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Chapter 1

Introduction

1.1 Background & Motivation
Lot of instances arise where the interface between solid, liquid, and vapor co-exist, for example: a water
droplet resting on a solid surface. The interface along which the solid, liquid and vapor phases co-exist is
referred to as the three phase contact line, or just contact line. Based on their state of motion the contact
lines can be classified into (a) static and (b) dynamic contact lines. The example of a stationary droplet
resting on top of a solid constitutes a static contact line.

Moving contact lines are ubiquitous in nature. A closer look at our surroundings will reveal several instances
of moving contact lines. For instance, drops sliding on/off a window pane is a typical example of a moving
contact line, see Figure (1.1). Apart from its ubiquitous appearance in nature, the physics near a contact line
is rich, and, it is multiscale in nature. For example, the macroscopic splash patterns vary significantly when
two balls having distinct surface textures impact a pool of liquid. As shown in Figure (1.2), the macroscopic
splash due a hydrophobic ball, whose surface is covered by a nanometric coating, is significantly different
when compared to the splash caused due to a hydrophilic ball [1]. The hydrophilic and the hydrophobic balls
differ only in their micropscopic wettability towards the liquid. Through aforementioned example illustrates
that the hydrodynamics at the smallest scales affect the flow characteristics at a much larger scale.

(a) Rain drops on a window pane

Solid

Liquid
Gas

Receding Contact Line Advancing Contact Line

(b) Schematic of a sliding rain droplet

Figure 1.1: Figure (a) shows a photograph capturing the sliding of rain drops on a window pane (the fig-
ure has been taken from https://www.shutterstock.com. The droplet highlighted using red dotted lines is
schematically represented in (b). The window pane is represented as a solid and the liquid droplet is moving
on the solid with a velocity Udrop. The moving droplet constitutes an advancing and a receding contact line,
as highlighted in the figure. The apparent contact angle at the advancing end and at the receding end of the
droplet is different and is given by the value: θadv and θrec.

For a long time the research efforts have been focused on understanding static situations. However, the
interest in moving (dynamic) contact lines has significantly increased over the years because it caters to a
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(a) Hydrophilic (b) Hydrophobic (c) Advancing contact line

Figure 1.2: Impacting of spheres on a water surface for two kinds of sphere surfaces is shown:(a) hydrophilic,
(b) hydrophobic. In (c) the multiscale nature of a moving contact line problem is depicted by an advancing
contact line. The presence of an apparent dynamic contact angle is represented by the symbol θap. On
further zooming into the contact line region the equilibrium or the static contact angle is represented by the
symbol θe. Finally, on the smallest length scales of less than 10nm, the molecular picture of the fluid becomes
important. Figures (a), (b), (c) are adopted from [2].

wide range of industrial applications. For instance, coating industries are interested in understanding and
controlling the thickness of adhesives or paints deposited on substrates [3–5]. Industries related to immersion
lithography use water as a lens to achieve higher optical resolutions when focusing light on substrates [6, 7].
The typical questions that arise while understanding the moving contact line problem are: (a) what is the
critical velocity Ucr attainable before which one fluid is entrained or engulfed into the other fluid?, (b) what are
the physical mechanisms responsible for such an entrainment?, (c) how does Ucr respond to minute changes
in physical parameters like viscosity and surface tension?.

Traditionally, scientific communities have invested and devoted efforts to investigate the contact line
problem for the case of Newtonian liquids. Through this effort, it is a well established that high magnitudes
of shear rates are established near a contact line. On the other hand, a certain type of fluids called non-
Newtonian fluids are known to exhibit strange and fascinating phenomena when subjected to normal flow
conditions. A typical example of this is the rod climbing effect, also called the Weissenberg effect, see
Figure (1.3a). In addition, a daily life experience with a ketchup bottle can tell us that the ketchup is easily
dispensed from the plastic container when subjected to shaking of the bottle. Or, when dealing with paints,
it is seen that when a roller is used to apply paint on the wall the paint "flows easily" and allows a uniform
application on the wall. This effect is called the shear thinning effect, see Figure (1.3b), where the effective
viscosity of the fluid decreases in response to stresses. Interestingly, these effects are manifested in these fluids
mainly due to the presence of polymers or particles inside these fluids. In fact, the responses stated above:
(a) rod-climbing effect, (b) shear-thinning effect mainly arise due to the response of these polymers to
shear stresses and shear rates.

Therefore, juxtaposing the above two phenomenon: (a) notoriously high shear rates near the contact
line, (b) exhibition of shear rate dependent phenomenon in non-Newtonian fluids like the rod-climbing and
the shear thinning effect, gives rise to the problem of non-Newtonian contact lines. The typical questions
that arise in such a scenario are the following: (a) how do the notoriously high shear rates near the contact
line affect the polymers or particles in the fluid , and as a feedback, (b) how do the stretched or elongated
polymers affect the motion of fluid close to the contact line?

The number of articles addressing the problem of moving contact lines for the case of non-Newtonian fluids
have investigated two aspects. The first aspect is the effect of viscoelasticity on the contact line motion, and,
the second aspect is the influence of shear thinning on the contact line motion. The approach and efforts to
investigate these two aspects have been through experimental, theoretical and numerical simulations. Spaid
and Homsy [8–10] investigated the influence of viscoelasticity on the moving contact line problem encountered

3
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(a) Rod Climbing
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]

Newtonian (n=1)

Shear Thinning (n < 1)

Shear Thickening (n > 1)

(b) Shear Thinning

Figure 1.3: (a) In this figure a rod is rotated with its end immersed inside the polymeric solute inside
a Newtonian solvent. In the case of a Newtonian fluid the inertia would dominate and the fluid would
move to the edges of the container,away from the rod. Here however the elastic forces generated by the
rotation of the rod (and the consequent stretching of the polymer chains) result in a positive normal force
and hence the fluid rises up the rod. The figure has been adopted from https://http://web.mit.edu/nnf/
research/phenomena/rod_climb _highres.jpg (b) The typical shear stress σ in a non-Newtonian fluid as a
function of the applied shear rate γ̇ is shown. Shear thinning fluids are compared against Newtonian fluids
and shear thickening.

during the process of spin coating using viscoelastic fluids, both experimentally and theoretically. Y. Wei et
al. [11] investigated the viscoelastic aspects of contact line motion in viscous Newtonian and non-Newtonian
liquids. In a subsequent paper they experimentally and theoretically investigated the influence of shear thinning
on the moving contact line problem [12]. The contact line problem in the case non-Newtonian fluids has also
been addressed through other interesting phenomena. Boudaoud theoretically investigated the normal stress
effects on the dynamics of thin films on a horizontal solid substrate [13]. The framework was applied to
the motion of an advancing contact line. Further, Rafai et al. [14] studied the spreading of non-Newtonian
fluids on hydrophilic surfaces focusing on both: (a) normal stresses (viscoelasticity) and (b) shear thinning.
In another interesting experiment on the dynamics of non-Newtonian droplets , Bartolo et al. [15] studied the
spectacular rebound of non-Newtonian droplets and quantified the rebound velocity by calculating the normal
stresses generated near the contact line.

In this thesis we wish to resolve the flow near a contact line for non-Newtonian fluids using numerical
simulations. This can provide new insights regarding the magnitudes of the polymeric stresses stresses during
the course of an experiment. In addition, resolving the flow features associated with the experiment can
provide additional insight into the problem and can help in a better correlation of observations with a given
hypothesis. Therefore, in this thesis, we aim to observe and understand the influence of viscoelasticity on a
moving contact line using the lattice Boltzmann method coupled with finite difference equations to solve for
dynamics of the polymers. To study this we adopt a simple Couette flow geometry in a multi-component
simulation setup.

1.2 Thesis outline
The thesis is organized as follows:
In Chapter 2, the relevant theory for understanding the contact line motion is presented. The famous Huh-
Scriven model is introduced and the assumptions leading to the hydrodynamic singularities are identified.
Following this, the Cox-Voinov law is introduced which alleviates the singularities in the stress and pressure
fields. Further, the geometry relevant to this thesis: the Couette-Flow geometry is explained along with the
pertinent equations, boundary conditions and the non-dimensional numbers. A basic result is provided to
qualitatively understand the model parameters. The non-Newtonian aspect of a fluid is introduced through

4
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the Maxwell model and the emergence of an intrinsic time scale, τ , is identified. Typical non-Newtonian effects
like the normal stress effects, responsible for the rod-climbing, and shear thinning effects are introduced. The
chapter is concluded by relating the aforementioned non-Newtonian effects in the perspective of a contact
line problem, through the non-dimensional Wiessenberg number.
In Chapter 3, the numerical aspects of the lattice Boltzmann formalism is discussed. The Boltzmann equation
is introduced and the discretized form of the equation is presented. The types of lattice on which the equation
is solved is briefly explained. The relevant boundary conditions applicable to the contact line problem are
mentioned. Following this, the multicomponent formalism in lattice Boltzmann method using the Shan-Chen
interaction force is discussed, and, the methodology to calculate the surface tension and the contact angle is
discussed. Further, we discuss the FENE-P model to introduce the non-Newtonian rheology into the lattice
Boltzmann formalism. Different aspects of the model like the conformation tensor and the polymeric stresses
are introduced. The numerical implementation of the evolution of the conformation tensor of the polymer is
discussed. Finally, we briefly the technical aspects of multicomponent viscoelastic simulations.
In Chapter 4, various validation cases performed for the non-Newtonian rheology are presented and the
important parameters from the FENE-P model are identified. Following this, the contact line problem is
discussed. Firstly, the Newtonian contact line is simulated and validated against theoretical results obtained
for the Couette-flow geometry, for a given set of non-dimensional parameters. Further, the problem of the
non-Newtonian contact line is discussed for two cases: (a) symmetric wetting, (b) asymmetric wetting. The
observations are discussed.
Finally, in Chapter 5, we conclude by discussing the observations.

