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Abstract

Micro- to nanosized particles tethered to a surface are used for multiple applications in biophys-
ics. Ome application is to measure the presence of target molecules, which is done by probing
association and dissociation of tethered particles to molecules located at the surface. Dissociation
and association only takes place when the target is present, resulting in single molecule detection
of the target. The main goal of this project is to study a new method for probing bound and
unbound states based on the determination of the diffusion coefficient of a tethered particle over
time. This study shows that while considering small displacements Brownian motion analysis can
be used for this purpose. Increments and decrements of the diffusion coefficient were directly
linked to the association and dissociation of the tethered particle. By using a threshold on the
diffusion coefficient, bound and unbound state lifetimes can be measured with a time resolution
ranging from 0.33 to 1 second. Brownian motion analysis was compared to the algorithm which is
currently used for detecting binding and unbinding event. It was found that both methods show
false positive events which would not be detected by using the other method. Furthermore, a dif-
ferent tethered particle configuration is used in which the bead does not bind to molecules located
at the surface, but to a molecule attached to the tether at the anchoring point. Brownian motion
analysis turned out to be not suitable to this tethered particle configuration for detecting binding
and unbinding events. Finally, a study was done on how the diffusion coeflicient behavior depends
on using different components in the tethered particle system. It is shown that the increase of
diffusion coefficient per increase of motion area differs when changing bead type, surface coating,
particle coating or tether length.
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Chapter 1

Introduction

Tethered particle motion (TPM) has found many applications in biophysics. Particles with a size
of less than a micron tethered to a surface are the basic concept of the system [1] [2]. Single
molecule interactions in the environment can be rendered by analyzing the lateral motion of the
beads. For instance, TPM has found applications in determining DNA lengths [1] [2], viscous
wall effects [3], bond characteristics [4] etc. One main point of interest is the usage of the TPM
system for biosensing [5]. By measuring the lateral movement of a tethered particle the presence
of a target can be detected. When the target molecule is present, the tethered particle is able to
form an additional bond to the surface. Therefore, detecting binding and unbinding events gives
information on the presence of target molecules. Measuring the presence of these targets gives
potentially possibility to monitor drug levels, organ failure, infections, etc. An overview of the
tethered particle system will be given in chapter 2.

More than one method is used for detecting binding and unbinding events [6] [7]. The main
goal of this project is to study a method for probing particle stated based on Brownian motion
analysis. An attempt will be done to link the diffusion coefficient value of a tethered particle to
a particle state. Theoretical background on Brownian motion will be presented in chapter 3. It
will be shown that by analyzing the correlation between displacements of the tethered particle
the diffusion coefficient can be calculated [8]. The hypothesis is that in a bound state the particle
moves more confined, which should result in a decrease in the diffusion coefficient value.

Different methods for calculating the diffusion coeflicient are known and it depends on the system
and application which method is suitable [9] [10] [11]. Studies focused on the diffusion coefficient
were used to measure motion dependency on wall-distance [12], buffer content [3], presence of
membranes [10] [13], etc. In chapter 4 a comparison will be presented between different methods
for analyzing the tethered particle motion. The goal will be to find the most accurate method
for determining the diffusion coefficient. In chapter 5 this method will be used to calculate the
diffusion coefficient of a tethered particle over time. This signal will be used to probe tethered
particle states. Results will be validated and compared to currently used methods which were
illustrated in chapter 2.

Finally, while designing the TPM system there is freedom of choice in different components. It
is found that colloidal particles differ in motion behavior in the presence of different buffers [3]
or surface types [14]. Therefore it is concluded that the behavior of tethered particles can differ
when using different components in the TPM system. In chapter 6 an attempt will be done to link
the behavior of the diffusion coefficient of tethered particles to different tethered particle systems.
Not enough data was analyzed to make strong statements, yet correlations were found indicating
what could be studied next.

Brownian motion analysis of tethered particles to probe particle states 1



Chapter 2

Tethered Particle Motion

In biophysics less than micron-sized particles tethered by a flexible molecule to a surface, the
so-called tethered particle motion (TPM) system, have found purpose in many applications [1] [2]
[3]. One main point of interest is to detect binding and unbinding events of the tethered particle
to the surface [5]. Applications of the TPM system make use of the measurement of the particle’s
motion in the lateral direction. By analyzing the motion of the particle, conclusions can be drawn
about interactions of single molecules in the environment. In this chapter, an overview will be
given on components of the TPM system and possible behavior of the system relevant for detecting
binding and unbinding events.

2.1 Systems and methods

One application is to detect binding and unbinding events of the tethered particle such that the
TPM system can function as a biosensor [5]. By monitoring the mobility of the tethered particles,
the formation of an extra bond to the surface caused by the presence of a target can be detected.
Therefore, the presence of the target can be detected with a single-molecule resolution which
could result in the possibility to monitor drug levels, organ failures, infections, etc. One method
for constructing this system is by putting a coating on both the particle and the surface, between
which an additional bond can be formed when a target is present. In figure 2.1 the sensing process
is illustrated: Capture molecules (blue) are put on the bead. These capture molecules can form
specific bonds with the target (green). Detection molecules (red) on the surface can form specific
bonds with the target as shown in figure 2.1a. When both the detection molecule as the capture
molecule binds to the target, the tethered particle binds to the surface as shown in figure 2.1b.

Freedom of choice is present in the particle type, surface coating, coupling strategy, particle
coating and tether length used in the TPM configuration. Coatings are added to the system to
avoid nonspecific bonds of the bead to the surface [6]. The coupling strategy is determined by
which pair of capture and detection molecules are used. When a particle undergoes switching
behavior between bound and unbound state it is called active. Accurate methods for detecting
binding and unbinding events are relevant since there is a relation between the unbound state
lifetime and target concentration [5].

2 Brownian motion analysis of tethered particles to probe particle states



CHAPTER 2. TETHERED PARTICLE MOTION
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Figure 2.1: The process of dissociation and association of the TPM system is illustrated. (a) The
relevant components of the TPM system are illustrated. When the target (green) is bound to a
capture molecule (blue) the particle can bind to the surface by forming a bond with a detection
molecule (red). (b) When a target molecule is present, it enables the bead to switch from a bound
to unbound state and vice versa. During a measurement of the lateral movement of a tethered
particle, it is able to switch multiple times from one state to another [5].

An algorithm is used for the detection of binding and unbinding events which is based upon
changes of the motion pattern when a particle dissociates or associates [4] [7]. Figure 2.2 shows
an overview of possible motion patterns which can be distinguished while analyzing the lateral
motion of a tethered particle. Each dot in a motion pattern corresponds to the position of the
tethered particle at some moment in time during a measurement of its lateral movement. Both
the number of bonds to the surface as the possible presence of protrusions can result in different
motion patterns. When the particle is bound only by the tether to the surface, the motion pattern
is either shaped like a disc, bell or ring. This is called the single tethered state. When an additional
bond is present, a stripe pattern should be distinguishable. Finally, when more than one additional
bond or a non-specif bond is present a triangular or spot pattern should be recognizable.

Disc Bell Ring Stripe Triangular Spot Mixed
- o i . 5
3 # &
§ %
soonm
Pattern crossections ]
Underlying system configurations
L i n n )
Single tether Multiple tethers Many tethers /| \ixed system

non-specific bonds.

Figure 2.2: An overview is shown of possible motion patterns which can be found by analyzing the
lateral movement of a tethered particle. Each dot in a motion pattern corresponds to the location
of the tethered particle at some moment in time. The presence of a protrusion on the particle may
cause disc-, bell- or ring-formed patterns. Information on the number of bonds to the surface is
found when stripe, triangular or spot patterns are distinguishable [4].
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CHAPTER 2. TETHERED PARTICLE MOTION

The current algorithm monitors both Cartesian coordinates and polar coordinates to detect bind-
ing and unbinding events [7]. The coordinate values z(t), y(t), 7(t) and |0(t)| and displacement
values Ax(t), Ay(t), Ar(t) and Ady are monitored over time. Here Ady = rAf. The parameters
are scanned for significant changes in motion behavior, from which binding and unbinding events
are detected. To receive a conceptual understanding of the current algorithm, a simplified ex-
planation is given here on how data is analyzed. Figure 2.3 shows an illustration of such data
analysis. In the graph on the right it can be seen that at certain moments in time the value of
either Az(t), Ay(t), Ar(t) or Adg decreases. When at these moments the value of its correspond-
ing coordinate z(t), y(t), r(t) or |#(t)| becomes fixed, it is concluded that a binding or unbinding
event took place. For instance, at these moments the motion pattern of the particle could transit
from a circular to a stripe- or spot-like motion pattern. As seen in figure 2.3 both Cartesian and
polar coordinates are considered, since not all events are detected by considering only one of these
coordinate systems. The final result combines events which were detected by using either one of
these coordinate systems.

x(t)
y(©)

Ax(t) F
Ay(t) |

Combined

r(t)
1601

Ar(t)

¢ i 3 B g -
Ado(8) [+ W—' ol

Figure 2.3: In the current algorithm the behavior of coordinate values x(t), y(t), r(t) and |6(t)|
and displacement values Ax(t), Ay(t), Ar(t) and Ady are monitored to detect significant changes
in motion behavior. The red vertical lines in the graphs on the right depict binding and unbinding
events. When the value of either Ax(¢), Ay(t), Ar(t) or Ady decreases and its corresponding
coordinate x(t), y(t), r(¢t) and |0(t)| becomes fixed at the same moment in time, binding and
unbinding events are detected. Since using only Cartesian coordinates or polar coordinates will
not detect all events, events which were detected by each coordinate system are combined in the
final result [7].

Another configuration exists for tethered particles which is used to measure the presence of target
molecules. In this configuration detection molecules are not attached to the surface, but to the
tether near the anchoring point at the surface [6]. Figure 2.4 illustrates this configuration: Near
the anchoring point a detection molecule is attached to the tether. A capture molecule on the
bead can form a bond to this detection molecule when a target molecule is present. The lateral
movement in a bound state will differ compared to the previous configuration since the bead will
not form a bond to the surface. In this configuration, the particle will show a circular motion
pattern both in the bound state as the unbound state. The difference is that in a bound state
the radius of the motion pattern is smaller. Therefore, the radial distance of the bead compared
to the center of its motion can be monitored for detecting binding and unbinding events. Since
in a bound state the radius of the circular motion pattern is smaller, a threshold on the radial
displacement can be used to probe particle state. The plot on the right in figure 2.4 illustrates
such analysis. It is shown how a low or high value of the radial distance is directly linked to the
tethered particle state.

4 Brownian motion analysis of tethered particles to probe particle states
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Figure 2.4: Another configuration of tethered particles can be used for measuring the presence
of target molecules. A detection molecule (A) is added to the tether at the anchoring point to
the surface. The detection molecule can form a bond with the capture molecules (B) on the bead
when a target is present. Both in the bound state as the unbound state the motion pattern of the
particle is shaped like a circle, but with a lower radius while being in a bound state. Therefore, the
radial distance of a tethered particle compared to its center of motion is measured, which results
in lower values during periods in which the particle is in a bound state [6].

A final property of the motion patterns of all tethered particle configurations is the major axis of
motion A,,qjor and perpendicular minor axis of motion A,uiner[6] [7]. Figure 2.5 illustrates the
definitions of these two quantities. The value of Ayqjor and Apinor are determined by half the
value of the maximum and minimum diameter of the motion pattern respectively. The symmetry
Ssym of the motion pattern is defined by the ratio between the minor and major amplitude. It is
defined as Ssym = Aminor/Amajor- The value of Sgy,, can range from 0 for a line motion pattern
to 1 for a total circular motion pattern.

Y coordinate

‘minor

X coordinate

Figure 2.5: The motion pattern illustrates the definitions of A,,qjor and Aminor. The value of
Amajor and Apinor are determined by half the value of the maximum and minimum diameter of

the motion pattern respectively [6].
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Chapter 3

Brownian Motion

3.1 Free motion

The theory used for the analysis of the motion of colloidal particles is focused on Brownian motion.
Due to thermal excitation micro- to nano-scale particles collide, which in the case of free movement
results in trajectories named Brownian walks [8]. During the walk, a particle is taking steps from
which the values are determined by a Gaussian distribution. Figure 3.1 shows an example of a
particle undergoing a Brownian walk which started at position (zo,yo) and ended at (zy,y;) after
time ¢. Per time step At the particle’s displacement in the horizontal and vertical direction is
determined by a Gaussian probability distribution [12].

/\

Figure 3.1: Example of a two dimensional Brownian walk in which a particle over time ¢ moves
in steps from position (xg,y0) to (xt,y:). Each step is taken over a time step At in which the
horizontal and vertical displacement value is determined by a Gaussian probability distribution

[6].

The movement of the particle is a stochastic process, which depends on the size and environment
of the particle. This is reflected in the value of the diffusion coefficient D, since the probability
distribution of a one-dimensional displacement Az over a time step At is given by [12]

Pip(Az, At) =

Az’ ) (3.1)

1
JArD.AL P ( T AD,AL

Here D, equals the diffusion coefficient in the direction of Az. While increasing the value of D,,
the width of the Gaussian probability function increases, meaning that the particle undergoes
larger displacements Az during a time step At. When the movement is isotropic it can be stated

6 Brownian motion analysis of tethered particles to probe particle states



CHAPTER 3. BROWNIAN MOTION

that D, = D. For a two-dimensional isotropic Brownian walk the probability of finding a particle
in a two-dimensional surface element dA = 27rdr at position r, after time step At is given by [10]

2

1 —r
Pop(r, &) = 5 R; &P (4DAt)' (3.2)

From equation (3.2) an expression can be derived which represents the probability F(r, At) of
finding the particle at a distance r or smaller after time step At. By integrating it is found that

2

4DAt) (8:3)

F(r,At) —27T/ P(r', At)yr'dr’ —1—exp(

From equations (3.1) and (3.2) expressions for the mean and mean square value of the displacement

can be calculated. First, for the mean displacement it can be found that (Az) = (r) = 0.
Moreover, by calculating the variance it can be found that (Az?) = [*° Az?Pyp(Az, At)d(Az) =
2D, At and ( f 2Pyp(r, At)rdrdf = 4DAt [10]. More generally, for the mean square

dlsplacement (rd) in d dlmensmns it is found that

(r2) = 2dDAL. (3.4)

When looking at the trajectory of a particle the mean square displacement can be calculated by
using [3] [13]

(r)(t) = (r*)(nAt) = () (nAt) + (y*) (nAt) =

N ‘ ‘ (3.5)
T ( (AL +nAt) — (A + [y(jAL + nAt) —y(jAt)]2>
j=1
with
t = nAt. (3.6)

Here z(jAt 4+ t) and y(jAt + t) describe the particle coordinates after a time interval ¢ = nAt
compared to starting coordinates z(jAt) and y(jAt). N equals to total number of positions which
are considered. The one-dimensional mean square displacements in the  and y direction are given

by (x?) and (y?).

Other relations exist for the diffusion coefficient which do not directly depend on the statistics of
a Brownian walk. For freely moving colloidal particles a relation exists between the particle radius
r, temperature T, viscosity n and the diffusion coefficient D [15]. The diffusion coefficient is given
by the Stokes-Einstein equation, which states

kT

6mnr’ (3.7)

in which kp equals the Boltzmann constant. Furthermore, at close proximity to a surface the
value of D is affected by viscous effects. To correct the diffusion coefficient value of a particle
located near a wall correction factors given by Faxén’s Law need to be used [16].

Brownian motion analysis of tethered particles to probe particle states 7



CHAPTER 3. BROWNIAN MOTION

3.2 Confined motion

The apparent diffusion coefficient of tethered particles which undergo confined motion will be
determined. From a particle trajectory the displacements will be determined, each over the same
time step. A value of the diffusion coefficient will be calculated from the underlying correlation
of these displacements. For particles which do not move freely, displacement distributions with
different variance than equation (3.4) are expected. A distinction is made between free diffusion,
diffusion with drift, anomalous diffusion and confined diffusion [15]. When the mean square dis-
placement in d dimensions is calculated for confined motion, a different relationship than equation
(3.4) is found. For these particles it is found that [15] [17]

—At
(r3y = R*(1 — exp —). (3.8)
Td
Here 75 equals the time of confinement which depends on the diffusion coefficient D, confined
radius R and motion dimension d.

One of the main principles which will be used in the determination of the diffusion coefficient of
tethered particles is that for small At confined motion can be approximated as it were Brownian
motion. Therefore, in the limit of At = 0, by setting the diffusive speed of a confined particle
equal to the diffusive speed of a freely moving particle, it can be found that 7, = R?/2dD [7]. By
rewriting the exponent term of equation (3.8) by a Taylor expansion it can be understood why
for small At confined motion can be approximated by Brownian motion. It follows that equation
(3.8) can be approximated by

(r2) ~ R2(1—1+§—O(At2

)) = 2dDAt — O(D*At?). (3.9)
By taking small values of At, equation (3.9) can be linearized by neglecting the error term. It
follows that equation (3.4) reappears. This result can be interpreted that for small time steps At
confined motion can be analyzed as it were regular Brownian motion since under this limit the
variance of both motion types are equal. Therefore, the correlations following from equations (3.1)
and (3.2) can be used to determine the diffusion coefficient of tethered particles when small time
steps At are considered.

