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Abstract

Nanoparticles show many promising applications, one of which is their use in the field of medicine.
In particular, their potential in destroying cancer cells, creating a new tool to deal with this
disease. One newly developed kind of particle shows a great promise in this application. Here
we investigate this novel particle coined NanoPlatelet which consists of multiple layers stacked
upon each other in a configuration of magnetic, non-magnetic and magnetic layers (M-NM-M).
This particular stacking results in a perpendicular magnetic anisotropy and anti-ferromagnetic
ordering. The goal of this thesis is to create a model using COMSOL multi-physics that simulates
the mechanical response of these particles as a function of the direction and magnitude of the
magnetic field. Verification of the COMSOL model is done by using a MatLab script, which solves
an already existing analytical model.
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Chapter 1

Introduction

1.1 State of the art

The research into nano-sized particles has uncovered many potential applications in different fields.
One application for magnetic nanoparticles is treating cancer by mechanical disruption of the
cancer cell membrane. Up to now, the most common way of treating cancer using magnetic
nanoparticles is using hypothermia, i.e. using heat to destroy the cells. This heat is generated by
applying a rapid oscillating external magnetic field to magnetic nanoparticles. This practice has
a few drawbacks however, the heat generated is difficult to control. As well as the lack of targeted
destruction, since the heat does not distinguish between healthy and cancer cells.

A novel way of dealing with the cells while still destroying them is to utilise a mechanism
called apoptosis, which results in suicide of the cancer cell. The way this is achieved is by having
nanoparticles exert a torque on the cell-membrane or organelle, which is sufficient to disrupt the
cell. This disruption then prompts the cell to destroy itself. The membranes of cancer cells are
weaker, and therefore more susceptible to this treatment. Figure 1.1 shows an infographic of the
project discussed in this thesis, which starts with the process of cancer cell destruction explained
above.

Figure 1.1: Infographic of this project

At the time of writing there are two candidate particles that can achieve this, the first of which
is called a vortex particle and the other is called a NanoPlatelet. The name vortex particle is
based on the fact that in this nano-sized particle the magnetisation forms a vortex-like structure.
The second particle which is a candidate for the method of cancer destruction described above, is
the NanoPlatelet. The reason there are only two candidates at this moment, is because not just
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CHAPTER 1. INTRODUCTION

any magnetic nano-particle is suitable. For a particle to be suitable, it will need to satisfy two
important criteria, which are related to its effectiveness and usefulness in the treatment of cancer.

1.2 The particles

The first criteria is the amount of torque generated by the particle, this needs to be sufficient to
disrupt the cancer cell membrane and cause apoptosis. The stronger the torque the more reliable
the particle will be in destroying the cell membranes, and thus the cancer cells. However, the
torque should be weak enough to not destroy the membranes of healthy cells. The mechanical
torque is dependent on the distance from the rotation point, usually the centre of mass, and the
force applied to the outer edge. Either the force or this distance can be increased to create a
higher torque. This force arises from the interaction of the magnetic anisotropy of the particle
and its magnetisation, and thus if this interaction can be changed the force will change as well.

The second criteria is that the particles should not agglomerate in a fluid if there is no magnetic
field applied. Therefore the particles need to be able to move towards the region of interest as
individual particles. If they were to agglomerate anywhere before arriving at their destination, they
would create a solid clump and blocking potential vital areas. To prevent this agglomeration, the
particles should not be magnetic in the absence of an external magnetic field. Even better would
be particles that are not magnetic when a small field is applied. Most electric appliances, generate
stray magnetic fields which could affect how efficient the particles are at travelling to the area of
interest in a patient.[8] The next important consideration is the dispersion of the particles once
they have fulfilled their goal, for this to happen they should not stay magnetised if the external
magnetic field is removed, meaning the particle needs to have a zero remnant magnetisation. The
hysteresis loops, showing the magnetic behaviour of the vortex particle and NanoPlatelet, are show
in figure 1.2. The vertical axis shows the magnetisation normalised with respect to the saturation
magnetisation, and the horizontal axis shows the strength of the applied field. The red line is the
magnetisation when applying a magnetic field in plane of the particle, and the black line is the
magnetisation when applying the magnetic field along the axis perpendicular to the plane.

(a) Hysteresis loop for a vortex particle (b) Hysteresis loop for a NanoPlatelet

Figure 1.2: Hysteresis loop of the particles, in-plane (black) and out-plane (red). Adapted from
Mansell[4]

In figure 1.2a it is shown that for the vortex particle, when applying a magnetic field perpen-
dicular to the particle (red line), the magnetisation results in a gradual slope. Additionally, when
applying a magnetic field in-plane (black line) the magnetisation is indeed zero when there is no
applied magnetic field. However, just a small increase in the magnetic field strength results in
a total magnetisation parallel to the magnetic field. Figure 1.2b shows the the hysteresis loop
for the NanoPlatelet, here the in-plane magnetisation shows the sloping behaviour similar to the
out-of-plane behaviour of the vortex particle. The out-of-plane magnetisation of the NanoPlatelet
is comparable to the vortex particle. For this particle as well, the magnetisation is zero without

2 Simulating the behaviour of synthetic anti-ferromagnetic NanoPlatelets using COMSOL



CHAPTER 1. INTRODUCTION

an external magnetic field. However, when applying a small magnetic field instead of a sudden
complete magnetisation the particle only gets slightly magnetised. This will allow the particle to
satisfy the criteria of no agglomeration.

Figure 1.3: Structure of a NanoPlatelet, adap-
ted from Vemulkar [8]. The top structure shows
the different layers and the lower one shows them
stacked upon each other.

Particles with the specific criteria dis-
cussed above are not found naturally, there-
fore they will need to be fabricated us-
ing existing methods, two of which are va-
pour deposition and sputtering. Since these
particles are made artificially, they are called
synthetic-anti-ferromagnetic particles. The
anti-ferromagnetic part means they have zero
total magnetic moment in absence of an ex-
ternal magnetic field. One important difference
between the vortex particles and NanoPlatelets
is the way they get magnetised (shown in fig-
ure 1.4), whereas the vortex has a preference
for being magnetised in-plane, the NanoPlate-
lets actually have a preference to be magnet-
ised perpendicular to its plane. This preference
arises from the way the particle is build up,
multiple layers that interact with each other,
as seen in figure 1.3. This stacking of differ-
ent materials results in so called perpendicular
magnetic anisotropy (PMA) particles.

Figure 1.4: Schematic of the preferential direction for the magnetic moment, shown in red. The
particle itself is a disc, resulting in axial symmetry.

Research has shows that PMA greatly af-
fects the effectiveness of the particles in the

application of destroying cancer cells.[4] Where a tumor treated with vortex particles showed a
survival rate of 38% as opposed to 7% for the NanoPlatelets. This is a promising indication for
the application of NanoPlatelets in medicine, but there is still a need for more research.