5
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Chapter 2

Theoretical Background

In this chapter the necessary theoretical background for studying moving contact lines in non-Newtonian
fluids is discussed. We begin by describing the Huh-Scriven model in which the moving contact line is
addressed for two immiscible fluids separated by a planar interface satisfying the no-slip boundary condition.
We discuss that even though such a model can reasonably describe well the velocity fields close to the contact
line, diverging stresses arise when approaching the contact line due to the no-slip condition. Therefore, a
microscopic regularizing mechanism like the (a) slip length or the (b) diffuse interface is required to avoid this
singularity. An improvement of the Huh-Scriven model which takes into account the slip length as well as the
actual shape of the interface close to the moving contact line is the Cox-Voinov model. We briefly describe
the features of the Cox-Voinov model which identifies Ca as an important non-dimensional parameter close
to the contact line. Further, in this thesis, we adopt the Couette flow geometry to study the moving contact
line problem. Therefore, we describe the Couette flow geometry and recognize the important parameters for
studying the moving contact line problem, as identified by the Cox-Voinov model. We then argue that to
study the moving contact line for a non-Newtonian fluid we need to consider the polymer relaxation as an
important parameter. Hence, an additional non-dimensional parameter called the Weissenber number Wi
needs to be introduced. We conclude the chapter by discussing the two non-Newtonian features that are
important close to the moving contact line, namely the first normal stress difference N and the polymeric
shear stress S, both of which depend on the shear rate.

2.1 The moving contact line problem - a closer look
2.1.1 Huh-Scriven Problem
The initial modeling of the hydrodynamics near a moving contact line was addressed by Huh and Scriven [16].
The contact line was modeled for liquid and vapor separated by a moving and planar interface profile, see Fig-
ure (2.1). The model solved for exact expressions of the velocity field under conditions of mass conservation,
momentum conservation, continuity of the shear stresses at the interface between the two phases, and, most
importantly, the no-slip boundary condition at the wall. Typical velocity fields for various wedge angles φ,
are visualized in Figure (2.2) [16]. It can be seen from the figure that as the wedge angle φ is reduced the
velocity vectors have to negotiate turns within smaller heights h(x).

It can be seen that as the distance to the wedge tip r tends to 0, the velocity vectors will have to negotiate
extremely sharp turns near the contact line. Viscous stresses (σxy) and the differential energy dissipation
(dĖ) which can be expressed by the scaling relations σxy ∼ ηU

r and dĖ ∼ ηU2 dr
r will diverge close to the

contact line as r → 0 [2]. The implication of this diverging stress field is that the force required to pull a plate
out of a liquid is infinite, and hence impossible to withdraw a plate. Since, the pressure is also of similar units
as that of the stress tensor σxy, it would also diverge according to the model. Comically, yet in all seriousness,
Huh and Scriven referred to this deficiency in the model by stating that: even Herakles could not sink a solid
if such a model were entirely valid, which was in direct contradiction with the everyday experience.

Hence, the continuum hydrodynamics picture offered by the Navier Stokes was suspect, in particular the
no-slip boundary condition. Therefore, a microscopic picture of the processes close to the contact line was
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Phase A Phase B

Wall

Figure 2.1: The schematic of the Huh-Scriven problem is shown in this figure. Two phases A and B are
separated by a wedge whose angle is φ with the wall. The wall is moving with a velocity U (in either +x
or −x directions). The viscosity ratio between the two phases is given by χ. The radial distance from the
contact line is given by r which is composed of a horizontal distance x from the contact line and a vertical
distance y.

(a) φ=10, χ = 1 (b) φ=20, χ = 1 (c) φ=40, χ = 1

Figure 2.2: The Huh-Scriven velocity fields inside Phase A (Blue) and Phase B (Red) are plotted for different
inclination angles φ and viscosity ratio χ=1.0, refer to Figure (2.1). For the plots the velocity U is taken
in the direction of positive x-axis. It can be seen that as the wedge angle φ → 0 the velocity vectors take
sharper turns within smaller heights h(x).

required which would help regularize the singularity. Several mechanisms were suggested to remove the stress,
pressure singularity:

• Slip: A finite slip associated with the velocity at the contact line characterized by the slip length ls [17].
This allows for a length scale ls to be introduced which modifies the expressions for the shear stresses
and the energy dissipation near the contact line as:

σxy ∼
ηU

(r + ls)
, dĖ = ηU2 dr

(r + ls)
(2.1)

where dĖ is the rate of energy dissipation in the annulus between r and r + dr, η is the viscosity and
r is the radial distance away from the contact line, for a schematic see Figure (2.1). As can be seen
from the above relations for the viscous stresses and the energy dissipation, the singularity is removed
for both the cases.

• Diffuse Interface: A diffuse interface between the two immiscible liquids/phases characterized by an
interface width ζ [18]. This allows for the co-existence of the no-slip boundary condition and the
movement of the contact line is explained by the diffusion whose typical length scale is given by lD.
This is also a common approach adopted in numerical simulations of the contact line [19] [20,21].
Throughout this thesis, the diffuse interface in the Lattice Boltzmann simulations will be the mechanism
by which the moving contact line singularity is regularized.

For a list of the other regularizing mechanisms and their explanations the interested reader is referred to

7
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these excellent review articles [2, 22,23] and the references therein.

2.1.2 The Cox-Voinov law - Improvements to the Huh-Scriven model
From the previous section we learned that the Huh-Scriven solution provides significant insight regarding the
singularity encountered near a contact line as r → 0, however, it does not provide the complete hydrodynamical
description near the moving contact line. Firstly, the no-slip assumption of the model gives rise to singularities
in the viscous stresses as well as the pressure fields. Secondly, it assumes that the shape of the interface is a
straight wedge and has zero curvature, as depicted in Figure (2.1). However, the interface near the contact
line is indeed deformable as has been observed from experiments [24].

Figure 2.3: A schematic of the curved interface near a moving contact line is shown. The contact line
depicted here is an advancing contact line. The microscopic wetting angle and the dynamic wetting angles
are represented by θe (represented from hereon as θm) and θap. The figure is taken from [2].

A model that overcomes the deficiencies of the Huh-Scriven model: (a) a regularizing mechanism to
avoid the viscous singularity, as well as, (b) an explanation for the curved shape of interfaces observed in
experiments, is the famous Cox-Voinov law [25–27]. The law takes into account a force balance between the
surface tension forces and the viscous stresses, and, it describes the curved interface through the dynamic
contact angle θap as a function of position from the contact line x through the relation:

θ3
ap = θ3

m ± 9Ca log
(x
l

)
, (2.2)

where θm is the microscopic wetting angle as depicted in Figure (2.1), and l is the cut-off length at the
microscopic scale where the discrete nature of the fluid becomes important. Ca is a non-dimensional velocity
called the capillary number defined as:

Ca = ηU

γ
, (2.3)

where η, γ, U are the viscosity of the fluid, liquid/gas surface tension and typical velocity. The Ca describes
a balance between the viscous and surface tensions forces.

2.1.3 Critical wetting
In the previous section the Cox-Voinov law described the shape of the interface θap as a function of the Ca.
However, the interface shape becomes unstable beyond a critical capillary number Cacr and the contact line
fails. The contact line failure can either lead to the deposition of droplets at the receding contact line, or,
it can lead to the entrainment of air bubbles at the advancing contact line. For the receding contact line
Equation (2.2) predicts that the failure happens in the limit θap → 0. An estimate of the Cacr for the receding

8



Theoretical Background
contact line from Equation (2.2) gives:

Cacr ≈

(
θm

9 log
(
x
l

)) 1
3

. (2.4)

Through the above three sections the three important parameters necessary to study a moving contact line
was introduced. First, the microscopic wetting angle θe determines the contact angle at the microscopic
scales (see Figure (2.3) ), second, the non-dimensional velocity Ca describes the balance between the surface
tension and the viscous forces close to the contact line, and, third, the cut off length at the microscopic scales
l. Since we have identified the key parameters, it is also necessary to pick a geometry in which the moving
contact line can be studied. In this thesis we adopt the Couette flow geometry. The next section introduces
the reader to the Couette flow geometry and derives the relevant non-dimensional parameters.