Finally, an equation has been derived which represents the mean square displacement for confined
motion. For confined motion in one dimension in a infinite square potential well with dimensions
[Ly, Ly it is derived that [3] [13]

L2 16L2 > n2m2D,t
(x?)(t) = Z fexp —), (3.10)
> e ()

where D, represents the diffusion coefficient in the x-direction [13]. When the particle motion is
isotropic, the diffusion coefficient is equal in all directions.

8 Brownian motion analysis of tethered particles to probe particle states



Chapter 4

Methods for determining the
diffusion coeflicient

Data sets which resulted from measurements of the movement of tethered and freely moving
particles were made available by the group of Molecular Biosensing for Medical Diagnostics. In
these data sets, the trajectories of particles during experiments were stored with a frame rate of
30 frames per second. In this chapter, multiple methods for determining the diffusion coefficient
from these trajectories will be discussed and compared. The methods follow from the theory
presented in chapter 3. For each trajectory in a data set a value of the diffusion coefficient will
be determined, which results in a distribution of diffusion coefficients for the whole data set. One
of the goals of the discussion is to determine which of the considered methods is best suitable for
detecting binding and unbinding events of active particles. One important constraint for a method
is to find a small width in the diffusion coefficient distribution, such that there is a higher chance
that bound state and unbound state are distinguishable.

Matlab codes for each method described in this chapter can be found in appendiz A.1 until A.7.

4.1 Freely moving particles

Multiple methods were used to calculate the diffusion coefficient of freely moving particles. To be
able to compare methods, the following methods were used on a data set which resulted from a
measurement of freely moving particles. Each method is used on each trajectory in the data set,
which results in a diffusion coefficient value for each particle.

1. From the trajectory of each particle, the two-dimensional mean square displacement (r?)(t)
was determined by using equation (3.5). N was set equal to 1800 frames, such that a
trajectory of 60 seconds would be considered. For freely moving particles the value of D can
be calculated by linearly fitting equation (3.4) with d = 2 to (r?)(¢). Figure 4.1 shows an
example of such a fit.

Brownian motion analysis of tethered particles to probe particle states 9



CHAPTER 4. METHODS FOR DETERMINING THE DIFFUSION COEFFICIENT

2

Two dimensional mean square displacement (um®)

- Mean square displacement| -
Linear Fit

0 é 1‘1 Time (5) i; 2; 10

Figure 4.1: A plot is shown of the two-dimensional mean square displacement over time which
was determined from the trajectory of a freely moving particle. The two-dimensional mean square
displacement is calculated by using equation (3.5). The diffusion coefficient of freely moving
particles can be calculated by fitting equation (3.4) with d = 2 to the two-dimensional mean
square displacement. An example of such a fit is shown here by the red line.

2. The standard deviation oa, will be calculated of the one-dimensional displacements Az in
a particle trajectory. The time between displacements is given by At. Figure 4.4 shows
two distributions of Az with a different value of At between the displacements. It can
be seen that the width of the distribution increases when At increases, which results in a
higher value of oa,. This is reflected by the variance of the displacements, which is given
by (Ax?) = 0%, = 2DAt. Five different values of At will be used for which each o,
will be determined. Therefore the value of D can be calculated for each particle trajectory
by linearly fitting the found values of 0%, with respect to the corresponding values of At.
Figure 4.2 shows an example of such a linear fit.

0.12

00 At=0.033(s)
011}

002

0015 01r

Probabilty (-

0.09

0,005

0.08 1

3 2 1 0
One dimensional displacement (um)

0.07 1

0.06
7 At=0.167 (s)

° 0.05

0.04 -

Probabiliy (-)

0.03r

=@~ Standard deviations
—Linear Fit
0.02

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

| o i Z
One dimensional displacement (um) At(s)

Figure 4.2: The distributions of one-dimensional displacements for two values of At are shown. By
increasing the time At between displacements, the distribution of one-dimensional displacements
becomes wider. The variance of the distribution of the one-dimensional displacements is given by
(Az?) = 02, = 2DAt. Therefore, by calculating 0%, for five different values of At a linear fit can
be used to calculate the diffusion coefficient value. An example of such a fit is is shown by the red
line plotted in the graph on the right.
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CHAPTER 4. METHODS FOR DETERMINING THE DIFFUSION COEFFICIENT

3. Finally, from each particle trajectory the empirical cumulative distribution will be determ-
ined of radial square displacements 2. The time between each displacement is taken equal
to a fixed value of At. Since the empirical cumulative distribution is an estimator of the
probability of finding the particle at a distance r or smaller after a time step At, the diffusion
coefficient can be calculated by fitting equation (3.3) over the graph. Figure 4.3 shows an
example of such a fit. By constructing an empirical cumulative distribution for each particle
trajectory and using a fit according to equation (3.3), a value of the diffusion coefficient is
determined for each trajectory in the data set.

Probability (-)

© Empirical cumulative distribution
0.1 ——Fit according to equation (3.3)

0 0.05 0.1 0.15 02 0.25 0.3 0.35
2 2
r (um®)

Figure 4.3: The empirical cumulative distribution is plotted of the square displacements r2 in a
particle trajectory with a fixed time step At between the displacements. This distribution is an
estimator of the probability of finding the particle at a distance r or smaller after a time step
At. Therefore, equation (3.3) can be fitted over the distribution to find a value of the diffusion
coefficient.

The methods are based on statistics, which means that adding more displacements to a method
will automatically result in more accurate determination of the diffusion coefficient. Therefore,
for each method a total trajectory time of 60 seconds was used with the same value of At between
each displacement. Overlapping trajectories were filtered out to ensure valid results.

Figure 4.4 shows the diffusion coefficient distributions which were constructed by using the three
methods. The main difference was found in the width of the distributions. It can be seen that
fitting equation (3.3) over the empirical cumulative distribution of square displacements results in
the sharpest distribution. This indicates that this method is the most accurate. Similar results
were found in literature, where the diffusion coefficient was determined of simulated particle dif-
fusion [11]. From these simulations it was also found that linearly fitting equation (3.4) to (r?)(t)
for each particle trajectory gives a wider distribution than fitting equation (3.3) over the empirical
cumulative distribution of square displacements.

Brownian motion analysis of tethered particles to probe particle states 11
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Figure 4.4: (a) Diffusion coefficient values determined, each for each particle trajectory, by fit-
ting equation (3.4) with d = 2 to the two-dimensional mean square displacement. (b) Diffusion
coefficient values determined, each for each particle trajectory, by calculating the variance of one-
dimensional displacements with different values of At between the displacements. A linear fit is
used between the variance values and the corresponding values of At. (c) Diffusion coefficient
values determined, each for each particle trajectory, by fitting equation (3.3) to the empirical
cumulative distribution of the square displacements in a particle trajectory.

4.2 Tethered particles

The diffusion coefficient was also determined for the trajectories of tethered particles by using
different methods. The result of equation (3.9) will be used, such that the same methods as for
freely moving particles can be used as long as displacements are considered between small values
of At only. The smallest possible value of At will be used, which is limited by the frame rate. In
total four methods were used to calculate the diffusion coefficient of each trajectory in a data set.

1. Again, the two-dimensional mean square displacement (r?)(¢) was determined by using equa-
tion (3.5) for each trajectory. In this case the value of D will be determined by fitting
equation (3.4) with d = 2 over the first two points of (r?)(¢) only. By doing so, only a small
value of At is considered. Figure 4.5a shows a graph of the two-dimensional mean square
displacement of a tethered particle. An example of a linear fit through the first two data
points is illustrated by the red line.

2. The standard deviation oa, of the one-dimensional displacements Ax with time At between
the displacements will be calculated for each particle trajectory. In contrast to what was
done for freely moving particles, only the smallest possible value of At will be used to find
one value of oa,. Again it is used that 0%, = (Az?) = 2DAt, which means that dividing
0%, through 2At results into the value of D.

3. As done for the trajectories of freely moving particles, the empirical cumulative distribution
of r? will be constructed over which a fit of equation (3.3) will be done to determine the
value of D. For tethered particles, the smallest possible value of At will be used as the time
between displacements. Fits which result from this method were similar to the fit shown in
figure 4.3.

4. Finally, equation (3.10) with n = 5 will be fitted over the one-dimensional mean square
displacement (22). The one-dimensional mean square displacement is calculated by using an
one-dimensional form of equation (3.5) on a particle trajectory. Since equation (3.10) does
not make use of the result of equation (3.9), the fit will be done over the whole graph of (z:2).
Figure 4.5b shows an example of a graph of the one-dimensional mean square displacement
of a tethered particle. The red graph illustrates a fit which follows from equation (3.10),
which results in a value of D.
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Figure 4.5: (a) A plot is shown of the two-dimensional mean square displacement over time, which
results from a trajectory of a tethered particle. A linear fit was done through the first two points
of the plot to determine a value of D. It was used that (r?(t)) = 2dDAt in this region. (b) A
plot is shown of the one-dimensional mean square displacement over time, which results from a
trajectory of a tethered particle. A fit according to equation (3.10) is used to determine a value
of D.

The same number of displacements is used for each method: each method analyzed a trajectory of
60 seconds with the same minimum time step At = 0.033s between displacements. Data following
from measurements of nonactive TPM systems were used for the analysis. Tethered particles
would not form bonds to the surface during the measurements since no target molecules were
added to the system. To ensure only single tethered particle would be considered, particles which
showed sufficient symmetry (Ssym > 0.75) and from which the minor amplitude value fell into the
correct range (50 nm < Apinor < 150 nm) were selected [6]. Therefore, particles which were stuck
or had more than one attached tether were filtered out.

All four methods were used to determine the diffusion coefficient distribution of ten different
TPM systems. For each trajectory which resulted from a measurement, the value of the diffusion
coefficient was determined which results in histograms as shown in figure 4.6. Each measurement
used myone particles and a 221 base pair double-stranded DNA tether. The particle coating,
surface coating and coupling strategy differed between the ten measurements. Either BSA or
PLL-g-PEG was used as surface coatings and either DBCO-azide or DIG-AntiDig was used as
coupling strategy. For the particle coating either biotinPEG, 11 base pair single-stranded DNA or
20 base pair single-stranded DNA was used. Since the results of all ten systems were similar, figure
4.6 shows only the diffusion coefficient distributions which resulted from one of these systems.

As can be seen in figure 4.6d, using a fit of equation (3.10) to the one-dimensional mean square
displacement of trajectories of tethered particle results in the widest distribution. It implies that
this method gives the most inaccurate result compared to the other methods. This might be caused
by the fact that equation (3.10) was derived for a square potential well, while the confinement of
a tethered particle follows different geometry. Another cause of the wide distribution which could
be proposed is that the motion was not isotropic. The diffusion coefficient was also determined
for each trajectory by calculating the standard deviation of one-dimensional displacements, from
which the diffusion coefficient was determined by using (x?(¢)) = 2dDAt. This was done in both
the x- as the y-direction, which resulted in similar distributions of D in both directions. It was
therefore concluded that the motion was isotropic, which means that isotropy cannot be the cause
of the wide distribution in figure 4.6a. Yet, using a fit of equation (3.10) over the one-dimensional
mean square displacement is the only method which does not make use of the result which follows
from equation (3.9). Only this method is valid for large values of A¢, which indicates that the
other methods give results in the right order size.
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Figure 4.6: (a) Diffusion coefficient distribution which is constructed by using a linear fit only on
the first two points of the two-dimensional mean square displacement which is determined of each
trajectory. (b) Diffusion coefficient distribution which is constructed by calculating the variance of
the one-dimensional displacements in each trajectory, after which each variance is divided trough
2DAt. (c) Diffusion coefficient distribution which is constructed by fitting equation (3.3) to the
empirical cumulative distribution of square displacements over a time step At in each trajectory.
(d) Diffusion coefficient distribution which is constructed by fitting equation (3.10) with n =5 to
the one-dimensional mean square displacement which is determined of each trajectory.

The distribution in figure 4.6a resulted from using a linear fit over the first two points of the
two-dimensional mean square displacement. The mean value of the distribution shown by figure
4.6a seems shifted compared to the mean values of the distributions shown by figures 4.6b and
4.6¢. The same observation was made for all ten TPM systems. A possible cause is that although
only the first two points of the mean square displacement were considered, the time interval over
which the slope was determined was not as small as the time step between the displacements
which were used for calculating the standard deviation or empirical cumulative distribution. The
first two points of (r?(¢)) span a time interval of 0.067 seconds, while the minimum value of At
between displacements equals 0.033 seconds. The error term in equation (3.9) therefore results in
a higher value, which could result in a smaller value of the diffusion coefficient.

Finally, it can be seen that the distribution which is shown by figure 4.6¢ is slightly sharper
than the distribution which is shown by figure 4.6b. This means that fitting equation (3.3) to
the empirical cumulative distribution of the square displacements results into the most accurate
determination of the diffusion coeflicient.
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4.3 Conclusion

An overview and comparison are shown of possible methods for determining the diffusion coefficient
of freely moving or tethered particles. It was observed that fitting equation (3.3) over the empirical
cumulative distribution of square displacements r2 results in the sharpest diffusion coefficient
distributions. In chapter 5 the state of tethered particles will be probed by monitoring the diffusion
coefficient of over time. Since the diffusion coefficient distribution of bound and unbound tethered
particles might overlap, it was chosen to use this method to determine the diffusion coefficient over
time. When it is possible to construct sharper distributions, there is a smaller chance of overlap,
which results in more accurate detection of binding and unbinding events.
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Chapter 5

Probing bound and unbound state

In the previous chapter, an overview was given of possible methods for determining the diffusion
coefficient of particles. From the considered methods it was found that fitting equation (3.3)
over the empirical cumulative distribution of square displacements in a trajectory results in the
sharpest diffusion coefficient distributions. This method will be used in this chapter to detect
binding and unbinding events of the TPM system. First, a closer look will be taken on what
time span is needed for calculating the diffusion coefficient with sufficient certainty. Thereafter,
results will be shown of the detection of binding and unbinding events by monitoring the diffusion
coefficient in time. These results will be validated by considering the motion patterns of tethered
particles. Finally, monitoring the diffusion coefficient will be compared to currently used methods
for detecting binding and unbinding events.

5.1 Specifications time span

By using the chosen method one has freedom of choice over which time interval the value of D is
determined and which time step At between displacements is taken. Together these quantities de-
termine the number of square displacements which are used to construct the empirical cumulative
distribution. The last will impact how well equation (3.3) will fit over the distribution, since when
little data is used the estimator will not completely correspond with the true cumulative distri-
bution [18]. To illustrate the impact of these quantities, the diffusion coefficient of each nonactive
tethered particle trajectory in a data set was determined while altering one of their values.

Figure 5.1a shows how changing the value of At impacts the diffusion coefficient distribution while
keeping the number of square displacements in the empirical cumulative distribution constant.
Both the mean as the mean plus or minus the standard deviation are plotted to illustrate the width
of the distribution. The graph shows that the diffusion coefficient value decreases for increasing At.
This corresponds with the result of equation (3.9). It is therefore validated that while calculating
the diffusion coefficient of tethered particles, the time step At between displacements should be
taken as low as possible. This value is limited by the frame rate of the measurement.

Furthermore, figure 5.1b shows how the number of square displacements per fit impacts the diffu-
sion coeflicient distribution while keeping the value of At fixed. Following the previous result, the
lowest possible value of At was used for constructing this graph. It can be seen how the diffusion
coefficient distribution becomes sharper when the number of square displacements increases. It
is favorable to achieve a high time resolution while calculating the diffusion coefficient since then
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the bound and unbound state lifetime can be determined more precisely. Therefore, a low num-
ber of square displacements should be used per calculation of the diffusion coefficient per time
interval. Figure 5.1b shows that after adding 30 square displacements in the empirical cumulative
distribution the width of the diffusion coefficient distribution starts to remain constant. Also, the
biggest conversion of the width of the distribution seems to happen while adding the first ten
square displacements to the calculation. Therefore the number of square displacements used per
calculation is proposed to equal a number between 10 and 30.
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Figure 5.1: The diffusion coefficient can be calculated of each trajectory in a data set, resulting
in a distribution of diffusion coefficients. This is done for a data set which resulted from a
measurement of nonactive tethered particles. (a) The mean, mean plus the standard deviation
and mean minus the standard deviation of the diffusion coefficient distribution are plotted to
show how the distribution alters for increasing value of At. The number of square displacements
per empirical cumulative distribution remained constant for determining each diffusion coefficient
distribution. (b) The mean, mean plus the standard deviation and mean minus the standard
deviation of the diffusion coefficient distribution are plotted to show how the distribution alters
for an increasing number of square displacements per empirical cumulative distribution. The time
step between displacements remained constant for determining each diffusion coefficient value.

5.2 First result and uncertainty analysis

Based on the discussion above it was chosen to calculate the diffusion coefficient of a tethered
particle once every 0.67 seconds. This means that after every 20 frames a fit will be done over
the empirical cumulative distribution of the square displacements in that interval. An example
of such a fit is shown in figure 5.2a. Figure 5.2b shows an example of the diffusion coefficient
plotted in time of an active particle while using 20 frames per calculation. At certain moments,
for instance around ¢t = 100 seconds, a decrease of the diffusion coefficient can be distinguished.
This decrease indicates a binding event, which will be validated later in this chapter. For the
diffusion coefficient plots in this chapter, the next 20 frames will be considered after a calculation
of the diffusion coefficient. How this choice impacts the plot of the diffusion coefficient in time

will be discussed in section 5.3
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Figure 5.2: (a) Over a time interval of 0.67 seconds, 20 square displacements are determined

from which an empirical cumulative distribution is constructed. Equation (3.3) is fitted over the
distribution to determine the value of D. After each interval of 20 frames, the next 20 frames are
selected to determine the diffusion coefficient, which results in a graph of the diffusion coefficient in
time. (b) A plot is shown of the diffusion coefficient in time. The value of the diffusion coefficient
was calculated every 0.67 seconds. At certain moments in the graph, a decrease of the diffusion
coeflicient is observed, which indicate binding events of the particle.

