few orders of magnitude higher TPQ. It is then expected that most of the quenching
x/L < 0.5, however the outcoupling is low for emitters positioned at x/L < 0.5. Thus, the PL
efficiency is decreased very little even though a lot of quenching occurs at x/L < 0.5.

4.6 Triplet-polaron quenching rate

It was aimed to combine the calculation model with the optical model, with this combined
model real world measurements can be translated into a TPQ rate coefficient using the steps
described in Section 2.7. The resulting TPQ rate coefficient at various current densities can be
found in Figure 4.15, the PL measurement data was retrieved from Ref. [24]. It should be noted
that the devices used did not have PEDOT:PSS and it was shown in this work that devices
without PEDOT:PSS have bad agreement with the simulation at the voltages used in that PL
experiment. Furthermore, the calculated polaron density profile does not take trap sites into
account. This means that the calculation method needs to be adjusted, allowing the presence of
trap sites to be considered. This absence of trap sites in the calculation method will result in an
overestimation of amount of charge carriers. To recapitulate, the devices without PEDOT:PSS
showed a higher current density at all voltages and the polaron density profile overestimates
the amount of charge carriers.

Nevertheless, the polaron density is assumed to be correct in order to complete a first analysis
of the unique approach used in this work. The final results of this unique approach is given
in Figure 4.15 and shows that the TPQ rate coefficient is not constant. This observation is
in contrast to what generally is believed. [14;31;32;33] While, the Purcell effect is not included in
the analysis, which could possibly increase the TPQ rate coefficient, by lowering the radiative
life time of a triplet state. There is no reason for this effect to be a decreasing function of the
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Figure 4.15: The triplet-polaron quenching rate coefficient as function of the current density. PL mea-
surement was done on devices with an active layer of 160 nm TCTA and 4 wt. % Ir(ppy)2acac, with the
setup described in Section 2.7.

current density, negating the seemingly linear increase in the rate coefficient as function of the
current density as shown in Figure 4.15. This linear increase in the TPQ rate coefficient might
indicate that more physical processes are playing a role and the simple rate equation given in
Equation (2.5) describes exciton physics inadequately.
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5 Conclusion

In this study it was key to combine multiple approaches for a complete triplet-polaron quench-
ing model. This study has used the calculation model of Van Mensfoort and Coehoorn [11] and
an optical simulation model. To start off, the device yield has increased with the use of PE-
DOT:PSS. This implies that the interface between ITO and MoOx had defects which would
show as bad device yield or as inconsistent devices. The thicknesses of the devices without
and with dye molecules were determined to be (134 ± 1) nm and (150 ± 1) nm, respectively.
These thicknesses are in accordance what was expected from the deposition settings of these
devices. Furthermore from current density-voltage measurements under ambient conditions
good agreement with the calculational model has been found for voltages over 5 V. The degree
of trapping has been found the be a factor 2-3. This is due to the matching of the highest
occupied molecular orbitals of the semiconductor and dye molecule (dopant), both are 5.6 eV.
From the temperature dependent measurements from 190 K up to 270 K similar agreement has
been found as in the case of ambient temperature (300 K) measurement. There was noticeable
presence of hysteresis in the studied devices.

Next, is the optical simulations. In this approach the amount of light that is absorbed and
escaped is simulated with Setfos. It was found for horizontal dipole moment orientation that
the outcoupling is maximal at a position of of 110 nm, for an active layer of 160 nm. Indeed, as
expected this is about a quarter internal emission wavelength from the cathode. Furthermore,
most of the light escapes at normalized position (x/L) > 0.5, while most of the light is absorbed
at a position of 133 nm. Thus, the highest triplet density at t = 0 is found at a position of
133 nm. This coincides with the region where most light escapes and also the region where the
carrier density is minimal, which increases from the middle to the cathode with increasing bias
voltage. In total this leads to a low TPQ in the region with high optical outcoupling.

It would be interesting to vary the active layer thicknesses such that the point of maximal
triplet density overlaps with minimal carrier density, it is also interesting to mismatch these
two points. The insight needed for this practice can be achieved with help of Setfos simulations
of the incoupling and outcoupling profiles. The results will verify the calculation model, if
indeed by matching and mismatching, a higher and lower PL efficiency is found respectively,
then the simulated polaron density should be comparable to the polaron density found in real
devices. Also, the calculation method can be improved. Currently it does not take trap sites
into account. Hence, a disagreement between the measurement and calculation results was
found. From the improved calculation method, a lower current density is expected at voltages
over 5 V compared with the used calculation method in this work.

Lastly, the combined model has successfully been used to yield results for 160 nm devices
with 4 wt. % Ir(ppy)2acac and no PEDOT:PSS. It was shown that that the kTPQ was not
constant. This result shows either that an erroneous polaron density was calculated or that
TPQ is not described adequately through a rate coefficient as argued at the beginning of this
work. A successful analysis using a unique approach for studying triplet-polaron quenching in
organic phosphorescent devices was achieved.
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Appendices

A Cleaning procedures

A.1 Cleaning blank glass samples

In order to clean glass samples the samples were soaked in different solvents. The cleaning was
accelerated using a sonic bath, the order of solvents can be found in Table 2. Afterwards the
samples were dried with pressurized nitrogen, received 15 minutes ultraviolet-ozone (UV-ozone)
treatment and the last 2 minutes were dedicated to flushing the machine with ambient air.

Table 2: Cleaning procedure for glass samples, with time of the sonic bath in minutes. In order of
ascending steps and repeated for every sample.

Step Solvent Time

1 Soap 10

2 Demineralised water 5

3 Acetone 10

4 Isopropanol 10

A.2 Cleaning ITO glass samples

The cleaning of ITO glass samples was done in a different way than blank glass samples described
in A.1. The ITO samples were treated with the techniques described in Table 3. Afterwards
the samples were dried with pressurized nitrogen, received 30 minute UV-ozone treatment and
the last 2 minutes were dedicated to flushing the machine with ambient air.

