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Abstract

Data from industrial assets can be valuable in gaining insight in the reasons for machine downtime.
In this thesis, we gathered data from a packaging machine to determine which errors are related
to machine downtime. After we determined which errors are related to downtime, we determined
the possible causes of the errors. We investigated one error in a case study: the marker at the
end of the film. We identified the replacement of the film in the data and we found that the film
replacement caused at least 65% of the downtime of the related error. We investigated whether
we can use the downtime of an error to preventively replace the film, and we determined at which
remaining film lengths this would save costs. We can reduce up to 7.2% of the downtime from the
error and the replacement by implementing the opportunistic replacement of the film. The exact
value depends on the probability of having an operator available at the moment the error occurs
and the cost of downtime.
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Executive summary

The research is conducted at Robert Bosch Packaging B.V. in Weert in cooperation with one of the
clients from Bosch, which will stay anonymous for confidentiality reasons. Bosch sells packaging
machinery for the food industry. In this project we analyzed and reduced downtime of a packaging
machine of the client, of the type SVE 2520WR.

Problem statement

Since packaging machines operate in a production line, their downtime may cause downtime for the
entire production line. One of the reasons for this undesirable downtime, is unexpected machine
stops. Every time the packaging machines from Bosch detect a problem, they stop and generate
an error message. Bosch acquired the IoT Gateway, which allows to gather the error messages
over time. However, Bosch has no method to obtain an overview of the reasons for downtime and
Bosch does not know how downtime can be reduced based on the reasons for downtime.

“Currently it is unclear how data from a packaging machine can be used to get insight in the
reasons for downtime and how machine downtime can be reduced based on the insight.”

Approach

The approach in this thesis is structured according to the five steps from the Define, Measure,
Analyse, Improve and Control (DMAIC) provided by Slack & Lewis (2002). First we defined the
objective of the process improvement as reducing downtime from errors.

In order to determine which errors we should investigate, we measured the downtime caused
by errors. We found that the client currently uses a method to find the downtime based on the
logging duration of errors. The logging duration is the time between the moment an error is gen-
erated and the moment the error is cleared. However, due to the fact that the logging duration is
not exactly equal to the downtime duration, we expect the method to provide a skewed overview of
the downtime per error. We determined a new method to find the downtime per error based on the
data in the error log and the data in the machine status log. The error log provides the moment an
error occurs and the machine status log provides the period of downtime. We compared the results
of both methods categorized in downtime from errors upstream, downstream and to the machine
itself. We visualized the results in figure 1. We observed that the old method overestimates the
amount of downtime. We decided to continue with the newly developed method.
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Figure 1: Comparison of the downtime overview of old method and the new method (Machine 3,
May to June 2019, 93 hours of uptime)

Next, we analyzed the possible causes of the errors related to faults of the packaging machine.
We visualize the downtime per error in figure 2. We applied Fault Tree Analysis (FTA) to find
the possible causes of the three errors related to the highest amount of downtime. In order to
determine whether a possible cause has caused downtime, we proposed a method that identifies
possible causes in the data. This method is based on finding a machine interaction that is reflected
in the data. We selected marker B as a possible cause for further investigation. Marker B is a
marker at the end of the film. We could identify the occurrence of marker B in the data set
through the reflections in the error log of the executed film replacements. We determined that
marker B indeed caused 65% of the downtime of error 401.

Figure 2: Downtime per error at machine 3, (production in May and June 2019, 93 hours of
production)

In order to improve the use of the packaging machine, we decided to reduce the downtime res-
ulting from marker B and the corresponding machine interaction: the film replacement. In order
to reduce this downtime, we investigated whether the film can be replaced preventively during
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the downtime of an unexpected error. We selected error 160 as a suitable error for this purpose,
since this error has considerable length and is not related to a problem at the machine nor related
to a specific part of the film. We modeled the preventive film replacement in a Markov Decision
Process (MDP). We incorporated the probability that no operator is available at the moment the
film can be replaced, and we varied this probability between 0 and 1. We incorporated the relevant
periods of downtime in the MDP, and we found at which remaining film lengths we should replace
the film if error 160 occurs.

In order to control the improvement step, we determined the performance of using these boundary
values in comparison to only replacing the film when it reaches its end. We incorporated the the-
oretical probability distributions that describe the data and we quantified the downtime reduction
and the cost reduction by using discrete event simulation.

Results

We found that there exists a boundary value for the amount of bags at which it becomes optimal to
decide to prematurely replace the film if error 160 occurs. If the amount of bags is equal to or less
than this boundary value, it is optimal to replace the film at the occurrence of error 160. The exact
boundary value depends on how costly it is if the line is down (Cdown) and the probability of having
an operator available at the moment error 160 occurs (PAv). We provide the optimal boundary
values for three different estimations of the downtime costs and for different values of the operator
availability. Thereafter, we found that using the boundary values reduces the amount of downtime
caused by the film replacement and error 160 by 0 - 7.2 %. The exact percentage depends on the
actual cost of downtime and the probability that an operator is available. In absolute value, the
reduction varies between 0 and 28 seconds per hour. Since we chose pessimistic parameter values,
we expect that the actual reduction is slightly higher. We visualize the downtime reduction for
three different cost scenarios in figure 3.

Figure 3: Downtime of the new policies as a percentage of the downtime of the old policy

Recommendations

We recommend the client to make use of preventive film replacements, using conservative bound-
ary values provided by the model (the values for a high value for PAv). The client should determine
based on newly obtained data what the probability is that an operator is available at the moment
error 160 occurs. Based on these values for PAv, one can choose the correct boundary values.

The client should align the ordering of film with the different markers with their production

Exploiting error data from a packaging machine to reduce machine downtime vii



schedule. Using films with markers in a production run that requires the entire film, causes un-
wanted machine stops, and therefore downtime. Films with these markers should only be used
when the production schedule indicates that the amount of film until the marker is needed.

We recommend Bosch and the client to keep track of the reasons for manual machine stops.
Manual machine stops are the most important cause of machine downtime, but currently their
reasons remain unknown. In order to reduce the downtime resulting from the manual machine
stops, more data on these stops is required.
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a clean error the machine does not show any indicator of the operator making mechanical
adjustments to the machine or the operator pressing the stop button. 11, 16

error A fault that is detected by the machine. 6, 9, 17, 64

error logging duration The time between the moment an error message is raised by the machine
and the time the error message is cleared. 9

error message The message the Human-Machine Interface displays when detecting the error. 6

Failure Mode and Effect Analysis Widely used method to list and rank failure modes. The
method aims at finding the impact, frequency of occurrence and the detectability for each
the failure modes of an asset. The failure modes are ranked based on a priority number. 4

fault Loss of machine functionality. In this context, the loss of functionality can be a breakdown,
reduced machine speed and bags that do not meet the output requirements. 4–6, 9, 11,
16–19, 23, 29, 33, 35, 62, 64

Fault Tree Analysis A structured method to find the events leading to an undesirable event
(Haasl, Roberts, Vesely & Goldberg, 1981). 5

fuzzy error occurrence Error occurrence in which the operator pressed the stop button instead
of resuming production, or the machine shows indicators of a mechanical adjustment. 11,
16, 27

indicator An indicator is defined as the reflection of an interaction with the machine in the
machine data. 23

IoT Gateway The gateway that is used to extract data from the packaging machine. Without
going in too much detail, the IoT Gateway allows us to gather the error log, the machine
status and the bag counter. 1, 3

marker A marker placed on the film by the film reel supplier. Markers are detected by the
machine and cause the machine to stop. 20

Maximum Likelihood Estimation A commonly used method in literature to estimate the
parameters of the sampling distribution by maximizing the likelihood of observing the set
of observations in the data set. 5

new method The method we propose to determine which errors are related to downtime. The
method is used to find the amount of downtime an error relates to based on the error log
and the machine status log. 9
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old method The method the client currently uses to determine the impact of errors. The method
is based on the logging duration of errors. 9, 10

Open Platform Communications A standard for communication between different industrial
control devices. 64

operator reaction time The time between the moment the machine is down and the moment
the operator starts replacing the film. 28

Python Python is a programming language that is characterised by its intuitive and flexible
character. 11

secondary packaging machine The secondary packaging machines, or the case packers, are
the machines placed after the packaging machines that we investigate in this research. The
packaging machine packs the product in a bag and the secondary packaging machine packs
the bags into boxes. The bags are transported to the secondary packaging machine via a
transportation belt. 33

timestamp The date and time of a data point. The data points in the error log have a timestamp
that contains the year, month, date, hour, second and millisecond. 9, 10

total replacement time The time starting from the moment the machine is down because it
reached the end of the film, until the film has been replaced and the machine is up and
running. This time period consists of the operator reaction time and the replacement time.
28, 35

Traksys information system A line information system that is used in plants to log information
from industrial machinery. 9

undetected fault Fault that is not detected by the machine and is to be detected by the operator.
6

warm-up period The period at the start of a simulation containing some sort of queuing pro-
cess. In the warm-up period, the system is not yet in steady-state due to the fact that the
simulation started with an empty queue. 58
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Chapter 1

Introduction

When using industrial machinery, the occurrence of unexpected machine stops causes downtime.
This downtime is highly undesirable since it implicitly incurs costs for personnel, material and
unmet demand. In recent years, more and more industries started to see the value of analyzing
data generated by industrial machinery, in order to reduce unexpected machine stops and their
related downtime. In literature there are several cases in which the analysis of event logs and error
logs from industrial machinery leads to a reduction of machine downtime. Botman (2017) related
errors to physical defects and uses the triggering sensor data to monitor for condition monitoring
and the timing of preventive maintenance. López (2017) employs error data to predict machine
failure and preventively execute maintenance. In this thesis we focus on machine data from a
packaging machinery for the food sector. Packaging machines are positioned in a production line,
which often means that when the packaging machine is down, the entire line is down. This raises
the need to reduce the causes of downtime of packaging machines. In this thesis we focus on
identifying which errors are related to downtime and what their possible causes are. We select one
possible cause and reduce the downtime resulting from this cause.

The research is conducted at the company that manufactures the packaging machine: Robert
Bosch Packaging Technology B.V. In the remainder of this thesis, we refer to the company as
Bosch. Until now, Bosch has only manufactured and sold packaging machines, without focus-
ing on what problems their clients face in practice. On the one hand, Bosch is not involved in
the daily maintenance of the packaging machines operational at clients, so little is known about
clients’ problems during production. On the other hand, clients lack machine knowledge that is
essential to understand the relation between unexpected machine stops and their causes. This
project bridges this gap by analyzing the downtime a client faces during the use of a packaging
machine.

Bosch identified the need of its clients to employ data generated by their machines to get in-
sight in the performance of the packaging machine. Bosch started to acquire the IoT Gateway,
which allows to gather process data from packaging machines in the field. In this project, we use
the IoT Gateway to gather data from three packaging machines operational at one of the clients
of Bosch. We focus on the downtime of one specific packaging machine, since the downtime of
that machine is assumed to be most costly.

The outline of the remainder of this thesis is as follows: in section 1.1 we give information about the
companies involved in this project, in section 1.2 we discuss the steps to obtain process improve-
ment, in section 1.3 we elaborate on the research design, which consists of a problem statement,
the deliverables, the research questions, the scope and our approach in this project. Next in section
1.4, we discuss the outline of this thesis.
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1.1 Company background

Bosch manufactures and sells vertical filling forming and sealing packaging machines in the food
industry. The food packaging industry is expected to grow moderately in the coming years1. The
packaging machines are slightly customized per customer, which means that a machine from a
different customer might have a specific functionality more or less. However, the majority of the
subsystems of all packaging machines do not differ. Bosch has solely been focusing on building
their machines, and selling their machines. Bosch experienced that clients often do not obtain the
full machine performance due to suboptimal use of the packaging machines. Bosch expects that
their machine knowledge can be used to assist clients in optimizing their machine use. The first
step to improving the clients’ use of their packaging machine, is analyzing data from the packaging
machine.

The project is executed in cooperation with a client, which will stay anonymous for confiden-
tiality reasons. The client has its own operator trainer, which trains the operators such that they
are able to operate the machines and perform daily maintenance activities. For complicated issues,
the clients maintenance engineers are expected to find a solution. Only when the client finds more
complex and recurrent issues, a maintenance engineer from Bosch packaging will visit the client
to redress the problem.

1.2 Process improvement cycle

The steps in this thesis are based on the steps in the structured improvement cycle proposed by
Slack & Lewis (2002). This cycle structures process improvement into 5 steps: Define, Measure,
Analyse, Improve and Control (DMAIC). The cycle is shown in figure 1.1. We briefly explain each
of the steps in the cycle.

Figure 1.1: DMAIC cycle (Slack & Lewis, 2002)

Define The first step is to define the objective of the process improvement.

Measure The second step is to measure the performance of the current process. The measurements
should provide evidence for the direction of the following steps.

1Food Packaging Market Research Report Forecast to 2023: MRFR. (n.d.). Retrieved October 8, 2019, from
https://www.marketresearchfuture.com/reports/food-packaging-market-2086
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Analyze The third step is to analyze the measurements of the current process. In this step one
can develop hypotheses of what the root causes are of the process performance being
lower than desired.

Improve Once the causes are identified, one can raise ideas to improve the process. This step
consists of testing, implementing and measuring potential improvements.

Control The control step consists of continuously monitoring the improved process, such that
one can determine whether the process improvement is sustaining.

1.3 Research design

In this section, we define the objective of the process improvement, which is the first step of the
DMAIC cycle. We present our problem statement (subsection 1.3.1), the deliverables (subsection
1.3.2), our research questions (subsection 1.3.3), we define the scope (subsection 1.3.5) and our
approach (subsection 1.3.4).

1.3.1 Problem statement

In this thesis we focus on analyzing data from a packaging machine generated during production
runs, in order to reduce machine downtime. Every time the machine stops because it detects a
problem, the machine stop is accompanied by the generation of an error message. Via the IoT
Gateway we gather data of the occurrence of error messages. However, Bosch does not have a
clear method to process the data on these messages to get an overview of downtime per error. We
define downtime in the context of this project as the time during a production shift, in which the
machine is not producing. Since the lifetime expectations of the parts of the packaging machines
are generally longer than the time span of this project, we do not have data about part failures.
Therefore we do not focus on errors related to broken parts of the machine. We know the data
used in this project is coming from periods in which the machine had no defects.
When we know which errors are related to downtime, we are interested in their possible causes.
Knowing the possible cause is key in identifying opportunities to avoid the downtime from errors.
Based on the cause of an error, we need to revise the clients process of operating the machine in
such a way that we reduce the downtime. It is unclear how we can reduce the downtime related
to a cause. We define the following problem statement:

“Currently it is unclear how data from a packaging machine can be used to get insight in the
reasons for downtime and how machine downtime can be reduced based on the insight.”

1.3.2 Deliverables

Based on the problem statement, we identified several deliverables. We discuss the deliverables in
the following categorization: deliverables for Bosch, deliverables for the client and deliverables for
literature.

Firstly, we identified a deliverable for Bosch. Bosch would like to have a method to identify
the errors that are related to downtime and to determine the amount of downtime the errors
relate to. Since Bosch currently does not have this method, we identify the development of this
method as a deliverable (i).

Secondly, we identified two deliverables for the client. For the client it is important to know
what the possible causes are for their machine downtime. We identify the identification of the
possible causes as the second deliverable (ii). Subsequently, we want to reduce the amount of
downtime resulting from the causes. We identify the development of an approach to reduce the
downtime of the causes as the third deliverable (iii).
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Thirdly, we contribute to literature in two ways. We provide a structured method to use ma-
chine data to get insight in the machine downtime and the related causes (iv). Furthermore,
we develop a model in which we incorporate data on the duration of errors to opportunistically
schedule a maintenance operation, namely the film replacement (v). We apply the model in a case
study and show the improvement numerically.

1.3.3 Research questions

Given the problem statement, we define the main research question:

How can we use machine data from a packaging machine to find causes of downtime and re-
duce the downtime?

The project can be divided into several research questions that help answering the main research
question.

1. How can we identify the errors related to downtime?

The first research question involves defining a method to find the errors related to downtime
and determining the amount of downtime an error relates to. In order to find the downtime per
error, we process data coming from the machine. Answering the question results in deliverable i.
Moreover, by answering the research question, we measure the current performance of the process,
which is the second step of the DMAIC cycle. The research question is answered in chapter 2.

2. What are the possible causes of the errors related to downtime?

The second research question involves determining the possible causes of the errors related to
downtime. Considering the available amount of time for this thesis, we decide to determine
the possible causes of the top three errors. Answering the second research question results in
deliverable ii. Furthermore, finding the possible causes is part of the analyze step from the DMAIC
cycle. The research question is answered in chapter 3.

3. How can we reduce the downtime of the possible causes?

In subquestion 2, we identify the possible causes of the errors related to the most downtime. We
find that the film replacement is one of the possible causes of downtime. This research question
involves a case study in which we further examine this cause, and explore an approach to reduce
its related downtime. First we further analyze this possible cause and verify that the possible
cause has resulted in downtime (chapter 4). Next, we explore how we can improve the process
by reducing the downtime of the film replacement (chapter 5). In maintenance, a well-known
approach to reduce downtime is by opportunistic scheduling of operations (Zhu, 2015). We explore
whether we can opportunistically schedule the film replacement. Lastly we quantify the reduction
of downtime (chapter 6). Answering the third research question results in deliverables iii and v.
Furthermore, we finish the analyze step and we fulfill the improve and control steps (DMAIC).

1.3.4 Approach

In this section, we elaborate on the approach to answer the research questions. Furthermore, we
discuss to what extent we are compromised by the availability of data in answering the research
questions.

1. How can we identify the errors related to downtime?
In an industrial setting, the machine performance is decreased by the negative impact of faults. A
commonly used method to get insight in the impact of faults, is Failure Mode and Effect Analysis
(FMEA) . In FMEA, one determines the impact and frequency of occurrence per failure mode.

4 Exploiting error data from a packaging machine to reduce machine downtime



CHAPTER 1. INTRODUCTION

Currently, the client uses a method to determine the downtime per error. We determined whether
this old method gives a reliable overview of the relation between errors and downtime. Since this
was not the case, we developed a new method. In our context, faults result in a machine stop.
Every machine stop is accompanied by the generation of an error message and stored in the error
log. We used this log to determine the occurrence of errors. The machine status log contains data
that tells whether the machine is down or not. We used the machine status log to determine the
amount of downtime related to each error message.

The FMEA technique aims at listing all possible faults in a structured way and ranking them
according to their negative impact, frequency of occurrence and detectability. We only use the
error log to determine the occurrence of errors, which only consists of the part of the faults de-
tected by the machine. The client does not gather data about the faults that are not detected by
the machine. This also implies that we drop the detectability factor of the errors, since each error
is by definition detected by the machine. In the ideal case, we would also have considered faults
that are not detected by the machine.

2. What are the possible causes of the errors related to downtime?
This research aims at determining the possible causes of the errors during production. A com-
monly used method to identify root causes of a fault, is by Fault Tree Analysis (FTA) . In FTA,
one constructs a diagram starting with an undesirable physical state of the machine and then uses
logic to make links to the possible causes leading to this state. We used the internal data from
Bosch to determine what triggers the error and thereafter we used data from the operator trainer
from the client to identify the possible causes.

In order to know which possible causes should be addressed, one ideally wants to know which
possible cause has resulted in which proportion of the faults. However, there was no data avail-
able that directly shows which possible cause led to the occurrence of the error. We selected
one of the possible causes for investigation in a case study. We decided to investigate the film
replacement since it is a very probable cause for downtime and it is possible to identify the film
replacement in th data .

3. How can we reduce the downtime of the possible causes?
The previous research question aims to find the possible causes of the errors related to downtime.
In this research question, we aim to reduce the downtime resulting from the film replacement.
Firs, we identified the film replacement using error messages in the error log. The error messages
reflect particular steps of the film replacement and we used their corresponding timestamp to find
the duration of the film replacement. Next, we explored the film replacement can be scheduled
within error downtime. We selected a suitable error based on its frequency of occurrence and its
duration. We incorporated the duration of the error and the film replacement in a MDP in order
to determine at which remaining film length the client should use the error to replace the film. In
order to find the expectation of all variables we use in the model, we fitted theoretical distribu-
tions to durations in the data by Maximum Likelihood Estimation (MLE) . Lastly, we quantified
the process improvement and we determined whether the solution of the model performs well if
distributional assumptions are relaxed. We used discrete event simulation to compare the old
policy for replacing the film and the new policy with preventive replacement. We incorporated
the theoretical distributions we fitted on the data.

In order to determine whether an operator should use an error to replace the film, we incorporated
the operator availability at the moment an error occurs. The operator availability, determines the
probability that the opportunity arising from an error can actually be seized. We did not know
the availability, so we modeled and simulated different operator availabilities and we determined
a robust solution.
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1.3.5 Scope

The machine analyzed in this project, is the SVE 2520 WR, which is a continuous motion vertical
packaging machine that is capable of packing food with a speed up to 200 bags per minute. The
client offered to use one of his lines in this research, and the packaging machines in this line are of
the aforementioned type. Each machine type differs slightly in possible bag sizes, bag styles. Some
machine types have a functionality more or less, but the general functionalities do not differ from
type to type. Inside the machine sensors provide data that is used for internal feedback loops,
and generating error messages. The service department from Bosch estimates that the lifetime
the components of the SVE 2520 WR are longer than the period in which this project is executed.
Since we had no historical data available on the failures of parts, we did not consider the downtime
related to component failure. López (2017) and Botman (2017) showed that worn out parts may
cause errors, so we ensured that we did not consider machine data from a period in which a part
turned out to broken or the machine had a mechanical defect.

