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Achieving Thermal Comfort in Naturally Ventilated Offices in

São Paulo, Brazil

Abstract

To make accurate building performance pre-
dictions all factors that influence results need
to be understood. Occupant behavior (OB)
has been identified as the greatest source of
uncertainty. This is especially true for the
South-American region as no research was
found in literature studying building com-
fort related OB there. In this paper, mea-
surement and simulation results for thermal
comfort and OB regarding window opening
and fan use are presented. The measure-
ments showed that for 86.27% and 75.00%
of the occupied time, for the warm and cold
period respectively, the thermal comfort fell
within the >90% acceptability limits (com-
fort class A) according to the adaptive com-
fort model. Based on the measurement data,
a simulation model in the EnergyPlus EMS
language for window opening and fan use be-
havior was developed, showing average abso-
lute errors for predicting fan use and window
opening of 0.018 and 0.010 respectively. Us-
ing simulation, adaptive behavior was ide-
alized for achieving thermal comfort. This
way, the time spent outside comfort class A
was reduced by 76% and 25% for the warm
and cold period respectively. Lastly, improv-
ing insulation levels of the building envelope
reduced discomfort by a further 44% and
53%, to maintain comfort class A 98.0% and
90.9% of the time for the warm and cold pe-
riod respectively.

keywords: Occupant Behavior, Brazil, Building Per-
formance Simulation, EnergyPlus, Window Open-
ing, Fan Use, Free-Running.

1 Introduction

Buildings are created to provide comfort and shel-
ter from outside conditions. Currently, the addi-
tional challenge for building engineers is to achieve
this with the lowest amount of energy consump-
tion as regulations are becoming ever more strin-
gent [1]. For this reason, investigating to what ex-
tent free-running climate control systems can pro-

vide thermal comfort gives insight for both new de-
velopments and the renovation of existing building
stock.

Better understanding of the parameters that influ-
ence building performance will help to design better
performing buildings. Currently, measured opera-
tional performance often does not match designed
performance. This performance gap was investi-
gated for 121 LEED-NC version 2 buildings and it
was found that for 55% percent of the investigated
buildings the difference between the predicted and
measured energy consumption was more than 25%,
with the largest mismatch as great as +280% as
shown in Figure 1 [2].

Figure 1: LEED Measured energy use intensity versus design
energy use intensity for 121 LEED-NC certified buildings
(adapted from [2])

This problem has incentivized the International En-
ergy Agency to create the Energy in the Buildings
and Communities Program. In Annex 53: Total
Energy use in Buildings, the six main categories
determining energy use in buildings have been de-
termined as climate, building envelope, building en-
ergy and services systems, indoor design criteria,
building operation and maintenance and occupant
behavior (OB) [3]. Out of these categories the most
significant knowledge gap exists regarding OB mod-
eling as there lacks scientific and robust methods to
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define and model OB in buildings [4].

When measuring energy consumption for identical
houses at a social housing project in the UK it was
found that a difference of up to 54% in average
energy consumption occurred, solely attributable to
occupant influence [5]. Specification uncertainty in
modeling, OB and poor operational practices were
identified to be the leading causes of performance
gaps [6], showing the need for more information on
OB and quality standards in OB modeling.

Climate conditions and, to an extent, occupant pref-
erence and behavior are location dependent [7] and
therefore it is important to gather spatially dis-
tributed data. Research efforts made at this point
have mostly focused on certain markets, namely
Europe, East-Asia and North America, leaving a
knowledge gap in the Southern hemisphere. In a
comprehensive comparative study on thermal com-
fort by Mishra & Ramgopal [8] only 4 out of 114
studied buildings were situated South of the equa-
tor. And a comparative study of 79 papers on OB
by Gaetani et al. [9] did not include any South-
American location. To help fill this gap, this re-
search is focused on a situation in São Paulo, Brazil.
An important market, with an estimated popula-
tion of over 36 million in its greater metropolitan
area [10], which is ∼17.2% of Brazil’s population
and ∼0,5% of the world’s population.

Up until late in the previous century, buildings in
Brazil were not often fitted with heating or cooling
systems. The use of passive measures like thermal
mass, shading and natural ventilation or low energy
measures like fans was prevalent [11]. After the dic-
tatorship ended in 1985, energy costs dropped and
climate control technology became readily available
which changed building design towards active, less
energy efficient concepts [12]. To facilitate the glo-
bal energy transition, it is important to learn from
historically proven concepts and translate these into
modern solutions [13].

