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Abstract

In this thesis I will derive equations of motion of a quadcopter with external turbulent
forces, design an LQR controller for stabilisation, and investigate a methods to measure
turbulence based on the state-space trajectories. The LQR controller together with the
method of integral feedback is implemented in a simulation using Python. The quadcopter
can be observed to be stable even with the introduction of aerodynamic forces. Using
a dataset of trajectories from tracer particles in turbulent flows, the response of the
controlled quadcopter to turbulence is simulated and analyzed. From these simulated
state-space trajectories of the quadcopter it will be shown that the velocity and vorticity
of the turbulent flow around the quadcopter can be reconstructed.
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Introduction

In recent years, there has been an increase in popularity of the use of small unmanned aerial
vehicles (UAVs) for a wide variety of applications ranging from surveillance and photography
to more advanced military purposes. These UAVs often come in the form of relatively small,
lightweight quadcopters. For most applications, these quadcopters are exposed to outside en-
vironments with strong and often turbulent winds. For this reason, most quadcopters come
equipped with an on-board flight controller that compensate for these winds by changing the
thrusts from the propellers using on-board sensor data.

This project investigates the possibility of using a quadcopter as a flexible instrument to
measure atmospheric turbulence from inside the flow. Whereas normally measurements of
atmospheric turbulence involve either using fixed probes on towers or flying probes mounted
on airplanes, this project proposes a more dynamic, smaller scale solution. Especially for
measurements of the smaller scale turbulent fluctuations, the response of a small quadcopter
could provide useful information. A main question of this project is how to properly design
a controller that will make sure that the quadcopter can maintain its position in such a
turbulent flow. Another question is whether it is possible to obtain relevant information from
a turbulent flow by using the sensor data from the quadcopter’s flight controller. These two
question will be investigated in the following sections starting with a derivation of a physical
model for the quadcopter based on which the controller and the measurement method will be
constructed.
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1 Quadcopter model

The dynamics of a quadcopter can be modeled using rigid body mechanics. The quadcopter
can be described as a rigid body with mass m and moment of inertia I described by a 3 by 3
matrix assumed to be diagonal.

I =

Ix 0 0
0 Iy 0
0 0 Iz

 (1.1)

(a) The axis convention used to describe the state
of the drone. Note that the z-axis points

downwards and the x-axis corresponds to the front
of the drone.

(b) The orientation of the drone can be described
by the three angles: yaw ψ, pitch θ and roll φ

Figure 1.1: Conventions for position and orientation of the body frame

The state of the quadcopter will be fully described by 12 variables. First of all, the position
will be described in the universal frame using the axis convention seen in figure 1.1. For the
rest of this thesis, this will be denoted by

ξ = (x, y, z) (1.2)

The orientation of the quadcopter will be described by the euler angles shown in figure 1.1.
These angles will be described by

λ = (φ, θ, ψ) (1.3)

Each of these angles corresponds to a rotation around one of the axis in the world frame.

Rx(φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1


(1.4)

The orientation of the body frame with respect to the world frame in figure 1.1 can be written
in terms of these rotation matrices as follows:

R(λ) = R(φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ)
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The velocity of the quadcopter expressed in the world frame will be given by
v = (vx, vy, vz) (1.5)

Now finally, the angular velocity vector of the quadcopter will be described in the body frame.
The direction of this vector is perpendicular to the plane of rotation, according to the right
hand rule while the magnitude corresponds to the absolute angular velocity in radians per
second. It will be denoted by

Ω = (p, q, r) (1.6)

Together, these 12 state variables completely describe the state of the quadcopter. These
variables will be described by the 12-dimensional state vector

y =


ξ
v
λ
Ω

 (1.7)

The evolution of this state is now completely determined by the state itself together with the
external forces and torques that are provided. For simplicity we will now assume that the
only forces acting on the drone are gravity and the thursts generated by the propellers (figure
1.2).

Figure 1.2: The forces acting on the quadcopter where T1, . . . , T4 are the thrusts generated
by the propellers

Since all propellers point in the same direction, the total thrust generated by the propellers
is equal to

T = T1 + T2 + T3 + T4 (1.8)
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The torques generated by the propellers expressed in the body frame can also be derived using
the propeller configuration seen in figure 1.3. In this configuration the propellers on opposite
diagonal rotate in the same direction. For this model we will assume each propeller produces
a reaction torque proportional to the thurst

τi = bTi (1.9)

Figure 1.3: Configuration of the propellers. Note that the inside arrow denotes the rotation
direction of the propeller, while the outside arrow denotes the reaction torque in the

opposite direction.

The torques generated in each direction (expressed in the body frame) can thus be described
by

τφ = d(T1 + T2)− d(T3 + T4) (1.10)
τθ = d(T1 + T4)− d(T2 + T3) (1.11)
τψ = b(−T1 + T2 − T3 + T4) (1.12)

Where d is the distance from the center of the propeller to the axis of rotation. So to sum-
marize, the total force and torques generated by T1, . . . , T4 can be calculated by


T
τφ
τθ
τψ

 =


1 1 1 1
d d −d −d
d −d −d d
−b b −b b



T1
T2
T3
T4

 (1.13)

It is important to note that this square matrix is invertible. This namely means that any
combination of total thrust T and torques τφ, τθ, τψ can be generated by choosing T1, . . . , T4.
For this reason, the equations in the next sections will only be stated in terms of T and
τφ, τθ, τψ. It is however always possible to restate the equations in terms of T1, . . . , T4. With
this in mind we can now construct the equations of motion that describe how the state (1.7)
evolves given some fixed forces and torques.
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1.1 Equations of motion

Since the thrust always points in the negative z-direction in the body frame of the drone, the
thrust vector in the world frame can be described by

−R(λ)(Te) (1.14)

Accounting for gravity and using Newton’s second law of motion, we get an expression for the
total force acting on the drone:

mv̇ = mge −R(λ)(Te) (1.15)

Similarly, since both Ω and τ = (τφ, τθ, τψ) are expressed with respect to the body frame,
we can describe the evolution of the angular velocity using Euler’s equation [1] of rigid body
dynamics.