A derivation was done of the uncertainty of the diffusion coefficient per time interval. First, un-
certainty bounds are calculated for the empirical cumulative distribution by using the Dvoretzky-
Kiefer-Wolfowitz (DKW) inequality [18]. Because limited data is used each interval for construct-
ing the empirical cumulative distribution, the true cumulative distribution lays between these
bounds. The true cumulative distribution lays with probability 1 — a within the range of the
empirical cumulative distribution plus € and the empirical cumulative distribution minus €, where

lgf . Here n equals the number of data points used for constructing the empirical cumulat-

€ =

ive distribution. In the calculations here a value of 0.32 for o was chosen to receive 68%—interval
bounds.

Secondly, equation (3.3) will be rewritten in the linear form y = Ax such that linear regression can
be used for the determination of the value of D. When data y = (y1,...,yn) and z = (z1, ..., z,)
show a linear correlation in which y; has uncertainties Sy, the value of A and its uncertainty can

be calculated by using
L SwSwry — Surwy

1
Sws i (L wa) o1
and
Sw
= .2
> ¢Zw2wﬂ§)mﬁ’ (5:2)
where w; = 1/57 [19]. Rewriting equation (3.3) in a linear form results into
In (1— F(r*, At)) = 1 2 (5.3)
" ADAL" '

Since the uncertainty of F(r?, At) is known by using the previously mentioned DKW-inequality,
the uncertainty of the left-hand side of this equation can be calculated. The uncertainty of a

(%)253 [19]. Therefore the

uncertainty of the left-hand side of equation (5.3) is given by 4/ W.

Putting the above together, a method is found for calculating the uncertainty of D per time
interval. First, the uncertainty of the empirical cumulative distribution is calculated by using

function f(x) in which = has uncertainty S, is given by Sy =

18 Brownian motion analysis of tethered particles to probe particle states



CHAPTER 5. PROBING BOUND AND UNBOUND STATE

Diffusion Coefficient calculated over time with uncertainty
T

Diffusion Coefficient (umz/s)

Diffusion Coefficient calculated over time with uncertainty . Diffusion Coefficient calculated over time with uncertainty

Diffusion Coefficient (um?/s)

<
2
2
Ee

Time (s) ' ' ’ Time (s) )

(b) (c)

Figure 5.3: The diffusion coefficient is plotted in time while including uncertainty bounds. The
uncertainty is calculated following the method as discussed in section 5.2. (a) The diffusion
coefficient calculated once per 0.67 seconds. (b) The diffusion coefficient calculated once per 0.33
seconds. (c) The diffusion coefficient calculated once per 0.17 seconds.

the DKW-inequality. Next, the uncertainty of the left-hand side of equation (5.3) is calculated
which equals S,. The left-hand side of equation (5.3) itself equals v, ﬁ = A and r? = z of
the linear equation y = Axz. Therefore, the values of A and S, can be calculated by using linear
regression following from equations (5.1) and (5.2) after which the value of D and its uncertainty
are calculated by multiplication with 4At.

Examples of graphs of the diffusion coefficient in time including error bars are shown in figure
5.3. The diffusion coefficient was calculated once per 0.67, 0.33 and 0.17 seconds, in which the
number of square displacements per calculation equaled 20, 10 and 5 respectively. By comparing
figure 5.3c to figures 5.3a and 5.3b it can be seen that using a time interval equal to 0.17 seconds
results in unusable results. This indicates the same conclusion that was made from figure 5.1b:
At least 10 displacements per calculation of D are proposed to be used. The Matlab code used
for calculating the graphs in figure 5.3 was added to appendix A.8.

The same kind of uncertainty analysis was done while taking into account the uncertainty of the
particle position, which equals 3 nm [7], instead of taking into account the uncertainty in the
empirical cumulative distribution. Using the uncertainty in the position, while using 10 frames
per calculation of D, would result in an uncertainty value in the diffusion coefficient which was
three times lower than when uncertainty in the empirical cumulative distribution was considered.
Therefore it was chosen to neglect the uncertainty in the position and only focus on the uncertainty
which results from the DKW-inequality while using linear regression. When one also wants to
include the uncertainty of the position in the determination of the diffusion coefficient, equation
(5.3) would have uncertainty in both = and y when writing it in the linear form y = Axz. Total
least squares should be used for taking into account the uncertainty in both x and y [20].
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5.3 Probing particle states

A threshold is used on the diffusion coefficient to detect binding and unbinding events. In this
section tethered particles are considered which form additional bonds to the surface. Myone
particles tethered by a 221 base pair double-stranded DNA tether were used in the corresponding
measurements. PLL-g-PEG was used as surface coating, 11 base pair single-stranded DNA was
used as particle coating and DBCO-azide was used as coupling strategy. Until stated otherwise,
the upcoming results correspond to measurements of this tethered particle configuration. Since
the behavior per particle differs, a general threshold for all particles was not found. Therefore a
threshold was selected manually for each particle. First, the diffusion coefficient will be calculated
per time interval over the whole time span. Secondly, a histogram will be constructed of all
determined diffusion coefficient values. Based on these graphs, as shown in figure 5.4a, a threshold
can be selected. To take into account overlap of the bound and unbound state diffusion coefficient
distributions an event will be detected only when the threshold is crossed plus an additional
percentage of its value. This percentage was found by fine-tuning manually and might differ per
TPM system. For the upcoming results, this percentage was fine-tuned to a value of 25%. When
requiring a higher time resolution the number of frames per calculation can be set equal to lower
numbers, but it needs to be taken into account that the diffusion coefficient distributions of the
bound and unbound state do not start to overlap too significantly. When requiring less overlap
of the bound and unbound state diffusion coefficient distributions, the number of frames should
increase, which results in a loss of time resolution. Figure 5.4b shows an example of a plot of the
particle state in time found by using a threshold on the diffusion coefficient.

Histogram of found values of the Diffusion Coefficit " "
40 v T Particle state over time
T T

T
~30 12-
2 "
€20 I | N ‘
3 N I | I
©10H | ‘
08— ‘ ‘
m ‘ | ‘

unbound)

[
0 002 004 006 008 01 012 014 016 0.18 0.2

Diffusion Coefficient (um?/s)
Diffusion Coefficient over time

bound, 1

|
» M b h ‘\"’”‘ I
- ! NLI»M“ ) d m' L l\ ‘~M i ‘ ozt

0 50 100 150 200 250 300
Time (s)

State (0

Diffusion Coefficient (um?/s)
o

(a) (b)

Figure 5.4: (a) The diffusion coefficient in time and histogram of all determined diffusion coefficient
values are plotted which resulted from a trajectory of an active tethered particle. A distinction
can be seen between two diffusion coefficient distributions. This distinction is used to select a
threshold which is used for detecting binding and unbinding events. (b) A plot is shown of the
particle state in time. After selecting a threshold, the bound and unbound state of the particle
can be probed in time. When the diffusion coefficient crosses the threshold plus an additional
percentage a binding or unbinding event is detected.

Every 20 frames a value of the diffusion coefficient was calculated for constructing the plots of
the diffusion coeflicient in time. This means that after every 20 frames, the next 20 frames were
used for calculating the diffusion coefficient. A closer look was taken on what impact a binding or
unbinding event during a time interval has on the fit as shown in figure 5.2a. Figure 5.5 shows a
fit of equation (3.3) to the empirical cumulative distribution of square displacements which were
taken from an interval in which a binding event took place. Although correlation was lost, it was
found that such fits result in a value of D laying between the bound and unbound state diffusion
coefficient distribution. Therefore, using a threshold may not result in detecting a binding or
unbinding event until the next interval is analyzed. This means that the uncertainty of detecting
binding events in 100%-interval bounds is proportional to the time taken per calculation.
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Figure 5.5: The empirical cumulative distribution is plotted of square displacements which were
taken from a time interval in which a binding event took place. A fit is shown of equation (3.3) to
the empirical cumulative distribution from which a value of the diffusion coefficient was determined.
Although correlation was lost, a diffusion coefficient value would be determined between the bound

and unbound state diffusion coefficient value.

A method to decrease this uncertainty in the bound and unbound state lifetime would be to move
the frame interval of 20 frames by steps of one frame. This way for each frame a value of the
diffusion coefficient will be calculated. This would result in a higher resolution in the plot of the
diffusion coefficient in time. The disadvantage would be that the time needed for the calculation
of the diffusion coefficient plot increases significantly. Optimization of the code in appendix A.8
would be required for following this method. For instance, by calculating the diffusion coefficient
by using linear regression as derived in section 5.2 instead of using a non-linear fit might decrease
the time needed per calculation of the diffusion coefficient.

A better understanding was searched for the need of different thresholds for different tethered
particles. Furthermore, particles were found from which more than two different states seemed to
be distinguishable. An explanation was found by taking into account the minor amplitude, major
amplitude and motion pattern of the particle trajectory. Particles were distinguished from which
the difference between the maximum and minimum value of the diffusion coefficient was relatively
high compared to other particles. Figure 5.6 shows that the motion patterns of these particles
on average have a larger minor and major amplitude. Inactive particles were filtered out while
constructing these histograms. The result can be understood by knowing that a larger minor or
major amplitude correlates with the area the particle was able to reach. Reaching a larger area
means that the tethered particle can move more freely, which results in a higher value of the
diffusion coefficient. Moreover, having a small major or minor amplitude might also indicate that
the particle switched between bound states during the whole measurement.
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Figure 5.6: Two distributions were plotted of either the (a) major deviation or (b) minor deviation
of tethered particles. The orange distributions represent active tethered particles with a small
difference between the maximum and minimum value of the diffusion coefficient, while the blue
distributions represent active tethered particles with a high difference between the maximum and
minimum value of the diffusion coefficient.

More information was found by analyzing the motion patterns of tethered particles. It was seen
that active tethered particles with a high difference in the diffusion coefficient values showed
circular motion patterns. Such circular motion patterns indicate that at some moment during
the measurement the particle was in a single tethered state. A low difference in the diffusion
coefficient value was linked to motion patterns with stripe or spot motion patterns, which can
be linked to tethered particles which switch from one bound state to another bound state. To
illustrate, figures 5.7, 5.8 and 5.9 shows for three particles how the diffusion coefficient changed
in time. To show how the particle behaved during the measurement, the corresponding motion
patterns were also plotted. By using colors, motion patterns can be linked to certain diffusion
coefficient values at certain moments in time. The motion patterns will be linked to the number of
bonds of the particle to the surface as discussed in chapter 2. The Matlab code which was used to
detect binding and unbinding events and plot the motion pattern of tethered particles was added
to appendix A.9.

Figure 5.7 shows the result of a particle from which the difference between the minimum and
maximum value of the diffusion coefficient was relatively high compared to other particles. It can
be seen how low values of the diffusion coefficient are linked to stripe or spot motion patterns.
Therefore it is validated that during these moments the particle was in a bound state. It was
found that a large difference in diffusion coefficient in time is linked to circular motion patterns.
This means that a big difference in the diffusion coefficient value in time can be linked to particles
switching from a single tethered state to bound states.

Figure 5.8 shows the result of a particle with a low difference between the minimum and maximum
value of the diffusion coefficient. It is shown that the particle switched from a stripe to a spot
motion pattern and backward. Other particles with a relatively small difference between the
highest and lowest diffusion coefficient value also showed switching behavior from one to another
bound state. Therefore, measuring a low difference in the maximum and minimum value of the
diffusion coefficient is linked to particles switching from one bound state to another bound state.
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Figure 5.7: (a) The motion pattern is plotted of a tethered particle which switched from a single
tethered state to bound states. By using colors stripe and spot motion patterns were directly
linked to decreases in the diffusion coefficient in figure 5.7b. (b) The diffusion coefficient in time
is plotted corresponding to the motion pattern shown by figure 5.7a. Binding and unbinding
events detected by using a threshold on the diffusion coefficient are indicated by vertical red lines.
Colored segments of the plot are linked to colored motion patterns in figure 5.7a.
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Figure 5.8: (a) The motion pattern is plotted of a tethered particle which switched between two
different bound states. The two bound states are plotted as a red spot motion pattern and a
black stripe motion pattern. The spot motion pattern corresponds to lower diffusion coefficient
values than the stripe motion pattern. (b) The diffusion in time coefficient is plotted for a particle
which switched between two different bound states. The red vertical lines indicate binding and
unbinding events which were detected by putting a threshold on the diffusion coefficient. The red
segments of the diffusion coefficient plot correspond to time intervals in which the particle is in a
more confined bound state.

Earlier this section, it was stated that there is uncertainty in the bound and unbound state
lifetime. When the value of D is calculated over a time interval in which the particle switched
state, the event might not be detected by using a threshold on the diffusion coefficient until the
next time interval. Figure 5.8b shows a plot in which this inaccuracy can be observed since some
red segments overlap with increasing parts of the diffusion coefficient. This can for instance be
observed between ¢ = 200 and ¢t = 250 seconds. Moreover, the motion pattern which is shown by
figure 5.8a shows some red spots plotted in an area where only black spots would be expected.
This is also caused by the error in the bound and unbound state lifetime.
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CHAPTER 5. PROBING BOUND AND UNBOUND STATE

Finally, figure 5.9 shows that more than two states can be distinguished while probing states by
using the diffusion coefficient signal. At the beginning of the measurement, the particle is single
tethered to the surface which is recognized by the circular motion pattern. Thereafter the particle
switches between two bound states, which is indicated with red and green colors. A threshold for
the analysis was set between these two bound states, which results in binding and unbinding events
given by the red vertical lines. The more confined green spot motion pattern is linked to lower
diffusion coefficient values. At these low diffusion coefficient values it is hard to select a correct
threshold, if there is any, since the distributions of the two bound states overlap. Therefore some

false positive events were detected in figure 5.9b. For instance, false positive events are shown
around t = 100 seconds.
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Figure 5.9: (a) The motion pattern is plotted of a tethered particle from which the motion cor-
responded to more than two states. The black motion pattern corresponds to a single tethered
state, while the red and green motion patterns correspond to two different bound states. (b) The
diffusion coefficient is plotted in time. Only one threshold was set between the two bound states,
which results in the binding and unbinding events indicated by the red vertical lines. The black,
red and green segments of the diffusion coefficient correspond to the black, red and green motion
patterns in figure 5.9a.
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CHAPTER 5. PROBING BOUND AND UNBOUND STATE

5.4 Comparison to other methods

As discussed in chapter 2, another algorithm is used to detect binding and unbinding events.
The algorithm monitors the particle location and displacements to detect significant changes in
the motion pattern. For instance, by using the algorithm the same events were detected for the
particle measurement which was shown in figure 5.7. Moreover, both systems have a similar time
resolution of around 20 frames (0.67 seconds) for finding events [7].

In contrast, also different results were found while using both methods to the same tethered
particle measurement. Since the diffusion coefficient distributions of bound states can overlap,
using a threshold on the diffusion coefficient might result in false positive events. These false
positive events would not be detected by using the current algorithm. For example, the false
positive events which are shown in figure 5.9b would not have been detected by monitoring the
particle coordinates for significant changes in the motion pattern. False positive events were
also detected by monitoring the particle location which would not have been detected by using
a threshold on the diffusion coefficient in time. For instance, figure 5.10 shows how the current
algorithm detects events while the diffusion coefficient remains at a low value. At these moments
the motion pattern of the particle remains formed as a spot focused at the same location. Therefore
it can be concluded that these events are wrong.
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Figure 5.10: (a) The motion pattern is plotted of a tethered particle in which the particle was stuck
in the red motion pattern. Green stripe motion patterns can be distinguished. (b) The diffusion
coefficient is plotted in time. The red segments of the diffusion coefficient correspond to the red
motion pattern in figure 5.10a. The vertical blue lines indicate binding and unbinding events
resulted by monitoring the particle location for finding changes in motion patterns. Although
events are detected, the red diffusion coeflicient segments remain at low values and the particle
remains stuck at the red spot motion pattern.

A possible cause for finding the false positive events in figure 5.10 could be that the current
algorithm searches for relative changes of a coordinate value compared to previous values [7].
When a particle is in a bound state, a coordinate value of the particle is fixed. A small change of
the coordinate value is therefore sufficient for the detection of an event, even though the particle
remains stuck in the same area. The diffusion coefficient remains at low values at these false
positive events since the particle still undergoes small displacements per frame. Therefore, it is
proposed to investigate the usage of the diffusion coefficient signal to filter out false positive events.
When the diffusion coefficient does not change significantly at an event which was detected by
monitoring the particle position, this information could be used to mark the event as invalid.