Table 3: Cleaning procedure for ITO samples, with method the equipment used and time in minutes. In
order of ascending steps and repeated for every sample.

Step Method Action or Solvent Time

1 Sonic bath Soap 10

2 Gloves Scrubbing 1

3 Sonic bath Soap 15

4 Flushing Deminaralised water 30

5 Sonic bath Acetone 30

B Error analysis

The average of a set of data (x̄) of N entries is given by,

x̄ =

∑N
i x

[i]

N
(App.1)

100% error interval
Error analysis in the 100% reliabilty domain is found by Equation (App.2), taken from [34]. This
is used for all error calculations except when differently noted.

∆x =
∑
i

∣∣∣∣ ∂f∂x[i]

∣∣∣∣∆x[i] (App.2)
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This means for a small discrete data set x of N < 10 entries, the error of the average is given
by,

∆x̄ =
R

2
√
N
. (App.3)

With R the range, given as,
R = max{x} −min{x} (App.4)

68% error interval
Error analysis in the 68% reliabilty domain is found by Equation (App.5), taken from [34].

Sx =

√√√√∑
i

(
∂f

∂x[i]
Sx[i]

)2

(App.5)

For a big data set x of N > 10 entries, the data can be considered normally distributed, thus
the error of the average is given by,

∆x̄ =
σ√
N
. (App.6)

With σ the standard deviation, given as,

σ =

√√√√∑
i

(
x[i] − x̄

)2
N

(App.7)

C Emission spectrum of Ir(ppy)2acac

The emission spectrum used in Setfos is given in Figure I.

Figure I: The emission spectrum of Ir(ppy)2acac on a quartz substrate, normalized such that the maximum
is unity.
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D Mathematica script
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1D drift-diffusion simulation of the current density in single-layer 

single-carrier sandwich-type devices
Bonham-Jarvis method. Type-I systems. Random Gaussian DOS. 

I. Parameter initialization and pre-processing

(* Calculation of the current-voltage curves for a single-

carrier device with drift and diffusion, *)

(* for a single layer with a GAUSSIAN density of

states. Extension of the method given in ref. 1 *)

(* Calculation for a situation in which there is a minimum in the carrier density *)

(* in each of the layers in the device. *)

(* Version of the program with the enhancement

of the diffusion coefficient according to the *)

(* generalized Einstein equation, and with the field dependence of the mobility. *)

(* The method is explained in ref. 5. Please refer to that

paper when publishing results obtained using this notebook. *)

(* [1]. J.S. Bonham and D.H. Jarvis, Austr. J. Chem. 30, 1977, 705-720 *)

(* [2]. R. Coehoorn et al., Phys. Ref B 72, 155206, 2005. *)

(* [3]. F. Pasveer et al., Phys. Rev. Lett. 94, 206601 2005. *)

(* [4]. Y. Roichman and N. Tessler, Appl. Phys. Lett. 80, 1948 2002. *)

(* [5]. S.L.M. van Mensfoort and R. Coehoorn, Phys. Rev. B 78, 085207 2008. *)

SetDirectory["C:\\Users\\Ryuuta\\Documents\\Tu EHV\\OLED\\Simulations"]

tstart = TimeUsed[];

(* Parameters defining the numerecial precision *)

ioprec = 80;

wp = 30;

ag = 25;

pg = 22;

(* Physical constants *)

e = SetPrecision1.6021766 * 10-19, ioprec; (* electron charge, in C *)

kb = SetPrecision1.3806485 * 10-23, ioprec; (* Boltzmann constant, in J/K *)

eps0 = SetPrecision8.85419 * 10-12, ioprec;

(* vacuum dielectric permittivity, in S.I. units *)

(*constants from paper for mobility enhancement*)

(*Nothing*)(*

B=SetPrecision[1.9,ioprec]; (*constant B*)

A=SetPrecision0.57B,ioprec; (* constant A*)

Cconst=SetPrecision[0.41,ioprec]; (*constant C*)

mu0star=SetPrecision[6.1*10^-6,ioprec];

(* Mobility in limit of zero field, zero carrier density and no disorder*)

*)

(*SX^CORR*)



B = SetPrecision[2.7, ioprec]; (*constant B*)

A = SetPrecision0.81  B, ioprec; (* constant A*)

Cconst = SetPrecision[0.40, ioprec]; (*constant C*)

mu0star = SetPrecision[7.6 * 10^-6, ioprec];

(* Mobility in limit of zero field, zero carrier density and no disorder*)

(*Custom*)

sigmainev = 0.136;

punten = 51; (*Amount of simulation points for J-V curve*)

lremoveFaster[lst_List] := Replace[lst, {l_List} ⧴ l, {0, Infinity}];

(*Choose your current range in log*)

machtmin = -2;

machtmax = 4 - machtmin;

(* Experimental conditions *)

T = SetPrecision[300, ioprec]; (* absolute temperature, in K *)

(* Material and device parameters *)

L = SetPrecision135 * 10-9, ioprec; (* layer thickness, in m *)

Nt = SetPrecision0.87 * 1027, ioprec; (* volume density of molecules, in m-3 *)

sigma = SetPrecision[sigmainev * e, ioprec]; (* width of the Gaussian DOS, in J *)

sbykt = SetPrecisionsigma  kb * T, ioprec; (* disorder parameter, dimensionless *)

mu0t = SetPrecision[mu0star * Exp[-Cconst * sbykt^2], ioprec];

mu0 = SetPrecision[mu0t, ioprec]; (* mobility in the limit of zero ca

rrier density and field *)

epsr = SetPrecision[3.0, ioprec]; (* relative dielectric constant *)

eps = SetPrecision[eps0 * epsr, ioprec]; (* dielectric permittivity *)

Print["Disorder parameter sbykt = ", N[sbykt, 7]];

Print["μ_0= ", NumberForm[mu0, 5] , " mobility in the limit of zero ca

rrier density and fields"];

(* Calculation of the Fermi energy as a function of the carrier concentration *)