Occupants of naturally ventilated buildings are com-
fortable in a wider temperature bandwidth than oc-
cupants of buildings with central heating, ventila-
tion and air-conditioning (HVAC) systems without
individual control [14]. Also, there is greater adap-
tation to prevailing outside climate conditions, sug-
gesting an energy saving potential. Using measure-
ment results obtained in North-America, Europe,
Asia and Australia the ASHRAE 55 standard has
been created [15]. This standard has since been
validated for the sub-tropical climate zone of Brazil
[16]. In open-plan or multi-occupant offices individ-
ual control is seldom available which makes natural
ventilating a possibly promising strategy [17].

As can be seen in Figure 2, in the ASHRAE 55
standard naturally ventilated buildings allows for
a higher thermal comfort bandwidth between 80%
acceptability limits than mechanically ventilated
buildings without individual control.

Figure 2: Adaptive thermal comfort for naturally ventilated
buildings vs. thermal comfort for mechanically ventilated
buildings without individual control [15]

The figure also shows that correlation between out-
door running mean temperature (Trm) and pre-
ferred indoor operative temperature (Top) is strong-
er, allowing for lower temperatures in cold periods
and higher comfort temperatures in warm periods.
With:

HVAC-optimum = 0.041 ∗ Trm + 22.6

NV-optimum = 0.31 ∗ Trm + 17.8

where:
Trm = 0.34Tt−1 + 0.23Tt−2 + 0.16Tt−3 +
0.11Tt−4 + 0.08Tt−5 + 0.05Tt−6 + 0.03Tt−7

Tt−n = Daily mean outdoor air temperature n days
before.

The increased flexibility and adaptation shown
could make it possible for free-running buildings to
provide comfort to its occupants. This paper stud-
ies to what extent this strategy can be successful
in the sub-tropical climate of São Paulo. The aim
is to improve thermal comfort for the occupants
of the studied building. Also, the study will give
insight into the ability to provide occupant com-
fort for free-running naturally ventilated buildings
in a sub-tropical climate. In a bigger perspective,
the energy savings potential of free-running systems
can be of great importance in the current energy
transition as we strive to create (nearly) zero en-
ergy buildings [18].
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Figure 3: Methodology flowchart

2 Method

To investigate the ability to provide thermal com-
fort for a free-running building in the sub-tropical
climate of São Paulo, measurements of several envi-
ronmental parameters and OB are performed in the
naturally ventilated offices of the University Hos-
pital at the University of São Paulo. Occupants
can interact with operable windows, wall-mounted
fans and swiveling horizontal blinds to achieve ther-
mal comfort. The results are analyzed to find both
comfort issues and relationships between environ-
mental parameters and OB, these relationships are
defined in linear models. A building performance
simulation (BPS) model of the measured offices is
created in EnergyPlus (E+) and the linear models
are used to create and calibrate OB models repre-
senting the measured situation. After this has been
achieved, the E+ model is used to study adapted
OB aimed at achieving thermal comfort. Lastly,
improved building insulation levels are modeled to
study if building improvements can help to pro-
vide thermal comfort for the buildings users. An
overview of the methodology is shown in Figure 3.

2.1 Measurements

Measurements on thermal conditions and room-
state were taken during two different periods in
two different offices. One six-employee office on the
North side (Figure 4a) was studied during a warm
period (late February to March) to assess overheat-
ing and two interconnected offices on the South side
(Figure 4b), with two and three employees, were
studied during a cold period (April to May) to as-
sess exceeding of minimum comfort temperatures.
The door connecting these offices was always open,
creating a single thermal zone and this has been
analyzed and simulated as such. Ideally, both of-
fices would be studied both periods, but there was a
limitation to the amount of time and measurement
equipment available.

Data on outside climate conditions were obtained
from a nearby measurement station located at the
university campus. Inside thermal comfort mea-
surements were taken with calibrated equipment
(Testo & Delta-Ohm) during office hours and 24/7
with purpose-built arduino-based measurement
equipment. This equipment also measured inside
air quality, lighting and room-state regarding fan
and window use. A time-lapse camera was used

Figure 4: Plan view of measured offices
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to capture interactions with the blinds and to val-
idate window position measurements. The param-
eters that were measured can be found in Table 1
and a complete overview of the measurement equip-
ment in Appendix A. Thermal comfort measure-
ments from the purpose-built equipment were cal-
ibrated using data from the Testo and Delta-Ohm
equipment.