IΩ̇ = −Ω × IΩ + τ (1.16)

All together this results in the following system of differential equations which describe the
motion of the quadcopter given a thrust T and a torque τ . The fully expanded system of
equation can be found in the appendix (A.1).

ξ̇ = v (1.17)
mv̇ = mge −R(λ)(Te)
λ̇ = Q(λ)Ω

IΩ̇ = −Ω × IΩ + τ

Here Q(λ) denotes a transformation between angular velocities and Euler angles given by

Q(λ) =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

 (1.18)

A detailed derivation of this matrix can be found in appendix B.
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1.2 Model with turbulence

The model with added external forces and torques can be described by
ξ̇ = v (1.19)

mv̇ = mge −R(λ)(Te) + Fext

λ̇ = Q(λ)Ω

IΩ̇ = −Ω × IΩ + τ +R(λ)Tτext

Note that since Ω is expressed in the body frame, τext needs to be transformed by R(λ)T .
These external forces and torques will be derived using a simple drag model. Let vwind
and ∇ × vwind describe the velocity and vorticity of a turbulent fluid at the position of
the quadcopter. We will calculate the external forces and torques on the quadcopter as
follows:

Fext = α(vwind − v) (1.20)
τext = β(∇× vwind −R(λ)Ω) (1.21)

Here α and β correspond to coefficients of friction that are related to the shape of the quad-
copter. Substitution into (1.19) results in the following model

ξ̇ = v (1.22)
mv̇ = mge −R(λ)(Te) + α(vwind − v)
λ̇ = Q(λ)Ω

IΩ̇ = −Ω × IΩ + τ + β(R(λ)T (∇× vwind)−Ω)

This will be the model used in the simulation and statistical analysis in the later chap-
ters.
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2 Control

Consider the quadcopter model without external forces (1.17). In this model the only forces
are gravity and the thrusts of the propellers. These forces are assumed to be fixed, since no
form of feedback has yet been discussed. From equation (1.17) it can quickly be observed that
the system only has stationary points for T = mg and τ = 0. The stationary point will then
be of the form

y0 =


ξ0 = (x0, y0, z0)
v0 = (0, 0, 0)
λ0 = (0, 0, 0)
Ω0 = (0, 0, 0)

 (2.1)

We will refer to this state, together with the control inputs T = mg and τ = 0 as the state
of hover. This stationary state namely corresponds to the drone hovering on a fixed position
(x0, y0, z0). Substituting these fixed control inputs T, τ into equation (1.17) results in

ξ̇ = v (2.2)
mv̇ = mge −R(λ)(mge)
λ̇ = Q(λ)Ω

IΩ̇ = −Ω × IΩ

Substituting (2.1) indeed results in ξ̇ = v̇ = λ̇ = Ω̇ = 0. However, this state of hover is
not stable. Small deviations in the state, will cause the state to deviate even further. For
example, by slightly changing the orientation of the drone λ, the acceleration v̇ will be non
zero causing the drone to drift in one direction. For this reason a controller is needed. The
forces and torques T, τ provided by the propellers need to be adjusted based on the state in
such a way that the system will stabilize around this state of hover. The goal for the next
subsections will be to design a feedback function F : R12 → R4 that maps the state vector to
the control inputs

F : (ξ,v,λ,Ω) 7→ (T, τx, , τy, τz) (2.3)

such that the system remains stable around the hover state.

2.1 Linear state feedback

As the name suggest, the method of linear state feedback uses a linear function for equation
(2.3) to determine the control inputs. More specifically, for our case we will need some 4
by 12 matrix K that maps the 12 dimensional state to the 4 dimensional control input. To
keep the notation simple, we will describe the state and control input by the letters y and u
respectively

y =


ξ
v
λ
Ω

 u =


T
τx
τy
τz

 (2.4)

Equation (1.17) will be written as
ẏ = f(y,u) (2.5)
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A stationary point of this system will be described by (y0,u0) where y0 is a state of hover
given by (2.1) and where u0 is the corresponding control input

u0 =


T = mg
τx = 0
τy = 0
τz = 0

 (2.6)

T = mg, τ = 0. We will now construct a linear feedback function that will stabilize the system
(2.5) around (y0,u0) by using the feedback function

(u− u0) = −K(y − y0) (2.7)

Where K is a 4 by 12 matrix. Or in other words
T −mg
τx
τy
τz

 = −

k1,1 · · · k1,12
...

