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Abstract

The Efimov effect is a universal three-body phenomenon occuring in many different physi-
cal systems. Atoms interacting via van der Waals potentials exhibit an additional type of
universality associated with the Efimov spectrum, namely the universality of the three-body
parameter. This type of finite-range interaction has been studied extensively during the last
decade. These studies have shown that the range of the potential is a very important model
parameter in the context of Efimov physics.

In this work we study Efimov physics for three-body systems involving identical bosons
interacting via a pairwise square well potential. This potential has a well-defined range and
the off-shell two-body T -matrix is analytically known. So far only approximate results exist
for the Efimov spectra corresponding to the potential resonances of the square well potential.
We show that these results are not accurate enough by considering the full non-separable
off-shell two-body T -matrix which is present in the three-body Faddeev equations. In or-
der to calculate the Efimov spectrum, we solve these Faddeev equations by expanding the
T -matrix in separable terms. We analyze different methods to obtain such a separable ex-
pansion. This momentum space treatment allows us to show that strong d-wave interactions
lower the energy of the second Efimov state making it possible to prevent this Efimov state
from merging with the atom-dimer threshold. In case of the shallow square well potential as
two-body interaction the second Efimov state never crosses this threshold even when d-wave
interactions are absent or when a separable approximation for the square well potential is
used. We also show that separable approximations of the two-body T -matrix are insufficient
to accurately compute the trimer states at large negative energies even when the off-shell
two-body T -matrix is highly separable in this energy regime. In case of deep square well
potentials, these separable approximations cannot even be used to determine the three-body
parameter. Since we consider the full non-separable off-shell T -matrix, we can determine
the three-body parameter accurately. Further research should point out how good the sep-
arable approximation of the two-body T -matrix is for more realistic interatomic potentials
supporting at least one two-body bound state.
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1. Introduction

The work of this thesis is part of a bottom-up approach to study strongly interacting quantum
systems. Via the unifying concepts of few-body physics we eventually want to describe such
many-body systems. The approach of starting with few-body physics including finite-range
interactions differs from the usual mean-field approach in many-body physics in which one
starts immediately from a large number of particles together with a set of approximations to
solve the problem. One of these approximations which is often used is neglecting the range
of the two-body interaction potential and considering only contact interactions, which works
well for dilute systems. Furthermore, these mean-field theories often contain only one- and
two-body correlations which is only a valid description for weakly interacting many-body
systems [1].

Many different strongly interacting quantum systems exist such as nuclear, atomic and
condensed matter systems. We focus on ultracold atomic gases which are particularly useful
for studying strongly interacting quantum systems. The experimental techniques such as
laser cooling and trapping are highly advanced, making it possible to trap millions of atoms
at sub-microkelvin temperatures. Furthermore, ultracold atoms can be precisely manipulated
by lasers and external fields. For example, the two-body interactions can be accurately mod-
ulated using a magnetic-field controlled Feshbach resonance [2–4]. In this way, the collective
many-body interaction can be made both attractive and repulsive. Moreover, a wide variety
of different spin states, fermionic or bosonic isotopes and species can be used in experiments
turning systems of ultracold atomic gases into a particularly rich research field.

The tunability of the interparticle interaction is a key feature of ultracold atomic gases
and allows physicists to study strongly interacting systems in a controlled way. The two-body
scattering length a is the length scale which characterizes the interaction strength of a two-
particle system. This length scale is related to the two-body elastic scattering cross section
σ at zero energy by σ = 4πa2 [5]. If the magnitude of the scattering length is much larger
than the characteristic range r0 of the two-body interaction potential, the system is strongly
interacting. This regime of large scattering lengths is also called the unitary regime. In the
unitary limit, the scattering length diverges and the two-body interaction becomes resonant.
In this case, the scattering length is much larger than the typical interparticle distance d
of the many-body system. Atomic quantum gases are very dilute, so that the inequality
r0 � d� |a| holds in the strongly interacting regime [6].

Interesting physics happens in the unitary limit. For example, a Fermi gas consisting of
fermions with two spin states shows a spectacular crossover between two different regimes of
superfluidity which is known as the BCS-BEC crossover [6]. At positive scattering lengths,
two-body molecular states can form a Bose-Einstein condensate, whereas at negative scat-

1



CHAPTER 1. INTRODUCTION

tering lengths the atoms form a BCS state in which fermions of opposite spin join to make
Cooper pairs. Bosonic systems also exhibit remarkable effects in the unitary limit. One ex-
ample is the Efimov effect [7, 8] which is discussed in detail in this thesis. The Efimov effect is
not present in the two-component Fermi gas, so that the corresponding interactions are scale
invariant when the scattering length a is infinitely large [9]. The scale invariance is broken in
the unitary Bose gas by the Efimov effect which introduces an additional length scale which
is called the three-body parameter [9].

Ultracold atomic gases are not only important on a fundamental level, but they also
have many applications such as atomic clocks [10] and interferometers [11]. Moreover, these
quantum systems offer a highly controllable setting for quantum simulation of interacting
many-body systems [12] and could even serve as a platform for quantum computation. Good
theoretical models of quantum many-body systems are needed for the development of such
applications. These models should contain the information about the few-body systems cor-
rectly. The existing many-body theories are not valid for particular many-body systems
such as a strongly interacting homogeneous Bose-Einstein condensate [13], so that improved
many-body models are needed. The first step in the development of a good theoretical model
of strongly interacting quantum gases is understanding the important few-body interactions
such as the Efimov effect which is a universal three-body phenomenon [7, 8, 14–16] and occurs
when three particles interact via short-range attractive interactions that are nearly resonant.
Such a three-particle system exhibits an infinite sequence of three-body bound states in the
unitary limit, which is known as the Efimov effect. The three-body bound states are called
Efimov states or Efimov trimers. The universality of the Efimov effect makes it possible to
occur in many different physical systems such as nucleons [17, 18], atoms [19] and magnons
[20].

The Efimov effect had been predicted by Vitaly Efimov in 1970. From then on, physicists
focussed mainly on the observation of the Efimov effect in nuclear systems, but it could not
be proven that certain nuclear three-body bound states originate from the Efimov effect. The
breakthrough came from the field of ultracold atoms due to the high controllability of the two-
body interactions provided by Feshbach resonances. The search for Efimov states in ultracold
atomic systems started with the proposal of Ref. [21] in 1999 to observe the signatures of
Efimov states in ultracold atomic systems by measuring the three-body recombination rate
as a function of the two-body scattering length. This signature was first measured in an
ultracold gas of cesium atoms (133Cs) by a research group at the University of Innsbruck
in 2006 [22], which is the first experimental evidence for Efimov states. Since then, Efimov
states have also been observed in ultracold gases of lithium (7Li, 6Li) [23–35], potassium (39K)
[36], rubidium (85Rb) [37] and mixtures of atomic species [38]. It has even become possible
to measure the triatomic Efimov resonance corresponding to the first excited Efimov state
[39], which fully confirms the Efimov effect. A few years ago, the Efimov effect has also been
observed in helium (4He) without artificial tuning of the two-body interaction via Feshbach
resonances [40]. Another recent achievement is the successful measurement of the lifetime of
the Efimov states by studying the decay dynamics of a molecular gas [41].
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1.1. THE EFIMOV EFFECT

1.1 The Efimov effect

In 1935 —a long time before the Efimov effect was predicted— Thomas [42] studied three-
particle systems interacting via short-range attractive two-body potentials. He showed that
no lower limit exists on the three-body ground state energy when the depth of the two-
body interaction approaches −∞, while its range approaches 0. This finding is known as the
Thomas collapse. The interpretation of this collapse was given by Vitaly Efimov [7, 8] in
the early seventies, who —in contrast to Thomas’ approach— fixed the range r0, but varied
the two-body scattering length a which is a parameter related to the underlying two-body
interactions. Efimov [7] studied systems consisting of three identical bosons in which |a| � r0

and showed that in the unitary limit a geometric series of infinitely many three-body bound
states exists with an accumulation point at zero energy. This is called the Efimov effect. He
also recognized that short-range physics would introduce a cut-off to the three-body spectrum
which produces a well-defined ground state energy, avoiding the Thomas collapse. However,
Efimov himself did not consider scattering lengths which are on the order of the range r0 of
the potential.

Fig. 1.1 shows the energy spectrum of the three-body system as a function of the inverse
scattering length in the zero-range theory. The scattering length a describes the s-wave two-
body interactions near zero energy. At negative scattering lengths (a < 0), the potential does
not support a two-body bound state and a ’virtual’ state lies in the two-body continuum
(E > 0). At positive scattering lengths (a > 0), the potential supports a two-body bound
state with zero angular momentum. The binding energy of this so-called ’dimer state’ can be
approximated for large a by

E2b = − ~2

ma2
(1.1)

where m is the mass of each boson. This equation is exact in the zero-range theory at all
nonzero values of a because the condition |a| � r0 is always satisfied in case of zero-range
potentials. The black curve in Fig. 1.1 indicates the two-body bound state energy given by
Eq. (1.1). In this figure, the energy E of the three-particle system is represented by the wave
number κ which is defined by

κ = sign(E)

√
m|E|
~2

. (1.2)

Thus the dimer energy is represented by a straight line in the (1/a, κ)−plane.

The Efimov states are indicated by the red solid lines in Fig. 1.1. The universality of the
Efimov spectrum is reflected in the geometric scaling of the energies and lengths scales. The
trimer energies at diverging scattering length (a→ ±∞) are given by

E∗3b,n+1 = e−2π/s0E∗3b,n (1.3)

where s0 = 1.00624 for three identical bosons [15], so that e2π/s0 ≈ (22.7)2 ≈ 515. The index
n labels the Efimov state. In the zero-range limit, n is an integer in the range (−∞,∞). The
size of the Efimov states goes to infinity as n goes to infinity. Since the scaling of the trimer
states is universal, one only needs to know one characteristic point to fix the full Efimov
spectrum. There are many possibilities to choose this so-called ’three-body parameter’. One
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CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic representation of the Efimov spectrum for three identical bosons of
mass m in the zero-range theory (figure taken from Ref. [16]). The wave number κ, defined
by Eq. (1.2), is plotted as a function of the inverse scattering length 1/a. The red curves
indicate the three-body bound states, which become trimer resonances in the three-body
continuum (dashed lines). The two-body s-wave binding energy is indicated by the black
curve.
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1.1. THE EFIMOV EFFECT

possibility is to specify the wave number κ∗n corresponding to the energy of the nth trimer
state at diverging scattering length. One could also choose to specify the scattering length
a−,n at which the nth trimer state emerges from the three-body continuum. This choice
is experimentally more interesting because a−,n can be determined from the maxima in the
three-body recombination rate K3 in an ultracold gas of trapped atoms [21]. At positive
scattering lengths, the recombination rate K3 shows minima at particular values of the scat-
tering length [21], indicated by a+,n, which also scales universally and can thus be used as
a three-body parameter. Finally, the scattering length a∗,n at which an Efimov state disap-
pears at the atom-dimer threshold could also be chosen as the three-body parameter. This
special value can also be experimentally observed by measuring the atom-dimer relaxation
rate in an ultracold mixture of atoms and weakly bound dimers in a trap and determining
the maxima in the loss rate. More information about these experimental observables is given
in Appendix A. The scaling of the three-body parameters in the zero-range theory is given
by

κ∗n+1 = e−π/s0κ∗n,

aα,n+1 = eπ/s0aα,n,
(1.4)

where α = −,+ or ∗. This geometric scaling is also indicated in Fig. 1.1. The various three-
body parameters are also related to each other. For example, Gogolin et al. [43] have found
that

a−,nκ
∗
n = −1.50763, (1.5)

whereas Braaten and Hammer [15] have shown that

a∗,nκ
∗
n = 0.0707645. (1.6)

It is important to realize that zero-range theory does not predict a value for the three-body
parameter.

The Efimov states emerge from the three-body threshold (E = 0) at negative scattering
lengths. This makes the Efimov effect counterintuitive. It implies that three-body bound
states exists even when a pair of bosons cannot form a bound state. This situation is analogous
to the one of the Borromean rings where all three of them are bound even though each
individual pair is unbound. Therefore, the part of the Efimov spectrum for which a < 0 is
also called the Borromean region.

The Efimov effect is universal in the sense that it happens for all bosonic systems inter-
acting via short-range attractive interactions that are nearly resonant regardless of the type
of particles (e.g., atoms, nucleons or molecules) which are considered. It can even happen for
fermionic systems if at least two particles are distinguishable [15]. To be more precise, with
short-range interactions we mean that the two-body potential should decay faster than 1/r3

where r is the interparticle distance [16]. If this requirement is fulfilled, one can introduce a
characteristic length r0 of the two-body interaction, which is called the range of the potential.
The term ’nearly resonant interactions’ refers to potentials which can almost or just barely
support a weakly two-body bound state, in which case the magnitude of the scattering length
is much larger than the range. Only when the scattering length a diverges, the number of
Efimov states is infinite. This effect arises from an effective three-body long-range force whose
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CHAPTER 1. INTRODUCTION

potential is proportional to −1/R2 in the range r0 � R � |a| where the hyperradius R is

defined by R =
√

2
3

(
r2

12 + r2
23 + r2

31

)
and describes the size of the three-body system1.

1.2 Finite-range corrections

In case of zero-range potentials the condition |a| � r0 is always satisfied for nonzero a, so
that Efimov’s results describe exactly what happens for contact interactions. As recognized
by Efimov, finite-range potentials will always have a three-body ground state. Consequently,
the index n which labels the Efimov state becomes an integer in the range [0,∞). The ground
Efimov state is labeled by n = 0.

The universal Efimov spectrum shown by Fig. 1.1 changes as a result of the nonzero inter-
action range. First of all, local finite-range potentials which are attractive may support deeper
two-body bound states which allows the Efimov trimers to decay. A zero-range two-body po-
tential can support at most one two-body bound state, so that only one potential resonance is
associated with this potential. When a finite-range two-body interaction supports more than
one s-wave two-body bound state, many potential resonances at which the scattering length
diverges, are associated with this potential and infinitely many Efimov states show up at each
potential resonance. These Efimov states are not true bound states when a deeper dimer
state is present. In those cases, the Efimov states are called resonant states. The lifetime
of these states is finite because they are embedded in the atom-dimer scattering continuum
as shown in Fig. 1.2. This figure shows the Efimov spectra corresponding to the first three
potential resonances of the finite-range potential gV (r). The interaction strength g is used
to tune s-wave scattering length.

Fig. 1.2 also shows that near each potential resonance a regime can be defined in which
the universal scaling of the three-body parameters given by Eq. (1.4) is approximately valid.
Note that this is the universal regime studied by Efimov. Inside this regime, Eq. (1.4) is still
valid because |aα,n| � r0 and κ∗nr0 � 1. Outside this universal regime, the discrete scale
invariance of the Efimov states is broken due to the finite-range interactions. The three-body
parameters corresponding to the lowest Efimov state are strongly affected. This Efimov state
may not even cross the two-body threshold. There exists even a variational principle [45]
which constrains the ground-state energy of three identical bosons, interacting via spherically
symmetric pair potentials, to always lie below the ground-state energy of two of such bosons,
more precisely E3b,0 ≤ 3E2b,0. For such systems, the three-body parameter a∗,0 is absent near
the first potential resonance.

The three-body parameter was thought to strongly depend on the short-range details of
the two-body interaction potential. This concept has changed over the past decade in which
many experiments in ultracold quantum gases have been successfully performed with different
atomic species to measure the three-body parameter a− [22–30, 36–39, 46, 47], resulting in
a−,0 ≈ 9 rvdW within ±20% deviation [16], where rvdW is the van der Waals length defined by

rvdW ≡ 1
2

(
mC6
~2
)1/4

. The origin of this universality is the result of a strongly repulsive universal
barrier in the effective three-body potential at a hyperradius R ≈ 2 rvdW which prevents the
three particles from simultaneously getting close together, so that the short-range details are

1Other definitions of the hyperradius also exist. The hyperradius defined by Ref. [15] is a factor
√

2 smaller,

whereas the definition of Ref [44] is a factor 21/2

31/4
≈ 1.07 smaller.
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1.2. FINITE-RANGE CORRECTIONS

Figure 1.2: Schematic representation of the Efimov spectra for three identical bosons of
mass m interacting via a short-range attractive two-body potential gV (r) (figure taken from
Ref. [16]). The black solid curves indicate the s-wave two-body bound states. The three-body
bound states are indicated by the solid blue curves, whereas the dashed blue curves indicate
three-body resonant states. The red discs indicate the Efimov windows of universality [16]
in which good agreement with the zero-range theory is found (red dashed curves). Note that
this figure only shows states with zero angular momentum.
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CHAPTER 1. INTRODUCTION

less important than one would näıvely expect [48, 49]. The three-body repulsive barrier is
caused by the increase of the kinetic energy corresponding to the hyperangular motion which
originates from an abrupt change of the geometry of the three-particle system. This change
is caused by the small probability density to find two particles close together.

The universal shape of the Efimov spectrum implies that universal negative three-body
parameters a− should lead to universality for positive scattering lengths. Therefore one
would expect that the values of the scattering length at which the three-body recombination
minima and the atom-dimer resonances occur, indicated by a+ and a∗ respectively, should
also be universal. The universality of these parameters has not been observed experimentally
[19, 22–27, 31–36, 46, 50, 51] (see also Ref. [52] for a careful analysis of the experimental
data). Theoretical models which are more sophisticated than the contact interaction model,
are needed to describe these experimental results. For instance, Ref. [31] measured the energy
of the first excited Efimov state at positive scattering lengths by performing radio-frequency
association measurements and found that the universal model based on contact interactions
is insufficient to predict the correct value of a∗.

The necessity to go beyond zero-range universal theories has also been shown by a recent
numerical study on the first three potential resonances of the Lennard-Jones potential [52]
revealing that the first excited Efimov trimer does not intersect the atom-dimer threshold
(just like the ground Efimov state). However, this Efimov state approaches the threshold
close enough to produce a resonance in the atom-dimer loss rate near a = 3.3 rvdW . The
authors of Ref. [52] attributed this non-crossing of the second Efimov resonance to strong d-
wave interactions near a = 1 rvdW [53]. The adiabatic hyperspherical representation used by
Ref. [52] did not allow to exclude the d-wave interactions in order to confirm their hypothesis.
Other theoretical studies [54, 55] which considered separable approximations for van der Waals
potentials, considering only s-wave interactions, showed that the second Efimov state does
unbind into a dimer and a free particle at some positive value of the scattering length.

1.3 Feshbach resonance

The schematic representation of the Efimov spectra in Fig. 1.2 describes how the bound and
resonant states are affected when one varies the strength g of the single-channel interaction.
The scattering length a diverges for specific values of g (indicated in Fig. 1.2 by g1, g2 and
g3) at which an s-wave two-body bound state becomes bound. This phenomenon is called a
potential resonance. However, in most physical systems it is not possible to tune the single-
channel interaction strength g experimentally, so that a potential resonance is not typically
accessible in experiments. Although the scattering length in a potential resonance is not ex-
perimentally tunable, it can be used theoretically to study the Efimov effect. Experimentally,
it is possible to tune the scattering length of ultracold atomic systems by means of a Feshbach
resonance [56], named after Herman Feshbach who described such resonances in the context of
nuclear physics [2, 3]. Fano [4] approached the problem on the background of atomic physics,
so that this resonance is also known as the Fano-Feshbach resonance.

In a Feshbach resonance a closed channel supports a two-body bound state whose energy
equals the collision threshold of the open channel. This situation is sketched in Fig. 1.3.
The open and closed channels correspond to different hyperfine state configurations of the
two interacting atoms. This means that the magnetic moments corresponding to the open

8



1.3. FESHBACH RESONANCE

Figure 1.3: Schematic representation of the two-channel model for a Feshach resonance (figure
adapted from [56]). Two atoms collide at energy E in the entrance channel (indicated by the
blue arrow) which is coupled to the closed channel potential Vc supporting a bound state with
energy Ec.

Figure 1.4: Scattering length a as function of the magnetic field B for a Feshbach (figure
adapted from [56]). Here abg denotes the background scattering length due to scattering in
the open channel, B0 is the resonance position and ∆ the width of the resonance.

and closed channels are different. Application of an external magnetic field can therefore be
used to detune the energy difference between the bound state of the closed channel and the
scattering threshold of the incoming channel. At resonance, this energy difference is zero and
the scattering of the atoms in the open channel is enhanced [15]. Mathematically, this means
that the scattering length a diverges when a particular magnetic field B0 is applied. Near a
Feshbach resonance without inelastic two-body channels, the scattering length a is given by

a = abg

(
1− ∆

B −B0

)
, (1.7)

where abg is the background scattering length which results from the background collision in
the open channel potential Vbg and ∆ controls the width of the resonance [57, 58] as sketched
in Fig. 1.4. So modification of the strength of an external magnetic field is equivalent to
modifying the two-body scattering length a.
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CHAPTER 1. INTRODUCTION

1.4 The square well potential

In order to get a full understanding of the experimental results, theoretical models should
include the effects of finite-range interatomic potentials, the multichannel nature of atomic
systems and the corresponding finite-width effects related to the Feshbach resonances which
are used to tune the scattering length experimentally by variation of an applied magnetic
field. One method to study finite-range effects on the Efimov spectrum is to model broad
Feshbach resonances by the potential resonances of some finite-range interaction potential.
Such analyses have been performed for many different kinds of potentials [48, 49, 55, 59]. In
particular, Ref. [59] considered both potentials with a power-law decaying tail, −Cnr−n, and
potentials which decay faster than any power law. However, the square well potential given
by

VSW (r) =

{
−V0 0 ≤ r < R

0 r ≥ R,
(1.8)

is not fully understood yet in the context of Efimov physics. This is a very simple model
for atomic interactions whose long-range behaviour is in fact described by the van der Waals
tail −C6

r6
where the dispersion coefficient C6 depends on the atomic species. The advantage

of the square-well potential is the fact that it is one of the simplest extensions of zero-range
interaction models, in which finite-range effects are incorporated in a pure way (i.e., the range
is extremely well defined). Furthermore, many two-body properties relevant for three-body
physics, such as the off-shell two-body T -matrix, are known analytically, which eases the three-
body calculations and thus makes it easier to go beyond the usual separable approximation
for the s-wave component of the off-shell two-body T -matrix when computing the Efimov
states in the momentum-space treatment.

1.4.1 Previous work on the square well potential

The Efimov physics associated with the square well model has been considered before in
Ref. [60–63]. Jensen et al. (1997) [60] solved the Faddeev equations in coordinate space and
showed that an infinite number of Efimov states exists when the three particles interact via
a pairwise square well potential. Their methods were mainly analytical, and they did not
calculate the Efimov spectrum.

In Ref. [61–63], the Efimov trimers corresponding to the square well potential were cal-
culated by substituting the off-shell two-body T -matrix into the Skorniakov-Ter-Martirosian
equation, which applies to separable two-body interactions. The square well potential is non-
separable in the momentum-space representation just like all local finite-range potentials, so
that the validity of these calculations needs to be tested. Mestrom [61] focused on a shallow
square well potential, whereas Debets [62] considered an infinitely deep square well poten-
tial and found that the corresponding three-body parameter (a−,0 = −14.6 R) is five times
larger than for the shallow square well (a−,0 = −3 R). Kroeze [63] generalized the Feshbach
formalism to an off-shell theory and calculated the off-shell T -matrix describing scattering
off an infinitely deep square well including a Feshbach resonance. For very broad Feshbach
resonances this model resulted in a three-body parameter which matches the value found in
experiments. One problem of this model is the huge impact of the background scattering

10
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square well, N = 11

van der Waals tail
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r/r0

-1.0

-0.5

0.5

1.0

u0(r)

Figure 1.5: The s-wave radial wave functions u0(r) of the square well potential and the van
der Waals tail −C6/r

6 at zero energy (normalized asymptotically to unity) as a function of
the interparticle distance r expressed in the range r0 (r0 = R in case of the square well and
r0 = rvdW in case of the van der Waals tail). The considered square well potential supports
11 s-wave two-body bound states, whereas the van der Waals tail supports infinitely many
bound states. In both cases, the magnitude of the s-wave scattering length is infinite, so that
u0(r)→ 1 for r →∞.

length on the three-body parameter which is not expected. The studies of Ref. [60–63] in-
volved only s-wave interactions which dominate in the ultracold regime. However, the effects
of d-wave interactions could be important when the scattering length is comparable to the
range of the potential [52, 53].

Ref. [61–63] have only considered a shallow and infinitely deep square well potential, but
did not analyze the intermediate regime. Naidon et al. [59] formulated a hypothesis for the
behavior of the three-body parameter of the square well potential: they expect that the square
well potential does not reveal any universality of the three-body parameter. As discussed
above, the universality of the three-body parameter originates from a three-body repulsive
barrier in the effective hyperradial potential which is caused by the reduced probability to
find particles inside the attractive two-body potential well [48, 49]. Such a reduction of the
probability density is not the case for the square well potential as can be seen from Fig. 1.5.
This figure compares the zero-energy two-body s-wave radial wave functions of the square
well potential and the van der Waals potential −C6/r

6 at diverging scattering length. The
analytical form of these wave functions can be found in Ref. [61] and Ref. [49] respectively.
Ref. [59] considered both potentials with a power-law decaying tail, −Cnr−n, and potentials
which decay faster than any power law. In both cases the two-body probability density drops
significantly inside the well. This suggests that the square well potential is an exception and
may not reveal any universality [59]. This hypothesis should be tested in order to gain more
insight into the universality of the three-body parameter in general.

11



CHAPTER 1. INTRODUCTION

1.5 Outline

In this work we study Efimov physics associated with the potential resonances of the square
well potential. We solve the three-body Fadddeev equations which apply to three identical
spinless bosons. This momentum space representation allows us to exclude and include d-
wave interactions and to study their effects. Previous calculations in Efimov physics using this
momentum-space treatment involved only s-wave interactions for which non-local separable
interaction potentials were used as a model for local potentials. Since the Faddeev equations
reduce to a set of one-dimensional integral equations when the off-shell two-body T -matrix is
approximated by a separable expansion, it is important to understand the different existing
expansion methods and to judge their accuracy and usefulness in calculations of the energies
of the Efimov states. A systematic analysis of these different expansion methods by simply
calculating the energies of the Efimov states using these different methods has not been
performed before and is therefore also presented in this work. Elastic atom-dimer scattering
processes are also considered to investigate the crossing of the Efimov states with the atom-
dimer threshold.

This thesis is organized as follows. In Chapter 2 we will review some important concepts
of two-body scattering theory. This Chapter introduces the off-shell two-body T -matrix
which is very important when performing three-body calculations. The three-body Faddeev
equations are presented in Chapter 3. We focus on the equations corresponding to three-
body bound states and to the scattering process between a two-body bound state and a free
particle. Chapter 4 summarizes and expands the on-shell and off-shell two-body scattering
results presented in Ref. [63] for a square well potential as two-body interaction. In Chapter 5
we present different methods to perform a separable expansion of the off-shell two-body T -
matrix which we use to solve the Faddeev equations. The numerical approach to solve these
equations is presented in Chapter 6. The resulting Efimov spectra corresponding to the
square well potential are analyzed in Chapter 7. We mainly focus on the shallow and very
deep potentials. Finally, Chapter 8 summarizes the main conclusions of our work, followed
by an outlook to possible future research.
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2. Scattering theory

In this Chapter we will treat the quantum theory of nonrelativistic scattering. We will assume
that the particles are spinless. The most important concepts which we will introduce here
are the scattering length and the off-shell two-body T -matrix. This Chapter is based on the
textbooks written by Taylor (1972) [64] and Sitenko (1991) [5].

2.1 Two-body scattering theory

The Hamiltonian of a two-particle system is given by

H =
p2

1

2m1
+

p2
2

2m2
+ V (r1, r2, t) (2.1)

where p = −i~∇ is the momentum operator. When the interaction potential V (r1, r2, t) is
time-independent, the general solution of the Schrödinger equation, i~ ∂

∂t |Ψ〉 = H|Ψ〉, is given
by

|Ψ〉 = e−iHt/~|ψ〉 (2.2)

where |ψ〉 is the time-independent wave function. It should satisfy the time-independent
Schrödinger equation, H|ψ〉 = E|ψ〉. If V (r1, r2, t) depends only on the relative distance r =
r1− r2, the eigenfunctions of the Hamiltonian can be chosen to be separable in the center-of-
mass coordinate R = m1r1+m2r2

m1+m2
and the relative coordinate r, i.e. |ψ〉 = |ψR〉|ψr〉. The wave

function |ψR〉 satisfies the Schrödinger equation for a free particle with mass M = m1 +m2,
whereas the wave function |ψr〉 satisfies the one-particle Schrödinger equation with reduced
mass µ = m1m2

m1+m2
subject to the potential V . So we have

− ~2

2M
∇2

R|ψR〉 = ER|ψR〉, (2.3)[
− ~2

2µ
∇2

r + V (r)

]
|ψr〉 = Er|ψr〉. (2.4)

Therefore two-body scattering theory is equivalent to solving two one-particle Schrödinger

equations. The corresponding Hamiltonians areHcm = − ~2
2M∇

2
R andHrel =

[
− ~2

2µ∇
2
r + V (r)

]
.
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CHAPTER 2. SCATTERING THEORY

2.1.1 The scattering operator

The general solution of Eq. (2.2) contains the so-called evolution operator U(t) which is
defined by

U(t) ≡ e−iHt/~ = e−i(Hcm+Hrel)t/~ = e−iHcmt/~ ⊗ e−iHrelt/~ (2.5)

where we have made use of the fact that Hcm and Hrel commute. Similarly, we define the
free evolution operator U0(t) as

U0(t) ≡ e−iH0t/~ = e−i(Hcm+H0
rel)t/~

= e−iHcmt/~ ⊗ e−iH0
relt/~

(2.6)

where H0
rel = − ~2

2µ∇
2
r is the kinetic energy operator of the relative motion. This free evolution

operator U0(t) describes the system of two noninteracting particles.

For every scattering state |ψ〉 the orbit is given by U(t)|ψ〉. This time-dependent wave
function is expected to behave as

lim
t→−∞

U(t)|ψ〉 = U0(t)|ψin〉, and

lim
t→∞

U(t)|ψ〉 = U0(t)|ψout〉
(2.7)

which are called the in- and out-asymptotes respectively. This expectation is based on the
assumption that the potential V (r) falls off sufficiently fast as r → ∞. For a spherically
symmetric potential V (r) this means that it should fall off quicker than r−3 at infinity [64].
This is only one of the conditions to which the scattering theory presented in this Section
applies. In the rest of this Section we will always assume that the particles interact via a
spherically symmetric potential which satisfy the following conditions [64]:

1. V (r) = O(r−3−ε) as r →∞ (some ε > 0)

2. V (r) = O(r−
3
2

+ε) as r → 0 (some ε > 0)

3. V (r) is continuous for 0 < r <∞, except perhaps at a finite number of finite disconti-
nuities.

So a wide class of potentials including the atomic interaction potentials considered in this
thesis fulfill these conditions. Note that the Coulomb potential does not fulfill the above
conditions.