2.2 Couette flow geometry - A model to study moving contact lines
2.2.1 Introduction
In the previous sections, the basic aspects of the moving contact line were discussed. In this section, we
introduce the Couette flow geometry as a model to study moving contact lines [19, 28]. In Figure (4.14) a
schematic of the Couette flow geometry is shown. The geometry consists of two immiscible fluids Fluid A
and Fluid B sandwiched between walls separated by height H. The lower wall moves with a velocity Uw
in the positive x-direction and the top wall moves with a velocity Uw in the negative x-direction. Different
microsopic wettabilities for Fluid A and Fluid B are prescribed at the top and bottom wall. Fluid A is assigned
a microscopic wetting angle θm,1 at the bottom wall, and, Fluid B is assigned a microscopic wetting angle
θm,2 at the top wall. We study the specific case where θm,1 = θm,2, and, in this thesis, we refer this condition
as equal and opposite wettability or symmetric wetting. The dynamic viscosities of Fluid A and B are denoted
by ηl, ηr respectively. The reason for adopting the above mentioned model for studying moving contact lines
is due to the following reasons [19]:

• the shape of the interface becomes symmetric with respect of the center channel. However, this
advantage is strictly valid for the case of equiviscous liquids and equal and opposite wettability.

• it allows the problem to be treated using the quasi-parallel approximation (see Figure (2.4b)), which
implies that the h′(x) varies slowly over the channel, and hence, lubrication theory can be employed to
analytically derive the velocity fields and also the shape of the interface [29].

• It is also easier to define a measure for the dynamic contact angle θap in this channel. It is defined as
the angle at the center of the channel.

Now that the Couette-flow model has been described it is important to identify the necessary parameters
and non-dimensional quantities which will allow us to study the moving contact line problem as described by
the Cox-Voinov model. However, we first formulate the hydrodynamical equations and the relevant boundary
conditions.

2.2.2 Relevant equations and boundary conditions
We outline the governing equations and boundary conditions for the Couette flow geometry. The steady state
flow equations, in the lubrication approximation [28, 29], to be solved for both Fluid A and Fluid B are the
following:

1. Momentum equation:

0 = −∇pl + ηl∇2ul, 0 = −∇pr + ηr∇2ur, (2.5)

simplifies for the x-component as:

ηl
∂2ul,x
∂y2 = ∂pl

∂x
, ηr

∂2ur,x
∂y2 = ∂pr

∂x
, (2.6)

where pl, pr, ur and ur are the pressure fields and velocity fields in Fluid A and Fluid B, respectively.
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Fluid A Fluid B

(a) Couette Flow geometry

Fluid A Fluid B

(b) Quasi parallel approximation

Figure 2.4: In (a) the schematic for the Couette flow geometry is shown. Two immiscible fluids Fluid A
(dynamic viscosity ηl, lower wall microscopic wetting angle θm,1) and Fluid B (dynamic viscosity ηr, upper
wall microscopic wetting angle θm,2) are sandwiched between the top and bottom walls, at a distance H
apart, and, form an interface. The length of the channel along the x-direction is infinite. The top and bottom
walls are moved in the opposite directions with a magnitude of velocity Uw due to which interface is deformed
and reaches steady shape h(x), where x is the distance from the contact line. The measure of the dynamic
contact angle θap (as shown in Figure (2.3)) is the angle at the center of the channel θM . The x co-ordinate
at the central blue point is 0 and the y coordinate is H/2. (b) The quasi-parallel approximation is depicted.
Given very low microscopic wetting angles θm,1 and θm,2 every segment of the interface ds is almost parallel
to the wall [19]. Therefore, an approximation ds ≈ dx is made.

2. Continuity equation:
∇ · ul = 0, ∇ · ur = 0,

simplifies to:
∂ul,x
∂x

+ ∂ul,y
∂y

= 0, ∂ur,x
∂x

+ ∂ur,y
∂y

= 0. (2.7)

The x-component of the velocity fields in the region surrounding the interface can be obtained from Equa-
tion (2.6):

ul,x(x, y) = 1
ηl

(
Al +Bly + 1

2pl,xy
2
)
, ur,x(x, y) = 1

ηr

(
Ar +Bry + 1

2pr,xy
2
)
, (2.8)

where Al, Bl, pl,x, Ar, Br, pr,x are the 6 constants which has to be determined from the necessary boundary
conditions. It can be observed that the velocity field is quadratic and resembles a Poiseuille-like profile. To
evaluate the 6 constants in Equation (2.8), following 6 boundary conditions are applied:

• No slip at the interface:
ul,x|h = ur,x|h, (2.9)

The velocity vector in Fluid A and B, just across the interface (x, h(x)) are found to be equal in direction
and magnitude.

• Continuity of viscous stresses across interface:

ts ·
(
σ|2 − σ|1

)
· ns + ts.∇sγ = 0, ,

where ts, ns, σ, γ are the tangential vector, normal vector, flow stress tensor in either fluid and
the surface tension between Fluid A and Fluid B, respectively. This equation in the lubrication limit
simplifies to [29]:

ηl
∂ul,x
∂y
|h = ηr

∂ur,x
∂y
|h, (2.10)

where ηl and ηr are the dynamic viscosities of Fluid A and Fluid B.

• Slip at the upper and lower walls:

– Lower Wall:
ul,x|y=0 − Uw = ls

∂ul,x
∂y
|y=0, (2.11)

10
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– Upper Wall:

ul,x|y=H + Uw = −ls
∂ul,x
∂y
|y=H . (2.12)

As was emphasized in Section 2.1 the most important boundary condition in solving the moving contact
line problem is the microscopic mechanism of slip. In the Couette flow geometry the slip is introduced
through the parameter slip length ls. It is defined as the length/distance below the wall at which the
component of velocity parallel to the wall vanishes. In general, this formulation for the slip at the wall
is called the Navier-slip condition [30].

• Zero mass flux across interface:
ns · ul = ns · ur = 0,

where ns is the unit normal at the interface. This simplifies to:

nxul,x + nyul,y = nxur,x + nur,y = 0.

The above set of equations satisfy the condition that there is no mass flux of one fluid into another,
across the interface. However, with the help of Equation (2.7) the condition of no-mass flux across the
interface can be simplified to: ∫ h(x)

0
dy ul,x = 0, (2.13)∫ H

h(x)
dy ur,x = 0, (2.14)

where (x, h(x)) is the steady state interface profile. This condition specifies that there is no net mass
flow rate in either of the fluids.

Therefore, the 6 constants are Equation (2.8) is found using the 6 conditions described by Equation (2.9)-
Equation (2.14). After the velocity fields have been determined by determining the constantsAl, Bl, pl,x, Ar,x, Br,x, pr,x,
we proceed towards determining the shape of the interface. The shape of the interface is governed by the
normal stress balance [29] 1

∆p = γ∇ · ns, (2.15)
where ∆p (= pr − pl) is the pressure difference across the interface, γ is the surface tension between the
two fluids and the gradient of the ns at the interface gives the curvature κ. This is the well known Laplace
equation. We differentiate Equation (2.15) with respect to x to obtain the following equation:

pr,x − pl,x = γ
dκ

dx
, (2.16)

where pl,x = dpl
dx , pr,x = dpr

dx are the pressure gradients in Fluid A & Fluid B, respectively, and the other terms
retain the same meaning. The shape of the interface (x, h(x)) is solved under the quasi-parallel approximation
where ds ≈ dx [19, 28]:

dκ

ds
= 1
γ

(pr,x − pl,x) (2.17)

dθ

ds
= −κ (2.18)

dx

ds
= cos θ (2.19)

dy

ds
= sin θ (2.20)

where θ(x) = h′(x). Aforementioned equations should satisfy the following boundary conditions at the top
and bottom wall:

θ(s→ +∞) = θm,1, θ(s→ −∞) = θm,2, (2.21)
1Here the normal stress balance simplifies in the lubrication limit to the Laplace equation. This kind of a simplification is also

possible under the assumption that the outer fluid is of negligible viscosity.
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where θm,1 is the microscopic wetting angle for Fluid A at the bottom wall, and, θm,2 is the microscopic
wetting angle for Fluid B at the top wall respectively. The initial curvature κ0 and the θ0 are guessed, in order
to solve Equation (2.20), until the boundary conditions by Equation (2.21) [19, 28]. We employ a shooting
algorithm to obtain the solutions (x, h(x)).