Finally, the current algorithm only indicates at which moment in time a binding or unbinding
event occurred. It gives no information on the bond type or whether the particle switched from a
bound state to another bound state. This information can be found while monitoring the diffusion
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coefficient, as shown in figures 5.7, 5.8 and 5.9. Therefore, it is again proposed to investigate the
possibility to combine both methods. By doing so it is expected that information can be obtained
of the bond type of tethered particles to the surface in the analysis of tethered particle motion.

In chapter 2 another configuration of tethered particles was discussed. In this system, a detection
molecule would be attached to the tether at the anchoring point to the surface. Instead of forming
a bond with detection molecules at the surface, the particle would form a bond with the detection
molecule attached to the tether while measuring the presence of a target. Binding and unbinding
events are detected by monitoring the radial displacement of the tethered particle compared to the
center of its motion. To take into account noise in the measurement of the radial displacement,
it is averaged every 20 frames. Therefore, both methods should be able to detect events with the
same time resolution.

An attempt was done for detecting binding and unbinding events of this tethered particle con-
figuration by using a threshold on the diffusion coefficient. Figure 5.11a shows a histogram of
all diffusion coefficient values which were determined by analyzing a trajectory from a tethered
particle with this configuration. It can be seen that there is a high overlap between the bound and
unbound diffusion coefficient distributions. This might be caused by the remaining mobility of the
tethered particle while being in a bound state. Therefore it is hard to select a correct threshold
in the diffusion coefficient for detecting binding and unbinding events. Of 58 active particles
which were analyzed only for two particles a distinction was observed in the diffusion coefficient
distribution. None of these distinctions were as clear as the two peaks in the distribution of all
measured radial displacements. An example of such a distribution is shown in figure 5.11b. Figure
5.11b shows that a clear threshold can be selected between the bound and unbound state when
looking at the radial displacement distribution. Similar distributions of the radial displacement
were found for all tethered particles which were analyzed.
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Figure 5.11: (a) A histogram is shown of all the diffusion coefficient values which were determined
from a trajectory of a tethered particle. The corresponding tethered particle did attach to a
detection molecule which is located at the anchoring point of the tether. Although the particle is
able to switch between two states during the measurement, there is only one peak distinguishable.
(b) A histogram is shown of all measured radial displacements which were determined from a
trajectory of a tethered particle. Two peaks can be distinguished, which correspond to the bound
and unbound state of the tethered particle.

Figure 5.12¢ shows how using a threshold on either the diffusion coefficient or the radial displace-
ment resulted in different detection of binding and unbinding events. The radial displacement in
time is plotted in figure 5.12¢, in which the red segments correspond to the red motion patterns
in figure 5.12a. The red and green vertical lines indicate events which were detected by using a
threshold on the diffusion coefficient or radial displacement respectively. For illustration, figure
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5.12b shows a plot of the diffusion coefficient in time of the same particle. Since the bound and
unbound state diffusion coefficient distributions overlap significantly, the value of the diffusion
coefficient needs to pass the threshold plus an additional 50 % for detecting binding and unbind-
ing events. Between ¢ = 200 seconds and ¢t = 250 seconds it can be seen that both methods
resulted in similar events. In contrast, around ¢ = 50 seconds it can be seen that using a threshold
on the diffusion coefficient would not result in the detection of binding and unbinding events,
while the particle did switch between states. More missing and false events by using a threshold
on the diffusion coefficient can be observed in the same graph. For this reason it is concluded
that monitoring the diffusion coefficient is not applicable to the analysis of this configuration of
tethered particles.

Diffusion Coefficient calculated over time
| 1 i |

I

I
(y
\ " J ~“ il "‘M

H‘\I

\‘H‘

o

2
o
=

o
Y
gl

o

0.1

M
1

\ I M

| ““ M

rll

uzr‘

1\\‘

0.4

V \\ IM M \.

Hl

i L

0.15

Vertical Displacement (um)
o

i
”“

il
"i”‘\“ .\,)\

017

Diffusion Coefficient (umz/s)

d L L L L L L
04 03 02 -01 01 02 03 04 0 50 100 150 200 250 300 350

i o
ol s i W L
MMW”’M \Lﬁ Wﬂva‘ Wi : Wwﬂfl‘"ﬁaﬂwVW\W’”’
Ny

I
0 50 100 150 200 250 300 350
Time (s)

()

Figure 5.12: (a) The motion pattern is plotted of a tethered particle which associated and dis-
sociated to a detection molecule which was attached to the tether. The red patterns correspond
to the red segments in the plot of the radial displacement in time in figure 5.12c. The small red
circular pattern corresponds to the bound state, while the large black circular pattern corresponds
to the unbound state. (b) The diffusion coefficient in time is plotted of the tethered particle from
which the motion pattern is shown in figure 5.12a. Some decreases and increases in the diffusion
coefficient can be distinguished in the graph, which indicate binding and unbinding events. Yet,
the overlap of the diffusion coefficient values was too significant, such that using a threshold would
result in wrong event detection. (c¢) The radial distance of a tethered particle is plotted in time. A
threshold is used on this quantity for the detection of binding and unbinding events of the tethered
particle. These binding and unbinding events are depicted by vertical green lines. The red vertical
lines correspond with binding and unbinding events which were detected by using a threshold on
the diffusion coefficient.
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5.5 Conclusion

The diffusion coefficient of active particles was calculated per time interval. First, it was shown how
the uncertainty of the diffusion coefficient per time interval can be calculated. This uncertainty
is mostly influenced by the number of square displacements which is used per calculation. It is
shown that by using a threshold on the diffusion coefficient in time, binding and unbinding events
can be detected of tethered particles which form a bond with detection molecules located at the
surface. For this analysis, a trade-off needs to be made between time resolution and the possibility
of finding false positive events. By decreasing the number of frames per calculation, the overlap of
the bound and unbound state diffusion coefficient distribution increases, which results in possible
wrong detection of events. Results were validated by linking the diffusion coefficient value at
certain moments in time directly to motion patterns of tethered particles. It was found that by
monitoring the diffusion coefficient in time information can be obtained on the bond type of a
tethered particle to the surface.

A comparison was done between monitoring the diffusion coefficient or the particle position for
detecting events. It was found that both methods would result in false positive events which
would not be detected by using the other method. Therefore it is proposed to combine both
methods for more precise event detection. Moreover, monitoring the diffusion coefficient would
give information on the bond type of the particle to the surface, while monitoring the position of
the particle would not. Finally, it was tried to detect binding and unbinding events of another
tethered particle configuration. In this configuration, the particle forms a bond to a detection
molecule attached to the tether. It was found that monitoring the diffusion coefficient of these
tethered particles is not suitable for detecting binding and unbinding events. This was caused by
too significant overlap of the bound and unbound state diffusion coefficient distributions.
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Chapter 6

Surface Interactions

In chapter 2 it was stated that while constructing a TPM system different particle coating, coupling
strategy, surface coating, tether length and particle type can be used. It is expected that the motion
of tethered particles differs when altering these components. For instance, using a different coating
might result in different viscosity near the surface. As seen in equation (3.7), the viscosity of the
medium affects the diffusion coefficient value of a particle [3]. A small study was done on how the
diffusion coefficient depends on different components in the TPM system.

When the motion pattern of a tethered particle consists of a higher minor or major axis, the
particle is able to cross a larger area. Therefore, the motion seems less confined, which should
result in a larger value of the diffusion coefficient. This hypothesis was validated by analyzing
trajectories resulting from experiments with nonactive single tethered particles. A fit of equation
(3.3) to the empirical cumulative distribution of the square displacements was used to analyze the
trajectory of each particle in a data set. Figure 6.1 shows that plotting the diffusion coefficient of
each particle against the corresponding value of the motion amplitudes results in a positive linear
correlation. It was found that the slope of these graphs differed when different components were
used in the TPM system, indicating that the diffusion coefficient increase per increase of motion
area differs per TPM system.
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Figure 6.1: The diffusion coefficients of nonactive tethered particles are plotted against the (a)
minor amplitude and (b) major amplitude of the motion pattern of the corresponding particle.
A linear correlation is found between the diffusion coefficient values and motion amplitudes. The
slope-value of a linear fit as shown by the red line differs when different components are used.
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6.1 Specifications method

In chapter 5 it was found that using the lowest possible value of At would result in the highest value
of the diffusion coefficient. A different result was found for calculating the slope-value between
the diffusion coefficient and motion pattern amplitude. It is found that using a time step of 0.1
seconds (3 frames) between displacements would result in the highest slope-value. One of the goals
would be to link slope-values to a particular type of TPM system. Therefore it was chosen to use
this value of At for analyzing different data sets. Since trajectories of 60 seconds were analyzed
the number of square displacements in the empirical cumulative distribution per calculation of the
diffusion coefficient equaled 600. As discussed in section 5.1, such a large number of displacements
should result in a good determination of the diffusion coefficient per particle. Finally, motion
patterns were filtered out based on symmetry and minor amplitude value. When using myone
particles, motion patterns with symmetry less than 0.75 and minor amplitude outside the range of
50 to 150 nm were excluded. When silica particles were used, the same requirement was used on
the symmetry and a minor amplitude between 40 to 100 nm was required [6]. The Matlab code
used for this analysis was added to appendix A.10.

Five components of the TPM system can be altered to see how it affects motion behavior. These
components were shortly discussed in chapter 2. Table 6.1 shows an overview of the options
which were used for each component. In appendix B an overview is given of which slope-values
were found for 34 systems. Without taking into account compatibility, in total 72 combinations
of systems can be constructed from the number of options as shown in table 6.1. Not enough
measurements were analyzed to make hard statements on relations between the slope-value and
the TPM components which were used.

Table 6.1: The components of the TPM system were altered between measurements which were
analyzed for finding slope-values as illustrated in figure 6.1. An overview is shown of the options
per component which were considered in this project.

Particle type Particle coating Surface coating Tether length Coupling strategy
myone Particle Binder ssDNA 20 base pair BSA 120 base pair DIG-AntiDIG (antigen-antibody)
silica Particle Binder ssDNA 11 base pair Casein 221 base pair DBCO-azide click chemistry
biotinPEG PLL-¢-PEG

6.2 Discussion

Several explanations are possible for the different behavior of the tethered particles when compon-
ents are altered of the TPM system. First of all, different buffers might result in different viscous
effects near the surface [3]. As seen in equation (3.7), different values of viscosity leads to different
values of the diffusion coefficient. Furthermore, Faxén’s Law states that near a surface the diffusion
coefficient value of a particle changes based on the distance to the wall [16]. By using a different
tether length, the possible distances to the wall are altered, which might result in different values
of the diffusion coefficient. The stiffness of the tether and smoothness of the particle can also differ
per TPM system [7]. Finally, using different coatings might result in different electric potentials
near the surface [14]. For instance, when a particle is repulsed away from the surface, drag might
decrease which results in a higher value of the diffusion coefficient.

Correlations were found between the slope-values and components of the TPM system. It was
found that either using silica particles or varying the tether length seemed to result in different
slope-values. Measurements with silica particles would result in slope-values ranging from 0.6 to
0.7 pm/s, while using myone particles would result in values ranging from 0.5 to 0.55 um/s. Since
between these systems also the tether length could differ, no conclusion could be drawn of the
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direct cause of this difference. The cause might be that silica particles have a smoother surface
than myone particles, which could result in a higher increase of diffusivity by decreasing the drag
on the particle. It was also observed that the measurement which used a casein coating resulted
in the highest slope—value. For a casein measurement a slope-value of 1.40 pum/s was found,
while other slope-values would range between 0.5 and 0.9 pm/s. It is shown that the presence
of casein can result in electric repulsion of a particle to the surface [14]. This could result in a
higher distance of the particle to the surface, decreasing drag, resulting in a higher increase in the
diffusion coefficient per motion area.

The motion patterns of tethered particles corresponding to the measurements with the highest
and lowest slope—value were compared. These values equaled 1.4 pm/s and 0.5 um/s respectively.
Figure 6.2 illustrates differences which were observed in the motion patterns. From the system
with the highest slope—value, 88% of the particles showed a uniform motion pattern with the
average position located at the center as shown in figure 6.2b. From the system with the lowest
slope-value, 45% of the particles showed a nonuniform motion pattern with the average position
shifted from the center as shown in figure 6.2a. Furthermore, figure 6.3 shows histograms of
the mean one-dimensional position of each tethered particle in a system. It is observed that the
mean position values corresponding to the lowest slope-value are shifted and widely distributed
compared to the mean position values corresponding to the highest slope-value. Tethered particles
corresponding to figure 6.2a seem to favor to locate at a certain region in the motion pattern. This
means that the motion is more confined, which results in lower displacement values, which results
in a lower increase in the diffusion coefficient value when a motion amplitude increases.
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Figure 6.2: (a) A motion pattern is plotted to illustrate a nonuniform distribution from which
the average position is shifted from the center. These type of motion patterns were linked to
low slope-values between the diffusion coefficient and motion amplitudes. (b) A motion pattern
is plotted to illustrate a uniform distribution from which the average position can be found at
the center. These type of motion patterns were linked to high slope-values between the diffusion
coeflicient and motion amplitudes.

Finally, it was stated that altering components of the TPM system might alter the stiffness of the
tether. It is shown that by taking the Fourier transform of the equation of motion of a particle
trapped in a parabolic well potential, the trap stiffness can be calculated by analyzing the power
spectrum of motion [14] [21]. This method could be used to receive more information on the
possible effects of altering components in the TPM system.
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Figure 6.3: The mean value of the x-position of each particle trajectory in a data set is plotted in
a histogram. (a) Trajectories of tethered particles are considered corresponding to a measurement
with a low increase of the diffusion coeflicient per increase of the motion amplitudes. (b) Traject-
ories of tethered particles are considered corresponding to a TPM system with a high increase of
the diffusion coefficient per increase of the motion amplitudes.

6.3 Conclusion

It is shown that by using different components in the TPM system, the increase of diffusion
coeflicient per increase of motion amplitude differs. An attempt was done to explain this differ-
ence in behavior, but since multiple components were changed per data set, no hard conclusions
were drawn on direct causes. Possible correlations were found between slope-values and TPM
configurations which might be used for further research.

For instance, there is a strong indication that changing either the tether length or particle type
impacts the increase of diffusion coefficient per area size. Experiments could be done in which
either one of these two components would be altered, from which the linear correlation between
diffusion coefficient and motion amplitudes would be studied. A first goal would be to find whether
the particle type, the tether length or both affect the tethered particle behavior. Furthermore, by
only altering the tether length between experiments and analyzing the data according to section
6.1, a correlation might be found between the tether length and the increase of diffusion coefficient
per increase of motion amplitude.

Moreover, using casein as a coating in the TPM system seems to result in a relatively high increase
in the diffusion coefficient per increase of motion amplitude. A possible explanation could be that
this coating electrically repulses the particle farther from the surface, decreasing drag on the
particle. A closer look needs to be taken on how the system behaves while only altering the
surface coating per TPM system. Theory should be studied on how different surface coatings
could alter viscous and electrostatic effects.

In short, in the future more experiments should be analyzed to find more understanding of how us-
ing different components in the TPM system alters the increase in diffusion coefficient per increase
in motion amplitude. Two additional analysis tools could be useful to get more understanding.
First, there is an indication that the motion patterns of single tethered particles per TPM system
differ, indicating that particles tend to focus more at one position in one system compared to an-
other. Finally, by analyzing the power spectrum of a particle position the tether stiffness could be
determinable, which might give additional information on varying interactions when using different
components in the TPM system.
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Chapter 7

Conclusions

The main goal of the project was to study the usage of Brownian motion analysis for probing
particle states in the TPM system. The hypothesis was that in a bound state the particle would
show more confined motion, resulting in a lower diffusion coefficient value. This hypothesis was
validated by calculating the diffusion coefficient in time of active tethered particles and considering
the corresponding motion patterns. Not only information can be obtained on the occurrence of
binding and unbinding events, but also on the type of bond the particle forms to the surface.

An overview of different methods for calculating the diffusion coefficient of freely moving or
tethered particles was presented in chapter 4. A comparison was made to find which of the
considered methods would give the most accurate results. The main principle used for confined
motion was that it can be approximated by Brownian motion while taking small time steps between
displacements. It was shown that fitting equation (3.3) over the empirical cumulative distribution
of the square displacements in a time interval would result in the most accurate determination of
the diffusion coefficient. Therefore this method was used to calculate the diffusion coefficient in
time, from which binding and unbinding events can be detected.

For probing the particle state the diffusion coefficient was calculated every 20 frames. This means
that after every 20 frames, the next 20 frames are used for calculating the next value of the
diffusion coefficient. This results in an uncertainty in the bound and unbound state lifetime which
is proportional to the time interval used for each calculation of the diffusion coefficient. This
uncertainty can be reduced by moving the frame interval over which the diffusion coefficient is
calculated by steps of one frame. Following that method, for each frame a value of the diffusion
coeflicient would be calculated. A disadvantage would be that the time needed for the analysis
would increase significantly.

A trade-off was found between time resolution and overlap of the bound and unbound state
diffusion coefficient distributions. A low overlap is needed to detect events accurately by using a
threshold. When a low number of frames is used, one can detect binding and unbinding events
with a higher time resolution, but it needs to be taken into account that event detection becomes
less accurate. Finally, it was proposed to use 10 to 30 frames per calculation of the diffusion
coefficient, resulting in a time resolution from 0.33 to 1 second.
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Furthermore, a derivation was done of the uncertainty of each value of the diffusion coefficient
in a time span. This derivation was based on the DKW-inequality and linear regression. The
uncertainty in the particle position was not taken into account since the impact of the position
uncertainty was lower than the impact of the uncertainty in the empirical cumulative distribution.
Following the uncertainty analysis, it was again proposed to use 10 to 30 frames per calculation
of the diffusion coefficient.