If the above conditions are satisfied, it can be proven that every state |ψin〉 in the two-
particle Hilbert space H is the in-asymptote of some actual orbit U(t)|ψ〉 [64], which is known
as the asymptotic condition. So we can define the two-particle Møller operator Ω+ as

Ω+ = lim
t→−∞

U(t)†U0(t), (2.8)

so that

|ψ〉 = Ω+|ψin〉. (2.9)
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2.1. TWO-BODY SCATTERING THEORY

From Eq. (2.8) it can be easily derived that

Ω+ = lim
t→−∞

U(t)†U0(t) = 1cm ⊗
(

lim
t→−∞

eiHrelt/~e−iH
0
relt/~

)
≡ (1cm ⊗ Ω+)

(2.10)

Here we have defined the operator Ω+ which acts on Hrel. The unit operator 1cm acts on the
subspace Hcm and reflects the fact that the center of mass moves as a free particle. Similarly,
we can define the two-particle Møller operator Ω− as

Ω− ≡ lim
t→∞

U(t)†U0(t) = 1cm ⊗
(

lim
t→∞

eiHrelt/~e−iH
0
relt/~

)
≡ (1cm ⊗ Ω−) ,

(2.11)

so that

|ψ〉 = Ω−|ψout〉. (2.12)

The scattering theory presented in this Section does not only satisfy the asymptotic condi-
tion, but it is also asymptotically complete [64]. This means that the subspace which contains
all states with in-asymptotes is the same as the subspace which contains all states with out-
asymptotes and that this subspace of the Hilbert space H is just the subspace of all states
orthogonal to the bound states [64]. We call this subspace R. This theorem allows us to write

|ψ〉 = Ω+|ψin〉 = Ω−|ψout〉. (2.13)

The Møller operators are isometric operators on H which means that they are linear operators
which preserve the norm. This property allows us to define the scattering operator S as

S ≡ Ω†−Ω+ = 1cm ⊗ Ω†−Ω+ ≡ 1cm ⊗ S, (2.14)

so that

|ψout〉 = S|ψin〉. (2.15)

So the scattering operator S relates the in-asymptote directly to the out-asymptote. There-
fore it contains all information which is of experimental interest. From the fact that the
Møller wave operators are isometric it follows that scattering operator S is linear and norm
preserving, so that it is also isometric. Moreover, from the asymptotic completeness it follows
that S is a mapping from the subspace R onto R, so that is unitary. So

S†S = SS† = 1. (2.16)

In the rest of the Section we will consider operators such as the scattering operator S
which acts on the subspace Hrel. We will write the time-independent wave function |ψr〉
corresponding to the relative motion of the two particles as |ψ〉. So we drop the index for
convenience. We will also write the Hamiltonian Hrel simply as H.
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CHAPTER 2. SCATTERING THEORY

2.1.2 The scattering matrix

The scattering operator S commutes with H0, and also with the angular momentum operators
L2 and Lz if the interaction potential is spherically symmetric. Therefore, the S-matrix is
diagonal in the spherical wave basis {|E, l,m〉} (defined in Appendix E.1), i.e.,

〈E′, l′,m′|S|E, l,m〉 = Sl(E)δl′lδm′mδ(E − E′). (2.17)

This is also called the energy normalized S-matrix, whereas the momentum normalized scat-
tering matrix is defined as 〈p′|S|p〉. The scattering operator S is unitary, so that Sl(E) can
be written as

Sl(E) = e2iδl(E). (2.18)

The phase shift δl(E) is real. It defines the partial-wave scattering length al and effective
range Rl by the so-called effective range expansion:

k2l+1 cot(δl(k)) = − 1

al
+

1

2
Rlk

2 +O(k4). (2.19)

The wave number k is related to the energy E by E = ~2k2
2µ as usual. The coefficient R0 is

usually related to the range of the potential. Note that only the s-wave scattering length
a0 has the dimension of length. Eq. (2.19) holds for exponentially bound potentials. The
effective range expansion in powers of k2 is usually not possible for other types of potentials.

2.1.3 The transition operator

So far we have described collisions in terms of the scattering operator S. However, the
transition operator T (z) and the Green’s operator G(z) are also very useful in scattering
theory. The transition operator T is defined as

T (z) = V + V G(z)V (2.20)

where G(z) = (z−H)−1 is the so-called Green’s operator or resolvent [64]. The variable z is a
complex variable which represents the energy of the two-particle system in the center-of-mass
frame when it is real. Clearly, T (z) is analytic for all z not in the spectrum of H just like the
operator G(z). The transition operator T (z) has a pole for the values of z corresponding to
a bound state of H and it has a branch cut on the real positive axis [64].

We can also define the free Green’s operator G0(z) = (z −H0)−1 where H0 is the kinetic
energy operator in the center-of-mass frame. The operators G(z) and G0(z) are related by

G(z) = G0(z) +G0(z)V G(z) or

G(z) = G0(z) +G(z)V G0(z)
(2.21)

which are both called the Lippmann-Schwinger equation for G(z). By combining this equation
with Eq. (2.20) it can be easily derived that

G0(z)T (z) = G(z)V and

T (z)G0(z) = V G(z).
(2.22)

16



2.1. TWO-BODY SCATTERING THEORY

These important identities can be substituted in Eq. (2.20) in order to obtain the Lippmann-
Schwinger equation for T (z):

T (z) = V + V G0(z)T (z) or

T (z) = V + T (z)G0(z)V.
(2.23)

When the potential V is not strong enough to support any bound states, it is possibile to
obtain a solution of Eq. (2.23) by iteration:

T (z) = V + V G0(z)V + V G0(z)V G0(z)V + ... (2.24)

This series is known as the Born series. This series does not converge for z near the bound
state energies [65]. After all, the series in Eq. (2.24) does not have any poles in z. Therefore
the Born series is not useful for our purposes. However, Weinberg [65] has introduced a
method which can be used when the Born series does not converge. The idea is to modify
the Hamiltonian by introducing quasiparticles, so that the original interaction weakens and
the Born series can be used.

2.1.4 The stationary scattering states

The in-asymptote |ψin〉 is an eigenstate of the kinetic energy operatorH0 because the potential
V (r) is assumed to go sufficiently fast to zero for r → ∞. So |ψin〉 is just a wave packet
composed of plane wave states |p〉 which are improper eigenvectors of the Hamiltonian H0.
More information about these plane wave states is given in Appendix E.1.

We can also introduce the momentum states |p+〉 and |p−〉 by

|p±〉 ≡ Ω±|p〉. (2.25)

The states |p±〉 are improper eigenvectors of the Hamiltonian H = H0 + V with outgoing
and ingoing spherical wave boundary conditions respectively, i.e., H|p±〉 = Ep|p±〉 where

Ep = p2

2µ . As a result of the definition of Eq. (2.25), the state |ψ+〉 = Ω+|ψin〉 representing
the actual state of the system at t = 0 has the same expansion in terms of |p+〉 as does
its in-asymptote |ψin〉 in terms of |p〉. Similarly, the state |ψ−〉 = Ω−|ψout〉 has the same
expansion in terms of |p−〉 as does its out-asymptote |ψout〉 in terms of |p〉. However, the
states |p+〉 and |p−〉 should not be interpreted as the actual state at t = 0 that has evolved
from the initial state |p〉 or that would evolve into the final state |p〉 respectively [64]. Even
though Eq. (2.7) holds, similar equalities do not hold for the states |p±〉 and |p〉, i.e.,

lim
t→−∞

U(t)|p+〉 6= U0(t)|p〉, and

lim
t→∞

U(t)|p−〉 6= U0(t)||p〉〉.
(2.26)

It can be proven [64] that the states |p±〉 are related to |p〉 by

|p±〉 = |p〉+G(Ep ± i0)V |p〉. (2.27)

and

|p±〉 = |p〉+G0(Ep ± i0)V |p±〉. (2.28)
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CHAPTER 2. SCATTERING THEORY

where the operator G0(Ep ± i0) = limε→0G
0(Ep ± iε) and G(Ep ± i0) = limε→0G(Ep ± iε).

From those Lippmann-Schwinger equations for the scattering states |p±〉 and the definition of
the transition operator, Eq. (2.20), the following important property of the transition operator
can be proven [64]:

T (Ep ± i0)|p〉 = V |p±〉. (2.29)

2.1.5 The two-body T -matrix

The two-body T -matrix can be calculated from the two-body transition operator T defined
by Eq. (2.20). In the momentum-space representation, it is given by

〈p′|T (z)|p〉 = 〈p′|V |p〉+

∫
〈p′|V |p′′〉 1

z − p′′2

2µ

〈p′′|T (z)|p〉 dp′′. (2.30)

Two-particle interactions are specified by the on-shell two-body T -matrix in which all energies

are equal, i.e. z = p2

2µ = p′2

2µ . However, the incoming kinetic energy of the two-particle system
need not to be equal to the outgoing kinetic energy of the two-particle system when a third

particle is involved. Therefore the full off-shell two-body T -matrix in which z 6= p2

2µ 6=
p′2

2µ
is important for the description of three-particle interactions. Just like the S-matrix, the
T -matrix possesses singularities in the plane of complex energy which correspond to the two-
body continuum and bound states.

For spherically symmetric interactions we can expand the potential and the T -matrix in
terms of the Legendre polynomials Pl(p̂ · p̂′) as

〈p′|T (z)|p〉 =
∞∑
l=0

(2l + 1)Pl(p̂
′ · p̂)tl(p, p

′, z) = 4π
∞∑
l=0

l∑
m=−l

Y m
l (p̂)Ȳ m

l (p̂′)tl(p, p
′, z),

(2.31)

〈p′|V |p〉 =

∞∑
l=0

(2l + 1)Pl(p̂′ · p̂)Vl(p, p
′) = 4π

∞∑
l=0

l∑
m=−l

Y m
l (p̂)Ȳ m

l (p̂′)Vl(p, p
′). (2.32)

The functions Y m
l (p̂) are the spherical harmonics (see Appendix B). So from Eq. (2.30) one

can easily derive the Lippmann-Schwinger equation for the off-shell partial-wave components
tl(p, p

′, z) which is given by

tl(p, p
′, z) = Vl(p, p

′) + 4π

∫ ∞
0

Vl(p
′, p′′)

1

z − p′′2

2µ

tl(p, p
′′, z)p′′2 dp′′. (2.33)

The on-shell T -matrix can simply be calculated from Eq. (2.29) if one first calculates the
scattering state |p+〉 from the Schrödinger equation. The on-shell T -matrix satisfies

〈p′|T (Ep + i0)|p〉 = 〈p′|V |p+〉. (2.34)

Here all energies are equal, i.e., Ep = p2

2µ = p′2

2µ . It can be proven [64] that the on-shell
T -matrix is related to the S-matrix by

〈p′|S|p〉 = δ(p′ − p)− 2πiδ(Ep′ − Ep)〈p′|T (Ep + i0)|p〉. (2.35)
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2.1. TWO-BODY SCATTERING THEORY

This shows that the S-matrix is zero for Ep′ 6= Ep, so that the scattering operator conserves
energy.

The calculation of the off-shell T -matrix is not as straightforward as the calculation of
the on-shell T -matrix. The simplest way is to define a new operator Ω(z) which extends the
definition of the Møller operators Ω±. We define this operator as [66]

(z −H)Ω(z) = (z −H0), (2.36)

so that it satisfies

|p+〉 = Ω(Ep + i0)|p〉. (2.37)

So we see that Ω(Ep + i0) = Ω+. From Eq. (2.22) we find that

T (z) = V G(z)(z −H0) = V Ω(z). (2.38)

The next step is to define the off-shell wave function |ψp,z〉, where z need not to be equal to
p2

2µ , as [67]

|ψp,z〉 = Ω(z)|p〉. (2.39)

So we see that

T (z)|p〉 = V Ω(z)|p〉
= V |ψp,z〉.

(2.40)

So the off-shell T -matrix can simply be calculated if the off-shell wave function |ψp,z〉 is known.
In order to calculate this wave function we multiply Eq. (2.36) from the right by |p〉, so that
we obtain the off-shell Schrödinger equation [67]

(z −H)|ψp,z〉 =

(
z − p2

2µ

)
|p〉 (2.41)

whose position-space representation is given by

〈x|(z −H)|ψp,z〉 =

(
z − p2

2µ

)
〈x|p〉(

z +
~2

2µ
∇2 − V (x)

)
〈x|ψp,z〉 =

(
z − p2

2µ

)
〈x|p〉(

z +
~2

2µ
∇2 − V (x)

)
〈x|ψp,z〉 =

1

(2π~)3/2

(
z − p2

2µ

)
eip·x/~.

(2.42)

This off-shell Schrödinger equation reduces to the on-shell Schrödinger equation for z =
Ep± i0, for which the state |ψp,z〉 is just the scattering state |p±〉. The boundary conditions
for the wave function 〈x|ψp,z〉 ought to be chosen consistently with the three-body equations
which one wants to solve. The off-shell two-body T -matrix can be calculated from Eq. (2.40)
as

〈p′|T (z)|p〉 = 〈p′|V |ψp,z〉

=

∫∫
〈p′|x〉〈x|V |x′〉〈x′|ψp,z〉 dx dx′

=

∫
〈p′|x〉V (x)〈x|ψp,z〉 dx.

(2.43)
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Note that we have assumed in Eqs. (2.42) and (2.43) that the pairwise interaction potential
V is local, so that [68]

〈x|V |x′〉 = V (x)δ
(
x′ − x′

)
. (2.44)

In order to obtain an expression for the partial-wave off-shell T -matrix elements (defined
by Eq. (2.31)) we first expand the off-shell wave function 〈x|ψp,z〉 into legendre polynomials
as

〈x|ψp,z〉 = (2π)−3/2 1

pr

∞∑
l=0

(2l + 1)ilωl(r, p, z)Pl(x̂ · p̂). (2.45)

Substitution of this equation and Eq. (E.2) into the off-shell Schrödinger equation, Eq. (2.42),
results in[

~2

2µ

(
d2

dr2
− l(l + 1)

r2

)
+ z − V (r)

]
ωl(r, p, z) =

(
z − p2

2µ

)
1√
~
ĵl

(pr
~

)
, (2.46)

from which the partial-wave components ωl(r, p, z) of the off-shell wave function can be cal-
culated. The function ĵl is the Riccati-Bessel function (see Appendix B.3). Similarly, a
partial-wave expansion of Eq. (2.43) results in

tl(p, p
′, z) =

1

2π2~1/2

1

pp′

∞∫
0

ĵl

(
p′r

~

)
V (r)ωl(r, p, z) dr. (2.47)

2.1.6 Properties of the two-body T -matrix

The two-body T -matrix evaluated at small momenta is related to the partial-wave scattering
length al. The behaviour of the momentum-normalized on-shell T -matrix at small values of
the momentum p = ~k is given by

tl(k) ' 1

4π2µ~k
alk

(2l+1)

1 + ialk(2l+1)
. (2.48)

Taking the limit k → 0, we have

t0(0) =
a0

4π2µ~
(2.49)

or

a0 = 4π2µ~ lim
p,p′,z→0

t0(p, p′, z). (2.50)

Those results can be easily derived from the definition of the scattering length (see Eq. (2.19)),
the definition of the phase shift (Eq. (2.18)) and the relation between the S-matrix and the
T -matrix (Eq. (2.35)).

Another important property of the off-shell two-body T -matrix is the symmetry under
exchange of p and p′, which can immediately be seen from the definition of the transition

20



2.2. MULTICHANNEL SCATTERING THEORY

operator in Eq. (2.20). Therefore the partial-wave components of the off-shell two-body T -
matrix satisfy

tl(p, p
′, z) = tl(p

′, p, z). (2.51)

Finally, we should comment that the functions tl(p, p
′, z) are not separable in the momenta

p and p′ if the potential V is local (except for a zero-range interaction). Here the word
’separable’ means that tl(p, p

′, z) can be written as gl(p, z)gl(p
′, z) where the function gl(p, z)

is called the form factor. The two-body T -matrix can only be separable if the potential V is
separable. This means that the potential has the operator form

V = |g〉λ〈g|, (2.52)

where |g〉 defines the form factor and λ determines the strength of the interaction.

Realistic physical potentials are local and the corresponding partial-wave components
Vl(p, p

′) are not separable which makes the three-body problem more difficult to solve. Short-
range square-integrable potentials can be approximated well by a separable expression for the
partial-wave components Vl(p, p

′) [5] from which a separable approximation of the partial-
wave components tl(p, p

′, z) follows. Therefore the approach to approximate tl(p, p
′, z) by

the best separable expression is often used to study three-particle physics. Furthermore, the
two-body T -matrix becomes separable at energies close to the binding energy of a dimer
state [69]. Since the Efimov states lie very close to a weakly bound s-wave dimer state, it
is usual to assume that the partial-wave off-shell T -matrix elements tl(p, p

′, z) are separable.
However, the three-body equations which include a non-separable two-body T -matrix can
still be simplified if the partial-wave components tl(p, p

′, z) are approximated by a sum of
terms which are separable in p and p′. This approach has not been explored yet in Efimov
physics. Therefore we will also consider this approach to determine how good the separable
approximation of the off-shell two-body T -matrix really is for the calculation of the Efimov
states.

2.2 Multichannel scattering theory

So far we have discussed two-body collisions in which only one open channel is present. There-
fore these scattering processes are always elastic, i.e., the incoming channel is the same as
the outgoing channel. Therefore the theory presented in Section 2.1 has to be extended to
describe inelastic scattering processes in which the outgoing channel is different from the in-
coming channel. Multichannel scattering theory plays an important role in Efimov physics.
For example, this theory is necessary for the understanding of scattering processes such as
three-body recombination and atom-dimer relaxation which can be studied to measure the
three-body parameters of the Efimov spectrum experimentally or to calculate those parame-
ters. In Appendix C we summarize the important concepts of multichannel scattering theory
such as the scattering amplitude and the scattering length for two composite particles with
multiple internal degrees of freedom.
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3. Three-body scattering theory

In this Chapter we present the Faddeev equations for three-body bound states and for the
scattering process between a two-body bound state and a free particle. We assume that all
particles are identical zero-spin bosons with mass m and interact only by pairwise forces. A
nice overview of three-particle scattering theory can be found in Ref. [5].

3.1 The Faddeev equations for three-body bound states

The three-body bound states can be found by solving the three-body Schrödinger equation:

(H0 + V )Ψ = EΨ. (3.1)

Here H0 is the sum of the three kinetic energy operators and V = V12 + V23 + V31 is the sum
of the two-body interactions. Following Faddeev [69], one can construct a solution Ψ of the
three-body Schrödinger equation as follows:

Ψ = −
3∑

α=1

G0Φα, (3.2)

where the Green’s function G0(z) = (z −H0)−1 contains the kinetic energy operators for all
three particles. The state Φα can be calculated from the following set of coupled equations:

Φα = Tα(z)G0(z) (Φβ + Φγ) , αβγ = 123, 231, 312. (3.3)

The operator Tα(z) is the two-body T -operator for scattering between particles β and γ in
the presence of particle α. So this operator is given by Tα(z) = Vα + VαG0(z)Tα(z) where
Vα ≡ Vβγ describes the interaction between particles β and γ. It is very similar to the
two-body transition operator T (z) which satisfies Eq. (2.23). The only difference is that the
Green’s function G0 in Eq. (2.23) contains two kinetic energy operators, whereas the Green’s
function G0 contains three kinetic energy operators.

In order to proof that Eq. (3.2) is a solution of the three-particle Schrödinger equation,
we multiply Eq. (3.3) with 1− VαG0 which gives

(1− VαG0)Φα = Vα(z)G0(z)
∑
γ 6=α

Φγ , (3.4)

so that

Φα = VαG0

∑
γ

Φγ (3.5)

= −VαΨ. (3.6)
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Summing this equation over α and multiplying by −G0 gives

Ψ = G0(Vα + Vβ + Vγ)Ψ (3.7)

which reduces to the three-body Schrödinger equation after multiplying by (z −H0). It can
be proven that this three-body wave function Ψ constructed by Eq. (3.2) is square integrable
[69].

Furthermore, the set of equations (3.3) reduces to a single operator equation when the
three particles are identical bosons in which case the bound state Ψ must be symmetric. The
first step in deriving this equation is to define the permutation operators P+ = PαγPβγ and
P− = PαβPβγ (see Appendix D), so that the Tα = P+TβP− = P−TγP+. Therefore after
multiplying the set of equations (3.3) with P+ and P−, two equivalent sets of equations can
be derived, namely

P+Φα = P+Tα(z)(P−P+)G0(z)
∑
γ 6=α

Φγ

= Tγ(z)G0(z)(P+Φβ + P+Φγ)

(3.8)

and

P−Φα = P−Tα(z)(P+P−)G0(z)
∑
γ 6=α

Φγ

= Tβ(z)G0(z)(P−Φβ + P−Φγ).

(3.9)

Eqs. (3.3), (3.8) and (3.9) are equivalent, so that the symmetric solutions satisfy Φγ = P+Φα =
P−Φβ, or equivalently Φβ = P+Φγ = P−Φα and Φα = P+Φβ = P−Φγ . Therefore, Eq. (3.3)
can be formulated as

Φα = Tα(z)G0(z)PΦα, (3.10)

where P = P+ + P−.

The Faddeev equations for three-body bound states, Eq. (3.10), can be written in the
momentum-space representation. Appendix E.4 defines the three-particle momentum states
|q,p〉 [70] which describe the system of three free noninteracting particles. The momentum
2q is defined as the relative momentum of particle α with respect to the center-of-mass of
the two-particle system (βγ) and 2p is defined as the relative momentum between particles
β and γ. As derived in Appendix E.5, we can transform Eq. (3.10) into

〈p,q|Φα(E)〉 =

∫
dq′

ts
(
p, 1

2q + q′, E − 3
4mq

2
)

E − 1
m (q2 + q · q′ + q′2)

〈q +
1

2
q′,q′|Φα(E)〉. (3.11)

The function ts (p,p′, E) is the symmetrized two-body T -matrix defined by Eq. (E.31). Note

that ts (p,p′, E) is just 2
∞∑

l=0,even

(2l+ 1)Pl(p̂
′ · p̂)tl(p, p

′, E). This means that the partial-wave

contributions with odd l are not present in the three-body equations, which is expected for
identical bosons.

Eq. (3.11) tells us how the projection of |Φα(E)〉 on the three-particle momentum states
should look. In this derivation no restrictions have been made on the energy of the momentum
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state |p,q〉. This energy is always positive, so that it is not equal to the energy E of the
three-particle system in the state |Ψ〉 which is always negative for bound states.

We will look for solutions with total angular momentum L equal to zero. So the next
step is to apply a partial-wave expansion [5, 71] on Eq. (3.11) for L = 0. The details of
this expansion is given in Appendix F. Here we will summarize the important steps and
assumptions of this derivation. For simplicity, we drop the index α in Eq. (3.11) and expand
the function 〈p,q|Φ(E)〉 as

〈p,q|Φ(E)〉 =
∞∑
l=0

l∑
ml=−l

(−1)lY ml
l (p̂)Ȳ ml

l (q̂)Φ̃l(p, q, E). (3.12)

Now Eq. (3.11) reduces to

Φ̃l(p, q, E) =

∫
dq′

1

E − 1
m (q2 + q · q′ + q′2)

(
2∆lPl(q̂ · 1

2q + q′
∧

)tl(p, |
1

2
q + q′|, E − 3

4m
q2)

)
∞∑
l′=0

(2l′ + 1)∆l′Pl′(q + 1
2q′
∧

· q′
∧

)Φ̃l′(|q +
1

2
q′|, q′, E)

(3.13)

where ∆l = 1
2

(
1 + (−1)l

)
. Therefore all components Φ̃l(p, q, E) with odd l are equal to zero.

This set of equations is an infinite set of coupled two-dimensional integral equations. The
Efimov states are located close to the s-wave dimer state, so that the s-wave component
Φ̃0(p, q, E) of the three-body wave function dominates and all other components can be ne-
glected in which case only one integral equation needs to be considered. We want to reduce
Eq. (3.13) to an infinite set of one-dimensional integral equations because two-dimensional in-
tegral equations are much harder to solve than one-dimensional integral equations. Therefore,
we expand the partial-wave components tl(p, p

′, z) as

tl(p, p
′, z) = −

∞∑
n=1

τnl(z)gnl(p, z)gnl(p
′, z). (3.14)

Each term is separable in p and p′. There exists many ways in which this separable expansion
can be done and we will discuss some methods in Chapter 5.

Now we reduce Eq. (3.13) to an infinite set of one-dimensional integral equations by
substituting the separable expansion given by Eq. (3.14) into Eq. (3.13). If we also define the
quantities φ̃ln(q, E) as the expansion coefficients of Φ̃l(p, q, E) with respect to the orthonormal
basis

{
gnl(p,E − 3

4mq
2)
}

, i.e. Φ̃l(p, q, E) =
∑∞

n=1 gnl(p,E−
3

4mq
2)φ̃ln(q, E), it can be derived

that the resulting three-body equation is

φ̃ln(q, E) = −
∫
dq′

2∆lPl(q̂ · 1
2q + q′
∧

)

E − 1
m (q2 + q · q′ + q′2)

τnl(Zq)gnl(|
1

2
q + q′|, Zq)

∞∑
l′=0

∞∑
n′=1

(2l′ + 1)∆l′Pl′(q + 1
2q′
∧

· q′
∧

)gn′l′(|q +
1

2
q′|, Zq′)φ̃l′n′(q′, E),

(3.15)

where Zq = E − 3
4mq

2. Here we have also assumed that an orthonormalization condition
for the form factors gnl(p, z) exists which is the case for the considered separable expansions
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considered in Chapter 5. This infinite set of coupled one-dimensional integral equations
reduces to a finite set of equations when only a finite number of terms is used to expand the
off-shell components tl(p, p

′, z).

3.2 The Faddeev equations for atom-dimer scattering states

When a free particle impinges on a two-body bound state, there are three kinds of processes
possible. The first process is elastic atom-dimer scattering

i+ (j, k)→ i+ (j, k). (3.16)

The second process is rearrangement for which two possibilities exist, namely

i+ (j, k)→ j + (k, i), (3.17)

i+ (j, k)→ k + (i, j). (3.18)

These processes are elastic for identical particles. The final process is the breakup process

i+ (j, k)→ i+ j + k. (3.19)

which is only possible for positive energies.

If deeper two-body bound states, (j, k)∗, (k, i)∗ and (i, j)∗, exist, relaxation to these deeper
bound states is also possible. In this case, the atom-dimer scattering and rearrangement
processes are inelastic. In these inelastic processes, the final kinetic energy of the particles is
larger than the initial kinetic energy.

The Faddeev equations for atom-dimer scattering are similar to the Faddeev equations for
three-body bound states. However, just as is the case for two-particle scattering states (see
Eq. (2.28)), we need an extra term representing the asymptotic wave function. So if particle
α is scattered by a bound state of particles β and γ, then the atom-dimer scattering wave
function Ψα is given by [5]

Ψα = Ψ(α)
α + Ψ(β)

α + Ψ(γ)
α

Ψ(α)
α = Φα +G0(z)Tα(z)

(
Ψ(β)
α + Ψ(γ)

α

)
Ψ(β)
α = G0(z)Tβ(z)

(
Ψ(γ)
α + Ψ(α)

α

)
Ψ(γ)
α = G0(z)Tγ(z)

(
Ψ(α)
α + Ψ(β)

α

)
in which z = lim

ε→0
E + iε.

(3.20)

The functions Ψβ and Ψγ satisfy a similar set of equations. The state Φα is here defined as
the asymptotic wave function which is just |q0, ϕ〉 consisting of the two-body bound state |ϕ〉
formed by particles β and γ and a free particle α in a momentum eigenstate. The momentum
q0 is the relative momentum between the free particle and the center-of-mass of the dimer.
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When the three particles are identical and spinless, the total wave function Ψ must be
symmetric with respect to permutations of any pairs of particles [5]. Consequently, we have

Ψ = Ψα + Ψβ + Ψγ

=
∑
α,β

Ψ(β)
α

=
∑
α

Ψ̃α,

(3.21)

where we have defined the functions Ψ̃α as

Ψ̃α ≡ Ψ(α)
α + Ψ

(α)
β + Ψ(α)

γ . (3.22)

From this defintion and Eq. (3.20) it can be shown that

Ψ̃α = Φα +G0(z)Tα(z)
(

Ψ̃β + Ψ̃γ

)
. (3.23)

Similarly,

Ψ̃β = Φβ +G0(z)Tβ(z)
(

Ψ̃γ + Ψ̃α

)
(3.24)

Ψ̃γ = Φγ +G0(z)Tγ(z)
(

Ψ̃α + Ψ̃β

)
. (3.25)

These equations are just the anticyclic permutation and the cyclic permutation of Eq. (3.23).
Therefore we find that Ψ̃β = P−Ψ̃α and Ψ̃γ = P+Ψ̃α. The system of three integral equations,
Eq. (3.20), can thus be reduced to the following single integral equation for the function Ψ̃α:

Ψ̃α = Φα +G0(z)Tα(z)P Ψ̃α. (3.26)

In the momentum-space representation this equation is given by

〈p,q|Ψ̃(q0, E)〉 = δ(q− q0)〈p|ϕ〉+(
E − p2

m
− 3

4m
q2

)−1 ∫
dq′ts

(
p,

1

2
q + q′, E − 3

4m
q2

)
〈q +

1

2
q′,q′|Ψ̃(q0, E)〉

(3.27)

in which the index α is removed for convenience. The three-body energy E is equal to
E2b + 3

4mq
2
0 in which E2b is the binding energy of the dimer state |ϕ〉. For ultracold collisions

between the atom and the dimer, the value of q0 is very small. In this limit all scattering
amplitudes with nonzero total angular momenta vanish [5]. Therefore we will perform a
partial wave expansion on Eq. (3.27) for zero total angular momentum.

The steps from the previous Section in which three-body bound states have been treated
can also be applied to Eq. (3.27). The details of these steps can be found in Appendix F.2
or in Ref. [5, 71]. The resulting set of coupled integral equations which describes the elastic
scattering of an atom with a ground-state dimer at zero total angular momentum is given by

Anl(q, q0) = 2Unl,1,0(q, q0, E)+8π
∑
n′,l′

∫ ∞
0

τn′l′
(
Zq′
)
Unl,n′l′(q, q

′, E)An′l′(q
′, q0)q′2 dq′, (3.28)
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where the amplitudes Anl(q, q0) describe the scattering process. The functions Unl,n′l′(q, q
′, E)

are defined by

Unl,n′l′(q, q
′, E) =

1

4π
∆l∆l′

√
2l + 1

√
2l′ + 1∫

Pl(q̂ · 1
2q + q′
∧

)Pl′(q̂
′ · 1

2q′ + q
∧

)
1
m (q2 + q′ · q + q′2)− E

gnl

(
|1
2
q + q′|, Zq

)
gn′l′

(
|1
2
q′ + q|, Zq′

)
dq̂′.

(3.29)

The s-wave atom-dimer scattering length can be calculated from the amplitudes Anl(q, q0) by

aad = −2

3
πm~X2

1,0 lim
q0→0

A1,0(q0, q0). (3.30)

The constant Xnl relates the form factors of the expansion of tl(p, p
′, z) to the two-body bound

state wave function in the momentum-space representation, 〈p|ϕ〉 = ϕnl(p)Y
m
l (p̂), according

to

ϕnl(p) = Xnl
gnl(p,E2b,nl)

E2b,nl − p2

2µ

, (3.31)

where E2b,nl is the binding energy of the nth dimer state with angular momentum quantum
number l.
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4. Two-body scattering off a finite square
well potential

This Chapter summarizes and expands the on-shell and off-shell two-body scattering results
presented in Ref. [63] for a square well potential as two-body interaction. The square well
potential is given by Eq. (1.8). We will use it as a simple model for atomic interactions whose
long-range behaviour is in fact described by the van der Waals tail −C6

r6
. The big advantage

of the square well potential over more realistic models is that the two-body properties can
be calculated analytically. Throughout this thesis we will use dimensionless units when con-
sidering the square well potential. We will use a bar on top of a variable to indicate that it
has been made dimensionless by using the parameters R, ~ and m. So lengths, momenta and
energies will be expressed in units of R, ~/R and ~2/(mR2) respectively.

4.1 Scattering length

In this Section we analyze the two-body scattering length al of the square well potential for
l = 0 and l = 2 in order to illustrate the corresponding resonances and to compare the d-wave
effects with van der Waals potentials. We do not consider l = 1 because in the case of identical
bosons, the quantum number l must be even to ensure that the symmetrization requirement of
the wave function, ψ(r1, r2) = ψ(r2, r1), is fulfilled. More properties of the p-wave scattering
length and bound states of the square well potential can be found in Ref. [63].

The partial-wave two-body scattering length of the square well potential is given by [63]

al = − R2l+1

(2l + 1)!!(2l − 1)!!