In this section we outlined the relevant equations and boundary conditions for obtaining the shape of the
interface (x, h(x)). Using the shape of the interface we can determine the dynamic contact angle θap(x) and
study it’s dependence on the microscopic wetting angle θm,1, θm,2, wall velocity Uw and the microscopic slip
length ls. In the next section, the physical parameters introduced in the current section can be reduced to a
set of non-dimensional parameters and be used to study the critical wetting behavior.

2.2.3 Non-dimensional parameters for critical wetting
In this section we list the non-dimensional parameters that arise from Equation (2.9)-Equation (2.20). The
non-dimensional parameters are:

1. Capillary number: It is the non-dimensional velocity defined with respect to Fluid A:

Ca = ηlUw
γ

, (2.22)

where ηl is the dynamic viscosity of Fluid A, Uw is the shear velocity and γ is the surface tension
between Fluid A and B. As was seen in the Cox-Voinov model Ca characterizes the balance between
the viscous stresses and the surface tension forces near the contact line.

2. Viscosity ratio χ between Fluid A and Fluid B is given by:

χ = ηr
ηl
, (2.23)

where ηr, ηl are the dynamic viscosities of Fluid B and Fluid A, respectively. See Figure (2.4a).

3. Scale separation parameter: λs is the ratio of the smallest length scale ls, where the discrete nature
of the fluid becomes important, to the largest length scale in the system, which is given by:

λs = ls
H
, (2.24)

where ls is the slip length and H is the height of the channel, which is the only external length scale in
the problem.

4. Microscopic wetting angle: θm is the microscopic wetting angle which controls the wettability of one
fluid with a wall.

Using the above four parameters the Couette flow geometry can be used to understand the critical wetting
behavior of the moving contact lines. This model allows us to probe the nature of moving contact lines under
the influence of the aforementioned parameters. For a comprehensive and complete study the interested
reader is referred to [28]. Here, the central angle θM as a function of the Ca is plotted for four different
microscopic wetting angles θm. The viscosity ratio χ = 1.0 and scale separation parameter λs = 10−5. The
θM vs Ca is shown in Figure (2.5). As can be seen from Figure (2.5) the Cacr decreases as the microscopic
angle θm decreases, or the affinity towards the wall decreases. This is understandable since a higher volume
of fluid tends to get entrained with the wall as the wetting increases, or this is tantamount to a smaller
microscopic wetting angle (see Figure (2.4a)). Another interesting feature is that the angle θM for which the
interface fails and gets entrained into the other fluid is different from zero. Therefore, the interface does not
become parallel when reaching the Cacr, rather it fails at a higher angle. Therefore, the Cacr as predicted
in Equation (2.4) is not entirely accurate [19]. In Chapter 4 we revisit this section in order to validate the
moving contact lines in the Newtonian case by comparing θM vs Ca obtained through Lattice Boltmann with
the theory used here. Through this exercise we obtain an estimate for the scale separation parameter λs for
the LB method.

In this section we described the geometry, used in this thesis, to study the moving contact line problem.
Four important parameters used to study the moving contact line were identified: χ (viscosity ratio), Ca
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Figure 2.5: The stable branch of the central channel angle θM (in deg.) is plotted as a function of Ca for
different microscopic wetting angles θm, viscosity ratio χ = 1.0 and scale separation ratio λ = 10−5. The
microscopic wetting angles satisfy the opposite wettability criteria. In the figure the blue circles correspond
to the data obtained by solving the eqn’s Equation (2.18)- Equation (2.21) for θm = 40o and it is compared
against the data obtained from figure 2(a) in [28]. The critical Capillary number Cacr is pointed for the case
of θm = 40o. The points above the Cacr correspond to stable equilibrium interfaces, whereas, the points
below the Cacr correspond to the unstable equilibrium interfaces. Unstable equilibrium interfaces correspond
to strongly bent interfaces near the wall.

(capillary number), λs (scale separation parameter) and θm (microscopic contact angle). The aforementioned
parameters describe the moving contact line problem for Newtonian fluids.

However, the goal of this thesis is to study the moving contact line problem in non-Newtonian fluids. It is
well known that non-Newtonian fluids are composed of polymers dissolved in solvents [31]. It is also known
that polymers exhibit their own dynamics on a typical time scale τP (polymer relaxation time) [32]. Hence,
in addition to the time scale of the flow field, an additional time scale due to the polymer relaxation time
(τP ) needs to be accounted for. In the next section, to address these competing time scales in our problem
an additional non-dimensional parameter called the Weissenberg number Wi is defined.

2.3 Modeling the non-Newtonian behavior
The focus of this thesis is to investigate moving contact lines for the case of non-Newtonian fluids. Firstly,
an introduction to some of the basic concepts of non-Newtonian flow rheology will be discussed. Basically, in
addition to the already present non-dimensional numbers (previously discussed), an additional non-dimensional
number due to the relaxation time scale of the polymer in the flow (τP ), called the Weissenberg number (Wi)
is introduced [33]. This section is ended by introducing the relevance of Wi in a contact line problem.

2.3.1 Introduction - The Maxwell model
Modeling the behavior of polymers in fluids from the concepts of kinetic theory have been successful in
capturing their macroscopic response to different stress fields [34]. From the microscopic predictions, one of
the most fascinating properties common to all the complex fluids is the presence of viscoelasticity [32, 35].
The Maxwell model schematically describes the viscoelastic nature of liquids as a series combination of a
Hookean spring and a dashpot, see Figure (2.6). The displacement of a Hookean spring is linear under the
influence of an externally applied force, and, the dashpot is linear to the rate of change of displacement of
the piston inside it. In a series connection of the spring and dashpot the stresses across both the elements
are equal to the stress applied at the ends. Whereas, the total deformation ε of the spring dashpot element
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Dashpot Spring

Figure 2.6: The Maxwell model

under a given load σ is equal to the sum of the individual deformations:

σ = σs = σd, (2.25)
ε = εs + εd, (2.26)

(2.27)

where subscripts s and d represent the spring and the dashpot. Now, a connection between the stress σ and
the strain ε is made by the following:

ε̇ = ε̇s + ε̇d = σ̇

k
+ σ

η
, (2.28)

where k is the spring stiffness and η is the dissipative constant in the dashpot. It can be seen that the
dimension of ηk is that of time [s], and hence, the quantity η

k is called the relaxation time τ . Therefore, the
time evolution of the stress obeys the following equation:

kε̇ = σ̇ + 1
τ
σ. (2.29)

Equation (2.29) is a first order ordinary differential equation and is popularly called the Maxwell model for a
linear viscoelastic liquid. From equation Equation (2.29) it can be seen that the model predicts a relaxation of
stress with a time scale τ when subjected to a constant strain field. This is consistent in modeling polymers
in a flow. However, the model predicts a linear relation between strain and time for the case when the stress
σ is constant, when actually it is observed through experiments that the strain increases with a specific time
scale.

2.3.1.1 The relaxation and loss modulus for a viscoelatic material

The behavior of a viscoelastic fluid under a periodic stress signal best illustrates the concept of a solid and a
fluid like behavior associated with a viscoelastic fluid. This can also be realized through the Maxwell model.

Suppose an oscillatory strain ε(t) is applied to a viscoelastic fluid, whose form can be given by:

ε(t) = ε0 sin(ωt), ε̇(t) = ε0ω cos(ωt), (2.30)

where ε0 is the amplitude of the strain signal, ω is the angular frequency of the signal, t is the time, and ε̇(t)
is the time derivative of the strain signal. The corresponding stress response σ(t) of the viscoelastic fluid can
be assumed to be:

σ(t) = σ0(ω) sin(ωt+ δ(ω)) = ε0( G′(ω) sin(ωt)︸ ︷︷ ︸
Signal in−phase

+ G′′(ω) cos(ωt)︸ ︷︷ ︸
Signal out−of−phase

), (2.31)

where σ0 is the amplitude of the stress, δ is a phase lag introduced between the strain and stress signal,
G′ = σ0

ε0
cos(δ) = ω2τ2

1+ω2τ2 , G
′′ = σ0

ε0
sin(δ) = ωτ

1+ω2τ2 are the elastic (storage) and the loss (viscous) modulus.
The signal in phase corresponds to the in phase response of the viscoelastic liquid which is analogous to a
Hookean solid. The out of phase response is characteristic response of a viscous liquid since the stresses in
a liquid are proportional to the shear rate, see Figure (2.7). At very low frequencies ω , such that ωτ � 1,
G′′ dominates G′ and the viscoelastic substance behaves more like a liquid. However, after the crossover
frequency (ωτ > 1, see Figure (2.7)) G′ dominates G′′ and the solid essentially behaves like a solid. This kind
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Figure 2.7: The applied strain and the recovered stress signal for a typical viscoelastic fluid is plotted in (a).
The stress signal lags behind the strain by a phase δ. In (b) the storage (G′) and the loss modulus (G′′) for
a viscoelastic material is plotted as a function of the non-dimensionalized frequency. There is a crossover at
ωτ = 1 which corresponds to the ratio 1/relaxation time.

of a behavior is observable in a silly putty. A silly putty when left without any disturbance starts to flow on
long time scales, hence behaving like a fluid. However, when the silly putty is thrown towards a solid surface,
it bounces back showing a behavior characteristic of solid objects.