During production of bags, faults may occur. A fault is defined as an abnormal condition in
which a machine fails to perform its required function (General Services Administration, 1980).
Faults can either be detected by the machine or by the operator. We show the classification of
faults in figure 1.2. If the machine detects the fault through its error detection algorithms, the fault
is called an error. If the machine is running, an error leads to a machine stop and an error message
on the Human-Machine Interface (HMI). The machine can also detect a fault if the machine is
already stopped by an error. Both errors are then shown on the HMI. If the machine does not
detect the fault the machine continues working with reduced functionality. Reduced functionality
in this case means that the output does not meet the requirements, e.g. the bags are not sealed
or the sealing is not aligned according to the standard. This subset of faults is called undetected
faults. The machine continues in a faulty state until the operator notices the malfunctioning and
stops the machine manually. The machine generates a general error message indicating a manual
operator stop. In this thesis, we solely focus on reducing downtime resulting from errors due to
the unavailability of data on the undetected faults.

Fault 

occurs Detected by machine?

Yes

Operator 

stop error

message

Error

Undetected 
fault

No

Specific 

error 

message

Operator 

has found 

the fault 

Figure 1.2: The classification of faults

During this project we gathered the data of three packaging machines in a packaging line that
consists of four packaging machines. We give a schematic overview of the packaging lines with
the four packaging machines in figure 1.3. For technical reasons, we could not gather the data of
packaging machine 4, which is therefore out of scope. Since we are restricted in terms of time, we
decided to focus on one of the remaining three packaging machines. Based on the configuration
of the line, we expect the downtime of packaging machine 3 to be most costly, and therefore we
only investigate the downtime of packaging machine 3 in this thesis.
All machines are connected to the same upstream belt that supplies the machines with the input
product. The supply of product into the machines is regulated by a priority number. If the priority
of a machine is low in comparison to another machine, the other machine will get more product.
The configuration of the priority numbers is set by the operators on working on the line and is
not logged.
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After the packaging machine has packed the product, the product is carried away on a belt to a
secondary packaging machine. Machines 1 and 2 are connected to the same belt, and are packing
in parallel, while machines 3 and 4 are connected to a single belt. From the operator supervisor
we know that machines 1 and 2 are usually used to produce smaller bags. Machines 1 and 2
are usually producing at 50 bags per minute (in parallel), so if both machines are operational
they produce 100 bags per minute. The larger bag types are usually scheduled to be produced at
machine 3, and this can also done at a set speed between 50 and 70 bags per minute. A reason to
schedule the larger bags on a single machine and the smaller bags on machines 1 and 2 in parallel is
that the secondary packaging machine cannot cope with larger bag types at 100 bags per minute.
Machine 4 is mostly used at a low priority to catch the remaining product that is not going into
machines 1,2 and 3. Since machine 1 and 2 produce in parallel, we expect that the downtime of
these machines is less costly than the downtime of machine 3. The manager involved with the line
supports this claim by his observations in the past. He observed that the bigger product types
are produced at a lower speed and by only one machine and that therefore most pressure lies on
machine 3.

Upstream belt

Packaging 
machine 4

Packaging 
machine 3

Packaging 
machine 2

Packaging 
machine 1

Secondary packaging 
machine 1

Secondary packaging 
machine 2

Secondary packaging 
machine 3

Storage

Figure 1.3: Schematic overview of the clients’ line of with the four packaging machines

1.4 Thesis outline

In this first chapter, we provided a general introduction and defined the objective of the process
improvement: reducing machine downtime. In chapter 2, we determine how we can measure the
downtime of errors. By doing so, we obtain deliverable i and answer research question 1. In chapter
3 we analyze the possible causes of the errors related to downtime. We obtain deliverable ii and
answer research question 2. In chapters 4 to 6 we conduct a case study, in which we investigate
whether we can reduce the downtime of a specific cause. In chapter 4, we select one of the possible
causes, namely reaching the end marker of the film. We determine the downtime that reaching
the end of the film causes by identifying the replacement of the film in the data. In chapter 5, we
propose a model to reduce the downtime resulting from the film replacement by using unexpected
breakdowns to preventively replace the film. In chapter 6, we quantify the improvement of the
policy for the timing of the film replacement using simulation. In chapters 4 to 6, we obtain
deliverable iii and we answer the third research question.
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Measure
Determine the downtime per error

Improve
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the insights of the error occurrences 
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Control
Determine whether the revised process 
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process

Chapter 2
Deliverable i
Research question 1

Chapter 3
Deliverable ii 
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(Case study)

Chapter 6
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Define
Define the objective of the process 
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Chapter 1
Research design
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Research question 3

Chapter 4
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Figure 1.4: Steps in the thesis with the corresponding chapters and research questions
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Chapter 2

Data Processing

In this chapter we aim to find a method to determine which errors are related to downtime and
the amount of downtime. The method enables us to rank the errors according to their downtime
and to investigate the errors that are related to most downtime. Note that we consider errors
generated during production shifts, rather than errors outside production shifts. No mechanical
defects were found during the span of this project, so we are interested in the faults that cause
downtime in the production shifts. Currently the client already uses a method to determine the
impact of errors based on the error logging duration. The error logging duration is the time the
packaging machine is logging an error message on the HMI, which consists of the time period from
generating an error until the error is automatically cleared by the machine or manually cleared by
the operator. We refer to the method of the client as the old method. We review this method and
find that the method neglects important aspects of the relation between errors and their corres-
ponding downtime. In order to take the neglected aspects into account, we develop a new method
and we compare the results obtained with both methods. We refer to the method we propose as
the new method.

The new method combines two of the sources of machine data: the error log and the machine
status log. The error log contains the codes of all error messages generated by the machine, the
timestamp of occurrence, and the timestamp the error message is cleared. Error messages can be
cleared by operators pressing the reset button, and a few error messages are cleared automatic-
ally. We are particularly interested in the error messages related to errors. The machine status
log contains a number for the machine status, at every point in time that the status changes. We
are interested in the time the machine is not producing after facing an error. The format of the
error log and the machine status log are described in appendix B.

In section 2.1 we discuss the old method, and which aspects are neglected by this method. Then
in section 2.2 we discuss how we can combine the error log and the machine status log using a new
method. Next, we discuss the algorithm of the new method in section 2.3. Thereafter, we discuss
the result of the new method in section 2.4. Lastly, we conclude in section 2.5.

2.1 The downtime measured by the old method

Currently the clients machines are installed with the Traksys information system. This informa-
tion system keeps track of the error logging durations of error messages. After carefully examining
the error log and the machine status log, we concluded that using the logging duration neglects the
following aspects: (1) One fault may result in two errors with an overlapping duration, thus using
the error logging duration may overestimate the actual downtime. (2) The logging duration of an
error is not necessarily equal to the downtime. The logging stops as soon as an operator presses
the reset button, while he still needs to solve the actual problem. This means that for a subset
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of errors, the old method may underestimate the downtime. (3) The machine generates errors
when the machine is not producing. When the operator makes mechanical adjustments during a
machine stop, the machine may generate error messages that reflect actions of the operator. An
example is the adjustment of the film reel during a machine stop. Both the machine stop and the
adjustment lead to an error message, which is logged for a certain period. This means that the
sum of logging duration of the errors may be longer than the actual downtime.

Due to these neglected aspects, we expect that the overview of logging durations provides a skewed
view on the total downtime. The first and the third aspects we mentioned, cause overestimation
of the downtime related to errors and the second aspect causes underestimation of the downtime
related to errors. Based on manual examination of the error log and the machine status log, we
expect the overestimation to outweigh the underestimation. We expect the old method to overes-
timate the total downtime duration of errors. We decided to develop a new method which does
consider the aspects the old method neglects. We know that the error log provides the timestamp
of the occurrence of an error, and that the machine status log provides the machine status over
time. The machine status can be used to determine the downtime of the machine. Using the ma-
chine status to measure downtime ensures that we do not overestimate the downtime. However,
we have to determine how we divide the downtime over the occurring error messages in the error
log. We explain how we defined the logic in the following section.

2.2 Determining the logic of the new method

In order to combine the error log and the machine status log, examined both data sources. Since
the error log contains all errors, the method should iterate over the entries of this log. Then for
the errors in the log, the method should determine whether the machine status log shows that
the error caused a machine stop. We explain four key observations with important implications
of how the method should combine the error log and the machine status log.

• An error message can be either a notification, warning or error
The error logs consist of all messages that are generated by the machine over a period
of time. A message can either be a notification, warning or an error. Notifications are
used by the machine to inform the operator about current settings or the current machine
state. Warnings do the same, but these messages indicate that the settings or machine state
may result in an error. If the message is an error, the machine stops production (if it was
producing). Since we machine performance is measured in downtime, we are only interested
in the error messages indicating errors. The key observation is that the new method only
has to determine whether these error messages have resulted in a machine stop.

• The timestamp may deviate two seconds from the timestamp of the change in
machine status
The packaging machine is configured such that whenever the machine runs into an error
during production, the machine is stopped and the machine status is changed from executing
(= producing) to either suspended or suspending (= stopped by a problem). This means
that we can use the machine status log, to determine whether an error is accompanied by
a machine stop. However, the packaging machine prioritizes on its operations and may
generate the error up to two seconds after changing the machine status. In some cases, the
error is generated slightly earlier than the machine is stopped. The key observation is that
in order determine whether an error resulted in a machine stop, the method has to examine
the machine status log two seconds before until two seconds after the error occurrence. This
time period is based on the observed amount of deviation between the timestamp of an error
and the corresponding change in machine status. If there is no change in machine status
from executing to suspended, the error did not result in a machine stop.

• Errors may require operator actions
When an error occurs, the related problem may require mechanical adjustment to the ma-
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chine. An example of a mechanical adjustment that needs to be executed every now and then,
is the adjustment of the position of the vacuum belts. Since our goal is to find the causes
of downtime, it is relevant to determine whether an error required mechanical adjustment.
Errors that required mechanical adjustments take longer than errors that can be fixed by
starting the machine again. We can distinguish the errors during which the operator made
mechanical adjustments by examining the notifications and warnings. For most mechanical
adjustments the operator has to open the doors, which results in an error message. Only
adjustments to the film reel do not require the opening of doors. However, adjustments to
the film reel are also detected by the machine. The key observation is that the new method
should determine whether the error log shows indications of mechanical adjustments during
the downtime of errors. In this way, we can distinguish the errors that required mechanical
adjustments from the errors that did not.

• One fault may result in two error messages
It may happen that a fault triggers two different error messages. We observed that the
machine may generate two error messages in less than a second interval. We examined these
cases manually in the error log, and concluded that this happens when sensors monitor a
similar function and both trigger a different error message. We observed that the sequence
of these errors is fixed and we decided to add the downtime to the error that is detected
first. The key observation is that the new methpd should verify that there are no other
errors occurring close to the same machine stop. If there are other errors within two seconds
of the machine stop, the method should consider the first error as the error related to the
downtime period.

In the appendix A, these key points are illustrated with examples. The logic behind the observa-
tions is used to develop the algorithm in section 2.3.

2.3 The algorithm of the new method

In this section we propose the algorithm that considers the aspects neglected by the old method
mentioned in 2.1. The algorithm consists of several subalgorithms. For the sake of clarity and
readability, we refer to these subalgorithm by using self-explanatory names. A more detailed
description of the input arguments and the output of the subalgorithm can be found in table 2.1.
The algorithm combines data from the machine status log and the error log such that we obtain
a list of error messages related to a machine stop with the corresponding downtime. During
the downtime of an error, the machine may have generated notifications that imply that the
operator undertook an action. These actions can be opening doors, manually stopping the machine,
manually adjusting the film reel and activating the film clamp. We refer to errors that contain
these notifications in their downtime as fuzzy error occurrences. If an error does not have these
notifications in its downtime, we refer to it as a clean error occurrence. The algorithm determines
whether an error occurrence is a clean error occurrences or a fuzzy error occurrence. Note that
manual operator stops also result in an error message. The algorithm handles these error messages
as errors, however, we can not investigate the causes of these stops due to the unavailability of
data. The algorithm is implemented in Python.
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Algorithm 1: Error processing algorithm

input : Error log, machine status log, list of errors, warnings and notifications
output: List with a selection of the errors and their characteristics

1 foreach error message in the error log do
2 if IsAnError=True then
3 if ExecutingCheck=True then
4 if ClashingErrorCheck=False then
5 Save DowntimeStart, DowntimeEnd, OperatorActionCheck,

OtherErrorCheck
6 if EndedWithOperatorStop=True then
7 Save EndedWithOperatorStop, OperatorStopStamp
8 else
9 next;

10 end

11 else
12 next;
13 end

14 else
15 next;
16 end

17 else
18 next;
19 end

20 end
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Table 2.1: Subalgorithms

Subalgorithm Input Output

IsAnError The code of the error.
Uses a list of errors,
warnings and notifica-
tions

Returns boolean True
if the code belongs to
an error, and False
otherwise.

ExecutingCheck The timestamp of an
error occurrence. Al-
gorithm uses the ma-
chine status log.

Returns boolean True
if the machine was
executing and boolean
False if the machine
was not executing
within a prespecified
range around the
input timestamp.

ClashingErrorCheck The timestamp of an
error occurrence. Al-
gorithm uses the ma-
chine status log and
the error log.

Returns boolean True
if there is another
error closer to the mo-
ment the downtime
starts and returns
boolean False if not.

DowntimeStart The timestamp of an
error occurrence. Al-
gorithm uses the ma-
chine status log.

The timestamp that
marks the start of
the downtime in the
machine status log if
the ExecutingCheck
returned boolean
True.

DowntimeEnd The timestamp of an
error occurrence. Al-
gorithm uses the ma-
chine status log.

The timestamp that
marks the end of
the downtime in the
machine status log if
the ExecutingCheck
returned boolean
True.

EndedWithOperatorStop The start timestamp
of the downtime and
the end timestamp of
the downtime. Uses
the error log

Boolean True if there
is an operator stop,
boolean false if there
is no operator stop.

OperatorStopStamp The start timestamp
of the downtime and
the end timestamp of
the downtime. Uses
the error log.

The timestamp of the
operator stop.

OperatorActionCheck Two timestamps that
mark a period of
downtime. Algorithm
uses the error log.

The algorithm returns
list of actions. Ac-
tions can be opening
doors, activating film
clamp, activating va-
cuum bar.

OtherErrorCheck Two timestamps that
mark a period of
downtime. Algorithm
uses the error log.

Checks whether other
errors are occur-
ring in between two
timestamps and re-
turns a list of these
errors.
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2.4 Result of the new method

In this section we discuss two important aspects of the result of the application of the algorithm:
the algorithm has filtered out the error messages related to a machine stop, and the overview of
downtime per error altered significantly by doing so. The data we used, is coming from machine
3 from the months May and June 2019. In these months there were 3 production shifts that
add up 93 hours of uptime. From a statistical point of view, it would be interesting how these
production shifts relate to production shifts of other months. It may be the case that we are
looking at 3 shifts in which the amount of errors or the length of errors significantly deviates from
the average over the last year. We recommend to determine how the number of error occurrences
and the duration of these occurrences relates to the average over a larger amount of production
shifts, e.g. 10 shifts. This prevents the client from considering a deviating period as representative.

Application of the algorithm resulted in a list of errors that are related to downtime. The al-
gorithm only took errors into account that are related to a machine stop during production, and
considered the duration of the machine stop. This means that the algorithm filtered out errors that
are not relevant in terms of downtime. In order to clarify this, we consider an example in figure
2.1. In the figure (a) 41 errors are shown that are either related or not related to a machine stop.
The algorithm determined which errors are related to a machine stop using the machine status,
and only included the 18 errors which are related to downtime. The errors related to downtime
are shown in figure (b). From the 9409 errors logged in the considered production shifts, the new
method finds that 5879 errors are related to a machine stop.

(a) Highlighted messages from the error log over time (b) Highlighted messages from the error log after applying
the error algorithm

Figure 2.1: Visualization of the filtering of the error algorithm

In order to compare the old and the new method, we categorized the errors in errors related to
downtime caused upstream, downtime caused at the machine itself and downtime caused down-
stream. We did this for the production hours of May and June of 2019, in which the machine was
up for approximately 93 hours. The overview is visually convenient since it shows the difference
in downtime consideration of the two methods. We show the overview in figure 2.2. The overview
shows that the logging duration overestimates the downtime duration. The old method found 60.0
hours of downtime caused upstream in comparison to 53.1 hours found by the new method, 36.6
hours of downtime caused at the machine in comparison to 12.7 hours, and 28.1 hours of down-
time caused downstream in comparison to 19.3 hours. Using the overview provided by the old
method would have caused us to focus on errors with a high logging duration, but a relatively low
downtime duration. We decided to use the processed error data from the algorithm to determine

14 Exploiting error data from a packaging machine to reduce machine downtime



CHAPTER 2. DATA PROCESSING

the downtime of an error. In the next chapter we further elaborate on the downtime per error
caused at the machine.

Figure 2.2: Downtime per error according to the old method and the new method categorized
in upstream, at the machine and downstream. (Machine 3, May to June 2019, approximately 93
hours of uptime)

2.5 Conclusion

The goal of this chapter was to find a method to determine which errors are related to downtime.
First we examined how the client currently processes the error log. We expect that the current way
of using the error log incorrectly measures the amount of downtime an error relates to. We decided
to develop a new method in order to correctly measure the downtime per error. We determined
how the error log and the machine status log can be combined to obtain the machine downtime
related to an error. We determined the logic of combining the data sources based on a few key
observations of the data sources. Subsequently, we proposed an algorithm that determines the
downtime per error. The algorithm consists of several subalgorithms that combine the data from
the error log and the machine status log. Lastly, we showed the difference in resulting overview of
the downtime of the old and the new method. We found that the old method overestimates the
downtime related to errors and we decided to use the new method in the remainder of this thesis.

In this chapter we answered the first research question by developing a method to determine
the downtime related to an error:
How can we identify the errors related to downtime?
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Chapter 3

Errors related to downtime and
their possible causes

In this chapter we discuss which errors are related to downtime. Since our focus is on the packaging
machine, we consider the errors related to the packaging machine rather than the errors generated
by the upstream or downstream machinery. We show the overview of downtime per error, which
is the result of the data processing as described in chapter 2. We are interested in the possible
causes of the errors that are related to downtime. A commonly used technique to find the possible
causes of a fault is FTA. (Lee, Grosh, Tillman & Lie, 1985). We apply FTA to the three errors
that are ranked highest on the list: 401, 185, and 276. We do not have data that clearly provides
the frequency that a possible cause results in the error, so we do not make statements about the
proportion of downtime related to the possible causes. During the project we used a test machine
to verify the possible causes of error 401 and 276. Due to the limited amount of time we could
not test the possible causes of error 185.

The data that we used for this chapter is the data of approximately 93 hours of uptime (es-
timated from the bag counter) coming from machine 3. This data is coming from the production
hours from May and June of 2019.

In section 3.1, we discuss which errors are related to downtime and to which amount of downtime
they relate to. In section 3.2, we elaborate FTA, which is a method that is used to identify the
possible causes of faults. In sections 3.3 to 3.5, we apply FTA to the three errors errors related
to most downtime. We identify the possible causes of these errors, but we do not which possible
cause has resulted in which part of the downtime. We propose a method to identify possible causes
in the data and to determine the proportion of downtime related to a possible cause in section
3.6. In section 3.7 we select one possible cause we will investigate in a case study. We conclude in
section 3.8.

3.1 Downtime per error at the machine

The downtime in the line caused by the packaging machine consists of the downtime from manual
operator stops and the downtime from errors. Since we do not have data on the underlying reasons
for manual operator stops, these are out of scope 1. We excluded the manual operator stops from
the overview of most relevant errors. Subsequently, we ranked the errors in decreasing order based
on their related downtime and we separated the downtime per error in the duration of fuzzy error
occurrences and the duration of clean error occurrences. We show the resulting overview in figure
3.1. We conclude that the error related to the most downtime, is error 401. We decided to further

1Manual operator stops account for 59% of the downtime related to downtime at the machine. However, the
client does not keep track of the reasons for these manual stops and we do not further investigate these stops.
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Figure 3.1: Downtime per error at machine 3, (production in May and June 2019, 93 hours of
production)

examine the causes of the errors. Due to the limited availability of time, we decided to do this for
the three highest ranked errors.

3.2 Fault Tree Analysis (FTA)

In order to determine the possible causes of the errors related to downtime, we will apply FTA.
In this section we elaborate on the general steps of applying FTA and the data we used in order
to apply each step. The steps we describe are based on Pilot (2002) and Haasl et al. (1981). Pilot
(2002) provided a brief explanation of the practical application and Haasl et al. (1981) provided
background on the theory and its relation to other methods. Note that we solely focused on the
qualitative FTA, since we could not directly determine the frequency that a possible cause results
in an error. This means that we used the structured approach of FTA to identify possible causes
of a fault, but we did not investigate the probability that a possible cause leads to the error.

• Step 1
In FTA, one aims at finding all possible causes of a fault in a top-down structure. This
means that in the first step, one focuses on a specific fault. In our case the fault was a
specific error related to downtime. One should avoid focusing on a too general fault, since
that will result in an unmanageable fault tree.

• Step 2
The second step is to determine the possible events leading to the fault. Note that in this
step we were looking for events that are directly connected to the concerned fault. We know
that the occurrence of an error is triggered by the internal algorithms of the machine. These
algorithms take sensor data as input and if the sensor data appears to be outside certain
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predefined bounds, the error is triggered. We also took into consideration that the sensor
may have been malfunctioning, and reporting incorrect measurements that result in the error
occurrence. If an event is not further split up in other events, the basic event is used and an
intermediate event otherwise. The events are shown in figure 3.2.

• Step 3
In the third step, one connects the events to the fault using AND and OR gates. The And
and OR gates are shown in figure 3.2. If two identified reasons have to occur simultaneously
in order to result in the fault, the AND operator is used. If each of the reasons in isolation
results in the fault, the OR operator is used.