ĵl+1(q̄0)

ĵl−1(q̄0)
. (4.1)

It only depends on the range R and the depth V0 of the potential and on the mass m of the
particles. We define the dimensionless scattering length āl as āl ≡ alR

−(2l+1). In particular,
the s-wave two-body scattering length ā0 is given by

ā0 = 1− tan(q̄0)

q̄0
(4.2)

where q̄0 =
√

2µV0R
~ . So the scattering length is just the sum of a non-resonant part and a

resonant part which diverges when q̄0 = (2N − 1)π/2 where N is any positive integer. The
s-wave and d-wave scattering lengths are shown in 4.1. The d-wave scattering length diverges
when tan(q̄0) = q̄0. This means that a two-body bound state with l = 2 is formed exactly at
ā0 = 0.

29



CHAPTER 4. TWO-BODY SCATTERING OFF A FINITE SQUARE WELL
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Figure 4.1: The s-wave and d-wave two-body scattering lengths as a function the strength q̄0

of the square well potential. The dashed lines indicate the resonances.

The formation of the d-wave dimer at ā0 = 0 is a typical feature of the square well
potential. For single-channel interactions with a van der Waals tail, −C6r

−6, the d-wave
dimer always becomes bound at a scattering a0 = 4π/[Γ(1/4)]2 ≈ 0.956 rvdW as predicted by
Gao [72]. This prediction has been confirmed by Wang et al. [53] using the Lennard-Jones
potential as two-body interaction. For the first ten d-wave resonances they calculated the
scattering length a0 when the d-wave dimer becomes bound and their results agree well with
Gao’s prediction. The agreement is better when the number of bound states increases. The
first three d-wave states of the Lennard-Jones potential become bound at a0/rvdW = 1.03, 1.00
and 0.98 respectively [73].

Since the d-wave dimer of the square well potential always becomes bound when ā0 = 0,
we expect that d-wave effects on the positive side (a0 > 0) of the Efimov spectrum are
much smaller for the potential resonances of the square well potential than for the potential
resonances of a van der Waals potential which better describes the interatomic interactions.

4.2 The off-shell two-body T -matrix

Now we consider the off-shell two-body T -matrix. The off-shell partial-wave components
tl(p, p

′, z) of the square well potential are given by [63]

tl(p, p
′, z) =

R

4π2µp̄p̄′~
q̄2 − p̄2

z

q̄2 − p̄2

[
σ(q̄; p̄, p̄′, p̄z)− σ(p̄; p̄, p̄′, p̄z)

]
, (4.3)

where

σ(x; p̄, p̄′, p̄z) =
(
p̄2
z − x2

) p̄ĵl+1(p̄)ĥ
(1)
l (p̄z)− p̄z ĵl(p̄)ĥ

(1)
l+1(p̄z)

xĵl+1(x)ĥ
(1)
l (p̄z)− p̄z ĵl(x)ĥ

(1)
l+1(p̄z)

· p̄
′ĵl+1(p̄′)ĵl(x)− xĵl(p̄′)ĵl+1(x)

p̄′2 − x2
.

(4.4)

Here we have introduced the dimensionless momenta p̄ = pR
~ , p̄′ = p′R

~ , q̄ =
√
q̄2

0 + p̄2
z and

p̄z =
√

2µzR
~ . The T -matrix elements given by Eq. (4.3) are not suitable to solve the three-body

30



4.2. THE OFF-SHELL TWO-BODY T -MATRIX

equations. These elements have to be approximated by a sum of terms which are separable in
p and p′. In Chapter 5 we will present some approaches by which such a separable expansion
can be obtained.

The partial-wave components tl(p, p
′, z) have poles at energies z for which a two-body

bound state exist with angular momentum quantum number l. This result is simply a con-
sequence of the definition of the T -operator given by Eq. (2.20). Therefore the bound state
energies can be obtained from the following transcendental equation:

q̄ĵl+1(q̄)ĥ
(1)
l (p̄z)− p̄z ĵl(q̄)ĥ

(1)
l+1(p̄z) = 0. (4.5)

For l = 0, this equation simplifies to√
q̄2

0 + p̄2
z cot

√
q̄2

0 + p̄2
z = p̄zi. (4.6)

A peculiar property of the function t0(p, p′, z) of the square well potential is that it also
contains the off-shell d-wave component t2(p, p′, z). The functions t0(p, p′, z) and t2(p, p′, z)
are related by

t2(p, p′, z) = t0(p, p′, z)− t̃0(p, p′, z) (4.7)

where we have defined t̃0(p, p′, z) as

t̃0(p, p′, z) =
[limp→0 t0(p, p′, z)]

[
limp′→0 t0(p, p′, z)

]
limp,p′→0 t0(p, p′, z)

. (4.8)

So knowledge of the off-shell s-wave T -matrix implies knowledge of the off-shell d-wave T -
matrix. This surprising result is a special property of the square well potential and does not
hold for realistic interatomic potentials. It is also important to note that Eq. (4.7) applies to
the off-shell T -matrix. The on-shell d-wave T -matrix cannot be determined from the on-shell
s-wave T -matrix.

The function t̃0(p, p′, z) is separable in p and p′ and it contains many singularities for
negative values of z when the potential supports many bound states. Since t0(p, p′, z) and
t2(p, p′, z) have poles at the energies z for which there exist an s-wave and d-wave two-body
bound state respectively, the function t̃0(p, p′, z) must have poles corresponding to both the
s-wave and d-wave two-body bound states.

The partial-wave components Vl(p, p
′) of the square well potential (see Appendix E.2)

satisfy a similar relation as Eq. (4.7), namely

V2(p, p′) = V0(p, p′)−
[limp→0 V0(p, p′)]

[
limp′→0 V0(p, p′)

]
limp,p′→0 V0(p, p′)

. (4.9)

This equation is a special case of the general formula

Vl(p, p
′)− Vl+2(p, p′) =

[
limp→0

dlVl(p,p
′)

dpl

] [
limp′→0

dlVl(p,p
′)

dp′l

]
limp,p′→0

d2lVl(p,p′)
dpldp′l

(4.10)

which applies to the square well potential. Eq. (4.7) cannot be generalized in the same way.
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5. Separable expansions and
approximations of the off-shell two-body
T -matrix

In Chapter 3 we have seen that even for a non-separable two-body T -matrix the three-body
equations can still be simplified if the off-shell partial-wave components tl(p, p

′, z) are approx-
imated by a sum of terms which are separable in p and p′. In this Chapter we present some
useful methods to perform such a separable expansion and methods which provide a one-term
separable approximation for tl(p, p

′, z).

5.1 Separable approximation of the T -matrix near a singular
point

The two-body T -matrix contains singularities at the binding energies of the pair of particles.
Near any singular point, the T -matrix can be written as [69]

〈p′|T (z)|p〉 ' 〈p
′|g̃i〉〈g̃i|p〉
z − E2b,i

(5.1)

where the index i numbers the singularity. The form factors 〈p|g̃i〉 are defined as

〈p|g̃i〉 =

∫
〈p|V |q〉〈q|ϕi〉 dq (5.2)

where 〈q|ϕi〉 is the two-body bound state wave function in the momentum-space representa-
tion corresponding to the energy E = E2b,i. This bound state wave function is normalized as
〈ϕi|ϕi〉 = 1. The definition of the form factor 〈p′|g̃i〉 is almost the same as the definition of

the half-off-shell T -matrix which is defined by Eq. (2.34) for Ep = p2

2µ 6=
p′2

2µ . The difference is
that the state |ϕi〉 is a bound state, whereas the state |p+〉 is a scattering state.

Eq. (5.1) only holds very close to the specific singularity. Therefore, it is not useful for our
purposes. However, the pole of this separable approximation of the two-body T -matrix has
a simple form which makes this separable approximation useful for calculations in which one
needs to integrate over this pole of the two-body T -matrix. For instance, when one considers
elastic atom-dimer scattering, it is useful to use this separable approximation close to the
singularity (see Appendix F.2).
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OFF-SHELL TWO-BODY T -MATRIX

5.2 Method I: the spectral representation

Now we present some approaches which can be used to expand the partial-wave components
of the off-shell two-body T -matrix in a series of terms which are separable in the initial and
final momenta. The first method which we describe can be used when the off-shell two-body
T -matrix is known explicitly. In this case the form factors gnl(p, z) can be defined as the
solutions of the following integral equation:

−
∫ ∞

0
tl(p, p

′, z)gnl(p
′, z)dp′ = τnl(z)gnl(p, z). (5.3)

The index n labels the eigenvalues and corresponding eigenvectors. Since the kernel tl(p, p
′, z)

is symmetric, the eigenvalues τnl(z) are real [74]. Furthermore, the eigenvectors gnl(p, z)
corresponding to different eigenvalues are orthogonal and eigenvectors corresponding to the
same eigenvalue can be orthogonalized [74]. The orthonormalization condition is given by∫ ∞

0
gn′l(p, z)gnl(p, z)dp = δn′n. (5.4)

Hilbert-Schmidt theory which deals with real symmetric kernels [74] makes it possible to
approximate tl(p, p

′, z) with its spectral representation which is given by

tl(p, p
′, z) = −

∞∑
n=1

τnl(z)gnl(p, z)gnl(p
′, z). (5.5)

More details about the spectral representation can be found in Appendix G.

The form factors of the square well potential can be numerically calculated from Eq. (5.3).
Fig. 5.1 shows the first three form factors for l = 0 and l = 2 evaluated at z = 0, z = −1

4V0

and z = −4V0. The index n is determined by sorting the form factors by the absolute
magnitude of the eigenvalue τn,l(z) at large negative energies, i.e. |z| � V0. As a result
of this labeling, the function τnl(z) diverges at one particular negative value of the energy
z when the potential supports at least n bound states with angular momentum quantum
number l. When the energy of this bound state is E2b,nl, τnl(z) diverges at z = E2b,nl. This
is illustrated in Fig. 5.2 for n = 2 and n = 3. The considered potential supports two s-wave

bound states with energy E2b = − q22
2µ where q̄2 = 7.333 and q̄2 = 5.585, so that τ2,0(z) diverges

at p̄z = 5.585i as can be seen in the figure. The potential also supports two d-wave bound
states with q̄2 = 5.981 and q̄2 = 1.083 and the corresponding form factors also diverge at those
energies. The function τ3,0(z) does not diverge at negative energies because the potential is
not deep enough to support the third s-wave dimer state. Since this dimer state is almost
bound, τ3,0(z) is large at z = 0.

Fig. 5.1 clearly shows that the energy dependence of the form factors is quite weak for
most values of p. We have confirmed this by considering much more values of the energies than
those considered in this figure. The energy dependence is expected to be weak for energies
below the depth of the well, i.e. |p̄z| > q̄0, because the two-body T -matrix depends weakly on
the energy in that regime. It may be surprising that the form factors for z = 0 and z = −4V0

look very similar, but this is not a coincidence. The reason for this effect can be understood
by considering the Lippmann-Schwinger equation for tl(p, p

′, z) given by Eq. (2.33). If we fill
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in z = 0, it is immediately clear that eigenfunctions of Vl(p, p
′), which also satisfy Eq. (5.4),

must also be eigenfunctions of tl(p, p
′, z). Furthermore, for |z| � V0, tl(p, p

′, z) ' Vl(p, p′), so
that the corresponding eigenfunctions will again be similar. So for both z = 0 and |z| → ∞
the eigenfunctions of tl(p, p

′, z) are the same as those of Vl(p, p
′).
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Figure 5.1: The s-wave and d-wave form factors gn,l(p, z) of method I as a function of p for
ā0 = −10 near the third potential resonance of the square well potential (q̄0 = 7.84239).
Different energies z are chosen. The form factors and corresponding eigenvalues are sorted
by the absolute magnitude of the eigenvalue τn,l(z) at large negative energies, i.e. |z| � V0.
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Figure 5.2: The functions τnl(z) of method I as a function of z for ā0 = −10 near the third
potential resonance of the square well potential (q̄0 = 7.84239). The labeling is the same as
in Fig. 5.1.
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5.3 Method II: the Weinberg series

Here we discuss another approach which is based on the Hilbert-Schmidt theorem for sym-
metric integral equations (see Appendix G), to expand the partial-wave components of the
off-shell two-body T -matrix in a series of separable terms. This approach has been used first
by Weinberg [65] who showed that the divergence of the Born series could be eliminated
by introducing quasiparticles in close correspondence with real bound states or resonances.
Therefore this method is also called the quasiparticle method [75]. Another name for this
method is the Weinberg series. More details about this approach can be found in [5, 71, 75].

In the quasiparticle method we define the functions |g(z)〉 as the eigenfunctions of the
operator V G0(z) with eigenvalue η(z), i.e.

V G0(z)|g(z)〉 = η(z)|g(z)〉. (5.6)

G0(z) is the free two-body Green’s operator (z − H0)−1 which we have encountered before
in Chapter 2. For z < 0 the eigenfunctions of the operator V G0 are related to the two-body
bound state wave functions of the potential V

η(z) . In order to derive this relation, we first
introduce the functions

|φ(z)〉 = G0(z)|g(z)〉. (5.7)

Since |g(z)〉 is an eigenfunction of the operator V G0 with eigenvalue η(z), the functions |φ(z)〉
satisfy

G0V |φ(z)〉 = η(z)|φ(z)〉 (5.8)

which is just the Schrödinger equation with an energy-dependent potential V
η(z) . For real,

negative energies this potential is Hermitian [5], so that |φ(z)〉 represents the two-body bound
states. We see that η(z) is just a number by which the potential has to be divided in order
to have a bound state at this particular energy z. So if we define the functions φnl(p, z) as

〈p|φnlm(z)〉 = Y m
l (p̂)φnl(p, z) (5.9)

where the states |φnlm(z)〉 are eigenfunctions of the Hamiltonian H0 + V
ηnl(z)

, it follows from

Eq. (5.7) that 〈p|gnlm(z)〉 = Y m
l (p̂)gnl(p, z) and that the form factors gnl(p, z) are related to

the wave functions φnl(p, z) by

φnl(p, z) = Nnl
gnl(p, z)

z − p2

2µ

, (5.10)

where Nnl is a normalization constant. Note that the index n just labels the eigenfunctions
for each value of l.

Now Eq. (5.6) can be rewritten in the momentum-space representation. By using the
partial wave expansion of the potential, Eq. (2.32), we end up with

−4π

∫ ∞
0

Vl(p, p
′)

1
p′2

2µ − z
gnl(p

′, z)p′2 dp′ = ηnl(z)gnl(p, z), (5.11)
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The eigenfunctions gnl(p, z) of Eq. (5.11) can be used as form factors in the separable
expansion of the two-body T -matrix. We label the eigenvalues ηnl(z) in decreasing order
of their absolute values. The form factors gnl(p, z) are orthogonal. The orthonormalization
condition is given by∫ ∞

0
gn′l(p, z)gnl(p, z)

1
p2

2µ − z
p2dp = δn′n. (5.12)

The eigenvalues ηnl(z) and form factors gnl(p, z) are real for real, negative energies, i.e. z < 0
[5]. Although the form factors are not complete, the partial-wave components tl(p, p

′, z) can
be approximated by the following separable representation [5, 71]:

tl(p, p
′, z) = − 1

4π

∞∑
n=1

ηnl(z)

1− ηnl(z)
gnl(p, z)gnl(p

′, z). (5.13)

The energy-independent components Vl(p, p
′) can be expanded as

Vl(p, p
′) = − 1

4π

∞∑
n=1

ηnl(z)gnl(p, z)gnl(p
′, z). (5.14)

Eqs. (5.13) and (5.14) can be derived from the two-body Lippmann-Schwinger equation,
Eq. (2.33), and the orthonormalization condition given by Eq. (5.12). Eq. (5.13) clearly
shows that each term of the expansion contains a singularity when ηnl(z) = 1. This singular-
ity corresponds to the existence of the nth two-body bound state with angular momentum
quantum number l at energy z.

The form factors can always be calculated numerically from Eq. (5.11). Nevertheless, it
is usually easier to calculate the form factors directly from the two-body bound state wave
functions. Eq. (5.7) implies that

|g(z)〉 = (z −H0)|φ(z)〉 (5.15)

=
V

η
|φ(z)〉. (5.16)

So the form factors can simply be obtained by applying the operator V
η onto the two-body

bound state wave functions corresponding to the scaled potential V
η .

In case of the square well potential the eigenfunctions gnl(p, z) and eigenvalues ηnl(z) can
be found analytically for negative energies [5, 76]. The form factors are given by Eq. (E.17)
with V0 replaced by V0/ηnl. If we also orthonormalize them according to Eq. (5.12), the
s-wave form factors are given by [5, 76]

gn,0(p, z) = Cn(z)
q̄2

0

ηn,0(z)

cos(p̄)− ip̄z/p̄ sin(p̄)
q̄20

ηn,0(z) + (p̄2
z − p̄2)

, (5.17)

where

C2
n(z) =

2R

πµ~

1 + p̄2
z
ηn,0(z)

q̄20
q̄20

ηn,0(z) − ip̄z
. (5.18)
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The eigenvalues ηn,0(z) can be calculated from the transcendental equation√
q̄2

0

ηn,0(z)
+ p̄2

z cot

(√
q̄2

0

ηn,0(z)
+ p̄2

z

)
= ip̄z. (5.19)

From these equations we see that the prefactors ηn,0(z) only depend on the phase q̄0, whereas
the form factors gnl(p, z) depend only on R. This can be understood from the definition of
the form factors, Eq. (5.11). The form factors gnl(p, z) cannot depend on the depth V0 of
the well because it can be factored out and incorporated in the eigenvalues ηnl. So the form
factors include only information about the range R, whereas the eigenvalues only depend on
the phase q̄0 = q0R

~ .

For negative energies z, all eigenvalues ηnl(z) of the square well potential will be positive,
so that Mercer’s theorem which is given in Appendix G applies after symmetrizing the kernel
of Eq. (5.11). Consequently, it can be proven that the series in Eq. (5.14) converges absolutely
and uniformly for any value of z and so does the series of Eq. (5.13).

For large negative energies, i.e. |z| � V0, the convergence of the Weinberg series is slow
because the eigenvalues ηnl(z) decrease with increasing |z| [71]. This is caused by the fact
that the depth of the potential must increase in order to form a bound state at large negative
energies. At those energies, it is not valid to use a full separable approximation of the two-
body T -matrix based on this method. We have confirmed this for the square well potential,
but it is also the case for other local potentials [77]. The slow convergence for large negative
z is not a problem since this energy regime is less important for the calculation of the weakly
bound Efimov trimers.

When the off-shell partial-wave component t0(p, p′, z) is approximated by a finite number
of separable terms, the scattering length corresponding to the approximated potential can
be calculated from Eq. (2.49). Since the analytical expressions for τn,0(z) and gn,0(p, z) are
known at z = 0, it can be shown that

ā0 =
∑
n

ān,0, (5.20)

where

ān,0 = − 32q̄2
0

(2n− 1)2 π2
(

(2n− 1)2 π2 − 4q̄2
0

) . (5.21)

From this equation it is clear that the scattering length does not go to zero on the positive
side of the nth potential resonance if the (n+1)th term (or higher order terms) is not present
in the expansion. In this case the scattering length will converge to the background scattering
length

ābg =
8

(2n− 1)2 π2
. (5.22)

for an infinite value of q̄0.

In Section 5.2 we have seen that for z = 0 the eigenfunctions of tl(p, p
′, z) are the same

as those of Vl(p, p
′). From Eq. (5.11) we see that the form factors of the Weinberg series at
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z = 0 are exactly the same as the eigenfunctions of Vl(p, p
′). This indicates that method I

and II are exactly the same at z = 0 and are quite similar at small negative energies. This
energy regime is also most important when calculating the three-body parameter a− of the
Efimov spectrum. Therefore we will now analyze the Weinberg series of t0(p, p′, z) at zero
energy keeping in mind that this analysis also applies to method I.

Fig. 5.3 shows how the s-wave form factors gn,0(p, 0) of the square well potential behave.
Clearly, the absolute maximum of |gn,0(p, 0)| shifts to larger momenta p as n increases. This

maximum is located near p̄ ' (2n−1)π
2 (except for n = 1), which is the depth q̄0 at which

the nth s-wave two-body bound state becomes bound at zero energy. The larger the value
of n, the closer is the maximum to p̄ = (2n−1)π

2 . This big peak indicates that the probability
density for two particles — separated by r < R — to have a relative momentum q̄0 is very
large when the energy of the two-particle system is zero.
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Figure 5.3: The s-wave form factors gn,0(p, z) of the Weinberg series for the square well
potential at z = 0.

In Fig. 5.4 we show that at z = 0 a lot of terms are necessary to accurately represent
the full two-body T -matrix whenever the scattering length is not very large. This figure
shows that the single term approximation −τ4,0(z)g4,0(p)2 only works well at small momenta
p when the scattering length ā0 is large. For small ā0 this separable approximation fails at
small values of p and more terms are needed in the expansion. The one-term approximation
always reproduces the big peak of t0(p, p, z) very well which occurs at p = 0 in case of the
first potential resonance. Therefore the separable approximation is much better near the first
potential resonance as can be seen from Fig. 5.5.

5.3.1 Method IIb: The unitary pole expansion

Another method to expand the off-shell partial-wave components tl(p, p
′, z) is the unitary

pole expansion (UPE) which was first suggested by Harms [77] and which is just a special
case of the Weinberg series discussed in Section 5.3. The energy-dependent form factors
defined by the Weinberg series can be made energy-independent if one fixes the energy z in
Eq. (5.6) at some constant Eb. The UPE is therefore very closely related to the Weinberg
series. Furthermore, when we choose Eb = 0, the unitary pole expansion is simply the spectral
representation of the kernel Vl(p, p

′) in which case the equations defining the form factors are
similar to those of method I with tl(p, p

′, z) replaced by Vl(p, p
′).
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The form factors of the UPE are defined by Eq. (5.6) in which the energy z is fixed at
some constant Eb. The definition of the form factors is thus given by

V G0(Eb)|g(Eb)〉 = η(Eb)|g(Eb)〉. (5.23)

For Efimov physics we are mainly interested at energies close to zero, so it is natural to choose
Eb = 0. The one-term approximation of the UPE is called the unitary pole approximation
(UPA) and had already been used before Harms [77] presented the UPE.

Since we set Eb to zero, the energy-independent form factors gnl(p) of the UPE are defined
as the solutions of following integral equation:

−
∫ ∞

0
Vl(p, p

′)gnl(p
′)dp′ = νnlgnl(p). (5.24)

Note that we have defined νnl = ηnl
8πµ , so that Eq. (5.24) has the same form as Eq. (5.3). The

index n labels the eigenvalues νnl in decreasing order in case of attractive potentials. The
kernel Vl(p, p

′) is symmetric, so that the eigenvalues νnl are real and the eigenfunctions gnl(p)
can be orthonormalized in the following way:∫ ∞

0
gn′l(p)gnl(p)dp = δn′n. (5.25)

The partial-wave components Vl(p, p
′) can be well approximated by its spectral representation

which is given by

Vl(p, p
′) = −

∞∑
n=1

νnlgnl(p)gnl(p
′). (5.26)

The off-shell partial-wave components tl(p, p
′, z) can then be approximated by

tl(p, p
′, z) = −

∞∑
n,n′=1

τnn′l(z)gnl(p)gn′l(p
′). (5.27)

where the energy-dependent expansion coefficients τnn′l(z) are determined from the two-body
Lippmann-Schwinger equation, Eq. (2.33), and the orthonormalization condition, Eq. (5.25).

The definition of the form factors in Eq. (5.24) is exactly the same as the definition in
Eq. (5.11) at zero energy z. This means that the form factors defined in this Section are just
proportional to the zero-energy two-body bound state wave functions in the momentum-space
representation, so gnl(p) ∝ p2φnl(p, 0).

In case of the square well potential, the s-wave form factors gn,0(p) and eigenvalues νn,0 =
ηn,0
8πµ can be calculated analytically as we have seen in Section 5.3. The expressions are given
by

ηn,0 =

(
2q̄0

(2n− 1)π

)2

, (5.28)

gn,0(p) =

√
2Rq̄2

0

πµ~ηn,0
cos(p̄)
q̄20
ηn,0
− p̄2

. (5.29)
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The main advantage of the form factors defined by Eq. (5.24) is that they are independent
of the energy z, which reduces the computation time for solving the three-body equation.
Secondly, the normalized form factors do not depend on the depth of the well and therefore
also not on the s-wave scattering length a0 for fixed range R. So for the calculations of the
Efimov states in the (ā0, E)-plane one only needs to calculate the form factors once.

It is important to note that the three-body equation given by Eq. (3.15) changes when the
expansion of the two-body T -matrix is given by Eq. (5.27) which contains terms which are
not symmetric in p and p′ [77]. In this work we will not perform any three-body calculations
using the unitary pole expansion because the UPE is very similar to the Weinberg series. The
form factors of both methods are very similar. Furthermore, the form factors of the Weinberg
series for the square well potential are known analytically, so that the calculation of the form
factors is not a problem.

Finally, we want to note that the eigenfunctions and eigenvalues of Vl(p, p
′) are the same

as the eigenfunctions and eigenvalues of tl(p, p
′, z) for z → −∞. This is a simple consequence

of

lim
z→−∞

tl(p, p
′, z) = Vl(p, p

′). (5.30)

Therefore, the eigenfunctions of tl(p, p
′, z) and Vl(p, p

′) look quite similar for negative energies
below the depth of the well because we have seen that the eigenfunctions of tl(p, p

′, z) are
weakly dependent on the energy in this regime. Thus the functions τnn′l(z) with n 6= n′ are
zero for z → −∞. They are also zero for z = 0 because in Section 5.2 we have seen that the
eigenfunctions of tl(p, p

′, 0) and Vl(p, p
′) are also the same.
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Figure 5.4: The diagonal of t0(p, p′, z) (green) and the corresponding approximation (orange)
using the functions gn,0(p, z) and τn,0(z) of the Weinberg series for the square well potential
at zero energy (z = 0). The terms which are included in the expansion are written below each
figure. In all cases the depth of the well is chosen such that the fourth s-wave dimer state is
almost bound. The considered scattering lengths are ā0 = −90.0 and ā0 = −9.00.
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Figure 5.5: The diagonal of t0(p, p′, z) (green) and the corresponding approximation (orange)
using the functions gn,0(p, z) and τn,0(z) of the Weinberg series for the square well potential
at zero energy. The depth of the well is chosen such that the first s-wave dimer state is almost
bound and ā0 = −9.00.
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5.4 Method III: the EST method

The EST method [78] (named after the authors Ernst, Shakin and Taylor) can also be used
to approximate the partial-wave components tl(p, p

′, z) by a separable expansion. Since one
disadvantage of this method is that it is difficult to obtain the next separable term in the
expansion of tl(p, p

′, z) [79], most three-body calculations involving the EST method take only
the first separable term into account. This one-term approximation is a generalization of the
unitary pole approximation. It has also been used to calculate the energies of Efimov states
corresponding to the potential resonances of some van der Waals potentials [49, 55, 59].

The separable approximation of the EST method is exactly the same as the UPA for
negative energies (E = Eb < 0). So this means that the separable potential is chosen such
that the corresponding bound state wave function is the same as the one of the original
Hamiltonian which involves the non-separable potential V . For energies E ≥ 0 we can do
something similar. This means that we want a separable potential for which the eigenfunction
of the corresponding Hamiltonian is identical to the eigenfunction of the original Hamiltonian.
The method to find such a separable potential is called the EST method [78] which is described
below.

The EST approach is used to approximate the off-shell two-body T -matrix, so the eigen-
functions of the original Hamiltonian which we want to reproduce are the scattering states
|p+〉 which satisfy the Lippmann-Schwinger equation given by Eq. (2.28). If we define the
separable potential Vsep as

Vsep = |g〉λ〈g|, (5.31)

then Eq. (2.28) corresponding to this potential is given by

|p±〉sep = |p〉+ λG
(±)
0 (Ep)|g〉〈g|p±〉sep. (5.32)

The solution of this equation is given by

|p±〉sep = |p〉+
λG

(±)
0 (Ep)|g〉〈g|p〉

1− λ〈g|G(±)
0 (Ep)|g〉

. (5.33)

Similarly, the scattering states |p±〉 corresponding to the potential V satisfy Eq. (2.28), so

|p+〉 = |p〉+G
(+)
0 (Ep)V |p+〉. (5.34)

From Eqs. (5.33) and (5.34) we see that the scattering states |p+〉 and |p+〉sep are exactly
the same when the states |g〉 and coefficients λ satisfy

G
(+)
0 (Ep)V |p+〉 = G

(+)
0 (Ep)|g〉 (5.35)

and

λ〈g|p〉
1− λ〈g|G(+)

0 (Ep)|g〉
= 1. (5.36)

The equality of Eq. (5.35) is fulfilled if we define |g〉 as

|g〉 = V |p+〉, (5.37)
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so that the second condition, Eq. (5.36), can be written as

λ〈p + |V |p〉
1− λ〈p + |V G(+)

0 (Ep)V |p+〉
= 1, (5.38)

or equivalently

1

λ
= 〈p + |V |p〉+ 〈p + |V G(+)

0 (Ep)V |p+〉 (5.39)

= 〈p + |V |p+〉. (5.40)

In the last step we have again used Eq. (5.34). So now we have constructed a separable
potential Vsep defined by Eqs. (5.31), (5.37) and (5.39) which reproduces the same scattering
state |p+〉 as the original Hamiltonian at a single energy Ep ≥ 0.

The above procedure can be generalized to reproduce the wave function at a number of
different energies in which case the potential is a sum of separable terms [78]. However, it may
be difficult to determine which additional energies one should choose in order to approximate
the off-shell components tl(p, p

′, z) in the best way [79].

In the context of Efimov physics the EST approach is useful when we are interested in
properties occuring at small negative energies such as the three-body parameters a− or κ∗.
In this case we choose Ep = 0, so that the separable potential reproduces the same s-wave
scattering length as the original potential V . This suggests that this method is especially
useful for calculations of the three-body parameter a−. This is an important advantage of the
EST approach over other separable approximations such as the single-term approximation
of the Weinberg series. Whenever we use the one-term EST approximation in this thesis,
we always choose Ep = 0, so that the zero-energy s-wave scattering state of the separable
interaction is the same as the one of the considered non-separable potential.

Once we have calculated the form factors from Eq. (5.37), we can find the separable ap-
proximation to the two-body T -matrix. The separable approximation Vsep(p, p

′) = λg(p)g(p′)
and the ansatz t0(p, p′, z) = τ(z)g(p)g(p′)2 can be substituted in the Lippmann-Schwinger
equation for t0(p, p′, z), Eq. (2.33), from which we can obtain a solution if τ(z) satisfies

τ(z) =

(
1

λ
− 4π

∫ ∞
0

1

z − p2

2µ

|g(p)|2p2 dp

)−1

. (5.41)

The value of λ can be calculated from Eq. (5.39), but if we specify the s-wave scattering
length, we can immediately obtain it from Eq. (5.41) in the limit z → 0. Using Eq. (2.49),
a0 = 4π2µ~τ(0)|g(0)|2, the resulting expression is

λ =
1

4π2µ

(
~
|g(0)|2

a0
− 2

π

∫ ∞
0
|g(p)|2 dp

)−1

. (5.42)

In case of the square well potential the form factors can simply be calculated from
Eq. (5.37). The radial components of the zero-energy scattering state for two particles in-
teracting via square well potential are proportional to ĵl (q̄0) for 0 ≤ r ≤ R. The separable

2Note that the variable p in t0(p, p′, z) and Vsep(p, p
′) is different from the fixed parameter p in Eq. (5.37).
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potential Vsep,l whose the partial-wave component (labeled by the angular momentum quan-
tum number l) of the zero-energy scattering state is exactly the same as the one for square
well potential is therefore given by Vsep,l = λgl(p)gl(p

′) where

gl(p) ∝ −
~q̄2

0

2µp̄

q̄0ĵl+1 (q̄0) ĵl (p̄)− p̄ĵl+1 (p̄) ĵl (q̄0)

q̄2
0 − p̄2

. (5.43)

A related derivation can be found in Appendix E.3. For Efimov physics we choose l = 0 as
discussed above, so that we can define

g(p) =
1

p̄

q̄0 cos(q̄0) sin(p̄)− p̄ cos(p̄) sin(q̄0)

q̄2
0 − p̄2

. (5.44)

The function τ(z) can then be calculated from Eqs. (5.41) and (5.42). The form factors g(p)
are very similar to those of the spectral representation (method I) and the Weinberg series
(method II) at z = 0. At diverging scattering length these form factors are exactly the same.
In Fig. 5.6 we show the form factors of Eq. (5.44) at ā0 = −10.00 for different potential
resonances and normalize them according to

2µ

∫ ∞
0

g(p)2 dp = 1. (5.45)

Fig. 5.6 shows that the form factors have a big peak at p̄ ' (2n−1)π
2 (except for n = 1) where

n labels the potential resonance. So these form factors are similar to the form factors of the
Weinberg series which is not surprising because they correspond to the same potential.
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Figure 5.6: The form factors gn(p) of the EST method applied to the square well potential at
ā0 = −10.00. The index n labels the potential resonance. The form factors are normalized
according to Eq. (5.45).