ClearAll[ef, nbynt];

mmax = 1000;

nbyntmin = SetPrecision10-15, ioprec;

nbyntmax = SetPrecision[0.5, ioprec];

lognbyntmin = SetPrecision[Log[10, nbyntmin], ioprec];

lognbyntmax = SetPrecision[Log[10, nbyntmax], ioprec];

efmin = SetPrecisionLog[nbyntmin] - sbykt2  2  sbykt, ioprec;

(* This guarantees that the concentration range includes c = nbyntmin *)

efmax = SetPrecision[0, ioprec];

Do

ef[m] = SetPrecisionefmin + efmax - efmin * m / mmax, ioprec;

nbynt[m] = SetPrecision[0, ioprec] ;

nbynt[m] = NIntegrate1  Sqrt[2 Pi] *

Exp-eee2  2  1 + Expeee - ef[m] * sbykt, {eee, -Infinity, Infinity} ;

,

{m, 0, mmax};

tabnef = Table[{nbynt[m], ef[m]}, {m, 0, mmax}];

funcef = Interpolation[tabnef];
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tabefn = Table[{ef[m], nbynt[m]}, {m, 0, mmax}];

funcn = Interpolation[tabefn];

(* Calculation of the mobility enhancement

as a function of the carrier concentration EGDM *)

Do

lognbynt = SetPrecisionlognbyntmin + lognbyntmax - lognbyntmin * m / mmax, ioprec;

nbynt[m] = SetPrecision10.0lognbynt, ioprec ;

delta = SetPrecision
2

sbykt2
Logsbykt2 - sbykt - Log[Log[4]], ioprec;

(* see eq. 3(c) in ref. 2 *)

mubymu0[m] = SetPrecisionExp
1

2
* sbykt2 - sbykt * 2 * nbynt[m]delta, ioprec;

(* eqs 31 and D4 in ref. 2 *)

,

{m, 0, mmax};

(* Calculation of the diffusion constant enhancement

(a) as a function of the carrier concentration *)

Do

lognbynt = SetPrecisionlognbyntmin + lognbyntmax - lognbyntmin * m / mmax, ioprec;

nbynt[m] = SetPrecision10.0lognbynt, ioprec ;

ClearAll[ee];

a[m] =

SetPrecisionnbynt[m] * Sqrt[2 * Pi] 

NIntegrateExp-ee2  2 *

Expee - funcef[nbynt[m]] * sbykt  1 + Expee - funcef[nbynt[m]] * sbykt
2
,

{ee, -Infinity, +Infinity}, ioprec,

,

{m, 0, mmax};

(* Plot enhancement functions *)

tab1 = Table[{nbynt[m], a[m] * mubymu0[m]}, {m, 0, mmax}];

tab2 = Table[{nbynt[m], mubymu0[m]}, {m, 0, mmax}];

tab3 = Table[{nbynt[m], a[m]}, {m, 0, mmax}];

(* func1 is the diffusion constant enhancement,

as a function of nbynt, with respect to D = kb*T/e*mu0. *)

(* func2 is the mobility enhancement as a function of nbynt; not used in program *)

(* func3 is the diffusion constant enhancement,

as a function of nbynt, with respect to D = kb*T/e*mu. *)

func10 = Interpolation[tab1];

func20 = Interpolation[tab2];

func30 = Interpolation[tab3];

nbyntstar = SetPrecision[0.1, ioprec];

ClearAll[func1, func2, func3];

func1[x_] := 1 /;  x < nbyntmin;

func1[x_] := func10[x] /; nbyntmin ≤ x ≤ nbyntstar;
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func1[x_] := func10[nbyntstar] /; x > nbyntstar;

func2[x_] := 1 /;  x < nbyntmin;

func2[x_] := func20[x] /; nbyntmin <= x ≤ nbyntstar;

func2[x_] := func20[nbyntstar] /; x > nbyntstar;

nbyntstara = SetPrecision1  2, ioprec;

func3[x_] := 1 /; x ≤ nbyntmin;

func3[x_] := func30[x] /; nbyntmin < x ≤ nbyntstara;

func3[x_] := func30[nbyntstara] /; x > nbyntstara;

Print["Diffusion constant and mobility

enhancement as a function of nbynt, on a double-log scale."];

Print["Full: diffusion constant enhancement (a*mubymu0),

with respect to D = (kb*T/e)*mu0. "];

Print["Dashed: mobility enhancement (mubymu0), obtained using the compact model. "];

ClearAll[x];

PrintPlotLog10, func110x, Log10, func210x,

{x, -10, 10}, PlotRange -> {{-10, 10}, {0, 6}}, Frame -> True,

PlotStyle -> {Dashing[{1, 0}], Dashing[{0.02, 0.02}]};

Print["Diffusion coefficient enhancement function

(a[nbynt]), with respect to D = (kb*T/e)*mu, lin-log scale."];

PrintPlotfunc310x, {x, -10, +10}, PlotRange -> {{-10, 10}, {0, 10}},

Frame -> True, PlotStyle -> {Dashing[{1, 0}]};

(* Field dependence of the mobility, as given by eq. 3 in ref. 3 EGDM. *)

(* For large fields,

the enhancement function is taken equal to the value at a reduced field of 2, *)

(* in order to more optimally describe the numerical data in ref. 3. *)

(* Note that the carrier concentration dependence of this function *)

(* see the inset in fig. 3 of ref. 3 is neglected. *)

Fieldboundary = SetPrecision2.0 * sigma  e * Nt1/3, ioprec;

mufieldlow[Field_] :=

SetPrecisionExpA * sbykt3/2 - 2.2 * 1 + B * Field * e * Nt-1/3  sigma
2

- 1 , ioprec;

mufieldhigh[Field_] := SetPrecisionExpA * sbykt3/2 - 2.2 * 1 + B * 22 - 1 , ioprec;

mufield[Field_] := mufieldlow[Field] /; Abs[Field] <= Fieldboundary;

mufield[Field_] := mufieldhigh[Field] /; Abs[Field] > Fieldboundary;

(* Settings for the case of a constant mobility *)