• Step 4
In the fourth step, one determines the events that lead to the events previously found in step
2. In order to find the events for the error to occur (if the sensor is not malfunctioning),
we used data from Bosch on the triggers of specific errors. Subsequently, we determined
where these triggers appear in the clients’ standard procedures using data from the operator
trainer and our own observations of the clients’ production process.

• Step 5
Again, the events found in step 4, should be connected to the events of step 2 using the OR
and AND operators.

• Following steps
One can repeat steps two and three in an iterative manner. One can stop this procedure
when a convenient level of detail on the possible causes is obtained. In the following sections,
we decide to stop when the branch could be ruled out, or when we established a clear link
with the clients’ procedures. In the following sections, we elaborate on the resulting Fault
Tree for the top three errors from figure 3.1.

AND gate OR gate
Intermediate 

event
Basic event

Figure 3.2: Logic-gates and events for FTA construction
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3.3 Error 401: Encoder slip or too many marks on film
detected

Error 401

Malfunctioning 
sensor

Deviation on the 
film

Marker on the film
Film contains 

deviations

Marker A Marker B

Figure 3.3: Fault analysis tree for error 401

In this section, we examine the possible causes of the error related to the most downtime; error 401.
We defined this error as the fault of interest, which fulfilled step 1. For each of the steps, we re-
lied on the knowledge of machine experts and the knowledge of the operator trainer from the client.

In step 2, we wanted to identify the events that lead to the occurrence of error 401. We know
that the error is triggered when the sensor detects a certain process variable to be out of range.
We know from personal communication with a machine expert, that the error is triggered if the
sensor does not detect the spot in the time that a bag length of film passes the sensor, or if more
than one spot passes the sensor in the time a bag length of film passes the sensor. We summarized
these two possibilities as the event that the film contains a deviation. Alternatively, sensors may
malfunction which may lead to the generation of error 401. We identified a malfunctioning sensor
and a deviation on the film as the two direct causes of Error 401.

In step 3, we connected the causes from step 2 to error 401 using logic gates. Since each of
the events of step 2 can lead to the occurrence of error 401, we used the OR gate.

In step 4 we identified which events lead to the events from step 2. We know from commu-
nication with the line manager that no defects were found during the span of this project, so we
expect that the sensor was not structurally malfunctioning. We did not further investigate this
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branch. We used personal communication with the operator trainer and our observations of the
production process to determine the what events can possibly lead to a deviation on the film.
We found that the supplier of the film places so called markers on the film. A marker is a line
across the width of the film which is deviating in contrast. The machine detects the marker and
this results in error 401. We identified these markers as an event that leads to a deviation on the
film. Another possibility is that the films contain deviations due to production errors during the
production of the films. The line manager stated that no deviations on the film were found during
the production period. Since the operators closely examine the quality of bags in order to remove
bad quality bags, we assumed that the amount of deviations on the film accounts for a negligible
amount of occurrences of error 401 and we did not further examine this event.

In step 5 we concluded that each of the identified events lead to a deviation on the film and
we connected them using the OR gate.

In step 6 we were looking for the events leading to the events from step 4. We found that
the client orders films with markers halfway the film and near the end of the film. Since both
markers lead to the event a marker on the film, we connect the events using an OR gate. The
client orders films with a marker halfway and at the end of the film, and films with only a marker
at the end of the film in order to build in automatic machine stops. We refer to a marker halfway
the film as marker and a marker at the end of the film as marker.

Considering that no defects and no faulty films were found during the span of the project, we
consider markers A and B as the most probable causes for error 401.

3.4 Error 185: Label device error

Error 185

No label spotLabeler error

Taped film 
covers the spot

Deviation on 
the film

Labeler/sensor 
defect

Figure 3.4: Fault analysis tree for error 185

20 Exploiting error data from a packaging machine to reduce machine downtime



CHAPTER 3. ERRORS RELATED TO DOWNTIME AND THEIR POSSIBLE CAUSES

In this section, we elaborate on the possible causes of error 185. By selecting the fault of interest,
we fulfilled step 1.

In step 2 we determined the events leading to the error 185. From communication with a machine
expert we know that the error is triggered when the sensor located near the labeler does not detect
the spot on the film on the expected position or when the labeler itself is generating an error (e.g.
no ink, or device stuck). We refer to the first event as no label spot and to the second event labeler
error. The appropriate action for a labeler error is described in the labeler manual and we did not
further develop this event. Similarly to the previous error, a defective labeler or sensor may also
lead to the generation of error 185. However, no defects have been found during the span of the
project, so we do not further develop this branch.

In step 3, we connected the events to the occurrence of error 185. Since each of the events
leads to the occurrence of the error, we used the OR gate.

In step 4 we identified the events leading to the event that there is no label spot on the film.
Based on personal communication with the operator trainer, we found that the label spot may be
missing due to a deviation on the film and that the label spot may be covered when two films are
taped to each other during a film replacement.

In step 5, we connected the events from step 4 to the event no label spot. Since each of the
events leads to the occurrence of the error, we used the OR gate.

We consider the labeler error and that taped film covers the spot as the most probable reas-
ons for error 185. Since we have not extensively tested the events leading to this error, the tree
may not be conclusive.

Exploiting error data from a packaging machine to reduce machine downtime 21



CHAPTER 3. ERRORS RELATED TO DOWNTIME AND THEIR POSSIBLE CAUSES

3.5 Error 276: Splice tape detected

Error 276

Deviation on the 
film

Splice tape
Film contains 

deviations

Sensor 
malfunctioning

Marker on the film

Marker A Marker B

Figure 3.5: Fault analysis tree for error 276

In this section we focus on the events that lead to error 276. Selecting this error fulfilled step 1.

In step 2, we identified the events leading to error 276. From expert knowledge we know that
the error is similar to error 401, only its triggering sensor is aimed at a different part of the in-
coming film. This part of the film generally does not contain any spots, and when the sensor does
detect a difference in contrast, error 276 is generated. We summarized this difference in contrast
as the event deviation on the film. It may also be possible that the sensor is malfunctioning.
Since no defects were found, we expect that this possible cause is negligible and we do not further
develop this branch.

In step 3, we connected the events to the occurrence of error 185. Since each of the events
leads to the occurrence of the error, we used the OR gate.

In step 4, we identified the events leading to a deviation on the film. The same reasoning as
for error 401 applies here: the deviations on the film due to production errors and markers on the
film lead to the event a deviation on the film. Additionally, this part of the film may also deviate
due to the splice tape used for taping two films to each other during a film replacement.
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In step 5, we connected the events from step 4 to the event deviation on the film. Since each
of the events leads to the occurrence of the error, we use the OR gate.

The following steps are already mentioned for the markers of error 401, so we left them out.
Using the same reasoning as for error 401, we consider marker A, marker B and the splice tape
on the film as the most probable causes for error 276.

3.6 Determining the frequencies of the possible causes

In the previous sections we identified the possible causes of an error. Ideally a company possesses
data of the frequencies of the different causes. Unfortunately neither the client nor the machine
keeps track of the occurrences of each of the possible causes. Since the error log contains data
on a variety of other events during production, we reason that the error log might contain data
on the possible causes. In order to identify the possible cause in the data, we need a method. In
this section we propose a method that identifies the occurrence of a possible cause in the machine
data, which leads to the determination of the frequency that a possible cause leads to an error.
The quality of the result of the method still highly depends on the quality and extensiveness of
the data available.

Determine the machine interaction
First, we determine which interactions with the machine have a one-on-one relation with the
possible cause, i.e. which interaction between the environment and the machine typically occurs
during or near the occurrence of the possible cause. For example, if we are trying to determine the
frequency that component failure is due to the cleaning of the machine, we identify the cleaning of
the machine as the interaction that has a one-on-one relation with the possible cause. Note that
the interaction does not have to lead to the fault in all cases.

Determine the steps of the interaction
Subsequently, we distinguish the different steps in the interaction. For example, cleaning the ma-
chine may consist of gathering the cleaning materials, opening the doors of the machine, cleaning
the machine and closing the doors of the machine.

Determine the indicators of the steps
Next, we determine how each of the steps are reflected the machine data. We refer to such a
reflection as an indicator. In the ideal case, each step has a reflection in the data which. In our
case, the machine is not designed to reflect interactions, so this is not the case. For the cleaning
example, we have no indicators for the gathering of cleaning materials nor for the moments the
cleaning starts and stops. However, we can observe the opening of the doors and the closing of
the doors.

Determine the minimum required set of indicators
Lastly, we need to determine whether there are other interactions that lead to the same set of or
a subset of the same indicators. If there are interactions leading to the same indicators, we need
to define which indicators we mark as the interaction of interest. We have to choose between only
marking the exact sequence of indicators, which may leave out occurrences of the interaction, or to
allow slight deviations, which may result in falsely marking other interactions. In addition, other
interactions may occur during the interaction of interest. We have to define whether we mark the
indicators as the interaction if there are indicators of different interactions in between.

3.7 Selection of a possible cause

In order to identify the frequency that a possible cause results in an error, we select a possible
cause and apply the method described in section 3.6. We manually select the possible cause based
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on three criteria: the amount of downtime the resulting error relates to, the likelihood that the
possible cause causes a significant part of the downtime and the likelihood of being able to identify
the possible cause in the data. We decide to select one of the possible causes of error 401, since
that error has the highest impact in terms of downtime. We reason that it is very probable that
marker B causes a significant amount of downtime of error 401 based on the following knowledge
about the production setting. During a production shift, at most three different film types are
used (three different bag sizes). Assuming that the operators do not switch back and forth between
product types, the maximum amount of changes in product type during a shift is two. Based on
the bag counter, we know that at least 34 films have been used in May and June and there were
3 shifts of multiple days in May and June. Based on this, we expect that marker B causes a
significant proportion of of the downtime of error 401. Since marker B marks the end of the film,
we know that the film has to be replaced. During production, the replacement of the film has a
one-on-one relation with the occurrence of marker B. We know from machine experts that several
steps during the replacement of the film lead to an indicator in the data. We expect that applying
the method from section 3.6 is likely to result in the identification of marker B in the data. In the
following chapter, we will apply the method to identifying the film replacement.

3.8 Conclusion

The goal of this chapter was to identify the possible causes of the errors related to downtime.
We first elaborated on a method to identify the possible causes: FTA. We explained the steps to
undertake and how to construct a Fault Tree. Subsequently, we applied the method on the errors
401, 185 and 276, which form 69% of the error downtime at the machine. We used knowledge of a
machine expert to determine the triggering events for the errors and we used data from personal
communication with the clients’ operator trainer to find the events that lead to the errors during
production. Lastly, we proposed a method to determine the frequency a possible cause leads to
an error. Since neither the client nor the machine keeps track of the occurrence of the possible
causes, we do not have data that directly provides us with the frequencies. We proposed a method
that relies on the existence of an interaction with the machine that always happens near or during
a possible cause. If an interaction is reflected in the error log, the method may be able to estimate
the frequency of the possible cause. We selected the film replacement as a possible cause, to apply
the method to.

In this chapter we answered the second research question by determining a method to find the
possible causes of an error.
What are the possible causes of the errors related to downtime?
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Chapter 4

Case study: The film replacement

In the previous chapter we determined the possible causes of three errors related to downtime:
error 401, 185 and 276. In order to determine the frequency that a possible cause results in an
error, we proposed a method to identify the possible cause in the data. We selected one of the
possible causes for further investigation: marker B. We expect marker B to be an important cause
of error 401, and that we can identify the occurrence of marker B in the data. The first step of the
method we defined, is to find a machine interaction that occurs one-on-one with the occurrence
of the possible cause. Since marker B marks the end of the film, we know that the film has to
be replaced when marker B occurs. The film replacement in general does not have a one-on-one
relation with marker B, since the film can also be replaced when sufficient product is produced of
the current product type. However, if the film is replaced because sufficient product of the current
type has been produced, the operator has to change the recipe setting of the machine. This change
in recipe is reflected in the error log, which means we can distinguish the situation in which the
film is replaced because sufficient product has been produced. We expect the film replacement
without an indicator of a change in product type to have a one-on-one relation with marker B.
In this chapter, we apply the method proposed in section 3.6 to identify the film replacement in
the data. We are also interested in the average duration of the film replacement, so that we can
determine the amount of downtime it causes. From now on, when we refer to the film replacement,
we refer to the replacement due to reaching marker B, unless we explicitly state differently.

In section 4.1, we distinguish the steps an operator has to undertake to replace the film. In
section 4.2, we determine whether these steps are reflected in the machine data, and how these
steps are reflected. In section 4.3, we decide on which sequences of indicators we mark as a film
replacement and which sequences we leave out. In section 4.4, we discuss which proportion of
downtime of error 401 is caused by the film replacement. In section 4.5, we elaborate on the
duration of the film replacement. We conclude in section 4.6.

4.1 Steps of the film replacement

In order to identify the steps of replacing the film, we used data from the operator trainer and
our observations of the film replacement in practice. We constructed a list of steps starting from
the moment the machine is down to the moment the film is replaced and the machine is up. We
also determined whether the step has to take place, or that it is possible to fulfill the step in
an alternative way and still successfully replace the film. If it is possible to fulfill the step in an
alternative way, we marked the step as optional, and if not, we marked the step as required. In
table 4.1 we show the identified steps of the film replacement.
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Table 4.1: Steps of the film replacement

Step nr. Process step Required/Optional Alternative
1 Positioning spare film reel Required None
2 Film reel comes near its end Required None
3 Sensor 1 detects marker B Required None
4a Automatic machine stop Optional Manual stop
4b Stopping the machine manually Optional Automatic stop
5 Activation of the vacuum bar Optional Replacement without vacuum bar
6 Activation of the gripping bar Required Is also activated by vacuum bar activation
7 Cutting the old film Required None
8 Taping the film with a sticker Optional Taping the film without a sticker
9 Pull down the film unwinder Required None
10 Start machine Required None
11 Sensor 2 detects marker B Required None
12 Start machine again Required None
13 Sensor 2 detects sticker on the film Optional Taped without sticker
14 Start machine Optional Only if taped with a sticker

4.2 Indicators in the error log

Several steps during the replacement of the film are reflected in the error log by an error message
or in the machine status log by a change in machine status. The film can be replaced because
it reaches its end, or sufficient bags have been made of the current bag type. If sufficient bags
have been made of the current bag type, the operator will either stop the machine or change to
another bag type. Both cases are distinguishable, since the we can observe the machine status
and a notification if the operator changes the recipe.

In order to determine the indicator of a step, we used observations of the film replacement in
practice and we executed the steps on a testing machine of the same type. In table 4.2 we show
the identified steps, whether they are optional or required, which indicators we found and whether
there is an alternative step. Due to the fact that some indicators may be absent and other opera-

Table 4.2: Process steps of a film replacement

Step nr. Process step Required/Optional Indicators Alternative

1 Positioning spare film reel Required None None
2 Film reel comes near its end Required 164 None
3 Sensor 1 detects marker B Required 401 None
4a Automatic machine stop Optional 48, 276, 401 Manual stop
4b Stopping the machine manually Optional 163 Automatic stop
5 Activation of the vacuum bar Optional 221, 49 Replacement without vacuum bar
6 Activation of the gripping bar Required 49 Is also activated by vacuum bar activation
7 Cutting the old film Required None None
8 Taping the film with a sticker Optional 276 Taping the film without a sticker
9 Pull down the film unwinder Required None None
10 Start machine Required Machine status None
11 Sensor 2 detects marker B Required 276, machine status None
12 Start machine again Required Machine status None
13 Sensor 2 detects sticker on the film Optional 276, machine status Taped without sticker
14 Start machine for production Optional Machine status Only if taped with a sticker

tions than the film replacement can result in a subset of the indicators of the film replacement, we
had to be careful not to confuse another operator action with a film replacement. We manually
examined the different sequences of indicators of the film replacement in the error log. We explain
which sequences we considered as a film replacement and which not in the following section.
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4.3 Set of required indicators

In the previous step we identified the indicators in the error log related to a film replacement. We
observed different variations of the indicators of the film replacement in the error log. We found
that the machine not always raises a warning for coming near the end of the film (error code 164),
due to the fact that the settings for this warning are not always configured correctly. Furthermore,
we observed that the identified indicators may have indicators of other interactions in between,
e.g. the opening of doors.

We decided to mark all sets of indicators as a film replacement that consist of the sequence
of error codes 401, 276, 49, 276. We accepted the occurrence of optional indicators of a film
replacement in between. However, we excluded the sequences that show indicators of other inter-
actions unrelated to the procedure of replacing the film. Since we are interested in the duration
of the film replacement, we would like to obtain film replacements in which no other operations
are executed. Therefore, if there are indicators of a mechanical adjustment, have not marked the
sequence as a film replacement.

We examined the production periods of May and June 2019 and we selected the film replace-
ments manually. For each of the cases that is in line with the selection criteria, we collected the
timestamp that the machine is down, the error code that marked the moment the machine is
down, the timestamp at which the operator undertook a film replacement related action and the
timestamp the machine was up and running again. Since we purposely left out the ambiguous
cases, we expect that we have obtained a slightly biased view of the duration of the film replace-
ment. If an operator faced troubles during the replacement of the film, we may have interpreted
the resulting sequence of indicators as an ambiguous case.

4.4 Result: Downtime due to the film replacement

After identifying the film replacements in the data set, we can make statements about what pro-
portion of downtime these film replacements relate to. Since we had to leave out the ambiguous
cases, we consider the downtime of these film replacements as a lower bound for the actual amount
of downtime.

We found that from the 25 fuzzy error occurrences of code 401, 19 occurrences consist of a film
replacement. The sum of durations of these 19 occurrences forms 85% of the total duration of
fuzzy error occurrences of 401. We show the proportion of the duration of error 401 that is caused
by fuzzy errors and the film replacement in figure 4.1. Furthermore, we observed that marker B
is not exactly at the end of the film. In several cases in which error 401 occurred, the operator
resumed production without replacing the film. Then after roughly a minute, the operator started
replacing the film. We observed that from the 36 clean occurrences 9 occurrences fall into this
category. The downtime duration of these errors forms 29% of the total duration of the clean error
occurrences of error 401. We show the proportion of the duration of error 401 that is caused by
clean errors and the film replacement in figure 4.2. This means the identified film replacements,
account for 65% of the total duration of error 401. Finally, we observed one occurrence of error
401 before a film replacement with a change of recipe. This means that this marker could have
been marker A or marker B.
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Figure 4.1: Pie charts visualizing the proportion of error 401 that is caused by fuzzy errors and
the film replacement

Figure 4.2: Pie charts visualizing the proportion of error 401 that is caused by clean errors and
the film replacement

4.5 Duration of the film replacement

The total downtime duration of a film replacement, consists of the operator reaction time and the
replacement time. We define the operator reaction time as the time between the timestamp the
machine is down and the timestamp the operator starts replacing the film. Note that the operator
can also stop the machine by starting to replace the film, which means that the operator reaction
time is equal to zero. Additionally, we define the replacement time as the time between moment the
operator starts replacing the film and starts the machine again. We consider the replacement time
as the period starting from the timestamp of the first film replacement indicator resulting from
the operator until the timestamp that the machine is up and running. The total time consisting
of the operator reaction time and the replacement time is referred to as the total replacement time.

Since the four machines in the line are of the same type and replacing a film does not differ
among the machines, we expect that the underlying distribution of the duration of film replace-
ments does not differ among the machines. In order to obtain a larger data set for the replacement
time, we decided to filter out the film replacements on machines 1,2 and 3. This yields a total of
81 data points for the film replacements. From these data points, 32 are coming from machine 1,

28 Exploiting error data from a packaging machine to reduce machine downtime



CHAPTER 4. CASE STUDY: THE FILM REPLACEMENT

21 from machine 2 and 30 from machine 3. We expect that the same reasoning does not apply
for the operator reaction time. The operator reaction time may be influenced by the fact that
the downtime cost among machines may differ and the position of each machine differs. Since we
focus on the downtime of machine 3, we only used the 29 data points coming from machine 3 for
the operator reaction time.

The replacement time and the operator reaction time are shown in table 4.3. In figure 4.3 we
show the distribution of the operator reaction time and the film replacement duration. During
the manual filtering of the film replacements, we noticed that several subsets of film replacement
indicators also contained indicators of other operator actions. Our procedure excluded these film
replacements. This also means that we did not consider the film replacements in which the op-
erator makes a mistake or a fault occurs during the replacement. We expect that these film
replacements typically take longer, so we might underestimate the actual duration. We discuss
this more extensively in chapter 7.

(a) The operator reaction time before starting to replace
the empty film (n = 29)

(b) The replacement time (n = 83)

Figure 4.3: Bar charts of the operator reaction time and the replacement time

Table 4.3: Replacements time and operator reaction time to film replacements

Variable Average (s) Standard deviation (s) Min (s) Max (s)

Replacement time of M1, M2 and M3 130.2 46.7 53 276
Operator reaction time M3 88.0 80.6 0 304

4.6 Conclusion

The goal of this chapter is to find the frequency of that marker B on the film leads to error 401 by
identifying the film replacement in the error log. First determined which steps a film replacement
consists of. We identified the steps using personal communication with the operator trainer and
observations of the film replacement in practice. Next, we determined the indicators in the data
that reflect the steps of the film replacement. We identified the indicators by using expert know-
ledge on the machine and repeating the steps on a testing machine. Subsequently, we defined when
we identify a set of indicators as a film replacement. We observed that there are several variations
of the indicators in the data set and that the indicators may have indicators of other machine
interactions in between. Since we are also interested in obtaining the duration of the steps of the
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film replacement, we left out the sequences of indicators that show indicators of other machine
interactions in between. We allow for variations in the indicators of optional steps. Thereafter, we
determined the proportion of error 401 occurrences that is caused by marker B and which duration
consist of replacing the film. Lastly, we elaborated on the duration of the film replacement. We
found that the total duration of a film replacement consists of the operator reaction time and the
replacement duration. We showed the durations of both time variables.