Fig. 5.7 shows the diagonal of the off-shell partial-wave component t0(p, p′, z) correspond-
ing to the square well potential at z = 0 compared to the one-term approximation of the
EST-method. From this figure it is clear that the approximation works quite well near the
first potential resonance at ā0 = −9, but it is less good for the higher order potential reso-
nances. If we increase the absolute value of the scattering length, t0(p, p′, z) becomes more
separable and the EST approximation works better as can be seen from Fig. 5.7d.
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The results of Fig. 5.7 can be explained by noting that Eq. (4.8) evaluated at zero energy is
exactly the same as the one-term EST approximation of the square well potential evaluated
at zero energy. Therefore the difference between the full function t0(p, p′, 0) and the EST
approximation is just the off-shell d-wave component t2(p, p′, 0) which follows from Eq. (4.7).

So whenever | t2(p,p′,0)
t0(p,p′,0) | is not small, the EST approximation at z = 0 is not working. We know

that t2(p, p′, 0) diverges when a d-wave dimer state becomes bound which occurs at ā0 = 0.
This explains why the EST approximation works quite well at negative scattering lengths
near the first potential resonance in which case there is no d-wave resonance close. However,
the off-shell d-wave T -matrix is quite big at small negative scattering lengths (|a| ≈ 1) near
the higher order resonances, so that the EST approximation fails in this regime.
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Figure 5.7: Comparison of the off-shell partial-wave component t0(p, p, 0) corresponding to
the square well potential with the one-term approximation of the EST method as a function
of p. The depth of the square well is chosen such that the Nth s-wave dimer state is almost
bound.

At zero energy, z = 0, the EST method with Ep = 0 provides a good approximation
of the partial-wave component t0(p, p′, z) near small values of p̄ and p̄′. When we decrease
the energy z, the one-term approximation at p̄ = p̄′ = 0 fails for |p̄z| & 0.5 at ā0 = −9
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as can be seen from Fig. 5.8. Note that this is only the case when two-body bound states
exist. In case of the first potential resonance the EST method works fine at ā0 = −9 as can
be seen from Fig. 5.8a. The reason is that t0(0, 0, z) does not change sign in this case. If
we would have considered a potential with a strong repulsive barrier, the function t0(0, 0, z)
would have changed sign, so that for these potentials the behaviour of t0(0, 0, z) near the
first potential resonance would be similar to the behaviour near the other resonances and the
EST approximation would be worse. Furthermore, the failure of the EST approximation for
|p̄z| & 0.5 also prevails at larger negative values of the scattering length and for much deeper
square well potentials as can be seen from Fig. 5.8c and Fig. 5.8d respectively.
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Figure 5.8: Comparison of the off-shell partial-wave component t0(0, 0, z) corresponding to
the square well potential with the one-term approximation of the EST method as a function
of z. The depth of the square well is chosen such that the Nth s-wave dimer state is almost
bound.
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5.5 Comparison of the separable expansions

We have considered several approaches to expand the off-shell partial-wave components tl(p, p
′, z)

into terms which are separable in p and p′. Table 5.1 summarizes the most important prop-
erties of these methods. One useful property which is shared by method I and II is that each
two-body bound state with angular momentum quantum number l corresponds to only one
specific form factor gnl(p, z). This can be seen from the expansion coefficient τnl(z) which
only has a pole exactly at the two-body binding energy of the nth dimer state with quantum
number l. Therefore one can study the effect of these deeper bound states on the weakly
bound Efimov trimers by including and excluding the corresponding terms in the expansion
of tl(p, p

′, z).

Furthermore, method I and II provide approximations for the potential V for which the
binding energy of the weakly bound s-wave dimer state is exactly the same as the one of the
full potential V . This allows us to use these methods for calculating the Efimov states at
small positive scattering lengths close to the atom-dimer threshold. However, the one-term
EST approximation of the potential supports a dimer state whose binding energy deviates
from the one corresponding to the potential V at small positive scattering lengths. This can
be seen from Fig. 6 of Ref. [49] and Fig. 2 of Ref. [54] in which van der Waals potentials are
considered. Therefore we will not use the one-term EST approximation to study whether the
second Efimov state crosses the atom-dimer threshold.

Another useful property of method II is the fact that the form factors do not depend
on the depth of the well and therefore also not on the s-wave scattering length a0 for fixed
range R. This can be seen from Eq. (5.11) which simply shows that any prefactor of the
potential only affects the eigenvalues ηnl(z). As a result, for the calculations of the Efimov
states at fixed three-body energy E one only needs to calculate the form factors once for all
relevant energies z as one varies the scattering length ā0. A similar nice property applies to
the EST approach (method III) in which the form factors do not depend on the energy z.
Therefore one could perform three-body calculations at fixed scattering length and search for
solutions to the three-body equations by varying the three-body energy E without calculating
the form factors more than once. The form factors of method I depend on both the scattering
length and the two-body energy z, so that the computation time is the largest for three-body
calculations involving this method. The form factors of the UPE (method IIb) are a special
case. They are independent of the s-wave scattering length (for fixed range R) and the energy
z, which reduces the computation time for solving the three-body equation significantly since
the form factors need only to be calculated once. However, the three-body equation is changed
due to the presence of nonsymmetric terms in the expansion of tl(p, p

′, z).

We have confirmed that the separable expansions of method I and II converge to the
analytical expression given by Eq. (4.3). The number of terms which are needed to achieve
convergence depends on the depth of the well (or equivalently the scattering length) and the
considered energy. As discussed before, the separable expansion of tl(p, p

′, z) obtained by using
method II converges slow at large negative energies below the depth of the well, whereas the
convergence is much faster for method I and the UPE at these energies. Therefore method
I has better convergence properties than method II. The convergence of the EST-method
depends on which wave functions are chosen to be reproduced by the approximated potential.
It is difficult to make this choice in general, so that the EST-approach lends itself best to
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yielding a separable approximation for the off-shell components tl(p, p
′, z).

Finally, we compare in Fig. 5.9 the full s-wave component t0(p, p′, z) of the square well
potential supporting almost 50 s-wave dimer states with some approximations using methods
II and III. This figure shows that the one-term EST approximation works well at small
momenta and small negative energies, but it fails for |p̄z| & 0.5. The Weinberg series is a
better substitute for t0(p, p′, z) when enough terms are used in the expansion. The failure
of the single-term EST approximation for |p̄z| & 0.5 occurs when at least one dimer state is
bound. When the potential does not support any bound states, the function t0(p, p′, z) does
not have any zeros as a function of z and the EST approximation is a fine substitute for
t0(p, p′, z).
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Figure 5.9: Comparison of the off-shell partial-wave components t0(p, p, 0) and t0(p, p,− p2

2µ)
corresponding to the square well potential with the approximations using the Weinberg series
and the one-term EST approximation. The square brackets indicate which terms of the
Weinberg series are used to approximate t0. The depth of the square well is chosen such that
the 50th s-wave dimer state is almost bound and ā0 = −13.23.
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Table 5.1: Comparison of the different separable expansions of the partial-wave components
tl(p, p

′, z).

Method Advantages Disadvantages

I - each term contains one pole corre-
sponding to a two-body bound state
of the potential; the two-body bind-
ing energies are the same as for the
non-separable potential
- the expansion converges slightly
faster than the one of method II

- tl(p, p
′, z) must be known explic-

itly
- the form factors depend on both
the energy z and the depht q0

- for deeper potentials many terms
are needed to reproduce the scatter-
ing length corresponding to the orig-
inal potential (except for very large
scattering lengths)

II - each term contains one pole corre-
sponding to a two-body bound state
of the potential; the two-body bind-
ing energies are the same as for the
non-separable potential
- the form factors do not depend on
the depth q0

- for deeper potentials many terms
are needed to reproduce the scatter-
ing length corresponding to the orig-
inal potential (except for very large
scattering lengths)
- the series converges slowly for en-
ergies below the depth of the well
(not relevant for a deep potential)

IIb - the form factors do not depend on
the depth q0 and the energy z

- the expansion of tl(p, p
′, z) con-

tains nonsymmetric terms which
changes the three-body equation
- for deeper potentials many terms
are needed to reproduce the scatter-
ing length corresponding to the orig-
inal potential (except for very large
scattering lengths)

III - the form factors do not depend on
the energy z
- ā0 is exactly the same as for the
non-separable potential; the low-
energy two-body physics is very well
described by one-separable term
(even for deep potentials)

- it is difficult to determine the sec-
ond term of the expansion
- the separable appoximation fails
for |p̄z| & 0.5 when the square well
supports at least one dimer state
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5.6 Comparison with van der Waals potentials

So far we have applied the different expansion methods to the square well potential. Now we
apply these methods to some potentials which decay as −C6/r

6 for large r. The dispersion

coefficient C6 determines the van der Waals length by rvdW = 1
2

(
mC6
~2
)1/4

.

First, we compare the form factors of the square well potential with the ones of several
van der Waals potentials by using method II. The considered potentials are the soft-core van
der Waals potential VSC(r) given by

VSC(r) = − C6

r6 + σ6
(5.46)

and the inner-core van der Waals potential VIC(r) given by

VIC(r) =

{
C6v 0 ≤ r < σ

−C6
r6

r ≥ σ.
(5.47)

This potential is the same as the hard-core van der Waals potential considered by Ref. [55]
for v →∞.

It is clear from Eq. (5.11) that the form factors of these van der Waals potential do
not depend on C6 in the same way that the form factors of the square well potential are
independent of the depth V0. The form factors of the van der Waals potentials and the square
well potential depend only on the length scales σ and R respectively. So when three-body
calculations are performed for the van der Waals potentials, time is saved when the s-wave
two-body scattering length is expressed in units of σ, so that the form factors do not have to
be calculated as a function of the scattering length. The scattering length can be varied by
adjusting the value of C6.

Fig. 5.10 compares the form factors obtained for the potentials VSC(r), VIC(r) and VSW (r)
at z = 0. The units are chosen such that the figure applies to all possible scattering lengths.
The same data is also shown in Fig. 5.11 except we have used the van der Waals length to
make the form factors and momenta dimensionless. In order to do this we have fixed the
scattering length such that 1/a0 = 0. This figure is similar to Fig. 1 of Ref. [54] and it shows
that the rescaled form factors of the van der Waals potentials look exactly the same in the
range 0 ≤ prvdW /~ . 40, which indicates that this small-momentum regime reflects the part
of the potential which is similar for both potentials, namely the van der Waals tail −C6

r6
. The

behavior of the form factors at small momenta is most relevant for the calculation of the
three-body parameter, which indicates that Efimov physics corresponding to van der Waals
potentials is universal [54].

Another interesting thing to note is that the inner barrier of VIC(r) has the effect of
increasing the momentum at which gnl(p, 0) is damped out. This simply reflects the fact
that the nth eigenvalue ηn,0(0) of the soft-core van der Waals potential is larger than the
eigenvalue ηn,0(0) of VIC(r) with a repulsive barrier. In other words, the potential VIC(r) has
to be made deeper than VSC(r) in order to bind the nth s-wave dimer state.

The form factors gnl(p, 0) of deep square well potentials are much smaller at small momenta
p̄ compared to the form factors of the considered van der Waals potentials. This is caused
by the occurence of one big peak which suppresses the rest of the form factors due to the
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normalization condition of Eq. (5.12). The big peak occurs near p̄ ' (2n−1)π
2 which is just

the depth q̄0 at which the nth potential resonance occurs. This big peak reflects the large
probability density for relative momenta near q̄0 at distances r < R. For van der Waals
potentials, the probability density for finding two particles at small relative distances r . rvdW
is suppressed (see Fig. 1.5), so that the probability density for two particles, which scatter
at zero energy, to have large relative momenta is small. So the form factors corresponding
to potentials involving a van der Waals tail do not have an extremely large peak at large
momenta.

0 10 20 30 40 50 60 70 80

-0.4

-0.2

0

0.2

Figure 5.10: Form factors at z = 0 corresponding to the 22th s-wave two-body bound state
of the potentials VSC , VIC (with v = 100σ−6) and VSW (i.e., n = 22 and l = 0) calculated by

using method II. The form factor corresponding to VSW is plotted as 1
2gnl(p, z)

√
m~
R versus

pR
~ .
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Figure 5.11: Form factors at z = 0 corresponding to the 22th s-wave two-body bound state of
the potentials VSC , VIC (with v = 100σ−6) and VSW (i.e., n = 22 and l = 0). The potentials
support exactly 22 s-wave bound states and the inverse scattering length 1/a0 is set to zero.

The form factor corresponding to VSW is plotted as 1
3gnl(p, z)

√
m~
R versus pR

~ .

Now we compare the one-term EST approximation for the inner-core van der Waals po-
tential with the corresponding Weinberg series. The comparison is shown in Fig. 5.12. Since
this potential contains a repulsive barrier, the eigenvalues ηnl(z) of the Weinberg series can-
not only take on positive values, but also negative values. In this case we label the positive
eigenvalues in the same way as before and we label the negative eigenvalues with negative
values of n such that |ηnl(z)| decreases for increasing |n|. Fig. 5.12 shows that the one-term
EST approximation works fine at small negative energies, but not for prvdW

~ & 0.5 which is

55



CHAPTER 5. SEPARABLE EXPANSIONS AND APPROXIMATIONS OF THE
OFF-SHELL TWO-BODY T -MATRIX

quite similar as we have seen for the square well potential in Fig. 5.9. The cause for this

failure is similar as for the square well potential. The EST approximation for t0(p, p,− p2

2µ)

cannot change sign, whereas the actual component t0(p, p,− p2

2µ) does change sign.
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Figure 5.12: The off-shell partial-wave component t0(p, p,− p2

2µ) corresponding to the inner-
core van der Waals potential is approximated with the Weinberg series and the one-term EST
approximation. The first s-wave dimer state is almost bound and the scattering length is
a0 = −9.00 rvdW .

The form factors of the square well potential and the van der Waals potential differ a
lot as we have seen from Fig. 5.11. As a result, the function τ(z) corresponding to the EST
method is also strongly affected as can be seen from Eq. (5.41). Fig. 5.13 shows this function
for the square well potential and the inner-core van der Waals potential at the same value of
the scattering length near the first and second potential resonance. For N = 1 the differences
are less big than for N = 2. At p̄ = 3 the curves differ by a factor 1.5 for N = 1, whereas
this factor is 5.0 for N = 2. This difference in τ(z) between the square well and the van
der Waals potential is caused by the big peak of the form factors of the square well potential
which suppresses the small momentum part of the form factors after normalizing. This can
easily be seen from Eqs. (5.41) and (5.42). Combining these equations results in

τ(z) =
1

4π2µ

(
~
|g(0)|2

a0
− 2

π

∫ ∞
0

z

z − p2

2µ

|g(p)|2 dp

)−1

(5.48)

or

τ(z)

τ(0)
=

(
1− 2

π~
a0

|g(0)|2

∫ ∞
0

z

z − p2

2µ

|g(p)|2 dp

)−1

(5.49)

56



5.7. APPLICABILITY FOR STUDYING EFIMOV PHYSICS

from which we see that the factor a0
|g(0)|2 makes sure that τ(z) drops off fast for the square

well potential for N ≥ 2.
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Figure 5.13: The EST-function τ(z) corresponding to the square well potential and the inner-
core van der Waals potential with v → ∞. The scattering length is a0 = −9.00 r0 where
r0 = R for VSW and r0 = rvdW for VIC . The potential resonance is indicated by N . The
dimensionless momentum p̄ is simply pr0

~ .

5.7 Applicability for studying Efimov physics

The analysis of the different separable expansion methods presented in this Chapter allows us
to determine the usefulness of these methods to study Efimov physics associated with square
well potentials. Methods I-III are all expected to be useful for calculations of the Efimov states
near the first potential resonance. However, only method I and II reproduce the correct dimer
state energy at all values of the scattering length, so that these methods should be used to
study the crossing of the deepest Efimov states with the atom-dimer threshold.

For deeper potentials, the Efimov resonances are embedded into the continuum associated
with deeper two-body bound states. Consequently, the separable approximation (using any
method) fails or it may only be valid in a smaller energy regime. Naidon et al. [59] have
shown that the separable EST-approximation of many potentials (including van der Waals
potentials) works very well to determine the three-body properties of the Efimov resonances.
Therefore, we should certainly consider this approximation for the square well potential. Fur-
thermore, although the separable expansion of method I converges faster than the separable
expansion of method II, we do not recommend this method in the case of deep square well
potentials because it is computationally more extensive. Moreover, since the form factors of
method I and II (and IIb) are quite similar (and are exactly the same at zero energy), the
number of terms which are necessary to approximate the two-body T -matrix of deep square
well potentials will be quite similar. Therefore we will not consider method I and IIb for deep
square well potentials. On the other hand, for a shallow square well potential supporting one
bound state, method I allows us to calculate the three-body properties using less expansion
terms, so that it is useful for such potentials. We will not perform any three-body calcula-
tions using the unitary pole expansion (method IIb) because it requires a different form of
the three-body equations.
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So far we have compared the different expansion methods only on the two-body level.
We will expand this analysis on the three-body level in Chapter 7. It is not obvious that a
separable approximation of the two-body T -matrix results in the correct three-body parameter
because the three-body equation involves an integration over all negative energies below the
energy E of the three-body system. So even if a separable approximation holds very well
close to E, it may not describe the three-body physics correctly.
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6. Numerical model

The three-body equations presented in Chapter 3 need to be solved numerically. In this Chap-
ter we describe how these numerical calculations are performed. We also analyze the three-
body equations by considering how different terms of the separable expansion of tl(p, p

′, z)
shift the energies of the Efimov states. For this purpose we introduce some new terminology.
We will call the separable term in the expansion of the partial-wave component t0(p, p′, z)
which corresponds to the s-wave dimer state causing the potential resonance the resonant
term and label it with n = nr and l = 0. This term is the dominant term of this expansion
when considering energies close enough to the corresponding s-wave dimer energy because
τnr,0(z)� τn,0(z) for n 6= nr and small energies z. We call the other terms in the expansion
of t0(p, p′, z) the nonresonant terms.

6.1 Three-body bound state calculations

The three-body equation which we need to solve is given by Eq. (3.15). We choose a finite
number of components φ̃ln(q, E) to be nonzero which reduces the set of three-body equa-
tions to a finite set of coupled one-dimensional integral equations. This approximation can
be justified by studying the convergence of the numerical results as a function of the num-
ber of components φ̃ln(q, E) taken into account. We will only consider s-wave and d-wave
interactions, i.e., l = 0 and l = 2. We indicate the number of separable terms which are
used to approximate the partial-wave components t0(p, p′, z) and t2(p, p′, z) by Ns and Nd

respectively.

The usual method to numerically solve an integral equation, which is known as the
Nyström method [80], is to introduce a grid for the momentum variables q and q′ accord-
ing to some quadrature rule, so that the value of an integral can be approximated as a linear
combination of values of the integrand evaluated at some specific points qi and weighted by
a specific number wi [80], i.e.,

∫ b

a
f(q) dq =

Nq∑
i=1

wif(qi). (6.1)

This approximation is better when the number of grid points Nq increases. We do not want
to use equally spaced points qi if the only important contribution to the integrand is located
in some small region of the range [a, b]. This is also the case for the integral in Eq. (3.15) due
to the factor τnr,0(Zq). Furthermore, the form factors gnl(p, z) with small values of n only
contribute for small momenta.
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We choose the method Gaussian quadrature to calculate the location of the abscissas qi
and the corresponding weighting functions wi because then the sum in Eq. (6.1) converges
exponentially fast to the value of the integral as the number of grid points Nq increases, so
that it is the most efficient method for smooth, nonsingular functions [80]. More theory on
Gaussian quadratures can be found in Ref. [80]. We choose the Gauss-Legendre quadrature
rule to calculate the abscissas and weights for integrals on the range [−1, 1]. This means that
the abscissas qi are just the Nq roots of the Legendre polynomial PNq(q) and the weights are
given by [80]

wi =
2

(1− q2
i )[P

′
Nq

(qi)]2
. (6.2)

We transform these abscissas and weights on [−1, 1] to the abscissas q̃i and weights w̃i on the
infinite range [0,∞] via [80]

q̃i = α

(
2

qi + 1
− 1

)
(6.3)

and

w̃i =
2αwi

(qi + 1)2
. (6.4)

This means that we have two momentum grid variables, Nq and α, which can be tuned to get
converged results. The parameter α determines the location and spacing of the abscissas q̃i.

Now we can define the column vector q which contains the momenta q̃1, q̃2, q̃3, .... Since
we have discretized the absolute values of the momenta q and q′, we can write the set (3.15)
of coupled integral equations in matrix form as


φ̃1(q, E)

φ̃2(q, E)

φ̃3(q, E)
...

 =


F11(q, qT ) F12(q, qT ) F13(q, qT ) · · ·
F21(q, qT ) F22(q, qT ) F23(q, qT ) · · ·
F31(q, qT ) F32(q, qT ) F33(q, qT ) · · ·

...
...

. . .



φ̃1(q, E)

φ̃2(q, E)

φ̃3(q, E)
...

 . (6.5)

In this equation, we have replaced the label ’ln’ by the numbers 1, 2, 3, ... These numbers
refer to each single equation given by Eq. (3.15). The superscript T denotes the transpose of
a matrix. Furthermore, φ̃i(q, E) indicates a column vector consisting of the values φ̃i(q1, E)

up to φ̃i(qNq , E) and the element Fij(q, q
T ) is a matrix, namely

(
Fij(q, q

T )
)

=

 Fij(q̃1, q̃1) · · · Fij(q̃1, q̃Nq)
...

. . .
...

Fij(q̃Nq , q̃1) · · · Fij(q̃Nq , q̃Nq)

 . (6.6)
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The matrix element Fij(qa, qb) is given by

Fij(qa, qb) = −4πdu

Nu∑
n=1

∆li∆ljq
2
bdqb

E − 1
m

(
q2
a + qaqbun + q2

b

)Pli
 1

2qa + qbun√
1
4q

2
a + q2

b + qaqbun


τi

(
E − 3

4m
q2
a

)
gi

(√
1

4
q2
a + q2

b + qaqbun, E −
3

4m
q2
a

)
(2lj + 1)

Plj

 1
2qb + qaun√

q2
a + 1

4q
2
b + qaqbun

 gj

(√
q2
a +

1

4
q2
b + qaqbun, E −

3

4m
q2
b

)
.

(6.7)

The momenta qa and qb are just elements of the set of abscissas {q̃i} defined in Eq. (6.3)
and dqb is just the bth element of the set of weights {w̃i} defined in Eq. (6.4). Furthermore,
the angular integration is executed by means of Riemann summation. We have defined the

angular variable u as u ≡ cos
(
q̂ · q′
∧)

which takes on values in the range [−1, 1]. We have

chosen for the middle Riemann sum in which du is the step size of the angular integration
and Nu = 2

du is the number of steps which are used to approximate the angular integration.
So the nth value un is given by un = −1 + (n− 1

2)du.

Eq. (6.5) can be written as t̃i =
∑

j F̃ij t̃j which is just an eigenvalue equation in which the

vectors t̃ are eigenvectors of the matrix F̃ with eigenvalue 1. The matrix F̃ is called the kernel.

In order to find the three-body binding energies E = −3q̄23
4m at some fixed scattering length

we can simply vary the momentum q̄3 for a fixed depth q̄0 and calculate the determinant of
I − F̃ where I is the identity matrix. A solution to the three-body equation exists whenever

det
(
I − F̃

)
= 0. (6.8)

Alternatively, we can vary the depth q̄0 at a fixed value of the momentum q̄3 and then calculate
the value of the determinant. When the determinant changes sign, we use the secant method
to accurately find the depth q̄0 at which the zero occurs.

As we have seen before, the dimensionless depth q̄0 determines the scattering length of
the square well potential. Therefore we can calculate the Efimov spectrum by calculating

the zeros of the determinant det
(
I − F̃

)
for a set of scattering lengths around the potential

resonance of interest.

6.2 Analysis of the kernel using the Weinberg series

Here we analyze the ’symmetrized’ kernel of the three-body equations given in Eq. (F.20).
We use the Weinberg series to expand the two-body T -matrix. The kernel of each integral
equation is given by

Knl(q, q
′, E) =

∞∑
l′=0,even

∞∑
n′=1

Knln′l′(q, q
′, E) (6.9)
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where

Knln′l′(q, q
′, E) = −

∫
dq′
∧ 2q′qPl(q̂ · 1

2q + q′
∧

)

E − 1
m (q2 + q · q′ + q′2)

√
τnl(E −

3

4m
q2)gnl(|

1

2
q + q′|, E − 3

4m
q2)

(2l′ + 1)Pl′(q + 1
2q′
∧

· q′
∧

)

√
τn′l′(E −

3

4m
q′2)gn′l′(|q +

1

2
q′|, E − 3

4m
q′2).

(6.10)

The functions Knln′l′(q, q
′, E) are symmetric in q and q′ if n = n′ and l = l′. Note that when

we only consider s-wave interactions (l = 0), the Legendre polynomials are just constants, i.e.
P0(x) = 1.

A very interesting feature of the function Knln′l′(q, q
′, E) is that the small-momentum

region, i.e. q̄, q̄′ . 5, is most important for the three-body calculations even when the form
factor gnl(p, z) has a big peak at large p. We will show this in more detail in Section 6.2.2, but
here we will briefly consider why this is the case. When the three-body energy is close to the
energy of a dimer state labeled by nr and lr, the functions τnrlr(E− 3

4mq
2) and τnrlr(E− 3

4mq
′2)

are very big at small values of q and q′ respectively. So we see that large values of q and q′ do
not contribute much to the calculation of the three-body parameters and to the calculation
of the higher excited Efimov states whose energies are very small and which are located very
close to the s-wave dimer state. This also means that one needs to define the momentum
grid denser for q̄, q̄′ � 1 if one wants to calculate the energies of the higher excited Efimov
states. Furthermore, since the form factors gnl(p, z) for l 6= 0 are zero at p = 0, these form
factors have little overlap at small values of q and q′ with the resonant form factor for which
lr = 0. Therefore these terms are not expected to contribute much and s-wave interactions
dominate.

In Section 5.3 we have seen that the form factors gnl(p, z) of the square well potential at

zero energy have a big peak near p̄ ' (2n−1)π
2 (except for n = 1) and are small at p̄ = 0.

The effect of this big peak is less important than one might expect. This is simply caused by
the fact that the functions τnr,0(E − 3

4mq
2) and τnr,0(E − 3

4mq
′2) of the resonant term (which

corresponds to the s-wave dimer state which causes the resonance) are very small at large q
and q′ respectively.

Now we consider the coupling terms. The most dominant coupling terms will be the cou-
pling between the resonant term (indicated by nr) and the other terms due to the large value
of τnrlr corresponding to the resonant term. Since τnrlr drops off to zero as q or q′ increases,
it is the small-momentum region which dominates those coupling terms. Furthermore, the
lowest-order terms (n = 1, 2, ...) couple most strongly to the resonant term because the form
factors corresponding to those terms have the biggest values for small momenta, whereas the
prefactors |τnl(0)| for almost all n < nr (except for values of n close to nr) are on the order
of 1

4π because the corresponding values of ηnl(0) are much larger than 1 (see Eq. (5.13)).

We can quantify the coupling strength with the parameter Γ(z) =

√
|τnl(z)|gnl(0,z)√
|τnrlr (z)|gnrlr (0,z)

,

where the index r refers to the resonant term. Fig. 6.1 shows how this coupling strength
looks at zero energy for nr = 100, lr = 0 and l = 0. This figure clearly shows that lowest-
order terms (n = 1, 2, ...) couple most strongly to the resonant term.

Another important point which has to be considered is the poles in the factors τnl for
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Figure 6.1: The coupling strength Γ(z) as a function of n at energy z = 0 and with nr = 100,
lr = 0 and l = 0. The depth of the square well is chosen such that ā0 = −9.00. The functions
gnl and τnl are calculated by using the Weinberg series.

all n ≤ Nl which occur when the potential is deep enough to support Nl two-body bound
states with angular momentum quantum number l. Since integrating over a singularity can
lead numerical errors, we need to be careful when we take these terms into account. In case
of a deep square well potential many s-wave two-body bound states exist near the bottom
of the well. Although the form factors of the resonant term are not zero at this value of
the momentum, the prefactor τnrlr is almost zero at this value and the form factors gn,0
corresponding to strongly bound s-wave dimer states are also close to zero at large momentum
values. Therefore we expect that the poles corresponding to the strongly bound s-wave dimer
states do not contribute much to the three-body calculation. The main effect of these poles
is probably to give the Efimov states a width via the residue of the poles.

The situation is different for the weakliest bound s-wave dimer states. The poles cor-
responding to these two-body bound states occur at higher energies, so that τnrlr is not
completely zero and also the form factors gn,0 corresponding to these weakly bound s-wave
dimer states are not zero. We will analyze the effect of these poles in more detail below when
we investigate the eigenvalues of the kernel.

6.2.1 The diagonal of the kernel

An important feature of the function Knln′l′(q, q
′, E) is that it equals 0 when q = 0 or q′ = 0

(except for E = 0). This is caused by the factor q′q
E− 1

m
(q2+q·q′+q′2)

. This factor pronounces the

diagonal of the Knln′l′(q, q
′, E), whereas it strongly suppresses the regions in which q � 1 or

q′ � 1 (except when both q and q′ are small and E is also close to zero). So by analyzing the
diagonal of the submatrices of the kernel we gain a lot of knowledge about the kernel and we
can see what values of q′ really contribute to the integrals in the three-body equations.

An interesting limit of the functions Knlnl(q, q
′, E) is the limit in which q, q′ and E go to
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zero. This limit can be easily calculated. For l = 0 it is given by

lim
q,q′,E→0

Kn0n0(q, q′, E) = −
∫ 1

−1
2π

2
1
m(2 + u)

t0(0, 0, 0) du (6.11)

= −2 ln(3)

π~
an,0. (6.12)

Here we have used Eq. (2.49). The scattering length an,0 is just the nth contribution to the
s-wave scattering length (see Eq. (5.21)). Note that limq,q′→0Knlnl(q, q

′, E) = 0 for E 6= 0 or
l 6= 0. Fig. 6.2a shows how Knlnl(q, q, E = 0) decreases for different potential resonances of
the square well potential using the Weinberg series which is described in Section 5.3.