Spot measurements of the thermal conditions in
thermal zones surrounding the measured offices
were performed to assess whether interior partitions
can be considered adiabatic. Using measurements
and available CAD-drawings, the physical proper-
ties of the building, such as dimensions and mate-
rial characteristics, were determined to define the
BPS-model. Measurements of outdoor conditions
are used to define the input conditions in the BPS-
model.

Thermal comfort performance is evaluated by the
percentage of time spent in comfort classes, with
comfort class A where occupant satisfaction is
>90%, comfort class B where satisfaction is be-
tween 80% and 90%, with Bw and Bc for too high
and too low temperatures respectively and comfort
class C where satisfaction is <80%, with Cw and Cc
for too high and too low temperatures respectively.
This is graphically illustrated in figure 5.

2.2 Data Analysis

The measurement results were analyzed to find cor-
relation between environmental parameters and
adaptive behavior. The expected relationship be-
tween a predicting parameter and a binary outcome
is shown in Figure 6. A statistical analysis of rela-
tionships between environmental parameters (pre-
dictors) and adaptive behavior was performed to
obtain the most significant predictors for adaptive
behavior. These relationships were further studied
using carpetplots to be able to visually compare
environmental parameters and adaptive behaviors

Figure 5: Thermal comfort classes using the adaptive ther-
mal comfort standard, with comfort class A in green, comfort 
classes Bw and Cw in red and comfort classes Bc and Cc in 
blue

over time. After this, the relationships between
predictors and adaptive behaviors are plotted and
linear models for fan use and window opening be-
havior are obtained. These linear models are used
to create a model of the measured behavior in E+
for a period with comparable climatic conditions,
using EMS for implementing the stochastic model.

Figure 6: Comparison of the logit, probit and complemen-
tary log-log link functions for binary datasets [19]

Category Parameter

Inside Thermal Comfort TA [oC], TR [oC], vair [ms−1], rH [%]

Air Quality CO2 [ppm], V OC [CO2,ppmeq]

Lighting Conditions Work-plane illuminance [lux], facade luminance [lux]

Occupant Behavior Window [% open], Blinds [o open], Fan [bin], Occupancy [bin]

Outside Climate Conditions TA [oC], rH [%], vair [ms−1]

Table 1: Measurement parameters
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2.3 BPS Model of the Current Situ-
ation

BPS Model and Boundary Conditions

The BPS model input was defined using the previ-
ously obtained measurement data and CAD-draw-
ings. Each room was modeled as one thermal zone,
with the ceiling cavity above the lowered ceiling
modeled as a separate thermal zone. The building
facade is modeled with horizontal blinds and opera-
ble sliding windows. Fans were modeled as provid-
ing a certain amount of air velocity when activated.
Results from outdoor weather measurements were
used to find a comparable period in available Inter-
national Weather for Energy Calculations (IWEC)
climate data from the year 2002.

Occupant Behavior

A stochastic time-depedendent Markov chain model
was developed based on the validated window open-
ing model by Haldi & Robinson using the energy
management system (EMS) functionality of E+ [20],
which was created based on measurement data from
Switzerland. The modeled values for environmen-
tal predictors that trigger adaptive behavior were
adapted to reflect the measured behavior at the
University Hospital offices in São Paulo. Survival
modeling was introduced to reduce the chance of
quick succession of opposite adaptive behaviors and
to compensate for the overestimation of the overall
amount of adaptive behaviors occurring in Markov
chain models [21]. For fan use, there was no read-
ily available comparable model found in literature.
The measurement data was used to create and fit a
stochastic Markov chain survival model for fan use
in the EMS language of E+.

2.4 Investigating Operational Strate-
gies and Building Improvements

Operational Strategies

Four operational strategies were compared here, an
overview is provided in Table 2. The first strategy
mimics the measured behavior (Measured). In the
second strategy the windows are open and the fans
are on during occupancy (On), when there is no oc-
cupancy the fans are off and windows are closed. In
the third strategy the windows are closed and the
fans are off (off). These last two strategies form two
extremes at either end of the spectrum to create a
baseline comparison. For the last strategy it was
attempted to create the ideal situation for interact-
ing with the building, regarding window opening
and fan use, to improve thermal comfort as much
as possible (Ideal). This was done by using infor-
mation from the model to make an informed deci-

sion about whether to maintain the current window
and fan state or to change it. The only stochastic
element is a survival model that was implemented
to reduce the chance of quick subsequent changes.
Combining these strategies gives 16 scenarios to be
simulated, but the focus will lie on the four scenar-
ios with equal strategies for fan and window use.