In chapters 4 we have taken the first step in answering the third research question by determining
how one of the possible causes is related to downtime.
How can we reduce the downtime of the possible causes?
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Chapter 5

Opportunistic timing of the film
replacement model

In the previous chapter, we found that the film replacement causes at least 65% of the downtime
of error 401. In this chapter, we investigate an approach to reduce the downtime of the film
replacement. In chapter 2, we observed that 59% of the downtime is caused by errors related
to problems upstream and downstream. The main idea of this chapter, is that these unexpected
errors may occur just before the film has to be replaced, and one can use the resulting downtime
to preventively replace the film. By doing so, we may avoid downtime in two ways: 1. If there is
an operator available at the moment an opportunity appears to preventively replace the film, we
prevent the machine from reaching the end of the film. If the machine reaches the end of the film,
it may be the case that no operator is available. In that case, we have to wait until an operator
is available. This is an additional undesirable period of downtime. 2. We may save downtime by
partially overlapping the downtime of the film replacement with the downtime of the error. In
this chapter we determine which error the client should use and when the client should use this
error for the opportunistic film replacement.

In order to find a suitable modeling approach for the decision to use the downtime of an er-
ror to replace the film, we examined the aspects that influence this decision. First of all, the
moment an unexpected error occurs, there is a usable amount of film left on the film reel. If we
decide to replace the film, cost is incurred which is approximately linear in the amount of remain-
ing film. Next, there are several situations in which the machine is down for a period of time.
During these periods, downtime cost is incurred. The different periods of downtime we distinguish
are: the downtime of reaching marker B, the duration of the errors, and duration of replacing the
film during the errors. We used the data to determine the expected duration of these time periods.
Additionally, each error has a different frequency of occurrence and therefore a different probability
of occurrence. The decision to replace the film should consider the probability that another error
occurs before we reach the end of the film. If another error occurs, it is less costly to replace the
film at this point due to the lower amount of remaining film. In order to make the model generic
we decided that the model should also be applicable to clients with a different amount of errors
with different expected durations. Summarizing, the model should consider the following aspects:
(i) multiple errors with different durations and frequencies (ii) The cost of disposing the film. (iii)
The probability that a later unexpected breakdown may occur which allows to replace the film at
a lower cost. (iv) The downtime of reaching marker B, the downtime duration of the errors, the
downtime duration of replacing during an error, and the downtime duration of the error. (v) The
probability that an operator is not available at the moment an unexpected breakdown occurs.

In maintenance, opportunistic scheduling approaches have been applied in the context of com-
ponent replacements (e.g. Zhu, 2015; de Win, 2018). However, these models are not directly
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applicable due to two differences between our situation and the application to component replace-
ment. The models proposed by Zhu (2015) and de Win (2018), use renewal theory to numerically
minimize the costs in a cycle divided by the time in a cycle. A cycle is the time from one renewal
point to the following renewal point, i.e. the time between to consecutive component replace-
ments. For further explanation on the use of renewal theory in preventive maintenance models,
we refer to Arts (2017). The first difference is that these models assume that the time to replace
the component is negligible in comparison to the lifetime of the component. In our case, this is
assumption is not valid, since the duration of the replacement of the film is an important aspect
of the decision to replace the film. The second difference is that the models usually incorporate
one type of unexpected breakdown. In our case, we would like to make the model applicable to
situations with multiple errors with a different probability of occurrence and a different expected
duration. We expect that finding the expected cycle time in the case with multiple errors is com-
plicated and we decide to avoid this by using another modeling approach. Nevertheless, we find
that in situations with only one error, one can easily find the expected cycle length.

We decided to model the replacement of the film in a MDP. In the model, we define the states
by the amount of remaining bags on the film reel and whether the machine is in production, un-
dergoing a film replacement, down due to an error or undergoing a film replacement while down
due to an error. Defining these states, allows us to model a separate expected duration for each
of these four time periods. As long as the machine is producing, i.e. it does not face any errors,
the machine produces one bag per time step. If the machine reaches the end of the reel, the
film reel has to be replaced which takes in expectation a certain amount of time. With a certain
probability during production, the machine faces an error in the next time step. Considering the
amount of bags on the film reel and the amount of downtime one saves by replacing the film
within an error, one can decide to use this opportunity to replace the film. Replacing the film
incurs costs for the amount of bags that are still on the film reel that one replaces and costs for
the amount of downtime. Alternatively, one can choose to wait until the error is resolved. This
only incurs costs for the amount of downtime. If one decides to replace the film, it may be the
case that no operator is available. This means that even when we decide to replace the film, there
is a certain probability that we cannot replace the film. In that case we wait until the error is
resolved to resume production with the remaining amount of film. Given the cost parameters,
the duration of replacement, errors and replacement during errors, and the error probabilities, the
model determines at which amount of bags one should replace the film when facing a specific error.

First we select an error with suitable characteristics for opportunistically replacing the film in
section 5.1. Thereafter, we introduce the model variables and parameters in section 5.2. Then,
we elaborate on the assumptions of the model in section 5.3. Thereafter, we introduce the model
formulation for |J | independent errors, with J denoting the set of errors, in section 5.4. Sub-
sequently, we discuss the requirements that the structure of the model should meet in order be
able to solve it in 5.5. Next, we apply the model in our case study in section 5.6. Lastly, we
discuss the conclusion of this chapter in section 5.7.

5.1 Suitable errors to replace the film

In order to perform the film replacement during an error, we need to know which errors have a
considerable length and frequency of occurrence. We do not have data on the time an operator
needs to react on the occurrence of an error before he starts replacing the film. We expect that if
an operator is available at an error occurrence, he only needs a small amount of time to react on
the opportunity. Based on the distances in the production area, we expect that the operator can
start replacing the film in less than 30 seconds. We decide to only consider errors with a consid-
erable frequency of occurrence (> 100) and that a duration of at least twice the duration of the
reaction time (> 60 s). By doing so, we ensure that we consider an opportunity in which we can
actually reduce a significant amount of downtime. Another requirement is that the error should
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not be related to a fault at the machine, since that may require an operator to make mechanical
adjustments during which the film cannot be replaced. Errors upstream and downstream, relate
to a problem with other machines in the line. These errors cause the machine to stand still, while
no other operations on the machine are performed. We decide to determine whether there are
errors related to upstream and downstream problems that have a considerable length. We provide
an overview of the most relevant errors in figure 5.1. There is one error that is related to upstream
problems, error 11, and there are two codes related to downstream problems, 160 and 251.

Error 11 is the most frequent error (5047 occurrences in the data of May and June) and this
error causes most downtime (62% of total downtime of May and June). However, the average
downtime per occurrence is rather short, with 34 seconds on average and the error occurs con-
stantly over time. We know that the error is caused by the setup of the product supply. The
four packaging machines in the line of our machine of interest are connected to the same belt
that supplies the input product. This means that if the sum of the speeds of the four machines
exceeds the speed of product supply, the machines structurally generate error 11. The duration
of the error is influenced by the priority setting for each machine, and since we do not have data
on this setting, we consider the investigation of the priority settings out of scope for this project.
We conclude that error 11 is not suitable for executing the film replacement since the duration is
rather short and occur constantly over time. The periods in which the error has a longer duration,
this is probably due to the client setting the machine to a lower priority, which presumably means
that the machine performance is less important at that moment.

Upstream belt
Packaging 
machine 3

Secondary packaging 
machine 2

Downtime upstream
53.1 hours, 5202 occurrences

Error 11,          53.1 hours, 5047 occurrences

Downtime machine
12.7 hours, 561 occurrences

Manual operator stops,  7.5 hours, 270 occurrences
Error 401,                          1.9 hours, 61 occurrences
Error 185,                          1.0 hours, 27 occurrences
Error 276,                          0.7 hours, 51 occurrences
Error 400,                          0.5 hours, 24 occurrences
Error 277,                          0.3 hours, 24 occurrences
Remaining                         0.8 hours, 104 occurrences  

Downtime downstream
19.3 hours, 537 occurrences

Error 160,          19.7 hours, 497 occurrences         
Error 251,          0.6 hours, 40 occurrences   

Figure 5.1: Overview of downtime in the line of machine 3, with the corresponding error codes

Error 160 is the most frequently occurring error downstream (497 occurrences in the data of May
and June) and has an average duration of 133 seconds. The error is generated when the packaging
machine receives a signal from the secondary packaging machine that it faces an error. We expect
that it may be valuable to use the occurrence of this error to replace the film. Since the duration of
error 251 is < 60 seconds, we do not consider this as an opportunity to replace the film. Therefore,
we only consider error 160. The duration of error 160 is plotted in figure 5.2.
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Figure 5.2: Downtime duration due to error 160 (n = 485)

5.2 Model variables and parameters

In this section we present the model variables. Note that we do not provide the transition prob-
abilities. These are provided in subsection 5.1.

λj Arrival rate of error j. With j in the set of errors J .

τ The discrete time steps at which the model evaluates the system state.

A The set of possible actions. The set of possible actions depends on the current
state s of the system.

aj,i The decision to undertake action i when error j occurs. For each error, an
action has to be chosen.

b Amount of remaining bags.

bnew Amount of bags on a new film.

Cdown The cost of downtime expressed in eper hour

Cfilm The cost of disposing film expressed in eper bag

Cπ∗ The long-term average cost per time step for the optimal policy π∗

J Set of independent errors that are considered an opportunity to replace the
film

m The status of the machine

M Set of possible machine status

P Set of all transition probabilities in the model. We denote a transition prob-
ability from state s to state s’ by Ps,s′ . The transition probabilities depend
on the current state and possibly the action chosen in the current state.
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R Set of rewards. In this model, the set of rewards consists of costs. These costs
depend on the current state and possibly the action chosen in the current
state.

PAv The probability of having an operator available when an unexpected break-
down occurs in which the film can be replaced

s System state. The state consists of a machine state m and the amount of
remaining bags b: (m, b).

S Set of possible system states.

TBoth,j Variable for the time necessary to execute the film replacement during error
j.

TErrorReaction Variable denoting the error reaction time. This is the time period starting
from the moment an error occurs which can be used to preventively replace
the film, until an available operator has reached the machine and starts re-
placing the film. The time period consists of the time an available operator
needs to observe the opportunity and to walk to the packaging machine.

Tinter Variable for the interarrival time of errors. We assume tha the arrival rate
during production is constant, which means the arrival of errors follows a
Poisson process.

TOperatorReaction Variable denoting the operator reaction time. The operator reaction time is
the time period starting from the moment the packaging machine reaches the
end of the film until an operator starts replacing the film. Since operators
may be busy at the moment the machine reaches the end of the film, the
length of this period varies.

TRecover,j The time necessary to recover from the error. The errors considered are
typically errors unrelated to the machine itself and unrelated to the film.
The time necessary to recover from the error is the time an operator needs
to resolve the underlying fault elsewhere in the line.

TReplace Variable for the replacement time. This variable denotes the time necessary
to replace the film. This is the time period starting from the moment the
operator is at the machine and starts to replace the film, until the moment
the packaging machine resumes production.

TTotalReplace Variable for the total replacement time if the end of the film is reached. This
time consists of the operator reaction time and the replacement time. This
time period varies since operators may be busy with another task at the
moment the end of the film is reached.

5.3 Modeling assumptions

Before we introduce the model, we elaborate on the assumptions we make by using this modeling
approach.

5.3.1 Discrete time

The model evaluates the system state at n discrete points in time:

t1, t2, ..., tn−1, tn

Exploiting error data from a packaging machine to reduce machine downtime 35



CHAPTER 5. OPPORTUNISTIC TIMING OF THE FILM REPLACEMENT MODEL

The difference between these points in time, is a constant time step called τ , which is expressed
in seconds:

ti − ti−1 = τ

In each time step τ , only one transition can take place. We set the time step τ to the time
necessary to produce one bag. Note that τ has to be smaller than E[TRecover,j ], E[TTotalReplace]
and E[TBoth,j ]. In situations with a large amount of bags on a film, setting τ equal to the time to
produce one bag may result in a computationally intractable model. In such cases, we suggest to
aggregate the states and use steps in which multiple bags are produced.

The assumption of discrete time steps is closely related to the assumption on the distribution
of the time variables. If the time variables are exponentially distributed, one can simply calculate
the transition probabilities corresponding to the length of the time step τ . However, for other
disteributions, the transition probabilities are not scalable to a small time step. This means that
in these cases, evaluating the system at discrete time steps is an approximation of reality. We will
further discuss the implications for the results in subsection 5.3.3.

5.3.2 Constant error rate during production

The error rate of each of the errors in the set of errors J is assumed to be constant over time
during production:

λ1 = C1, λ2 = C2, , ..., λ|J| = C|J|

With C1, ..., Cn being constants with Ci ∈ R. However, if the machine is not producing, the
error rate is assumed to be 0. The error rates are assumed to be independent of the amount of
bags on the film and independent of each other. This means that the interarrival times follow an
exponential distribution, and the arrival of errors follows a Poisson process. A machine expert
from Bosch, who has been involved with the line setup at the client, verifies that the errors from
secondary packaging machines are not related to a specific part of the film and that the arrival
process of errors appears to be random. In addition, Daley & Vere-Jones (2007) finds that the
combination of a large amount of non-Poisson renewal processes, still has Poisson properties. In
our case, error 160 consists of failure modes of the secondary packaging machine, and thus may
still have Poisson properties. Unfortunately, we are not able to verify the assumption using the
data. We do observe based on the timestamps that the occurrences of error 160 do not appear
to be related to a specific part of the data set as the error occurs throughout the whole data set.
We expect that as long as the error occurrence does not depend on the film replacement, this
assumption is realistic.

5.3.3 Exponentially distributed time variables

Inherent to the decision of modeling using a MDP, is the assumption on the durations to be
exponentially distributed:

T1 ∼ exp(λ1), T2 ∼ exp(λ2), T3 ∼ exp(λ3), ...

In which Ti denote the time variables we consider in the model. We model the durations of repla-
cing a film when it reaches its end, the duration of an error and the time to replace the film during
by exponentially distributed variables. In the model, the duration of these variables is modeled as
exponential distributions with the expectation set equal to the expectation we found in the data.
Another assumption inherent by using a MDP, is that the process is said to be memoryless. This
means that the optimal decision only depends on the current state, and not on the history of states.

We examined the distribution of the data for the time variables, and we concluded that they
differ from the exponential distribution. In order to determine how the model deviates from real-
ity, we examine the variances of the exponentially distributed time variables and the variance of
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the data. We find that the variance in the model is larger for the duration of an error and for the
replacement of the film. In appendix C, we plot the exponential distribution against the data and
we argue that the model underestimates the long-term expected costs per state. This means that
the long-term optimal cost per time step found by the model, is too optimistic. We expect that
the optimal policy the model provides may still be reasonable, since the model underestimates the
long-term average cost per time step for each of the states.

This estimation error raises the need to ensure that the solution of the model performs well if
the time variables are not exponentially distributed in reality. We ensure this in chapter 6. Since
the real distributions differ from the exponential distribution, the optimal decision may depend on
the time that has elapsed in a state. It may be beneficial to wait for a short amount of time in a
state before making a decision. Since the model assumes exponentially distributed time variables,
the model cannot incorporate this waiting decision. However, a waiting decision would result in
impractical policies, which is undesirable. Therefore, we do not mind that the model neglects the
elapsed time in a state.

5.3.4 Operator availability

Whenever an error occurs and we would like to replace the film during this error, an operator may
either be available or not. Whether an operator is available, depends on whether the operator is
busy with other tasks in the production area. For simplicity, we only consider operators available
that have no task at the moment error 160 occurs and we do not consider operators available who
do have a task, even if they will finish this task soon. If no operator is available, we cannot replace
the film during the error. In this case, we wait until the error is resolved and we resume production
with the same amount of remaining bags. If there is an available operator, the operator has to
walk towards the machine and start replacing the film.

In order to incorporate the operator availability, we use a probability factor PAv that an op-
erator is available at the moment the error occurs. This means that if one decides to replace
the film, there is a probability 1-PAv that no operator is available. By incorporating the operator
availability in this way, we assume that the probability that an operator is available is independent
of the previous state. However, in reality, an operator is not available for a certain period of time.
Thus, if an operator was not available at the previous time step, it will probably not be available
at this time step. Based on the occurrence of error 160, we estimate the probability of observing
two errors at consecutive time steps as 0.00122 = 1.44 · 10−6. Since this probability is relatively
small, we expect that the impact of this assumption on the model is fairly small.

5.4 The Opportunistic Film Replacement Model

A MDP is a 4-tuple: < S,A, P,R >. S denotes the set of all possible state of the system. The
states of the system are explained in subsection 5.4.1. A is the set of possible actions. The set of
actions, may depend on the state. The set of possible actions in state s is denoted by A(s). The
set of actions is discussed in subsection 5.4.2. Given the current state and an action, one defines
the probabilities of finding the system in state s’ in the next time step. The set of transition
probabilities is denoted by P . We discuss the transition probabilities of the model in subsection
5.4.4. One allocates rewards to the combination of the current state, the chosen action, and the
corresponding transition probability. In our model, we incur costs, thus negative rewards. The
cost parameters are discussed in 5.4.5 and the one step expected costs are discussed in subsection
5.4.6. The procedure to find the optimal action in each state is discussed in subsection 5.5.1.
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5.4.1 Machine State

The state of the system, s, consists of a machine state m and the amount of bags on the reel, b.
The set of machine status M consists of (i) In production, (ii) Replacement of the film, (iii) Down
due to error j and (iv) Replacement of the film during error j with j in J . J denotes the set of
errors that can be used to replace the film. The machine state In production is the state in which
the machine is producing bags at a constant speed. The machine state Replacement of the film
is the machine status in which the film has reached its end and has to be replaced. The machine
state Down due to error j, is the machine status in which an error has occurred, but this error is
not used to replace the film. The machine state Replacement of the film during error j with j in
J , is the machine state in which error j occurred and the opportunity is used to replace the film.
Summarizing, the machine state m can be one of the following states:

m =



In production;

Replacement of the film;

Down due to error j j ∈ J ;

Replacement of the film j ∈ J ;

during error j

(5.1)

We evaluate the system state at discrete time steps τ , and we set τ equal to the time necessary to
produce one bag. During production, the amount of bags on the film reel, b, decreases with one
bag per time step until the film is replaced and it is set to the amount of bags on a full film reel
bnew. That means that the following holds for b.

b ∈ Z : 0 ≤ b ≤ bnew (5.2)

The system state is denoted by s, and the state space is denoted by S. The system state is a
combination of the machine state m, and the bags on the film reel b. That means that the state
of the system is denoted by:

s = (m, b) (5.3)

The amount of bags is set to zero if we reach the state Replacement of the film or Replacement
of the film during error j. When the film is replaced, the machine starts producing again so the
machine state is In production. The amount of bags on the film reel b, is then equal to bnew. In
other words, the amount of remaining bags only plays a role for the machine states In production
and Recovering from error j.

5.4.2 Actions and decision function

In each production state, the operator has to make a choice. The choice is to either to replace
the film if error j occurs in the next time step or to do nothing if error j occurs in the next time
step (resume production after the error is solved). Note that the decision alters the transition if
an error occurs in the next time step and does not alter the transition in case no error occurs. In
each production state, a decision has to be made for each of the errors j in J . The set of possible
actions in a state s is denoted by A(s). a denotes the vector of actions with length |J |, in which
aj,i denotes the decision for error j. Let D(s, j) be a decision function that maps the production
state s to an action aj,i, for each of the errors j ∈ J .

D(s, j) =

{
aj,1, If error j occurs, replace the film j ∈ J,
aj,2, If error j occurs do nothing j ∈ J.

(5.4)

Let π be a policy, which is a mapping from all combinations of production states s ∈ S and errors
j ∈ J to a decision. In the error states, the replacement state and the states replacement during
error j, there is no decision to be made.
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5.4.3 Duration variables

Since we are using a MDP, we model the duration as exponentially distributed variables. Without
making assumptions on the actual distribution of the durations in the real situation, we incor-
porate the durations by matching the expected duration of the time variable with the expected
duration of the corresponding state in the model. The duration of recovering from an error, re-
placing the film when marker B is reached and replacing the film during an error are denoted by
a stochastic random variables TRecover,j , TTotalReplace and TBoth,j , respectively.

TTotalReplace is the total replacement time when the machine reaches marker B. As explained
in chapter 4, this time period consists of the operator reaction time, TOperatorReaction, and the
replacement time, TReplace. Since operators may be busy with another task when the end of the
film is reached, the expectation of TTotalReplace is typically longer than the expectation of TBoth,j .

Figure 5.3: The length of TTotalReplace

If error j occurs, we may decide to replace the film. We can only replace the film, if an oper-
ator is actually available at the moment error j occurs. If an operator is available, the time period
the packaging machine is down, is TBoth,j . The length of TBoth,j depends on whether it takes
longer to walk to the machine and replace the film (situation 1), or it takes longer to resolve the
error 160 (sitation 2). We visualize situation 1 in figure 5.4 and situation 2 in figure 5.5. The
duration of TBoth,j can be calculated as TBoth,j = max[TErrorReaction + TReplace, TRecover,j ]. The
length of this time period depends on whether it takes longer for the operator to replace the film,
or recovering from error j takes longer. The time period an available operator needs to replace the
film consists of a small amount of time an operator needs to react on the error, TErrorReaction,
and the time necessary to replace the film, TTotalReplace.
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Figure 5.4: The length of TBoth,j in the situation 1

Figure 5.5: The length of TBoth,j in situation 2

5.4.4 Transition probabilities

In this subsection we consider the transition probabilities. The transition probability from state s
to state s′ is the probability that the system state at the current time step is s and after one time
step s′. We distinguish four different durations: the duration of producing one bag, the duration
of an error, the duration of replacing the film during an error and the duration of replacing the
film if the machine reached the end of the film. We set the duration of producing one bag equal
to one time step. We incorporate the other durations by setting the probability of leaving the
state such that the expected duration in the state corresponds to the expected duration of the
corresponding time variable. As explained in the assumptions, τ needs to be smaller than the
expectation of TReplace, TRecover,j and TBoth,j . After introducing all transition probabilities, we
visualize the one error case in figure 5.6. Note that in the case of one error, we can drop the
subscript of the variables that denotes the error.