(*

ClearAll[mufield,mufieldprime,funcn];

mufield[Field_]:=1 ;

mufieldprime[Field_]:=0;

ClearAll[func1,func2,func3];

func1[x_]:=1 ; func2[x_]:=1; func3[x_]:=1; funcn[x_]:=Expx*ekb*T;

*)

Print["tused = ", TimeUsed[] - tstart, " CPU seconds"];
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(*Define the file names for next section*)

jvout = StringJoin"sxcorrjv", TextString[Round[machtmin * 10]], "tot",

TextStringRoundmachtmax + machtmin * 10, "dikte=", TextString[Round[L * 10^9]],

"nm", "punten=", TextString[Round[punten]], "T=", TextString[Round[T]], ".xls";

fjout = StringJoin"sxcorrfj", TextString[Round[machtmin * 10]], "tot",

TextStringRoundmachtmax + machtmin * 10, "dikte=", TextString[Round[L * 10^9]],

"nm", "punten=", TextString[Round[punten]], "T=", TextString[Round[T]], ".xls";

II. The actual simulation, for a chosen set of current density values.

(* Start calculation of J(V) curve *)

(* Only solutions for which f[y] has a minimum

within the layer are considered type-I cases. *)

(* Extension 0 refers to the minimum in the y[f] curve. *)

(* The search starts by performing calculations

for the interval boundaries f0min and f0max. *)

(* Subsequently, a next trial value of f0 is selected by

linear interpolation of Log[10,J] versus f0, *)

(* using the last and one-but last results. *)

(* Each next calculation for a larger current density

is started with selfconsistent value of f0 from the *)

(* calculation for the previous current density as the value f0min. *)

(* The example given below corresponds to the device studied in fig. 6b of ref. 5 *)

tstart = TimeUsed[];

(* The boundary conditions can be entered by specifying an injection barrier Delta, *)

(* and then calculating the carrier concentrations

nbynt0 and nbyntL at the anode and cathode, respectively, *)

(* or by directly entering these carrier concentrations. Here,

the latter option is used. *)

nbynt0 = SetPrecision[0.5, ioprec]; (* carrier concentration at the anode,

0.5 si égalité entre les deux car symmétrique *)

nbyntL = SetPrecision[0.5, ioprec]; (* carrier concentration at the cathode *)

Delta0 = SetPrecisionfuncef[nbynt0] * sigma  e, ioprec;

(* injection barrier at the anode interface *)

DeltaL = SetPrecisionfuncef[nbyntL] * sigma  e, ioprec;

(* injection barrier at the cathode interface *)

Vbi = SetPrecisionfuncef[nbynt0] - funcef[nbyntL] * sigma  e, ioprec;

(* built-in voltage *)

Print["The carrier concentration at the anode, neglecting the image charge effect, is ",

N[nbynt0, 5], " ."];

Print["The carrier concentration at the cathode, neglecting

the image charge effect, is ", N[nbyntL, 5], " ."];

Print["The injection barrier at the anode and cathode interfaces is ",

N[Delta0, 5], " eV and ", N[DeltaL, 5], " eV, respectively"];

Print["Vbi = ", N[Vbi, 5], " (V)."];

total rev 3.nb     5



Print[];

Print[];

(* Chose the boundary values of f such that the

values of f at the anode and cathode fall certainly *)

(* within the interval [fboundmin;fboundmax] *)

fboundmin = SetPrecision-109, ioprec;

fboundplus = SetPrecision109, ioprec;

(* Iterative calculation of (J,V) points *)

ClearAll[J, Vec, Ves];

imax = punten; (* number of J(V) points *)

kmax = 51; (* maximum number of iterations per J(V) point *)

(* Definition of the first two trial values of fb, for i = 1 and k = 1,2 *)

(*fbtrial[1,1]=SetPrecision[1.73,ioprec];

fbtrial[1,2]=SetPrecision[1.75,ioprec];*)

fbtrial[1, 1] = SetPrecision[0.01, ioprec];

fbtrial[1, 2] = SetPrecision[0.05, ioprec];

Do

Ifimax > 1, Jfixed[i] = SetPrecision3 * 10machtmin+machtmax*(i-1)/(imax-1), ioprec;

(* Changing bounds current density,

amount of simulation points need to be changed accordingly. *)

Ifimax == 1, Jfixed[i] = SetPrecision1.7 * 100.0, ioprec;

Print"******* Jfixed = ", N[Jfixed[i], 5], " (A/m2) *******";

const1 = SetPrecision
eps *

e

kb*T

1/3

Jfixed[i]  mu0
2/3

e * Nt
, ioprec;

(* ratio between nbynt and y *)

const2 = SetPrecision
kb * T

e

Jfixed[i]

eps * mu0

1/3

, ioprec;

(* ratio between the field F and f *)

(* ymax= SetPrecisionnbynt0const1,ioprec; *)

ymax = SetPrecision0.5  const1, ioprec; (* changed 30-1-2008 *)

Ifi ⩵ 2, fbtrial[i, 1] =

fbtrial[i - 1, kfinal] + 0.9 * Log[10, Jfixed[i]] - Log[10, Jfixed[i - 1]]  slope;

Ifi ⩵ 2, fbtrial[i, 2] = fbtrial[i - 1, kfinal] +

1.1 * Log[10, Jfixed[i]] - Log[10, Jfixed[i - 1]]  slope;

Ifi > 2, fbtrial[i, 1] = fbfinal[i - 1] + 0.9 * fbfinal[i - 1] - fbfinal[i - 2];

Ifi > 2, fbtrial[i, 2] = fbfinal[i - 1] + 1.1 * fbfinal[i - 1] - fbfinal[i - 2];

Do

fb = SetPrecision[fbtrial[i, k], ioprec];

fbfinal[i] = SetPrecision[fb, ioprec];

Print["fb = ", fb];

ClearAll[y0, y, f, yrule];

yzerorule =
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FindRoot
fb

func3[const1 * y0]
==

1

func1[const1 * y0] * mufield[const2 * fb] * y0
,

y0, 10-9, ymax, WorkingPrecision → 80, AccuracyGoal → 30, MaxIterations → 1000;

yzero = y0 /. yzerorule;