Strategy Fan Use Window Opening

Measured
Measured
Behavior

Measured
Behavior

On Always On Always Open
Off Always Off Always Closed

Ideal
Idealized
Behavior

Idealized
Behavior

Table 2: Simulation strategies for OB

Building Improvements

Further simulations were performed where the ben-
efit of adaptations to the building was assessed by
adapting the model to include reduced infiltration,
increased wall insulation and improved window qual-
ity as can be seen in Table 3. These scenarios
were coupled to the idealized behavior scenario to
achieve the best possible result regarding thermal
comfort.

Scenario Infiltration
Wall
Insulation

Window
Quality

Current 1 ACH 0 cm single pane
Medium 0.5 ACH 8 cm double pane
High 0 ACH 15 cm triple pane

Table 3: Building improvements strategies

2.5 Reliability and Robustness

To achieve reliable results from a stochastic model
regarding statistical mean and deviations a num-
ber of simulations need to be performed [22]. Mean
values are found to be reliably attained after 10
simulation runs, but the standard deviation can re-
quire as much as 100 repetitions to achieve reli-
able results, depending on the internal variance of
the model [23]. The actual number of iterations
required is analysed in this study. The suggested
time interval for accurate modeling of OB is to be
a maximum of 15 minutes. If simulation time per-
mits, a time interval of 5 minutes provides accurate
results with very little benefit to further reduction
beyond a 5-minute timestep [23].

The E+ EMS code for the OB models is included
in Appendix E.
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3 Measurement Results and
Derived OB Models

Here, the most important results will be presented.
Because of continuous window opening and build-
ing infiltration there were no observed problems
with air quality during the measurement period,
so CO2-levels and VOC’s are not further discussed.
Also, blind adaptations are discounted because they
occurred too sporadically for any patterns to
emerge. The blinds were left in a position to avoid
direct sunlight on the windows in the North office
and left open to receive daylight in the South office.

3.1 Measured Environmental Condi-
tions

First, as the purpose-built equipment measures on
a relative scale, this scale was calibrated by mak-
ing measurements in an isothermal environment at
several temperature levels between 10oC and 30oC.
Next to this initial calibration, the indoor air tem-
perature (Tair,in) results between the purpose-built
and calibrated measurement equipment were com-
pared to assess the reliability of the purpose-built
equipment and the ability to use its data. The dif-
ferences in mean measured air Tair,in were -0.28oC
and +0.21oC for the North and South office respec-
tively and the mean absolute error was ±0.37oC
and ±0.43oC respectively. Different placement can
explain part of the difference as the purpose-built
equipment was wall-mounted on an interior wall
and the calibrated equipment was placed on a tri-
pod. Re-calibrating by equalizing the mean mea-
sured Tair,in improved the reliability, making the
mean absolute error at the North office ±0.24oC,
the maximum error 1.2oC and for >90% of the val-
ues the difference was <0.5oC. The mean abso-
lute error at the South office became ±0.32oC, the
maximum error became 1.5oC and for >80% of the
values the difference was <0.5oC. Where available,
results from the calibrated measurement equipment
are used in the analysis.

Between the two measurement periods there was
a difference of ∼3oC in mean outdoor air temper-
ature (Tair,out). Figure 7 shows a boxplot of the
mean, 80% confidence interval and the extreme val-
ues for the Tair,out and the Tair,in. Appendix B
shows the complete measurement results for Tair,out

and Tair,in for both measurement periods.

Measurement results showed that vair increased by
∼1 ms−1 when fans were turned on, this value is
used to calculate the Top for both measurement and
simulation results.

Figure 7: Measured indoor air temperature and outdoor air
temperature

Results from spot measurements did not show sig-
nificant temperature variations in the spaces sur-
rounding the studied offices, therefore the offices
have been modeled assuming interior partitions are
adiabatic. The outside walls are concrete and brick-
work without insulation and the windows have alu-
minum frames and single pane glass. From the
available IWEC climate data from the year 2002,
periods with comparable temperature statistics to
the measured period where selected to perform the
simulations. To compare the simulation input and
measurement results, a boxplot of the mean, 80%-
confidence interval and the extreme values of Tair,out

is shown in Figure 8.