1.3 This thesis

One way to advance this research is to develop a model for the behaviour of these particles and
simulate them in the environment of organs or cells. Which is exactly what this thesis is about,
to research the possibility of simulating the behaviour of these NanoPlatelets using a COMSOL
model in a changing magnetic field. To create a decent model it is needed to understand the
physics behind the NanoPlatelets first, which will be discussed in chapter 2 Theory. Because of
the complexity of COMSOL, an analytical model will be used first using MatLab before starting
to work with COMSOL. This will allow for the results acquired from MatLab to be compared
with he results from the COMSOL simulation, as can be seen in the second part of figure 1.1,
this analytical model will be discussed in chapter 3 MatLab. After this chapter, the COMSOL
model will be created, but first it is necessary to understand how exactly COMSOL works and
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CHAPTER 1. INTRODUCTION

what options there are available, this will be discussed in chapter 4 COMSOL. Lastly there is a
discussion and comparison of the results, chapter 5 Conclusions.

Because of the complex environment these particles will be active in, the human body, many
different physics interact with each other to influence the behaviour of the NanoPlatelets. which is
why the model will be created using COMSOl multiphysics, this program allows to couple different
physics packages together. This coupling can result in really complex models, combining the fields
of magnetism, fluid dynamics and for instance structural mechanics. The aim of this thesis is to
create a starting point from which the model can be enhanced, by creating a COMSOL model
using an already existing analytical model as a template.

4 Simulating the behaviour of synthetic anti-ferromagnetic NanoPlatelets using COMSOL



Chapter 2

Theory

This chapter will cover some important physics governing the behaviour of magnetic particles
and nanoplatelets in particular. These are the Zeeman-interaction between the magnetic moment
(M [T ]) of the particle and the external applied field (H[Am ]), the anisotropy of the particle and the
RKKY-interaction between the different layers of the NanoPlatelet. These interactions compete
with each other, resulting in a complex energy field. The energy field results in a complex behaviour
for the NanoPlatelets as a function of the magnetic field. The RKKY-interaction mentioned before
is part of what makes the behaviour of the NanoPlatelets different from the vortex particles,
it describes the coupling of two magnetic layers divided by a non-magnetic spacer layer. The
mathematical model that will be introduced is the Stoner-Wohlfarth model (section 2.1) and in
chapter 4, this model will be implemented in COMSOL multi-physics.

2.1 Stoner-Wohlfarth model

The smallest components of a permanent magnet are the dipole moments of the spin of its electrons,
with their own north and south pole. Because of the immense amount of electrons present in
the material, which all interact with each other, the computation for each individual magnetic
moment would take a long time. To decrease the computation time, it is usually enough to divide
the magnet into a few domains that behave as if they were single dipole magnets. The orientation
of these domains is what determines if a particle is magnetic or not. The magnetic moment of
different domains might cancel each other resulting in a zero net magnetic moment, or they might
align themselves with each other which would increase the resulting net magnetic moment.

Because of the size of the particles we are interested in, being on the nano-scale, the magnetic
domains are assumed to be approximately the size of the particle. This simplifies some of the
physics related to the behaviour of the total magnetic moment. The three important physical
phenomena that will need to be taken into account are already mentioned at the start of the
chapter: the Zeeman interaction, magnetic anisotropy and the RKKY-interaction.

As mentioned above, the Stoner-Wohlfarth model[1] is used to describe the physics through a
numerical model. This will result in a indication of the magnetic behaviour, however there are
a few major assumptions that are being made. The first of which is the fact that there are no
thermal influences on the magnetic moments, this implies that the model has a temperature of
T = 0[K], which of course is not physical feasible as determined by thermodynamics. Another
limitation of the model is that it assumes the particle to be fixed and static. This limits the
application in a model for the behaviour of a particle, as the NanoPlatelet would not be able to
align itself with the magnetic field. This alignment with the magnetic field is interesting, because
in further research fluid dynamics might be involved. In which case the orientation can have a big
influence on the mechanical behaviour of the particle.

The model uses the energy associated with the different interaction and has as a goal to
minimise the total energy, which is done by varying the angle of the magnetic moment with
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CHAPTER 2. THEORY

respect to the particle and external magnetic field. The abstract situation of the SW model for a
single magnetic domain particle can be seen in figure 2.1.

Figure 2.1: Schematic representation of the situation described by the Stoner-Wohlfarth model,
showing the orientation of the magnetisation (red) angle θ with respect to the easy axis (EA) and
the applied magnetic field (green) as well as its angle α

2.1.1 Anisotropy

Anisotropy is a term used for the dependency of the magnetic moment on direction. A way to think
about this anisotropy, is the particle having a energetically favourable state when the magnetic
moments of the domain spontaneously align themselves, resulting in a permanent magnet. There
are multiple reasons for this preferential alignment, for the Stoner-Wohlfarth model considered
here there are two which will be discussed in more detail. The first one is based on the interface
of the magnetic material with a secondary material, this will be called the interface anisotropy.
The second parameter that influences this direction is the shape of the particle, and is therefore
called the shape anisotropy.

This thesis won’t be going too much into detail with regards to the interface anisotropy.
However, because the NanoPlatelet consist out of thin films, the interface effects are relatively
large when compared with the bulk effects. Because of this it is possible to make some assumptions
regarding the effects of the anisotropy. The first of which is the direction in which the magnetic
moment would align itself if it was the only an-isotropic effect. The situation seen in figure 2.1 is
for a particle with a perpendicular magnetic anisotropy (PMA). As discussed in the introduction
1, this is the same anisotropy as with the NanoPlatelets. The direction of the magnetisation in
absence of a magnetic field is called the easy axis (EA) and is defined as perpendicular to the
work-plane of the NanoPlatelet. Because of this there is a hard axis (HA) in-plane, which is an
energetically unfavourable direction for the magnetic moments when no field is applied. Because
the NanoPlatelet is shaped like a disk, and the Stoner-Wohlfarth model as described looks at a
slice through the middle, it is assumed that the particle is rotational symmetric along the easy
axis. This symmetry results in the hard axis actually turning into a hard plane.

As the name suggests, the shape anisotropy is the directional preference based on the shape of
the particle. The reason for the preference is due to the demagnetisation field (Hdemag[

A
m ]) [7]. This

is an internal magnetic field induced by the magnetic moment of the particle. This magnetic field
is caused by the electron spins trying to align themselves such that the least amount of magnetic
flux lines as possible leave the particle. This effect is the result of magnetic flux lines outside of
the material having an energy cost. Take for instance an infinite plane, if the magnetisation is
perpendicular to this plane the resulting magnetic flux would all leave the particle, this is less
favourable than if the magnetic moment is in-plane. As with the latter situation no magnetic
flux lines would leave the (infinite wide) particle. Of course it is not possible to create an infinite
plane, but for the thickness on a nano-scale this is an approximation. The field that tries to align
the perpendicular magnetic moment with the plane of the particle is called the demagnetisation
field. The resulting equation 2.1 takes into consideration the magnetisation as well as a the shape,
where the shape is defined as a diagonal 3×3 matrix ℵ. The elements of this matrix represent the
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CHAPTER 2. THEORY

contribution of the magnetisation on the demagnetisation field. The only non-zero elements are
on the diagonal, since the x component of the magnetisation has no effect on the demagnetisation
field in the y- or z-direction.