Hence, through this basic introduction it was highlighted that a viscoelastic fluid has characteristics of both
a solid as well as fluid. The stresses in such a material decay with a certain time scale which is representative
of the relaxation time of the polymers in the fluid. A model which successfully captures some of the behavior
of viscoelastic fluids is the Maxwell model. The Maxwell model was used to calculate the storage and loss
modulus for the case of dynamic strain condition. An introduction to some of the more fundamental bead-
spring models of polymers will be dealt extensively in Chapter 3. In the next section, some of the commonly
observed non-Newtonian effects will be discussed.

2.3.2 Typical non-Newtonian effects
In the previous section the Maxwell model was introduced which could predict the presence of both a solid-
like and liquid-like behavior in viscoelastic liquids. However, apart from the solid and liquid like behavior,
viscoelastic liquids exhibit interesting (and fascinating) phenomena when subjected to flow conditions similar
to that of Newtonian fluids. In this section, two such phenomena, namely: (a) rod-climbing effect and
(b) shear thinning effect will be discussed. A brief explanation on the underlying mechanisms behind these
fascinating phenomena, namely: (a) shear thinning and (b) normal stresses will be discussed.

2.3.2.1 Shear thinning effects

The shear thinning effect is characterized by a decrease in the viscosity of the liquid under high flow rates
or higher pressure drops [31]. The shear stress of the fluid S and the viscosity η follow the constitutive laws
given by:

S ∝ γ̇n, (2.32)
η = η0γ̇

n−1, (2.33)

where S is the shear stress in the fluid, γ̇ is the continuous shear rate, η0 is the zero shear rate viscosity and
n is a positive exponent whose value helps describe the material of the shear stress as a function of the shear
rate. n = 1 corresponds to a Newtonian fluid, n > 1 for a shear thickening fluid, and finally, n < 1 for a shear
thinning fluid. In Equation (2.33) the equation holds for values of γ̇ > γ̇c, where γ̇c is the critical shear rate
after which thinning is observed. The shear thinning behavior is usually a characteristic nature of solution
containing polymeric molecules which at high shear rates start to align with the direction of flow, and hence,
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Figure 2.8: The viscosity η of shear thinning fluids in response to a shear rate γ̇ is plotted. At very low shear
rates : γ̇ → 0, the viscosity plateaus and is assigned a zero shear rate viscosity η0. Beyond a critical shear
rate γ̇c the viscosity η has a power law dependence on the shear rate γ̇, characterized by an positive exponent
n. Some special class of fluids called superfluids show a second plateau in the viscosity η at a second critical
shear rate γ̇L. The figure has been adopted from [12].

reduce the viscosity of the solution. However, it should also be mentioned that at the highest shear rates the
viscosity will reduce towards that of the Newtonian solvent.

2.3.2.2 Normal stress effects

Our common experience with Newtonian fluids has been that when a rod immersed inside a fluid and continu-
ously rotated the fluid is flung outwards (due to inertia) towards the edge of the walls. However, surprisingly,
when non-Newtonian fluids are subjected to a similar kind of flow they start climbing the rod, see Figure (1.3a).
The rod climbing effect is also the called the Weissenberg effect for non-Newtonian fluids [31]. The Weis-
senberg effect in non-Newtonian fluids is observed due to the presence of anisotropy of stresses in the stress
tensor. The measure of this anisotropy is called the normal stress N and can be defined as (see Figure (2.9)):

N = σx1 − σx2 (2.34)

where σx1 , σx2 represents the stresses in the direction x1 where x2 is the direction of shear and x2 is
the direction normal to it. In the case of the rod-climbing phenomena, the rotation of the rods creates
a corresponding shear stress inside the fluid and this stretches the polymers in the solution. Hence, the
polymer reacts back on the fluid by inducing normal stresses (elastic stresses) which leads to the rod climbing
effect [36].

In addition to the definition of the normal stress N , typically a normal stress coeffecient Ψ1 can be defined
as the following [11]:

Ψ1 ≡
2G′

ω2 , (2.35)

where G′ is the storage modulus measured from an oscillatory shear experiment and ω is the associated
frequency, see Figure (2.10). From previous section we learned that a viscoelastic fluid can have a (a)
fluid like behavior characterized by G′′ , and, (b) a solid like behavior characterized by an elastic modulus
G′. Figure (2.10) represents the dynamic viscosity (≡ G′′

ω , where G′′ is the viscous modulus) and the first
normal stress difference coefficient Ψ′1 (≡ 2G′

ω2 , where G′ is the elastic modulus), over a wide range of
frequencies [11]. For a typical elastic fluid, with no shear thinning characteristics over the probed range of
γ̇, the dynamic viscosity is constant like a Newtonian fluid, however, unlike the Newtonian fluid, the first
normal stress difference coefficient is non-zero. Further, as the shear rates are decreased to very low values
Ψ1 → Ψ10. According to the Oldroyd model [37] 2 a typical relaxation time can be defined by the following

2The Oldroyd model is a special case of the FENE-P model which is explained in Chapter 3. Here, the purpose of the Oldroyd
model should be thought of as a theory for purely elastic fluids which do not exhibit shear thinning in the range of γ̇ probed.
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Figure 2.9: A simple shear in the direction x1 is depicted where the non-Newtonian fluid in between the two
plates is sheared with a shear γ̇. The stress on a representative fluid element is portrayed. The non-zero
stress difference σx1-σx2 : between the stress along the direction x1 and x2 gives rise to the first normal stress
difference N . The first normal stress difference for small shear rates γ̇ is proportional to γ̇.

Ψ10

η′

Ψ1(ω) = 2G′
ω2

η′(ω) = G′′

ω

logω

Figure 2.10: Schematic of the rheology of an elastic fluid with no shear thinning. Solid line represents the
shear-rate-independent viscosity. Dashed line represents the first normal stress difference coefficient Ψ.

relation:
τ = Ψ10

2η0
, (2.36)

where η0 is the zero shear rate viscosity and τ is the relaxation time of the polymers in the fluid. However,
this does not represent the complete picture, since we have assumed that the viscoelastic liquid is made of
only a single type of polymer, hence a single characteristic relaxation time τ . Whereas, in reality, the makeup
of viscolelastic liquids can be complicated with a spectrum of relaxation times τk, where k corresponds to the
different kinds of polymers.

2.4 Non-Newtonian effects in moving contact lines - The Weis-
senberg number

Finally, the above mentioned non-Newtonian effects are linked to the moving contact line problem. As was
discussed in the previous sections the shear rates near the contact line attain very high values due to the
sharp turns in the velocity fields within a very small height h(x). As a consequence both the non-Newtonian
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effects: (a) shear thinning, (b) normal stress effects become relevant as per the following set of equations:

S ∝ γ̇n (2.37)
N ∝ γ̇2. (2.38)

where γ̇ is the shear rate, S corresponds to the shear stress of the fluid and N corresponds to the normal
stress measured in the fluid, both of which were discussed in the previous sections. However, it should be
remembered that to understand the non-Newtonian effects on the contact line it is beneficial to separately
treat shear thinning and normal stress effects. For example, in experimental studies a special class of fluids
called the Boger fluids exhibit only elastic effects [37, 38], without shear thinning. Whereas, another class of
solutions, called the Xanthan gum (commonly called as XG solutions) exhibit purely shear thinning effects
(without elastic effects below some shear rate) [11]. Based on the intrinsic relaxation time scale τ , derived in
Equation (2.36), the Weissenberg number can be defined as:

Wi = τU
Lf
, (2.39)

where U and Lf are the typical velocity and length scales in the system. Therefore, for the contact line, the
length scale Lf approaches 0 and the shear rates γ̇ approach very large magnitudes. Therefore, according to
eqns Equation (2.37)-Equation (2.38), the values of the normal stresses reach very high magnitudes and the
effects of shear thinning start cannot be neglected. Hence, it is very interesting to see the effects that normal
stresses and the shear thinning have on the contact line motion. However, in this thesis we are primarily
concerned with the effects of viscoelasticity on the contact line motion. This topic will be dealt with in
Chapter 4.