Figure 8: Comparison of measured outdoor air temperatures
and outdoor air temperatures used as model input

When compared to the adaptive comfort criteria
during occupied hours, it was measured that for the
warm period 86.27%, 12.18% and 1.55% of the mea-
surements fell in the A, B and C comfort classes re-
spectively, with reduced comfort occurring mostly
due to exceeding maximum comfort temperatures.
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For the cold period 75.00%, 16.41% and 8.59% of
the measurements fell in the A, B and C comfort
classes respectively, with reduced comfort occurring
due to exceeding minimum comfort temperatures.
This is graphically represented in Figure 9.

3.2 OB: Statistical and Visual Data
Analysis

Statistical Analysis

The statistically strongest predictor for fan use was
found to be the Tair,in with R2 = 0.59 and R2 =
0.48 for the warm and cold period respectively.

For window use the strongest statistical predictor
was Tair,out. In the warm period an inverse cor-
relation was observed with R2 = −0.47, mean-
ing windows were open at lower temperatures and
closed at higher temperatures. During the cold pe-
riod the correlation was found to be positive, with
R2 = 0.38. Therefore, two separate window use
models are developed as these opposing results can-
not be captured in one model.

Visual Analysis using Carpetplots

The statistical information informs about relation-
ships, but does not give information on when ex-
actly certain actions occur. Carpetplots were cre-
ated and analyzed for all the relevant parameters.
An example of such a carpetplot is given in Fig-
ure 10 (others are included in Appendix C). Here
Tair,out and the North office window state are de-
picted for the whole measurement period. It is im-
mediately clear that windows are largely opened at
the start of the workday and often closed early in
the afternoon. Plotting the contours of the window
state image over the Tair,out image shows windows
are opened when Tair,out is low and closed when

Tair,out is high, giving confidence in the statistical 
analysis.

Figure 10: Carpet plot of measured outdoor air temperature
and window state for the North office

3.3 OB Linear Model: Fan Use

The binary measurement results of the fan setting
for both measurement periods were subdivided for
the Tair,in at their measurements time in 0.1 oC
bins. For each bin the average fan setting was plot-
ted against the Tair,in. Measurement results are
shown by the blue circles in Figure 11. In the same
figure, the red line represents the observed trend,
showing increased fan use at higher Tair,in. Also

Figure 9: North and South office adaptive comfort results during occupancy
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obvious is an underestimation of the trend curve
for the lower temperatures and an overestimation
for the middle temperature band. This leads to
a mean absolute prediction error of 0.092 with a
maximum error of 0.326.

Figure 11: Measured fan use versus indoor air temperature

This suggests there might be another parameter in-
fluencing when the fan is used. Plotting the pre-
diction curves grouped for 1oC bins of the Trm

showed that fan use occurs at higher Tair,in val-
ues for higher Trm values due to adaptation. This
is illustrated in Figure 12 by plotting the Tair,in

values where the trendline of the measured fan use
reached 0.5 fan use probability for the different Trm

bins, showing a proportionate relationship between
fan use and Trm.

Figure 12: Measured fan use versus indoor air temperature
subdivided in 1oC bins of outdoor mean running tempera-
ture

For modeling purposes, the measured Tair,in was
offset relative to the mean Trm using the following
formulae:

Tair,in = Tair,in + (Trm − TMRT,mean)

TMRT,mean = 23.365[oC]

With this adaptation, the improved result presented
in Figure 13 was obtained. It shows a mean abso-
lute prediction error of 0.054 with a maximum error
of 0.170. This prediction curve for fan use is used
for fitting the simulation model.

Figure 13: Fan use prediction curve, offset for outdoor mean
running temperature

3.4 OB Linear Model: Window
Opening

For both offices separately, the measurement results
for window opening were subdivided for the Tair,out

at their measurements time in 0.1 oC bins. For each
bin the average window state was plotted against
the Tair,out. The results for both offices are shown
in Figure 14. A mean absolute prediction error of
0.068 with a maximum error of 0.273 was found
for the North office. The mean absolute prediction
error for the South office was 0.032 with a maximum
error of 0.128.