Print["yzero = ", yzero];

yrule = NDSolve

y'[f] ⩵
f

func3[const1 * y[f]]
-

1

func1[const1 * y[f]] * mufield[const2 * f] * y[f]
,

y[fb] == yzero, y, {f, fboundmin, fb},

WorkingPrecision → 80, AccuracyGoal → 12, MaxSteps -> 200 000;

solutionmin = y /. First[yrule];

ClearAll[y, f, yrule];

yrule = NDSolve

y'[f] ⩵
f

func3[const1 * y[f]]
-

1

func1[const1 * y[f]] * mufield[const2 * f] * y[f]
,

y[fb] == yzero, y, {f, fb, fboundplus},

WorkingPrecision → 80, AccuracyGoal → 9, MaxSteps -> 200 000;

solutionplus = y /. First[yrule];

Print[Jfixed[i], " ", yzero, " ", const1 * yzero, " ", const2 * fb];

If[yzero < 0, {Print["Break, because yzero < 0"], Break[]}];

(* Determination of the values of

f that correspond to the boundary conditions n0 and nL *)

ClearAll[f, fanoderule];

fanoderule = FindRoot[const1 * solutionmin[f] == nbynt0, {f, fboundmin, fb},

WorkingPrecision → 41, AccuracyGoal → 9, MaxIterations → 300];

fanode = f /. fanoderule;

ClearAll[f, fcathoderule];

fcathoderule = FindRoot[const1 * solutionplus[f] == nbyntL, {f, fb, fboundplus},

WorkingPrecision → 42, AccuracyGoal → 9, MaxIterations → 300];

fcathode = f /. fcathoderule;

Print["fanode = ", N[fanode, 5],

" fcathode = ", N[fcathode, 5]];

Iffanode < 0.8 * fboundmin, Print["fanode < fboundmin", fanode],

fboundmin = 3  2 * fboundmin;

Iffcathode > 0.8 * fboundplus, Print["fcathode> fboundplus", fcathode],

fboundplus = 3  2 * fboundplus;

ymin = SetPrecision[solutionmin[fanode], ioprec];

yplus = SetPrecision[solutionplus[fcathode], ioprec];

(* below: check whether the boundaries are

situated at points of high density, close or just above nbyntstar *)

term1 = SetPrecisionNIntegrate1  solutionmin[f], {f, fanode, fb},

WorkingPrecision → 40, AccuracyGoal → 9, MaxRecursion -> 40, ioprec;

term2 = SetPrecisionNIntegrate1  solutionplus[f], {f, fb, fcathode},

WorkingPrecision → 40, AccuracyGoal → 9, MaxRecursion -> 10, ioprec;

curr = SetPrecisionterm1 + term23, ioprec;

volt =
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SetPrecisionNIntegratef  solutionmin[f] , {f, fanode, fb}, MaxRecursion -> 10 +

NIntegratef  solutionplus[f] , {f, fb, fcathode}, ioprec;

J[i] = SetPrecisionmu0 * eps * kb * T2
 e2 L3 * curr, ioprec;

(*Explicit expression for carrier density

temp=SetPrecisioneps*kb*Te^2*L^2*curr^23*yNt/.First[yrule],ioprec;

n[i]=temp/.

Print["carrier density = ",N[n[i],5]];

Finding the position *)

spos = SetPrecisionNIntegrate1  curr^1  3 solutionmin[f], {f, fanode, fb},

WorkingPrecision → 40, AccuracyGoal → 9, MaxRecursion -> 40, ioprec;

xpos[i] = SetPrecision[(*L**)spos, ioprec];

Print["relative x position in device = ", N[xpos[i], 5]];

Ves[i] = kb * T / e * volt; (* electrostatic potential difference *)

Vec[i] = Ves[i] + Vbi; (* electrochemical potential difference *)

Ifk == k,

Print"Vel.chem. = ", N[Vec[i], 5], " (V) Vel.stat. = ",

N[Ves[i], 5], " (V) J = ",

N[J[i], 5] , " (A/m2) J/Jfixed = ", NJ[i]  Jfixed[i], 5;

IfAbsJ[i]  Jfixed[i] - 1.0 < 0.005, Print["nbyntminimum = ", N[yzero * const1, 5],

" nbyntanode = ", N[ymin * const1, 5], " nbyntcathode = ", N[yplus * const1, 5]];

IfAbsJ[i]  Jfixed[i] - 1.0 < 0.005, Print[""];

IfAbsJ[i]  Jfixed[i] - 1.0 < 0.005, Print[""];

IfAbsJ[i]  Jfixed[i] - 1.0 < 0.005,

{fbj[i] = {J[i], fb}, listfj = Array[fbj, imax]};

IfAbsJ[i]  Jfixed[i] - 1.0 < 0.005, Break[];

LJout[i, k] = SetPrecision[Log[10, J[i]], ioprec];

Ifk ≥ 2,

slope = SetPrecision

LJout[i, k] - LJout[i, k - 1]  fbtrial[i, k] - fbtrial[i, k - 1], ioprec;

fbtrial[i, k + 1] = SetPrecisionLog[10, Jfixed[i]] - LJout[i, k - 1]  slope +

fbtrial[i, k - 1], ioprec;

kfinal = k + 1;

Print["End of loop: k = ", k, " fbtrial = ", N[fbtrial[i, k], 5]];

Print[" "];

, {k, 1, kmax},

, {i, 1, imax};

jvll = Table[{Log[10, Vec[i]], Log[10, J[i]]}, {i, 1, imax}];

Print[

"Print and plot of the current density as a function of the voltage (double-10-log)"];

SetDirectory["C:\\Users\\Ryuuta\\Documents\\Tu EHV\\OLED\\Simulations\\jv"]
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(*J-v save map*)

jv = Table[{Vec[i], J[i]}, {i, 1, imax}];

Export[jvout, jv, "XLS"]