When the momenta q and q′ are nonzero, the specific behaviour of the partial-wave com-
ponents tl(p, p

′, z) matters. In case of the square well potential we have seen that the form

factors gn,0(p, z) exhibit a peak near p̄ = (2n−1)π
2 . Since the form factors of the function

Knln′l′(q, q
′, E) depend on |12q + q′| and |12q′ + q|, we expect that the peak of the form

factors results in a broadened peak in the kernel due to the angular integration. Since
1
2q ≤ |

1
2q + q′| ≤ 3

2q for q = q′, the peak of the form factors will influence the diagonal

Kn0n0(q, q, E) for 2
3

(2n−1)π
2 ≤ q̄ ≤ (2n − 1)π. This can be clearly seen in Fig. 6.2b in which

Knlnl(q, q, E = 0) is shown as a function of q for the square well potential. The peak clearly
broadens as one considers higher values of n. The maximum of the peak also lowers as a
function of n due to the drop of τn,0

(
E − 3

4mq
2
)

as q increases. The three curves shown in
Fig. 6.2b almost overlap for the values of q which are not shown in this figure. Furthermore,
if we compare Fig. 6.2b with Fig. 6.2a, we see that the peaks shown in Fig. 6.2b are very
small compared to Kn0n0(0, 0, 0).

In Fig. 6.2 we have only considered the functions Knr0nr0(q, q′, E) where nr labels the
resonant term in the separable expansion of tl(p, p

′, z). From this figure we can conclude that
one needs to integrate at least to q̄ = (2nr − 1)π in order to have accurate results. However,
if nr is large, the peak in the range 1

3(2nr − 1)π ≤ q̄ ≤ (2nr − 1)π is small compared to
Knr0nr0(0, 0, 0), so that the contribution of the peak at large values of q is not expected to
contribute much to the calculation of the three-body parameter a−.

6.2.2 The eigenvalues of the kernel

We have seen that a solution to the Faddeev equations exists when the kernel F̃ has an
eigenvalue equal to 1. Now we study how the eigenvalues shift as one includes more terms in
the expansion of tl(p, p

′, z) in which case the size of the kernel increases.

In this analysis we consider a set of two coupled integral equations which is represented
in matrix form by(

φ̃1(q, E)

φ̃2(q, E)

)
=

(
F11(q, qT ) λF12(q, qT )

λF21(q, qT ) F22(q, qT )

)(
φ̃1(q, E)

φ̃2(q, E)

)
. (6.13)

Note that we have introduced a parameter λ which equals 1 when we want to solve the three-
body equations for the separable expansion of t0(p, p′, z) which includes two terms. However,
if the coupling parameter λ equals 0, this set of three-body equations decouples. In our
analysis, the number 1 in Eq. (6.13) corresponds to l1 = 0 and n1 = nr where nr is the
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Figure 6.2: The diagonal Knlnl(q, q, E) as a function of q for the square well potential using
the method described in Section 5.3 to calculate the form factors. The potential resonances
are labeled by N . The plotted curves correspond to n = N and l = 0. The considered energy
of the three-body system is E = 0 and the considered contribution to the scattering length is
ān,0 = −2.733.

resonant term. We also choose l2 = 0. The value of n2 is varied. In all cases we calculate the
eigenvalues of the kernel F̃ for 0 ≤ λ ≤ 1. In this way we can study how the eigenvalues shift
as we increase the coupling strength.

For λ = 0 the eigenvalues of the kernel F̃ are just the eigenvalues of the submatrices(
F11(q, qT )

)
and

(
F22(q, qT )

)
. So we start by choosing the depth q̄0 of the square well in

such a way that the highest eigenvalue (which we call f) of
(
F11(q, qT ))

)
is close to 1. This

eigenvalue corresponds to the lowest Efimov state.

We define the shift ∆f of the considered eigenvalue as ∆f = f(λ = 1) − f(λ = 0). In
Fig. 6.3a we show how the eigenvalues f(λ) shift as a function of coupling parameter λ. A
positive shift means that the trimer state becomes bound at a smaller depth q̄0, whereas a
negative shift means that the depth q̄0 should be increased in order to bind the Efimov trimer.
Fig. 6.3b shows how the corresponding functions Knlnl(q, q, E) look.

An overview of the shifts of the eigenvalues f is given in Table 6.1 in which we study the
coupling of the resonant term to the other terms and the effect of the chosen grid of q, which
contains values in the range 0 < q ≤ qmax.
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Figure 6.3: The shift of the eigenvalue f as the coupling parameter λ increases (a) and the
diagonal Knlnl(q, q, E) as a function of q for the square well potential using the Weinberg
series to calculate the form factors (b). Here n1 = 100, n2 = 99, E = 0 and ān10 = −2.733,
which corresponds to q̄0 = 312.6.

Table 6.1: Shifts of the eigenvalues f(λ) of the kernel F̃ at E = 0. When a pole is included
in the calculation, the q-grid is chosen in such a way that it is symmetric around the pole.
The Weinberg series is used expand t0(p, p′, z). The grid for q contains values in the range
0 < q ≤ qmax. The star (∗) indicates that these values are not relevant because the peak of
the form factor g1,0(p, z) occurs at p = 0.

n1 n2 ān10 q̄pole (2n2 − 1)π/3 (2n2 − 1)π q̄max f(0) f(1) ∆f

100 1 −2.733 361 ∗ ∗ 64 0.99995 0.37912 −0.62
100 10 −2.733 359 19.9 59.7 131 0.99995 0.99605 −3.9 · 10−3

100 10 −2.733 359 19.9 59.7 19 0.99989 0.99682 −3.1 · 10−3

100 20 −2.733 354 40.8 123 131 0.99995 0.99891 −1.0 · 10−3

100 20 −2.733 354 40.8 123 40 0.99994 0.99918 −7.6 · 10−4

100 98 −2.733 70.9 204 613 85 0.99996 0.99923 −7.3 · 10−4

100 98 −2.733 70.9 204 613 50 0.99996 0.99922 −7.4 · 10−4

100 99 −2.733 49.9 206 619 40 0.99996 0.99853 −1.4 · 10−3

100 99 −2.733 49.9 206 619 64 0.99996 0.99853 −1.4 · 10−3

100 101 −2.733 − 210 631 85 0.99995 1.00130 1.3 · 10−3

100 102 −2.733 − 213 638 85 0.99995 1.00061 6.6 · 10−4

First of all, we want to note that the results of the shift ∆f in Table 6.1 behave similarly
as the coupling strength Γ shown in Fig. 6.1. This means that it is the small-momentum
region which couples n1 and n2 most strongly. This can be easily understood by noting that
τn10(− 3

4mq
2) is the largest for small values of q. Consequently, the coupling between n1 = 100

and n2 = 1 leads to the largest shift of f .

Secondly, the results for n2 = 98 and n2 = 99 in Table 6.1 clearly show that the poles
hardly shift the eigenvalues of the kernel. This is caused by the symmetry of the poles.
Therefore we can neglect the poles when calculating the Efimov trimers. Note that we have
only considered the principal value integral and neglected the residue of the kernel at the
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singular points.

Furthermore, the results of Table 6.1 also show the effect of the ’bump’ which is just the
big peak of the form factors gn20 broadened by the angular integration. If q̄max > (2n2− 1)π,
then the bump is included in the calculation. However, if q̄max < (2n2−1)π/3, the peak of the
form factor gn20 is not included in the calculation. The results for n2 = 10 and n2 = 20 show
that the peak of gn20 becomes less important as n2 increases. For n2 = 10 the contribution
to the shift of the eigenvalue is −8 · 10−4, whereas for n2 = 20 it is −2.4 · 10−4. This decrease
of the effect of the bump is also caused by the fact that the bump shifts to larger values of q
as n2 increases and the function τn10(− 3

4mq
2) decreases for increasing q.

Another interesting result shown in Table 6.1 is that ∆f has approximately the same
absolute value, but opposite sign for n2 = 99 and n2 = 101 and also for n2 = 98 and
n2 = 102. Therefore we expect that these pairs cancel each other’s effect, so that their net
contribution to ∆f is much smaller. We have tested this by considering the following coupled
set of equationsφ̃1(q, E)

φ̃2(q, E)

φ̃3(q, E)

 =

 F11(q, qT ) λF12(q, qT ) λF13(q, qT )

λF21(q, qT ) F22(q, qT ) λF23(q, qT )

λF31(q, qT ) λF32(q, qT ) F33(q, qT )

φ̃1(q, E)

φ̃2(q, E)

φ̃3(q, E)

 . (6.14)

where n1 = 100, n2 = 99 and n3 = 101. Again we choose ān10 = −2.733 and q̄max = 64. The
resulting shift of the eigenvalue is ∆f = −8 · 10−5, which is indeed very small.

We have also performed some calculations which indicate how much these terms with n
close to nr contribute to the value of ā−. The results are given in Table 6.2. It is clear that
the effect of these terms on the value of ā− is small for this deep square well potential. What
is more important, we see that the total effect of n = 99 and n = 101 is zero which agrees
with our expectation based on Table 6.1.

Finally, we want to note that in Table 6.1 we have only studied the coupling between
the resonant term and the other terms (labeled by n2) of the separable expansion of t0. The
above analysis in which we considered Eq. (6.14) can be used to confirm that the coupling
between terms n2 and n3 is not important. If we calculate the eigenvalues of F11(q, qT ) λF12(q, qT ) λ13F13(q, qT )

λF21(q, qT ) F22(q, qT ) λF23(q, qT )

λ31F31(q, qT ) λF32(q, qT ) F33(q, qT )

 (6.15)

and set λ = 1, then we get the same eigenvalues f for λ13 = λ31 = 0 and λ13 = λ31 = 1. Of
course, we have not investigated all coupling terms, but it is clear that the coupling terms
between the resonant term and the other terms are most important.
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Table 6.2: Value of ā−,0 corresponding to the 100th potential resonance of the square well
potential as a function of the terms n which are taken into account in the separable expansion
of t0(p, p′, z) (all other partial-wave components tl 6=0 are neglected). The q-grid contains 100
values and q̄max = 33.2. The q-grid does not contain any values near the poles which occur
at larger values of q̄. The purpose of this table is to show the effect of the terms labeled by
n = 98, 99, 101 and 102 on the three-body parameter. The calculation of the exact three-body
parameter also requires the inclusion of n = 4, 5, 6, ... as we will see in Section 7.2.

terms n Nterms ā−,0

[100] 1 −2.733
[1− 3, 100] 4 −17.14
[1− 3, 99, 100] 5 −17.18
[1− 3, 100, 101] 5 −17.10
[1− 3, 99− 101] 6 −17.14
[1− 3, 98− 101] 8 −17.16
[1− 3, 99− 102] 8 −17.12
[1− 3, 98− 102] 8 −17.14
[1− 3, 97− 102] 10 −17.15
[1− 3, 98− 103] 10 −17.13
[1− 3, 97− 103] 10 −17.14
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6.3 Calculation of the three-body resonances

The theory presented in Section 3.1 deals with three-body bound states consisting of identical
spinless bosons which only exist below the two-body ground state energy E2b,0. It is important
to realize that solutions to Eq. (3.3) only exist for three-particle bound states [75]. When
the potential supports at least one dimer state, the Efimov trimers are not bound states, but
resonant states which exist for complex energies, E = ER − 1

2Γi where E2b,0 < ER < 0. We
assume that these Efimov resonances have zero width, so that we can use Eq. (3.15) to search
for solutions for real energies E. Recently, the lifetime of the Efimov trimers of 85Rb have
been measured [41]. These measurements found that this lifetime τ is rougly 100 µs, so that
the width is on the order of ~

τ = 2.5 · 10−4 EvdW which is indeed very small compared to the

van der Waals energy EvdW = ~2
mr2vdW

.

Since we search for solutions of Eq. (3.15) with real energies E, we only evaluate the
principal value part of the integrals and neglect the residues which are associated with the
poles of the two-body T -matrix. In fact, the singularities related to the bound states of the
square well occur at large negative energies when the depth of the square well is chosen deep
enough. For example, for the 40th, 50th and 60th potential resonance of the square well

potential at ā0 = −10, the first pole is located at E = − q22
m where q̄2 = 26.78, 30.13 and 33.15

respectively. We have analyzed the effect of these singularities on the solutions of Eq. (3.15) in
Section 6.2 and we have shown that these singularities at large negative energies hardly shift
the solutions of Eq. (3.15). Therefore we solve this equation for deep square well potentials
by using an integration grid which is cut off before each pole and we use the same method as
described in Section 6.1 to solve the three-body equation for real energies E.

The bumps in the kernel resulting from the big peaks of the form factors (see the analysis
in Section 6.2) are also included in the calculation for all terms labeled by n . nr/2. When
n & nr/2 it is not possible to include the full bump of the function Knlnl(q, q

′, E) without
including the poles of these functions. The effect of neglecting some parts of the bump for
large values of n is not so big. After all, the bump of the function Knlnl(q, q

′, E) becomes
less important for the higher order terms (i.e., higher n) of the expansion. So it is a good
approximation to neglect the bumps for these terms. Note that this approximation only holds
for very deep potentials. For example, if we would consider the 5th potential resonance, it is
not justified to neglect the bumps of the 3th and 4th term. However, the inclusion of these
bumps requires inclusion of the poles which increases the difficulty of obtaining the three-body
parameter ā−,0 for this shallow potential. Therefore, we focus on deep square well potentials
of which the highest s-wave dimer state occurs at large negative energies.

6.4 Elastic atom-dimer scattering calculations

The scattering process between a free particle and the lowest dimer state is described by
Eq. (3.28). This scattering process is elastic, so that the s-wave atom-dimer scattering length
aad will be real. The set of equations given by Eq. (3.28) involves a singularity caused by
the factor τ1,0(E− 3

4mq
′2). For the determination of the s-wave atom-dimer scattering length

only the principal value part of the singular integral matters because the residue turns out
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to be zero in the limit qad → 03. Note that this is only the case when the dimer occupies the
ground state. We solve Eq. (3.28) for small values of qad, namely qad

~ a0 = 10−5, so that the
kinetic energy at which the atom and dimer scatter is much smaller than the binding energy
of the dimer. So we consider atom-dimer scattering at energy E = E2b + 3

4mq
2
ad in which

3
4mq

2
ad � |E2b|. After solving the set of equations given by Eq. (3.28) the s-wave atom-dimer

scattering length can be calculated from the amplitudes Anl(q, qad) by Eq. (3.30).

The procedure to solve Eq. (3.28) is similar as the one for the calculation of the three-
body bound states. First, we define a grid for the momenta q and q′, so that Eq. (3.28)
turns into a big matrix equation. This momentum grid is chosen vary carefully because of
the singularity in the factor τ1,0(E − 3

4mq
′2). Therefore we discretize the values of q and q′

in two different ways. The vector A1,0(q, qad) is calculated on a grid which contains hundreds
of grid points near q = qad (symmetrically chosen around the singularity) and a sparser grid
at larger momenta. The momentum grid for the additional components An,l(q, qad) (in which
n, l 6= 1, 0) does not need to contain the same amount of points as the momentum grid for the
component A1,0(q, qad). Therefore we choose a grid which is sparser at small momenta for the
additional components compared to the grid for A1,0(q, qad). The two grids can be written as
column vectors and are here indicated by q and q

s
. So q is a column vector containing the

momenta q1, q2, q3, .... Similary, q
s

is the ’special’ column vector containing much more grid
points near the singularity.

Since we have now discretized the relevant momenta, we can write the set (Eq. (3.28)) of
coupled integral equations in matrix form as

A1(q
s
, qad)

A2(q, qad)

A3(q, qad)
...

 = 2


U1,1(q

s
, qad)

U2,1(q, qad)

U3,1(q, qad)
...



+


K11(q

s
, qT
s

) K12(q
s
, qT ) K13(q

s
, qT ) · · ·

K21(q, qT
s

) K22(q, qT ) K23(q, qT ) · · ·
K31(q, qT

s
) K32(q, qT ) K33(q, qT ) · · ·

...
...

. . .



A1(q

s
, qad)

A2(q, qad)

A3(q, qad)
...

 .

(6.16)

In this equation, we have replaced the label ’nl’ by the numbers 1, 2, 3, ... These numbers
refer to each single equation given by Eq. (3.28). In particular, the number 1 represents the
quantum numbers n = 1 and l = 0. Furthermore, the superscript T denotes the transpose of a
matrix. The angular integration, which is hidden in Ui,1 and Kij , is again executed by means
of Riemann summation. The matrix equation given by Eq. (6.16) can also be summarized as

A = 2 U +K A. (6.17)

The matrix K is called the kernel. This equation can be solved for the vector A from which we
obtain the subvector A1(q

s
, qad). The atom-dimer scattering length can simply be obtained

from Eq. (3.30).

3Note that we use the symbol qad to indicate the momentum q0 in Eq. (3.28). We changed the notation
because q0 is also used to define the depth of the square well potential.
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One of the difficulties involves the calculation of τ1,0(z) at energies z very close to the
two-body binding energy. Since we choose hundreds of closely spaced grid points near the
singularity, we have to be careful to avoid numerical errors. We solve this problem by noting
that the T -matrix is very separable at energies close to the two-body binding energy and can
be approximated by Eq. (F.31) combined with Eq. (F.48). We have tested the energy regime
in which this approximation is valid at scattering lengths in the range 1 ≤ ā0 ≤ 100. At
energies |Ē− Ē2b,0| < 10−8 we can safely use this approximation. So for values of q′ satisfying
|34(q̄2

ad − q̄′2)| < 10−8, we calculate the τ1,0(E2b,0 + 3
4m(q2

ad − q′2)) by using Eq. (F.48) and use
the form factor g1,0(|12q′ + q|, E2b,0).

The form factors of the square well potential can be found analytically for certain separa-
ble expansion methods such as the Weinberg series (Section 5.3). However, the form factors
corresponding to the spectral representation of the T -matrix (Section 5.2) need to be calcu-
lated numerically. Fortunately, it is not needed to calculate the form factors numerically at
energies |Ē − Ē2b,0| < 10−8 because in this energy range we can approximate the form fac-
tors g1,0(p, z) by g1,0(p,E2b,0) which are known analytically for the square well potential. The
only thing which should be carefully considered is that the form factors should fulfill a certain
normalization condition like Eq. (5.4). For example, if I refers to the spectral representation
of the T -matrix (Section 5.2) and II refers to the Weinberg series (Section 5.3), we can write

gI1,0(p,E2b,0) = XgII1,0(p,E2b,0), where (6.18)

X =

(∫ ∞
0

(
gII1,0(p,E2b,0)

)2
dp

)− 1
2

. (6.19)

Finally, we should note that the value q̄ad = 10−5 1
ā0

is small enough to calculate the atom-
dimer scattering length up to at least 4 significant figures. We have tested this by performing
atom-dimer scattering calculations for different values of q̄ad, from which we conclude that the
atom-dimer scattering calculations are converged to at least 4 significant figures (except very
close to an atom-dimer resonance at which aad diverges). The collision energy is not chosen

to be much smaller than 3
4 · 10−10 ~2

ma20
because numerical round-off errors would occur. We

have also performed convergence tests for the momentum grids and the angular integration
to make sure that we can trust our results for aad up to 3 significant figures.
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7. Results and discussion

Now we focus on the Efimov states corresponding to the potential resonances of the square
well potential. Firstly, we investigate the effects of d-wave interactions by considering a
shallow square well potential supporting only one s-wave dimer state. We also focus on
the different methods described above to expand the two-body T -matrix. The atom-dimer
scattering length is also calculated to study whether the first excited Efimov state unbinds.
Secondly, we consider deep square well potentials and investigate the convergence of the three-
body parameter. In all cases scattering lengths are calculated from the scattering length of the
square well potential given by Eq. (4.2), in order to ensure the proper comparison between the
methods, even when the approximated potentials have a slightly different scattering length.
We indicate the number of separable terms which are used to approximate the partial-wave
components t0(p, p′, z) and t2(p, p′, z) by Ns and Nd respectively.

7.1 Results for the shallow square well

Fig. 7.1 shows the energies of the lowest three Efimov states as a function of the inverse
s-wave scattering length near the first potential resonance of the square well potential. The
corresponding three-body parameters are given in Table 7.1. Fig. 7.1 shows that not only the
first Efimov state does not converge to the two-body threshold, but also the second Efimov
state does not cross the threshold although it gets very close to it. This can be seen from the
inset in Fig. 7.1 in which the relative energy difference between the energies of the s-wave
dimer state and the second Efimov state is shown as a function of the inverse scattering length.
The non-crossing of the ground Efimov state with the atom-dimer threshold is also the case for
shallow van der Waals potentials [52, 54, 55] and is consistent with a variational principle [45]
which constrains the ground-state energy of three identical bosons, interacting via spherically
symmetric pair potentials such as the square well potential, to always lie below the ground-
state energy of two of such bosons, more precisely E3b,0 ≤ 3E2b,0. Ref. [45] states three
conditions which are all sufficient to ensure that this inequality holds. Two of these conditions
apply to the square well potential, so that the variational principle is also valid for this
potential. The ground Efimov state of the square well potential satisfies this constraint as can
be seen from Fig. H.1 which shows the relative energy difference between the binding energies
of the first s-wave dimer state and the first two Efimov states as a function of the scattering
length. For all interaction strengths considered, this relative energy difference is larger than
2/3 for the ground Efimov state, which is consistent with the constraint E3b,0 ≤ 3E2b,0.

The non-crossing of the first excited Efimov state has been seen before in a numerical
study on the first three potential resonances of the Lennard-Jones potential [52] in which this
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Figure 7.1: Energy of the lowest three Efimov states calculated near the first potential reso-
nance of the square well potential by using method I for Ns = 3 and Nd = 0 and for Ns = 3
and Nd = 3. The black dotted curves indicate the calculation for which the d-wave resonance
occurs at ā = 1 instead of ā = 0. The blue line is the binding energy corresponding to the
s-wave dimer state. The inset shows the relative energy difference between the energies of the
s-wave dimer state and the second Efimov state as a function of the inverse scattering length.

effect was attributed to strong d-wave interactions near a = 1 rvdW [52, 53] although this
hypothesis could not be confirmed because the d-wave interactions cannot be excluded in the
adiabatic hyperspherical representation used by Ref. [52]. Our method allows us to include
or exclude d-wave interactions. Fig. 7.1 also compares the calculation in which only s-wave
effects are included with the one in which both s-wave and d-wave interactions are taken
into account. The resulting curves clearly overlap from which we conclude that the effect
of the d-wave interactions on the Efimov states is small in case of this shallow square well
potential. This is not surprising since the d-wave dimer is bound at ā = 0. For single-channel
interactions with a van der Waals tail, −C6r

−6, the d-wave dimer always becomes bound at a
scattering a = 4π/[Γ(1/4)]2 ≈ 0.956 rvdW as predicted by Gao [72]. This prediction has been
confirmed by Wang et al. [53] using the Lennard-Jones potential as two-body interaction.

In order to investigate the effect of strong d-wave interactions which are present in case
of van der Waals potentials at small positive scattering lengths we artificially increase the
strength of the d-wave interactions by making the depth V0 of the well larger for the d-wave
component t2(p, p′, z) in the three-body calculation. In this way the d-wave resonance is
closer to the s-wave resonance. Fig. 7.1 also compares the energies of the Efimov states for
calculations involving the weak (unmodified) d-wave interactions and the strong (modified)
d-wave interactions in which the d-wave resonance occurs at ā = 1.00. The increase of the
strength of the d-wave interactions has almost no effect on the ground Efimov state because
this state is too far away from the d-wave dimer state. However, the first excited Efimov
state is really affected at small positive scattering lengths by this increased d-wave interaction
strength. The energy of this trimer state is decreased. So strong d-wave effects can be the
cause of the non-crossing of the second Efimov state with the two-body threshold for the
potential resonances of the Lennard-Jones potential as seen in Ref. [52].
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The way which has so far been used most to calculate the energies of the Efimov states
by means of the Faddeev equations is to approximate the s-wave two-body T -matrix by
one separable term and to solve the resulting integral equation. This method is believed to
work well when the non-separable function t0(p, p′, z) is separable in the regime in which the
Efimov states are located. This function t0(p, p′, z) is more separable for energies z closer to
a two-body s-wave bound state. In Fig. 7.2 we compare the Efimov spectrum corresponding
to the full s-wave T -matrix with the one corresponding to the single-term approximation
of t0(p, p′, z). This figure shows that the second Efimov trimer is strongly affected by the
non-separable terms of the two-body T -matrix. In both cases the second Efimov state does
not cross the atom-dimer threshold as can be seen from the inset, but it stays much closer to
the two-body threshold at small positive scattering lengths when the off-shell two-particle T -
matrix is approximated by a function which is fully separable in the incoming and outgoing
momenta. The reason why the use of the separable approximation fails at large negative
energies close to the dimer threshold is not obvious as the off-shell two-body T -matrix is
highly separable in this regime. The cause of this failure is related to the Green’s function

G0 which is present in the Faddeev equations, Eq. (3.3). The factor q′2

E− 1
m

(q2+q·q′+q′2)
in

Eq. (F.21) clearly suppresses the small-momenta part, i.e., q′ � 1, in which τnr,0
(
E − 3

4mq
′2)

is the biggest4. When the three-body energy E is not close to zero, this suppression is
much more effective. As a result, the dominance of the resonant term is reduced and the
separable approximation for t0(p, p′, z) is not sufficient to calculate the first excited Efimov

state accurately at energies rougly below − ~2
2µR2 .
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Figure 7.2: Energy of the lowest three Efimov states calculated near the first potential reso-
nance of the square well potential by using method I for Ns = 3 and Ns = 1. In both cases
Nd is set to zero. The blue line is the binding energy corresponding to the s-wave dimer state.
The inset shows the relative energy difference between the energies of the s-wave dimer state
and the second Efimov state as a function of the inverse scattering length.

Based on this reasoning, one would expect that the separable approximation would also
fail in the calculation of the ground Efimov state at large negative energies. However, the

4The parameter nr labels the resonant term as discussed in Chapter 6.
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energy of the ground Efimov state at small positive scattering lengths is quite similar for
both calculations shown in Fig. 7.2. We attribute this effect to the variational principle
[45] stating that E3b,0 ≤ 3E2b,0, so that the energy of the ground Efimov state, which is
close to this limiting value, cannot increase much at small positive scattering lengths for a
decreasing number of terms of the separable expansion. Even though this variational principle
is proven for energy-independent potentials [45, 81], its proof is based on the two-body ground
state wave function of two identical spinless bosons interacting via a spherically symmetric
potential which is the same for the square well potential and its separable approximation
obtained by method I or II. Fig. H.2 confirms that the variational principle is also satisfied
for this separable interaction potential.

Table 7.1 summarizes the three-body parameters near the first pole of the s-wave scat-
tering length calculated from methods I, II and III. The wave number κ∗n corresponds to the

energy E∗n = − (~κ∗n)2

2µ of the nth trimer state at diverging scattering length. The three-body
parameters calculated from method I converge the fastest as more expansion terms are in-
cluded. The results of method II converge less fast because the form factors do not depend
on the scattering length for fixed range R. Furthermore, method I provides the best one-term
approximation, followed by method III and II respectively. This result is not expected to hold
in general, but only for the first potential resonance. The EST approximation is expected to
be the best one-term approximation for deeper potentials because it reproduces the correct
zero-energy two-body scattering state. Table 7.1 also shows that the relative difference be-
tween the calculations with and without d-wave effects is smaller than 10−3, so that d-wave
effects should also be considered depending on the required accuracy. Again we expect that
this result only holds for the first potential resonance. The d-wave effects will be larger for
deeper potentials which also support d-wave dimer states.

The non-crossing of the second Efimov state is also reflected in the s-wave atom-dimer
scattering length shown in Fig. 7.3. This figure shows only one atom-dimer resonance which
occurs at ā∗,2 = 54.5 and corresponds to the crossing of the bound state energy of the second
excited Efimov state with the two-body binding energy. Another interesting feature occurs
at small positive scattering lengths. The value of aad calculated by using the full partial-wave
component t0(p, p′, z) shows a maximum at ā = 2.00, but it does not diverge. This indicates
that the first excited Efimov state approaches the atom-dimer threshold closely for decreasing
a, but it does not become unbound. As a decreases further, the binding energy of this trimer
state, Eb = E2b − E3b, increases.

Table 7.2 summarizes our computed values of the three-body parameter a∗. Here a∗,1 is
defined as the value of a at which aad is maximum, wherease a∗,2 is defined as the value of a
at which the aad diverges. The separable approximation of method I approximates t0(p, p′, z)
better than the separable approximation of method II, especially at large negative energies.
This is reflected by the computed values of a∗,2 as shown in Table 7.2. However, Fig. 7.3
shows that the second Efimov state approaches the two-body threshold closer when using
the separable approximation of method I compared to method II. This confirms that the
accurateness of the separable approximation of the two-body T -matrix is not the reason why
the separable calculations fail at small positive scattering lengths. The failure is rooted in
the three-body equations themselves as we have discussed above.

The geometric scaling factors
a−,1
a−,0

= 17.8 and
a∗,2
a∗,1

= 27.3 deviate from the universal value

eπ/s0 ≈ 22.69 [15], which is just a finite-range effect. It depends on the particular shape
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7.1. RESULTS FOR THE SHALLOW SQUARE WELL

Table 7.1: Values of the three-body parameters ā−,n and κ̄∗n corresponding to the first po-
tential resonance of the square well potential using different methods and different number
of terms to expand t0(p, p′, z) and t2(p, p′, z). In all cases the scattering length is calculated
from Eq. (4.2). Method I∗ refers to method I in which the d-wave resonance is artificially
shifted from ā = 0 to ā = 1.000.

method Ns Nd ā−,0 ā−,1 κ̄∗0 κ̄∗1
I 1 0 -3.102 -55.23 0.6647 2.831 · 10−2

I 2 0 -3.092 -54.96 0.6654 2.845 · 10−2

I 3 0 -3.091 -54.94 0.6655 2.846 · 10−2

I 4 0 -3.091 -54.93 0.6655 2.846 · 10−2

I 5 0 -3.090 -54.93 0.6655 2.846 · 10−2

I 3 1 -3.088 -54.91 0.6661 2.848 · 10−2

I 3 2 -3.088 -54.91 0.6662 2.848 · 10−2

I 3 3 -3.088 -54.91 0.6662 2.848 · 10−2

I∗ 3 3 -3.072 -54.78 0.6689 2.854 · 10−2

II 1 0 -3.163 -55.79 0.6536 2.804 · 10−2

II 2 0 -3.104 -55.09 0.6631 2.838 · 10−2

II 3 0 -3.095 -54.98 0.6647 2.844 · 10−2

II 4 0 -3.092 -54.95 0.6652 2.845 · 10−2

II 5 0 -3.091 -54.94 0.6653 2.846 · 10−2

II 10 0 -3.090 -54.93 0.6655 2.847 · 10−2

III 1 0 -3.106 -55.51 0.6610 2.815 · 10−2

of the interaction potential. For example, the deviation of these ratios from the universal
value is bigger for the potential resonances Lennard-Jones potential for which these ratios are
a−,1
a−,0
≈ 16.7 and

a∗,2
a∗,1
≈ 47.8 [52].

We also compare our results for the shallow square well potential with those which we had
obtained before in Ref. [61]. In this reference we have shown that it is possible to calculate
the Efimov spectrum by substituting the non-separable partial-wave component t0(p, p′, z)
into the Skorniakov-Ter-Martirosian equation for three-body bound states which is just the
three-body equation for separable potentials. This equation is given by

F (q, E) = 2

∫
dq′

t0
(
|q + 1

2q′|, |12q + q′|, E − 3
4mq

′2)
E − 1

m (q2 + q · q′ + q′2)
F (q′, E) (7.1)

where F (q, E) is related to the three-body bound state wave function. The angular integration
can be performed analytically if we use the following approximations to remove the angular
dependence in t0:

|q +
1

2
q′| ≈

√
q2 +

1

4
q′2,

|1
2
q + q′| ≈

√
q′2 +

1

4
q2.

(7.2)

This approximation has been used before by Debets [62] and Kroeze [63]. The approximation
considered in Ref. [61] was slightly different. The comparison between the modified STM-
equation and the correct three-body equations is given by Fig. 7.4 which shows the energies
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Figure 7.3: The s-wave atom-dimer scattering length as a function of the s-wave two-body
scattering length a for different approximations of t0(p, p′, z). Only s-wave interactions are
considered. The greene curve corresponds to calculations using method I with Ns = 9 and
method II with Ns = 10.