It was investigated if the inclusion of other parame-
ters would improve the prediction accuracy. As for
fan use, this was done by plotting subsets of the
data subdivided according to other environmental
parameters. This process yielded no significant pre-
diction improvement for including Tair,in, Trm or
∆T between Tair,in and Tair,out, so only Tair,out is
used to predict window opening behavior.
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Figure 14: Window use prediction curve for North and South offices

4 Implementing Derived OB
Models in E+

4.1 Fan Use Model

The fan use model is a Markov chain where the
action (turning the fan on or off) is dependent of
the current state of the fan and whether an ac-
tion has recently been undertaken. If the fan is
off, the chance of it being turned on increases ex-
ponentially with temperature. If the fan is on, the
chance of it being turned off reduces exponentially
with temperature. The probability is offset propor-
tionately with Trm so fan use occurs less when the
Trm is higher to simulate the measured adaptation.
A comparison between the measured and simulated
fan use behavior is shown in Figure 15. The average
absolute error between the measured and simulated
trend for fan use is 0.018 and the maximum error
is 0.036.

Figure 15: Comparison of measured and simulated fan use
behavior

4.2 Window Use Models

Both window use models are based on the existing
model by Haldi & Robinson [20], but this model
had to be inverted for the North offices because
window opening is inversely proportionate to the
Tair,out. Also, a survival model was introduced to
reduce the overall amount of adaptive behaviors, es-
pecially shortly after an adaptation has occurred.
In reality the windows can be opened any percent-
age, but it was modeled as fully open or closed, as
measurements showed windows were always opened
at least 70% on use. Figure 16 shows the obtained
simulation results compared to the measurements.
The average absolute error between the measured
and simulated trend for the North office is 0.008
and the maximum error is 0.015.

Figure 16: Comparison of measured and simulated window
use behavior for the North office

In the South office, windows were never fully opened
during the measurement period, this has been mod-
eled by switching the window state between closed
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and 60% opened. The simulation results compared
to the measurement results are shown in Figure 17.
The average absolute error between the measured
and simulated trend for the South office is 0.012
and the maximum error is 0.037.

Figure 17: Comparison of measured and simulated window
use behavior for the South office

Figure 18 shows a comparison of measured and sim-
ulated window use during a typical workweek. The
outdoor weather conditions are not equal between
the measured and simulated scenario, but it can be
seen that occupant behavior shows good correlation
without overestimating the number of adaptive be-
haviors.

Figure 18: Comparison of measured and simulated window
use behavior for a typical workweek

4.3 Stochastic Model Statistical
Analysis

To assess the variance between simulation runs and
the reliability of the results, the simulation has been
run a number of times. With each extra run the
mean value of the results, as well as the statisti-
cal information on variance and extremes, becomes

more reliable. Figure 19 shows the mean, 50%-
confidence interval and extreme values found for
hours exceeding comfort class A for a different num-
ber of simulation iterations. The mean seems to
reach a reliable value after 25 simulation runs. In-
creasing the number of iterations from 25 to 50
runs shows the confidence interval and extremes
still change, but not to a major extent. There-
fore 25 simulation iterations would be considered
the best balance between reliability and simulation
time. In the remainder of this paper the results
from all 50 iterations are used, as they are already
available.

Figure 19: Statistical analysis of the number of simulation
iterations required

5 Investigating Improvement
Strategies

5.1 Investigating OB Strategies

The ’always on’ and ’always off’ models, as de-
scribed in the methodology, form two extreme sce-
narios at either end of the spectrum. Using results
from the measured and extreme scenarios, promis-
ing strategies were studied further, resulting in the
idealized OB models. In the idealized fan use model
the fans turn on when the current Top is more than
0.5oC above the optimal comfort Top. For win-
dow use, when the current Top is below the op-
timal comfort Top, windows are opened when the
Tair,out is higher than the current Top. When the
current Top is above the optimal comfort Top, win-
dows are opened when the Tair,out is below the cur-
rent Top. During warm periods nighttime ventila-
tion is used for further cooling. For the idealized
behavior scenario, this results in the relationships
between temperature and room state during occu-
pancy as shown in Figure 20.
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Figure 20: Results plot of the idealized simulation model for window use and fan use

In the following section indoor comfort for the of-
fices using the different simulation scenarios is re-
viewed. A full overview of all 16 scenarios can be
found in appendix D, but here the focus lies on the
4 scenarios where fan use and window use both fol-
low the same strategy, as the most extreme values
and the measured scenario are included in this sub-
set.