2.5 Conclusion
In this chapter the theoretical background necessary to understand a moving contact line problem was intro-
duced. Firstly, the Huh-Scriven problem was introduced and the singularity arising in the shear stress, energy
dissipation and also the pressure gradients was highlighted. As a result two regularizing mechanisms were
introduced to alleviate the problem of singularity near the contact line. The most commonly used regularizing
microscopic mechanism at the contact line is the Navier slip condition which introduces a slip length and hence
also removes the singularity in the shear stress and the energy dissipation. Another assumption from the Huh-
Scriven solution, that of a straight and planar interface, fails close to the moving contact line and the interface
is actually found to have finite curvature. Further, the interface has to be curved due to the balance between
the viscous stresses and the surface tension forces. This aspect was taken care by the Cox-Voinov solution
which related the slope of the interface to the equilibrium contact angle and also the Ca. We introduced the
Couette flow geometry which is the geometry adopted in this thesis to study the moving contact line problem.
The key non-dimensional parameters were identified required for the studying the moving contact line problem.

The goal of this thesis is to investigate the non-Newtonian aspects of a contact line. Introduction of a
non-Newtonian fluid gives rise to another non-dimensional parameter called the Weissenberg number which
compares the relaxation time of the polymers with the time scale of the flow. Therefore, we dedicated the
rest of the chapter to introduce some basic aspects of non-Newtonian rheology. We began by describing the
Maxwell model (spring dashpot model) for viscoelastic liquids through which a relaxation time scale τ (=η

k )
is defined, which defines the time scale on which stresses relax in a viscoelastic liquid. As a result, both
liquid-like and solid-like characteristics can be attributed to viscoelastic liquids through the elastic (G′) and
loss modulus (G′′). Following this the elastic and shear thinning effects were introduced and their dependence
on the shear rate was highlighted. Finally, the relevance of shear thinning and the normal stress effects in a
moving contact line problem was identified through the non-dimensional quantity Weissenberg number (Wi).
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Chapter 3

LBM for dilute non-Newtonian rheology

In this chapter, the Lattice Boltzmann formalism for simulating non-Newtonian flow is discussed. Firstly, the
discetized Boltzmann equation is introduced, and, we discuss the methodology to solve it on lattices. The
lattice implementation of the discretized Boltzmann equation requires the modeling of boundary conditions to
accurately simulate fluid behavior, therefore, we present the relevant boundary conditions required for simulat-
ing the moving contact line problem. The three phase contact line investigated in this thesis involves multiple
fluids. Therefore, we introduce the Shan-Chen model to simulate the physics related to multicomponent
fluids. Further, our interest lies in simulating viscoelastic contact lines. Therefore, it is necessary to integrate
the dynamics of polymers into the fluid to simulate the non-Newtonian rheology. However, we need a model
to represent the dynamics of polymers. In this thesis we have adopted the FENE-P model. We introduce
the basic elements of the FENE-P model including the concept of a conformation tensor C, the FENE-P
potential f(rP ) and the polmer stress tensor σ

P
. In addition, we introduce the parameters belonging to

the FENE-P model, namely: τP (polymer relaxation time), ηP (polymeric viscosity) and L2 (the maximum
extensible length square), which will be used extensively in Chapter 4 to investigate viscoelastic contact lines.
Finally, we end the chapter by explaining how the dynamics of the polymer is integrated to the fluid flow
equations (solved by the LB) formalism

3.1 Lattice Boltzmann method for fluid flows
3.1.1 Lattice Boltzmann: the discretized Boltzmann equation
The Boltzmann equation describes the conservation equation for the distribution function f(r,v, t) in both
space and time and is given as [39,40]:

∂f

∂t
+ (~v · ∇~r)f = Q(f), (3.1)

where f(r,v, t) is the distribution function which is defined as the number of molecules residing per unit
volume in phase space, ∇~r is the gradient in space and Q(f) is the collision operator. In equilibrium, the
distribution function approaches a space-and-time-independent function:

lim
t→∞

f(r,v, t)→ f eq(v), (3.2)

where the system becomes homogeneous at any location r and becomes only a function v. The equilibrium
distribution function f0(v) can be determined by using the assumption of molecular chaos and using the
conservation of the total number n, momentum mv and energy [39]:

f eq(v) = n

(2πmkBT )3/2 exp
(
− m(v − u)2

2kBT

)
. (3.3)

Now, to discretize the Equation (3.1) we use two simplifications. Firstly, the collision operator Q(f) is
approximated by the BGK operator which assumes that the distribution function f(r,v, t) relaxes back to
equilibrium feq with a time equal to τ . The second assumption is that the velocity is discretized in space
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to some specific directions but at the same time maintaining the isotropy of the system. Taking these
assumptions into consideration the discretized form of the Boltzmann equation is given by:

∂fi
∂t

+ (ci ·∇r)fi = −1
τ

(fi − f eq
i ), (3.4)

where fi := f(r, ci, t) is the distribution as a function of the position vector r, discretized velocity vectors ci
and time t. f eq

i is the equilibrium distribution in each of the directions. When implementing Equation (3.4) on
a computer the space is also discretized into a lattice consisting of nodes. Different kinds of lattices have been
adopted for simulating Equation (3.4), for example: D2Q9, D3Q19, D3Q37 being some of the them [40], see
Figure (3.1). D refers to the dimensionality of the lattice and Q refers to the number of discrete directions in
space to which the velocity is discretized (denoted by the subscript i). The discrete velocity vectors are given
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c7 c8

c0

(a) D2Q9

12
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8 9

10

11

12
13

14

15

16

17

18

0

(b) D3Q19

Figure 3.1: The D2Q9 and D3Q19 lattices for used in the discrete Boltzmann equation. The velocity c0
corresponds to the velocity at the root. The figure is adopted from [41].

by the following:

cD2Q9
i =


(0, 0) i = 0,
(±1, 0), (0,±1) 0 < i ≤ 4
(±1,±1) i > 4

(3.5)

cD3Q19
i =


(0, 0, 0) i = 0,
(±1, 0, 0), (0,±1, 0), (0, 0,±1) 0 < i ≤ 4
(±1,±1, 0), (0,±1,±1), (±1, 0,±1) i > 4

(3.6)

Similarly, the equilibrium distribution function f eq
i can also be discretized to second order using a Taylor series

expansion [42]:
f eq
i = wiρ

(
1 + 1

c2s
(c · u) + 1

2c4s
(c · u)2 + 1

c2s
(u · u)2

)
, (3.7)

wD2Q9
i =


4
9 i = 0,
1
9 0 < i ≤ 4,
1
36 i > 4,

wD3Q19
i =


1
3 i = 0,
1
18 0 < i ≤ 4,
1
36 i > 4.

20



LBM for dilute non-Newtonian rheology
where wi are the weights associated with each direction and cs = 1√

3 is the lattice speed of sound. The
discretization of Equation (3.4) leads to the following equation [43]:

fi(r + ci∆t, ci, t+ ∆t)− fi(r, ci, t) = −∆t
τ

(
fi(r, ci, t)− f eq

i (r, ci, t)
)
. (3.8)

As can be seen Equation (3.8) is the lattice discretized Boltzmann equation without any external forces. Flow
quantities like the density ρ(x, t) and the velocity u(x, t) can be calculated using the distribution functions
using the following relations:

ρ(x, t) =
i=n−1∑
i=0

fi(x, t),u(x, t) =
i=n−1∑
i=0

cifi(x, t). (3.9)

Other fundamental properties of the fluid like the kinematic viscosity ν and thermal conductivity are obtained
by performing a Chapman-Enskog expansion of Equation (3.8) to yield:

ν = c2s

(
τ − ∆t

2

)
. (3.10)

It can be observed that if τ is ∆t
2 the LB method becomes unstable.

An important point to notice in all these arguments is that the ideal gas assumption is used. Therefore,
there is no interaction between the populations at adjacent nodes. This also implies that there is no phase
separation, and hence, an interaction term between the populations at adjacent nodes has to be added. This
is dealt with in the following sections.

3.1.2 Boundary conditions
To solve Equation (3.8) it is necessary that appropriate boundary conditions are applied. In Figure (3.2), a
typical LB grid is plotted where the number of nodes equals Nx×Ny where Nx represents the number of fluid
nodes in the k-direction and Ny represents the number of fluid nodes in the j-direction. In addition to the fluid
nodes ghost nodes are also present. These nodes are used to apply the necessary boundary conditions and they
have to be initialized after every time step. Depending on the requirement of the simulation, different kinds
of boundary conditions can be applied. Here, two of the commonly used boundary conditions are discussed,
which are also relevant to the contact line, namely: (a) periodic boundary condition, and the (b) no-slip
boundary condition [43].

3.1.2.1 Periodic boundary condition

If the flow is periodic in the k direction then ghost nodes of type x′A,j and x′C,j should be initialized accordingly.
Therefore, before streaming at every time step it should be made sure that the populations at x′A,j are equal
to the populations at xC,j . Similarly, the populations at x′C,j should be made equal to the populations at
xA,j . This will ensure that the periodicity is maintained.