In production and no error occurs
During production, we model the time until the next error by an exponential distribution. The
error rate of error j is denoted by λj , which is expressed in errors per time step τ . The probability
of being in production state with b bags and going to the next production state with b − 1 bags
(with b > 1), is given by the probability that none of the errors occur. If no error occurs during
the production of the last bag (b=1), the operator starts replacing the film in the next state. So
this transition probability is the probability for going from a production state with b > 1 to the
next production state b− 1, and for going from the production state with b = 1 to the state with
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Replacement of the film. We denote this probability by:

PNoError =
∏
j∈J

[e−λj ·τ ] (5.5)

Replacement of the film
When the system is in the state (Replacement of the film, b=0 ), the probability of being in state
(In production, bnew) in the next time step is given by:

PReplace =
τ

E[TTotalReplace]
(5.6)

And the probability of still being in the replacement state in after one time step is:

PNoReplace = 1− τ

E[TTotalReplace]
(5.7)

In production and an error occurs
During production, different errors can occur. We calculate the probability that we face error j
in the next time step by calculating the probability that we face an error in general, times the
probability that the type of the error is j:

PError,j =
λj∑
i∈J λi

∗ (1− PNoError) , j ∈ J (5.8)

In which λj denotes the arrival rate of error j. The transition probabilities at an error occurrence
depend on the decision in the production state. Whenever an error j occurs and the decision is If
error j occurs, do nothing, the system state goes from (In production, b) to (Down due to error j,
b-1).

If the decision is If error j occurs, replace the film, the system goes from (In production, b)
to (Replacement of the film during error j, 0) with the probability that an error occurs times the
probability that an operator is available at the start of the next time step:

PErrorReplace,j = PError,j · PAv (5.9)

With probability 1− PAv, no operator is available at the error occurrence. Thus, the probability
that the system state goes from (In production, b) to (Down due to error j, b-1), given that we
decided to replace the film if error j occurs, is denoted by:

PNoErrorReplace,j = PError,j · (1− PAv) (5.10)

Down due to error j
Whenever the machine state is (Down due to error j, b) with b > 0, the system spends in expect-
ation E[Trecover,j ] in this state before the system recovers from the error. That means that the
system goes to the state (In production, b) with probability:

PRecover,j =
τ

E[TRecover,j ]
(5.11)

And stays in the error state with probability:

PNoRecover,j = 1− PRecover,j = 1− τ

E[TRecover,j ]
(5.12)

If m is down due to error j and b = 0, the film has to be replaced anyway, so the system state
goes to Replacement of the film and b = 0 with probability PRecover,j .
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Replacement of the film during error j
If one decides to replace the film during the error occurrence, the system reaches the state (Re-
placement of the film during error j, 0). The expected amount of time that we will spend in this
state is given by E[TBoth,j ]. That means that the probability of reaching (In production, bnew) in
the next time step is given by:

PBoth,j =
τ

E[TBoth,j ]
(5.13)

And the probability that the system stays in the state:

PNoBoth,j = 1− PBoth,j = 1− τ

E[TBoth,j ]
(5.14)

Table 5.1: Transition probabilities

s s′ b aj,i P (s, s′)

(In production, b) (In production, b-1) b > 0 aj,1 / aj,2 PNoError
(In production, b) (Replacement of the film, 0) b = 1 aj,1 / aj,2 PNoError
(In production, b) (Down due to error j, b-1) b > 0 aj,2 PError,j
(In production, b) (Down due to error j, b-1) b > 0 aj,1 PNoErrorReplace,j
(In production, b) (Replacement of the film during error j, 0) b > 0 aj,1 PErrorReplace,j
(Replacement of the film, 0) (In production, bnew) - - PReplace
(Replacement of the film, 0 (Replacement of the film, 0) - - PNoReplace
(Down due to error j, b) (In production, b) b > 0 - PRecover,j
(Down due to error j, b) (Replacement the film, 0) b = 0 - PRecover,j
(Down due to error j, b) (Down due to error j, b) b ≥ 0 - PNoRecover,j
(Replacement of the film during error j, 0) (In production, bnew) - - PBoth,j
(Replacement of the film during error j, 0) (Replacement of the film during error j, 0) - - PNoBoth,j

In 
production,
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PNoError
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error,
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Figure 5.6: Visualization of the Opportunistic Film Replacement Model for the 1 error case

5.4.5 Cost parameters

The model considers two cost parameters: the cost of downtime, Cdown, and the cost for film,
Cfilm. The downtime cost is the cost one pays per time step being in a state in which one cannot
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produce. The cost for the film is the cost one pays per remaining bag on the reel, when one decides
to preventively replace the film. First we define the one step expected costs in subsection 5.4.6
and then the long run average costs in 5.4.7.

5.4.6 One step expected costs

The one step expected costs consist of the costs that are incurred between the current time step
and the next time step. In the states in which the machine is not producing, the costs incurred is
Cdown. In the production states, the one step expected cost depends on the decision made. If one
decides to replace the film if error j occurs, the one step expected cost consist of the probability
that an error occurs, times the probability of having an operator available, times the cost of
disposing the remaining film. In each of the production states we make a decision for each error
j in J , so we have a direct cost term for all errors in J . We denote the direct cost of the decision
for error j as cj(a). The total one step expected costs in a production state is then:

ca(s) =
∑
j∈J

cj(s, a) (5.15)

In which cj(s, a) is denoted by:

cj(s, a) =

{
PAv · PError,j · (b− 1) · Cfilm if aj,i = aj,1

0 if aj,i = aj,2
(5.16)

In the states in which there is no production, the direct cost is equal to Cdown.

5.4.7 Long-run average costs

Let Vn(s) denote the minimum average cost per time unit when in state s with n time steps left
on the production horizon. We know from Tijms (2003) (page 259) that:

Vn(s) = min
a∈A

ca(s) +
∑
s′∈S

Ps,s′(a)Vn−1(s′) (5.17)

In which Ps,s′ is the transition probability of going from state s to s’. We are looking for the
policy π, that minimizes the long term average cost. We denote the optimal policy by π∗. Then
the optimal long term average cost can be denoted by:

Cπ∗ = lim
n→∞

V πn
∗(s)

n
(5.18)

5.5 Requirements of the MDP

In this section we introduce some definitions from Markov Chain theory, that we need to determine
that we can find the long-term (undiscounted) cost per time step of our model. Tijms (2003)
proposes an algorithm that converges to the long-term (undiscounted) cost per time step, if the
model is unichain. We first introduce five definitions are necessary to understand the unichain
definition. We further elaborate on the optimal policy in section 5.4.

Definition 1. Two states are said to communicate under a probability π if there is a positive
probability of reaching state each state from the other with a positive number of transitions.

Definition 2. A state is recurrent if the probability of re-entering that state is 1 in the long-term.

Definition 3. If a recurrent state x communicates with another state y, then y has to be recurrent
also.
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Definition 4. An ergodic or recurrent class of states is a set of recurrent states that all commu-
nicate with each other, and do not communicate with any state outside the this class.

Definition 5. A non-recurrent state is called transient, since at some finite point in time the
state will never be visited again.

Definition 6. A Markov Decision Process (MDP) is unichain if the transition matrix corres-
ponding to every policy contains a single recurrent class, and a (possibly empty) set of transient
states.

Now we show that our model is a unichain MDP. We observe that the production states com-
municate with each other and with the replacement state. These states will be reentered in the
long-term, so these states are part of a recurrent class. Error states can either communicate with
a production state or not communicate at all, depending on PAv and the optimal decision in the
production state that lies before the error state. The set of error states that are communicating
with a production state, are therefore also part of the recurrent class. Error states that are not
communicating, are not reentered in the long-term and are therefore transient states. Lastly, if it
is at some point optimal to decide to replace the film during error j, then the state replacement
during error j is also communicating with a production state and thus part of the recurrent class.
If it is never optimal to replace the film during an error j, then the state replacement during error
j is a transient state.

To conclude, our model consists of a recurrent class and a set of transient states. The recur-
rent class consists of: production states, the replacement state, a possibly empty set of error
states, and possibly the replacement during an error state. The set of transient states consists of a
possibly empty set of error states and possibly the replacement during an error states. Therefore
we can conclude, based on definition 6, that our model is unichain.

5.5.1 Optimal policy

We are interested in minimizing the long term average cost per time unit. Tijms (2003) proposes
an algorithm that converges to the optimal solution for unichain MDPs. In the previous section,
we showed that the stronger unichain assumption holds, which implies that also the weaker case
of the unichain assumption is satisfied. Since we have an unichain MDP, we know that the value
iteration algorithm converges to the optimal average long term cost. The algorithm starts with
V0(s) = 0, and then recursively computes Vn(i) for n = 1, 2,... until an arbitrarily large n. The
stopping criterion can be defined as using the percentage we are allowed to deviate from the
minimal average costs. The expression for Vn(i) is given by:

Vn(s) = min
∀a∈A(s)

ca(s) +
∑
j∈J

ps,s′(a)Vn−1(s′), s, s′ ∈ S (5.19)

We implemented the value iteration algorithm in Matlab 2019 for the one error and the two error
case. The use of the script is explained in appendix H. We show a numerical example for two
errors in appendix E.

5.6 Case study: Opportunistic Film Replacement

In this section we apply the model to the situation of the client. In section 5.1, we selected
error 160 as a suitable error to replace the film, so we consider this error as the opportunity to
preventively replace the film. Since we are considering error 160, we denote the variables with a
subscript for the error with the subscript 160. We first fit a distribution to the data in order to find
a theoretical distribution that describes the data. We use the theoretical distributions to construct
a distribution for the time of a replacement during error 160 (TBoth,160) and find the expected
duration. Then we elaborate on the parameter values and we summarize the expected durations
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we found. Using the expected durations, we calculate the transition probabilities. Subsequently,
we show the results and we conduct a sensitivity analysis.

5.6.1 Distribution of the duration variables

The model incorporates the durations of the errors, the film replacement and the minimum of the
errors and the film replacements. In order to get a closed form expression for all of the variables,
we fit a distribution to the data. In chapter 4, we discussed the data of the duration variables and
observed implications for their distributions:

• The distributions are strictly non-negative

• The film replacements consist of the reaction time of the operator and the time to replace
the film (chapter 4).

• We have very few data points for the operator reaction time (< 30)

• The replacement time has a clear minimum duration, i.e. we should consider distributions
that have a very low probability to take on the values lower than this minimum.

We take these implications into account in the fitting procedure. In literature the most com-
mon methods to fit a distribution are the Ordinary Least Squares method and the MLE method.
Although we do not find clear evidence of one method outperforming the other, we decide to
apply maximum likelihood estimation to fit several candidate distributions. The distributions
that are commonly used in literature and comply with our mentioned non-negativity requirement
commonly used in literature are: the Weibull distribution, the Lognormal distribution and the
uniform distribution.

Total replacement duration TTotalReplace
The total replacement duration in the model, TTotalReplace, is the sum of TReplace and TOperatorReaction.
We assume that these variables are independently distributed. This is a reasonable assumption
considering the fact that the durations of these variables depend on different factors. The operator
reaction time mainly depends on whether the operator is busy with another task at the moment
the machine reaches the end of the film and his position in the production area, and the replace-
ment time consists of the execution of a fixed set of actions.

Since we have very few data points for the operator reaction time (< 30), we expect that fit-
ting a distribution using MLE has a high risk of finding a coincidental fit. We do observe the
following properties of the reaction time: (1) the mean is very close to the standard deviation, (2)
plotting the data in a histogram shows that higher durations have a lower probability of occurring,
which rules out a uniform distribution. After visual examination, we decide that an exponential
distribution has a visually reasonable fit. We use the method of moments to fit an exponential
distribution. The exponential distribution has one parameter, so we can estimate the distribution
using the first moment, which is the sample mean X. From chapter 4 we know that the X is equal
to 88.0 s. We show the histogram of the data with exponential distribution in figure C.1. Since
the replacement duration has a minimum duration of 53 seconds, we decide to fit a model with
a location parameter. A location parameter shifts the probability density function to the right.
The uniform distribution has two parameters that naturally define the location of the distribu-
tion and for this distribution the procedure does not differ. For the Weibull and the Lognormal
distribution, the addition of a location parameter increases the complexity of finding the MLEs of
the parameters, since we now have to estimate three parameters instead of two. For the sake of
readability, we do not elaborate on the details of the procedure used to find the parameters. The
general procedure of finding the MLEs is described in appendix F and the detailed descriptions of
the procedure is described in appendix G.

For the Weibull distribution we try a location parameter using the standard estimation of taking
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Figure 5.7: Fitted theoretical distribution for TOperatorReaction (n = 29)

the minimum of the data and we try the estimation suggested by Shifley & Lentz (1985). The
resulting values are 52.95 and 52.60, respectively. Subsequently, we apply MLE to fit a two para-
meter Weibull to the data after we have shifted the data points to the left by the estimation of the
location parameter. For the Lognormal distribution we follow the practical procedure suggested
by Cohen & Whitten (1980) and we observe that this does not provide a solution. We find that
the likelihood function is increasing as the location parameter approaches the minimum of the
data and we set the location parameter equal to this minimum (= 52.95).

In order to measure the goodness of fit, there are numerous test statistics available. A com-
monly used statistic to measure goodness of fit is the Pearson χ2 statistic. However, this statistic
requires the user to define the bins of the data, and this choice influences the statistic. Aslan &
Zech (2002) suggested to use the Kolmogorov-Smirnov (K-S) test to avoid the binning decision
and we decided to use the K-S test. Based on the value of the statistic, we conclude that the
Weibull distribution with the parameters γ̂ = 52.60, η̂ = 86.45, β̂ = 1.67 has the best fit. We
plot the histogram with the data and the theoretical distribution in figure 5.8. The Probability
Density Function (PDF) of the 3-parameter Weibull distribution is:

f(x; η;β; γ) =
β

η
(
x− γ
η

)β−1e−(
x−γ
η )β (5.20)

Table 5.2: Results of the MLE procedure for the duration of the film replacement

Weibull Lognormal Uniform

γ̂ = 52.95
η̂ = 85.52

β̂ = 1.62

γ̂ = 52.60
η̂ = 86.45

β̂ = 1.67

γ̂ = 52.95
µ̂ = 4.07
σ̂ = 1.04

â = 276

b̂ = 53

p = 0.51 p = 0.59 p = 0.06 p = 3.8 · 10−26
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Figure 5.8: Fitted theoretical distribution for TReplace

Downtime duration of error 160, TRecover,160
The duration of error 160 does not need a location parameter, as the minimum duration is close
to zero. We attempted to fit the 2-parameter Weibull distribution, the 2-parameter Lognormal
distribution and the Uniform distribution. However, the fitting procedure did not result in an
acceptable fit. Visualizing the data in a boxplot, shows that the data contains outliers, which are
known to diminish model fit (Yuan & Bentler, 2001). We show the data set in a boxplot in figure
5.9. The boxplot shows 88 datapoints as outliers, which means that the value of these data points
deviates a lot from the other data points. We examined the deviating data points more closely.
We observed that the ten data points with the highest durations are either coming from the same
morning shift or occur at the end of the production. We deleted these data points as we expect
them to be related to an unusual problem. The other 78 outliers do not show clear evidence of an
unusual event. We decides to delete these data points in order to obtain a better model fit, but
we acknowledge that these cases need more thorough investigation. Since we leave out multiple
data points with a long duration, we expect that we slightly underestimate of the error duration.

Figure 5.9: Boxplots of the error durations of error code 160, including and excluding outliers
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Subsequently, we apply the fitting procedure for the 2-parameter Weibull distribution, the 2-
parameter Lognormal distribution and the Uniform distribution. The resulting parameters with
their corresponding p-value is shown in table 5.3 We conclude that the Weibull distribution has
the best fit. The histogram of the data and the theoretical distribution is shown in 5.10. The
PDF of the 2-parameter Weibull distribution is:

f(x; η;β) =
β

η
(
x

η
)β−1e−(

x
η )
β

(5.21)

Table 5.3: Results of the MLE procedure for the duration of error 160

Weibull Lognormal Uniform

η̂ = 81.56 µ̂ = 4.12 â = 1

β̂ = 2.05 σ̂ = 0.65 b̂ = 166
p = 0.52 p = 3 · 10−3 p = 9.1 · 10−14

Figure 5.10: Fitted theoretical distribution for TRecover,160

Error 160 arrival rate, λ160
As explained in section 5.3, we assume that the error interarrival times of error 160 are independ-
ent and follow an exponential distribution. During the process of fitting a theoretical distribution
to the duration of error 160, we excluded 89 data points from the data set. We do not consider
these data points for the calculation of the interarrival time. That means that we consider 396
arrivals in 93 hours of production only considering the up time of the machine. We calculated the
arrival rate λ160 as the amount of arrivals divided by the production time. This means we set λ160
equal to 4.26 arrivals per hour. We evaluated the model in time steps of 1 second, so λ160 is equal
to 0.0012 arrivals per second.

Duration of replacing the film during error 160, TBoth,160
When we decide to replace the film, and an operator is available at the moment error 160 occurs,
the time the machine is down depends on TErrorReaction, TReplace and TRecover,160. The duration
of TBoth is the maximum of TRecover,160 and TErrorReaction +TReplace. Since we did not have data
on TErrorReaction, we had to make an assumption. Based on the distances in the production area,
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we assumed that TErrorReaction is at most 30 seconds. In order to get a pessimistic estimation,
we set TErrorReaction equal to 30 seconds. There is a probability that when the operator reaches
the machine, the error is already resolved. This means that part of the errors with a duration
less than 30 seconds can not be used to start the film replacement. However, we ignored this
possibility and we calculated the duration of TBoth as if the film is also replaced in these cases.
By ignoring the fact that we can have a longer error reaction time than the error duration, we
slightly overestimated the duration of TBoth. Note that the probability of missing an error due to
a long error reaction time can be incorporated in the value for the operator availability PAv by
lowering the value for PAv.

5.6.2 Parameter values

Now that we have approximations of the underlying distributions of the data, we can calculate the
parameters of the model. We set the time steps to one second, since the average machine speed is
close to 60 bags per minute over the production period. This means that τ = 1 s.

The cost parameters are Cdown and Cfilm. The film cost of the remaining film is based on the cost
of a new film and divided by the amount of remaining bags on the film reel. For the larger bag
type, which is usually produced at machine 3, the film consists of roughly 6700 bags. We set bnew
equal to 6700. A new film costs roughly e400, so we set Cfilm equal to e0.06 e/bag. The cost of
downtime depends on whether downtime results in unmet demand or there is still some slack in the
production schedule. Since we do not have data of the amount of slack in a production schedule,
we estimate the costs for three scenarios: 1. There is still slack in the production schedule and
downtime does not immediately result in unmet demand. The cost of downtime is in this case
based on the cost of personnel. We estimate that the cost of downtime is e1000 per hour. 2. In
the second scenario there is no slack left, but unmet demand can still be prevented by continuing
production after the scheduled time. We set this downtime cost equal to e1500 per hour. 3. In
the third scenario, downtime results in unmet demand and we set this cost equal to e3000 per
hour.

Table 5.4: Parameter and variable values of the case study

Variable/Parameter Value Unit

τ 1 seconds
bnew 6700 bags
Cdown {1000, 1500, 3000} euro/hour
Cfilm 0.06 euro/bag
λ160 4.26 errors/hour
E[TRecover,160] 72.3 seconds
E[TTotalReplace] 217.8 seconds
E[TBoth,1] 161.4 seconds
PAv {0.1, 0.2, ..., 1.0}

5.6.3 Calculation of the transition probabilities

We calculated the transition probabilities using the expectations of the distributions we fitted and
the expressions introduced in section 5.4.4. The calculation is shown below. We summarize the
resulting transition probabilities in table 5.5.

First we calculated the probability of error occurrence in a time step. We found that λ160 is
equal to 0.0012 arrivals per second so PNoError is equal to:

PNoError = 1− e−λ160 = 1− e−0.0012 = 0.9988
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This probability gives us two transition probabilities. Firstly the transition probability of being
in (In production, b), with b¿1, and going to the next production state (independent of the choice
made) (In production, b-1) and secondly the transition probability of being in (In production,
b), with b=1, and going to (Replacement of the film, 0) (independent of the choice made). We
calculate the probability that error 160 occurs in a time step as:

PError,160 = 1− (1− e−λ160) = 1− PNoError = 0.0012

Now we can determine the transition probability of going from the state (In production, b) with
b¿1, and given that one chooses to replace the film if error 160 occurs, to (Replacement of the
film during error 160, 0). As mentioned, this transition probability depends on the operator
availability which we will vary. We defined the transition probability as a function of PAv:

PErrorReplace,160 = PError,160 · PAv = 0.0012PAv

The transition probability of going from the state (In production, b) with b > 1 and given that
one chooses to replace the film if error 160 occurs, to (Down due to error 160, 0) then is:

PError,160 · (1− PAv) = 0.0012 · (1− PAv)

On the other hand, one can choose to do nothing if error 160 occurs in state (In production, b)
with b > 0. The transition probability of going from the state (In production, b) to (Down due to
error 160, b-1), given that one chooses to do nothing if error 160 occurs and that b > 0, is equal
to PError,160.
Whenever the system is in the state down due to error 160, the system spends on average
E[TRecover,j ] in this state. We derive this expectation from the fitted distribution of the error
duration and find that the mean of this distribution is 72.3 s. Then we calculate the transition
probability of leaving the state (Down due to error 160, b) in the next time step. This is the
transition probability of going from (Down due to error 160, b) with b > 0 to (In production, b)
and the transition probability of going from (Down due to error 160, 0) to (Replacement of the
film, 0). The probability is calculated as follows:

PRecover,160 =
τ

E[TRecover,j ]
=

1

72.3
= 0.0138

The probability that the system state stays in (Down due to error 160, b) in the next time step
is equal to 1 - PRecover,160:

PRecover,160 = 1− τ

E[TRecover,j ]
= 1− 1

72.3
= 0.9862

Similarly, when the system is in the state (Replacement of the film, 0), the transition probability
to (In production, bnew) is calculated by the sum of the reaction time we found in the data and
the replacement duration. We assume that these variables are independently distributed. This
means that the expected duration of replacing the film including the reaction time is 88.0 + 129.8
= 217.8 seconds.