Event detection by using Brownian motion analysis was compared to event detection by monitoring
the particle position. Using a threshold on the diffusion coefficient could result in false positive
events when low values of the diffusion coefficient are considered. This is caused by a high overlap
of two different bound state diffusion coefficient distributions. By monitoring the particle position
also false positives were detected when the particle is in a bound state. False positive events
which result from one method would not be detected by using the other method. Therefore it is
proposed to combine both methods for more accurate detection of binding and unbinding events.
For instance, by monitoring the diffusion coefficient a filter could be constructed for selecting
invalid events which were detected by monitoring the particle position. Moreover, it is shown that
monitoring the diffusion coefficient gives information on the type of bond formed by the particle
to the surface, while monitoring the particle position does not.

Another tethered particle configuration was considered which does not bind to detection molecules
located at the surface, but to a detection molecule added to the tether close to the anchoring
point. An attempt was done to detect binding and unbinding events of this configuration by
monitoring the diffusion coefficient over time. Although some decreases and increases in the
diffusion coefficient were observed, it was found that this method would not result in the correct
detection of binding and unbinding events. Therefore it is concluded that monitoring the diffusion
coefficient in time is not suitable for probing the particle state of this type of tethered particle
configuration.

A small study is done on how altering the particle coating, surface coating, particle type, tether
length or coupling strategy of a TPM system affects the behavior of the diffusion coefficient of
tethered particles. It was found that there is a linear correlation between the diffusion coefficient
of a tethered particle and its minor or major amplitude. The slope of this linear correlation differs
when different components of the TPM system are used and might be used to explain different
particle behavior per system. Yet, not enough data sets were analyzed in this project to draw
hard conclusions on the causes of different behavior. Possible future research has been proposed.
It is not only proposed to analyze the diffusion coefficient of tethered particles, but information
might also be obtained by analyzing motion patterns or by determining the tether stiffness.

Finally, one possible lookout needs to be addressed. It was shown in chapter 5 that using a
smaller value of the time step between displacements results in higher values of the diffusion
coefficient of tethered particles. Yet, the minimum value of the time step is limited by the frame
rate which was used during experiments. Looking back at figure 5.1a, it can be observed that
while decreasing the time step value even below the current limit might still result in an increase
in the diffusion coefficient. This indicates that the error term in the approximation of equation
(3.9) might not be totally neglected while measuring with the currently possible range of time
steps between displacements. In future research, it might be interesting to see whether a higher
frame rate might result in higher diffusion coefficient values. One limitation might be that the
uncertainty in particle position will increase while using a higher frame rate. Yet, an increase of
frame rate might not only result in a higher time resolution but also to less overlap between the
bound and unbound state diffusion coefficient distributions. This would conclude that Brownian
motion analysis would become more powerful since the determination of bound and unbound state
lifetimes would become more accurate and precise.
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Appendix A

Matlab codes

A.1 Diffusion coefficient of free moving particles using mean
square displacement

9% Setting some parameters

% Parameter 1 : Time interval(current:EndingT = 300 frames;)

EndingT = 100;

% Get all particle number

test_n = (1:size(Result,2));

% Parameter : Throw away overlapped particles (current threshold: <= 0)

test_eliminatej = [];
for i = 1:size(Result,2)
test_eliminatej = [];
for j = size(Result ,2):—1:i+1
if any(sqrt( (Result(i).DriftCorrectedTrajectory (1,:) — Result(j).
DriftCorrectedTrajectory (1,:))."2 + ...
(Result (i).DriftCorrectedTrajectory (2,:) — Result(j).
DriftCorrectedTrajectory (2,:)). 2 ) <= 0)

%Set these overlapped particles as zero(so can be deleted later at line
43)
test-n (i) = 0;
test_eliminatej = [test_eliminatej ,j];
end
end
test_.n(test_eliminatej) = 0;
end
% Get the nonzero number
test-n = nonzeros(test_n) ’;
MSD = zeros (1,size (EndingT ,2));
slope = zeros (size (test_n ,2),2);
%% Calculate 1.displacement 2.MSD 3.slope of MSD(For two dimension, slope/4=

diffusion coefficient)

% Run loop for every particle No.i

for i = test_n
X=Result (i).DriftCorrectedTrajectory (1,:);
Y=Result (i).DriftCorrectedTrajectory (2,:);

[frames]=size (X);

% define the number of frames

9% Get information of each position for each bead in pixels.
% Parameter 2 : if use different magnification or microscope
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%Transfer positions from pixels into um. (1 pixel equals 22777 nm, for 40x
magnification)

%Transfer positions from pixels into um. (1 pixel equals 794 nm, for 20x
magnification)

%Change to 460 nm when Leica was used (Leica at 20x magnification).
X2=X*.794;

Y2=Yx.794;

% j is time interval

for j = 1:EndingT
% Calculating distance (displacement)
% Note: remember to add script for deleting outliers (while calculating
mean (X2) and mean(Y2))
squaredisp = zeros (1,frames(1,2)—j);
for 1 = 1:frames(1,2)—]j

% Squared displacement
squaredisp (1) = (X2(1+j)-X2(1)) "2+ (Y2(1+j)-Y2(1)) "2;
end
% Mean
MSD(j) = sum(squaredisp (:))/(frames(1,2)—j);
end
t = (1:EndingT) /30;
% Linear fitting of MSD curve
slope (i,:) = polyfit(t,MSD,1);
end

DC = slope (:,1) /4; %Calculate DiffCoef
DiffCoef = DC(any (DC,2) ,:); %Get rid of elements equal to zero

%% Plot Histogram

close all
figure (1)
histogram (DiffCoef ,0:0.0250:0.5, 'FaceColor’,’b")
title (’Diffusion coefficient of unbound particles’,’FontSize’,22,’FontName’,”
Calibri”)
xlabel (’Diffusion coefficient ( m "2/s)’,’FontSize’,22, ’FontName’,” Calibri”)
ylabel (’Counts (—)’, FontSize’ ,22, ’FontName’,” Calibri”)

A.2 Diffusion coefficient of free moving particles using stand-
ard deviation

9% Set Parameters concerning time

TotalFrames = 1800; %Total number of frames being considered
FramelntervalSteps = 5; %Number of framesteps which will be used
FrameRate = 30;

%% Read Position Data
%Skip overlapping trajectories
test_n = (1:size(Result,2)); %Get all particle numbers

for i = 1:size(Result,2)
test_eliminatej = [];
for j = size(Result ,2):—1:i41
if any(sqrt( (Result(i).DriftCorrectedTrajectory (1,:) — Result(j).
DriftCorrectedTrajectory (1,:))."2 + ...
(Result (i) .DriftCorrectedTrajectory (2,:) — Result(j).
DriftCorrectedTrajectory (2,:)). 2 ) <= 0)
%Set these overlapped particles as zero(so can be deleted later at line
43)
test_n (i) = 0;
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test_eliminatej = [test_eliminatej ,j]|;
end
end
test_n(test_eliminatej) = 0;
end

% Get the nonzero number

test.n = nonzeros(test.n) ’;

X = zeros(size(test.n ,2) ,TotalFrames); %Prelocate matrixes for faster computation

Y = zeros(size(test-n,2) ,TotalFrames);

for i = test_n %Reed out and process position data
X(i,:)=Result(i).DriftCorrectedTrajectory (1,1:TotalFrames);
Y(i,:)=Result(i).DriftCorrectedTrajectory (2,1:TotalFrames);

end

%Get information of each position for each bead in pixels.

% 1f use different magnification or microscope

%Transfer positions from pixels into um. (1 pixel equals 22777 nm, for 40x
magnification)

%Transfer positions from pixels into um. (1 pixel equals 794 nm, for 20x
magnification)

%Change to 460 nm when Leica was used (Leica at 20x magnification).

X2=X(any (X,2) ,:) *.794; %Also, get rid of elements equal to zero.

Y2=Y(any(X,2) ,:) *.794;

%Prelocate vectors for faster computation

PDFx = zeros (1,size (test_n ,2));
PDFy = zeros (1,size (test_n ,2));
RMS_x = zeros (size (test_n ,2) ,FramelntervalSteps);
RMS_y = zeros (size (test_n ,2) ,FramelntervalSteps);
FrameStep = zeros (1,FramelntervalSteps);

9% Calculate Step made particle in x and y direction per Framelnterval.
%Set values for loop

for k = 1:1: FramelntervalSteps

FrameStep (k) = k;

S = 2+« FrameStep (k) ;
= FrameStep (k) ;
e = TotalFrames;
dX = zeros (size (test_n ,2),TotalFrames);
dYy = zeros (size (test-n ,2),TotalFrames);
for i = 1:size(test-n,2) %Calculate for all valid particles particles
for j = s:m:e %Loop should take intervals of steps equal to the Framelnterval
dX(i,j) = X2(i,j)-X2(i,j-m);
end
dX2 = dX(:,any(dX,1)); % Get rid of zero collumns
dY2 = dY(:,any(dY,1));
RMSx(1,k) = std (dX2(i,:)) "2; %From paper, RMS in a direction is
determined using the standard deviation
RMS.y(i,k) = std (dY2(i,:)) "2;
end
end
% Result, RMS for ith particle in k timesteps (Timelnterval)

9% SET UP LINEAR FITTING

Timelnterval = (1/FrameRate).*FrameStep;
fit.x = zeros(size (RMSx,2) ,2);

fit.y = zeros(size (RMSx,2),2);

Brownian motion analysis of tethered particles to probe particle states
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for i = 1:1:size (RMSx,1) % The slope of each rms plot should give an expression
for diffcoeff
fit_x(i,:) = polyfit(Timelnterval ,RMSx(i,:) ,1);
fit_y (i,:) = polyfit(Timelnterval ,RMSy(i,:) ,1);

end

% MSD = 2Dxt, so devide by 2

DiffCoeff_.x = (1/2).xfit_x (:,1);
DiffCoeff.y = (1/2).xfit_y (:,1);

%% PLOT FIGURES

close all

figure (1)

histogram (DiffCoeff_x ,0:0.0250:0.5, "FaceColor’,’b ")
title (’Diffusion coefficient of unbound particles in x—direction’,’FontSize’

,22, "FontName’ ,” Calibri”)

xlabel (’Diffusion coefficient ( m "2/s)’,’FontSize’,22, ’FontName’,” Calibri”)
ylabel (’Counts (—)’, FontSize’  ,22, ’FontName’,” Calibri”)

figure (2)

histogram (DiffCoeff_y ,0:0.0250:0.5, "FaceColor’,’b ")

title (’Diffusion coefficient of unbound particles in y—direction’,’FontSize’
,22, "FontName ’ ,” Calibri”)

xlabel (’Diffusion coefficient ( m "2/s)’,’FontSize’,12, ’FontName’,” Calibri”)

ylabel ("Counts (—)’, FontSize’,12, ’FontName’,” Calibri”)

A.3 Diffusion coefficient of free moving particles using the
empirical cumulative distribution

%% Parameters

FrameStep = 1; % Framelnterval between which the
displacement will be considered

TotalFrames = 1800; % Set to 1800 frames for analyzing
each particle for one minute

FrameRate = 30;

TimeStep = FrameStep/FrameRate;; %Small time interval in which the
diffusion coefficient will be determined later in script

% Set up fittype and options.

ft = fittype( ’'l—exp(—x/(4%a))’, ’independent’, ’x’, ’dependent’, 'y’ );

opts = fitoptions( 'Method’, ’NonlinearLeastSquares’ );

opts.Display = *Off’;

opts.StartPoint = 0.0344460805029088;

% Get all particle number

test_n = (1:size(Result,2));

%% dummy variables for calculating the displacement in for loop

S = 2xFrameStep ;

m = FrameStep;

e = TotalFrames;

r = zeros (1,(e—s)/m); %Define matrix for faster
computation

% Parameter : Throw away overlapped particles (current threshold: <= 0)

for i = 1:size(Result,2)
test_eliminatej = [];
for j = size(Result,2):—1:i+1

if any(sqrt( (Result(i).DriftCorrectedTrajectory(1,:) — Result(j).

DriftCorrectedTrajectory (1,:))."2 +
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(Result (i).DriftCorrectedTrajectory (2,:) — Result(j).
DriftCorrectedTrajectory (2,:))."2 ) <= 0)
%Set these overlapped particles as zero(so can be deleted later at line
43)
test.n(i) = 0;
test_eliminatej = [test_eliminatej ,j]|;
end
end
test_n(test_eliminatej) = 0;
end
% Get the nonzero number

)

test_.n = nonzeros(test_n) ’;

X = zeros(size(test-n ,2) ,TotalFrames); %Define matrixes for faster computation
Y = zeros(size(test-n,2) ,TotalFrames);

for i = test_-n %Reed out and process position data
X(i,:)=Result(i).DriftCorrectedTrajectory (1,1:TotalFrames);
Y(i,:)=Result(i).DriftCorrectedTrajectory (2,1:TotalFrames);
end
9% Get information of each position for each bead in pixels.
% 1f use different magnification or microscope
%Transfer positions from pixels into um. (1 pixel equals 22777 nm, for 40x
magnification)
%Transfer positions from pixels into um. (1 pixel equals 794 nm, for 20x
magnification)
%Change to 460 nm when Leica was used (Leica at 20x magnification).
X2=X(any (X,2) ,:) *.794; %Also, get rid of elements equal to zero.
Y2=Y (any (X,2) ,:) *x.794;
DiffCoeff = zeros(1,size(test_n ,2)); %Define Matrix for faster computation

for i = 1l:size(test_n ,2)

for j = s:m:e %Loop should take intervals of steps equal to the Framelnterval
r(j) = (X2(i,j)-X2(i,j—-m)) " 2+(Y2(i,j)-Y2(i,j—-m)) " 2; %Distance for
end
r-distance = r(:,any(r,1)); %Get rid of elements equal to zero

%% The probability for finding the particle at a certain distance or smaller is
determined (CDF)
[CDF,D] = ecdf(r_distance); %Calculate CDF

%% Fit: ’Extract data for diffussioncoefficient through fit from CDF
[xData, yData] = prepareCurveData(D, CDF );

% Fit model to data.
try %When fit gives an error, skip the fit and continue with next iteration in for

loop .
[fitresult , gof] = fit( xData, yData, ft, opts );
a = coeffvalues(fitresult); %receive result from fit l—exp(x/—4a)

DiffCoeff(i) = a/TimeStep; %Since a = Dxt, devide through the timeinterval
catch
disp (’A Wild False Fit Appeared’)
end
end

9% Pot histogram of all DifCoeffiecents per dataset
close all

figure (1)
histogram (DiffCoeff ,0:0.0250:0.5, 'FaceColor’,’b")
title (’Diffusion coefficient of unbound particles’,’FontSize’,22, FontName’,”
Calibri”)
xlabel (’Diffusion coefficient ( m "2/s)’,’FontSize ,22, ’FontName’,” Calibri”)
ylabel (’Counts (—)’, FontSize’ ,22, ’FontName’,” Calibri”)
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A.4 Diffusion coefficient of tethered particles by linear fit
through mean square displacement

%% Setting some parameters

% Parameter 1 : Time interval(current:EndingT = 300 frames;)

EndingT = 2;

% Get all particle number

%Ignore particles which do not show sufficient symmetry

Pixel = .794;

% Nikon: 794

% M1 microscope: 641

test-n = find ([Result.Sym] >= 0.75 & ([Result.MinorDev]* Pixel >= 0.050) & ([Result.
MinorDev]* Pixel <= .180) );

MSD = zeros (1,size (EndingT ,2));

slope = zeros (size (test_n ,2) ,2);

%% Calculate 1.displacement 2.MSD 3.slope of MSD(For two dimension, slope/4=
diffusion coefficient)

% Run loop for every particle No.i

for i = test_n
X=Result (i).DriftCorrectedTrajectory (1,:);
Y=Result (i).DriftCorrectedTrajectory (2,:);

[frames]=size (X);

% define the number of frames

9% Get information of each position for each bead in pixels.