. . .
...

k4,1 · · · k4,12



ξ − ξ0
v
λ
Ω


Non linear Linearized around hover (T = mg + δT )
ẋ = vx ẋ = vx
ẏ = vy ẏ = vy
ż = vz ż = vz
v̇x = −(sinφ sinψ + cosφ cosψ sin θ) Tm v̇x = −gθ
v̇y = −(cosφ sinψ sin θ + cosψ sinφ) Tm v̇y = gφ

v̇z = −(cosφ cos θ) Tm + g v̇z = −δT/m
φ̇ = p+ sinφ tan θq + cosφ tan θr φ̇ = p

θ̇ = cosφq − sinφr θ̇ = q

ψ̇ = (sinφ/ cos θ)q + (cosφ/ cos θ)r ψ̇ = r

ṗ =
Iy−Iz
Ix

qr + τx
Ix

ṗ = τx
q̇ = Iz−Ix

Iy
pr +

τy
Iy

q̇ = τy

ṙ =
Ix−Iy
Iz

pq + τz
Iz

ṙ = τz

Table 2.1: Non linear and linearized equations of motion

The feedback matrix will be determined by analysing the stability of equation (2.5) around
y0. The stability can be determined using the linearization of this equation around y0,u0.

ẏ = A(y − y0) +B(u− u0) (2.8)

Where A,B are real constant matrices with dimensions 12 × 12 and 4 × 12 respectively. A
fully expanded form of these equations can be found in Table 2.1. The matrices A and B can
be found by calculating the following partial derivatives of f from equation (2.5):

Aij =
∂fi
∂yj

Bij =
∂fi
∂uj

(2.9)
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This gives the following matrices

A =



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −g 0 0 0 0
0 0 0 0 0 0 g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−1/m 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1/Ix 0 0
0 0 1/Iy 0
0 0 0 1/Iz



(2.10)

The goal is now to find a matrix K such that
ẏ = A(y − y0) +B(u− u0) (2.11)
= A(y − y0)−BK(y − y0) (2.12)
= [A−BK](y − y0) (2.13)

is stable. From ODE theory, it follows that this is only the case when all the eigenvalues
of [A − BK] have a negative real part. Under some weak condition on the matrices A,B it
has been proven [2] that there exists a matrix K that achieves this1. There are even many
different choices of K that all stabilize the system. In the next section we will investigate one
method to choose such a stabilizing matrix in a certain optimal way.

2.2 Linear–quadratic regulator (LQR)

In the theory of optimal control, the objective is to design a feedback that minimizes a certain
cost function. The linear quadratic regulator provides an optimal linear feedback for some
quadratic cost function. The problem can be stated as follows. Consider a general linear
system given by

ẏ = Ay +Bu (2.14)

Where A has dimensions n× n and B has dimensions n×m. The linear quadratic regulator
then provides a unique stabilizing feedback control law [3].

y = −Ky (2.15)

That minimizes the cost function
J =

ˆ ∞
0
yQyT + uRuTdt (2.16)

Where Q and R are real symmetric positive definite matrices that can be chosen beforehand.
Note that since the integrand is always positive, the cost function is a measure of the accu-

1The condition on the matrices A and B is that the matrix [B,AB,A2B, . . . , A11B] ∈ R12×48 has full rank.
In this case the system is called ’controllable’. Using Mathematica it could be confirmed that our system
(A,B) is indeed controllable.
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mulated error of both the state and of the control input.

Using methods from calculus of variations it can be shown that the unique solution to this
problem is given by

K = R−1BTP (2.17)

where P is the unique positive definite solution to the algebraic Riccati equation
ATP + PA− PBR−1BTP +Q = 0 (2.18)

The derivation of these equations is outside the scope of this thesis but can be found in
the lecture notes [3] referenced in the bibliography. Now given some matrices Q and R we
can determine the optimal feedback K for any controllable linear system (A,B) by solving
equation (2.18).

2.3 Integral Control

Up until this point we have only considered designing a controller for the equations of motion
without external forces. This will actually be a problem since the introduction of external
forces can cause the system controlled by the LQR feedback to no longer stabilize around the
desired hover state. In this section we will discuss the method of integral control to overcome
this problem

Consider the model with external forces (1.19). For this section we will assume that these
external forces do not depend on time. Suppose T and τ were computed from some linear
feedback derived from the LQR algorithm.

(u− u0) = −K(y − y0) (2.19)

Where u0 and y0 are again given by the hover state (equation (2.1) and (2.6)). Then for
y = y0 the control input would be u = u0. Substitution into (1.19) now gives

ξ̇ = 0 (2.20)
mv̇ = Fext

λ̇ = 0

IΩ̇ = τext

Which is now no longer stationary. This means that the quadcopter will no longer stabilize
around this hover state. The result of this will be that the drone would drift away and
stabilize with an offset from the desired position ξ0. This drift can be eliminated by using
integral control. Instead of calculating the feedback based on the state variables only, in
integral control extra information is used. Namely the state vector will be augmented with
extra variables corresponding to some integrated error. This extra variable will ensure that
the only stationary state will be the state of zero ’error’. In the case of our quadcopter model
this could mean the following. Suppose we want to ensure that there is no drift in position
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anymore. Then we can augment our state as follows
ξ̇ = v (2.21)

mv̇ = mge −R(λ)(Te) + Fext

λ̇ = Q(λ)Ω

IΩ̇ = −Ω × IΩ + τ +R(λ)Tτext

σ̇ = ξ − ξ0

Similar to the previous section, we can now derive a new LQR feedback that takes into
account this extra state variable based on the linearization of the new equations2. Since the
new variable corresponds to the integrated error

σ(t) =

ˆ t

0
ξ(t′)− ξ0dt′ (2.22)

we can now expect that the drone will react with stronger forces and torques the longer it
remains offset from the target ξ. Also the new equation in (2.21) ensures that the state can
only be stationary if σ̇ = 0 and thus ξ = ξ0 which is exactly what is desired.