PReplace =
τ

E[TTotalReplace]
=

1

217.8
= 0.0046

The probability that the system state stays in (Replacement of the film, 0) in the next time step
is equal to 1 - PRecover,160:

PReplace = 1− τ

E[TTotalReplace]
= 1− 0.0046 = 0.9954

Lastly, when the system state is in the state (Replacing the film during error 160, 0) the expected
time spend in this state is the expectation of the maximum of the replacement time plus 30
seconds, and the error duration. Since we fitted Weibull distributions to the TTotalReplace and the
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TRecover,j , we have to take the expectation of the sum of two Weibull distributions. We assume
these distributions to be independent. Then we calculate the expectation in Matlab using draws
from Weibull distributed random number generators with the parameters we found in subsection
5.6.1. We find that the expectation is equal to 161.4 seconds. Thus the probability of going from
(Replacement of the film during error 160, 0) to (In production, bnew) is:

PBoth,160 =
τ

E[TBoth,i]
=

1

161.4
= 0.0062

Then the probability of staying in (Replacement of the film during error 160, 0) is:

PNoBoth,160 = 1− PBoth,160 = 0.9938

Table 5.5: Transition probabilities of the case study

Transition probability Value

PNoError 0.9988
PError,1 0.0012
PErrorReplace,1 PAv · 0.0012
PNoErrorReplace,1 (1− PAv) · 0.0012
PReplace 0.0046
PNoReplace 0.9954
PRecover,1 0.0138
PNoRecover,1 0.9862
PBoth,1 0.0062
PNoBoth,1 0.9938

5.6.4 Results

We solved the model for the aforementioned parameter settings. We consider a solution that
deviates at most 1% from the optimal long-term cost per time step acceptable. That means we
specify the stopping criterion as ε = 1%. We varied the availability of the operator, PAv, from 1
to 0.1 with steps of 0.1. The calculation time varies between 60 seconds for the higher values of
Cdown and PAv to 180 seconds for lower values of Cdown and PAv.

The optimal policy has a nice structure in terms of the amount of bags b. For all solutions
there is a boundary value, which we call bbound. bbound defines that if one faces error 160, and
there there are bbound or less bags, one should decide to replace the film during the error. We show
the resulting values for bbound and the corresponding Cπ∗ for all three cost scenarios in table 5.6.
We observe that bbound and Cπ∗ alter as we vary PAv and Cdown. Thus, the client should estimate
the value of PAv and use a value for bbound depending on the Cdown. Since currently the PAv is
not known, the client could use a conservative value, which means using a value for bbound for a
PAv close to 1.

5.6.5 Sensitivity analysis

In this section we investigate how a change in input parameter affects the solution of the model.
We are interested in the robustness of the solution, i.e. how much the optimal solution alters if
the input is different in reality. Since we cannot vary all parameters simultaneously, we vary one
parameter at a time together with PAv. We are most interested in the sensitivity to the parameters
that we had to estimate, as these parameters are prone to incur an estimation error. We decide
to analyze the difference in optimal policy and optimal cost when our estimations incur an error.

Firstly, we consider the effect of an estimation error in the Cdown. We estimated Cdown for three
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Table 5.6: Results for bbound of the three scenarios for Cdown

Cost scenario 1 (Cdown = e1000/hour) Cost scenario 2 (Cdown = e1500/hour) Cost scenario 3 (Cdown = e3000/hour)
PAv bbound (bags) Cπ∗ (e/hour) bbound (bags) Cπ∗ (e/hour) bbound (bags) Cπ∗ (e/hour)
1.0 381 104,1 502 154,7 752 300,5
0.9 388 104,3 516 155,2 779 301,6
0.8 395 104,6 530 155,6 804 302,8
0.7 403 104,9 543 156,2 835 304,0
0.6 413 105,2 558 156,7 865 305,4
0.5 420 105,5 570 157,3 899 307,0
0.4 429 105,8 588 157,9 930 308,7
0.3 441 106,2 608 158,6 982 310,7
0.2 450 106,5 627 159,4 1028 312,9
0.1 462 106,9 644 160,2 1082 315,4

different scenarios during production: the scenario in which there is still slack in the production
schedule, the scenario in which the client can compensate for the downtime by producing over
time and the scenario in which the downtime causes loss of demand. The scheduling department
stated that the first two scenarios are most common and the third scenario rarely happens (once
in the last six months). We decided to consider the sensitivity to an error in the estimation of
the downtime cost for scenarios 1 and 2. Based on the fact that the estimations could not be
verified by data, we consider an estimation error of at most 20%. That means that we expect
that the estimation of scenario 1 lies between e800 and e1200, and the estimation for scenario
2 lies between e1200 and e1800. We show the resulting optimal policies in figure 5.11. The
figure shows that if the actual downtime cost is lower than estimated, the value for bbound is also
lower. The other way around, if the actual downtime costs are higher, the optimal bbound is also
higher. This is according to the expectations, since bags become relatively more expensive as the
downtime costs become less, and the other way around. The figure shows that for a 20% error,
the optimal bbound shifts with 60 to 110 bags, depending on the direction of the error and the
operator availability. For the client this implies that it is important to use a value for bbound that
is in line with the Cdown.

Figure 5.11: Values for bbound for a 20% error in the Cdown estimation

In figure 5.12 we show the effect of a 20% error on the long term average cost per hour. We
observe that the reduction of the (long-term average) costs per hour becomes smaller as the Cdown
decreases. This is according to the expectations, since decreasing the cost of downtime is similar
to increasing the cost of the film. In figure 5.12, we show the corresponding long-term cost per
hour. We observe that for lower Cdown, the cost savings are negligible (<e5 per hour). This
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implies that the client should only apply the opportunistic film replacements in situations with
a relatively high cost of downtime. For example, a Cdown of 1500 euro per hour can be used as
a boundary. Secondly, we vary the operator reaction time, TOperatorReaction. In order to reduce

Figure 5.12: Effect of a 20% error in Cdown on the long-term optimal cost per hour

the amount of different parameters we have to consider, we decided to focus on cost scenario 2
(Cdown = e1500 per hour). We used a pessimistic estimation of the operator reaction time of 30
seconds. We expect the actual time to vary over the values below 30 seconds. We calculated the
optimal boundaries and the optimal costs using more optimistic estimations for TBoth,j , namely
30, 20 and 10 seconds. Using the draws of random number generators for TReplace and TRecover,160,
we calculated the corresponding values of E[TBoth,160]: 161.4, 152.1, 143.1 seconds, respectively.
We show the resulting values for bbound for the different values of PAv in figure 5.13 (a). We
observe that the optimal values for bbound increase as TErrorReaction decreases. This is according
to our expectations, since the expected savings in terms of downtime become larger, it becomes
beneficial to replace the film during error 160 at a higher amount of bags. In figure 5.13 (b),
we show the corresponding change in the optimal cost per hour. We observe that the cost per
downtime decreases slightly as TErrorReaction decreases. The magnitude of the decrease depends
on the PAv. This is as expected, since a decrease in operator reaction time leads allows to avoid
more downtime and the value of PAv determines how much downtime can be avoided. This implies
that it is important to have an accurate estimation of TErrorReaction, as this changes the amount
downtime and cost that can be saved.
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(a) Effect of a lower TErrorReaction on bbound (b) Effect of a lower TErrorReaction on Cπ∗

Figure 5.13: Evaluation of the effect of a lower TErrorReaction on bbound and Cπ∗

5.7 Conclusion

The goal of this chapter is to investigate whether we can reduce the downtime caused by the film
replacement, by preventively replacing the film during unexpected breakdowns. First we selected
an error, unrelated to the film nor the machine, that has a convenient duration and frequency
of occurrence: error 160. Then we proposed a MDP in which we model the decision to use the
error to replace the film preventively. The model considers the relevant periods of downtime, the
remaining amount of film, the frequency of occurrence of errors and the probability that an oper-
ator is not available at the moment error 160 occurs. We solve the model with varying operator
availability and for three different cost scenarios. We find the optimal boundary value at which it
becomes optimal to replace the film. In a sensitivity analysis we vary the cost of downtime and
the time an operator needs to react on an error. We find that small differences do not cause a
large shift in the outcome. However, we recommend to use a conservative value for the boundary
value (e.g. PAv = 0.9), since the operator availability is currently unknown.

In chapters 5 we proceeded with answering the third research question by investigating an ap-
proach to reduce the amount of downtime caused by the film replacement.
How can we reduce the downtime of the possible causes?
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Chapter 6

Quantification of the improvement

In this chapter, we quantify the current and the new procedure for replacing a film without chan-
ging to another product type. The current standard procedure consists of replacing the film as
soon as it reaches its end. We refer to the current policy of not using preliminary replacements, as
the old policy. The model in the previous chapter shows that we can reduce downtime and costs
by using machine stops to preliminary replace the film. The model provides us with boundary
values for the amount of bags. This boundary value tells us to replace the film if we observe error
160 and the amount of bags on the reel is equal or less than this boundary value. We refer to the
policy using these boundary values as the new policy. We evaluate the performance of the new
policy in comparison to the performance of not using preliminary replacements by discrete event
simulation. By using simulation, we can incorporate the theoretical distributions that describe
the data and we can verify whether the solution from the model still performs well if the assumed
exponentially distributed time variables follow another distribution. We incorporate the fitted
distributions for the operator response time, the replacement time and the error duration. Then
we simulate the old policy and the new policy and compare the resulting downtime and costs. For
the new policy, we use the boundary values we found using the model of the previous chapter.

In section 6.1, we present the variables and the parameters of the simulation. Then in section 6.2
we describe the simulation model. In 6.3 we elaborate on the settings of the model. In section 6.4
we present the results. Thereafter, we reflect on the model in section 6.5. And lastly, we conclude
in section 6.6.

6.1 Variables and parameters of the simulation

Firstly, we introduce the variables of the simulation. The values of the variables changes during
the simulation.

b Variable for the amount of bags on the film reel.

CTotal Variable for the total amount of costs made. This is the sum of the downtime
costs and the costs for disposing the film

Creplace Variable for the amount of costs made for disposing film

d Variable for the amount of downtime during the simulation.

TBoth Variable for the amount of time necessary to replace the film during an error
occurrence. The variable is given bymax[TErrorReaction+TTotalReplace, Terror].

Tinter Variable for the remaining production time until the next error. The time is
a draw from a exponentially distributed random number generator.
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TOperatorReaction Variable denoting the operator reaction time. This is the time period starting
from the moment the packaging machine reaches the end of the film until the
operator reaches the machine to replace the film. This includes the time an
operator is busy with another task. The value for the variable is a draw from
the random number generator corresponding to the theoretical distribution
found in chapter 5.

TRecover Variable that denotes the duration of error 160. The value is drawn from a
random number generator corresponding to the theoretical distribution found
in chapter 5.

TReplace Variable that denotes the replacement time. The value is drawn from a
random number generator corresponding to the theoretical distribution found
in chapter 5.

TSim Variable for the remaining length of the simulation. At the start of a simu-
lation run, the variable is set equal to DSim.

TTotalReplace Variable for the time the operator needs to replace the film. The time is the
sum of the draws from the random number generator corresponding to the
theoretical distributions for TOperatorReaction and TReplace found in chapter
5.

Secondly, we introduce the parameters of the simulation. The parameters are fixed during the
simulation.

bbound Parameter for the boundary value of the film replacement. If an error occurs
and b is equal to or less than the bbound, we decide to replace.

bnew Parameter for the amount of bags on a new film.

Cdown Parameter for the cost of downtime.

Cfilm Parameter for the cost of disposing a bag on the film reel.

DSim Parameter for the length of the simulation.

PAv Parameter for the probability that an operator is available.

TErrorReaction Parameter for the time an available operator needs to react before he reaches
the machine and starts replacing the film during error 160 (and b ≤ bbound).

vm Parameter for the set speed of the machine.

6.2 Simulation description

In this section we first describe the simulation, and we then give a visual representation in figure
6.1.

We start producing with a new film. In order to determine when the next error will occur,
we take a draw from a random number generator for the interarrival time Tinter. Now we can
determine what will be the next event. If the error occurs before we reach the end of the film and
before the simulation ends, i.e. TSim > Tinter ≤ b

vm
, (i) an error occurs before the reaching the

end of the film. If the error occurs later than we reach the end of the film and the end of the
simulation, i.e. TSim > b

vm
< Tinter, (ii) we produce until the end of the film and start replacing

the film. If the error occurs later than the end of the simulation and the remaining film divided by
the machine speed is longer than the time until the end of the simulation, i.e. Tinter ≥ TSim ≤ b

vm
,

(iii) the simulation ends. To summarize, we determine which event happens next by looking at the
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minimum of Tinter,
b
vm

and TSim and then start to handle the event as explained in the following.

If the next event is the occurrence of an error (i), we update b and determine whether b is
less than bbound. If this is the case, we start replacing the film with the probability that an operator
is available, PAv. If we start replacing the film, we draw a sample from random number generators
to determine the duration of the film replacement during the error. The duration is calculated as
TBoth = max[TErrorReaction + TTotalReplace, Terror]. Then we again, determine whether we first
finish replacing the film during the error, or that we reach the end of the simulation. We update
the variables d, b, TSim accordingly. If we have not reached the end of the simulation, we draw a
number from the random number generator for the Tinter to determine the occurrence of the next
error. We resume production and determine the next event.
In the other case, if we do not replace the film (b<bbound, or no available operator), we determ-
ine TRecover by a draw from the corresponding random number generator. Then we determine
whether the simulation time, TSim, is still longer than the error duration, TRecover. If so, we
update the variable d. Then we draw a number from the random number generator for the Tinter,
to determine the occurrence of the next error. We resume production and determine the next event.

If the next event is a regular film replacement (ii), we determine the total time to re-
place the film, which is TReplace + TOperatorReaction, by drawing from the corresponding random
number generators. Then we determine whether we first finish replacing the film, or that we reach
the end of the simulation. We update the variables d, b, TSim accordingly. If the simulation
has not yet ended, we draw a number from the random number generator for Tinter. We resume
production and determine the next event.

If the next event is the end of the simulation (iii), we stop the simulation.

Determine 
minimum of [b/vm , 

Tinter , TSim] ;

Error occurrence (i)

Determine whether to replace or to recover 
based on b and bbound ;
Determine the time necessary to do so (TBoth if 
we replace and TRecover if we do not) ;
Determine whether the simulation ends before 
resuming production ;
Update the variables b, TSim, Tinter, d, CReplace 

and CTotal ;

 TSim > Tinter ≤ b/vm TSim > b/vm < Tinter

 Tinter ≥ TSim  ≤  b/vm 

End of simulation
(iii)

Film replacement (ii)

Determine the time necessary to replace 
(TReaction + TReplace);
Determine whether the simulation ends before 
resuming production ;
Update the variables b, TSim, d, Tinter and CTotal ;

TSim ≤ TBoth 

OR 
TSim ≤ TRecover

TSim ≤ TReaction + TReplace

TSim > TBoth

OR
TSim > TRecover

TSim > TReplace + TReaction

Figure 6.1: Visual representation of the simulation
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6.3 Parameter settings

In simulations that contain queues for the arrival process, e.g. for incoming demand, it is common
to cut-off the first period of the simulation. This first period is called the warm-up period. This
is useful when the system starts with an empty queue, which is not representative for the real
situation the simulation aims to describe. However, in our process no queuing takes place and the
process regularly resets when the film is replaced.

In order to determine the length and the amount of simulation runs, we followed Boon, van
Leeuwaarden, Mathijsen, van der Pol & Resing (2017). This procedure consists of estimating the
standard deviation of the variable of interest, and then calculating the amount of runs necessary
to obtain the desired confidence interval. The procedure is based on the implications of the central
limit theorem. We followed the procedure and found that we need 23 runs of 104 hours to obtain
our desired bounds. The detailed calculation and validation is provided in appendix I. Before we
determined the amount of necessary simulation runs, we used a simulation length of 105 hours
with 25 runs. In retrospect, we can conclude that this simulation length was unnecessarily long.
However, the confidence intervals are tighter and we used the results of this simulation. We provide
the parameter settings of the simulation in 6.1.

We want to compare the downtime and the costs for replacing the film prematurely in comparison
to only replacing the film when it reaches its end. We refer to replacing the film prematurely as
the new policy, and to replacing the film when it reaches its end as the old policy. For the new
policy we use the values for bbound we found in the previous chapter by varying the value for PAv
(0.1 - 1) and by varying the Cdown for the three scenarios (1000 e/hour, 1500 e/hour and 3000
e/hour). For the old policy, we set bbound to zero, which means that we only replace when we
reach the end of the reel. These parameters, and the remaining parameter values per scenario are
shown in 6.1.

Table 6.1: Parameter settings for the simulation

Scenario 1 Scenario 2 Scenario 3

New policy Old policy New policy Old policy New policy Old policy
PAv ([0,1]) 0.1 - 1.0 0.1 - 1.0 0.1 - 1.0
Cdown (e/hour) 1000 1000 1500 1500 3000 3000
TErrorReaction (sec) 30 30 30 30 30 30
bbound (# bags) See table 5.6 0 See table 5.6 0 See table 5.6 0
DSim (hours) 105 105 105 105 105 105

bnew (# bags) 6700 6700 6700 6700 6700 6700
Cfilm (e/film) 400 400 400 400 400 400
vm (bags/min) 60 60 60 60 60 60

6.4 Results

In this section we discuss the results of the described simulation. We consider the total amount
of downtime and the total costs. In order to calculate the confidence intervals, we follow the ap-
proximation of the confidence intervals from Boon et al. (2017) (page 23). This approximation is
based on implications of the central limit theorem. We decided to use a 95% confidence level, since
we consider this an acceptable confidence level. We calculate the bounds for the 95% confidence

interval by: Z̄−1.96 ·
√

S2

n and Z̄+1.96 ·
√

S2

n , in which Z̄ denotes the mean of the 25 simulations,

S2 the sample variance and n the number of repetitions of the simulation.

First we consider the reduction in downtime. In figure 6.2 we show the downtime of the new
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policy as a percentage of the downtime of the old policy. We varied PAv and we considered the
three different downtime cost scenarios (Cdown = {1000 e/hour, 1500 e/hour, 3000 e/hour}).
The downtime consists of the downtime due to the film replacement and due to error 160. The
results are shown per scenario, per policy (new/old) and per value for the availability PAv. The
old policy resulted in 0.114 hours of downtime per hour of production. We observe that the client
can save between 0 - 7.2% depending on the operator availability at the moment error 160 occurs
and the cost scenario. In absolute value, this is roughly half a minute. One can find the values
for the total downtime with the corresponding confidence intervals in appendix K.

Figure 6.2: Downtime of the new policy as a percentage of the downtime of the old policy

Then we consider the total costs of the new policy in comparison to the total cost of the old
policy. The total cost consist of the costs of disposing film and the costs of downtime related to
the film replacement and error 160. In figure 6.3 we show the total cost as a percentage of the
total cost of the old policy. The total cost resulting from the old policy for cost scenario 1, 2 and
3 is e114.2, e171.3 and e342.7, respectively. We observe that the cost reduction lies between 0%
- 5.8 %. In absolute value that is a maximum reduction of e17.7 per hour of production. One can
find the values for the total downtime with the corresponding confidence intervals in appendix K.
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Figure 6.3: Cost of the new policy as a percentage of the downtime of the old policy

6.5 Reflection on the results

In the previous section, we found that the new policy slightly reduces the amount of downtime
and the amount of costs per hour of production. For cost scenario 1 the cost reduction is negligible
(<e5). However, the amount of downtime and the amount of costs one can reduce by applying
opportunistic film replacements increases as the cost of downtime increases. We know that the
client of interest has a relatively low utilization and a relatively low cost of downtime in compar-
ison to other clients from Bosch. This means that although we obtained a small improvement,
the method can be more valuable for other clients. In order to determine the performance for cli-
ents with a higher downtime cost, we quantified the improvement using a negligible Cfilm (equal
to zero) in comparison to the Cdown. We show the resulting values for bbound and the resulting
downtime as a percentage of the downtime resulting from the old policy in figure 6.4. For each
of the values for PAv > 0 the amount of downtime can be slightly reduced by using higher values
for bbound. The downtime reduction for the policy with negligible Cfilm lies between 0% - 9.4%.
This means a absolute reduction of 0 - 38 seconds of downtime per production hour. This result
shows that the method would have resulted in slightly better results in a case with a higher cost
of downtime. However, we observe that the relative cost reduction becomes smaller as the cost in
downtime increases. This implies that for clients with similar time variables and higher downtime
cost, the percentual reduction in downtime an cost will be similar to the percentual reduction of
the specific client.