Warm Period - North Office

In Figure 21 the resulting adaptive comfort for the 4
scenarios is shown. The largest problem was found
to be exceeding of maximum comfort temperatures.
The percentage of time spent in comfort class A for
the measured, always on, always off and idealized
scenarios were 84.8%, 81.1%, 62.1% and 96.4% re-
spectively. The ’always on’ scenario gave similar

Figure 21: North office simulated comfort class results for 4 
different occupant behavior scenarios

results to the measured scenario, but suffered more
from exceeding minimum temperatures with 8.2%
versus 4.3%, where the measured scenario exceeded
the maximum temperature more often with 8.5%
versus 5.5%. The idealized scenario managed to re-
duce the time spent outside comfort class A by 76%
from 15.2% to 3.6% and the time spent in comfort
class C was reduced by 71% from 2.4% to 0.7% of
the time. Hereby it is shown that better informed
building interactions can greatly reduce exceeding
of indoor comfort temperatures.

Cold period - South Office

Figure 22 shows the adaptive comfort results for
the simulations of the South office during a cold
period. There is hardly any overheating occurring,
but exceeding minimum comfort temperatures is a

Figure 22: South office simulated comfort class results for 4 
different occupant behavior scenarios
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big issue. The percentage of time spent in com-
fort class C for the measured, always on, always off
and idealized scenarios were 73.8%, 41.9%, 80.0%
and 80.7% respectively. There is only a small differ-
ence between the always off and idealized scenarios,
so window closing to avoid energy loss during cold
periods is an important strategy to maintain ther-
mal comfort. Compared to the measured scenario,
the percentage of time spent outside comfort class
A was reduced 25% in the idealized scenario, from
25.8% to 19.3% and 9.4% of the time was still spent
in comfort class C. This simulation makes it clear
that further measures would be necessary to main-
tain thermal comfort in cold periods.

5.2 Investigating Building Improve-
ment Strategies

The previous section showed that thermal comfort
can potentially be further improved. With simu-
lation, building improvement scenarios are investi-
gated to see if they can help to improve thermal
comfort. The idealized scenario for OB is used in
these simulations to achieve the best possible result.

Warm Period - North Office

In the warm period, idealizing OB for the current
building state already achieved great improvements
concerning indoor thermal comfort. The addition
of extra insulation further improves this as can be
seen in Figure 23. The time spent in comfort class
A is increased from 96.4% to 97.5% and 98.0% for
the current state, medium insulation and high in-
sulation levels respectively. And time in comfort
class C is avoided completely for the high insula-

Figure 23: North office simulated comfort class results for 
current and improvement scenarios

tion level.

Cold period - South Office

In the cold period discomfort was still observed for
the idealized scenario and current building state
during a large percentage of time. Building im-
provements increase the time spent in comfort class
A from 80.7% to 85.1% and 90.9% for the current
state, medium insulation and high insulation lev-
els respectively as seen in Figure 24. Time spent
in comfort class C is reduced by 49% and 70% by
the medium and high insulation levels to 4.8% and
2.8% respectively.

Figure 24: South office simulated comfort class results for 
current and improvement scenarios

6 Discussion

During the measurements it became clear that there
were more thermal comfort issues due to exceed-
ing minimum temperatures in cold periods on the
shaded side of the building, than by exceeding max-
imum temperatures in warm periods on the sunny
side of the building. The effective solar shading so-
lution implemented in the building helped to reduce
solar gains and overheating on the sunny side.

A significant reduction in discomfort was achieved
by improving the interaction with the building sys-
tems. To achieve these results in real-life, the build-
ing user would need to be better informed about
current inside and outside conditions (e.g. indoor
and outdoor air temperatures) to be able to make
informed decisions about using the fans and win-
dows.

In this simulation exercise the offices were modeled
separately, without interaction between the sunny
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and shaded sides of the building. It can be expected
that interaction could have further positive effects
on thermal comfort as, when desired, temperatures
on the warmer, sunny side of the building can be
reduced, while temperatures on the cooler, shaded
side of the building can be increased by this inter-
action.

To further investigate the model’s reliability, mea-
surements and simulations using the same climatic
conditions could be performed. Currently, a direct
comparison is not possible as the weather data used
in simulations is similar to the measured conditions,
but not equal.

The measurement period did not include extreme
temperature values as the lowest recorded outside
temperature during all measurements was 13.0oC
and the highest was 31.9oC. Though this is repre-
sentative for typical daily minimum and maximum
temperatures, Temperatures over 35oC are com-
mon during summer and temperatures below 0oC
have been recorded as well [24]. Therefore, it is not
recommended to design purely free-running build-
ings in this area, but to take note of passive design
measures that can reduce the need for heating and
cooling.