Table 7.2: Values of the three-body parameters ā∗,n corresponding to the first potential
resonance of the square well potential using different methods and different number of terms
to expand t0(p, p′, z). In all cases Nd is set to zero and only the s-wave part of the off-shell
two-body T -matrix is considered. The scattering length is calculated from Eq. (4.2).

method Ns ā∗,1 ā∗,2
I 1 1.33 54.8
II 1 1.53 55.3
I 2 1.93 54.6
II 2 1.94 54.7
I 10 2.00 54.5
II 10 2.00 54.5

of the lowest two Efimov states. The green curve is the result which has also been shown
in Fig. 7.1. The black curve shows that Eq. (7.2) works quite well except at small positive
scattering lengths for which we have seen above that the separable three-body equation is
not valid. The three-body parameters corresponding to the black curve are ā−,0 = −3.05 and
ā−,1 = −53.8 which deviate only 1-2% from the actual values given in Table 7.1. On the other
hand, the use of Eq. (7.1) combined with the angular approximation of Eq. (7.2) is much less
accurate as can be seen from Fig. 7.1. The three-body parameters corresponding to the red
curve are ā−,0 = −3.42 and ā−,1 = −65.1 which deviate 10-20% from the actual values. The
Efimov states are shifted so much that the second Efimov state crosses the threshold. This
explains why Ref. [61] saw that the second trimer state unbinds into a dimer and free particle.
So performing the angular integrals correctly is essential for an accurate calculation of the
Efimov states.

So far we have shown the Efimov spectra which have been calculated by using method
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Figure 7.4: Energy of the lowest two Efimov states calculated near the first potential res-
onance of the square well potential by using method I for Ns = 3 and Nd = 3 and by
using the approach considered by Ref. [61]. In this approach, the non-separable component
t0(p, p′, z) is substituted into the three-body equation for separable interactions (the homoge-
neous Skorniakov-Ter-Martirosian equation, Eq. (7.1)). The dash-dotted red line corresponds
to a similar calculation in which the angular approximation of Ref. [62] (Eq. (7.2)) is used.
The blue line is the binding energy corresponding to the s-wave dimer state. The inset shows
the relative energy difference between the energies of the s-wave dimer state and the second
Efimov state as a function of the inverse scattering length.

79



CHAPTER 7. RESULTS AND DISCUSSION

I to expand the two-body T -matrix in separable terms. We have repeated the three-body
calculations involving only s-wave interactions by using the Weinberg series (method II) for
the expansion of t0(p, p′, z). These calculations have resulted in the same Efimov spectra as
long as enough terms are taken into account in the separable expansion. Those calculations
also show that the second Efimov state of the shallow square well potential stays below the
atom-dimer threshold when we use the single-term approximation of the Weinberg series to
approximate t0(p, p′, z). This can be seen from Figs. H.3 and H.4. In order to illustrate the
actual shape of the Efimov spectrum for separable interactions, we have chosen to change the
x-axis of the Efimov spectrum shown in Figs. H.3 and H.4 with respect to the other figures
presented here. The scattering length is not the scattering length of the square well potential,
but it corresponds to the separable interaction. It is calculated from Eqs. (5.20) and (5.21).
The separable interaction potential can only support one dimer state, so that the scattering
length does not go to zero when q̄0 is increased. From Eqs. (5.20) and (5.21) it is clear that
the scattering length cannot be smaller than 8

π2 = 0.811 when we take only the first term
in the considered separable expansion of tl(p, p

′, z) into account. Even though Fig. H.3 does
not clearly show whether the first two Efimov states cross the atom-dimer threshold, Fig. H.4
does show the absence of an atom-dimer resonance corresponding to these trimer states. The
variational principle, E3b,0 ≤ 3E2b,0 [45], is fulfilled for the considered depths of the square

well. At ā = 0.822 the relative energy difference is
E2b,0−E3b,0

|E3b,0| = 0.667.

The EST method (method III) can also be used to approximate the partial-wave compo-
nent t0(p, p′, z) by a separable expression. Figs. H.5–7 show the Efimov spectra corresponding
to the lowest three potential resonances of the separable potential obtained by the EST ap-
proach. In all those cases the ground Efimov state does not cross the atom-dimer threshold,
whereas the first excited trimer state only stays slightly below the threshold for the first
potential resonance. Based on the analysis of Section 5.4 we do not expect that the EST
approach works well at energies which are not close to zero, so that the calculation of the
trimer states near small positive ā are not expected to correspond to a square well potential.
This is reflected by the deviation of the two-body binding energies corresponding to square
well potential and the EST approximation near ā = 1 as can be seen from Figs. H.5–7. How-
ever, this deviation occurs at smaller positive scattering lengths than for the soft-core van
der Waals potential whose s-wave binding energy is compared to the one of the separable
EST approximation in Figure 2 of Ref. [54]. The three-body parameters for the EST-method
are summarized in Table 7.3. The validity of the one-term EST approximation for the Nth
potential resonance with N ≥ 2 is questionable as we have seen in Section 5.4. In Section 7.2
we will test the validity of this approximation for deep square well potentials.

7.2 Results for the deep square well

Naidon et al. [59] have shown that the three-body parameter expressed in units of the ef-
fective range is universal for certain subclasses of interactions. They expect that the square
well potential does not reveal any universality of the three-body parameter because the zero-
energy two-body s-wave radial wave function does not show the suppression of the two-body
probability inside the well. The analysis of Ref. [59] is based on separable approximations of
the off-shell two-body T -matrix using the EST method. Although we have seen in Section 5.4
that the energy-dependence of the two-body T -matrix of square well potentials supporting
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more than one bound state is not correctly approximated by the single-term EST approxi-
mation, we have tested the hypothesis of Ref. [59] by considering square well potentials of
different depths. We have checked whether the three-body parameter converges when using
the separable EST approximation. We have also gone beyond the separable approximation
to test the validity of this approximation.

The results of these calculations involving separable T -matrices based on the EST-method
are shown in Table 7.3. This table shows that the three-body parameter of the square well
converges as a function of the number of two-body s-wave bound states when using the
one-term EST approximation for t0(p, p′, z). The convergence is slower for the square well
potential than for the hard-core van der Waals potential considered in Ref. [55]. This is caused
by the dominant peak in the form factors of the square well potential (see Fig. 5.6). For small
N this peak occurs at smaller momenta, so that its effect is big. The influence of the peak
disappears when the depth of the well gets larger. So when the well is deep enough, the exact
depth becomes irrelevant for the Efimov resonances which occur at small negative energies.
The range R is the only relevant length scale left, so that ā−,0 converges as a function of the
number of bound s-wave dimer states.

Although the three-body parameters for N = 1 can be calculated well by using the
one-term EST approximation, this separable approximation does not reproduce the element
t0(p, p′, z) very well for deeper potentials at negative energies z for which |p̄z| & 0.5. Therefore
it is hard to judge whether the obtained three-body parameters of the separable potential
are similar to the those of deep square well potentials. Another important characteristic of
the three-body parameters shown in Table 7.3 is the big difference between the three-body
parameters for N = 1 and N = 2. Such a big jump is not the case for the hard-core van
der Waals potential considered in Ref. [55]. This big jump of the three-body parameters is
caused by the big difference in the form factors g1(p) and g2(p) at small momenta p as shown
in Fig. 5.6. The first zero of g1(p) occurs at p̄ = 4.66 for ā = −3.106, whereas the first zero of
g2(p) occurs at p̄ = 1.52 for ā = −12.58. The other form factors gn(p) with n > 1 also have
zeros which occur near p̄ = 1.52 at ā = ā−,0. This value of p̄ at which the first zero occurs
is a factor 3.07 smaller for n > 1 than for n = 1. Thus the big difference in the three-body
parameter between N = 1 and N > 1 simply reflects the difference of the form factors at
small momenta. Li et al. [55] have used the one-term EST approximation to the hard-core
van der Waals potential and did not observe a big difference in the three-body parameter
between N = 1 and N > 1. However, the form factors g1(p) and g2(p) of this potential are
quite similar at small momenta and so are the calculated three-body parameters for the first
and second potential resonance.

The separable approximation of the T -matrix of square well potentials supporting more
than one bound state is not valid at all energies which are relevant for calculating the three-
body parameter as shown by Fig. 5.9. Therefore we now consider the 40th, 50th and 60th
potential resonance of the square well potential and include many terms in the separable
Weinberg series (method II). We only consider s-wave interactions, so l = 0. The terms
are therefore completely specified by the label n which we have defined for each separable
expansion method discussed before.

Fig. 7.5 shows the value of ā−,0 as a function of the terms n which are taken into account in
the separable expansion of t0(p, p′, z). Some of these values are also given in Table 7.4. These
results show that a lot of terms are necessary in order to determine the exact three-body
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Table 7.3: Values for the three-body parameters ā−,n and κ̄∗n corresponding to the Nth
potential resonance of the square well potential using the one-term EST approximation for
t0(p, p′, z).

N ā−,0 ā−,1 κ̄∗0 κ̄∗1
1 -3.106 -55.51 0.6610 2.815 · 10−2

2 -12.58 -260.8 0.1332 5.835 · 10−3

3 -13.80 -290.3 0.1193 5.235 · 10−3

4 -13.12 -274.5 0.1262 5.539 · 10−3

5 -13.38 -280.7 0.1233 5.415 · 10−3

6 -13.54 -284.2 0.1219 5.348 · 10−3

7 -12.86 -269.0 0.1288 5.654 · 10−3

8 -13.03 -272.8 0.1270 5.573 · 10−3

9 -13.08 -273.9 0.1265 5.551 · 10−3

10 -13.13 -275.0 0.1259 5.528 · 10−3

...
...

...
...

...
49 -13.23 -277.3 0.1249 5.482 · 10−3

50 -13.23 -277.3 0.1249 5.482 · 10−3

...
...

...
...

...
∞ -13.24 -277.4 0.1249 5.481 · 10−3

The three-body parameter κ̄∗0 of an infinitely deep square well potential has also been calculated by
Horinouchi and Ueda [82] by performing a functional renormalization-group analysis using the one-term EST
approximation for the potential. They found κ∗0reff = 0.49(5) where reff = R. This result is not consistent
with the value which we have obtained. It is hard to judge what is causing this difference because the methods
are completely different.

parameter ā−,0 of deep square well potentials and that the lowest-order terms (n = 1, 2, ...)
of the expansion shift the value of ā−,0 most which is consistent with the analysis shown in
Section 6.2. This is caused by the fact that the form factors for small n are the biggest at
small momenta, whereas the differences in τn,0(z) at small z are much smaller for n < nr.
Our calculations show that the three-body parameter of the 40th, 50th and 60th potential
resonance is ā−,0 ' −20 with an estimated relative uncertainty of 5%. A higher accuracy is
not possible because the poles prevent us from taking all big peaks of the form factors into
account. Furthermore, the calculations become more sensitive to the chosen momentum grid
as we make the set of coupled equations larger and more grid points must be chosen. The
assumption of neglecting the widths of the Efimov states induces an extra uncertainty which
we believe to be negligible.

Another interesting feature of the curves shown in Fig. 7.5 is that ā−,0 is minimum when
the lowest nr terms are taken into account and then increases when also terms labeled by
n > nr are added to the expansion of t0(p, p′, z). This effect is simply caused by the difference
in sign of the functions τn,0(z) at z = 0 for n < nr compared to n > nr.

The Weinberg series requires a lot of terms to get a converged result for the three-body
parameter ā−,0 of the deep square well potential. We expect that this result is more general
and also holds for other potentials supporting many s-wave two-body bound states. For
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Figure 7.5: Value of ā−,0 corresponding to the 40th, 50th and 60th potential resonance of
the square well potential as a function of the number of terms, Nterms, which are taken into
account in the Weinberg series of t0(p, p′, z). Nterms = 1 corresponds to the term [nr] (where
nr = N), Nterms = 2 corresponds to the terms [1, nr], Nterms = 3 corresponds to the terms
[1, 2, nr], etc.

attractive potentials with a repulsive barrier even more terms can contribute to the value of
ā−,0 because negative eigenvalues ηnl(z) will also exist for those potentials. The contribution
of these terms corresponding to negative eigenvalues ηnl(z) will be larger when the barrier
is bigger and wider because in those cases more negative eigenvalues exist which satisfy
|ηnl(z)| � 1, so that the corresponding τnl(z) is approximately − 1

4π which follows from
Eq. (5.13).

Finally, we consider the deep square well calculations performed by Debets [62] and Kroeze
[63]. They solved the homogeneous STM-equation (Eq. (7.1)) in which the separable s-wave
two-body T -matrix is replaced by the non-separable one of an infinitely deep square well
potential. The angular dependence of this T -matrix was neglected by using the approximation
given by Eq. (7.2). The resulting three-body parameter is ā−,0 = −14.6 [62, 63]. This value is
quite close to the result of the one-term EST-approximation which is ā−,0 = −13.23. However,
it still deviates a lot from the value obtained by using the Weinberg series. This suggests that
it is really necessary to use the coupled set of three-body equations when considering deep
square well potentials.

Similar as we have seen for the shallow square well potential, the three-body parameter
of the infinitely deep square well potential also shifts due to the angular approximation of
Eq. (7.2). We have calculated the three-body parameter of the 100th potential resonance of
the square well potential using Eq. (7.1) with and without the angular approximation which
resulted in ā−,0 = −14.6 and ā−,0 = −14.1 respectively. The relative difference is 3% which is
smaller as for the shallow square well potential. So the angular approximation works slightly
better for deep square well potentials.
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Table 7.4: Value of ā−,0 corresponding to the 40th, 50th and 60th potential resonance of the
square well potential as a function of the terms which are taken into account in the separable
expansion of t0(p, p′, z) using the Weinberg series. The resonant term is indicated by nr and
equals N which labels the potential resonance. The singularities which occur at large negative
energies z are not included in the calculation. The relative uncertainty of the calculations
involving 80 terms in the expansion is estimated to be 5%.

terms ā−,0 ā−,0 ā−,0
(N = 40) (N = 50) (N = 60)

[nr] -1.73 -1.73 -1.73
[1, nr] -13.2 -13.2 -13.2
[1, 2, nr] -16.1 -16.1 -16.1
[1− 3, nr] -17.2 -17.2 -17.1
[1− 4, nr] -17.8 -17.7 -17.7
[1− 5, nr] -18.1 -18.1 -18.1
[1− 10, nr] -18.9 -18.8 -18.8
[1− 80] -19.9 -20.1 -20.1
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8. Conclusions and outlook

This Chapter summarizes the main conclusions of our work, followed by an outlook to possible
future research.

8.1 Conclusions

We have studied the Efimov effect for three-body systems involving identical bosons interact-
ing via a pairwise square well potential. The three-body properties have been calculated by
solving the Faddeev equations in the momentum-space representation. They are completely
determined by the two-body interactions which enter the Faddeev equations via the off-shell
two-body T -matrix. For a local interaction potential with a nonzero range, this T -matrix is
non-separable in the incoming and outgoing relative momenta. Since the Faddeev equations
are most easily solved when the two-body T -matrix is expanded in separable terms, we have
analyzed the following expansion methods:

• Method I: the spectral representation of tl(p, p
′, z);

• Method II: the Weinberg series;

• Method III: the EST method.

Method I has not been studied before because this method is only useful when the off-
shell two-body T -matrix is explicitly known, which is only the case for simple potentials such
as the square well potential. We have found that this expansion method is quite similar to
method II, but method I has slightly better convergence properties especially at large negative
energies below the depth of the well. However, since the computation time to solve the three-
body equations using method I is larger than for method II, we recommend to use method
II. Method I and II are both suited to study Efimov physics near the atom-dimer theshold
because the approximated potentials have exactly the same two-body binding energy as the
actual potential. The EST method is different from method I and II, because it allows one
to construct a separable potential which gives rise to the same zero-energy s-wave scattering
state as the original potential. Consequently, this separable approximation is expected to be
useful for determining the low-energy Efimov properties such as the three-body parameter
a−.

We have analyzed the difference between the square well potential and some van der
Waals potentials on the two-body level. For all considered expansion methods, the form
factors of the square well, labeled by n = 2, 3, ..., are characterized by a big peak occuring
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near p̄ ' (2n−1)π
2 . This momentum is just the depth q̄0 at which the nth potential resonance

occurs. This big peak reflects the large probability density for two zero-energy scattering
particles to have a relative momentum p̄ ≈ q̄0 at short distances (r < R). For van der Waals
potentials, the probability density for finding two particles at small relative distances r . rvdW
is suppressed. This suppression leads to a far less pronounced peak at large momenta for van
der Waals potentials as compared to the extreme square well case.

The three-body properties of the Efimov trimers have been analyzed in detail for the
square well potential. These calculations have shown how accurate the different approxima-
tions and expansions for the two-body T -matrix are. For the shallow square well potential,
we have found that the three-body parameters calculated from method I converge the fastest
as more expansion terms are included. The results of method II converge less fast because the
form factors do not depend on the scattering length for fixed range R. Furthermore, method
I provides the best one-term approximation, followed by method III and II respectively. How-
ever, for potentials supporting more than one bound state the best separable approximation
for the three-body calculations is provided by method III.

Our results for the shallow square well potential are consistent with those obtained by
Ref. [61]. However, the results presented in this thesis are more accurate which is mainly
caused by the fact that we did not make any approximations for the angular integration in
the three-body equations. Therefore we could find —in contradiction to Ref. [61]— that the
second Efimov state stays below the atom-dimer threshold even when we use a separable
approximation for the potential. Furthermore, we have found that the approximation for
the angular integration works better for the deep square well potential than for the shallow
potential.

The non-crossing of the second Efimov state with the two-body threshold is a surprising
result. So far this effect has only been seen in a recent numerical study on the first three
potential resonances of the Lennard-Jones potential [52] in which this non-crossing was at-
tributed to strong d-wave interactions at small positive scattering lengths. We have shown
that the second Efimov state of the shallow square well potential stays below the two-body
threshold even when d-wave interactions are excluded. Furthermore, we have found that
strong d-wave interactions at positive scattering lengths have the effect of lowering the energy
of the second Efimov state, so that d-wave effects may be the cause of the non-crossing of the
second Efimov state for a shallow Lennard-Jones potential as seen by Ref. [52]. On the other
hand, numerical studies on the potential resonances of van der Waals potentials which solve
the Faddeev equations in the momentum-space representation have only considered separa-
ble approximations for the two-body T -matrix when determining whether the Efimov states
cross the atom-dimer threshold. Therefore it should be confirmed whether the second Efimov
trimer also unbinds into a free particle and a dimer for more realistic interatomic potentials
when taking more than one separable term into account.

Moreover, we have shown that the separable approximation for the shallow square well
potential using method I, II or III is insufficient to determine the three-body physics at large
negative energies even at energies close to the two-body threshold. The failure of the separable
approximation at negative energies for which |E| & ~2

2µR2 is rooted in the free Green’s function
which is part of the Faddeev equations. This Green’s function makes the contribution of the
resonant term of the expansion of the s-wave T -matrix element, t0(p, p′, z), less dominant.
Therefore it is necessary to go beyond the separable approximation in this energy regime.
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Since this effect is related to the three-body equations themselves and not to the details of
the considered local potential, we expect that this conclusion also holds for other potentials
which describe the atomic interactions more accurately.

Although the Efimov states can be calculated reasonably well for a shallow square well
potential by using a separable approximation for t0(p, p′, z), these approximations cannot
simply be used for deep square well potentials. The one-term EST approximation results in a
three-body parameter a−,0 which strongly deviates from the one calculated by the Weinberg
series which included many terms in the separable expansion of the two-body T -matrix. The
EST approach results in ā−,0 = −13.23 which deviates 34% from the value ā−,0 = −20
which we obtained using the Weinberg series. This indicates that one should be careful when
one wants to use the one-term EST approximation to calculate the Efimov resonances. The
reason why this separable approximation fails is caused by the fact that the one-term EST
approximation only approximates the partial-wave component t0(p, p′, z) well at small energies
z for which |p̄z| . 0.5, whereas the three-body equations involve t0(p, p′, z) at all values of z
below the three-body energy E for which solutions are sought.

The results of Debets [62] and Kroeze [63] for the infinitely deep square well potential are
in good agreement with those obtained in this work using the EST method. The relative dif-
ference of the results is rougly 10%. However, the value ā−,0 = −14.6 [62, 63] still deviates 27%
from the one obtained by using the Weinberg series. The calculations of Ref. [62, 63] involved
the full off-shell two-body T -matrix substituted into the three-body equation for separable
potentials. The deviation from the results obtained by using the Weinberg series indicates
that it is really necessary to solve the coupled set of three-body equations corresponding to
the separable expansion of the T -matrix when considering deep square well potentials.

8.2 Outlook

The results of this study can be extended to more realistic interatomic potentials. It would be
interesting to study the non-crossing of the second Efimov state for van der Waals potentials
using the same procedure as we have used and to compare the results with those of Ref. [52]
in order to determine whether this non-crossing is really caused by d-wave interactions.

Our analysis of the deep square well potential has shown that the separable approxima-
tion of the off-shell two-body T -matrix is insufficient to accurately calculate the three-body
parameter. This conclusion could be verified by considering three-body recombination. The
three-body parameter could be determined from the maxima in the recombination rate. This
method is often used to obtain the three-body parameter, so that this approach could be used
to test our results.

Furthermore, the validity of using the separable approximation for t0(p, p′, z) in the three-
body equations should be tested for other potentials as well, in particular for realistic in-
teratomic potentials. In case of van der Waals potentials we expect that the one-term EST
approximation based on the zero-energy scattering wave function does also not reproduce the
correct T -matrix at all energies relevant for the calculation of the three-body parameter. This
expectation is based on Fig. 5.12. The calculations performed by Ref. [49, 55, 59] suggested
that the one-term EST approximation gives reasonable results for the three-body parameter
for the considered van der Waals potentials. Further research should determine whether the
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separable approximation is suitable for those potentials and would allow for a comparison
with the square well scenario on an equal footing.

In this thesis we have only considered Efimov physics associated with potential resonances.
The final goal should be to include the multichannel nature of atomic systems. Potential
resonances can only be used as a simple model for broad Feshbach resonances for which the
two scattering particles spend less time in the closed channel as compared to narrow Feshbach
resonances. The single-channel model used in this work should therefore be upgraded to a
multichannel model. Kroeze [63] has shown that it is possible to use the single-channel model
as a basis when implementing the Feshbach formalism for the case in which the open-channel
background scattering is non-resonant. This model should be expanded, so that it is possible
to apply it to atomic systems with a narrow Feshbach resonance.
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Efimov physics is important for understanding the dynamics and stability of ultracold quan-
tum gases in the strongly interacting regime. Three-body recombination and atom-dimer
relaxation are two processes which lead to losses in the number of trapped atoms and dimers.
The rate at which these two processes occur, is strongly affected by Efimov physics5. At
positive scattering lengths three-body recombination minima exist due to the Efimov effect,
which increases the lifetime of atoms in the trap. So the understanding of Efimov physics
is relevant for promising applications which make use of ultracold trapped atoms, such as
quantum simulators of interacting many-body systems [12]. This type of simulator allows us
to study physical systems which cannot be modeled with a supercomputer.

Efimov physics is also important on a more fundamental level due to its universality. The
Efimov effect is expected to occur in many physical systems including nucleons [17, 18], atoms
[19] and magnons [20]. It may even apply to polymeric systems such as triple-stranded DNA
[83, 84]. So Efimov physics is interesting for many different fields of physics.

5More information about these loss processes is given in Appendix A.
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A. Experimental observables to determine
the three-body parameters

The three-body parameters at positive scattering lengths, a+ and a∗, are the values of the
scattering length at which the three-body recombination minima and the atom-dimer res-
onances occur respectively, whereas a− indicates the negative scattering lengths at which
maxima in the three-body recombination rate occur. In this Appendix the origin of these
parameters is explained.

A.1 Three-body recombination rate

Three-body recombination is a three-body collision in which two free particles undergo a
transition to a two-body bound state [44]. The released kinetic energy is distributed between
the free particle and the dimer. The high amount of kinetic energy which is released in
this recombination process results in atomic losses in experiments with trapped atoms. The
density na of the trapped atoms is described by the following rate equation [44]:

dna
dt

= −2K3

6
n3
a + 2D3nand. (A.1)

Here nd is the dimer density, K3 is the three-body recombination rate and D3 is the rate
for collision-induced dissociation, which is the inverse process of three-body recombination.
Eq. (A.1) is valid when three-body inelastic collision events dominate N -body inelastic colli-
sions events where N 6= 3. Furthermore, the second term on the right-hand side in Eq. (A.1)
can often be neglected in experiments in which the dimer density nd is negligible compared to
the atom density na. In this case, the three-body recombination rate can easily be obtained
by measuring the loss rate of an ultracold gas of atoms in a trap. This loss rate is measured
by recording the time evolution of the atom number. These measurements can be repeated
for different values of the two-body scattering length by application of an external magnetic
field. The gases are ultracold when the temperatures are in the sub-microkelvin regime.

The analytical expression for the three-body recombination rate K3 in terms of the general
S-matrix elements is given by [44]

K3 =
∑
i,f

192π2(2J + 1)~
µ3bk4

|Sf←i|2 . (A.2)

The incident channels i are the continuum channels and the final channels f are the channels
associated with an atom and a dimer. The wave number k is related to the three-body energy
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Figure A.1: The binding energy of the weakly bound Efimov trimer states, the three-body
recombination rate K3 and the inelastic atom-dimer scattering rate β as a function of the
inverse two-body scattering length 1/a (figure taken from ref. [86]). The two-body s-wave
binding energy is indicated by the red curve. The three-body parameters are indicated by
the filled circle (a−), the star (a+) and the open circle (a∗).

E by k =
√

2µ3bE/~ and J is the total angular momentum quantum number. The three-body
reduced mass is given by µ3b = 1√

3
m for three particles of mass m.

The three-body recombination rate can be used to study the Efimov effect experimentally.
It exhibits local extrema for specific scattering lengths a, namely the three-body parameters
a− and a+.

Near a pole in the s-wave two-body scattering length a, the recombination rate K3 grows
as a4 for large |a|. This is the case for both positive and negative a, but the coefficient at
negative scattering lengths is much larger [21]. Due to this strong dependence, three-body
recombination is an important process in the ultracold limit [85]. On top of this a4-scaling,
recombination maxima occur at specific negative scattering lengths and recombination minima
are present at specific positive scattering lengths. This is shown in Figure A.1.

The recombination maxima at negative scattering lengths are the result of a shape reso-
nance effect [21] which is shown in Fig. A.2a. When the collision energy equals the quasi-
bound state energy of the incoming continuum channel, the probability to tunnel through the
barrier is strongly enhanced and the quasi-bound atoms are close together. In this regime
(R < |a|) many avoided crossings with bound channels are located [21]. This results in a
significant increase of the recombination rate K3. At zero energy, infinitely many shape reso-
nances occur when a approaches −∞ [21]. In this limit, the barrier height decreases as 1/a2,
so that for finite energies E the barrier falls below E at some value of the scattering length a
and no shape resonances are possible anymore. So at positive energies only a finite number
of recombination minima are present when a approaches −∞ [21]. The scattering lengths a−
at which the Efimov states emerge from the three-body continuum can thus experimentally
be determined by measuring the recombination rate as a function of the scattering length at
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(a) a < 0 (b) a > 0

Figure A.2: The three-body recombination mechanisms at negative (a) and positive (b) scat-
tering lengths leading to a maximum (a) or minimum (b) in K3 (figure taken from ref. [88]).
In each case, only two three-body potential curves Uν(R) are shown as a function of the
hyperradius R.

zero energy.

The recombination minima at positive scattering lengths have a different origin. They are
the result of destructive interference between the two possible recombination paths [21, 87] as
shown in Fig. A.2b. In one path, the system reflects from the potential cliff corresponding to
the incoming channel and relaxes to the bound channel while the hyperradius R is increasing.
This bound channel corresponds to a weakly bound dimer state. In the second path, the
system first relaxes to the bound channel while the particles approach each other and then
bounces off the potential barrier corresponding to the bound channel. The transition from
the continuum channel to the shallowest bound channel takes place at a hyperradius R ≈ 3a
[21, 87] because that is where the absolute value of the non-adiabatic coupling terms between
the three-body entrance channel and the shallowest s-wave bound channel are the largest [21].
It is clear that destructive interference would lead to a recombination rate of zero. However,
if deeper bound channels are present, three-body recombination to these deeper channels
results in a nonzero recombination rate for all two-body scattering lengths. A mimimum
in the recombination rate can still be observed. The three-body parameters a+,n are the
scattering lengths at which these recombination minima occur for zero three-body energy.

A.2 Atom-dimer relaxation rate

The three-body parameter a∗ is the positive value of the scattering length for which an Efimov
state causes a resonance in atom-dimer scattering [89]. During an atom-dimer collision, the
dimer can relax into a more deeply bound two-body state. The kinetic energy of the atom
and dimer increases during this process.

In experiments one can determine a∗ by preparing an ultracold sample of simultaneously
trapped atoms and dimers and measuring the particle loss for various two-body scattering
lengths. If the scattering length is tuned to a∗ by means of an applied magnetic field, a lot
of atoms and dimers will gain kinetic energy due to the resonant enhancement of inelastic
collisions between the atoms and dimers. As a result, their kinetic energy exceeds the trap
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depth and the particle loss rate from the trap is large. If nD is the dimer density and nA is
the atom density in the trap, then their time-dependence is described by

dnD
dt

=
dnA
dt

= −βnDnA. (A.3)

Here β is the loss rate coefficient. It can be measured in experiments [50] and it will peak
at a = a∗ as shown in Figure A.1. Note that particle loss by other inelastic collisions like
dimer-dimer scattering also have to be taken into account in these experiments. If these pro-
cesses are negligible, measuring the loss rate is equivalent to measuring the inelastic collision
rate for the scattering process between a free atom and a dimer as described by Eq. (A.3).
The experimental realization of an ultracold sample of trapped atoms and dimers is very
challenging and special trap conditions are required [50].

Theoretically, the scattering process between an atom and a weakly bound s-wave dimer
can be analyzed by calculating the following physical properties as a function of the two-body
scattering length a: the atom-dimer scattering length aad, the elastic collision rate α and the
inelastic collision rate β. Our definition of the atom-dimer scattering length aad is given by

aad = − lim
kad→0

tan δad

k2l+1
ad

(A.4)

where the atom-dimer phase shift δad is obtained from the S-matrix element Si←i = e2iδad

associated with the incoming atom-dimer channel i. The wave number kad is determined
from the energy with respect to this channel by kad =

√
2µad(E + E2b)/~. The reduced mass

is given by µad = 2
3m and E2b is the binding energy of the dimer. The angular momentum

quantum number l specifies the orbital angular momentum of the dimer in the initial channel
which is zero when the initial channel is the one correlated asymptotically with the weakly
bound s-wave dimer.

The elastic and inelastic collision rates are defined by

α =
(2l′ + 1)~π
µadkad

|1− Si←i|2 . (A.5)

and

β =
∑
f

(2l′ + 1)~π
µadkad

|Sf←i|2 (A.6)

respectively. Here the final channels associated with an atom and deeply bound dimer are
represented by f , whereas i represents the initial channel. The relative angular momentum
between the dimer and the third atom is described by the quantum number l′.
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B. Mathematics

This Appendix reviews some mathematical functions and their properties which are relevant
for this thesis. We consider the spherical harmonics and the spherical Bessel functions which
are relevant for solving the angular and radial part of the two-body Schrödinger equation
respectively. More information can be found in [90–93].

B.1 Some properties of the spherical harmonics

The spherical harmonics, denoted by Y m
l (θ, φ) or Y m

l (p̂), form a complete set in the Hilbert
space of square-integrable functions. These functions satisfy the following orthonormalization
condition [90]:∫ 2π

0

∫ π

0
[Y m
l (θ, φ)]∗ Y m′

l′ (θ, φ) sin(θ) dθ dφ = δll′δmm′ . (B.1)

The complex conjugate [Y m
l (θ, φ)]∗, also indicated by Ȳ m

l (θ, φ), is simply given by

[Y m
l (θ, φ)]∗ = (−1)mY −ml (θ, φ). (B.2)

Another important relationship obeyed by Y m
l (θ, φ) is the spherical harmonic addition theo-

rem given by [90]

Pl(p̂ · p̂′) =
4π

2l + 1

l∑
m=−l

Y m
l (p̂)

[
Y m
l (p̂′)

]∗
, (B.3)

where Pl(p̂ · p̂′) are the Legendre polynomials.