% Parameter 2 : if use different magnification or microscope

%Transfer positions from pixels into um. (1 pixel equals 22777 nm, for 40x
magnification)

%Transfer positions from pixels into um. (1 pixel equals 794 nm, for 20x
magnification)

%Change to 460 nm when Leica was used (Leica at 20x magnification).
X2=X*.794;

Y2=Y*.794;

% j is time interval

for j = 1:EndingT
% Calculating distance (displacement)
% Note: remember to add script for deleting outliers (while calculating
mean (X2) and mean(Y2))
squaredisp = zeros(1,frames(1,2)—j);
for 1 = 1l:frames(1,2)—]

% Squared displacement

squaredisp (1) = (X2(14j)-X2(1)) "2+ (Y2(14j)-Y2(1)) "2;
end
% Mean
MSD(j) = sum(squaredisp (:))/(frames(1,2)—j);

end

t = (1:EndingT) /30;

% Linear fitting of MSD curve

slope (i,:) = polyfit(t,MSD,1);

end

DC = slope (:,1) /4; %Calculate DiffCoef

DiffCoef = DC(any (DC,2) ,:); %Get rid of elements equal to zero

%% Plot Histogram
histogram ( DiffCoef ,0:0.0075:0.15, "FaceColor’,’b")
title (’Diffusion coefficient of tethered particles’,’FontSize’,22, FontName’,”
Calibri”)
xlabel (’Diffusion coefficient ( m "2/s)’,’FontSize’,22, ’FontName’,” Calibri”)
ylabel (’Counts (—)’, FontSize’  ,22, ’FontName’,” Calibri”)
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A.5 Diffusion coefficient of tethered particles by using the
standard deviation

9% Set Parameters concerning time

TotalFrames = 1800; %Total number of frames being considered
FrameStep = 1;

FrameRate = 30;

TimeStep = FrameStep /FrameRate;

%% Read Position Data

%Ignore particles which do not show sufficient symmetry

Pixel = .794;

% Nikon: 794

% M1 microscope: 641

test.n = find ([Result.Sym] >= 0.75 & ([Result.MinorDev]x* Pixel >= 0.050) & ([Result.
MinorDev]* Pixel <= .180) );

X = zeros(size(test.n ,2) ,TotalFrames); %Prelocate matrixes for faster computation

Y = zeros(size (test_n ,2) ,TotalFrames);

for i = test_n %Reed out and process position data
X(i,:)=Result(i).DriftCorrectedTrajectory (1,1:TotalFrames);
Y(i,:)=Result(i).DriftCorrectedTrajectory (2,1: TotalFrames);

end

%Get information of each position for each bead in pixels.
% 1f use different magnification or microscope
%Transfer positions from pixels into um. (1 pixel equals 22777 nm, for 40x
magnification)
%Transfer positions from pixels into um. (1 pixel equals 794 nm, for 20x
magnification)

%Change to 460 nm when Leica was used (Leica at 20x magnification).
X2=X(any (X,2) ,:) *.794; %Also, get rid of elements equal to zero.
Y2=Y(any (X,2) ,:) *x.794;

%Prelocate vectors for faster computation

PDFx = zeros (1,size (test-n ,2));

PDFy = zeros (1,size (test.n ,2));

MSD _x = zeros (size (test_n ,2) ,1);

MSD_y = zeros (size (test_n ,2) ,1);

%% Calculate Step made particle in x and y direction per Framelnterval.

%Set values for loop

S = 2xFrameStep ;

m = FrameStep;

e = TotalFrames;

dX = zeros (size (test_n ,2),TotalFrames);

dYy = zeros (size (test-n ,2),TotalFrames);

DiffCoeff_x = zeros (1,size (test_n ,2));

DiffCoeff_y = zeros (1,size (test-n ,2));

for i = 1:size(test_-n,2) %Calculate for all valid particles particles
for j = s:m:e %Loop should take intervals of steps equal to the Framelnterval

dX(i,§) = X2(i,j)-X2(i,j-m);

end

dX2 = dX(:,any(dX,1)); % Get rid of zero collumns

dy2 = dY(:,any(dY,1));

MSD x (i) = std (dX2(i,:)) "2; %From paper, RMS in a direction is
determined using the standard deviation

MSD_y (i) = std (dY2(i,:)) "2;
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DiffCoeff_x (i) = MSDx(i)/(2xTimeStep) ;
DiffCoeff_y (i) = MSD.y(i)/(2*TimeStep);
end

%% PLOT FIGURES

figure (1)

histogram (DiffCoeff_x ,0:0.0075:0.15, "FaceColor’,’b ")
title ('’ Diffusion coefficient of tethered particles’,’FontSize’,22, FontName’,”
Calibri”)
xlabel (' Diffusion coefficient ( m "2/s)’,’FontSize’,22, ’FontName’,” Calibri”)
ylabel (’Counts (—)’, FontSize’,22, ’'FontName’,” Calibri”)
figure (2)
histogram (DiffCoeff_y ,0:0.00375:0.15)

xlabel (’Diffusion Coefficient (um"2/s)’)
ylabel (’Number of Counts (—)’)
title (’Diffusion Coefficient in the y—direction’)

A.6 Diffusion coefficient of tethered particles by using the
empirical cumulative distribution

%% Parameters

Framelnterval = 1; % Framelnterval in which the
displacement will be considered

TotalFrames = 1800; % Set to 1800 frames for analyzing
each particle for one minute

FrameRate = 30;

Timelnterval = Framelnterval /FrameRate; %Small time interval in which the
diffusion coefficient will be determined later in script

% Set up fittype and options.

ft = fittype( ’'l—exp(—x/(4%a))’, ’independent’, ’x’, ’dependent’, 'y’ );

opts = fitoptions( ’'Method’, ’NonlinearLeastSquares’ );

opts.Display = *Off’;

opts.StartPoint = 0.003;

9% dummy variables for calculating the displacement in for loop

S = 2« Framelnterval;

m = Framelnterval;

e = TotalFrames;

r = zeros (1,(e—s)/m); %Define matrix for faster
computation

%lgnore particles which do not show sufficient symmetry

Pixel = .794;

% Nikon: 794

% M1 microscope: 641

test-n = find ([Result.Sym] >= 0.75 & ([Result.MinorDev]x* Pixel >= 0.050) & ([Result.
MinorDev]* Pixel <= .180) );

X = zeros(size(test-n ,2) ,TotalFrames); %Define matrixes for faster computation

Y = zeros(size(test-n,2) ,TotalFrames);

for i = test_-n %Reed out and process position data
X(i,:)=Result(i).DriftCorrectedTrajectory (1,1: TotalFrames);
Y(i,:)=Result(i).DriftCorrectedTrajectory (2,1:TotalFrames);

end

9% Get information of each position for each bead in pixels.
% 1f use different magnification or microscope
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%Transfer positions from pixels into um. (1 pixel equals 22777 nm, for 40x
magnification)

%Transfer positions from pixels into um. (1 pixel equals 794 nm, for 20x
magnification)

%Change to 460 nm when Leica was used (Leica at 20x magnification).

X2=X(any (X,2) ,:) *.794; %Also, get rid of elements equal to zero.

Y2=Y(any (X,2) ,:) *.794;

DiffCoeff = zeros(1,size(test_-n ,2)); %Prelocate Diffussion Coefficient Matrix for
faster computation

for i = 1:size(test_n ,2)

for j = s:m:e %Loop should take intervals of steps equal to the Framelnterval
r(j) = (X2(i,j)—X2(i,j—m))" " 24+(Y2(i,j)-Y2(i,j—-m)) " 2; %Distance for
end
r-distance = r(:,any(r,1)); %Get rid of elements equal to zero

%% The probability for finding the particle at a certain distance or smaller is
determined (CDF)
[CDF,D] = ecdf(r_distance); %Calculate CDF

%% Fit: ’'Extract data for diffussioncoefficient through fit from CDF
[xData, yData] = prepareCurveData (D, CDF );

% Fit model to data.
try %When fit gives an error, skip the fit and continue with next iteration in for
loop .
[fitresult , 7] = fit( xData, yData, ft, opts );
catch
try
opts.StartPoint = 0.0003;
[fitresult , 7] = fit( xData, yData, ft, opts );
opts. StartPoint = 0.003;

catch
disp (’False Fit!")
end
end
a = coeffvalues(fitresult); %receive result from fit I—exp(x/—4a)

DiffCoeff(i) = a/Timelnterval; %Since a = Dxt, devide through the timeinterval
end
%‘%)
figure (1)
histogram (DiffCoeff ,0:0.0075:0.15, ’FaceColor’,’b")
title (’Diffusion coefficient of tethered particles’,’FontSize’,22, FontName’,”
Calibri”)
xlabel (’Diffusion coefficient ( m "2/s)’,’FontSize’ ,22, ’FontName’,” Calibri”)
ylabel (’Counts (—)’, FontSize’,22, ’FontName’,” Calibri”)

A.7 Diffusion coefficient of tethered particles by using a
non-linear fit through the mean square displacement

O © 00O Uk W

[y

9% Setting some parameters
% Parameter 1 : Time interval
EndingT = 150; %Don’t set too hight since false fits can occur

%% Particle selection

%lgnore particles which do not show sufficient symmetry
Pixel = .794;

% Nikon: 794

% M1 microscope: 641
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test_.n = find ([Result.Sym] >= 0.75 & ([Result.MinorDev]*Pixel >= 0.050) & ([Result.
MinorDev]* Pixel <= .180) );

%% Calculate 1.displacement 2.MSD 3.slope of MSD(For two dimension, slope/4=
diffusion coefficient)

%Prelocating for faster computation

X = zeros (1,size(test_n ,2));

MSD = zeros (1,size (EndingT ,2));

distance.r = zeros(size(test_n,2),size(EndingT,2));

DiffCoeff = zeros(1l,size(test_n ,2));

% Run loop for every particle No.i

for i = test-n
X=Result (i).DriftCorrectedTrajectory (1,:);
Y=Result (i) .DriftCorrectedTrajectory (2,:);
% define the number of frames
[frames]=size (X);

9% Get information of each position for each bead in pixels.

% Parameter 2 : if use different magnification or microscope

%Transfer positions from pixels into um. (1 pixel equals 22777 nm, for 40x
magnification)

%Transfer positions from pixels into um. (1 pixel equals 794 nm, for 20x
magnification)

%Change to 460 nm when Leica was used (Leica at 20x magnification).
X2=X%.794;
% j is time interval

for j = 1:EndingT
% Calculating distance (displacement)
% Note: remember to add script for deleting outliers (while calculating
mean (X2) and mean(Y2))
distance_r (i,j) = sqrt ((X2(j)—mean(X2))"2);
squaredisp = zeros (1,frames(1,2)—j);
for 1 = 1l:frames(1,2)—j
% Squared displacement
squaredisp (1) = (X2(1+j)—X2(1)) " 2;
end
% Mean
MSD(j) = sum(squaredisp (:))/(frames(1,2)—j);
end

t = (1:EndingT) /30;

%% Fit: ’untitled fit 1.
[xData, yData] = prepareCurveData( t, MSD );

% Set up fittype and options.

ft = fittype( "(L"2/6)%(1—-96%((1/625)%exp(—250%(pi~"2)*x/(L"2))+(1/81)*exp(—90x*(pi
“2)xx/(L"2) )+exp(—Dx(pi~2)xx/(L"2)))/pi“4)’, ’independent’, ’'x’, ’dependent’, ~’
v

opts = fitoptions( 'Method’, ’NonlinearLeastSquares’ );

opts.Display = *Off’;

opts.StartPoint = [0.913375856139019 0.63235924622541];

% Fit model to data.

try

[fitresult , gof] = fit( xData, yData, ft, opts );

catch

disp (' false fit’)

end

DiffCoeff(i) = fitresult .D;

end

close all
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DiffCoeff = DiffCoeff (:,any(DiffCoeff ,1)); % Get Rid of zero elements

figure (1)
histogram (DiffCoeff ,0:0.0075:0.15, ’FaceColor’,’b")
title (’Diffusion coefficient of tethered particles’,’FontSize’,22, FontName’,”
Calibri”)
xlabel (’Diffusion coefficient ( m "2/s)’,’FontSize’ ,22, ’FontName’,” Calibri”)
ylabel (’Counts (—)’, FontSize’,22, ’FontName’,” Calibri”)

A.8 Diffusion coefficient over time with error bar

%% 1: Parameters

FrameStep = 1; %Step over which distances will be
calculated

FrameRate = 30;

TotalFrames = size (Result (2).DriftCorrectedTrajectory ,2) ; %
Total processing time

Framelnterval = 20; % Control number of measurements per
second

TimeStep = FrameStep/FrameRate; %Timestep used later to calculate
Diffusion coeficient

prompt = ’Which particle number do you want to consider?’;

PN = input (prompt) ;

% Set Fit options for later in the script:

ft = fittype( ’'l—exp(—x/(4%a))’, ’independent’, ’x’, ’dependent’, 'y’ );
opts = fitoptions( ’Method’, 'NonlinearLeastSquares’ );

opts.Display = *Off’;

opts.StartPoint = 0.0001;

Pixel = .794;

%Transfer positions from pixels into um. (1 pixel equals 22777 nm, for 40x
magnification)

%Transfer positions from pixels into um. (1 pixel equals 794 nm, for 20x
magnification)

%Change to 460 nm when Leica was used (Leica at 20x magnification).

%Prelocate matrices for faster computation

r-distance = zeros (1,Framelnterval);
dr = zeros (1,Framelnterval);
DiffCoeff = zeros (1,(TotalFrames—Framelnterval)/Framelnterval);
Time = zeros (1,(TotalFrames—Framelnterval)/Framelnterval);
DC_LinReg. DKW = zeros (1,(TotalFrames—Framelnterval)/Framelnterval);
S_DC_LinReg- DKW = zeros (1,(TotalFrames—Framelnterval)/Framelnterval);
%Read out position data
X =  Result(PN).DriftCorrectedTrajectory (1,1: TotalFrames)=*Pixel; %
Import data on position of N’th bead
Y = Result (PN) . DriftCorrectedTrajectory (2,1: TotalFrames)*Pixel;
9% 11: Start Computation of Diffusion Coefficient using nonlinear fitting
for i= Framelnterval : Framelnterval : TotalFrames—Framelnterval

Time(i) = i/FrameRate;

for j = i:FrameStep:(i+Framelnterval) %Loop should take intervals of steps
equal to the Framelnterval
r_distance (j—i+1) = (X(j)—X(j—FrameStep)) "24+(Y(j)-Y(j—FrameStep)) "2; %
Distance for
end
% Get rid of zero elements:
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r_distance = r_distance (:,any(r_distance ,1));
dr = dr (:,any(dr,1));

[CDF,D] = ecdf(r_distance); %Calculate ECDF

%Start fitting CDF for extracting Diffusion coefficient
Y%prepare fit data
[xData, yData] = prepareCurveData( D, CDF );

% receive result from fit l—exp(x/—4a)
try %When fit gives an error, adjust options of fit and retry
[fitresult , gof] = fit( xData, yData, ft, opts );
DiffCoeff(i) = coeffvalues(fitresult)/TimeStep;
catch
try
opts.StartPoint = 0.00001; %Set start value to lower value
%, since bound particles have way smaller diffusion coefficient
[fitresult , gof] = fit( xData, yData, ft, opts );
opts.StartPoint = 0.0001;
DiffCoeff(i) = coeffvalues(fitresult)/TimeStep;
catch
disp ([ 'False Fit at ’, num2str(Time(i))]) %If still a bad fit is
found, skip iteration and set Diffusion coefficient equal to
zero
DiffCoeff (i) =
end
end

9% 111 Data Analysis
%% Uncertainty Analysis: LINEAR REGRESSION Taking into account variance in ECDF (
DKW Inequality)

alpha = 0.32; %set alpha equal to 0.32 to find 68%—interval
epsilon = sqrt(log(2/alpha)/(2xsize (D,1))); % Determine Epsilon according to DKW
inequality

y = log(1./(1-CDF));

x = D;

S_.CDF = epsilon;

S.y = sqrt( (S.CDF."2)./((1-CDF)."2) );

x(size(x,1))=][]; %delete the element for which log(1—CDF) equals infinity

y(size(y,1))=[]; %lenght of y needs to match the lenght of x for valid analysis

S_y(size(S.y,1)) =[]

x(1) = [];

y(1) = [I;

Sy (1) = [

% Start using formula Taylor for linear regression (Determine a and S_a of

% the formula y = ax

w= (1./8.y."2);

delta = sum(w)*sum(w.*x.%x) — (sum(w.*xx))"2;

a = (sum(w)s*sum(w.xx.*xy)—sum(w.*x)*sum(w.*y))/delta;

S_a = sqrt (sum(w)/delta);

DC_LinReg DKW (1) = abs(1l/(4xaxTimeStep));

S_-DC_LinReg- DKW (i) = sqrt ((S-a"2)/(16x(a"4)*(TimeStep~2)) );

end

%% IV: Start plotting the result

% Get rid of zero elements in all relevant matrices:

Time = Time (: ,any (Time,1)); % Get rid of zero elements
DiffCoeff = DiffCoeff (: ,any(DiffCoeff ,1)); % Get rid of zero

elements
DC_LinReg_ DKW DC_LinReg- DKW (:, any (DC_LinReg. DKW 1)) ;
S_DC_LinReg_ DKW =  S.DC_LinReg DKW (:, any(S_-DC_LinReg. DKW ,1));

close all

48 Brownian motion analysis of tethered particles to probe particle states




105
106
107
108
109

110
111
112
113
114
115
116
117
118
119

120
121

=

10
11
12

14
15
16
17
18
19

20

21
22
23
24

26
27
28
29
30

32

APPENDIX A. MATLAB CODES

figure (1)
plotbrowser(’on’)
plot (Time, DiffCoeff) ;xlim ([0 350])
title ('’ Diffusion Coefficient
Calibri”)
a = get(gca, XTickLabel”);

set (gca, 'XTickLabel’ ;a, 'FontName’,’ Calibri’
( m~2/s)’,’FontSize’
"FontName’,” Calibri”)

ylabel (’Diffusion Coefficient
xlabel ('Time (s)’,’FontSize’,25,

figure (2)
plotbrowser (’on’)
errorbar (Time, DC_LinReg. DKW, S_DC_LinReg-DKW

set (gca, ’'YScale’,’log’)
title (’Diffusion Coefficient
,25, ’FontName’,” Calibri”)
ylabel (’Diffusion Coefficient
xlabel ('Time (s)’,’FontSize’,25,

calculated over

( m~"2/s)’,’FontSize’,25,
"FontName’,” Calibri”)

”

time’, FontSize’ ,25, ’FontName’,

,'fontsize’

118)
,25, ’'FontName’,” Calibri”)

701)

calculated over time with uncertainty’,’FontSize’

"FontName’,” Calibri”)

A.9 Diffusion coefficient threshold

For using this code, also use the function vline as written underneath.