~Hdemag = −ℵ
~M

µ0
(2.1)

Additionally the sum of the diagonal of matrix ℵ is always unity, meaning the demagnetisation
field can’t be stronger than the magnetisation of the particle. For a sphere, the values on the
diagonal are 1

3 , 1
3 , 1

3 . This makes sense since the geometry is point symmetric, meaning that
there is no preference in either the x-,y- or z-direction. For an infinite wire running along the
x-axis the values are 0, 1

2 , 1
2 , this time the symmetry along the wire results in no preference for

the y- and z-direction. Lastly for the infinite plane oriented along the x-y work-plane the values
are 0, 0, 1. The magnetic nanoplatelets can be approximated by the infinite plane matrix. The
demagnetisation field interacts with the magnetic moment of the particle, equation 2.2 provides a
formula for calculating the energy density (us[

J
m3 ]) of this interaction .

ushape = −1

2
~Hdemag · ~M (2.2)

Here ~Hdemag[
A
m ] denotes the demagnetisation field and ~M [T ] the magnetic moment vector.

However for the NanoPlatelet the demagnetisation field can be described as

~Hd = −ℵ
~M

µ0
= −ℵz

Mz

µ0
,

since there is only one non-zero (ℵz = 1) component of the ℵ matrix. Additionally, using the
angles defined in figure 2.1 the z-component of the magnetic moment can also be described as
Mz = Ms cos(θ). Here Ms = | ~M |[T ] is the saturation magnetisation of the material. Using these
relations and the definition of the dot product, equation 2.2 can be written as:

ushape =
M2
s

2 µ0
cos(θ)2

=
M2
s

2 µ0
(1− sin(θ)2).

(2.3)

Because this energy density function will be used to find the minimum energy state, the
constant (1) in equation 2.3 will be omitted in further equations. Having worked out the energy
density for the shape anisotropy, next is the energy density related to the interface. For this the
energy density is defined as:

uinterface = K · sin(θ)2. (2.4)

Here K is the anisotropy constant and θ the angle of the magnetic moment with the easy axis.
To get the total energy density related to the anisotropy of the NanoPlatelet, the equations 2.4
and 2.3 are combined into the following equation:

uanisotropy = ushape + uinterface

= (K − M2
s

2 µ0
) sin(θ)2

= Keff sin(θ)2

(2.5)

For equation 2.5 a new constant is defined, called the effective anisotropy constant:

Keff = K − M2
s

2 µ0
. (2.6)
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If Keff > 0 the interface anisotropy is greater than the shape anisotropy, resulting in per-
pendicular magnetic anisotropy. Similarly, if Keff < 0 the shape anisotropy is greater than the
interface anisotropy resulting in a magnetic anisotropy in-plane of the particle. From equation 2.5
it follows clearly that the anisotropy energy can only be either positive or zero, because of the
quadratic sine: sin(0)2 = 0 and sin(±π2 )2 = 1. With a maximum anistropy-energy of Keff when
the magnetic moment is perpendicular to the easy axis, and thus parallel with the hard axis (HA).

2.1.2 Zeeman interaction

The physics to be discussed here is the interaction between the magnetic moment ( ~M [T ]) of the

domain with the external magnetic field ( ~H[Am ]). This interaction is called the Zeeman interaction
and results in an energy term which greatly increases when these two vectors are not aligned. The
result is that the energy can be calculated by taking the dot product of ~H with ~M . Resulting
in equation 2.7, where the external magnetic field has a strength H[Am ] and an angle α[rad] with
respect to the easy axis.

uZeeman = −HMs · cos(α− θ) (2.7)

In this equation the term Ms[T ] is the magnetic saturation, H[Am ] the strength of the applied

field and uZeeman[ Jm3 ] the energy density. It is important to notice the minus sign, this implies
that to minimise the Zeeman-energy the term cos(α− θ) needs to be maximised. This is the case
for cos(α − θ) = cos(0) = 1, when magnetic moment and the applied field are aligned parallel.

Because of the symmetry of the cosine the Zeeman-energy will be positive when ~M and ~H are
anti-parallel(α− θ = ±π), therefore maximising the Zeeman-energy.

2.1.3 Switching field

Combining equation 2.5 and 2.7 we get the equation for the total energy density for one layer:

utotal = uZeeman + uanisotropy

= −H Ms cos(α− θ) +Keff sin(θ)2.
(2.8)

As discussed in section 2.1.1 and section 2.1.2 the position of the magnetic moment ~m is
what really impacts the energy of the system. And to minimise this energy the angle of the
magnetisation is the variable parameter. From equation 2.8 it is possible to deduce the magnetic
field strength associated with the magnetic anisotropy, this field strength is called Hk[Am ]. If the
external magnetic field is oriented along the hard axis (α = π

2 ) this is the field strength needed to
align the magnetic moment with the magnetic field.

uα=90 deg = −H Ms cos(
π

2
− θ) +Keff sin(θ)2 (2.9)

∂uα=90 deg

∂θ
= −H Ms cos(θ) + 2 Keff sin(θ) cos(θ) = 0 (2.10)

H Ms cos(θ) = 2 Keff sin(θ) cos(θ) (2.11)

H =
2 Keff

Ms
sin(θ) (2.12)

Starting with 2.9, having set α = π
2 , the partial differential is taken with respect to θ. This

is then used to determine the minimum energy equation, by setting equation 2.10 to be equal to
zero. This results in the equations 2.11 and 2.12, and lastly the angle θ is of course equal to π

2

when H = Hk. Resulting in the following relation for the anisotropy field Hk = 2K
Ms

.
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CHAPTER 2. THEORY

2.1.4 RKKY-interaction

Section 2.1 has discussed the basic physics implemented in the SW model. However, for the
NanoPlatelets this is not enough, they experience an effect called RKKY-interaction[5] named after
Ruderman-Kittel-Kasuya-Yosida. This interaction is an example of indirect exchange coupling.
For NanoPlatelets this means the magnetic moments of the two magnetic layers are influenced
by each other. Because of the nonmagnetic spacer layer between the two magnetic layers the
wave functions of the conduction electrons interfere with each other, resulting in scattering and
transmission phenomena.

The thickness of the spacer layer is crucial in the behaviour of the RKKY-interaction, since
the thickness defines if the layers are either ferromagnetically (F) or anti-ferromagnetically (AF)
coupled. Without going too deep into the derivation of the theory, it is interesting to understand
how this change in coupling can occur based on the thickness. To do this the RKKY function[6]
is needed:

F [ξ] = (sin ξ − ξ cos ξ)/ξ4 (2.13)

where ξ[arb.un.] is defined as ξ = 2kF r, with kF [ 1
m ] the Fermi wavevector and r[m] the

thickness of the nonmagnetic layer. One thing to note is the dependency of this equation on ξ−4,
such that for larger values of ξ it rapidly approaches zero. Meaning the effect of the RKKY-
coupling results in a sizeable interaction compared to the magnetic anisotropy and Zeeman energy
for nanometre thin layers.