SetDirectory["C:\\Users\\Ryuuta\\Documents\\Tu EHV\\OLED\\Simulations\\fj"]

(*field over j save map*)

Export[fjout, listfj, "XLS"]

plotjv =

Print[ListPlot[jvll, PlotRange → {{-2, 1.3}, {0, 7}}, Frame → True, Joined → True]];

Print["tused = ", TimeUsed[] - tstart, " CPU seconds"];

III. Setting up field over current density

(* Plot of the carrier density across

the device for the (J,V) point obtained for k = kmax *)

(* FINAL and OPTIMAL result. No warnings,

no oscillations in the carrier concentration. *)

(* Result obtained in conjunction with the use of WorkingPrecision→50,

AccuracyGoal→30 in NDSolve in the main program*)

tstart = TimeUsed[];

ClearAll[ff, solution, xbyLmin];

importnamefj =

StringJoin["C:\\Users\\Ryuuta\\Documents\\Tu EHV\\OLED\\Simulations\\fj\\", fjout];

listfj = Import[importnamefj, "Data"];

listfj = lremoveFaster[listfj];

(* interpolation and visual check*)

fmin = SetPrecision[Interpolation[listfj, InterpolationOrder → 1], ioprec];

(*

ListPlot[listfj]

Plot[fmin[x],{x,30,800}]

*)

Jfix = SetPrecision[260, ioprec];

(* Choose for which current density the carrier density needs to be found *)

fb = SetPrecision[fmin[Jfix], ioprec];

Print["dimensionless field at minimum carrier density is ", N[fb]]

(* define solutions *)

ClearAll[y0, y, f, yrule];
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(*pre work for carrier density *)

const1 = SetPrecision
eps *

e

kb*T

1/3

Jfix  mu0
2/3

e * Nt
, ioprec;

(* ratio between nbynt and y *)

const2 = SetPrecision
kb * T

e

Jfix

eps * mu0

1/3

, ioprec;

(* ratio between the field F and f *)

yzerorule = FindRoot
fb

func3[const1 * y0]
==

1

func1[const1 * y0] * mufield[const2 * fb] * y0
,

y0, 10-9, ymax, WorkingPrecision → 80, AccuracyGoal → 30, MaxIterations → 1000;

yzero = y0 /. yzerorule;

Print["yzero = ", yzero];

yrule =

NDSolvey'[f] ⩵
f

func3[const1 * y[f]]
-

1

func1[const1 * y[f]] * mufield[const2 * f] * y[f]
,

y[fmin[Jfix]] == yzero, y, {f, fboundmin, fmin[Jfix]},

WorkingPrecision → 80, AccuracyGoal → 12, MaxSteps -> 20 000;

solutionmin = y /. First[yrule];

ClearAll[y, f, yrule];

yrule =

NDSolvey'[f] ⩵
f

func3[const1 * y[f]]
-

1

func1[const1 * y[f]] * mufield[const2 * f] * y[f]
,

y[fmin[Jfix]] == yzero, y, {f, fmin[Jfix], fboundplus},

WorkingPrecision → 80, AccuracyGoal → 9, MaxSteps -> 20 000;

solutionplus = y /. First[yrule];

ClearAll[f, fanoderule];

fanoderule = FindRoot[const1 * solutionmin[f] == nbynt0, {f, fboundmin, fb},

WorkingPrecision → 41, AccuracyGoal → 9, MaxIterations → 300];

fanode = f /. fanoderule;

ClearAll[f, fcathoderule];

fcathoderule = FindRoot[const1 * solutionplus[f] == nbyntL,

{f, fb, fboundplus}, WorkingPrecision → 42,

AccuracyGoal → 9, MaxIterations → 300];

fcathode = f /. fcathoderule;

ymin = SetPrecision[solutionmin[fanode], ioprec];

yplus = SetPrecision[solutionplus[fcathode], ioprec];

term1 = SetPrecisionNIntegrate1  solutionmin[f], {f, fanode, fb},

WorkingPrecision → 40, AccuracyGoal → 9, MaxRecursion -> 40, ioprec;

term2 = SetPrecisionNIntegrate1  solutionplus[f], {f, fb, fcathode},

WorkingPrecision → 40, AccuracyGoal → 9, MaxRecursion -> 10, ioprec;

curr = SetPrecisionterm1 + term23, ioprec;

10     total rev 3.nb



Carrier density
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(* Calculate carrier density as func of x *)

ClearAll[ff, solution, ffieldxbyL];

solution[ff_, J_] := solutionmin[ff] /; fanode ≤ ff < fmin[J] ;

solution[ff_, J_] := solutionplus[ff] /; fmin[J] ≤ ff ≤ fcathode ;

xbyLmin =

SetPrecisionNIntegrate1  curr^1  3 solutionmin[ff], {ff, fanode, fmin[Jfix]},

WorkingPrecision → wp, AccuracyGoal → 30, MaxRecursion -> 40, ioprec;

ClearAll[ff, ffield];

(* concatinating functions induces integration error,

seperating functions prevents this *)

int1[ffieldxbyL_?NumericQ] :=

int1[ffieldxbyL] = NIntegrate1  solutionmin[ff], {ff, fanode, ffieldxbyL},

WorkingPrecision → 80 , AccuracyGoal → 30, MaxRecursion → 20;

int2[J_?NumericQ] := int2[J] = NIntegrate1  solutionmin[ff], {ff, fanode, fmin[J]},

WorkingPrecision → 80, AccuracyGoal → 30, MaxRecursion → 20;

int3[ffieldxbyL_?NumericQ, J_] := int3[ffieldxbyL, J] =

NIntegrate1  solutionplus[ff], {ff, fmin[J], ffieldxbyL},

WorkingPrecision → 80, AccuracyGoal → 30, MaxRecursion → 20;

(* Solving for the field *)

ffield[xbyL_, J_] :=

SetPrecisionffieldxbyL /. FindRoot int1[ffieldxbyL] ⩵ xbyL * curr1/3, {ffieldxbyL,

fanode, fmin[J]}, MaxIterations → 1000 , ioprec /; xbyL < xbyLmin;

ffield[xbyL_, J_] := SetPrecisionffieldxbyL /. FindRoot

Print[""];