2Note that in the linearization used for the LQR feedback, the external forces can not be incorporated since
they are treated as unknowns.
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3 Measuring turbulence

Given that there is some stabilizing LQR control with integral feedback implemented on the
quadcopter, the next step in this project is to determine the turbulence based on the evolution
of the quadcopter’s state.

Since integral feedback is used the system with external forces will be given by
ξ̇ = v (3.1)

mv̇ = mge −R(λ)(Te) + Fext
λ̇ = Q(λ)Ω

IΩ̇ = −Ω × IΩ + τ +R(λ)Tτext

σ̇ = ξ − ξ0

Note that here u = (T, τx, τy, τz) is implicitly given by
(u− u0) = −K(y − y0) (3.2)

The equations (3.1) can be rearranged to obtain Fext and τext
Fext = mv̇ −mge +R(λ)(Te)

τext = R(λ)(IΩ̇ +Ω × IΩ − τ )

Using the simple drag model from (1.2) we get the following expressions for the external force
and torque:

Fext = α(vwind − v)
τext = β(∇× vwind −R(λ)Ω)

In these equations vwind and ∇ × v are the wind velocity and vorticity at the current posi-
tion of the quadcopter. Now assuming the values α, β and m, I, g are known we can actually
reconstruct the wind velocity and vorticity at each point along the quadcopter’s trajectory.

Let y(t) be a state-space trajectory of the quadcopter (i.e a solution to the equations (3.1)).
The control inputs u(t) at each point in time are given by the LQR feedback (3.2) which
depends only on the current state y(t). This means that given the state at time t

y(t) = (ξ,v,λ,Ω,σ) (3.3)
u(t) = (T, τ ) (3.4)

y(t) = (ξ,v,λ,Ω,σ) all the control inputs u(t) = (T, τ ) are also known. This makes it
possible to solve for vwind,∇× vwind in the following equations

α(vwind − v) = mv̇ −mge +R(λ)(Te)

β(∇× vwind −R(λ)Ω) = R(λ)(IΩ̇ +Ω × IΩ − τ )
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resulting in

vwind = v +
1

α
(mv̇ −mge +R(λ)(Te)) (3.5)

∇× vwind = R(λ)Ω +
1

β
(R(λ)(IΩ̇ +Ω × IΩ − τ ))

Performing these calculation using the sensor data of the quadcopter makes it possible to do
a time series measurement of the wind velocity and vorticity around the quadcopter!
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4 Simulation and statistical analysis

4.1 Simulation

In this section we will simulate the dynamics of a quadcopter with LQR control subject to
external forces using the programming language Python together with the libraries NumPy
and SciPy. The control feedback discussed in section 2 will be numerically calculated for a
quadcopter with given intrinsic parameters. The response of this closed-loop system will then
be investigated both with and without external forces.

For the simulation the following parameters were chosen:

Parameter Value Unit
m 1 kg
Ix 0.1 kg m2

Iy 0.1 kg m2

Iz 0.05 kg m2

g 10.0 m s−2

α 0.1 t−1

β 0.1 t−1

Table 4.1: Parameters used for the simulation. Where m is the mass of the quadcopter,
Ix, Iy, Iz are the moments of inertia, g the gravitational constant and α and β the drag

coefficients from equations (1.20) and (1.21).

4.1.1 Model without external forces

For simplicity, we will start with an analysis of an LQR controller in the model without
external forces (1.17). The objective will be to stabilize the quadcopter around the state of
hover described in equation (2.1). This state will be chosen to be at one meter above the
ground. In other words

y0 =


ξ0 = (0, 0,−1)
v0 = (0, 0, 0)
λ0 = (0, 0, 0)
Ω0 = (0, 0, 0)

 u0 =


T = 10.0
τx = 0
τy = 0
τz = 0

 (4.1)

Note that T = 10.0 is found by substituting m and g in equation (2.6). Also note that the
z-component of ξ0 is negative due to the axis convention chosen in section 1. To derive now a
stable linear feedback will use the method of LQR control to calculate matrix K corresponding
to the feedback

(u− u0) = −K(y − y0) (4.2)

This matrix can be found by numerically solving the Riccati equation (2.18) for P given the
matrices A,B,Q and R. Here the matrices Q and R determine the cost function (2.16) and
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can be chosen3. The matrices A and B can be found by substituting the parameters from
Table 4.1 into (2.10) resulting in

A =



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −10.0 0 0 0 0
0 0 0 0 0 0 10.0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 10.0 0 0
0 0 10.0 0
0 0 0 20.0



(4.3)

For the simulation we will choose the following diagonal matrices for Q and R.
Q = diag(

[
100 100 100 1 1 1 1 1 1 1 1 1

]
) R = diag(

[
10 10 10 10

]
)

(4.4)
These diagonal elements determine the weight of each of the state variables in the cost function
(2.16). Since this cost function will be minimized by the LQR feedback, we can expect that
the position will be controlled ’best’ and thus remain closest to ξ0. The diagonal elements
of R make sure that the control outputs given by the feedback do not grow to big. This
is especially important considering that in a real quadcopter all the thrusts are limited to a
certain range. Since the linear system is given by (2.8) the cost function can be written as
follows

J =

ˆ ∞
0

100(x+ 1)2 + 100y2 + 100z2 + v2x + v2y + v2z + φ2 + θ2 + ψ2 + p2 + q2 + r2

+ 10(T −mg)2 + 10τx + 10τy + 10τzdt

Note that for this function to be minimized, the state would have to converge towards
x = −1, T = mg and y, z, vx, vy, vz, φ, θ, ψ, p, q, r = 0 i.e y = y0,u = u0.