5 10 15 20

-0.004

-0.002

0.000

0.002

0.004

0.006

ξ

F
(ξ
)

RKKY - coupling

Figure 2.2: Graph showing the result of the RKKY function, the x-axis shows the dimensionless
parameter ξ as defined above. The y-axis shows the strength of this function.

Whenever the value of F [ξ] is positive the two layers are coupled ferromagnetically, and if it
is negative the coupling is anti-ferromagnetically. The first minimum is at around ξ = 5.5 and
results in the strongest anti-ferromagnetic coupling.

2.2 Stoner-Wohlfarth model including RKKY-coupling

In this section the Stoner-Wohlfarth including the RKKY-coupling term will be discussed. Figure
2.3 shows an abstract representation of this model, the magnetic layers are shown in dark blue,
and the nonmagnetic layer is shown in a lighter blue. The Zeeman interaction and anisotropy
of the two magnetic layers are independent, however for this model the parameters H[Am ], Ms[T ]

and K[ Jm3 ] are assumed to be equal for the top and bottom layer. Because the parameters are
equal they can be grouped together, which would not be possible otherwise. The definition of the
different angles can be seen in figure 2.3, with θ1 being the angle of the magnetisation of the upper
layer, θ2 the angle of magnetisation of the lower layer and α the angle of the applied magnetic
field. All these angles are with respect to the easy axis, which is perpendicular to the plane in the
case of NanoPlatelets.

Simulating the behaviour of synthetic anti-ferromagnetic NanoPlatelets using COMSOL 9



CHAPTER 2. THEORY

Figure 2.3: Definitions two layer coupled Stoner-Wohlfarth model, magnetic moments are given
in red and the applied magnetic field in green.

With the angles defined, the RKKY-coupling can be added. As discussed in section 2.1.4 the
energy will be minimal when the magnetisation is anti-parallel, or the difference in angle ∆θ = ±π.
This can be done by taking the dot product of the two magnetisation vectors, or the cosine of
the difference in angle, resulting in a positive value when ∆θ = 0. Taking all the changes for the
modified SW model into account results in the following equation:

utotal = −HMs · (cos(α− θ1) + cos(α− θ2)) +Keff · (sin(θ1)2 + sin(θ2)2) +
J

t
cos(θ1− θ2). (2.14)

Here the first two terms, are the Zeeman energy and Anistropy energy for the different layers.
The third and new term, is the energy associated with the RKKY-interaction. Where J [ Jm2 ] is
a surface energy term, positive in the case of anti-ferromagnetism. This J is proportional to the
function given in equation 2.13 but with opposite sign. The energy decreases with the thickness
t[m] of the magnetic layer. Therefore the effect of the RKKY-interaction is only at the interface
between the magnetic and non-magnetic layer. When increasing the thickness of the magnetic
layer, the volume increases and the effect of the RKKY interaction becomes less with respect to
the anisotropy and Zeeman energy, since these scale with the volume of the layer. Keeping in
mind that the thickness of the non-magnetic spacer layer is fixed, as discussed in section 2.1.4.

As with section 2.1.3 it is interesting to investigate the point at which the magnetic moment
is expected to ’switch’. Assuming the magnetic field is along the easy axis, the magnetic moment
anti-parallel to this field will need to overcome both the energy associated with the anisotropy as
well as the energy associated with the RKKY coupling. This means that the switch field will be
a combination of the two, resulting in a new field strength called Htotal.

2.3 Magnetic torque

In section 4.1.2 a verification will be done for the calculation of the magnetic torque simulated
by COMSOL. To be able to compare those results with the theoretical value a short explanation
will be provided. First of all the magnetic torque is not the same as the mechanical torque. The
latter is the result of a force acting on a point a certain distance away from its rotation axis. The
magnetic torque is different in that it acts on the magnetic moment of a material. This magnetic
torque is for instance the reason electronic motors can work. The magnetic torque per volume
(τ [ Nm2 ]) is defined as the cross product (×) between the magnetic moment and a magnetic field:

~τ = ~M × ~H (2.15)
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CHAPTER 2. THEORY

This equation can be rewritten using the definitions of the Stoner-Wohlfarth model for the
magnetic moment and magnetic field resulting in the following equation:

τ [α, θ] = Ms H (cos(θ) sin(α)− sin(θ) cos(α)) (2.16)

Where α[rad] is the angle of the magnetic field and θ[rad] the angle of the magnetisation.
However, to get the total magnetic torque acting on the magnetic moment of a particle, the above
equation needs to be integrated over the volume of this particle. Assuming Ms[T ] and H[Am ] are not
dependent on their position in the particle, equation 2.16 can be multiplied with the volume. The
torque is maximum when the difference between α and θ is equal to π

2 . For instance when θ = 0[rad]
and α = π

2 [rad], equation 2.16 gives the maximum torque to be Tmax[N m] = V τ = V Ms H.

In this chapter the Stoner-Wohlfarth model for the NanoPlatelets has been discussed, in the
following chapter it will be implemented in MatLab
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MatLab

To be able to validate the results obtained from COMSOL simulations a numerical model is used.
The Stoner-Wohlfarth model only looks at the particle in two dimensions, while the model cre-
ated using COMSOL will be three dimensional. This creates an additional degree of freedom for
the magnetic moments, which could result in deviations from the two dimensional model. This
is something to keep in mind for when comparing the results. This model will be implemented
and solved using MatLab. First the model for a single domain is implemented to better under-
stand the effects of the Zeeman interaction and magnetic anisotropy. This is important since the
two magnetic layers of the NanoPlatelet each individually behave as a single domain, only by
the addition of the RKKY coupling changes it into the full SW model. After the single domain
is verified, the double domain coupled by RKKY is implemented. In chapter 4 the double do-
main Stoner-Wohlfarth model is implemented in a COMSOL model, forming the basis for further
modelling.

3.1 Double domain Stoner-Wohlfarth model

This model will describe two magnetic domains coupled using the RKKY interaction, this is done
by implementing equation 2.14 and its relevant parameters. The complete MatLab code can be
found in appendix A.

The code starts by initialising the relevant parameters, which in the case of the double domain
SW model are the saturation magnetisation Ms = 1[T ], the effective anisotropy Keff = 1∗105[ Jm3 ],
the thickness of the cobalt layers t = 1 ∗ 10−9[m] and the surface energy term associated with
the RKKY interaction J = 2.5 ∗ 10−4[ Jm2 ]. The saturation magnetisation of Ms = 1[T ] implies
that the magnetic moment of the top and bottom layer are both Mtop = Mbottom = 0.5[T ].
Using equation 2.12 it is possible to use the parameters provided to calculate Hk, which results in
Hk = 2∗105[Am ]. However this is the switching field if there is no RKKY interaction, and therefore
the switching won’t happen at a single value for the field strength. There will be four values at
which a switch will happen, H = ±Hk ±Hrkky. The external magnetic field strength will range
from H = −5∗105[Am ] to H = −5∗105[Am ] in small increments. After each increment the previous
equilibrium will encounter a small disturbance to simulate a thermal fluctuation. This is done to
give the model a chance to escape a local minimum for a global minimum if the situation occurs.
The code will calculate the angle of the upper and lower domain, based on the angle and strength
of the external magnetic field. There are a few configurations with which it is possible to predict
the expected behaviour of the magnetisation, based on the theory discussed earlier. These different
configurations are achieved by varying the angle of the external magnetic field with respect to the
easy axis. When there is no external magnetic field (H = 0[Am ]) the magnetic moments of the two
layers should cancel each other out resulting in no net magnetic moment.