Print["The carrier concentration across the device for the (J,V)

point obtained for k = kmax. Minimum at x/L = ", N[xbyLmin, 8]];

imax = 50; (*amount of points, very important fotr accuracy*)

nbynty = SetPrecision
eps *

e

kb*T

1/3

Jfix  mu0
2/3

e * Nt
, ioprec;

tabmin = QuietParallelizeTablexbyLmin * i  imax,

nbynty * solutionffieldxbyLmin * i  imax, Jfix, Jfix, {i, 1, imax - 1};

tabmax = QuietParallelizeTablexbyLmin + 1 - xbyLmin * i  imax, nbynty * solution

ffieldxbyLmin + 1 - xbyLmin * i  imax, Jfix, Jfix, {i, 0, imax - 1};

Print["tused = ", TimeUsed[] - tstart, " CPU seconds"];



(* Calculate carrier density as func of x *)

ClearAll[ff, solution, ffieldxbyL];

solution[ff_, J_] := solutionmin[ff] /; fanode ≤ ff < fmin[J] ;

solution[ff_, J_] := solutionplus[ff] /; fmin[J] ≤ ff ≤ fcathode ;

xbyLmin =

SetPrecisionNIntegrate1  curr^1  3 solutionmin[ff], {ff, fanode, fmin[Jfix]},

WorkingPrecision → wp, AccuracyGoal → 30, MaxRecursion -> 40, ioprec;

ClearAll[ff, ffield];

(* concatinating functions induces integration error,

seperating functions prevents this *)

int1[ffieldxbyL_?NumericQ] :=

int1[ffieldxbyL] = NIntegrate1  solutionmin[ff], {ff, fanode, ffieldxbyL},

WorkingPrecision → 80 , AccuracyGoal → 30, MaxRecursion → 20;

int2[J_?NumericQ] := int2[J] = NIntegrate1  solutionmin[ff], {ff, fanode, fmin[J]},

WorkingPrecision → 80, AccuracyGoal → 30, MaxRecursion → 20;

int3[ffieldxbyL_?NumericQ, J_] := int3[ffieldxbyL, J] =

NIntegrate1  solutionplus[ff], {ff, fmin[J], ffieldxbyL},

WorkingPrecision → 80, AccuracyGoal → 30, MaxRecursion → 20;

(* Solving for the field *)

ffield[xbyL_, J_] :=

SetPrecisionffieldxbyL /. FindRoot int1[ffieldxbyL] ⩵ xbyL * curr1/3, {ffieldxbyL,

fanode, fmin[J]}, MaxIterations → 1000 , ioprec /; xbyL < xbyLmin;

ffield[xbyL_, J_] := SetPrecisionffieldxbyL /. FindRoot

int2[J] + int3[ffieldxbyL, J] ⩵ xbyL * curr1/3, {ffieldxbyL, fmin[J], fcathode},

MaxIterations → 1000 , ioprec; /; xbyL >= xbyLmin;

Print[""];

Print["The carrier concentration across the device for the (J,V)

point obtained for k = kmax. Minimum at x/L = ", N[xbyLmin, 8]];

imax = 50; (*amount of points, very important fotr accuracy*)

nbynty = SetPrecision
eps *

e

kb*T

1/3

Jfix  mu0
2/3

e * Nt
, ioprec;

tabmin = QuietParallelizeTablexbyLmin * i  imax,

nbynty * solutionffieldxbyLmin * i  imax, Jfix, Jfix, {i, 1, imax - 1};

tabmax = QuietParallelizeTablexbyLmin + 1 - xbyLmin * i  imax, nbynty * solution

ffieldxbyLmin + 1 - xbyLmin * i  imax, Jfix, Jfix, {i, 0, imax - 1};

Print["tused = ", TimeUsed[] - tstart, " CPU seconds"];
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Outcoupling model
(*Does not need to be rerun*)

ClearAll[tempimport, x, λ, test, inter, uitmatrix, uitinter, uitnorm, uitint, maxval]

λbegin = 473; (*Begin of wavelength list*)

λend = 650; (*End of wavelength list*)

tempimport = Import["C:\\Users\\Ryuuta\\Documents\\Tu

EHV\\OLED\\Simulations\\setfos\\emissionparallel.xlsx", "XLSX"];

(*folder with setfos outcoupling matrix, in excel sheet*)

uitkoppelingimport = lremoveFaster[tempimport];

uitnietnorm[λ_, x_] :=

uitkoppelingimportλ - λbegin + x * 100 + 1[[3]] /; λbegin ≤ λ ≤ λend;

maxval[λ_] := Max[Table[uitnietnorm[λ, 0.01 * i], {i, 0, 100}]]

maxvalue = Max[Table[uitnietnorm[j, 0.01 * i], {i, 0, 100}, {j, λbegin, λend, 1}]];

uitdisc[λ_, x_] := Ifmaxval[λ] > 0,

uitkoppelingimportλ - λbegin + x * 100 + λ - λbegin + 1[[4]]  maxvalue, 0

test = Table[{i, uitdisc[518, i]}, {i, 0, 1, 0.01}];

inter = Interpolation[test, InterpolationOrder → 1];

uitmatrix =

Flatten[Table[{{λ, x}, uitdisc[λ, x]}, {λ, λbegin, λend, 1}, {x, 0, 1, 0.01}], 1];

(*Re-code this step for higher efficiency, by better element verwijzing*)

uitinter = Interpolation[uitmatrix, InterpolationOrder → 1];

(*Wavelength only defined for 473-638, while position from 0-1*)

(*Optional, visual check*)

Plot[inter[x], {x, 0, 1}]

Plot3D[uitinter[x, y], {x, 473, 600}, {y, 0, 1},

AxesLabel → {Style["λ(nm)", Black, FontSize → 40], Style[x, Black, FontSize → 40],