Therefore, the periodic boundary condition can be stated as:

fi(x′A,j , t) = fi(xC,j , t)
fi(x′C,j , t) = fi(xA,j , t)

3.1.2.2 No slip boundary condition

The no-slip boundary condition is formulated such that the velocity vector at the wall (j = δy
2 ) is zero. This

implies that the velocity components need to be individually set to zero. Therefore, the ghost nodes at j = 0
and j = Ny + 1 have to be set in such a manner that it ensures 0 velocity, see Figure (3.3).

Therefore, the ghost nodes are initialized as:

f2(x′B,k, t) = f4(xB,k, t) (3.11)
f5(x′B,k−1, t) = f7(xB,k, t) (3.12)
f6(x′B,k+1, t) = f8(xB,k, t). (3.13)
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Figure 3.2: An LB D2Q9 lattice of size Nx × Ny is plotted. The fluid nodes are plotted using filled circles
(position given by x) whereas the ghost nodes are plotted using the hollow circles, whose positions are denoted
by prime co-ordinates.

f4 f8f7

f5 f2 f6

xB,k

x′B,kx′B,k−1 x′B,k+1

δy
2

Wall

Figure 3.3: A schematic of the bounce back rule leading to a no-slip BC in a D2Q9 LB lattice. The image
has been referred from [43]

The above relations ensure that the net momentum at the height j = δy
2 is equal to zero.

The discretized Boltzmann equation has been introduced. The relevant boundary conditions required
for simulating viscoelastic contact lines has also been addressed. However, we need a simulation procedure
to introduce multiple components in the fluid. This is necessary because the contact line problem involves
multiple components. Therefore, in the next section the Shan-Chen model is introduced which allows us to
simulate multiple components.

3.1.3 Shan-Chen multicomponent model
Systems containing fluid species which are different at the molecular level are modeled through the Shan-Chen
multicomponent model. For example, an oil droplet inside water is an example of a system which can be
modeled using the Shan-Chen multicomponent model. The Shan-Chen multicomponent model is used to
describe the interaction between these multicomponent mixtures [44]. Let us consider (Figure (3.4)) the case
of a droplet made of component α) resting on a solid, and surrounded by component β. In a multicomponent
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system the discretized Boltzmann equation (Equation (3.8)) is solved for components α and β. Therefore,
the discretized Boltzmann equation can be rewritten for a component ξ ∈ {α, β} as:

fξ,i(r + ci∆t, ci, t+ ∆t)− fξ,i(x, ci, t) = −∆t
τξ

(fξ,i(x, ci, t)− f eq
ξ,i(x, ci, t)) + ∆tgξ(x, t) (3.14)

where the term gξ represents the total force experienced by the component ξ ∈ {α, β}, τξ is the BGK
relaxation time of component ξ ∈ {α, β} and i is the index to the discretized velocities. The equilibrium
distribution f eq

ξ,i for component ξ is evaluated using Equation (3.7) for the following equilibrium velocity:

ueq
ξ = u′ + τξgξ

ρξ
, (3.15)

where u′ is the common velocity calculated for the two components given by:

u′ =

∑
ξ

(∑
i
τξgξ
ρξ

)
∑
ξ
ρξ
τξ

, (3.16)

where gξ is the net force on the component ξ ∈ {α, β}.
The force experienced by ξ ∈ {α, β} due to the other component ξ′ ∈ {α, β} at location x is given by

the following:
gξ(x) = −Gρξ(x)

∑
i

∑
ξ 6=ξ′

wiρξ′(x+ ci)ci, ξ = α, β (3.17)

where G is the interaction parameter that controls the strength of interaction between the two components.
i = 0, · · · , n − 1 represents all the directions corresponding to the discrete velocity, and ci are the discrete
velocities associated with the lattice. It is seen in Equation (3.17) that the interaction is only present between
different components (ξ and ξ′), and not between the same set of components. In addition, only forces due
to nearest neighbors are considered.

It is important to note fluid α and fluid β become immiscible and form stable interfaces only when the
magnitude of the interaction parameter G is above a critical value Gc. Once the fluids are immiscible and
form stable interfaces, it allows us to define a surface tension γ between the two fluids. Further, introduction
of interaction parameter G modifies the pressure tensor. The pressure tensor which originally followed the
ideal gas law is modified to [45]:

P (x) = 1
2Gρα(x)

∑
i

wiρβ(x+ ci)cici + 1
2Gρβ(x)

∑
i

wiρα(x+ ci)cici. (3.18)

After a Taylor series expansion Equation (3.19) simplifies to:

P (x) =
(
p+c2sGραρβ + 1

4c
4
sGρα∆ρβ + 1

4c
4
sGρβ∆ρα

)
1+ 1

2c
4
sGρα∇∇ρβ + 1

2c
4
sGρβ∇∇ρα+O(∇4) (3.19)

where cs = 1√
3 is the speed of sound in lattice units. The first term is comprised of the ideal gas pressure

p plus terms associated with the interaction force G, which are collectively called the bulk pressure. Hence,
bulk pressure Pb = p+ c2sGραρβ considers the non-ideal contribution to the ideal gas pressure. The gradient
terms setup the diffuse interface when stable interfaces are formed [46].

3.1.4 Contact angle (θm) and surface tension (γ)
As seen in Chapter 2 the microscopic wetting angle θm controls the shape of the interface near a contact line,
and also determines the critical wetting behavior of moving contact lines. Hence, in LB it is highly necessary
to be able to control the wetting properties of a fluid component when in contact with a wall. In this thesis
the technique used by Huang et al. [47] will be used to impose a contact angle for a particular component
interacting with a wall. According to the model adopted by Huang et al. [47] there are two interaction pa-
rameters: (a) G (cohesive forces between components α and β), and, (b) Gwall,ξ (adhesive forces between a
component ξ ∈ {α, β} and the wall nodes), see Figure (3.4).
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Fluid α

{αmaj, βmin}

Fluid β

{αmin, βmaj}

Wall NodesGwall,ξ

G

θm

Figure 3.4: A droplet initialized on a lattice in a multicomponent LB simulation is depicted. The droplet
in red is initialized with a majority of α component and a minority of β component inside it. In the region
outside the droplet the density initializations for the two components are reversed such that the α component
is minority and the β component is a majority. The Shan-Chen interaction parameter between the components
α and β is given by G. The interaction parameter between component ξ ∈ {α, β} and the wall nodes is given
by Gwall,ξ ( ξ ∈ {α, β}). The contact angle of the droplet is denoted by θm which can be controlled using
Gwall,ξ ( ξ ∈ {α, β}).

The Shan-Chen interaction force acting on the ξth component is given by:

gξ(x, t) = Gρξ(x, t)
∑
i

wiρξ′(x+ ci, t)ci, (3.20)

where ξ, ξ′ ∈ {α, β}, i denotes the discretization of the velocity directions. Similarly, the wall force is
between the fluid component ξ ∈ {α, β} and the wall nodes which is given by:

gwall,ξ(x, t) = Gwall,ξρξ(x, t)
∑
i

wis(x+ ci, t)ci, (3.21)

where ξ ∈ {α, β}. The definition for s(x+ ci, t) is as follows:

s(x+ ci, t) =
{

1 wall nodes,
0 fluid nodes,

(3.22)

where the term s(x + ci, t) plays the role of "density". The definition of s(x + ci, t) ensures that the force
contribution on a component ξ is entirely due to wall nodes. Using the parameter Gwall,ξ the wetting angle
θm can be controlled between the component ξ ∈ {α, β}, for a combination of the equilibrated bulk density
ρα + ρβ . Finally, the total force at a particular node (

∑
ξ gξ) is calculated as the sum of the internal forces

and the external forces. In this case the internal force is the Shan-Chen interaction force (Equation (3.20)),
and, the external force is the wall force (Equation (3.21)). The surface tension between the component α
and β can also be obtained. This is explained in the context of a droplet and the surrounding (Figure (3.4)).

LB measurement of the contact angle To understand the dependence of θm as a function of the parameter
Gwall,ξ, a droplet of initial radius r0 equal to 15 grid points, are initialized with a bulk density of ρbulk =
2.06 = ρα+ρβ and relaxation time τα = τβ = 1. The interaction parameter G is set to a value of 0.9 and the
wall wettability parameter at the lower wall is Gwall,α ( =−Gwall,β) varied from -0.4 to 0.4 1. Theoretically
the contact angle θm as a function of the wetting parameter Gads,α is given by the relation [47]:

cos θm = Gwall,β − Gwall,α

G
(
ρα−ρβ

2

) , (3.23)

1A negative value of wall wettability parameter suggests a wetting fluid [47].
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where G, ρα, ρβ correspond to the interaction parameter, the equilibriated densities of the 2 components,
respectively. A LB simulation was performed to check how the simulation compares against the theoretical
prediction of Equation (3.23), see Figure (3.5).
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Figure 3.5: The contact angle θm of a droplet of radii 15 units initialized in a domain of size Nx×Ny = 60×30
with a bulk density of 2.06, G = 0.9, τα = τβ = 1.0, is plotted as a function of the wall adsorption parameter
Gwall,α. It is compared against the theoretical prediction as derived by Huang et al. [47].