The first configuration is when the magnetic field is applied perpendicular to the plane, which
means it is parallel to the easy axis. For strong magnetic fields (H = ±5 ∗ 105[Am ]) the magnetic
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moments are expected to align themselves parallel to the applied field. To get a better grasp
on the situation, the components of the magnetic moment are shown parallel and perpendicular
to the easy axis, separated for the upper and lower domain. Figure 3.1 shows the total parallel
component for the configuration where the magnetic field is varied along the easy axis. On the
y-axis the sum of the magnetic moment is shown, where Ms is the saturation magnetisation for
one domain.

Figure 3.1: This graph shows the total magnetisation for α = 0◦. The blue line is for increasing
the magnetic field, and the red line when the magnetic field is decreased again.

The explanation for the sloping behaviour seen in figure 3.1 is the strong effect of the RKKY
coupling compared to the effect of the anisotropy. This means the magnetic moments, being
aligned parallel to each other, want to move away from each other more than that they want to
be aligned to the easy axis. Which explains the magnetic moment aligning itself partially with
the hard axis, as can be seen in figure 3.2 on the top row. This figure shows the projections of the
magnetic moment along the hard- and easy axis.

The upper left part of this figure shows the magnetic moment component of the first domain
perpendicular to the easy axis, the lower left is the same domain but the component parallel to
the easy axis. The blue line shows the effect of increasing the magnetic field from

−5 ∗ 105[
A

m
] to + 5 ∗ 105[

A

m
],

while the red line shows the result for decreasing the magnetic field. It clearly shows that the
magnetic moment projected along the hard axis has a non-zero component when the switch hap-
pens. Important as well is that for the top and bottom layer they are mirrored, resulting in still
a net zero-magnetic moment along the hard axis.

The next configuration used is when the applied magnetic field is perpendicular to the easy axis
(or parallel with the hard axis). Again the starting position for H = 0[Am ] is with the two magnetic
moments cancelling each other. However, by increasing the field strength the Zeeman interaction
will start to dominate the energy function. Eventually, when the field is strong enough, the
magnetic moments should align themselves along the hard axis. The results for this configuration
can be seen in figure 3.3

The magnetic moments along the hard axis agree with the expectations, since they increases
linearly with the strength of the magnetic field. The behaviour of the components parallel to the
easy axis is actually quite interesting, since it is not as predictable as the previous situation with
a = 0◦. The most noticeable part of the graph is the circular result obtained for the components
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Figure 3.2: This graph shows the different components of the magnetic moments for the top layer
(Left) and bottom layer (Right), along the hard axis (Top) and the easy axis (Bottom). The
magnetic field is oriented along the easy axis, thus α = 0◦.

Figure 3.3: This graph shows the different components of the magnetic moments for the top layer
(Left) and bottom layer (Right), along the hard axis (Top) and the easy axis (Bottom). The
magnetic field is oriented along the hard axis, thus α = 90◦.

along the easy axis. This makes sense because the anisotropy energy decreases with sin2 and the
Zeeman energy with cos, this would explain the circular graph.

Lastly it would be interesting to see what happens when the magnetic field is oriented at an
angle of α = 45◦. For large values of the magnetic field, the magnetic moments are again expected
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to align themselves with the field. The simulated magnetic behaviour is shown in figure 3.4.

Figure 3.4: Total magnetic moment for an applied field with α = 45◦. Shown are the components
parallel and perpendicular to the easy axis, both for increasing and decreasing fields.

Figure 3.5 shows the magnetic moment along the hard axis increases until it reaches the
maximum value of Mmax = 0.5[T ], it then drops off again. This represents the magnetic moment
oriented in the opposite direction of the magnetic field switching signs and aligning itself with the
magnetic field. For the bottom row the switching is even more clear, as the component along the
easy axis switches sign. However unlike with the configuration of α = 0◦, after the switch the
magnetic moment is not aligned completely with the easy axis.

Figure 3.5: his graph shows the different components of the magnetic moments for the top layer
(Left) and bottom layer (Right), along the hard axis (Top) and the easy axis (Bottom). α = 0◦.
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COMSOL

This chapter will cover the program COMSOL, and how it can be used in the modelling of
NanoPlatelets. The chapter will start by describing the tools COMSOL provides to model magnetic
particles. The magnetic fields package allows for the simulation of a demagnetising field as well
as simulating the torques and forces acting on the magnetic particle. Next the created COMSOL
model is discussed and the adjustments that had to be made to be able to use the magnetic
fields package in the modelling of NanoPlatelets. Lastly the results obtained from simulating the
final model for situations similar to the ones discussed in section 3.1 the double domain Stoner-
Wohlfarth model using MatLab.

COMSOL is a simulation program that excels in combining different physics in its model.
The combination of physics is useful because it allows to first create a model for electromagnetic
part of the problem, the interaction between the magnetisation and the magnetic field. And then
combine this model with for instance a fluid dynamics package. Assuming both physics are defined
correctly, the resulting model is a representation of the behaviour of magnetic nanoplatelets in a
cancer cell. This thesis will only describe the reaction of the magnetisation to the external field.

4.1 Magnetic fields physics

The physics package used to model the behaviour of the magnetisation of the nanoplatelets is the
magnetic fields (mf) package. The package is used to calculate the magnetic fields and induced
current distribution in and around magnets, coils and conductors. The package will be used to
approximate the magnetic behaviour of perpendicular magnetised particles. However the package
assumes the magnetic particle to be a permanent magnet, which is not sufficient for modelling the
magnetic behaviour of the NanoPlatelet.

To add the Zeeman interaction, anisotropy and RKKY interaction, the theoretical SW model
is modified in such a way that COMSOL can solve for the desired equilibrium situation. For
this, many solutions have been tried, but they were usually only effective in the post processing
of the simulated data. The desired solution would be to write a complete new physics package
specifically tailored for these interactions. COMSOL does provide the ability to create custom
physics packages, but this turned out to be rather complicated and time consuming. COMSOL
provides the ability to code your own functions in C, but here the lack of experience in C was
a problem. Another potential solution was the optimisation package provided by COMSOL, but
this is not included in the base license and it should be possible to solve for without having this
package.