Now that all the matrices A,B,Q and R are numerically defined, the Riccati equation
ATP + PA− PBR−1BTP +Q = 0

can numerically be solved by using the SciPy function solve_continuous_are. The equation
is solved directly using a Schur decomposition method described in [4]. The SciPy function
uses the matrices A,B,Q,R as inputs and returns the matrix P as an output. The feedback
matrix K can then be computed using (equation (2.17)).

K = R−1BTP

Performing these computations in Python and rounding to 3 decimal places gives our final
3Under the condition that both the matrices are real symmetric positive definite.
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solution to the control problem.

K =


0 0 −3.162 0 0 −2.535 0 0 0 0 0 0
0 3.162 0 0 2.054 0 6.515 0 0 1.184 0 0

−3.162 0 0 −2.054 0 0 0 6.515 0 0 1.184 0
0 0 0 0 0 0 0 0 0.316 0 0 0.363


(4.5)

Substituting this matrix in equation (4.2) results in an explicit form for the control input.
T = 10.0 + 3.16z + 2.535vz (4.6)
τx = −3.162y − 2.054vy − 6.515φ− 1.184p

τy = 3.162(x+ 1) + 2.054vx − 6.515θ − 1.184q

τz = −0.316ψ − 0.363r

With this feedback law substituted in the equations of motion, we now have a closed the
system

ξ̇ = v (4.7)
mv̇ = mge −R(λ)(Te)
λ̇ = Q(λ)Ω

IΩ̇ = −Ω × IΩ + τ

By calculating the eigenvalues of the linearization matrix in ẏ = [A−BK]y, we can check the
stability of the system around the state of hover y0. Using the SciPy function eig we calculate
the following eigenvalues

−1.781 + 3.667i −1.781− 3.667i −1.781 + 3.667i
−1.781− 3.667i −6.243 −4.142 + 1.369i
−4.142− 1.369i −4.142 + 1.369i −4.142− 1.369i
−1.013 −1.267 + 1.247i −1.267− 1.247i

Note that the real part of all these eigenvalues are in fact all negative. This means that the
system is indeed stable. Using the SciPy function odeint, it is now possible to numerically
integrate the differential equation (4.7). In figure 4.1 and 4.2 the solution to this closed loop
system is plotted for different initial conditions. In both cases the state converges to the state
of hover y0.
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Figure 4.1: The state space trajectory of the system (4.7) with initial conditions
ξ(0) = (0, 0,−1) v(0) = 0 λ(0) = (−0.2, 0, 0) Ω(0) = 0

Figure 4.2: The state space trajectory of the system (4.7) with initial conditions
ξ(0) = (0,−1,−1) v(0) = 0 λ(0) = (0, 0, 0) Ω(0) = 0
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4.1.2 Model with external forces

Suppose that we now use the feedback derived in the previous section (4.6) for a model with
external forces. As previously discussed in section 2.3 it can be expected that the state of hover
is no longer stable. Using the simulation, the quadcopter’s response to a constant external
force can be analysed. Suppose a constant external force Fext = (1, 0, 0) in the x-direction
was added to the closed loop model (4.7) with the previously defined feedback (4.6).

ξ̇ = v (4.8)
mv̇ = mge −R(λ)(Te) + Fext
λ̇ = Q(λ)Ω

IΩ̇ = −Ω × IΩ + τ

If the quadcopter initially where to be in the state of hover y0, we can expect the position
to drift away. This is exactly what we observe in Figure 4.3 where this system is numerically
solved with initial condition y0. The quadcopter finally stabilizes in a slightly tilted position
(θ ≈ 0.1 rad) and a slight offset in position (x ≈ 0.1 m).

Figure 4.3: The state space trajectory of the system (4.7) with initial condition y = y0. The
quadcopter seems to drift away from the desired position.

For this reason we will add integral control to the simulation. Similar to the previous section,
we will calculate a feedback matrix K by solving the Riccati equation with linearization ma-
trices A and B substituted. Only this time these matrixes are derived from the augmented
system (2.21)4.

4In the linearization of this system, the external forces and torques are set to 0 since they are unkowns...
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This results in the following matrices

A =



0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −10.0 0 0 0 0 0 0 0
0 0 0 0 0 0 10.0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 10.0 0 0
0 0 10.0 0
0 0 0 20.0
0 0 0 0
0 0 0 0
0 0 0 0


(4.9)

The Q matrix will now also be a different size. The added variable σ can now also be included
in the cost function. We will use
Q = diag(

[
1 1 1 1 1 1 1 1 100 1 1 1 100 100 100

]
) R = diag(

[
10 10 10 10

]
)

(4.10)
Note that now instead of adding extra weight to the variables (x, y, z), the variables (σx, σy, σz)
are now emphasised. This means that the controller will mostly minimize the integrated error
of the position (2.22), which will prevent the quadcopter from drifting. The extra weight on
the variable ψ was experimentally determined to perform better. By again numerically solving
the Riccati equation using python we can find the new feedback matrix (rounded to 1 decimal
place).
K = (4.11)

0 0 −4.3 0 0 −3.0 0 0 0 0 0 0 0 0 −3.2
0 3.5 0 0 1.9 0 6.0 0 0 1.1 0 0 0 −3.2 0
−3.5 0 0 −1.9 0 0 0 6.0 0 0 1.1 0 −3.2 0 0
0 0 0 0 0 0 0 0 3.2 0 0 0.6 0 0 0


Using this feedback law, the system with a constant external force (4.8) will now be able to
stabilize around the desired position as can be seen in figure 4.4

that cannot be used by the controller.
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Figure 4.4: The state space trajectory of the model with a constant external force using
integral feedback. The initial condition y = y0 is used. Unlike in figure 4.3, the quadcopter
now stabilizes at the desired position ξ = (0, 0,−1). The quadcopter is now slightly pitched

θ ≈ 0.1 in order to compensate for the external force.