%% 1: Parameters

FrameStep = 1; %Step over which distances will be
calculated

FrameRate = 30;

TotalFrames = size (Result (2) . DriftCorrectedTrajectory ,2); %
Total processing time

Framelnterval = 20; % Control number of measurements per
second

TimeStep = FrameStep/FrameRate; %Timestep used later to calculate

Diffusion coeficient

prompt =
PN = input (prompt) ;

% Set Fit options for later in the script:

ft = fittype( ’'l—exp(—x/(4%a))’, ’independent’, ’x’,
opts = fitoptions( ’Method’, ’NonlinearLeastSquares’
opts.Display = *Off’;

opts. StartPoint = 0.0001;

’Which particle number do you want to

consider?’;

),

’dependent’, '’y

)

)

Pixel = .794;
%Transfer positions from pixels into um. (1 pixel equals 22777 nm, for 40x
magnification)
%Transfer positions from pixels into um. (1 pixel equals 794 nm, for 20x
magnification)
%Change to 460 nm when Leica was used (Leica at 20x magnification).
9% 2. Calculate Diffusion Coefficients
%Prelocate matrices for faster computation
r_distance = zeros (1,Framelnterval);
dr = zeros (1,Framelnterval);
DiffCoeff = zeros (1,(TotalFrames—Framelnterval)/Framelnterval);
DC_LinReg-SSE = zeros (1,(TotalFrames—Framelnterval)/Framelnterval);
S_DC_LinReg_SSE = zeros (1,(TotalFrames—Framelnterval)/Framelnterval);
Time = zeros (1,(TotalFrames—Framelnterval)/Framelnterval);

%Read out position data
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33|X =  Result(PN).DriftCorrectedTrajectory (1,1: TotalFrames)=*Pixel; %
Import data on position of N’th bead

341Y = Result (PN) . DriftCorrectedTrajectory (2 ,1: TotalFrames)*Pixel;

35

36|% Determine middle of motion pattern

37 SortedX = sort(X); % Sort all the x positions in an array from low to high

38 SortedY = sort (Y);

39

40 PercentDisregard = 0.003; % Percentage from the sorted array that is
disregarded to determine the center

41

42 X_BottomFivePercent = SortedX (ceil (TotalFrames .* PercentDisregard)); %
From the sorted datapoints a certain percentage on the bottom is
disregarded , a list is created that does not contain these points

43 X_TopFivePercent = SortedX (ceil (TotalFrames .* (1—PercentDisregard)));

44 X_Center = (X_BottomFivePercent + X_TopFivePercent) ./ 2;

45

46 Y_BottomFivePercent = SortedY (ceil (TotalFrames .x PercentDisregard));

47 Y _TopFivePercent = SortedY (ceil (TotalFrames .x (1—PercentDisregard)));

48 Y_Center = (Y_BottomFivePercent + Y_TopFivePercent) ./ 2;

49

50 % Centered X and Y values:

51 X_Centered = X — X_Center;

52 Y_Centered =Y — Y_Center;

53

54| for i= Framelnterval : Framelnterval : TotalFrames—Framelnterval

55

56| Time(i) = i/FrameRate;

57

58 for j = i:FrameStep:(i+Framelnterval) %Loop should take intervals of steps

equal to the Framelnterval

59 r-distance (j—i+1) = (X(j)—X(j—FrameStep)) "24+(Y(j)-Y(j—FrameStep)) "2; %
Distance for

60 end

61|% Get rid of zero elements:

62| r_distance = r_distance (:,any(r-distance ,1));

63

64| [CDF,D] = ecdf(r_distance); %Calculate CDF

65

66|%Start fitting CDF for extracting Diffusion coefficient
67| %prepare fit data
68| [xData, yData] = prepareCurveData( D, CDF );

69

70|% receive result from fit l—exp(x/—4a)

71 try %When fit gives an error, adjust options of fit and retry

72 [fitresult , gof] = fit( xData, yData, ft, opts );

73 DiffCoeff(i) = coeffvalues(fitresult)/TimeStep;

74 catch

75 try

76 opts.StartPoint = 0.00001; %Set start value to lower value

77 %, since bound particles have way smaller diffusion coefficient

78 [fitresult , gof] = fit( xData, yData, ft, opts );

79 opts. StartPoint = 0.0001;

80 DiffCoeff(i) = coeffvalues(fitresult)/TimeStep;

81 catch

82 disp ([ 'False Fit at ’, num2str(Time(i))]) %If still a bad fit is
found, skip iteration and set Diffusion coefficient equal to
zero

83 DiffCoeff(i) = 0;

84 end

85 end

86| end

87|% Get rid of zero elements in all relevant matrices:

88| Time = Time(:,any(Time,1)); % Get rid of zero elements

89| DiffCoeff = DiffCoeff (: ,any(DiffCoeff ,1)); % Get rid of zero

elements
90
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9% 4. Define Threshold

clear SelectedX

close all;

f = figure;

subplot (2,1,1)

histogram (DiffCoeff ,50); hold on

title (’Histogram of found values of the Diffusion Coefficient’)
xlabel ('Diffusion Coefficient ( m "2/s)’)

ylabel (’Counts (—)")

subplot (2,1,2)

plot (Time, DiffCoeff); hold on

ylabel (’Diffusion Coefficient ( m "2/s)’)

xlabel ("Time (s) )

title (’Click on vertical threshold and press ENTER’)
[T, SelectedX ] = ginput();

hold off

close (f)

%Define needed threshold for analysation
Sigma = 0.25x* SelectedX;
Thresholds . Sigma = Sigma;

Thresholds. Threshold = SelectedX;
9% 5. Use Threshold for finding events.

StateTrace = zeros(1,length(DiffCoeff));
% First look at what the begin state of the particle is:
if DiffCoeff(1) >= Thresholds. Threshold

StateTrace (1) = 1;

else
StateTrace (1) = 0;
end

%Now find the state changes of the particle on the rest of the events.

for m = 2:length (DiffCoeff)
if DiffCoeff(m) >= Thresholds. Threshold+Thresholds. Sigma
StateTrace (m) = 1;
elseif DiffCoeff(m) < Thresholds.Threshold—Thresholds.Sigma
StateTrace (m) = 0;
else
StateTrace(m) = StateTrace(m—1);
end
end

%% 6. Calculate the binding times
clear UnbindingEvent BindingEvent
Counterl = 1;
Counter2 = 1;

if StateTrace(l) = 0
BindingEvent (Counterl) = 1;
Counterl = Counterl + 1;

elseif StateTrace(l) = 1
UnbindingEvent (Counter2) = 1;
Counter2 = Counter2 + 1;

else
error (Terror’);

end

for i = 1:length(StateTrace)—1
if StateTrace(i) = 1 && StateTrace(i+1) = 0

BindingEvent (Counterl) = Time (i+1);
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Counterl = Counterl + 1;
elseif StateTrace(i) == 0 && StateTrace(i+1) =1
UnbindingEvent (Counter2) = Time (i);
Counter2 = Counter2 + 1;
end
end
if StateTrace(l) = 0 && length (BindingEvent) "= length (UnbindingEvent)

BoundTimes = abs(BindingEvent (1:end—1)—UnbindingEvent (1:end));
UnboundTimes = abs(UnbindingEvent (1:end)—BindingEvent (2:end));

elseif StateTrace(l) = 0 && length(BindingEvent) = length (UnbindingEvent)

BoundTimes = abs(BindingEvent (1:end)—UnbindingEvent (1:end));
UnboundTimes = abs(UnbindingEvent (1:end—1)-BindingEvent (2:end));

elseif StateTrace(l) = 1 && length(BindingEvent) "= length (UnbindingEvent)

BoundTimes = abs(BindingEvent (1:end)—UnbindingEvent (2:end));
UnboundTimes = abs(UnbindingEvent (1:end—1)-BindingEvent (1:end));

elseif StateTrace(l) = 1 && length(BindingEvent) = length (UnbindingEvent)

BoundTimes = abs(BindingEvent (1:end —1)—UnbindingEvent (2:end));
UnboundTimes = abs(UnbindingEvent (1:end)—BindingEvent (1:end));

end

%% 7. Plot Results

% Read out the events from code Emiel based on motion patterns.
EventFrames = [Result (PN).DetectedEventTimes {1,1}];
LifeTimeFrames = [Result (PN).DetectedEventLifetimes{1,1}];
EventTimes = EventFrames/FrameRate;

LifeTimes = LifeTimeFrames/FrameRate;

close all

figure (1)

hold on

plot (Time, StateTrace)

vline (EventTimes)

plotbrowser(’on’)

title (’State of particle over time with current threshold (with events from Emiel
for comparison)’)

xlabel ("Time (s) )

ylabel (’State (0 = bound, 1 = unbound)’)
ylim ([—-0.3 1.3])

hold off

figure (2)

hold on

plot (Time, DiffCoeff)

vline (BindingEvent , 'g’)

vline (UnbindingEvent, 'r )

plotbrowser (’on’)

title ({ "Plot of Filtered Diffusion Coefficient with binding events from threshold’;
’g = Binding event & r = Unbinding event’})

xlabel ("Time(s) )

ylabel (’Filtered Diffusion Coefficient (un“2/s)’)

figure (3)
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hold on

plot (Time, DiffCoeff)

plotbrowser (’on’)

vline (EventTimes)

title (’Diffusion Coefficient calculated over time (Events by code Emiel)’)
xlabel ("Time(s) )

ylabel (’Diffusion Coefficient (um“2/s)’)

hold off

%% Plot Binding Events in intervals from either 0. Emiels’s Result 1. Result
DiffCoeff

prompt = Do you want to use code Emiel or Diffusion Coefficient Thresholding (0 =

Emiel, 1 = DiffCoeff)’;
Opt = input (prompt);

if Opt = 0
% First plot the first traject

if max(X_Centered (1:EventFrames(1)))—min(X_Centered (1: EventFrames(1))) > 0.8%max(
X_Centered) || max(Y_Centered (1l:EventFrames(1l)))-min(Y_Centered(1:EventFrames
(1))) > 0.8xmax(Y_Centered)

figure (4)

plotbrowser on

plot (X_Centered (1: EventFrames(1)),Y_Centered (1: EventFrames(1)),’. , color’,’k’);
hold on

xlim ([ —1.1*max(X_Centered) 1.lxmax(X_Centered)])

ylim ([ —1.1+*max(Y_Centered) 1.lxmax(Y_Centered)])

figure (5)

plotbrowser on

plot (Time (1:(EventFrames(1)/Framelnterval)) ,DiffCoeff (1:(EventFrames(1)/
Framelnterval)), ’color’,’k’); hold on

ylim ([0 max(DiffCoeff)*1.1])

vline (EventFrames/FrameRate); hold on

ylim ([0 max(DiffCoeff)*1.1])

else

figure (4)

plotbrowser on

plot (X_Centered (1: EventFrames (1)) ,Y_Centered (1: EventFrames(1)),’.’); hold on
xlim ([ —1.1*max(X_Centered) 1.lxmax(X_Centered)])

ylim ([—1.1+*max(Y_Centered) 1.lxmax(Y_Centered)])

figure (5)

plotbrowser on

plot (Time (1:( EventFrames(1)/Framelnterval)) ,DiffCoeff (1:(EventFrames(1)/
Framelnterval))); hold on

ylim ([0 max(DiffCoeff)*1.1])

vline (EventFrames/FrameRate); hold on

ylim ([0 max(DiffCoeff)«1.1])

end

pause
% Now start plotting the middle traject using a for loop
for i = 1:1:(size(EventFrames,2))—1

Start =  EventFrames(i);

End =  EventFrames(i+1);

plotbrowser on

if max(X_-Centered(Start:End))—min(X_Centered(Start:End)) > 0.8+max(2*X_Centered
) || max(Y_Centered(Start:End))—min(Y_Centered(Start:End)) > 0.8*max(2x
Y_Centered)

figure (4)

plotbrowser on

plot (X_Centered (Start:End) ,Y_Centered (Start:End),’ . , color’,’k’, LineWidth’
,0.01); hold on

xlim ([—1.1*max(X_Centered) 1.lxmax(X_Centered)])
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end

ylim ([—1.1xmax(Y_Centered) 1.lxmax(Y_Centered)])
xlabel (’Horizontal Displacement (um)’)
ylabel(’Vertical Displacement (um)’)

figure (5)

plotbrowser on

plot (Time(( Start/Framelnterval) :(End/Framelnterval)) ,DiffCoeff ((Start/
Framelnterval):(End/Framelnterval)), ’color’,’k’); hold on

ylim ([0 max(DiffCoeff)*1.1])

xlabel ("Time (s)’)

ylabel (’Diffusion Coefficient (um”2/s)’)

else

figure (4)

plotbrowser on

plot (X_Centered (Start:End) ,Y_Centered (Start:End), . ); hold on

xlim ([—1.1*max(X_Centered) 1.lxmax(X_Centered)])

ylim ([—1.1xmax(Y_Centered) 1.lxmax(Y_Centered)])

xlabel (’Horizontal Displacement (um)’)

ylabel(’Vertical Displacement (um)’)

figure (5)

plotbrowser on

plot (Time(( Start/Framelnterval) :(End/Framelnterval)) ,DiffCoeff ((Start/
Framelnterval):(End/Framelnterval)), LineWidth’,2); hold on

ylim ([0 max(DiffCoeff)*1.1])

xlabel ("Time (s)’)

ylabel (’Diffusion Coefficient (um”2/s)’)

end

pause

% Plot the last section
if max(X_Centered (max(EventFrames):size (X_Centered,2)))—min(X_Centered (max(

EventFrames):size (X_Centered ,2))) > 0.8xmax(2%X_Centered) || max(Y_-Centered (max
(EventFrames) : size (Y_Centered ,2)))—min(Y_Centered (max(EventFrames):size (
Y_Centered ,2))) > 0.8*max(2%Y_Centered)

figure (4)
plot (X_Centered (max(EventFrames) : size (X_Centered ,2)),Y_Centered (max(EventFrames
):size (X_-Centered,2)),’ . , color’,’k’); hold on

xlim ([—1.1*max(X_Centered) 1.lxmax(X_Centered)])
ylim ([—1.1*max(Y_Centered) 1.lxmax(Y_Centered)])
xlabel (’Horizontal Displacement (um)’)
ylabel(’Vertical Displacement (um)’)

figure (5)

plot (Time ((max(EventFrames)/Framelnterval) :(size (X_Centered ,2) /Framelnterval —1)
), DiffCoeff ((max(EventFrames)/Framelnterval) : ( size (X_Centered ,2)/
Framelnterval —1)), color’,’k’); hold on

ylim ([0 max(DiffCoeff)x1.1])

xlabel ("Time (s)’)

ylabel (’Diffusion Coefficient (umn“2/s)’)

else

figure (4)

plot (X_Centered (max(EventFrames) : size (X_Centered ,2)),Y_Centered (max(EventFrames
):size (X_-Centered,2)),’.’); hold on

xlim ([—1.1*max(X_Centered) 1.lxmax(X_Centered)])
ylim ([—1.1*max(Y_Centered) 1.lxmax(Y_Centered)])
xlabel (’Horizontal Displacement (um)’)
ylabel(’Vertical Displacement (um)’)

figure (5)

plot (Time ((max(EventFrames)/Framelnterval) :(size (X_Centered ,2) /Framelnterval —1)
), DiffCoeff ((max(EventFrames)/Framelnterval) :( size (X_Centered ,2)/
Framelnterval —1)), LineWidth’,2); hold on

ylim ([0 max(DiffCoeff)x1.1])

xlabel ("Time (s)’)

ylabel (’Diffusion Coefficient (um“2/s)’)
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end

elseif Opt = 1
Events = [BindingEvent«FrameRate, UnbindingEvent*FrameRate]; % First calculate

seconds back to frames

Events = sort (Events);
% First plot the first traject

if max(X_-Centered (1: Events(1)))—min(X_Centered (1:Events(1))) > 0.8«max(2xX_Centered
) || max(Y_Centered(1l:Events(1l)))—min(Y_Centered (1:Events(1))) > 0.8xmax(2x
Y_Centered)

figure (4)

plotbrowser on

plot (X_Centered (1: Events(1)),Y_Centered (1:Events(1)),’. , color’,’k’”); hold on

xlim ([ —1.1*max(X_Centered) 1.lxmax(X_Centered)])
ylim ([—1.1+*max(Y_Centered) 1.lxmax(Y_Centered)])

figure (5)

plotbrowser on

plot (Time(1l:(Events(l)/Framelnterval)),DiffCoeff (1:(Events(l)/Framelnterval)),’
color’,’k’); hold on

ylim ([0 max(DiffCoeff)x1.1])

vline (Events/FrameRate); hold on

ylim ([0 max(DiffCoeff)x1.1])

else

figure (4)