4.1.1 Demagnetisation field

As discussed previously in section 4.1.1, the demagnetisation field present in the nanoplatelets is
important in the simulation of the magnetisation. To make sure COMSOL is correctly calculating
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this field, it will be compared to the theoretical value for three geometries: a plane, a wire and a
sphere.

The verification model used is to morph the geometry from a wire-like particle towards a
sphere. The model returns the non-zero components on the diagonal of the ℵ matrix. The
primitive geometry used for this, is to go from an elongated ellipsoid to a sphere. The simulation
will result in a graph showing how the components of the matrix evolve as the geometry changes.
The morphing is achieved by using a single parameter (da,b) for the a and b semi-axis of the
particle, starting from a small value and increasing this towards the value for the radius of the
sphere (R0), shown in figure 4.1. Taking the da,b sufficiently small, the resulting geometry is an
approximation for the wire situation, seen in figure 4.1a. Arriving at the spherical geometry, the
components of the ℵ matrix should be the same as for the theoretical value, as there are no infinite
dimensions as was the case for the wire and plate.

(a) da,b = 0.05[R0] (b) da,b = 0.2[R0]

(c) da,b = 0.5[R0] (d) da,b = 1[R0]

Figure 4.1: Geometry of the particle used in the demagnetisation verification, for different values
of da,b

To ’probe’ the particle and measure the demagnetisation field, for each iteration of da,b the
magnetic moment of the particle is oriented in such a way that it is first parallel to the x-axis.
The demagnetisation field is measured in the model after which the magnetic moment is changed
to be parallel to the y-axis, with another measurement. This process is then repeated lastly for
the z-axis. Besides magnetisation, there is no other source of magnetic fields, meaning that any
fields that do arise will be the result of the demagnetisation field, calculated by COMSOL. To then
acquire the components of the tensor, equation 2.1 is written such that ℵi = −Hi

Mi
for i = x, y, z.

The results are shown in figure 4.2, where the z- and y-components are so similar that the lines
overlap.

As discussed earlier, a snapshot of the geometry for different values of da,b is given in figure
4.1. Starting with the lowest value for da,b, which is the approximation for the case of a wire.
This implies that the demagnetisation field in the x-direction (along the length of the wire) will
be zero, and the components in the z- and y-direction are both 1

2 . The results shown in figure 4.2
indeed agree with this prediction. The blue line, which represents the x-component of the matrix,
will pass through zero. However, for it to be completely zero the wire would need to be infinite
which is not possible for COMSOL. The values for the y- and z-component are close to 1

2 , but not
quite since the three values will have to add up to 1. Figure 4.1 shows the different geometries
used in the simulation, where 4.1a is the approximation of the infinite length wire and 4.1d is a
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Figure 4.2: Simulated ℵ components for a morphing geometry, the blue line shows the ℵx,x com-
ponent of the matrix and the red and green line (which lay on top of each other) show the ℵy,y
and ℵz,z components.

sphere.
The values calculated by COMSOL for da,b = 0.05R0 are: ℵx = 0.010, ℵy = 0.498 and

ℵz = 0.499. These values are close but not exact to those of a wire (0, 1
2 ,

1
2 ), the reason for

this is the approximation and the numerical error. The other comparison with theory is for the
geometry of a sphere, which theoretically should result in all the tensor components being equal
to 1

3 . Figure 4.2 shows that the components clearly do converge to a value approximately 1
3 for

da,b = R0. Extracting the calculated components from COMSOL, gives: ℵx = 0.337, ℵy = 0.337
and ℵz = 0.337. These components all add up to 1.011, similar to the situation for da,b = 0.05[R0].
Besides the slight numerical inaccuracy the values are all equal to each other, which should be the
case for a sphere ( 1

3 ,
1
3 ,

1
3 ). Meaning there is no directional preference for the magnetisation, as

discussed in section 2.1.1.

4.1.2 Torque calculation

One of the most important modules of the magnetic fields package that will be used in the model is
the ”Magnetic force calculation module”, which will calculate the force and torque on a magnetic
particle under the influence of an external field. For this equation 2.15 from section 2.3 will be
used. From this equation a relation for the maximum torque was deduced, which was

Tmax = V τ = V Ms H (4.1)

The simulation used to verify the calculation of the magnetic torque is a very simple one. The
main component is a magnetic sphere with radius R0 = 2 ∗ 10−6[m] and a magnetic moment
M = 1[T ] pointing along the x-axis. Using the magnetic fields package it is possible to just define
the magnetic moment to be along any direction. This magnetic particle is kept static while a
magnetic field H = 5 ∗ 105[Am ] is applied, this field rotates along the y-axis which will result in
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a torque along this axis. For the theoretical torque this magnetic field is assumed to be uniform
and constant. However, as was proved in the previous section COMSOL actually does take into
account the effects of the shape anisotropy, resulting in a non-uniform magnetic field inside of the
particle. This can be seen clearly in figure 4.3, which shows three snapshots of the simulation
for different angles of the magnetic field. The first image is taken when the magnetic field and
magnetic moment are aligned, this would result in not magnetic torque. The magnetic field inside
of the particle is less than outside, this is because of the demagnetisation field discussed in section
2.1.1. Using the parameters used in this model and equation 4.1 the maximum torque is calculated
to be:

Tmax = V τ = V Ms H

=
4

3
πR3

0 Ms H

=
4

3
π(2 ∗ 10−6[m])3 1[T ] 5 ∗ 105[

A

m
]

= 1.6755 ∗ 10−11[N m]

(4.2)

Figure 4.3: This series of figures shows the model used to verify the torque simulated by COMSOL.
The spherical particle can be seen clearly in the middle of the figures. The green arrow represents
the magnetic moment of the particle, the red arrows shows the angle of the applied magnetic field
and the black arrows show the magnetic field lines simulated by COMSOL.

Figure 4.4 shows the results obtained from the COMSOL simulation. The dotted lines near the
top and bottom of the graph show the theoretical value for the maximum torque calculated above.
It is clear that the simulated torque does not reach the maximum theoretical value, this most
likely is because the theoretical value assumes a uniform magnetic field. The conclusion of this
verification is that the torque simulated by COMSOL is most likely a more accurate representation
of the theoretical value used as a verification. This means that in future models, this torque can
be used in the interaction of the particle with for instance a liquid or the membrane of cells.
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Figure 4.4: This graph shows the simulated torque using the COMSOL package, while the dotted
line shows the theoretical maximum torque. For this model the torque on a spherical magnetic
particle in a rotating magnetic field is simulated.

4.2 Model

To model all the different physics associated with the NanoPlatelets multiple packages will be
used. First of all, as mentioned before, the magnetic fields package. This package will be used to
simulate the physics between the external applied field and the static magnetic moments. Besides
the magnetic field mechanics, this package can also be used to calculate the mechanical torque
induced by the magnetic moment and field.