B.2 Spherical Bessel functions

The spherical Bessel functions jl(z) and nl(z) are two linearly independent solutions to the
following differential equation:(

z2 d2

dz2
+ 2z

d

dz
+ z2 − l(l + 1)

)
w(z) = 0, (B.4)

where l is an integer. The functions jl(z) and nl(z) are called the spherical Bessel functions
of the first and second kind respectively. The functions nl(z) are also known as the spherical
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Neumann functions. These spherical Bessel functions are related to the conventional Bessel
functions by

jl(z) =
( π

2z

)1/2
Jl+ 1

2
(z),

nl(z) =
( π

2z

)1/2
Yl+ 1

2
(z).

(B.5)

Other useful functions related to the spherical bessel functions are the spherical Hankel func-
tions which are also known as the spherical Bessel functions of the third kind. They are
defined by

h
(1)
l (z) = jl(z) + inl(z),

h
(2)
l (z) = jl(z)− inl(z).

(B.6)

B.3 Riccati-Bessel functions

The Riccati-Bessel functions of the first and second kind, indicated by ĵl(z) and n̂l(z) respec-
tively, are two linearly independent solutions to the following differential equation:(

d2

dz2
− l(l + 1)

z2
+ 1

)
u(z) = 0, (B.7)

where l is an integer. This differential equation is obtained from Eq. (B.4) by substituting

w(z) = u(z)
z . The functions ĵl(z) and n̂l(z) are related to the spherical Bessel functions and

the ordinary Bessel functions by

ĵl(z) = zjl(z) =
(πz

2

)1/2
Jl+ 1

2
(z),

n̂l(z) = −znl(z) = −
(πz

2

)1/2
Yl+ 1

2
(z).

(B.8)

. The Riccati-Bessel functions of the third kind are defined by

ĥ
(1)
l (z) = zh

(1)
l (z) = ĵl(z)− in̂l(z),

ĥ
(2)
l (z) = zh

(2)
l (z) = ĵl(z) + in̂l(z).

(B.9)
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C. Multichannel scattering theory

In this Appendix we generalize the single-channel scattering theory presented in Section 2.1.
The most important concepts which we need for the analysis of elastic atom-dimer scattering
processes are the definition of the scattering amplitude and the two-body scattering length for
cases in which the two bodies may be bound states of several particles. The theory presented
in this Appendix is based on the textbook written by Taylor (1972) [64] in which more details
can be found about multichannel scattering theory.

When more than two particles scatter, one can distinct different sets of particles that
can enter or leave a collision. Each set defines a channel α with which a particular channel
Hamiltonian Hα is associated. For example, the full Hamiltonian for three identical particles
interacting in pairs is given by

H = H0 + V =

3∑
i=1

p2
i

2mi
+ V (r12) + V (r23) + V (r31), (C.1)

where rij = r1 − r2. The channel Hamiltonian corresponding to three free particles is given
by H0, whereas the channel Hamiltonian corresponding to a free particle i and a bound state
of particles j and k is given by H0 + V (rjk).

When n particles scatter from the in-channel α, the state |ψ〉 at time t is related to the
state |ψin〉 by

e−iHt/~ |ψ〉 t→−∞−−−−→ e−iH
αt/~ |ψin〉 . (C.2)

Similarly, we have

e−iHt/~ |ψ〉 t→+∞−−−−→ e−iH
αt/~ |ψout〉 . (C.3)

The asymptotic condition states that for every vector in any channel subspace we can find
a vector |ψ〉 which fulfills Eq. (C.2) or Eq. (C.3) [64]. As before, the asymptotic condition
applies if the particle interactions V (r) satisfy the usual asymptions.

The vector |ψ〉 is related to the vectors |ψin〉 and |ψout〉 by the channel Møller operators
Ωα

+ and Ωα
− respectively. These relations are given by

|ψ〉 = Ωα
+ |ψin〉 = lim

t→−∞
eiHt/~e−iH

αt/~ |ψin〉 (C.4)

and

|ψ〉 = Ωα
− |ψout〉 = lim

t→+∞
eiHt/~e−iH

αt/~ |ψout〉 . (C.5)
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In general, orbits exist that originate as a superposition |Ψin〉 of all open in-channels α, so
that Eq. (C.4) generalizes to

|ψ〉 =
∑
α

Ωα
+ |ψαin〉 = Ω+ |Ψin〉 . (C.6)

Naturally, the scattering orbit will evolve into a superposition |Ψout〉 of all open out-channels
α, so that the generalization of Eq. (C.5) is given by

|ψ〉 =
∑
α

Ωα
− |ψαout〉 = Ω− |Ψout〉 . (C.7)

The Møller operators Ω+ and Ω− are isometric, so that the inverse of Ω− equals its Hilbert-
adjoint operator Ω†−. Consequently, Eqs. (C.6) and (C.7) can be combined to give

|Ψout〉 = Ω†−Ω+ |Ψin〉 = S |Ψin〉 (C.8)

where the scattering operator S has been defined as

S = Ω†−Ω+. (C.9)

The scattering operator maps each in-asymptote |Ψin〉 onto the corresponding out-asymptote
|Ψout〉. Just as in single-channel scattering, the scattering operator S factors as

S = 1cm ⊗ Ω†−Ω+ ≡ 1cm ⊗ S. (C.10)

The operator S can be directly obtained from the relative Hamiltonian Hrel and contains all
of the physically interesting information. Thus from now on we will consider wave functions
in the center-of-mass frame, and we will write the Hamiltonian Hrel = H0

rel+
∑

α Vα simply as
H. The potentials Vα are just two-particle interaction potentials, so that

∑
α Vα = 1

2

∑
i,j Vij

where the sum is performed over all particles i and j. The multichannel stationary scattering
states can be defined in a similar way as the single-channel stationary scattering states given
by Eq. (2.25), i.e., [64]

|p, α±〉 ≡ Ωα
±|p, α〉 (C.11)

where p denotes a set of (nα − 1) relative momenta of the nα bodies in channel α. For
example, for atom-dimer scattering the set p consists only of one relative momentum, namely
the relative momentum q between the atom and the dimer, and α denotes a set of quantum
numbers corresponding to the two-body bound state ϕα. So in this particular case we have

|p, α〉 = |q〉|ϕα〉. (C.12)

The states |p, α±〉 are eigenstates of the full Hamiltonian H, whereas the states |p, α〉 are
eigenstates of Hα = H − V α where V α consists of all potentials that link different freely
moving fragments in channel α. The energy of the states |p, α±〉 and |p, α〉 is the same and
consists of the kinetic energy of the state |p〉 and the binding energy associated with the state
|α〉.

From Eq. (C.11) it can be proven that [64]

|p, α±〉 = |p, α〉+G(E ± i0)V α|p, α〉. (C.13)
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The Lippmann-Schwinger equation corresponding to the multichannel stationary scattering
states |p, α±〉 is given by [64]

|p, α±〉 = |p, α〉+Gα(E ± i0)V α|p, α±〉. (C.14)

which is similar to Eq. (2.28). The Green’s operator Gα is defined by Gα(z) ≡ (z −Hα)−1.

We can also define a transition operator T βα(z) corresponding to the scattering process
from the initial channel α to the final channel β. This multichannel T -operator is defined by

T βα(z) = V α + V βG(z)V α. (C.15)

Multiplying Eq. (C.15) on the left by Gβ(z) leads to

Gβ(z)T βα(z) =
(
Gβ(z) +Gβ(z)V βG(z)

)
V α

= G(z)V α.
(C.16)

which can be substituted into Eq. (C.15) to obtain the Lippmann-Schwinger equations for
the T -operators

T βα(z) = V α + V βGβ(z)T βα(z). (C.17)

So now we have formulated the Lippmann-Schwinger equation in terms of the stationary
scattering states and in terms of transition operators T βα(z).

The on-shell T -matrix element for scattering from channel α with energy E to channel β
with the same energy E is given by

〈p′, β|T βα(E + i0)|p, α〉 = 〈p′, β|V α + V βG(E + i0)V α|p, α〉
= 〈p′, β|V α − V β|p, α〉+ 〈p′, β|V β|p, α+〉
= 〈p′, β|Hβ −Hα|p, α〉+ 〈p′, β|V β|p, α+〉

=
(
Ep′,β − Ep,α

)
〈p′, β|p, α〉+ 〈p′, β|V β|p, α+〉

= 〈p′, β|V β|p, α+〉.

(C.18)

Here we have explicitly used the fact that the energies corresponding to the states |p′, β〉 and
|p, α〉 are equal. An alternative definition of the multichannel T -operator is given by

T̃ βα(z) = V β + V βG(z)V α (C.19)

which leads to exactly the same on-shell T -matrix elements given by Eq. (C.18). Furthermore,
it can be proven that the on-shell T -matrix elements can also be calculated from

〈p′, β|T βα(E + i0)|p, α〉 = 〈p′, β − |V β|p, α〉. (C.20)

Moreover, we can relate the on-shell T -matrix to the S-matrix by [64]

〈p′, β|S|p, α〉 = δβαδ(p
′ − p)− 2πiδ(Ep′,β − Ep,α)〈p′, β|T βα(E + i0)|p, α〉. (C.21)

Now we turn our attention to multichannel scattering processes in which the initial channel
α and the final channel β both consists of two bodies. Each body may be a bound state
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consisting of several particles and the two final bodies may be different as the two incoming
bodies. In this case the sets of momenta p and p′ reduce to the single momenta q and q′

respectively. The differential scattering cross section for such a scattering process can then
be calculated from the on-shell T -matrix element 〈q′, β|T βα(E + i0)|q, α〉 as [64]

dσ

dΩ
(q′, β ← q, α) = (2π)4µµ′~2 q

′

q
|〈q′, β|T βα(E + i0)|q, α〉|2 (C.22)

where µ and µ′ are the reduced masses of the initial and final two-body system respectively.
If we define the scattering amplitude f(q′, β ← q, α) as

f(q′, β ← q, α) = −(2π)2
√
µµ′~〈q′, β|T βα(E + i0)|q, α〉, (C.23)

we can write Eq. (C.22) as

dσ

dΩ
(q′, β ← q, α) =

q′

q
|f(q′, β ← q, α)|2. (C.24)

An important physical parameter which is often used to characterize elastic scattering
processes is the two-body scattering length. It can be related to the elastic scattering ampli-
tude f(q′, α ← q, α) in which q′ = q. In order to obtain this relation, we first expand the
elastic scattering amplitude into spherical harmonics as

f(q′, α← q, α) ≡ 4π
∑
l,m

Y m
l (q̂)Ȳ m

l (q̂′)fl(q). (C.25)

The scattering length al is related to fl(q) by

fl(q) →
q→0
−al

( q
~

)2l
. (C.26)

Even though only a0 has the dimensions of length, all parameters al are referred to as the
scattering length.

C.1 Identical particles

So far we have considered scattering processes in which the involved particles are distinct.
The theory can be extended to cases in which the particles are identical or in which part
of the particles are identical. A detailed description of such scattering processes is given in
Ref. [64].

One essential difference with respect to scattering processes involving distinguishable par-
ticles is that the number of channels is reduced. For example, the elastic scattering process,

i+ (j, k)→ i+ (j, k), (C.27)

is physically indistinguishable from the rearrangement processes

i+ (j, k)→ j + (k, i), (C.28)

i+ (j, k)→ k + (i, j), (C.29)
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when all particles are identical. Nonetheless, we can treat these three scattering processes
mathematically distinct. The fact that these channels are physically indistinguishable is
reflected in the wave function of this system. The wave function of a collection of identical
particles should be symmetric (bosons) or antisymmetric (fermions) at all times t.

We would like to point out one special type of collisions, namely a collision between a single
particle and a target containing n particles. All n+ 1 particles are identical, spinless bosons.
Furthermore, we assume that all out-channels have the same arrangements and are therefore
physically indistinguishable. Therefore we label the incoming channel by α and the outgoing
channel by α′ where the prime indicates that the incoming and outgoing channels may only be
mathematically distinct. The differential scattering cross section for such scattering processes
can be calculated from

dσ

dΩ
(q′, α′ ← q, α) =

q′

q
|f̂(q′, α′ ← q, α)|2, (C.30)

in which the scattering amplitude is given by

f̂(q′, α′ ← q, α) = fdi(q
′, α′ ← q, α) + nfex(q′, α′ ← q, α). (C.31)

The direct amplitude fdi(q
′, α′ ← q, α) is the scattering amplitude for the direct scattering

process

0 + (1 2 . . . n)→ 0 + (1 2 . . . n) (C.32)

on the assumption that the particles are distinct. The exchange amplitude fex(q′, α′ ← q, α)
is the scattering amplitude for the rearrangement process

0 + (1 2 . . . n)→ 1 + (0 2 . . . n) (C.33)

in which all particles are distinguishable. The direct and exchange amplitudes can be calcu-
lated from the theory presented above for distinct particles. This means that

fdi(q
′, α′ ← q, α) = f(q′, α← q, α), (C.34)

fex(q′, α′ ← q, α) = f(q′, α′ ← q, α). (C.35)

where f denotes the amplitude for distinct particles. Note that the channels α and α′ on
the right-hand-side of these equations refer to channels involving of non-symmetrized wave
functions, so that the channels α and α′ are different. However, the channels α and α′ on the
left-hand-side of these equations refer to channels involving of symmetrized wave functions
and are therefore exactly the same.
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D. Exchange and permutation operators

The exchange operator Pij exchanges particles i and j. Clearly, a symmetric pair potential
Vij commutes with Pij . Furthermore, Pij commutes with Pkl only if i 6= k and j 6= l or if i = l
and j = k. For three particles, the former condition is irrelevant, but the latter condition
means that Pij = Pji. Consequently, P 2

ij = 1. Another important property of the exchange
operator Pij is

PijPjk = PjkPki. (D.1)

The operator PijPjk is the anticyclic permutation operator of three particles and is abbrevi-
ated as P−. Similarly, P+ = PikPjk is the cyclic permutation operator of the three particles.

Another useful operator is the permutation operator P = P+ + P−. The operator P
commutes with Pij . After all,

[P, Pjk] = PPjk − PjkP
= (PijPjk + PikPjk)Pjk − Pjk(PjkPik + PjkPij)

= (Pij + Pik)− (Pik + Pij) = 0.

(D.2)

So we have seen that [P, Pjk] = 0 and [Vjk, Pjk] = 0. However, [P, Vjk] 6= 0. Furthermore, P ,
P+ and P− commute with the free Hamiltonian H0 and therefore also with G0 = (z−H0)−1.
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E. Free-particle states and the
momentum-space representation of
operators

This Appendix presents the two-body and three-body free-particle states. These states can
be used to rewrite operators and wave functions in the momentum-space representation. We
will also write the homogeneous part of the Faddeev equation for three identical bosons in
the momentum-space representation.

E.1 Free two-particle states

A free-particle state can be analyzed using either the plane wave basis {|p〉} or the spherical
wave basis {|E, l,m〉} which are both considered in this Appendix.

The eigenfunctions of the momentum operator ~
i∇ are the momentum eigenstates |p〉.

These states are also eigenfunctions of the free-particle Hamiltonian H0. Their representation
in position space is given by

〈x|p〉 =
1

(2π~)3/2
eip·x/~ (E.1)

which can be expanded in terms of partial waves as [5]

〈x|p〉 =
4π

(2π~)3/2

∞∑
l=0

l∑
m=−l

iljl

(pr
~

)
Y m
l (x̂)Ȳ m

l (p̂)

=
1

(2π~)3/2

∞∑
l=0

(2l + 1)iljl

(pr
~

)
Pl(p̂ · x̂).

(E.2)

The momentum eigenvectors |p〉 are not square-integrable. Therefore these functions
do not belong to the Hilbert space and they do not represent physically realizable states.
However, a normalized wave packet which is a superposition of momentum eigenvectors lives
in the Hilbert space. The vectors |p〉 obey the orthonormalization condition

〈p′|p〉 = δ(p′ − p). (E.3)

Another important set of eigenvectors of the free Hamiltonian H0 which are also eigen-
vectors of the angular momentum operators L2 and Lz are the spherical wave states |E, l,m〉,
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where E, l(l+ 1)~2 and m~ are the corresponding eigenvalues of H0, L2 and Lz respectively.
Here m indicates the magnetic quantum number and not the mass of a particle. The free
spherical wave states are normalized according to

〈E′, l′,m′|E, l,m〉 = δ(E − E′)δl′lδm′m. (E.4)

The position-space representation of the spherical wave states |E, l,m〉 is given by [68]

〈x|E, l,m〉 = il
(

2µ

π~p

)1/2 1

r
ĵl

(pr
~

)
Y m
l (x̂), (E.5)

whereas the momentum-space representation is given by

〈p|E, l,m〉 =

(
1

µp

)1/2

δ

(
E − p2

2µ

)
Y m
l (p̂). (E.6)

E.2 Momentum-space representation of the potential

The position-space representation of a local two-body potential is given by

〈x′|V |x〉 = V (x)δ(x′ − x), (E.7)

whereas the momentum-space representation of such a potential is given by

〈p′|V |p〉 =

∫∫
〈p′|x′〉〈x′|V |x〉〈x|p〉 dx dx′

=

∫
〈p′|x〉V (x)〈x|p〉 dx.

(E.8)

If we substitute Eq. (E.2) and assume that the potential is spherically symmetric, we obtain

〈p′|V |p〉 =
(4π)2

(2π~)3

∞∑
l=0

l∑
m=−l

Ȳ m
l (p̂)Y m

l (p̂′)

∫
V (r)jl

(pr
~

)
jl

(
p′r

~

)
r2dr

=
4π~2

(2π~)3pp′

∞∑
l=0

(2l + 1)Pl(p̂′ · p̂)

∫
V (r)ĵl

(pr
~

)
ĵl

(
p′r

~

)
dr

=

∞∑
l=0

(2l + 1)Pl(p̂′ · p̂)Vl(p, p
′).

(E.9)

The partial-wave components of the potential, Vl(p, p
′), are given by

Vl(p, p
′) =

1

2π2~pp′

∫
V (r)ĵl

(pr
~

)
ĵl

(
p′r

~

)
dr. (E.10)

For the square well potential we find that these components are given by

Vl(p, p
′) =

−V0

2π2~pp′
~
pĵl+1(p̄)ĵl(p̄

′)− p′ĵl(p̄)ĵl+1(p̄′)

p2 − p′2

=
−V0R

3

2π2~3p̄p̄′
p̄ĵl+1(p̄)ĵl(p̄

′)− p̄′ĵl(p̄)ĵl+1(p̄′)

p̄2 − p̄′2

=
−q̄2

0R

4π2µ~p̄p̄′
p̄ĵl+1(p̄)ĵl(p̄

′)− p̄′ĵl(p̄)ĵl+1(p̄′)

p̄2 − p̄′2
.

(E.11)

where the dimensionless momenta p̄, p̄′ and q̄0 are given by pR
~ , p′R

~ and q0R
~ respectively.
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E.3 Momentum-space representation of the wave function

The wave function |ψ〉 can also be written in the momentum-space representation. In general,
the wave function 〈x|ψ〉 corresponding to a spherically symmetric potential can be expanded
in position space as

〈x|ψ〉 =

∞∑
l=0

l∑
m=−l

ul(r)

r
Y m
l (x̂), (E.12)

so that

〈p|ψ〉 =

∫
〈p|x〉〈x|ψ〉 dx

=
4π

(2π~)3/2

∫ ∞∑
l=0

l∑
m=−l

∞∑
l′=0

l′∑
m′=−l′

(−i)ljl
(pr
~

)
Ȳ m
l (x̂)Y m

l (p̂)
ul′(r)

r
Y m′
l′ (x̂) dx

=
4π

(2π~)3/2

∫ ∞∑
l=0

l∑
m=−l

(−i)ljl
(pr
~

)
Y m
l (p̂)

ul(r)

r
r2 dr

=
∞∑
l=0

l∑
m=−l

wl(p)

p
Y m
l (p̂).

(E.13)

Here we have defined the functions wl(p) as

wl(p) =
4π

(2π~)3/2
(−i)l

∫ ∞
0

ĵl

(pr
~

)
ul(r) dr. (E.14)

We can also apply an operator on the state |ψ〉 and project the resulting state onto the plane-
wave state |p〉. For example, if we consider again a local spherically symmetric potential and
define the state |g〉 = V |ψ〉, we obtain analogous to Eq. (E.13) that

〈p|g〉 =
∞∑
l=0

l∑
m=−l

gl(p)Y
m
l (p̂), (E.15)

where the functions gl(p) are defined as

gl(p) =
4π

(2π~)3/2
(−i)l 1

p

∫ ∞
0

V (r)ĵl

(pr
~

)
ul(r) dr. (E.16)

In case of the square well potential these functions are given by

gl(p) ∝ −
1

p

∫ R

0
V0ĵl

(pr
~

)
ĵl

(qr
~

)
dr

= −V0~
p

qĵl+1

(
qR
~

)
ĵl

(
pR
~

)
− pĵl+1

(
pR
~

)
ĵl

(
qR
~

)
q2 − p2

= − ~q̄2
0

2µp̄

q̄ĵl+1 (q̄) ĵl (p̄)− p̄ĵl+1 (p̄) ĵl (q̄)

q̄2 − p̄2

(E.17)

where q =
√

2µ
~2 (V0 + z) and z corresponds to the energy of the system whose state is given

by |ψ〉.
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E.4 Three-particle momentum states

The three-particle momentum state |q1,p1〉1 describes the system of three free noninteracting
particles. Here 2q1 is the relative momentum of particle 1 with respect to the center-of-mass
of the two-particle system (2 3) and 2p1 is the relative momentum between particles 2 and
3. The momenta q2, p2, q3 and p3 are defined in a similar way, but they correspond to
different Jacobi vectors. Table E.1 gives the momenta of each particle for each asymptotic
state corresponding to three free particles.

The states |q1,p1〉1 and |q2,p2〉2 in Table E.1 are the same when

p1 =
1

2
(q2 − (p2 −

1

2
q2)) =

3

4
q2 −

1

2
p2 and

q1 = −p2 −
1

2
q2.

(E.18)

Similarly, the states |q1,p1〉1 and |q3,p3〉3 are the same when

p1 =
1

2
((−p3 −

1

2
q3)− q3) = −3

4
q3 −

1

2
p3 and

q1 = p3 −
1

2
q3.

(E.19)

The three-particle momentum states |q1,p1〉1, |q2,p2〉2 and |q3,p3〉3 are equivalent, so that
we can just use one of these states. Therefore we can define

|q,p〉 ≡ |q,p〉α (E.20)

where α can be chosen to be 1, 2 or 3. So by choosing α, we do not need to bother about the
indices anymore. We normalize the three-body momentum states according to

〈q′,p′|q,p〉 = δ(q′ − q)δ(p′ − p). (E.21)

Table E.1: The momenta Pi of each particle i in the center-of-mass frame for different repre-
sentations of the momentum state corresponding to three free particles.

Three-particle state P1 P2 P3

|q1,p1〉1 q1 p1 − 1
2q1 −p1 − 1

2q1

|q2,p2〉2 −p2 − 1
2q2 q2 p2 − 1

2q2

|q3,p3〉3 p3 − 1
2q3 −p3 − 1

2q3 q3
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E.5 Momentum-space representation of three-body operators

In this thesis we solve the Faddeev equations in the momentum-space representation. This
means that we write an operator Ô as

Ô =

∫∫∫∫
|q′,p′〉〈q′,p′|Ô|q,p〉〈q,p| dq dp dq′ dp′. (E.22)

The elements 〈q′,p′|Ô|q,p〉 are called the matrix elements of the operator Ô in the momentum-
space representation. The Faddeev equations involve the operators G0, Tα and P for which
we will now evaluate the corresponding matrix elements.

Since the momentum states |q,p〉 are eigenstates of the free hamiltonian H0, it follows
that

〈p′,q′|G0(E)|p,q〉 =
1

E − Ep,q
δ
(
p′ − p

)
δ
(
q′ − q

)
. (E.23)

The energy Ep,q is just

Ep,q =
3∑
i=1

1

2m
P2
i =

1

2m

(
|q|2 +

∣∣∣∣p− 1

2
q

∣∣∣∣2 +

∣∣∣∣−p− 1

2
q

∣∣∣∣2
)

=
1

2m

(
3

2
q2 + 2p2

)
.

(E.24)

Furthermore,

〈p,q|Tα(E)|p′,q′〉 = 〈p|Tα|p′〉δ
(
q− q′

)
. (E.25)

Since Tα(E) is the two-body T -operator for two-particle scattering in the presence of the
third particle, it is just equal to the ordinary two-body T -operator, T (z), evaluated at energy
z = E − 3

4mq
2.

The momentum-space representation of the permutation operator P can be determined
from Table E.1. We find that

〈q,p|P |q′,p′〉 = 〈q,p| − p′ − 1

2
q′,−1

2
p′ +

3

4
q′〉

+ 〈q,p|p′ − 1

2
q′,−1

2
p′ − 3

4
q′〉

= δ

(
p +

1

2
p′ − 3

4
q′
)
δ

(
q + p′ +

1

2
q′
)

+ δ

(
p +

1

2
p′ +

3

4
q′
)
δ

(
q− p′ +

1

2
q′
)

= δ

(
p− 1

2
q− q′

)
δ

(
p′ + q +

1

2
q′
)

+ δ

(
p +

1

2
q + q′

)
δ

(
p′ − q− 1

2
q′
)
.

(E.26)
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Now we can evaluate

〈p,q|Tα(E)G0(E)P |Φα〉 =

∫
· · ·
∫
dp′dq′dp′′dq′′dp′′′dq′′′〈p,q|Tα(E)|p′,q′〉

〈p′,q′|G0(E)|p′′,q′′〉〈p′′,q′′|P |p′′′,q′′′〉〈p′′′,q′′′|Φα〉.
(E.27)

Taking Eqs. (E.23), (E.25) and (E.26) into account we find that Eq. (E.27) reduces to

〈p,q|Tα(E)G0(E)P |Φα〉 =

∫
dq′′′

(
〈p|Tα(E)|1

2
q + q′′′〉 1

E − E( 1
2
q+q′′′),q

〈−1

2
q′′′ − q,q′′′|Φα〉

+ 〈p|Tα(E)| − 1

2
q− q′′′〉 1

E − E(− 1
2
q−q′′′),q

〈1
2
q′′′ + q,q′′′|Φα〉

)
.

(E.28)

From Eq. (E.24) it follows that

E( 1
2
q+q′′′),q = E(− 1

2
q−q′′′),q =

1

m

(
q2 + q′′′2 + q · q′′′

)
. (E.29)

For three identical bosons the relation 〈12q′′′+ q,q′′′|Φα〉 = 〈−1
2q′′′−q,q′′′|Φα〉 holds, so that

Eq. (E.28) simplifies to

〈p,q|Tα(E)G0(E)P |Φα〉 =

∫
dq′′′

(
ts
(
p, 1

2q + q′′′, E − 3
4mq

2
)

E − 1
m (q2 + q′′′2 + q · q′′′)

〈1
2
q′′′+q,q′′′|Φα〉

)
, (E.30)

where ts (p,p′, E) is the symmetrized two-body T -matrix which is defined as

ts
(
p,p′, E

)
= 〈p|T (E)|p′〉+ 〈p|T (E)| − p′〉. (E.31)
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F. Partial wave expansion of the
three-body equations

In this Appendix we perform a partial wave expansion on the three-body equations derived
in Chapter 3. First, we consider the Faddeev equation for three-body bound states given by
Eq. (3.11). Secondly, we consider Eq. (3.27) describing atom-dimer scattering processes.

F.1 Three-body bound states

Here we analyze the three-body equation given by Eq. (3.11) for zero total angular momentum.
For simplicity, we drop the index α in this equation. We expand the three-body wave function
〈p,q|Φ〉 in terms of angular functions, so that we obtain an infinite set of two-dimensional
integral equations for the expansion coefficients. This infinite set of equations is further
reduced to an even larger set of one-dimensional integral equations after expanding the two-
particle T -matrix in separable terms.

We will expand the wave function 〈p,q|Φ〉 in the bispherical basis YlλLM (p̂, q̂). In order
to define this basis, we first define the operators ~l and ~λ as the orbital angular momentum
operators, corresponding to the Jacobi vectors r23 = r2 − r3 and r1,23 = r1 − 1

2(r2 + r3)
respectively, with respect to the center of mass of the pair of particles, i.e. 1

2(r2 + r3). So

~l = −i~r23 ×∇r23 (F.1)

and

~λ = −i~r1,23 ×∇r1,23 . (F.2)

The total angular momentum of the three-particle system is then L = ~l+ ~λ. The bispherical
basis corresponding to total angular momentum L is given by [5, 69]

YlλLM (p̂, q̂) =
∑

ml+mλ=M

〈lmlλmλ|LM〉Y ml
l (p̂)Y mλ

λ (q̂) (F.3)

where the functions Y ml
l and Y mλ

λ are spherical harmonics and the coefficients 〈lmlλmλ|LM〉
are Clebsch-Gordan coefficients. The functions YlλLM (p̂, q̂) are orthonormalized and form
a complete set [5], so that the bispherical basis can be used to expand the wave function
〈p,q|Φ〉 as

〈p,q|Φ(E)〉 =
∑

l,λ,L,M

YlλLM (p̂, q̂)ΦlλL(p, q, E). (F.4)
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Similar expansions can be found in Ref. [71], in Ref. [5] and in Chapter 7.2 and 7.3.1 of
Faddeev’s book [69].

For zero total angular momentum, the Clebsch-Gordan coefficients are given by

〈lmlλmλ|00〉 = δl,λδml,−mλ
(−1)l−ml√

2l + 1
, (F.5)

so that Eq. (F.4) can be written as

〈p,q|Φ(E)〉 =
∑
l,λ

Ylλ00(p̂, q̂)Φlλ0(p, q, E) (F.6)

=
∑
l,λ

∑
ml+mλ=0

〈lmlλmλ|00〉Y ml
l (p̂)Y mλ

λ (q̂)Φlλ0(p, q, E) (F.7)

=
∑
l

l∑
ml=−l

(−1)l−ml√
2l + 1

Y ml
l (p̂)Y −mll (q̂)Φll0(p, q, E) (F.8)

=
∑
l

l∑
ml=−l

(−1)l√
2l + 1

Y ml
l (p̂)Ȳ ml

l (q̂)Φll0(p, q, E). (F.9)

In the last line we used (−1)mY −mll (q̂) = Ȳ ml
l (q̂) where the bar denotes the complex conju-

gate. Next, we substitute Eq. (F.9) into Eq. (3.11). We also use the partial wave expansion
of the two-body T -matrix (Eq. (2.31)). This gives

∑
l

l∑
ml=−l

(−1)l√
2l + 1

Y ml
l (p̂)Ȳ ml

l (q̂)Φll0(p, q, E) =

∫
dq′′

1

E − 1
m (q2 + q · q′′ + q′′2)2

∞∑
l′=0,even

(2l′ + 1)Pl′(p̂ · 1
2q + q′′
∧

)tl′(p, |
1

2
q + q′′|, E − 3

4m
q2)


∑
l′′

l′′∑
ml′′=−l

(−1)l
′′

√
2l′′ + 1

Y
ml′′
l′′ (q + 1

2q′′
∧

)Ȳ
ml′′
l′′ (q′′
∧

)Φl′′l′′0(|q +
1

2
q′′|, q′′, E)

(F.10)

This equation can be multiplied by Ȳ ml
l (p̂) and integrated over p̂. Taking the orthogonality of

the spherical harmonics,
∫
Y ml
l (p̂)Ȳ

ml′
l′ (p̂)dp̂ = δll′δmlml′ , into account and using Eq. (B.3),

it is easy to verify that Eq. (F.10) reduces to

(−1)l√
2l + 1

Ȳ ml
l (q̂)Φll0(p, q, E) =

∫
dq′′

1

E − 1
m (q2 + q · q′′ + q′′2)(

8π∆lȲ
ml
l (1

2q + q′′
∧

)tl(p, |
1

2
q + q′′|, E − 3

4m
q2)

)
∞∑
l′′=0

l′′∑
ml′′=−l′′

(−1)l
′′

√
2l′′ + 1

Y
ml′′
l′′ (q + 1

2q′′
∧

)Ȳ
ml′′
l′′ (q′′
∧

)Φl′′l′′0(|q +
1

2
q′′|, q′′, E)

(F.11)

where ∆l ≡ 1
2

(
1 + (−1)l

)
. Clearly, l must be even because odd values of l are not present in

the symmetrized two-body T -matrix. So Φll0(p, q, E) = 0 for odd values of l. Consequently,
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(−1)l = 1 and only the terms with even values of l′′ contribute to the sum over l′′ on the right-
hand-side of this equation. To get a better overview, we can define the variable Φ̃l(p, q, E) ≡

1√
2l+1

Φll0(p, q, E). Now Eq. (F.11) looks like

Ȳ ml
l (q̂)Φ̃l(p, q, E) =

∫
dq′′

1

E − 1
m (q2 + q · q′′ + q′′2)(

8π∆lȲ
ml
l (1

2q + q′′
∧

)tl(p, |
1

2
q + q′′|, E − 3

4m
q2)

)
∞∑
l′′=0

l′′∑
ml′′=−l′′

∆l′′Y
ml′′
l′′ (q + 1

2q′′
∧

)Ȳ
ml′′
l′′ (q′′
∧

)Φ̃l′′(|q +
1

2
q′′|, q′′, E).