plotbrowser on

plot (X_Centered (1: Events(1)),Y_Centered (1: Events(1)),’."); hold on

xlim ([ —1.1*max(X_Centered) 1.1smax(X_Centered)])
ylim ([ —1.1x*max(Y_Centered) 1.lxmax(Y_Centered)])

figure (5)

plotbrowser on

plot (Time (1:(Events(1l)/Framelnterval)),DiffCoeff (1:(Events(1l)/Framelnterval)));
hold on

ylim ([0 max(DiffCoeff)*1.1])

vline (Events/FrameRate); hold on
ylim ([0 max(DiffCoeff)*1.1])
end
pause
% Continue plotting for the other trajects
for i = 1:1:(size(Events,2)—-1)
Start = Events(i);
End = Events (i+1);

plotbrowser on

if max(X_Centered(Start:End))—min(X_Centered(Start:End)) > 0.8+max(2*X_Centered
) || max(Y_Centered(Start:End))—min(Y_Centered(Start:End)) > 0.8+max(2x
Y _Centered)

figure (4)

plot (X_Centered (Start:End),Y_Centered(Start:End),’.’, color’,’k’, ’LineWidth’
,0.01); hold on

xlim ([—1.1*max(X_Centered) 1.lxmax(X_Centered)])

ylim ([—1.1*max(Y_Centered) 1.lxmax(Y_Centered)])

xlabel (’Horizontal Displacement (um)’)

ylabel(’Vertical Displacement (um)’)

figure (5)

plot (Time(( Start /Framelnterval) :(End/Framelnterval)) ,DiffCoeff ((Start/
Framelnterval):(End/Framelnterval)),’color’,’k’); hold on

ylim ([0 max(DiffCoeff)*1.1])

xlabel ("Time (s)’)

ylabel (’Diffusion Coefficient (um“2/s)’)

pause

Brownian motion analysis of tethered particles to probe particle states 55




394
395
396
397
398
399
400
401
402
403

404
405
406
407
408
409
410
411

412
413

414
415
416
417
418
419
420

421
422
423
424
425
426

427
428
429
430
431
432
433

434
435
436
437
438
439

=W N =

~N

APPENDIX A. MATLAB CODES

else
figure (4)
plot (X_Centered (Start:End),Y_Centered (Start:End),’. ); hold on
xlim ([—1.1*max(X_Centered) 1.lxmax(X_Centered)])
ylim ([—1.1*max(Y_Centered) 1.lxmax(Y_Centered)])
xlabel (’Horizontal Displacement (um)’)
ylabel(’Vertical Displacement (um)’)
figure (5)
plot (Time ((Start/Framelnterval):(End/Framelnterval)) , DiffCoeff ((Start/
Framelnterval):(End/Framelnterval)),’ LineWidth’,2); hold on
ylim ([0 max(DiffCoeff)x1.1])
xlabel ("Time (s)’)
ylabel (’Diffusion Coefficient (um“2/s)’)
pause
end
end
% Plot the last section
if max(X_Centered (max(Events):size (X_Centered,2)))—min(X_Centered (max(Events):size (
X_Centered ,2))) > 0.8+max(2*X_Centered) || max(Y_Centered (max(Events):size (
Y_Centered ,2) ) )—min(Y_Centered (max(Events):size (Y_Centered,2))) > 0.8«max(2*
Y _Centered)
figure (4)
plot (X_Centered (max(Events) : size (X_Centered ,2)),Y_Centered (max(Events) : size (
X_Centered ,2)),’ .7, color’,’k’); hold on
xlim ([—1.1*max(X_Centered) 1.lxmax(X_Centered)])
ylim ([—1.1*max(Y_Centered) 1.lxmax(Y_Centered)])
xlabel (’Horizontal Displacement (um)’)
ylabel(’Vertical Displacement (um)’)
figure (5)
plot (Time ((max(Events)/FrameRate) : ( size (X_Centered ,2) /Framelnterval —1)) ,
DiffCoeff ((max(Events)/Framelnterval):(size (X_Centered,2)/Framelnterval —1))
,7color”,’k’); hold on
ylim ([0 max(DiffCoeff)x1.1])
xlabel (’Time (s)’)
ylabel (’Diffusion Coefficient (um“2/s)’)
else
figure (4)
plot (X_Centered (max(Events) : size (X_Centered ,2)),Y_Centered (max(Events) : size (
X_Centered,2)),’.7); hold on
xlim ([—1.1*max(X_Centered) 1.lxmax(X_Centered)])
ylim ([—1.1*max(Y_Centered) 1.lxmax(Y_Centered)])
xlabel (’Horizontal Displacement (um)’)
ylabel(’Vertical Displacement (um)’)
figure (5)
plot (Time ((max(Events)/Framelnterval) :(size (X_Centered ,2) /Framelnterval —1)),
DiffCoeff ((max(Events)/Framelnterval):(size (X_Centered,2)/Framelnterval —1))
, ’LineWidth’,2); hold on
ylim ([0 max(DiffCoeff)x1.1])
xlabel ("Time (s)’)
ylabel (’Diffusion Coefficient (um“2/s)’)
end
end
function hhh=vline (x,inl,in2)
% function h=vline(x, linetype, label)
%
% Draws a vertical line on the current axes at the location specified by ’x’.
Optional arguments are
% ’linetype’ (default is ’r:’) and ’label’, which applies a text label to the graph
near the line. The
% label appears in the same color as the line.
%

% The line is held on the current axes, and after plotting the line, the function
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returns the axes to
% its prior hold state.
%
% The HandleVisibility property of the line object is set to ”off”, so not only
does it not appear on
% legends , but it is not findable by using findobj. Specifying an output argument
causes the function to
% return a handle to the line, so it can be manipulated or deleted. Also, the
HandleVisibility can be
% overridden by setting the root’s ShowHiddenHandles property to on.
%
% h = vline (42,’g’,’The Answer’)
%
% returns a handle to a green vertical line on the current axes at x=42, and
creates a text object on
% the current axes, close to the line, which reads ”The Answer”.
%
% vline also supports vector inputs to draw multiple lines at once. For example,
%
% vline ([4 8 12],{’g’,’r’,’b’},{ 11, 1ab2’, ’LABELC’ } )
%
% draws three lines with the appropriate labels and colors.
%
% By Brandon Kuczenski for Kensington Labs.
% brandon_kuczenski@kensingtonlabs .com
% 8 November 2001
if length(x)>1 % vector input
for I=1l:length(x)
switch nargin
case 1
linetype='r:";
label="";
case 2
if “iscell(inl)
inl={inl};
end
if I>length (inl)
linetype=inl{end};
else
linetype=inl{I};
end
label="";
case 3
if “iscell(inl)
inl={inl };
end
if “iscell(in2)
in2={in2 };
end
if I>length (inl)
linetype=inl{end};
else
linetype=inl{I};
end
if I>length (in2)
label=in2{end};
else
label=in2{I};
end
end
h(I)=vline(x(I),linetype ,label);
end
else
switch nargin
case 1
linetype='r:";
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label="";
case 2

linetype=inl;

label="";
case 3

linetype=inl;

label=in2;
end

g=ishold (gca);
hold on

y=get (gca, 'ylim ") ;
h=plot ([x x],y,linetype);
if length(label)
xx=get (gca, 'xlim ") ;
xrange=xx (2)—xx(1);
xunit=(x—xx(1))/xrange;
if xunit <0.8
text (x+0.0lxxrange ,y(1)+0.1*%(y(2)—y(1)),label , color’,get(h, "color’))
else
text (x—.05*%xrange ,y(1)+0.1%(y(2)—y(1)),label, color’,get(h, color’))
end
end

if g==0

hold off

end

set (h, "tag’,’vline’, handlevisibility ', off )
end % else

if nargout
hhh=h;
end

A.10 Diffusion coefficient plotted against amplitudes

function CDF_MinorMajorAxis(Result, filename ,FrameStep)
9% 1. Set Parameters for computation

TotalFrames = 1800; % Set to 1800 frames for
analyzing each particle for one minute

FrameRate = 30;

Timelnterval = FrameStep/FrameRate;; %Small time interval in which the

diffusion coefficient will be determined later in script
filename = erase(filename,’.mat’);

% Set up fittype and options.

ft = fittype( ’'l—exp(—x/(4%a))’, ’independent’, ’x’, ’dependent’, 'y’ );
opts = fitoptions( 'Method’, ’NonlinearLeastSquares’ );
opts.Display = *Off’;

opts.StartPoint = 0.001;

%Ignore particles which do not show sufficient symmetry
Pixel = .794 ; %Put in Resolution

% Nikon: 794 nm

% M1 microscope: 641 nm

% Leica: 460 nm

9% IMPORTANT SELECT CORRECT FILTER BEFORE ANALYSATION
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%For Silica particles use:
test_n = find ([Result.Sym] >= 0.75 & ([Result.MinorDev]|* Pixel >= 0.04) & ([Result.
MinorDev]* Pixel <= 0.10) );

%For myone use:
%test-n = find ([ Result.Sym] >= 0.75 & ([Result.MinorDev]|*Pixel >= 0.050) & ([Result
.MinorDev|* Pixel <= .180) );

r = zeros (1,(TotalFrames—1)); %Define matrix for faster
computation
%Define Matrices for major and minor axis and position for faster computation.
EmielMajorAllum = zeros (1,size (test_n ,2));
EmielMinorAllum = zeros (1,size (test-n ,2));
X = zeros (size (test_n ,2) ,TotalFrames); %Define matrixes for
faster computation
Y = zeros (size (test_n ,2) ,TotalFrames);
%% 2. READ OUT DATE FOR MAJOR/MINOR AXIS AND DISPLACEMENT
for i = test_n
%Ready out the major and major axis for the ith particle
EmielMajorAllum (i) = Result (i).MajorDev.x* Pixel; %Compute pixels to
micrometers
EmielMinorAllum (i) = Result (i) .MinorDev.x* Pixel;
% Ready out position of each particle in um.
X(i,:) = Result (i) .DriftCorrectedTrajectory (1,1: TotalFrames)
*Pixel;
Y(i,:) = Result (i) .DriftCorrectedTrajectory (2,1: TotalFrames)
*Pixel;
end
EmielMajorAllum = EmielMajorAllum (: ,any (EmielMajorAllum ,1));
EmielMinorAllum = EmielMinorAllum (: ,any (EmielMinorAllum ,1));
DiffCoeff = zeros (1,size (test_n ,2)); %Define Matrix for faster
computation of diffussion coefficient
%% 3. CALCULATE FOR EACH PARTICLE THE DIFFUSSION COEFFICIENT USING CDF

for i = test_n
for j = 2«FrameStep:FrameStep: TotalFrames %Loop should take intervals of steps
equal to the Framelnterval
r(j) = (X(i,j)X(i,j—FrameStep)) "24+(Y(i,j)-Y(i,j—FrameStep)) " "2; %
Distance for
end
r.distance = r(:,any(r,1)); %Get rid of elements equal to zero

% The probability for finding the particle at a certain distance or smaller is
determined (CDF)
[CDF,D] = ecdf(r_distance); %Calculate CDF

%% Fit: ’Extract data for diffussioncoefficient through fit from CDF
[xData, yData] = prepareCurveData(D, CDF );

% Fit model to data.
try %When fit gives an error, skip the fit and continue with next iteration in for
loop .
[fitresult , 7] = fit( xData, yData, ft, opts );
catch
try
opts. StartPoint = 0.0001;
[fitresult , 7] = fit( xData, yData, ft, opts );
opts. StartPoint = 0.001;
catch
disp (*False Fit! ")
end
end
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DiffCoeff(i) = fitresult.a/Timelnterval; %Since a = Dxt, devide through the
timeinterval

% RESULT: CD = Diffussion coefficient of ith particle

end

DiffCoeff = DiffCoeff (:, any(DiffCoeff ,1));

9% 4. Plot Minor/DiffCoef

close all

figure (’visible’,  off )

p = polyfit (nonzeros(EmielMinorAllum’) , nonzeros(DiffCoeff ’) ,1);
plot (EmielMinorAllum’, DiffCoeff’, ’.7)

hold on

plot (xlim, p(1)*xlim+p(2))

grid on

xlabel (’Minor amplitude (um)’)

ylabel (’Diffusion coefficient (um"2/s)’)

title ([ ’Diffusion coefficient vs. Minor amplitude’,string(filename)])

legend (’data’ ,[’y = ’,num2str(p(1l)),’x’,’ + ’,num2str(p(2))], Location’, southeast’
filenamel = [filename ,’ FI=’,num2str(FrameStep),’. MinorDiffCoef.png’];
saveas (gcf , filenamel)

figure (’visible’,  off )

FrameStep = polyfit(nonzeros(EmielMajorAllum’) ,nonzeros(DiffCoeff’) ,1);
plot (EmielMajorAllum’, DiffCoeff’, . ")

hold on

plot (xlim, FrameStep(1)*xlim+FrameStep(2))

grid on

xlabel (’Major amplitude (um)’)
ylabel (’Diffusion coefficient (um"2/s)’)

title ([ ’Diffusion coefficient vs. Major amplitude’,string (filename)])

legend ('data’ ,[’y = ’,num2str(FrameStep(1)),’x’,’ + ’,num2str(p(2))], Location’,’
southeast ”)

filename2 = [filename ,’ FI=’ ,num2str(FrameStep),’. MajorDiffCoeff.png’];

saveas (gcf , filename2)

disp(string ([ ’For ’,filename,’ the minor slope equaled ’,num2str(p(1l)),’ and the

major slope equaled ’,num2str(FrameStep(1)),’."]))
end
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Appendix B
Correlations diffusion coeflicient

and motion amplitudes for
different systems

On the next page table B.1 gives an overview of the found slopes values as discussed in chapter 6.
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APPENDIX B. CORRELATIONS DIFFUSION COEFFICIENT AND MOTION

AMPLITUDES FOR DIFFERENT SYSTEMS

Surface
Coating
BSA

BSA

BSA

BSA

BSA

BSA

BSA

BSA

BSA

BSA

Casein

BSA

BSA
PLL-g-PEG
BSA
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEC
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG
PLL-g-PEG

Coupling
Strategy

DIG-AntiDIG (antigen-antibody)

(

DIG-AntiDIG (antigen-antibod
DIG-AntiDIG (antigen-antibod
DIG-AntiDIG (antigen-antibod
DIG-AntiDIG (antigen-antibod
DIG-AntiDIG (antigen-antibod
DIG-AntiDIG (antigen-antibod
DIG-AntiDIG (antigen-antibod
DIG-AntiDIG (antigen-antibod
DIG-AntiDIG (antigen-antibod
DIG-AntiDIG (antigen-antibod
DIG-AntiDIG (antigen-antibod

y
y
y
y
y
y
y
y
y
y
y

DIG-AntiDIG (antigen-antibody

DBCO-azide

click chemistry

)
)
)
)
)
)
)
)
)
)
)
)

DIG-AntiDIG (antigen-antibody)

DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide
DBCO-azide

click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry
click chemistry

Table B.1

dsDNA

tether length
120 base pair?
120 base pair?
120 base pair?
120 base pair?
120 base pair?
120 base pair?
120 base pair?
120 base pair?
120 base pair?
120 base pair?
221 base pair?
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair
221 base pair

Particle
Silica
Silica
Silica
Silica
Silica
Silica
Silica,
Silica
Silica
Silica
Silica
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone
myone

Particle
Coating
Particle Binder
Particle Binder
Particle Binder
Particle Binder

Particle Binder s

Particle Binder
Particle Binder
Particle Binder
Particle Binder
Particle Binder
Particle Binder
Particle Binder
Particle Binder
Particle Binder
Particle Binder
biotinPEG
Particle Binder
Particle Binder
Particle Binder
Particle Binder
Particle Binder
Particle Binder
Particle Binder
Particle Binder
biotinPEG
biotinPEG
biotinPEG
biotinPEG
biotinPEG
biotinPEG
biotinPEG
biotinPEG
biotinPEG
biotinPEG

ssDNA (? bp)
ssDNA (? bp)
ssDNA (? bp)
ssDNA (? bp)
ssDNA (? bp)
ssDNA (? bp)
ssDNA (? bp)
ssDNA (? bp)
ssDNA (? bp)
ssDNA (? bp)
ssDNA (? bp)
ssDNA (? bp)
ssDNA (? bp)
ssDNA (11 bp)
ssDNA (? bp)
ssDNA (20 bp)
ssDNA (20 bp)
ssDNA (20 bp)
ssDNA (11 bp)
ssDNA (11 bp)
ssDNA (20 bp)
ssDNA (11 bp)
ssDNA (11 bp)

Minor
Slope
0,78212
0,65102
0,63341
0,63417
0,66508
0,65281
0,91077
0,66727
0,78212
0,76552
1,3848
0,4887
0,58182
0,56053
0,58106
0,54667
0,50884
0,50273
0,51683
0,51654
0,49715
0,52141
0,54514
0,51237
0,54667
0,5338
0,57349
0,58255
0,55487
0,52154
0,57579
0,54268
0,55296
0,53081

Major Slope

0,6744
0,58735
0,55381
0,53744
0,54276
0,55923
0,75792
0,56798
0,6744

0,71332
1,3218

0,44846
0,45713
0,53712
0,50581
0,4939

0,45139
0,44175
0,45994
0,49593
0,47508
0,46498
0,50968
0,44581
0,4939

0,47413
0,50277
0,52223
0,49177
0,47279
0,51786
0,4853

0,50915
0,45486
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