4.2.1 Geometry

The geometry used in this model can be described by three discs stacked upon each other, a figure
of these discs can be found in the appendix A.1. The top and bottom discs are the cobalt discs
and will be used for the magnetisation. The intermediate layers is ruthenium and is added for the
simulation of the internal magnetic field. Since a big influence on the computation time used to
solve the simulation is the meshing of the geometry, it is important to not only define the correct
geometry but also use an appropriate finite element model. Since the diameter of the discs used
in Mansell are 2µm while the thickness is on the order of a few nanometres, the meshing can be
quite difficult. Because of some problems that arise with such a large difference in the geometry,
the particle used in the model is only 0.2µm. This effects the torque and the demagnetisation
field.

4.2.2 Implementation of the Stoner-Wohlfarth model

The addition of the Zeeman interaction, anisotropy and the RKKY interaction proved to be more
challenging than expected. Multiple solutions have been tried, but eventually the most practical
solution has been to use a different package provided by COMSOL. This package is the weak
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form partial differential equations package. This package solves any equation in the form of
ut + ux + uy + uz + u− f = 0. Even though the Stoner-Wohlfarth model actually isn’t a partial
differential equation, it can be rewritten in a way that allows for the PDE package to solve for the
minimum energy state. The target form for this rewritten equation is simply in the form u = 0,
since it is not required for the PDE package to have differential (ut, ux, uy, uz) components. Of
course u = 0 is a very basic equation, however there didn’t seem to be a clear simple way of solving
these kind of equations, which is why a partial differential equations package was used instead.

The challenging part of rewriting equation 2.14 is to realise that the minimum energy state
is not the same as the zero energy state. Which is what would be solved for if equation 2.14 is
simply be implemented without modifications in the PDE package. The minimum energy state is
acquired by differentiating with respect to the angle θ, however there is no clear method of using
the PDE package for this as it was just able to do spatial differentiation. It is still possible to use
equation 2.14 to create a new equation such that:

utotal[θ1, θ2]− uZeeman,target − uAnisotropy,target − uRKKY,target = 0. (4.3)

Here utotal[θ1, θ2] is the original equation, with the dependent variables θ1 and θ2. These vari-
ables represent the magnetic moment of the top and bottom layer. The three additions u...,target
are the theoretical minima for each component of utotal. Equation 4.3 will only ever equal zero
in absence of an applied magnetic field and with the magnetic moments aligned with the easy
axis. When a magnetic field is applied, the PDE package will calculate a value for utotal using
the dependent variables that approaches equation 4.3 as close as possible. To not get lost in the
different formulas, the PDE package will solve the equation separate for the top and bottom layers,
with the exception of the RKKY coupling of course. As discussed in the theory, the Zeeman and
anisotropy energy are independent for each layer, simplifying the equations. In the next part, the
different minima (u...,target) used in equation 4.3 will be derived.

Starting with the Zeeman interaction, this term reaches the minimum energy when the mag-
netic moment and the magnetic field are aligned, or

α− θ = ∆φ = 0[rad]

the difference in angle between ~H and ~M . As described in section 2.1.2, the Zeeman interaction
is based on the dot product between the magnetic moment and the magnetic field. This results
in the following equation:

uZeeman,target = − ~H · ~M
= −H Ms cos(∆φ)

= −H Ms.

(4.4)

As discussed in the theory, the anisotropy energy can only every be zero or positive. This
implies that this term is already in the desired form

K sin(θi)
2 = 0.

Here the subscript i indicates the different layers, i = 1 for the top layer and i = 2 for the bottom
layer. Therefore, uAnisotropy,target = 0.

Because for NanoPlatelets J > 0, the RKKY energy is only minimal when the magnetic
moments of the top and bottom layer are aligned anti-parallel (θ1 − θ2 = ±π[rad]). This results
in
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uRKKY,target =
J

t
cos(θ1 − θ2)

=
J

t
cos(±π)

= −J
t
.

(4.5)

However, taking the dependent variables to be θi turned out to be incorrect. These angles can
be any value between 0 and 2π, and it would wrap around from 2π back to 0. The wrapping around
is not something that COMSOL recognises, and because of the way it solves the problem it resulted
in values for θi in the thousands radians. A solution to this problem is to use different dependent
variables, which are not angles. For this model the different vector components, Mx My Mz, of
the magnetic moments are used, instead of the angle of these vectors. The downside of using the
vector components as opposed to the angle, is that the length of the vector is not static anymore.
To solve this problem a point-wise constraint (part of the PDE package) is added, which will
require sqrt(M2

x +M2
y +M2

z ) = Ms to always be true. This change of dependent variables results
in an equation with six dependent variables (three for each magnetic layer) as opposed to two
dependent variables (one for each magnetic layer).

Changing from an angle to the vector component requires some other adaptations besides the
constraint of the vector length. The dot and cross product used in equation 2.14 need to be
rewritten as well. The RKKY interaction can also be rewritten to a be a normalised dot product,
rewriting the cosine using

cos(∆φ) = (
~M1 · ~M2

M2
s

).

COMSOL then solves equation 4.3 and tries to approach a solution of

utotal[M1,x,M1,y,M1,z,M2,x,M2,y,M2,z]− utotal,target = 0

as closely as possible, such that the different weights (H Ms, K, J
t ) of the energy function de-

termine their impact on the final solution.

4.2.3 Shape anisotropy

The reason for chapter 4.1.1 is of course to investigate if K can be used as opposed to Keff .
So the different parameters used in the PDE should be acquired from the simulation itself. Of
course this means that the resulting magnetic field is dependent on the orientation of the magnetic
moments, which in turn is dependent on the internal magnetic field. This is where the solver comes
into play, COMSOL can solve the physics in a manner that makes them coupled, or solves them
independently and then combines them afterwards. Both have their pros and cons, for this problem
and because it was found that using a different solver configuration for the magnetic fields package
as opposed to the PDE package the segregated solver is used. Which first solves for the magnetic
fields lines, after which it passes the ~H and ~M components to the PDE package which uses these
components to solve for Mi,j for i = 1, 2 and j = x, y, z. These components are then used to define
the magnetisation using the magnetic fields package.

4.2.4 Solver

As mentioned above, the solver used is a segregated one. Besides this there also is an added
parametric sweep, this is the part of the solver that changes one or more parameters in the model
and then runs the solver for this new situation. The model right now just changes the strength
of the magnetic field based on the increments and range set manually. Thanks to delving into
the settings associated with the parametric sweep, found under the parametric solver, an option
is enabled to start the new simulation given the solution from the previous solver iteration.
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4.3 Results

In this section the results obtained from the running the simulation in different configurations
are discussed, these configurations are identical to the ones used in the MatLab model (section
3.1). Similarly the parameters used for this simulation are: Ms = 1[T ], K = 1.03 ∗ 105[ Jm3 ],

J = 2.5∗10−4[ Jm2 ] and t = 9∗10−10[m], again equal to the parameters used in the MatLab model.

In these simulations, the magnetic field is varied from H = −6∗105[Am ] to H = +−6∗105[Am ]. The
parameter describing the angle of the magnetic field with respect to the particle is the θ parameter,
as opposed to the α parameter used for the MatLab model. The first situation simulated is when
the magnetic field is parallel to the easy axis, and thus θ = 0[rad]. As discussed in section 3.1 the
total magnetic moment is expected to be zero, as the individual moments are aligned anti-parallel.
For the extreme values of the magnetic field strength, these magnetic moments will be aligned
with the applied magnetic field. The results of this simulation can be seen in figure 4.5a. To be
able to make a comparison with the results obtained by the MatLab model the graph from the
MatLab simulation is shown underneath it.