A full annual simulation of thermal comfort fell be-
yond the scope of this research, but would be inter-
esting for a complete assessment of thermal com-
fort. The model presented here would be a good
starting point for extending the research.

Building improvements have been limited to increas-
ing insulation levels (walls and windows) and air
tightness of the building facade, as this would be
the most feasible improvement for the current build-
ing. The model could be adapted with other fea-
tures, like increased thermal mass, double skin fa-
cade or phase-changing materials, to inform build-
ing designers about the possible benefits for newly
designed buildings.

7 Conclusion

This research makes a contribution to the spatial
distribution of knowledge on OB, as no other stud-
ies of window interaction or fan use in Brazil, nor
in the whole region of South-America, have been
found in literature.

The model simulating the measured results achieved
a good representation of the real building and oc-
cupant behavior, making the simulation results a
reliable source of information. As the weather data
used in the simulations was similar, but not the

exact measured weather data, the comparison be-
tween measurement results of OB and the simula-
tion results, triggered by environmental predictors,
gives a good indication. The model was able to
make an accurate prediction of the room state for
a certain temperature, with average absolute pre-
diction errors of 0.018, 0.008 and 0.012 for fan use,
North office window use and South office window
use respectively.

To achieve reliable results for this stochastic model
a minimum of 25 iterations is required and 50 runs
would be recommended if time permits.

Solely by implementing a different strategy for in-
teracting with building systems a significant reduc-
tion of discomfort was achieved. The percentage
of time spent outside comfort class A was reduced
by 76% from 15.2% to 3.6% of the time during the
warm period and it was reduced by 25% from 25.8%
to 19.3% during the cold period.

Thermal discomfort can be further reduced by im-
plementing building improvements. Simulations
show that by adding wall insulation, improving the
window quality and reducing infiltration, spend-
ing time in comfort class C was avoided during
the warm period and 98.0% of the time was spent
within comfort class A. During the cold period 2.8%
of the time was still spent in comfort class C with
the high level of insulation, but this did constitute a
70% improvement relative to the current situation.
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Appendix

A - Overview of measurement equipment

Testo 435-4 - Multifunction meter

Built-in Pressure Sensor

Absolute Pressure

Measuring range +600 to +1150 hPa
Accuracy ±10 hPa

Thermal Velocity Probe

Temperature - NTC Humidity - Capacitive Velocity - Hot wire anemometer

Measuring range -20 to +70 oC 0 to +100 %rH 0 to +20 ms−1

Accuracy ±0.3 oC ±2 %rH (+2 to +98 %rH) ±(0.03 ms−1 + 4 % of mv)

Globe Probe

Temperature - Type K TC

Measuring range 0 to +120 oC
Accuracy Class 1

Delta Ohm HD32.1 – Thermal Microclimate Data Logger

Globe Probe

Temperature - Type K TC

Measuring range -30 to 120 oC
Accuracy Class 1 - ±0.2 oC

Relative humidity and temperature combined probe

Temperature - NTC Humidity - Capacitive

Measuring range -30 to 120 oC 0 to +100 %rH
Accuracy ±0.3 oC ±1.5 %rH

Omnidirectional hotwire probe

Air speed

Measuring range 0.05 to 5 ms−1

Accuracy ±(0.1ms−1 + 3% mv)
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Appendix B - Carpetplots of adaptive behavior and temperatures

North Office carpetplots for indoor and outdoor air temperature, window state and fan state

South Office carpetplots for indoor and outdoor air temperature, window state and fan state
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Appendix C - Graphical representations of measured air temperatures

North Office measured indoor and outdoor air temperature

South Office measured indoor and outdoor air temperature

19



Appendix D - Full simulation results for behavioral permutations

North office simulated comfort class results for all behavior scenarios with: 
Fm: Fan Measured, F1: Fan On, F0: Fan Off, Fi: Fan Ideal

South office simulated comfort class results for all behavior scenarios with: 
Fm: Fan Measured, F1: Fan On, F0: Fan Off, Fi: Fan Ideal
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Appendix E - EMS code

North Office - Warm Period - Window Opening as Measured
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South Office - cold period - Window Opening as Measured
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Both Offices - Other Window Opening Models
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Both Offices - Fan Use Models
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