This is exactly the behavior that is desired for the quadcopter to be able to stabilize in
turbulence. For this reason the feedback (4.11) will be used for the rest of this analysis.

4.1.3 Measuring turbulence

We will now simulate the quadcopter model where the external forces are due to drag in a
turbulent fluid. In the simulation we will use the model from section 1.2 where

Fext = α(vwind − v) (4.12)
τext = β(∇× vwind −R(λ)Ω) (4.13)

Note that the values for the drag coefficients where set to α, β = 0.1 (table 4.1). In the
simulation, the velocity and vorticity of the wind vwind,∇ × vwind at each moment in time
t will be determined beforehand. A time series of turbulent velocities and velocities will be
provided by a dataset. This dataset contains the trajectories of particles in a homogeneous
and isotropic turbulent velocity field. Along these trajectories, the values of the wind velocities
and velocity gradients are known[5]. The Figures 4.5, 4.6 and 4.7 show the simulated response
of the controlled quadcopter to these turbulent velocities from one sample of the dataset. The
effect of the velocity and vorticity are first simulated separately, and then also combined. In
all these cases the quadcopter remains stable. It is important to note however that these
velocities are scaled to be of a magnitude of around 2 m/s.
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Figure 4.5: State space trajectory of the system subject to turbulent forces caused by the
velocity of a turbulent fluid. The top two plots show the velocity and vorticity of the fluid,
while the bottom plots describe the state (ξ,v,λ,Ω). In this simulation the vorticity is
assumed to be zero, so only linear forces are considered. It can be seen that the state

oscillates around the state of hover while remaining relatively close.

Figure 4.6: In this simulation velocity of the fluid is assumed to be zero, so now only the
torques on the quadcopter are considered. It can be seen that the state still oscillates around
the state of hover. Especially the oscillations of the angular velocity (Ω) seem to be strong.
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Figure 4.7: In this simulation both the vorticity and the velocity are accounted for. Also
now the quadcopter is able to remain close to the desired position.

From these simulated state-space trajectories it is now possible to reconstruct the velocity and
vorticity of the fluid using equation 3.5. The result of this can be seen in figure 4.8 where the
trajectories from figure 4.7 are used.

Figure 4.8: The velocity and vorticity calculated from the trajectories in figure 4.7

As expected, the velocities and vorticities can be completely reconstructed based on the state-
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space trajectory. Together with the fact that the drone remains stable during the flight, this
makes it possible to do a time series measurement of the fluid velocities at a desired point in
space.

4.2 Statistical analysis

For this last section, we will statistically analyse the response of the quadcopter to the tur-
bulence. This will be done by simulating state-space trajectories for many turbulence signals
from the dataset. In this analysis, only the effect of the wind velocity will be taken into
account. The torques caused by the vorticity will be ignored similar to figure 4.5. Using the
same dataset as before, we will generate 1000 quadcopter trajectories at 3 different scales.
First the fluid velocities will be of the same scale used in the previous section (around 2 m/s),
then the velocities will be scaled up by a factor of 5 and 10. An sample of the fluid velocity
at these 3 scales can be seen in figure.

Figure 4.9: Sample of the wind velocity at the 3 different sacles

In total this results in 3 sets of 1000 quadcopter trajectories. These 3 sets are expected to have
different statistical properties that can relate the stability of the controller to the intensity
of the turbulence. The means and standard deviations of wind and the quadcopter’s state is
calculated for all these trajectories, and can be seen in table 4.2.
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trajectories set 1 trajectories set 2 trajectories set 3
wind mean std mean std mean std
vwind,x (m/s) 0.001 1.614 0.004 8.069 0.008 16.138
vwind,y (m/s) 0.052 1.220 0.261 6.100 0.522 12.201
vwind,z (m/s) -0.042 1.341 -0.209 6.703 -0.418 13.407
state variable mean std mean std mean std
x (m) 0.000 0.013 0.000 0.066 -0.001 0.137
y (m) 0.000 0.012 0.000 0.063 0.003 0.137
z (m) -1.000 0.015 -1.000 0.074 -0.987 0.181
vx (m/s) 0.000 0.023 0.000 0.119 -0.003 0.280
vy (m/s) 0.000 0.022 0.000 0.115 -0.003 0.263
vz (m/s) 0.000 0.016 0.000 0.083 0.014 0.238
φ (rad) -0.001 0.014 -0.002 0.070 -0.004 0.146
θ (rad) 0.000 0.017 -0.001 0.087 -0.002 0.175
ψ (rad) 0.000 0.000 0.000 0.002 0.006 0.174
p (rad/s) 0.000 0.018 0.000 0.095 -0.001 0.254
q (rad/s) 0.000 0.019 0.000 0.100 0.000 0.256
r (rad/s) 0.000 0.000 0.000 0.009 0.003 0.341
Percentage crashed (%) 0 0 2.5

Table 4.2: The mean and standard deviation of the state variables and the wind, simulated
for the 3 trajectory sets. The values are rounded to 3 decimal places. Here the velocities in
trajectory set 1 are scaled by a factor 5 in set 2, and by a factor of 10 in set 3. This scaling
can also be seen in the standard deviations of the wind velocity. Note that in all cases the

average state of the quadcopter corresponds closely with the desired hover state.