Figure 4.5 allows for the comparison of the two models, and as a result allows something to be
said about the viability of modelling the magnetic behaviour of NanoPlatelets using COMSOL.
The first check would be to see if the COMSOL model is in agreement with the assumptions
made before about the behaviour. These being the net zero total magnetisation when the external
magnetic field is absent. As well as the magnetisation reaching the saturation magnetisation for
strong magnetic fields. These two main assumptions are indeed present in the simulation results
of COMSOL. There are a few deviations between the results obtained using the MatLab model
and the COMSOL model.

The first anomaly occurs around H = ±4 ∗ 105[A/m], the MatLab model predicts that the
switch happens slightly earlier, around H = ±3.7 ∗ 105[A/m].
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(a) Graph showing the magnetisation as simulated by COM-
SOL, the effect of the shape anisotropy is calculated by COM-
SOL.

(b) Graph showing the magnetisation as simulated by MatLab,
here Keff is approximated using equation 2.6

Figure 4.5: Shown here are the results for running the simulations with the magnetic field parallel
with the easy axis. Both models used the same parameters, with the exception of Keff .

24 Simulating the behaviour of synthetic anti-ferromagnetic NanoPlatelets using COMSOL



CHAPTER 4. COMSOL

The next configuration of the simulation is for when the magnetic field is perpendicular to the
easy axis. However, unlike with the 3D model, there is not just one direction that is perpendicular
to this axis. Because of this the magnetic field is defined to be laying along the x-axis, resulting
in just the x-component of the magnetisation changing. This is why in figure 4.6 the only part
shown is the x-component of the total magnetisation.

(a) Graph showing the magnetisation as simulated by COM-
SOL, the effect of the shape anisotropy is calculated by COM-
SOL. Because of a mistake, the magnetic field along the x-axis
is plotted using the unit of T as opposed to the unit A/m. Sim-
ilarly the y-axis shows the magnetisation using A/m as opposed
to T .

(b) Graph showing the magnetisation as simulated by MatLab,
here Keff is approximated using equation 2.6

Figure 4.6: Shown here are the results for running the simulations with the magnetic field having
an angle of α = 90◦ with the easy axis. Both models used the same parameters, with the exception
of Keff .

The results shown in this figure are because of the difference in units used not comparable.
However the shape of the graph does agree with the expectations.
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The last configuration used to compare the COMSOL model to the MatLab model is for a
magnetic field diagonal to the easy axis. The results can be seen in figure 4.7a.

(a) Graph showing the magnetisation as simulated by COM-
SOL, the effect of the shape anisotropy is calculated by COM-
SOL.

(b) Graph showing the magnetisation as simulated by MatLab,
here Keff is approximated using equation 2.6

Figure 4.7: Shown here are the results for running the simulations with the magnetic field having
an angle of α = 45◦ with the easy axis. Both models used the same parameters, with the exception
of Keff .

Similar to the other simulations, the MatLab model and COMSOL model agree on most points.
For this simulation a slight difference can be seen near H = ±4 ∗ 105[Am ]. This implies that the
magnetisation prefers the local energy minimum more in the COMSOL model than it does for the
MatLab model. This can very well be a result from the settings used for the PDE package, or the
COMSOL solver in general.

26 Simulating the behaviour of synthetic anti-ferromagnetic NanoPlatelets using COMSOL



Chapter 5

Conclusions

COMSOL multiphysics is a program used in creating models using many different physics, there-
fore it could be useful in modelling NanoPlatelets. However, the magnetic fields package provided
by COMSOL only simulates the behaviour of permanent magnets, which is not useful for describ-
ing the NanoPlatelets. The Stoner-Wohlfarth model does predict the more complex behaviour
associated with the NanoPlatelets. The aim of this thesis has been to implement the Stoner-
Wohlfarth model in COMSOL. A MatLab script was written to provide a tool to verify the results
obtained using COMSOL.

Part of this process has been the verification of the demagnetisation field and magnetic torque
simulate by COMSOL. The simulation results are compared with results obtained from the MatLab
model. the comparison resulted in a few deviations between the results. The three main reasons
for these deviations are:

• The COMSOL model uses the simulated demagnetisation field, based on the geometry of the
particle, to include the shape anisotropy used in the Stoner-Wohlfarth model. The MatLab
model however uses an approximation for this, assuming the particle to be an infinite wide
plane.

• The COMSOL model is three dimensional, while the MatLab model is only two dimensional.
This provides an additional degree of freedom for the magnetic moments of the NanoPlatelet.

• As with any simulation, COMSOL has numerical inaccuracies. These are mentioned here
because depending on the solver setting used the error can be decreased at the cost of
computation time.

5.1 Outlook

The first reason mentioned for the deviations between the MatLab model and the COMSOL model
is the shape anisotropy of the particle. This shape anisotropy is caused by the demagnetisation
field and it has been verified that COMSOL correctly calculates these fields. However, the Stoner-
Wohlfarth model uses an approximation for this shape anisotropy. COMSOL could be used to
refine this approximation by calculating the shape anisotropy of the NanoPlatelet. The calculated
anisotropy can then be used in the MatLab model to provide a more accurate verification.

Both the COMSOL model and the MatLab model assume top and bottom layer are equal,
both in thickness as in their magnetic moment. It might be interesting to investigate the effects
of creating an imbalance between the two layers, by either changing the magnetic moment or the
thickness of the magnetic layer. This imbalance would result in a anti-ferrimagnetic particle, as
opposed to an anti-ferromagnetic particle.

Besides for the verification of the simulated torque, the force calculation of COMSOL has not
been used.
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The reason for using COMSOL is to be able to create a model for the interaction of NanoPlate-
lets with the membrane of cancer cells. Such a model would need to include some fluid dynamics,
to simulate what happens when the NanoPlatelets enter the blood stream for instance. Since
fluid dynamics on the nano-scale could be a thesis all on its own, this has not been investigated.
However, some progress has been made towards this final goal. This has resulted in being able to
create a particle that is able to freely rotate, using a specific meshing technique called a moving
mesh. Future research could couple this rotation with the magnetic torque of the particle.
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Appendix A

Double domain Stoner-Wohlfarth
model
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APPENDIX A. DOUBLE DOMAIN STONER-WOHLFARTH MODEL
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APPENDIX A. DOUBLE DOMAIN STONER-WOHLFARTH MODEL

(a) Top-down view

(b) Side view

Figure A.1: In this figure the geometry used in the COMSOL model is presented. As can be seen
from the figures and has been discussed in section 4.2.1 the geometry consists out of three discs on
top of each other. The top and bottom layer represent the magnetic layers, and the intermediate
disc represents the non-magnetic spacer layer.
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