Style[η, Black, FontSize → 40]}, TicksStyle → FontSize → 30]
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Integration over all wavelengths 

outcoupling and incoupling
(*Does not need to be rerun*)

uitintnotnormed[x_] := Integrate[uitinter[λ, x], {λ, 473, 638}];

uitnorm = NMaximize[{uitintnotnormed[x], 0.1 < x < 0.9}, {x}];

ηout[x_] := uitintnotnormed[x]  uitnorm[[1]];

(*Incoupling interpolation*)

ClearAll[n0]

beginin = 234;

endin = 392;

deltain = endin - beginin;

tempimportin = Import[

"C:\\Users\\Ryuuta\\Documents\\Tu EHV\\OLED\\Simulations\\setfos\\160nm\\Absorption

profile 160 nm.txt", "Data"]; (*Incoupling from setfos*)

maxvalin = Max[tempimportin[[beginin ;; endin, 2]]];

inmatrix =

Tablei  deltain, tempimportin[[beginin + i, 2]]  maxvalin, {i, 0, deltain};

n0 = Interpolation[inmatrix, InterpolationOrder → 1];

(*Plot of outcoupling and then incoupling*)

Plot[ηout[x], {x, 0, 1}, PlotRange → {{0, 1}, {0, 1}}, Frame → True,

LabelStyle → {FontSize → 30}, FrameLabel → {x, ηout}, FrameTicksStyle → 24]

Plot[n0[x], {x, 0, 1}, PlotRange → {{0, 1}, {0, 1}}, Frame → True,

LabelStyle → {FontSize → 30}, FrameLabel → {x, n0}, FrameTicksStyle → 24]

TPQ model

(*preamble*)

ClearAll[x, t, J, nt, np, τ, sol, solnorm, i, imax]

τ = SetPrecision[1.37 * 10^-6, ioprec];

imax = 3;

ηstart = 0.885;

(*interpolation of data *)

nptable = Join[{{0, nbynt0}}, tabmin, tabmax, {{1, nbyntL}}];

outpol = StringJoin["poldenscorrsx", TextString[Round[Jfix]], ".xls"];

np = SetPrecision[Interpolation[nptable, InterpolationOrder → 1], ioprec];

(* visualize and check validity of interpolation *)

ListPlot[nptable]
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LogPlot[np[x], {x, 0, 1}]

nt[x_, t_, J_] := IfJ == 0, n0 [x] * Exp-t  τ, n0[x] * Exp-t  τ - ktpq * np[x, J] * t ;

IPL[t_, J_] :=

NIntegrate[ηout[x] * nt[x, t, J], {x, 0, L}, WorkingPrecision → 30, AccuracyGoal → 10];

ηpl[J_] := NIntegrateIPL[t, J]  IPL[t, 0], {t, 0, ∞};

(*

(* simple case, for n0 and nout not a func of x and given J *)

simplesol= NIntegrateτ^-11τ+ktpq*np[x]*Nt^-1,

{x,0,1} ,WorkingPrecision→42,AccuracyGoal→10;

(*

ClearAll[ktpq]

solnorm = FindRoot[simplesol⩵0.9, {ktpq,0},

WorkingPrecision→42,AccuracyGoal→9,MaxIterations→300];

sol= ktpq/.solnorm

*)

DoClearAll[ktpq],

simpleroot = FindRootsimplesol⩵ηstart+0.01i-2,

{ktpq,0},WorkingPrecision→50,AccuracyGoal→10,MaxIterations→300;

solsimple[i]= SetPrecision[ktpq/.simpleroot ,ioprec],

{i,1,imax}

koutsimple=Tableηstart+0.01i-2,N[solsimple[i],6],{i,1,imax};

outsimple=StringJoin["solSimplektpqcorrsx",TextString[Round[Jfix]],".xls"];

(*In case that incoupling is not a function of the position. A solution then is:*)

asol= NIntegrateηout[x]*τ^-1*1τ+ktpq*np[x]*Nt^-1, {x,0,1} ,

WorkingPrecision→42,AccuracyGoal→10NIntegrate[ηout[x],{x,0,1}];

DoClearAll[ktpq],

aroot=FindRootasol⩵ηstart+0.01i-2,{ktpq,0};

sola[i]= SetPrecision[ktpq/.aroot ,ioprec],

{i,1,imax}

kouta=Tableηstart+0.01i-2,N[sola[i],6],{i,1,imax};

outa=StringJoin["solAktpqcorrsx",TextString[Round[Jfix]],".xls"];

*)

(*Complete equation*)

bsol = NIntegrateηout[x] * n0[x] * τ^-1 * 1  τ + ktpq * np[x] * Nt^-1, {x, 0, 1} ,

WorkingPrecision → 42, AccuracyGoal → 10  NIntegrate[ηout[x] * n0[x], {x, 0, 1}];

DoClearAll[ktpq],

broot = FindRootbsol ⩵ ηstart + 0.01 i - 2, {ktpq, 0};

sola[i] = SetPrecision[ktpq /. broot , ioprec],
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{i, 1, imax}

koutb = Tableηstart + 0.01 i - 2, N[sola[i], 6], {i, 1, imax};

outb = StringJoin["solBktpqcorrsx", TextString[Round[Jfix]], ".xls"];

(*

SetDirectory["C:\\Users\\Ryuuta\\Documents\\Tu EHV\\OLED\\Simulations\\ktpq\\Simple"];

Export[outsimple,koutsimple,"XLS"];

SetDirectory["C:\\Users\\Ryuuta\\Documents\\Tu EHV\\OLED\\Simulations\\ktpq\\A"];

Export[outa,kouta,"XLS"];

*)

SetDirectory["C:\\Users\\Ryuuta\\Documents\\Tu EHV\\OLED\\Simulations\\ktpq\\B"];

(*Save map for KTPQ*)

Export[outb, koutb, "XLS"];

SetDirectory["C:\\Users\\Ryuuta\\Documents\\Tu EHV\\OLED\\Simulations\\ktpq\\polaron"];

(*Save map for polaron density as function of position*)

Export[outpol, nptable, "XLS"];
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