Even though, on average the state of the drone is stable around hover, there are still cases
in the dataset where the turbulence is too strong, and the drone ’crashes’ to the ground or,
in other words the state surpasses z > 0. This happened in 25 trajectories from the third
trajectory set where the turbulence is strongest. An example of such a trajectory can be seen in
figure 4.10. The reason for these failures can be explained based on the design of the controller.
Since the control feedback is derived from the equations of motion linearized around the hover
state, there will be a region in state-space around the state of hover, where the system is
stable. Outside this region however, the stability is no longer guaranteed. For these states
the non-linear effects start to play a significant role which might cause the quadcopter to
destabilize. It is therefor expected that for strong external forces, the quadcopter might no
longer be stable.
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Figure 4.10: A trajectory from trajectory set 3 where the controller fails and the drone
reaches the ground (z = 0). Once the drone crashes, the drone is simulated to stay on the

ground. The instability seems to be caused by a rapid acceleration of the wind in the z- and
y-direction.
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4.2.1 Acceleration in turbulence

Another interesting statistic is the acceleration of the quadcopter in turbulence. The trajec-
tory of the quadcopter could be analyzed similar to the paper [5] in which statistical properties
of turbulence could be derived from the acceleration of particles transported by a turbulent
flow. The paper showed among other things that the Reynolds number could be derived from
the probability density function of the particles acceleration. Potentially, the trajectory of
the controlled quadcopter could also be related to statistical properties of turbulence. The
difference in this case is that the quadcopter, unlike the particles, actively responds to the
turbulence.

trajectories set 1 trajectories set 2 trajectories set 3
variable mean standard deviation mean standard deviation mean standard deviation
awind,x 0.005 1.228 0.025 6.138 0.049 12.276
awind,y -0.005 1.213 -0.027 6.064 -0.053 12.128
awind,z 0.009 1.1910 0.044 5.956 0.087 11.911
ax 0.000 0.060 0.000 0.321 0.000 0.652
ay 0.000 0.058 0.000 0.306 0.000 0.623
az 0.000 0.031 0.000 0.160 0.000 0.370

Table 4.3: The mean and standard deviation of the acceleration of the wind awind and the
acceleration of the quadcopter a. The values are rounded to 3 decimal places.

For this analysis we will use the trajectories from set 1,2 and 3. Since the wind velocities used
in the simulation come from a dataset of an isotropic turbulent flow [6], it will be expected
that the acceleration statistics are similar in all direction. In table 4.3 and 4.11 it can be
seen that this is indeed the case. For the accelerations of the drone however, it can be seen
that the acceleration in the z-direction has a smaller standard deviation. Also in figure 4.12
it becomes clear that the acceleration in the z-direction has a different distribution then the
x- and y-directions. Unlike in the paper [5], the quadcopter’s response to turbulence seems to
be orientation dependent. Reflecting on the quadcopter model, this behaviour is expected. In
hover, the controller can namely directly compensate the turbulent forces in the z-direction
by adapting the total thrust T . This will cause the z-acceleration to be quickly dampened.
The forces in the x- and y-direction on the other hand, can only be compensated by both
tilting the quadcopter and increasing the thrust. But since it will take some time before the
quadcopter is in the tilted position, the will be accelerated more before being corrected.
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Figure 4.11: Probability density function wind acceleration from set 1. The y-axis is plotted
on a log scale. As expected, x, y and z component of the acceleration all have a similar

distribution.

Figure 4.12: Probability density function quadcopter’s acceleration from set 1. The y-axis is
plotted on a log scale. Unlike the previous figure, the accelerations here are non-isotropic.

The quadcopter seems to accelerate less in the z-direction.

From the probability density functions in figure 4.11 and 4.12 and the table 4.3 the following
observations can be made

• The probability density function of the acceleration of the quadcopter has a very sharp
peak around 0.

• The variance in acceleration of the quadcopter seems to be proportional to the variance

27



in acceleration of wind (around the quadcopter).

• The variance in acceleration of the quadcopter in the z-direction is roughly equal to half
the variance in the x- and y-direction

However, since this analysis is only based on numerical simulations for a specific set of pa-
rameters, there is insufficient information to make qualitative predictions on the statistical
properties of the turbulence. A subsequent project could shed more light on this by deriving
an explicit model for the controlled quadcopter that could make predictions similar to the
models used in [5].
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5 Conclusions and Further work

The main results of this project can be summarized as follows. In the first chapter a physical
model for the quadcopter is derived based on rigid body dynamics together with a simple
model for aerodynamic drag. This model is then used to derive an optimal linear state feed-
back controller using the LQR algorithm. This controller however was not robust to external
forces which could cause the quadcopter to drift from the desired position. Combining the
LQR algorithm with the method of integral control, resulted in the final proposed algorithm
that was both robust to external forces and also capable of keeping the quadcopter close to
the desired position (4.4). Finally, using the derived model and controller, expressions for the
velocity and vorticity of the wind around the quadcopter were derived (3.5). These expressions
proved a way to measure these quantities using the state-space trajectory of the quadcopter.
By obtaining this state information using sensor data, this project shows a potential way to
use a quadcopter as a probe for atmospheric turbulence.