In the previous chapters, we determined the parameters and the variables. We expect that the
method we used to identify the film replacements in the data (chapter 4), might have left out
film replacements in which problems occurred. This might have resulted in a underestimation of
the expectation of TReplace. In addition, in the fitting procedure for the duration of error 160,
TRecover,160, we had to leave out data points with a relatively high duration. According to the
boxplot, these data points lied at an abnormal distance from the remaining data points. We could
not verify whether these data points were related to a very unusual problem, so we might have
underestimated the duration of TRecover,160. Considering the possible underestimations of TReplace
and TRecover,160 the results may be slightly pessimistic, i.e. the downtime reduction and the cost
reduction might be slightly higher.
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(a) The values for bbound if the Cfilm is negligible (b) The downtime of the new policy and the policy with
a negligible Cdown as a percentage of the downtime of the
old policy

Figure 6.4: Evaluation of the downtime of the policy with negligible Cfilm

6.6 Conclusion

The goal of this chapter is quantify the downtime reduction of the new policy in comparison to
the old policy by discrete event simulation. Using discrete event simulation, we could validate
that the solution of the model in chapter 5 performs well if the time variables do not follow an
exponential distribution. We explained the variables and parameters we used, we described the
simulation, and we showed which parameter settings used. The results showed that the new policy
reduces the downtime of error 160 and the film replacement up to 7.2% and costs up to 5.8%.
This is a downtime reduction of 28 seconds per hour and a cost reduction of e17.7 per hour. We
also determined what the downtime reduction would be if the cost of the film would be negligible
in comparison to the downtime cost. In this case, we found a downtime reduction up to 9.4% of
the downtime of error 160 and the film replacement.

In chapters 6 we took the final step in answering the third research question by quantifying
the improvement in the clients’ film replacement policy.
How can we reduce the downtime of the possible causes?
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Conclusions and recommendations

In this chapter we discuss the main findings of this research. First we summarize the answers
on the research questions in section 7.1. Then we make recommendations for improvement for
Bosch and the client in section 7.2. Finally, we discuss the limitations of this thesis and we make
recommendations for future research in section 7.3.

7.1 Conclusions

How can we identify the errors related to downtime?
First we determined that the current method (old method) the client uses to identify the downtime
related errors, neglects important aspects of the relation between errors and the corresponding
machine downtime. We proposed a new method that takes these aspects into account and finds the
amount of downtime an error relates to. We find that the old method overestimates the downtime
per error due to the neglected aspects.

What are the possible causes of the errors related to downtime?
By answering the previous research question, we obtained an overview of which errors are related
to downtime. We are interested in the possible causes of the errors, such that we can reduce the
causes from resulting in downtime. We applied FTA to the top three errors, which is a struc-
tured approach to find possible causes of a fault. In this procedure we combined the knowledge
from Bosch on the triggers of errors and the knowledge of the client on the way they operate the
packaging machine. Subsequently, we proposed a method to find the frequency that a possible
cause results in an error using the machine data. In order to apply this method, we selected
one of the possible causes based on amount of downtime of the error, the likelihood that the
possible cause actually relates to downtime and the likelihood of identifying the possible cause in
the data set. We selected marker B as the possible cause, which is a marker at the end of the
film. We decided to identify the possible cause by identifying the film replacements in the data set.

How can we reduce the downtime of the possible causes?
In the previous research question, we proposed a method to determine the frequency a possible
cause has resulted in an error and we selected one of the possible causes for investigation. In
this chapter we apply the proposed method to the selected possible cause. We distinguish the
steps of a film replacement and find which of these steps are reflected in the error log. Then we
determine which set of indicators we consider as a film replacement. We manually filtered out the
film replacements and found that the film replacement accounts for 65% of the total downtime of
error 401. We use the identified film replacements to determine the average duration of the film
replacement.
In order to reduce the downtime, we propose to opportunistically schedule the film replacement
during unexpected machine stops. We selected error 160 as a suitable error to prematurely replace
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the film, based on its duration and frequency of occurrence. We incorporate the data on error 160
and the data on the film replacement in an opportunistic model, that tells at which remaining film
length it is beneficial to use the downtime of error 160 to prematurely replace the film. We find
that the boundary value at which this becomes beneficial, depends on the operator availability and
the cost of downtime. The model suggests different boundary values for different cost scenarios. In
order to quantify the downtime reduction and the cost reduction of prematurely replacing the film,
we simulate both policies: replacing the film when it reaches its end, and prematurely replacing
the film. We find that prematurely replacement can reduce the downtime of error 160 and the
film replacement 7.2% and reduce the costs 5.8%.

7.2 Recommendations for Bosch and the client

Keep track of the reasons for manual machine stops
In chapter 2 and 3, we found that a significant amount of downtime is caused by manual machine
stops. However, the client currently does not keep track of the reasons for these stops. for both
Bosch and the client, it is useful to keep track of these reasons. We recommend to find a way
to keep track of these reasons without bothering the operators. A possibility is to let operators
select a reason from a shortlist on the HMI, after they have started the machine again. By doing
so, it would be possible to keep track of the main reasons for machine stops. Such a shortlist on
the HMI requires adjustment of the HMI software.

Order films with markers according to the production schedule
In chapter 3, we found that one of the possible causes of downtime are markers on the film. We
found that marker B caused a subset of the occurrences of error 401. Based on the amount of
remaining error occurrences of 401, we expect that the client currently uses films with marker A
when it is not necessary to do so. We recommend the client to incorporate the production schedule
in the decision to order films with markers A and B. Using films with a marker halfway while one
needs to use the entire film, will result in unnecessary downtime during production of the film.

Preventive replacement of the film
The model in chapter 5 shows the values for bbound at which it becomes beneficial to replace the
film if error 160 occurs. We observed that the cost reduction is negligible for low downtime cost.
We therefore recommend to only use opportunistic film replacement when the downtime cost is
e1500 or higher (scenario 2 or 3). The value for bbound depends on the cost of downtime, Cdown
and the operator availability, PAv. The latter is currently unknown, so we recommend to use a
conservative value for bbound for each of the cost scenarios, e.g. the value for a PAv of 0.9. In
addition, we advise to gather data of the opportunistic replacements to estimate the value of the
operator availability PAv and the time the operator needs to react on the opportunity arising from
error 160, TErrorReaction. Based on these estimated values, one can update the parameters used
in the model to find a more accurate value for the optimal replace boundary bbound.

In order to use error 160 to prematurely replace the film, the operators should be notified when
the machine passes the bbound value. The most practical implementation is to adjust the limit
of the pre-warning of reaching the end of the film according to the bbound value. The machine
raises a warning once it passes this limit. However, this limit is known to be inaccurate due to
small changes in film thickness. In order to obtain an accurately timed notification for passing
the bbound, we recommend to use the bag counter on the machine. If the amount of bags before
the bbound is known, the bag counter can provide the exact moment the operators should replace
the film if error 160 occurs. The implementation requires adjustment of the current software of
the HMI, since there is currently no function to generate a notification at a specified number of
bags on the bag counter. Ideally, passing the bbound should generate a notification that is visible
even if the operator is not standing in front of the packaging machine. We recommend to use the
disposed films for product tests.
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7.3 Limitations and future research

We identified a number of limitations of the research and an interesting direction for future re-
search. First of all, we only considered a subset of all faults, namely the faults detected by the
packaging machine. This means that we only considered part of the problems the client faces in
practice. It remains to be investigated what the impact is of undetected faults and what their
possible causes are. In addition, we only measured the impact of the errors in terms of downtime,
due to the unavailability of data on the quality of bags. It remains a topic of interest, to determine
which errors are related to quality problems and to incorporate this into the overview of impact
per error.

In chapter 4, we proposed a method to identify the marker at the end of the film using the
machine data. We found that several steps during the replacement of the film are reflected in
the error log, but the exact sequence of indicators varies and may have indicators of other ma-
chine interaction in between. We expect that our method filtered out film replacements in which
operators made mistakes, since these replacements result in deviating indicator sequences. We
consider this is an important limitation of our method, and we suggest to overcome this limitation
by investigating the sensor data of the packaging machine. We investigated data at the HMI level
of the machine, i.e. the processed data that is used for messages on the HMI. In the future, it will
be possible to gather data from the Open Platform Communications (OPC) level, which allows to
gather the unprocessed sensor data. This development step allows to gather the angular velocity,
which in turn allows to make an approximation of the diameter of the film on the machine. One
can estimate the diameter of the reel by using:

v = ω · r

In which r is the diameter of the film roll, v is the speed of the incoming film and ω is the angular
velocity.

Another limitation of this research is that we could not control all variables that influence the
machine performance. We used the production shifts from May and June, which comprise approx-
imately 93 hours of uptime. During these shifts, several different operators have been operating
the machines. Due to confidentiality reasons, we could not obtain data on the different operators
during these shifts. In addition, the machine has produced three different bag types, but we could
not gather data on which bag type the machine was producing over time. It remains unknown
how the machine performance is influenced by difference in operators and difference in bag type.
The initial plan of this research was to gather data of six months, however, due to technical issues
the first four months of data were not usable. Due to the limited amount of time we had left, we
were not able to cross-validate whether the data of these months is representative. However, it is
a small effort to apply the data processing method from chapter 2 again, once a larger data set
has been obtained.

In chapter 5, we proposed a model in which we investigated the opportunity to preventively re-
place the film during the downtime of error 160. We determined the duration of replacing the film
during an error given that an operator is available at the moment the error occurs. However, we
did not investigate the possibility to let operators stop with their current task to replace the film,
nor the possibility to let them finish their task and replace the film afterwards. It may be bene-
ficial to incorporate both possibilities based on data of the operator tasks during a production run.

In this project, we solely focused on the machine data of the packaging machine. The machine is
notified when the upstream or downstream equipment faces a problem and we used downstream
error 160 to prematurely replace the film. It could be interesting to incorporate the error logs of
the downstream and upstream equipment into this analysis, since the errors contain data on the
duration and frequency. This data could be useful in determining whether errors related to the
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upstream or downstream equipment have a long duration or a short duration. From the perspect-
ive of the packaging machine, all errors from the secondary packaging machine are summarized by
errors 160 and 251. However, the secondary packaging machines error may reveal more inform-
ation about the actual problem. This data is very useful in determining whether one should use
the opportunity to replace the film.

An interesting direction for future research, is investigating the influencing factors of error oc-
currence and error duration. As stated, we think that the skill level of operators and the bag type
can be of influence. One could investigate the influence of these factors by comparing the machine
performance, while controlling for other possible factors of influence. The resulting relations may
implicate how clients from Bosch can improve their machine performance.
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Appendix A

Key observations for impact
determination

In this appendix, the key observations are illustrated that were used to find the actual downtime
caused by error messages.

Figure A.1: Plot of the machine status. The plot shows the observation that whenever the machine
runs into an error the machine is stopped and the machine status is changed from executing to
suspending

Figure A.2: Plot of the machine status with highlighted error occurrence. The timestamp of the
error occurrence deviates 2 seconds from the last timestamp at which the machine is executing
(machine status = 6)
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Format of the machine data

In this chapter, we show the format of the data.

Format error log

The error log contains the codes of the messages raised by the machine with a millisecond
timestamp. When the message is cleared, the machine logs the same number with a minus sign.
The number can correspond to an error, a warnings or a notification. We know from an internal
document what message corresponds to the number and whether this is an error, warning or noti-
fication. There are 1690 different messages so we do not provide information on all messages, but
we provide in-text explanation of errors necessary.

Table B.1: Format of the error log

Error code Timestamp

1 2019-07-01 03:40:27:889000
-1 2019-07-01 03:48:01:464000
3 2019-07-01 03:55:15:048000
-3 2019-07-01 04:01:10:111000

Format machine status

The machine status log consists of a number with a timestamp. The machine logs this number
when the machine status is changed to a new machine status. From the software department
we received the integer value that denotes the machine status, corresponds to an actual status.
The status can be Clearing, Stopped, Starting, Idle, Suspended, Executing, Stopping, Aborted,
Holding, Held, Unholding, Suspending, Unsuspending, Resetting, Completing and Complete. The
machine starts almost immediately after pressing start and stops almost immediately when an
error occurs. We mainly use the machine status to determine whether the machine was executing
or not executing.
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Table B.2: Format machine status data

Machine status Timestamp

5 2019-07-01 03:40:27:889000
6 2019-07-01 03:48:01:464000
9 2019-07-01 03:55:15:048000
5 2019-07-01 04:01:10:111000
6 2019-07-01 04:01:10:243000

Format bag counter

The bag counter counts the amount of filled bags that are produced. The bag counter logs an
integer with the new amount of bags and the corresponding timestamp.

Table B.3: Format of the bag counter

Bag count Timestamp

16826280 2019-07-01 03:40:27:889000
16826281 2019-07-01 03:48:01:464000
16826282 2019-07-01 03:55:15:048000
16826284 2019-07-01 04:01:10:111000
16826285 2019-07-01 04:01:10:243000
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Assumption of exponentially
distributed time variables

In this appendix, we examine the difference between the empirical distributions of the data and
the exponential distribution the model assumes. This examination is part of the discussion of the
model assumptions in section 5.3. The data that is used, is coming from May and June 2019. In
figure C.2, we plot the exponential distribution assumed by the model and the empirical distribu-
tion based on the observed data of the replacement time. In figure C.3, we plot the exponential
distribution assumed by the model and the empirical distribution based on the observed data
of the error 160 duration. In figure C.4, we plot the exponential distribution assumed by the
model and the distribution of the duration of replacing the film during an error, constructed using
sampling from random number generators. We calculated this distribution by repeatedly drawing
random numbers from the distributions for the error duration and the replacement time. Then
we took the maximum of the replacement time plus the assumed 30 seconds of response time of
an available operator and the error duration.

We observe that each of the exponential distributions, overestimates the probability of having
a very short duration. In order to determine what this means for the solution the model provides,
we examine the value iteration algorithm we used of Tijms (2003). This algorithm starts by de-
termining the optimal decision in each state with one time step to go. Since the expected costs
over one time step can be calculated directly, this results in the one step expected costs, which is
denoted by V1(s). In this step, the model overestimates the probability of leaving the error states,
the replacement state and the state in which we replace during an error. This means that in each
of these states the value for V1(s) is lower than the actual value. Then the same holds for the sub-
sequent time steps until the exponential distribution no longer overestimates the probability, i.e.
where the red dotted line crosses the empirical distribution. Since Vn(s) is computed recursively
by using:

Vn(s) = min
a∈A

ca(s) +
∑
s′∈S

Ps,s′(a)Vn−1(s′)

we expect that the model underestimates the expected costs of the states in which the machine
is down. It is not possible to compute the error from the graphs and we do not make further
approaches in quantifying the difference. However, we quantify the performance of the solution in
a simulation in chapter 6, and we find that the solutions perform generally well.
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Figure C.1: Comparison of the empirical distribution and the exponential distribution assumed
by the model for TOperatorResponse (n = 29)

Figure C.2: Comparison of the empirical distribution and the exponential distribution assumed
by the model for TReplace (n = 83)
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Figure C.3: Comparison of the empirical distribution and the exponential distribution assumed
by the model for TRecover,160 (n = 396)

Figure C.4: Comparison of the empirical distribution and the exponential distribution assumed
by the model for TBoth,160 (constructed from 10,000 samples)
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Validation and verification of the
model

In this appendix, we elaborate on the validation and the verification of the MDP. Model validation
is the task of determining to which degree the model represents the real world from the perspective
of the intended use of the model. Model verification is the task of determining whether the model
implementation accurately represents the developer’s conceptual description of the model and the
solution to the model (Thacker et al., 2004).

Model validation

Part of the validation of the model is done by discussing the modeling assumptions in section
5.3. We concluded that the time steps of the model should be relatively small in comparison
to the time variables, the error rate should be approximately constant during production, the
distribution of the time variables should rule out that it is optimal to take the elapsed time in a
state into account and the probability of observing two opportunities to replace the film should
be fairly small. We discussed that each of these assumptions seems reasonable based on the data
we have. Furthermore, the model assumes that the time variables are exponentially distributed.
We observe that this is assumption is not in line with the real distribution of the time variables.
We therefore expect that the model finds a slightly optimistic long-term average cost of a policy.
The difference in distribution raises the need to validate the results in a more general setting in
which we incorporate distributions that describe the actual data. This is done in chapter 6 and
we concluded that the results perform well if the assumption of exponentially distributed time
variables is relaxed.

Model verification

We implemented the model for two errors in Matlab 2019. If only one error is considered, one
can easily set the arrival rate of the second error to zero, which simplifies the model to the one
error case. Since there are no results available that we can replicate, we validate the model by
considering several settings with extreme parameter values. In these extreme cases, we can make
statements about the optimal solution, and we can verify if the solution of the model is in line with
these statements. We came up with the following extreme parameter situations with a PAv > 0:

• E[TBoth] is longer than the sum of E[TRecover] and E[TTotalReplace].
Given that Cdown and Cfilm are positive, it is never optimal to replace the film during an
error since it incurs extra downtime.

We tested the extreme case for five different realistic values of Cdown and we observed
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in none of the cases an optimal policy with the decision to preventively replace. In each of
the cases, we verified whether the model provided an optimal policy with the decision to
replace the film during the error, if we altered the expectations of the time variables such
that E[TBoth] < E[TRecover] + E[TTotalReplace]. The optimal policy changed as expected
to an optimal policy with the decision to replace the film during the error from a certain
amount of bags on the reel.

• A negligible Cdown in comparison to the Cfilm.
If Cdown is negligible in comparison to the Cfilm, it is never optimal to dispose bags. That
means that it is never optimal to decide to replace the film during an error, except for when
the film is empty, i.e. one faces an error during producing the last bag.

We tested this case for five different realistic combinations of the time variables with E[TBoth]
< E[TRecover] + E[TTotalReplace]. We observed in each of the cases that the optimal policy is
to only replace when there is one bag left on the film reel, which is in line with the expected
solution.

• A negligible Cfilm in comparison to the Cdown.
If the Cfilm is negligible in comparison to the Cdown, the absolute value of the Cdown should
have no influence on the optimal policy. Without knowing the optimal policy, we can test
this by setting Cfilm equal to zero and varying the Cdown.

We tested this case with five different combinations of expected values for the time vari-
ables with E[TBoth] < E[TRecover] +E[TTotalReplace]. We observed that each of the cases the
model provides an optimal policy that does not change if we alter the value of Cdown.

Besides these situations, we determine whether the optimal policy changes as expected when we
alter the cost parameters or the expectation of the time variables. The policy changes according
to our expectations. Since the solutions of the model are in line with the solutions we expect, we
can conclude with a probability bordering on certainty that the model is implemented correctly.
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Numerical example

In this appendix, we show a numerical example of the model of chapter 5 with two different errors,
i.e. |J | = 2.

Numerical example with |J | = 2

Now we consider a fictitious example with two independent errors that can be used to prematurely
replace the film, i.e. |J | = 2. That means that the set of machine status M consists of:

m =



In production;

Replacement of the film;

Down due to error 1;

Down due to error 2;

Replacement of the film during error 1;

Replacement of the film during error 2;

The machine is set at a speed of 30 bags per minute, so we set τ equal to 2 seconds. The amount
of bags on a new film is equal to 1000 bags, so bnew = 1000. The cost of disposing one bag on the
film is e0.10, so Cfilm = 0.10. The cost of 1 hour of downtime is e2000, so the Cdown = 2000. The
error rates of error 1 and error 2 are 1 λ1 and λ2. λ1 is equal to 1 error per hour and λ2 is equal
to 10 errors per hour. The expected duration of error 1, E[Trecover,1], is equal to 150 seconds and
the expected duration of error 2, E[Trecover,2], is equal to 200 seconds. The expected replacement
duration when the end of the film is reached is 250 seconds, so E[TTotalReplace] = 250. Since the
machine may reach the end of the film at a moment that no operator is available, this number
is typically higher than the replacement during an error at which an operator is available. With
probability 0.7, there is an available operator at the moment error 1 or 2 occurs, so PAv=0.7.
If an operator is available at the occurrence of an error 1 and replaces the film, this takes in
expectation 250 seconds, so E[TBoth,1] = 200. If an operator is available at the occurrence of an
error 2 and replaces the film, this takes in expectation 300 seconds, so E[TBoth,2] = 300. The values
are summarized in table E.1. We calculate the transition probabilities of the model, using the
given parameter values and the equations described in subsection 5.4.4. The detailed calculation
is described below. We summarize the resulting transition probabilities in table E.2. We solve
the corresponding model using the value iteration algorithm from Tijms (2003) using a stopping
criterion allowing for a 1% deviation from the long-term minimal cost. We find that the optimal
solution is to decide to replace if error 1 occurs if we have 192 bags or less, and to decide to replace
if error 2 occurs if we have 132 bags or less. Since the machine is set at a speed of 30 bags per
minute, the time necessary to produce a bag is equal to 2 seconds. We set the time steps of the
model equal to 2, so τ=2. We calculate the probability that no error occurs during a time step by

Exploiting error data from a packaging machine to reduce machine downtime 77



APPENDIX E. NUMERICAL EXAMPLE

Table E.1: Parameter and variable values of the numerical example

Variable/Parameter Value Unit

τ 2 seconds
bnew 1000 bags
Cdown 2000 euro/hour
Cfilm 0.10 euro/bag
λ1 1 errors/hour
λ2 10 errors/hour
E[TRecover,1] 150 seconds
E[TRecover,2] 200 seconds
E[TTotalReplace] 250 seconds
E[TBoth,1] 200 seconds
E[TBoth,2] 300 seconds
PAv 0.7

Table E.2: Transition probabilities of the numerical example

Transition probability Value

PNoError 0.9939
PError,1 5.5386 · 10−04

PError,2 0.0055
PErrorReplace,1 3.8818 · 10−04

PErrorReplace,2 0.0043
PNoErrorReplace,1 1.6636 · 10−04

PNoErrorReplace,2 0.0016
PReplace 0.0080
PNoReplace 0.9920
PRecover,1 0.0133
PNoRecover,1 0.9867
PRecover,2 0.0100
PNoRecover,2 0.9900
PBoth,1 0.0100
PBoth,2 0.0067
PNoBoth,1 0.9900
PNoBoth,2 0.9933

using equation 5.5 and the values for λ1 and λ2 expressed in errors per second:

PNoError =
∏
j∈J

[e−λj ·τ ] = e−
2

3600 · e− 20
3600 = 0.9939

Then we calculate the probability of facing error 1 after a time step using equation 5.8:

PError,1 =
λ1∑
i∈J λi

· (1− PNoError) =
1

11
· (1− PNoError) = 5.5455 · 10−04

Likewise, the probability for error 2 is calculated:

PError,2 =
λ1∑
i∈J λi

· (1− PNoError) =
10

11
· (1− PNoError) = 0.0055
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Now that we know the probability of error occurrence, we can calculate the transition probability
of going from a production state to the state replacement during error 1, given that one decides
to replace if error 1 occurs:

PErrorReplace,1 = PError,1 · PAv = 3.8818 · 10−04

And likewise the probability of from a production state to the state replacement during error 2,
given that error 2 occurs:

PErrorReplace,2 = PError,2 · PAv = 0.0043

Then the transition probability of going from a production state to the error 1 state, given that
we decide to replace at the error occurrence:

PNoErrorReplace,1 = PError,1 · (1− PAv) = 1.6636 · 10−04

And likewise the probability of going from a production state to the error 2 state, given that we
decide to replace at the error occurrence:

PNoErrorReplace,2 = PError,2 · (1− PAv) = 0.0016

When error 1 occurs and we decide to not replace the film, the system reaches one of the error 1
states. The probability of leaving this error state after one time step is:

PRecover,1 =
τ

E[TRecover,1]
=

2

150
= 0.0133

Likewise, if we decide to not replace the film if error 2 occurs, the system reaches one of the error
2 states. We calculate the probability of leaving this state after one time step as:

PRecover,2 =
τ

E[TRecover,1]
=

2

200
= 0.01

Complementary, the probability of still being in the error 1 state after one time step is:

PNoRecover,1 = 1− PRecover,1 = 0.9867

Likwise, the probability of still being in the error 2 state after one time step:

PNoRecover,2 = 1− PRecover,2 = 0.9900

PReplace =
τ

E[TTotalReplace]
=

2

250
= 0.0080

Then the probability of not leaving the replacement state is:

PNoReplace = 1− PReplace = 0.9920

When system is in the state replacing the film during error 1, the probability of leaving this state
is given by equation 5.13:

PBoth,1 =
τ

E[TBoth,1]
=

2

200
= 0.01

The probability of not leaving the state is then:

PNoBoth,1 = 1− PBoth,1 = 0.99

Likewise, when system is in the state replacing the film during error 2, the probability of leaving
this state is given by

PBoth,2 =
τ

E[TBoth,2]
=

2

300
= 0.0067

And the probability of not leaving the state:

PNoBoth,2 = 1− PBoth,2 = 0.9933
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Appendix F

Maximum Likelihood Estimation
(MLE)

In this appendix, we explain the the general procedure of finding the parameters of a sampling
distribution by MLE. For more explanation of the procedure, we refer to Bain & Engelhardt (1992).
Let θ be the vector of parameters of the underlying distribution of our data points (also called
observations) x1, x2, ..., xn and f(x, θ) denote the probability density function of the underlying
distribution. Then the likelihood function of observing data x1, x2, ..., xn is given by:

L(θ) = f(x1; θ)f(x2; θ) · · · f(xn; θ) (1)

We want to find the parameters that maximize the likelihood. It turns out that taking the log of
the likelihood generally simplifies maximizing the function:

ln (L(θ)) =

n∑
i=1

ln (f(xi; θ)) (2)

Then we maximize the function with respect to θ. This is often done by taking the derivative with
respect to θ and equating to zero:

d

dθ
ln( L(θ)) = 0 (3)

The last term yields a closed-form expression for the maximum likelihood estimators of the para-
meters in most cases with one or two parameters to estimate. However, we are considering dis-
tributions with a location parameter, and therefore we generally have one parameter more to
optimize. This means that we are less likely to obtain closed form expressions for each of the
expressions. In order to verify that we are maximizing, one should look at the second derivative.
In the cases we discuss, we already know from literature that we may end up with local maxima
instead, which may still have a reasonable and acceptable fit.
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Appendix G

Detailed MLE procedure

In this appendix, we elaborate on the details of the fitting procedure of the replacement duration.
The distribution clearly has a minimum duration, which implies that we look for a distribution
with a location parameter. We decide to use MLE to fit several candidate distributions that
are commonly used in literature: the Weibull distribution, the Lognormal distribution and the
Uniform distribution. The estimators of the parameters of the Uniform distribution are found by
taking the minimum value and the maximum value of the data set. 1. We first consider the 3
parameter Weibull distribution with a positive location parameter. The PDF of the 3 parameter
Weibull distribution is given by:

f(x; η;β; γ) =
β

η
(
x− γ
η

)β−1e−(
x−γ
η )β (G.1)

With x ≥ γ, 0 ≥ γ < ∞, η > 0 and β > 0, where η, β and γ are called the scale, shape and
location parameter respectively.
Following the general procedure of maximizing the likelihood function with respect to each of
the parameters, yields the following expressions for the partial derivatives with respect to the
parameters (from Teimouri & Gupta, 2013):

∂ln(L(θ))

∂γ
L(θ) =

n

β
+

n∑
i=1

ln
xi − γ
η
−

n∑
i=1

(
xi − γ
η

)β ln (
xi − γ
η

), (G.2)

∂ln(L(θ))

∂β
= −nβ

η
+
β

η

n∑
i=1

(
xi − γ
η

)η, (G.3)

∂ln(L(θ))

∂η
= −(β − 1)

n∑
i=1

1

xi − γ
+
β

η

n∑
i=1

(
xi − γ
η

)β−1. (G.4)

With n denoting the total number of observations and xi the i-th observation.
Equating to zero does not result in closed-form expressions for the estimators that maximize the
likelihood function. In literature several approaches to find these parameters are proposed. Two
commonly used approaches are (i) optimization of the three parameters simultaneously through
search algorithms, (ii) estimating the location parameter with an alternative approach, whereafter
the MLEs for the scale and shape parameter can be found through numerically optimization.
We decide to follow the latter since this approach can be implemented very practically. For the
estimation of the location parameter, we decide to use two estimations: the standard estimation
in literature and an estimation suggested by Shifley & Lentz (1985). The standard estimation
used in literature is setting γ equal to the minimum of the observations: min(x1, .., xn). Smith
(1985) shows that this estimator is consistent and no other estimator converges at a faster rate if
β < 2. Using exactly the minimum of the sample results in the natural log of 0, which is undefined.
Reliability HotWire (2013) recommends to choose a number arbitrarily close to the minimum of
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the sample. We therefore take γ̂1 = 0.999 ∗ 53 ≈ 52.95s. The second method acknowledges
that there may be unrecorded observations smaller than the smallest observation and suggests

γ =
x1xn−x2

2

x1+xn−2x2
(Shifley & Lentz, 1985). This results in γ̂2 = 52.6s.

Now that γ is assumed to be known, we are essentially looking for the MLEs of the parameters
of a two parameter Weibull with the data points shifted to the left with the value γ̂. That means
that we calculate x′i = xi − γ̂ for each individual data point xi, and use the x′i to calculate the
MLEs for the two parameter Weibull. The PDF simplifies to:

f(x; η;β) =
β

η
(
x

η
)β−1e−(

x
η )
β

(G.5)

Repeating the general procedure of finding the MLEs of the 2 parameter Weibull yields the fol-
lowing expressions for the partial derivatives of the scale and shape parameter:

∂ln(L(θ))

∂η
= nη −

n∑
i=1

lnxi
β (G.6)

∂ln(L(θ))

∂β
=
n

β
+

n∑
i=1

lnxi −
1

η

n∑
i=1

xβi lnxi (G.7)

Equating to zero and rearranging then yields a closed-form expression for η̂ in terms of β and a
expression for β:

η̂ =

∑n
i=1 x

β̂
i

n
(G.8)

n

β̂
+

n∑
i=1

lnxi =
1

η̂

n∑
i=1

xβ̂i lnxi (G.9)

Then filling in the expression for η̂ in the second expression and multiplying by β̂ yields:

n+ β̂

n∑
i=1

lnxi = nβ̂

∑n
i=1 x

β̂
i lnxi∑n

i=1 x
β̂
i

(G.10)

The last expression can be computed numerically for β̂, which determines η̂. We do the compu-
tation in Matlab 2019a.

2. Secondly, we elaborate on the MLEs of the 3 parameter Lognormal distribution. The PDF is
given by:

f(x;µ;σ; γ) =
1

(x− γ)σ
√

2π
e−

(ln (x−γ)−µ)2

2σ2 (G.11)

Now following the general procedure yields (from Cohen & Whitten (1980)):

∂ ln (L(θ))

∂µ
=

1

σ2

n∑
i=1

[ln (xi − γ)− µ] (G.12)

∂ln(L(θ))

∂σ
=
n

σ
+

1

σ2

n∑
i=1

[ln(xi − γ)− µ]2 (G.13)

∂ln(L(θ))

∂γ
=

1

σ2

n∑
i=1

[ln(xi − γ)− µ]

(xi − γ)
+

n∑
i=1

(xi − γ)−1 (G.14)

Differently from the 3 parameter Weibull distribution, equating to zero yields a closed form ex-
pression for µ and σ in terms of γ:

µ̂ =
1

n

n∑
i=1

ln(xi − γ̂) (G.15)
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σ̂2 =
1

n

n∑
i=1

ln2(xi − γ̂)− [
1

n

n∑
i=1

ln(xi − γ̂)]2 (G.16)

Substituting the µ and σ for their closed-form expressions in the equation for γ, yields an expression
for γ that can be evaluated numerically:

[

n∑
i=1

((xi)− γ)−1][

n∑
i=1

ln(xi)− γ)−
n∑
i=1

ln2(xi)− γ)

+ (
1

n
(

n∑
i=1

ln(xi − γ))2]− n
n∑
i=1

ln(xi − γ)

xi − γ
= 0

(G.17)

For practical use, Cohen & Whitten (1980) recommend to find an estimator for γ by evaluating
this expression over the left hand side of min(x1, ..., xn). We do this for the range of γ = 0 until
γ = min(x1, ..., xn), with steps of 0.1 and observe that we do not obtain a solution. Griffiths
(1980) as cited in Kowarik (n.d.), provides an expression for the log likelihood as a function of γ,
which we evaluate over the same interval. This shows that the likelihood is increasing in γ. We
expect the optimal value for γ to be arbitrarily close to γ = min(x1, ..., xn), thus we decide to
take γ̂ = 0.999 ∗ 53 ≈ 52.95s. Then µ and σ follow from equations G.15 and G.16.
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Appendix H

Implementation of the
Opportunistic Film Replacement
Model

In this appendix, we elaborate on the implementation of the opportunistic film replacement model
of chapter 5 and we explain the use of the model. The model is implemented in Matlab 2019. The
model is implemented for two errors, which means that it is applicable to situations in which the
film can be replaced during one and two errors. The model is also applicable to situations with
only one error by setting the arrival rate of the second error to 0. In the following sections, we
discuss the input parameter section and the output section.

Parameter section

The input parameters that have to be specified are shown in figure H.1. The parameter section is
marked with a comment ‘Parameter section’. In order to get the correct model output, one needs
to specify each of the parameters of the model in the correct unit of measurement. The unit of
measurement is described in a comment on the same line as the parameter. In table H.1 we show
for each of the parameters (i) the corresponding variable of the model in chapter 5, (ii) the unit
of measurement and (iii) a brief description of the parameter. If one wants to model a situation
with only one error that allows to preventively replace the film, the Lambda 2 should be set to
zero.

Figure H.1: Input parameters of the model
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MODEL

Parameter Model notation Unit Description

B new bnew Bags Amount of bags
C down Cdown Euro Cost per hour of downtime
C bag Cfilm Euro Cost per bag
replaceTime TReplace Seconds Expectation of the total replacement time
recoverTime1 TRecover,1 Seconds Expectation of the time necessary to resolve error 1
recoverTime2 TRecover,2 Seconds Expectation of the time necessary to resolve error 2
bothTime1 TBoth,1 Seconds Expectation of the downtime if an available operator replaces the film during error 1
bothTime2 TBoth,2 Seconds Expectation of the downtime if an available operator replaces the film during error 2
Lambda1 λ1 Errors per hour Arrival rate of error 1
Lambda2 λ2 Errors per hour Arrival rate of error 2
Availability PAv Unitless Probability that an operator is available at the moment an error occurs

tau τ Seconds Discrete timesteps of the model
error ε Unitless Proportion the solution may deviate at most from the optimal long-term cost per time step

Table H.1: Parameter names in the model implementation

Output section

As soon as the model finds the solution at the prespecified deviation from the optimal cost per
time step, the model stops. The console shows boundary values for error 1 and error 2. If one faces
the corresponding error with an amount of bags on the film less than or equal to this boundary
value, one should decide to replace the film. Furthermore, the model finds an upper bound and a
lower bound for the optimal long-term average cost per time step. The model takes the average
of the upper and lower bound and shows the long-term average cost per hour in the console. The
upper bound, Mn and the lower bound, mn, can be found in the Matlab workbench. We show an
example of the output in figure H.2.

Figure H.2: Output of the model implementation
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Appendix I

Validation of the number of
simulation runs

In this appendix we elaborate on the determination of the amount of runs of the simulation. The
simulation is used to determine the amount of cost per time unit and the amount of downtime per
time unit. In order to determine the necessary amount of runs we follow the procedure suggested
by Boon et al. (2017). In this procedure, one first estimates the standard deviation of the variable
of interest, by using a short initial run with a relatively small amount of runs. Assuming that this
estimation is representative for the real standard deviation of the variable, one can then use the
estimation of the standard deviation to calculate how much runs are necessary to get the desired
confidence intervals. One can calculate the desired confidence intervals by using the implications
of the central limit theorem, which states that as you take k samples from a random variable Z
and calculate the mean of these samples Z̄, the distribution of the sample means, Z̄, approaches a
normal distribution. How closely the distribution of Z̄ approaches a normal distribution depends
on the size of k and the number times you repeat the drawing of k samples. Using the implications
of this theorem, we can calculate the amount of times we have to repeat the drawing of k samples
to get our half-width confidence interval, given that we know our desired confidence level and the
desired length of the confidence interval:(

Za/2 · σ
ε

)2

< n (I.1)

In which Za/2 is the factor for the confidence level, σ the standard deviation of the variable of
interest, n the number of times we take k samples from Z and ε the desired half-width of the
confidence interval. The confidence level is expressed as a percentage. This percentage can be
interpreted as if you would repeat this procedure many times, the mean would lie in the interval
for this percentage of the repetitions. In literature, a 95% confidence level is often considered ac-
ceptable, so we decided to use this level. The value for Za/2 for a 95% confidence level is 1.96. In
the following, we elaborate on how we estimated the σ. For more explanation of the central limit
theorem and its implications for sampling, we refer to Boon et al. (2017) and Bain & Engelhardt
(1992).

In order to estimate the standard deviation of the downtime per time unit and the cost per
time unit, we simulated a long production period. By manually varying the length of this produc-
tion period, we found that 104 hours of production can be simulated within a couple of seconds
per run, which we consider convenient. In order to estimate the standard deviation of the vari-
ables of interest, we chose an initial amount of runs. If one uses a very low amount of runs, the
standard deviation might vary much from the actual standard deviation. If this amount is too
high, the computation will take too long. We decided to estimate the standard deviations for
each of the parameter settings, using 25 runs. We observed that the standard deviation of the
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downtime per hour did not differ much between the different bbound and their corresponding PAv
and Cdown. The standard deviation of the total cost per hour increases approximately linear in
the Cdown. For both the standard deviation of the downtime per hour and the total cost per hour,
we took the highest value. By doing do, we have a pessimistic estimation of the real value. This
results in σDowntime = 0.6 · 10−3 (hours downtime per hour production) and σTotalCost = 1.5
euro. In order to determine a reasonable length for the confidence intervals, we consider how
close the means of the cost per hour and the downtime per hour are. We find that the smallest
difference for the total cost per hour is approximately 2 e/hour and the smallest difference for the
downtime per hour is approximately 5 · 10−4 hours per hour. In order to prevent the confidence
intervals from overlapping, we would need the bound of the interval on a distance of ε1 = 1 e/hour
for the cost per hour and a bound of ε2 = 2.5 ·10−4 hours for the bound on the downtime per hour.

Now that we obtained our σ, the desired ε and we know the confidence level, we can fill in
the equation I.1. This results in a number of runs for the downtime, ndown of:(

Za/2 · σDownTime

ε1

)2

< ndown = 22.13... ≈ 23

And for the number of runs for the cost per downtime, ncost:(
Za/2 · σTotalCost

ε2

)2

< ncost = 15.36... ≈ 16

We conclude that the amount of 25 runs with a simulation of 104 production hours is sufficient to
get the desired bounds. Due to the non-sequential order of validating the length and the amount
of runs of the simulation, we already ran the simulation with a length of 105 hours for 25 runs.
Considering the results of this validation, we could have used less runs. However, the results have
tighter confidence intervals and are valid, so we use the results of this more lengthy simulation.
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Validation and verification of the
discrete event simulation

In this appendix, we elaborate on the validation and the verification of the simulation model. The
simulation model is implemented in Matlab 2019, since this software is available at Bosch. In
addition, Matlab is convenient for incorporating random number generators that follow specified
theoretical distributions.

Validation of the simulation model

The discrete simulation model of chapter 6, can be seen as a more general form of the model
in chapter 5. Similarly to the MDP model, the simulation model assumes constant error rate
during production and that the operator availability can be modeled as a fixed probability of
having an operator available at the moment an error occurs. We already discussed the validation
for the MDP model, and we do not repeat the same arguments. The discrete simulation model
also evaluates the model at discrete time steps. However, the length of a time step is no longer
fixed, but depends on the first upcoming event. The time between events are based on draws from
random number generators that follow the theoretical distributions found in the data. We expect
that the durations in the simulation model represent reality better, since the durations are based
on theoretical distribution that describe the data.

Verification of the simulation model

We verify the correct implementation of the simulation model in two ways. First, we use the
debugging function of Matlab to follow the code of the simulation line by line. In this way,
we verify that each step is followed by the correct subsequent step and that the corresponding
calculations of the variables are correctly implemented. Second, we save the interim results of the
total costs, CTotal, the costs of the disposed film, CReplace, and the amount of downtime, d, per
film. We verify that the model never disposes more bags than the bbound and the values for the
downtime per film appear to be reasonable. With reasonable values we mean that the values vary
around an approximation of the expected downtime. For this approximation we take the expected
amount of errors between bnew and bbound, times the expected duration of the errors E[TRecover],
plus the average of E[TTotalReplace] + E[TBoth].

T̂ = (bnew − bbound) ∗ PError,160 ∗E[TRecover] +
E[TTotalReplace] + E[TBoth]

2

We use this approximation instead of the exact value since the approximation is more convenient
to calculate manually.
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Appendix K

Simulation results

In this appendix, we show the results of the simulation procedure of chapter 6. Considering the
small differences in downtime and cost, we show the results per 100 hours of simulation.

Table K.1: Results of the simulation: the average downtime resulting from the new policy in hours
per 100 hours of simulation

Cost scenario 1 Cost scenario 2 Cost scenario 3

PAv d CI95 d CI95 d CI95

0.1 11.35 [11.35 - 11.35] 11.32 [11.32 - 11.33] 11.27 [11.26 - 11.28]

0.2 11.28 [11.28 - 11.28] 11.24 [11.23 - 11.24] 11.14 [11.14 - 11.15]

0.3 11.22 [11.22 - 11.22] 11.16 [11.15 - 11.17] 11.04 [11.03 - 11.04]

0.4 11.16 [11.16 - 11.16] 11.08 [11.07 - 11.09] 10.95 [11.95 - 11.96]

0.5 11.11 [11.11 - 11.11] 11.02 [11.01 - 11.02] 10.87 [11.86 - 11.87]

0.6 11.07 [11.07 - 11.07] 10.97 [11.96 - 11.97] 10.80 [11.80 - 11.81]

0.7 11.02 [11.02 - 11.02] 10.91 [11.91 - 11.92] 10.73 [11.73 - 11.74]

0.8 10.98 [10.98 - 10.98] 10.86 [10.85 - 10.87] 10.69 [10.68 - 10.69]

0.9 10.94 [10.94 - 10.94] 10.82 [10.82 - 10.83] 10.64 [10.64 - 10.65]

1 10.90 [10.90 - 10.90] 10.78 [10.78 - 10.79] 10.59 [10.59 - 10.60]
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Table K.2: Results of the simulation: the average total costs resulting from the new policy in euro
per 100 hours of simulation

Cost scenario 1 Cost scenario 2 Cost scenario 3

PAv CTotal CI95 CTotal CI95 CTotal CI95
0.1 11484 [11479 - 11490] 17197 [17187 - 17207] 33885 [33867 - 33903]

0.2 11446 [11441 - 11452] 17130 [17120 - 17139] 33667 [33653 - 33681]

0.3 11415 [11409 - 11420] 17067 [17059 - 17075] 33468 [33450 - 33486]

0.4 11383 [11377 - 11389] 16991 [16983 - 16999] 33309 [33293 - 33324]

0.5 11354 [11349 - 11358] 16936 [16927 - 16944] 33127 [33109 - 33144]

0.6 11329 [11321 - 11336] 16891 [16885 - 16898] 33000 [32980 - 33019]

0.7 11298 [11292 - 11304] 16843 [16834 - 16851] 32838 [32820 - 32855]

0.8 11273 [11267 - 11278] 16783 [16774 - 16792] 32730 [32712 - 32748]

0.9 11251 [11246 - 11257] 16745 [16737 - 16754] 32632 [32614 - 32649]

1 11226 [11221 - 11232] 16703 [16694 - 16712] 32498 [32479 - 32517]

Table K.3: Results of the simulation of the old policy (average of 100 hours of production

Variable Expectation CI95%

d 11.42 hour [11.42 - 11.42]
CTotal (Cdown = 1000 e/ hour) e11422 [11419 - 11425]
CTotal (Cdown = 1500 e/ hour) e17133 [17129 - 17137]
CTotal (Cdown = 3000 e/ hour) e34266 [34258 - 34274]
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