(F.12)

The next step is to get rid of the factor Ȳ ml
l (q̂) on the left-hand-side of this equation. This

can be done by multiplying Eq. (F.12) with Y ml
l (q̂) and summing over ml. The resulting

equation is

l∑
ml=−l

Y ml
l (q̂)Ȳ ml

l (q̂)Φ̃l(p, q, E) =

∫
dq′′

1

E − 1
m (q2 + q · q′′ + q′′2)8π

l∑
ml=−l

∆lY
ml
l (q̂)Ȳ ml

l (1
2q + q′′
∧

)tl(p, |
1

2
q + q′′|, E − 3

4m
q2)


∞∑
l′′=0

l′′∑
ml′′=−l

∆l′′Y
ml′′
l′′ (q + 1

2q′′
∧

)Ȳ
ml′′
l′′ (q′′
∧

)Φ̃l′′(|q +
1

2
q′′|, q′′, E).

(F.13)

which can be simplified by using Eq. (B.3) to

Φ̃l(p, q, E) =

∫
dq′′

1

E − 1
m (q2 + q · q′′ + q′′2)

(
2∆lPl(q̂ · 1

2q + q′′
∧

)tl(p, |
1

2
q + q′′|, E − 3

4m
q2)

)
∞∑
l′′=0

(2l′′ + 1)∆l′′Pl′′(q + 1
2q′′
∧

· q′′
∧

)Φ̃l′′(|q +
1

2
q′′|, q′′, E).

(F.14)

This set of equations is an infinite set of two-dimensional integral equations. This can easily
be seen by introducing the δ-function and adding an additional integration, so that

Pl′′(q + 1
2q′′
∧

·q′′
∧

)Φ̃l′′(|q+
1

2
q′′|, q′′, E) =

∫
dp′′δ

(
p′′ − q− 1

2
q′′
)
Pl′′(p

′′
∧

·q′′
∧

)Φ̃l′′(p
′′, q′′, E).

(F.15)

Eq. (F.14) can be reduced to an infinite set of one-dimensional integral equations if tl(p, p
′, z)

is written as a sum of terms which are separable in the incoming and outgoing momenta,
namely

tl(p, p
′, z) = −

∞∑
n=1

τnl(z)gnl(p, z)gnl(p
′, z). (F.16)
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There exists many ways in which this separable expansion can be done and it depends on
the specific method whether the form factors gnl(p, z) are energy-dependent or not. We also
assume that an orthonormalization condition for the form factors gnl(p, z) exists, i.e.,

∫ ∞
0

k(p, z)gn′l(p, z)gnl(p, z)dp = δn′n (F.17)

where k(p, z) is a function depending on p and z. Chapter 5 discusses some methods to
perform a separable expansion of tl(p, p

′, z) and it is shown that k(p, z) = 1 for method I (the

spectral representation) and k(p, z) = p2

p2

2µ
−z

for method II (the Weinberg series).

The expansion given by Eq. (F.16) can be substituted into Eq. (F.14). If we also define the
quantities φ̃ln(q, E) as the expansion coefficients of Φ̃l(p, q, E) with respect to the orthonormal
basis

{
gnl(p,E − 3

4mq
2)
}

, i.e. Φ̃l(p, q, E) =
∑∞

n=1 gnl(p,E −
3

4mq
2)φ̃ln(q, E), the resulting

three-body equation is

∞∑
n=1

gnl(p,E−
3

4m
q2)φ̃ln(q, E) = −

∫
dq′′

1

E − 1
m (q2 + q · q′′ + q′′2)

2∆lPl(q̂ · 1
2q + q′′
∧

)

∞∑
n′=1

τn′l(E −
3

4m
q2)gn′l(p,E −

3

4m
q2)gn′l(|

1

2
q + q′′|, E − 3

4m
q2)

∞∑
l′′=0

(2l′′ + 1)∆l′′Pl′′(q + 1
2q′′
∧

· q′′
∧

)

∞∑
n′′=1

gn′′l′′(|q +
1

2
q′′|, E − 3

4m
q′′2)φ̃l′′n′′(q

′′, E).

(F.18)

When we multiply this equation with k(p, z)gnl(p,E − 3
4mq

2), integrate over p and use
Eq. (F.17), Eq. (F.18) reduces to

φ̃ln(q, E) = −
∫
dq′′

2∆lPl(q̂ · 1
2q + q′′
∧

)

E − 1
m (q2 + q · q′′ + q′′2)

τnl(E −
3

4m
q2)gnl(|

1

2
q + q′′|, E − 3

4m
q2)

∞∑
l′′=0

∞∑
n′′=1

(2l′′ + 1)∆l′′Pl′′(q + 1
2q′′
∧

· q′′
∧

)gn′′l′′(|q +
1

2
q′′|, E − 3

4m
q′′2)φ̃l′′n′′(q

′′, E)

(F.19)

which is an infinite set of one-dimensional integral equations. When the separable represen-
tation of two-body T -matrix (Eq. (F.16)) converges well, only a few terms of this expansion
have to be considered. In this case the number of coupled equations is small enough to solve
this set numerically.

Finally, we note that we could also symmetrize the integrand of Eq. (F.19) for the terms
with n = n′′ and l = l′′ if we define the expansion of Φ̃l(p, q, E) in a different way, namely

Φ̃l(p, q, E) = 1
q

∑∞
n=1 gnl(p,E −

3
4mq

2)
√
τnl(E − 3

4mq
2)
˜̃
φln(q, E). Here we have defined some
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new quantities
˜̃
φln(q, E). The resulting three-body equation is

˜̃
φln(q, E) = −

∫
dq′′
∧

dq′′
2q′′q∆lPl(q̂ · 1

2q + q′′
∧

)

E − 1
m (q2 + q · q′′ + q′′2)

√
τnl(E −

3

4m
q2)gnl(|

1

2
q + q′′|, E − 3

4m
q2)

∞∑
l′′=0

∞∑
n′′=1

(2l′′ + 1)∆l′′Pl′′(q + 1
2q′′
∧

· q′′
∧

)

√
τn′′l′′(E −

3

4m
q′′2)gn′′l′′(|q +

1

2
q′′|, E − 3

4m
q′′2)

˜̃
φl′′n′′(q

′′, E).

(F.20)

Alternatively, we could define θln(q, E) = φ̃ln(q,E)

τnl(E− 3
4m

q2)
, so that Eq. (F.19) can also be

written as

θ̃ln(q, E) = −
∫
dq′

2∆lPl(q̂ · 1
2q + q′
∧

)

E − 1
m (q2 + q · q′ + q′2)

τnl(E −
3

4m
q′2)gnl(|

1

2
q + q′|, E − 3

4m
q2)

∞∑
l′=0

∞∑
n′=1

(2l′ + 1)∆l′Pl′(q + 1
2q′
∧

· q′
∧

)gn′l′(|q +
1

2
q′|, E − 3

4m
q′2)θ̃l′n′(q

′, E).

(F.21)

F.2 Atom-dimer scattering states

Now we follow a similar approach to the problem of atom-dimer scattering. The derivation
of the equation is based on Ref. [71]. The equation to determine the wave function of the
atom-dimer scattering state is given by Eq. (3.27). This three-body equation can also be
expanded in the bispherical basis YlλLM (p̂, q̂). The angular momentum of the dimer, which
is the scatterer of the third particle, is assumed to be zero [5]. We indicate this by ld = 0. So
if we define

〈p,q|Ψ̃(q0)〉 =
∑

l,λ,L,M

ψlλL(p, q; q0)YlλLM (p̂, q̂)ȲM
L (q̂0) (F.22)

and substitute this expansion in Eq. (3.27), we obtain

∑
l,λ,L,M

ψlλL(p, q; q0)YlλLM (p̂, q̂)ȲM
L (q̂0) = ϕnd,ld(p)

δ(q − q0)

q2
Y md
ld

(p̂)
∑
L,M

YM
L (q̂)ȲM

L (q̂0)

+

(
E − p2

m
− 3q2

4m

)−1 ∫
dq′2

∑
l,ml

∆l4πY
ml
l (p̂)Ȳ ml

l (1
2q + q′
∧

)tl

(
p, |1

2
q + q′|, E − 3q2

4m

)
∑

l′,λ′,L′,M ′

ψl′λ′L′(|
1

2
q′ + q|, q′; q0)Yl′λ′L′M ′(

1
2q′ + q
∧

, q̂′)ȲM ′
L′ (q̂0).

(F.23)
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Multiplying this equation by YM
L (q̂0)Ȳ ml

l (p̂)Ȳ mλ
λ (q̂) and integrating over q̂0, p̂ and q̂ results

in

〈lmlλmλ|LM〉ψlλL(p, q; q0, E) = ϕnd,ld(p)
1

q2
δ(q − q0)δl,ldδml,mdδλ,Lδmλ,M

+ 8π∆l

(
E − p2

m
− 3q2

4m

)−1 ∫∫
Ȳ ml
l (1

2q + q′
∧

)Ȳ mλ
λ (q̂)tl

(
p, |1

2
q + q′|, E − 3q2

4m

)
∑
l′λ′

ψl′λ′L(|1
2
q′ + q|, q′; q0, E)Yl′λ′LM (1

2q′ + q
∧

, q̂′) dq′ dq̂.

(F.24)

The next step is to multiply this equation by 〈LM |lmlλmλ〉 and summing over ml and mλ.
We also use the orthogonality relation∑

m1,m2

〈JM |j1m1j2m2〉〈j1m1j2m2|J ′M ′〉 = 〈JM |J ′M ′〉 = δJ,J ′δM,M ′ , (F.25)

so that we end up with

ψlλL(p, q; q0, E) =
∑

ml+mλ=M

〈LM |lmlλmλ〉ϕnd,ld(p)
1

q2
δ(q − q0)δl,ldδml,mdδλ,Lδmλ,M

+ 8π∆l

(
E − p2

m
− 3q2

4m

)−1 ∫∫
ȲlλLM (1

2q + q′
∧

, q̂)tl

(
p, |1

2
q + q′|, E − 3q2

4m

)
∑
l′λ′

ψl′λ′L(|1
2
q′ + q|, q′; q0, E)Yl′λ′LM (1

2q′ + q
∧

, q̂′) dq′ dq̂.

(F.26)

Now we simplify this equation further by remembering that we assumed a dimer state with
zero angular momentum, i.e., ld = 0 and md = 0. The resulting atom-dimer scattering
equation is given by

ψlλL(p, q; q0, E) = ϕnd,0(p)
1

q2
δ(q − q0)δl,0δλ,L

+ 8π∆l

(
E − p2

m
− 3q2

4m

)−1 ∫∫
ȲlλLM (1

2q + q′
∧

, q̂)tl

(
p, |1

2
q + q′|, E − 3q2

4m

)
∑
l′λ′

ψl′λ′L(|1
2
q′ + q|, q′; q0, E)Yl′λ′LM (1

2q′ + q
∧

, q̂′) dq′ dq̂.

(F.27)

The next step is to reduce this infinite set of two-dimensional integral equations to an infinite
set of one-dimensional integral equations by introducing the expansion for the partial-wave
off-shell components tl(p, p

′, z) given by Eq. (F.16). Before substituting this expansion into
Eq. (F.27) we first consider the relation between the two-body wave function ϕnl(p,E2b) and
the form factor gnl(p, z).
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The two-body T -matrix contains singularities at the binding energies of the pair of parti-
cles. Near any singular point, the T -matrix can be written as [69]

〈p′|T (z)|p〉 ' 〈p
′|g̃nl〉〈g̃nl|p〉
z − E2b,nl

(F.28)

where the indices n and l specify the singularity since they are the principal and angular
momentum quantum number of the two-body bound state respectively. The form factors
〈p|g̃nl〉 are defined as

〈p|g̃nl〉 =

∫
〈p|V |q〉〈q|ϕnl〉 dq (F.29)

where 〈q|ϕnl〉 is the two-body bound state wave function in the momentum-space represen-
tation whose energy is E2b,nl. This bound state wave function is normalized as 〈ϕnl|ϕn′l′〉 =
δnn′δll′ . Clearly, Eq. (F.29) can also be written as

〈p|g̃nl〉 =

∫
〈p|E2b,nl −H0|q〉〈q|ϕnl〉 dq

=

(
E2b,nl −

p2

2µ

)
〈p|ϕnl〉.

(F.30)

From Eq. (F.16) we also know that close to the singularity the T -matrix can also be approx-
imated by

〈p′|T (z)|p〉 ' −τnl(z)〈p′|gnl(E2b,nl)〉〈gnl(E2b,nl)|p〉 (F.31)

because for |z − E2b,nl| � 1 the form factors depend much weaker on z than the prefactor
τnl(z). So we see from Eqs. (F.28), (F.30) and (F.31) that we can always write 〈p|ϕnl〉 in
terms of 〈p|gnl(E2b,nl)〉 as

〈p|ϕnl〉 = Xnl
〈p|gnl(E2b,nl)〉
E2b,nl − p2

2µ

(F.32)

where Xnl is a constant which does not depend on p. When ϕnl(p) and gnl(p, z) are defined
by 〈p|ϕnl〉 = ϕnl(p)Y

m
l (p̂) and 〈p|gnl(z)〉 = gnl(p, z)Y

m
l (p̂) respectively, we find that

ϕnl(p) = Xnl
gnl(p,E2b,nl)

E2b,nl − p2

2µ

. (F.33)

Now we go back to the elastic atom-dimer scattering equation. Substituting Eq. (F.16)
and Eq. (F.33) into Eq. (F.27) results in

ψlλL(p, q; q0, E) = Xnd,0
gnd,0(p,E2b)

E2b − p2

2µ

1

q2
δ(q − q0)δl,0δλ,L − 8π∆l

(
Zq −

p2

m

)−1

∫∫
ȲlλLM (1

2q + q′
∧

, q̂)
∑
n

τnl (Zq) gnl (p, Zq) gnl

(
|1
2
q + q′|, Zq

)
∑
l′λ′

ψl′λ′L(|1
2
q′ + q|, q′; q0, E)Yl′λ′LM (1

2q′ + q
∧

, q̂′) dq′ dq̂

(F.34)
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where Zq = E − 3q2

4m . Next, we define the functions AnlλL(q, q0) by writing the expansion
coefficients ψlλL(p, q; q0, E) as

ψlλL(p, q; q0, E) =
∑
n

∆lXnd,0
gnl(p, Zq)

Zq − p2

m

{δn,ndδl,0δλ,L
δ(q − q0)

q2
+ 4πτnl(Zq)AnlλL(q, q0)}.

(F.35)

The functions AnlλL(q, q0) are closely related to the scattering amplitude as we will see below.
Substitution of Eq. (F.35) into Eq. (F.34) results in

∑
n

∆lXnd,0
gnl(p, Zq)

Zq − p2

m

τnl(Zq)AnlλL(q, q0) = −2∆l

(
Zq −

p2

m

)−1 ∫∫
ȲlλLM (1

2q + q′
∧

, q̂)

∑
n

τnl (Zq) gnl (p, Zq) gnl

(
|1
2
q + q′|, Zq

) ∑
l′λ′,n′

∆l′Xnd,0
gn′l′(|12q′ + q|, Zq′)

Zq′ −
| 1
2
q′+q|2
m

{δn′,ndδl′,0δλ′,L
δ(q′ − q0)

q′2
+ 4πτn′l′(Zq′)An′l′λ′L(q′, q0)}Yl′λ′LM (1

2q′ + q
∧

, q̂′) dq′ dq̂.

(F.36)

This equation can be simplified by applying the orthogonalization condition of the form factors
gnl(p, Zq) given by Eq. (F.17). This results in

∆lAnlλL(q, q0) = −2∆l

∫∫
ȲlλLM (1

2q + q′
∧

, q̂)gnl

(
|1
2
q + q′|, Zq

)
∑
l′λ′,n′

∆l′
gn′l′(|12q′ + q|, Zq′)

E − 1
m (q2 + q′2 + q · q′)

{δn′,ndδl′,0δλ′,L
δ(q′ − q0)

q′2

+ 4πτn′l′(Zq′)An′l′λ′L(q′, q0)}Yl′λ′LM (1
2q′ + q
∧

, q̂′) dq′ dq̂.

(F.37)

This equation can be represented in a nicer way if we define

UnlλL,n′l′λ′L(q, q′, E) ≡ −∆l′∆l

∫∫
ȲlλLM (1

2q + q′
∧

, q̂)gnl(|
1

2
q + q′|, Zq)(

E − 1

m

(
q2 + q′2 + q · q′

))−1

gn′l′(|
1

2
q′ + q|, Zq′)Yl′λ′LM (1

2q′ + q
∧

, q̂′) dq̂′ dq̂.

(F.38)

Eq. (F.37) can be written as

∆lAnlλL(q, q0) = 2UnlλL,nd0LL(q, q0, E)

+ 8π
∑
l′λ′,n′

∫ ∞
0

UnlλL,n′l′λ′L(q, q′, E)τn′l′(Zq′)An′l′λ′L(q′, q0)q′2 dq′.
(F.39)

The same equation can be found in Ref. [71], in which the definition of τnl(z) is a factor 4π
larger than the one used in this thesis.

When we consider ultracold collisions between the atom and the dimer, the value of q0 is
very small. In this case all amplitudes AnlλL with L 6= 0 vanish [5]. The components with
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L = 0 are fully specified by the indices n and l since λ = l in this case. So if we define
Anl ≡ Anll0, we end up with [71]

Anl(q, q0) = 2Unl,nd0(q, q0, E)

+ 8π
∑
n′,l′

∫ ∞
0

Unl,n′l′(q, q
′, E)τn′l′

(
E − 3

4m
q′2
)
An′l′(q

′, q0)q′2 dq′.
(F.40)

The functions Unl,n′l′(q, q
′, E) are defined by

Unl,n′l′(q, q
′, E) ≡ Unll0,n′l′l′0(q, q′, E)

=
1

4π
∆l∆l′

√
2l + 1

√
2l′ + 1

∫
Pl(q̂ · 1

2q + q′
∧

)Pl′(q̂
′ · 1

2q′ + q
∧

)(
1

m

(
q2 + q′ · q + q′2

)
− E

)−1

gnl

(
|1
2
q + q′|, Zq

)
gn′l′

(
|1
2
q′ + q|, Zq′

)
dq̂′.

(F.41)

F.2.1 The scattering amplitude

The physical parameter of interest is the scattering amplitude defined by Eq. (C.23). For three
identical bosons of mass m, the reduced mass of the atom-dimer system is 2

3m. Thus, in case
of elastic atom-dimer scattering we use Eq. (C.31) and we find that the elastic scattering
amplitude is given by

f̂(q, α′ ← q0, α) = −
∑
β

lim
q→q0

(2π)2 2

3
m~〈q, β|T βα(E + i0)|q0, α〉

= −
∑
β

lim
q→q0

(2π)2 2

3
m~〈q, β|V β|Ψα(q0)〉

= −1

3

∑
β,α

lim
q→q0

(2π)2 2

3
m~〈q, β|V β|Ψα(q0)〉

= −1

3

∑
β

lim
q→q0

(2π)2 2

3
m~〈q, β|V β|Ψ(q0)〉

= −1

3

∑
β

lim
q→q0

(2π)2 2

3
m~〈q, β|H − (H0 + Vβ)|Ψ(q0)〉

= −1

3

∑
β

lim
q→q0

(2π)2 2

3
m~

(
E2b +

3

4m
q2

0 − (E2b +
3

4m
q2)

)
〈q, β|Ψ(q0)〉

= −2π2~ lim
q→q0

(
q2

0 − q2
)
〈q, α|Ψ(q0)〉

= −2π2~ lim
q→q0

(
q2

0 − q2
)
〈q, α|1 + P+ + P−|Ψ̃α(q0)〉.

(F.42)
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If we represent the two-body bound state by |ϕ〉 and remove the index α, this equation can
also be written as

fad(q← q0) = −2π2~ lim
q→q0

(
q2

0 − q2
) (
〈q, ϕ|Ψ̃(q0)〉+

∫
〈ϕ|1

2
q + q′〉〈q′,−q− 1

2
q′|Ψ̃(q0)〉 dq′

+

∫
〈ϕ| − 1

2
q− q′〉〈q′,q +

1

2
q′|Ψ̃(q0)〉 dq′

)
.

(F.43)

The second and third term vanish in the limit q → q0. So the scattering amplitude can be
calculated from

f(q,q0) = −2π2~ lim
q→q0

(
q2

0 − q2
)
〈q, ϕ|Ψ̃(q0, E)〉. (F.44)

By using Eq. (F.22) we obtain

〈q, ϕ|Ψ̃(q0, E)〉 =

∫∫
〈q, ϕ|p′,q′〉〈p′,q′|Ψ̃(q0, E)〉 dp′ dq′

=

∫∫
〈ϕ|p′〉δ(q− q′)〈p′,q′|Ψ̃(q0, E)〉 dp′ dq′

=

∫
〈ϕ|p′〉〈p′,q|Ψ̃(q0, E)〉 dp′

=

∫
ϕ̄nd,0(p′)Ȳ 0

0 (p̂′)
∑

l,λ,L,M

ψlλL(p′, q; q0)YlλLM (p̂′, q̂)ȲM
L (q̂0) dp′

=

∫
ϕ̄nd,0(p′)

∑
L,M

ψ0LL(p′, q; q0)YM
L (q̂)ȲM

L (q̂0)p′2 dp′.

(F.45)

If now expand the elastic scattering amplitude f(q,q0) into spherical harmonics as

f(q,q0) ≡ 4π
∑
L,M

YM
L (q̂)ȲM

L (q̂0)fL(q0), (F.46)

we obtain from Eqs. (F.44) and (F.45) the following expression for the partial-wave elastic
scattering amplitude fL(q0):

fL(q0) = − lim
q→q0

π

2

(
q2

0 − q2
)
~
∫
ϕ̄nd,0(p)ψ0LL(p, q; q0)p2 dp. (F.47)

Since we are taking the limit q → q0, we see that only one term in Eq. (F.35) contributes to
fL(q0), namely the term which contains the factor τnd,0(Zq). Since close to the singularity
τnd,0(Zq) can be written as

τnd,0(Zq) = − 1

4π

X2
nd,0

Zq − E2b

= −m
3π

X2
nd,0

q2
0 − q2

,

(F.48)

we have

lim
q→q0

(
q2

0 − q2
)
τnd,0(Zq) = −m

3π
X2
nd,0

. (F.49)
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Furthermore, X2
nd,0

can be calculated from the normalization of the wave function ϕnd,0(p)
which is given by Eq. (F.33), i.e.,

X2
nl =

∫ ∞
0

(
gnl(p,E2b,nl)

E2b,nl − p2

2µ

)2

p2 dp

−1

. (F.50)

So we can now write Eq. (F.47) evaluated at L = 0 as

f0(q0) = − lim
q→q0

2π2
(
q2

0 − q2
)
~
∫
X2
nd,0

gnd,0(p,E2b,nd,0)

E2b,nd,0 −
p2

2µ

gnd,0(p, Zq)

Zq − p2

2µ

τnd,0(Zq)And,0(q, q0)p2 dp

=
2

3
πm~X4

nd,0
And,0(q0, q0)

∫ ∞
0

(
gnd,0(p,E2b,nd,0)

E2b,nd,0 −
p2

2µ

)2

p2 dp

=
2

3
πm~X2

nd,0
And,0(q0, q0).

(F.51)

The s-wave atom-dimer scattering length can be calculated from Eq. (C.26). It is simply
given by

aad = −2

3
πm~X2

nd,0
lim
q0→0

And,0(q0, q0). (F.52)
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G. Hilbert-Schmidt theory

This Appendix deals with integral equations. Integral equations for which the kernel is real
and symmetric, i.e. K(s, t) = K(t, s), have some special properties which can also be applied
to the three-body problem. The operator K must also be nearly finite-dimensional [74] which
means that the inequality∫∫

K2(s, t) ds dt <∞ (G.1)

must hold. When these conditions apply, there exists a nonempty set of eigenfunctions ϕ,
which satisfy∫

K(s, t)ϕ(t) dt = λϕ(s). (G.2)

All eigenvalues of λ are real for any real symmetric kernel [94]. The number of nonzero
eigenvalues may be finite or infinite [74]. The number of eigenvalues whose value is zero can
be zero, finite or infinite [74]. Another important property of this kernel is the existence
of an orthonormal system of eigenfunctions which is complete [74]. The kernel can then be
expanded in terms of the eigenfunctions as [74]

K(s, t)
.
=
∞∑
n=1

λnϕn(s)ϕn(t) (G.3)

where the eigenfunctions and corresponding eigenvalues are labeled by the index n. The
arrangement of the eigenvalues is such that the magnitude decreases as n increases (|λ1| ≥
|λ2| ≥ |λ3| ≥ ...). Eq. (G.3) is called the spectral representation of the kernel. The

.
=

represents the approach of this series to the kernel, so that the spectral representation is at
least approximately equal to the kernel.

With this expansion for the kernel we can analyze the double integral of Eq. (G.1). Using
the orthonormality of the set {ϕn}, this double integral can be written as∫∫

K2(s, t) ds dt =

∫∫ ( ∞∑
n=1

λnϕn(s)ϕn(t)

)2

ds dt

=

∞∑
n=1

λ2
n,

(G.4)

so that the condition of Eq. (G.1) can also be written as

∞∑
n=1

λ2
n <∞. (G.5)
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The series in Eq. (G.3) need not to converge pointwise and when the series converges at
some point in the domain, it may not converge to the kernel K(s, t) [74]. Mercer’s theorem is a
statement about the convergence of the spectral representation. Mercer’s theorem states that
if the kernel K(s, t) is definite, continuous and symmetric or if it has only a finite number of
eigenvalues of one sign, the expansion of the kernel K(s, t) in Eq. (G.3) is valid and converges
absolutely and uniformly [94].

In order to apply Mercer’s theorem we need to know when the kernel is definite. First,
we introduce the quadratic integral form

J(f, f) =

∫∫
K(s, t)f(s)f(t)dsdt, (G.6)

where f is any continuous or piecewise continuous function. The kernel K(s, t) is called
positive definite or negative definite when J(f, f) can assume only positive or negative values
respectively unless f vanishes identically [94]. It can be proven that a kernel is positive
definite if and only if all its eigenvalues are positive [94]. When all eigenvalues are negative,
the kernel is negative definite.

The Hilbert-Schmidt theorem is a statement about a different series expansion. It states
that ∫

K(s, t)f(t)dt =
∞∑
n=1

λnϕn(s) 〈ϕn, f〉 (G.7)

for any function f in Hilbert space [74]. The dot product 〈ϕn, f〉 is just the projection
of f on the eigenvector ϕn. Eq. (G.7) is absolutely convergent in all points s for which
C2(s) ≡

∫
K2(s, t) dt =

∑∞
n=1(λnϕn(s))2 <∞. When C(s) has a finite upper bound for all s,

the series of Eq. (G.7) converges uniformly. Furthermore, when K(s, t) is continuous over the
whole domain, the series of Eq. (G.7) converges and equals the left-hand-side for each value
of s [74].

G.1 Real symmetric matrices

When it is not possible to calculate the eigenfunctions in Eq. (G.2) analytically, it is possible to
solve it numerically by defining the variables s and t on a grid of size Nk and solve the resulting
matrix equation. In this case, the kernel K is a real symmetric matrix. For real symmetric
matrices there exists an orthonormal system of eigenvectors of this matrix which is complete
[74]. Any real, symmetric matrix K with an orthonormal system {ϕn} of eigenvectors and
corresponding eigenvalues {λn} can be written as

K =

Nk∑
n=1

λnϕnϕn (G.8)

which is called the spectral representation of the matrix K [74]. So even if we cannot find an
analytical form of the spectral representation ofK(s, t), we can find the spectral representation
numerically.
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H. Additional figures

This Appendix contains some additional figures of the Efimov spectra corresponding to the
potential resonances of the square well potential. Three different methods are used to ap-
proximate the two-body T -matrix.

H.1 Method I
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Figure H.1: Relative energy difference between the s-wave dimer state and the first two
Efimov states corresponding to the first potential resonance of the square well potential. The
dashed line corresponds to the limiting value E3b,0 = 3E2b,0. The data corresponds to the
three-body calculation with Ns = 3 and Nd = 3 as shown in Fig. 7.1.
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Figure H.2: Relative energy difference between the s-wave dimer state and the first two
Efimov states corresponding to the first potential resonance of the square well potential. The
dashed line corresponds to the limiting value E3b,0 = 3E2b,0. The data corresponds to the
three-body calculation with Ns = 1 and Nd = 0 as shown in Fig. 7.2.

H.2 Method II
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Figure H.3: Energy of the first two Efimov states calculated near the first potential resonance
of the square well potential for Ns = 1 and Nd = 0 using the eigenfunctions of V G0 as form
factors. The blue line is the binding energy corresponding to the s-wave dimer state. The
scattering length is calculated from Eqs. (5.20) and (5.21).
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H.3. METHOD III
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Figure H.4: Relative energy difference between the s-wave dimer state and the first two
Efimov states corresponding to the first potential resonance of the square well potential. The
dashed line corresponds to the limiting value E3b,0 = 3E2b,0. The data corresponds to the
calculation shown in Fig. H.3. The scattering length is calculated from Eqs. (5.20) and (5.21).

H.3 Method III
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Figure H.5: Energy of the lowest three Efimov states calculated near the first potential
resonance of the square well potential using the one-term EST approximation. The blue line
is the binding energy corresponding to the s-wave dimer state of the separable potential and
the red dashed line represents the binding energy of the s-wave dimer state of the square well
potential.
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APPENDIX H. ADDITIONAL FIGURES
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Figure H.6: Energy of the lowest three Efimov states calculated near the second potential
resonance of the square well potential using the one-term EST approximation. The blue line
is the binding energy corresponding to the s-wave dimer state of the separable potential and
the red dashed line represents the binding energy of the s-wave dimer state of the square well
potential.
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Figure H.7: Energy of the lowest three Efimov states calculated near the third potential
resonance of the square well potential using the one-term EST approximation. The blue line
is the binding energy corresponding to the s-wave dimer state of the separable potential and
the red dashed line represents the binding energy of the s-wave dimer state of the square well
potential.
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