For a continuation of this project, the following aspects could be expanded upon. First
of all, the statistical analysis in this project was not sufficient enough to make qualitative
predictions about turbulence. Further research into the statistics of the quadcopter’s response
to turbulence could give a better insight into the properties of the turbulence. A possible
method to do this would be making a simplified predictive model that relate the quadcopter’s
movement to the turbulence. From this model it might be possible to derive dimensionless
numbers that describe the most important properties of the system. Also the drag model
that is used in this project could possibly be improved. The current model namely treats
the quadcopter as a point particle in a fluid, where the external torques are only due to the
vorticity of the fluid at a single point. This model does not completely capture the effects
of the smaller scale flows in and around the quadcopter. The quadcopter of course generates
its own flows by its propellers causing complicated flows and vortexes. A more advanced
model could shed some light on these dynamics. Lastly, another interesting topic for further
investigation, would be the controller. While in the current controller only information from
the quadcopter’s state is used, an improved controller could possible also use information of
the measured turbulent forces. Using these measurements it could be possible to respond more
quickly, and stay in position more steadily.

29



References

[1] John R. Taylor. Classical Mechanics. University Science Books, 2005.

[2] W.Murray Wonham. Linear multivariable control, a geometric approach. Springer, 3
edition, 1979.

[3] George Halikias. Calculus-variations-optimal-control, 2007.

[4] Alan J Laub. A Schur method for solving algebraic Riccati equations, 1978.

[5] L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte, and F. Toschi. Multifractal
statistics of lagrangian velocity and acceleration in turbulence. Physical Review Letters,
93(6):1–4, 2004.

[6] Roberto Benzi, Luca Biferale, Enrico Calzavarini, Detlef Lohse, and Federico Toschi.
Velocity-gradient statistics along particle trajectories in turbulent flows: The refined simi-
larity hypothesis in the Lagrangian frame. Physical Review E - Statistical, Nonlinear, and
Soft Matter Physics, 80(6):1–6, 2009.

30



A Full equations of motion

Full equation:
ẋ = vx (A.1)
ẏ = vy

ż = vz

v̇x = −(sinφ sinψ + cosφ cosψ sin θ)
T

m

v̇y = −(cosφ sinψ sin θ + cosψ sinφ)
T

m

v̇z = −(cosφ cos θ)
T

m
+ g

φ̇ = p+ sinφ tan θq + cosφ tan θr

θ̇ = cosφq − sinφr

ψ̇ = (sinφ/ cos θ)q + (cosφ/ cos θ)r

ṗ =
Iy − Iz
Ix

qr +
τx
Ix

q̇ =
Iz − Ix
Iy

pr +
τy
Iy

ṙ =
Ix − Iy
Iz

pq +
τz
Iz
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B Angular velocity to Euler angles

Here follows a derivation of the transformation from angular velocities Ω = (p, q, r) to the
derivatives of the Euler angles λ̇ = (φ̇, θ̇, ψ̇) (1.18).

Note that Ω is described in the body reference frame that is rotated by R(λ). We will now
define a new reference frame that is aligned with the world frame, but with the origin at the
center of the drone. In this frame, we can describe the angular velocity as follows

ω = R(λ)Ω (B.1)

The motion of each point x in the rigid body can now be described in this reference frame as
follows

ẋ = ω × x =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

x1x2
x3

 (B.2)

Also, each point can also be described by
x = R(λ)x (B.3)

Where x is the corresponding point in the body frame. The motion can now be described in
terms of the Euler angles as follows

ẋ =
d

dt
R(λ)x = Ṙx (B.4)

Now since x = RTx we get
ẋ = ṘRTx (B.5)

Where R and Ṙ are shorthand for R(λ) and d
dtR(λ) respectively. We can now derive the

transformation from angular velocities to Euler angles by solving

ṘRT =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (B.6)

Substitution of (1.4) gives

ṘRT =

 0 sin θφ̇− ψ̇ cos θ sinψφ̇+ cosψθ̇

− sin θφ̇+ ψ̇ 0 − cosψ cos θφ̇+ sinψθ̇

− cos θ sinψφ̇− cosψθ̇ cosψ cos θφ̇− sinψθ̇ 0

 (B.7)

Solving equation (B.6) results in the angular velocities
ωx = cosψ cos θφ̇− sinψθ̇ (B.8)

ωy = cos θ sinψφ̇+ cosψθ̇ (B.9)

ωz = − sin θφ̇+ ψ̇ (B.10)

Or equivalently ωxωy
ωz

 =

cosψ cos θ − sinψ 0
cos θ sinψ cosψ 0
− sin θ 0 1

φ̇θ̇
ψ̇

 (B.11)

32



Using (B.1) we can now derive Q(λ). We namely getφ̇θ̇
ψ̇

 =

cosψ cos θ − sinψ 0
cos θ sinψ cosψ 0
− sin θ 0 1

−1 ωxωy
ωz

 (B.12)

=

cosψ cos θ − sinψ 0
cos θ sinψ cosψ 0
− sin θ 0 1

−1R(λ)
ΩxΩy
Ωz

 (B.13)

=

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

ΩxΩy
Ωz

 (B.14)
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