It can be seen from Figure (3.5) that the contact angle measurements from the LB match very well with
the theoretical prediction, where the error percentages are less than 10%. These values of the wall interaction
parameter will be used to set the equilibrium contact angle in the Couette wetting, as was described in Chapter
2.

An important point to note here is that the contact angle has been defined as θm (micropscopic contact
angle). This definition works well for the case of static droplets. However, if the droplets are spreading
or moving then we are in the regime of moving contact lines. In that case the contact angle is not θm
(microscopic contact angle) anymore, rather, we need to define a dynamic contact angle θap which will be
used as a measure of the contact angle.

LB measurement of the surface tension Using the same procedure as in the previous section the surface
tension can be obtained for a stable droplet, using the standard Laplace test. For a given ρbulk = ρα + ρβ
and G, a multicomponent droplet is initialized. Once the droplet reaches equilibrium the radius of the droplet
is calculated using simple trigonometrical relations as shown in Figure (3.6). Once the radius of the drop has

r − h r

b/2
b

θ

h

Figure 3.6: The schematic of the measurement of contact angle from a equilibrated droplet is shown in this
figure. In a given simulation the base of the droplet can be measured as b and the height as h units. Using
the Pythogoras theorem the radius of the droplet is given as r = 4h2+b2

8h .
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been calculated, the pressure inside and outside the droplet is calculated using the equation of state for the
Shan-Chen model:

Pin, out = c2s(ρα(x) + ρβ(x)) + c2sGρα(x)ρβ(x), (3.24)
where c2s = 1

3 corresponds to the speed of sound in lattice. Finally, the surface tension γ is the slope of the
linear fit of the data between ∆P=P(xin)-P(xout) and 1

R . The result of the Laplace test for the surface
tension measurement of a multicomponent droplet made of Fluid α initialized inside another component made
of Fluidβ gives a ∆p vs 1

R (3.4) is given by Figure (3.7).
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Figure 3.7: The pressure difference ∆P = P (xin) − P (xout) is plotted as a function of 1
R for droplets of

varying radii. The droplets are initialized with a ρbulk = 2.06 and an interaction parameter value of G = 1.3.
The best fit line is obtained for the two quantities and the slope γ is the surface tension, which for this case
is 0.1.

3.2 Polymer dynamics
In the previous section the methodology to solve the flow field through the lattice Boltzmann method was
discussed. In this section the equations to solve the polymer dynamics is presented. Through this section
we illustrate how the polymer dynamics can be blended with the equations for the fluid motion to simulate
the non-Newtonian rheology. However, it is important to first introduce the polymer model which will be
integrated with the flow field. In this thesis, we choose the Finitely Extensible Non-Linear Elastic-Peterlin
(FENE-P from hereon) model for simulating the dynamics of polymers. Therefore, in the first section the basic
elements of the FENE-P model will be explained, and the relevant quantities will be introduced. Following
this, the equations necessary to evolve the state of polymers in a flow field will be outlined. Finally, the
methodology to blend the multicomponent flows with the polymer dynamics will be explained.

3.2.1 The FENE-P model
According to the FENE-P model a polymer chain consists of a spring connecting two non-deformable beads [48]
(Figure (3.8)). The two beads are indistinguishable in nature. Now, we can define a vector R, called the
director vector, which is an end-to-end vector connecting the two beads [34]. In addition to the director
vector R, we can also introduce a potential for the spring. In the FENE-P model the spring is only allowed
to stretch a certain length L. Further, a force law can be defined for governing the extension of the spring.
The force law for the FENE-P model is defined as the following [34]:

F c = HR
1− 〈R2/L2〉

, (3.25)

where F c, H,L2, 〈·〉 represent the force vector due to the spring, the spring constant, the square of maximum
extensible length and the configurational average [49]. The configurational average can be thought of as an
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R

Figure 3.8: A schematic of the dumb-bell representation of a polymer is shown here. Two dumb bells of color
red and red are shown with a finitely extensible spring attached between them. The director vector R is the
end to end vector of the polymer connecting the two dumb-bells.

average performed over all the polymers which are subjected to a similar force field [34]. As can be observed
from Equation (3.25) the force Fc is non-linear in nature. Further, as the spring extends to a length equal to
the maximum extensible length L, in other words as R2 → L2 in Equation (3.25), the force Fc diverges.

To summarize, the FENE-P model is a simple model of a polymer chain subjected to a force field. The
force field is non-linear in nature and allows only a finite extension of the spring connecting the two beads.
Now, when the polymers are subjected to a flow field the stresses in the flow field will stretch and compress
the polymers [50]. As a result the polymer will exert back a force on the fluid and generate feedback stresses
(called the polymeric feedback stresses). As a result, we need a quantitative measure of this polymeric
feedback stress in order to quantify the behavior of polymers subjected to a flow field. In this thesis, we are
interested in understanding how the flow near the contact line affects the behavior of the polymers, and in
turn how the polymers affect the flow field. Therefore, in the next section we define two important parameters
which will be extensively used in this thesis to quantify both the behavior of polymers in the flow, as well as,
the effect that polymers have on the flow, namely: (a) conformation tensor C, (b) polymeric shear stress σ

P
.

3.2.2 Conformation tensor and polymeric stress tensor
The conformation tensor C is defined as the second moment of the end-to-end vector R [34]. An element
Cij of C is defined as:

Cij ≡ 〈RiRj〉, (3.26)
where i, j correspond to the axes directions x, y, z. R is the director vector from bead 1 to bead 2 and 〈·〉
is the averaging over the configuration distribution function which is defined by a given flow field 2. From the
relation for the conformation tensor C it can be seen that the tensor is symmetric in nature, which implies
that Cij = Cji. Using the definition of a conformation tensor C the polymeric stress tensor is defined as [50]:

σ
P

= f(rP)C, (3.27)

where f(rP) = L2−3
L2−r2 is the FENE-P potential. The term r =

√
Tr(C) and it represents the extension length

of the polymer. Two important points have to be mentioned regarding the aforementioned relation. Firstly,
in a state of equilibrium where the polymers do not undergo stretching Tr(C) is set to three. In other words,
C is a unity matrix 1 when the polymers are in equilibrium. The second important point is that the relation
given by Equation (3.27) is phenomenological and follows as part of a definition [50]. It is also evident from

2Given a particular flow field and time t, a configurational distribution function Ψ(R, t) can be defined over which the
averaging is performed for all the relevant quantities, for example: the product of the elements of the conformation tensor
RiRj [49]
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Equation (3.27) that the potential f(rP ) diverges as r → L. Therefore, now we have defined two quantities
C and σ

P
which represent the average state of a polymer subjected to a flow field. C provides information

on the average orientation of the polymer, and based on the orientation a polymeric stress terms σ
P
is defined.

Now, we move on to describe the evolution of the polymeric quantities mentioned in the previous section,
namely C and σ

P
, when subjected to flow fields. The evolution of the polymer stress tensor is entirely defined

in terms of the conformation tensor C, which satisfies:

∇
C =

f(rP)C − 1

τP
(3.28)

where
∇
C is the upper convected time derivative defined for tensors (analogous to the material derivative for

scalars) [31]. The term τP is called the polymeric relaxation time, a parameter that will be used constantly
throughout the thesis. Therefore, the physical significance of Equation (3.29) is that the conformation tensor
relaxes on a typical time scale τ = τP , the polymer relaxation time. τP is synonymous to the intrinsic time
scale τ of a viscoelastic material that was obtained through the Maxwell model in Chapter 2. Finally, the
convected derivative is given by the following:

∇
C =

DC

Dt
−C ·∇u−∇uT ·C (3.29)

where D
Dt () represents the material derivative or the convective derivative.

Therefore, in this section we introduced the basic aspects of the FENE-P model and the quantities relevant
to the model, namely: L (maximum extensional length of the polymer), τP (relaxation time of the polymer),
C (conformation tensor) and finally σ

P
(the polymeric stress tensor). In the next section we outline the

numerical scheme (finite difference) used to solve Equation (3.29) , and specify how it is integrated with the
flow variables obtained from the LB formalism.

3.2.3 Evolution of conformation tensor - finite difference scheme
In the previous section the equation for the evolution of conformation tensor was discussed, see Equa-
tion (3.29). In this section the numerical methodology, i.e. finite difference, used to solve Equation (3.29) is
discussed.

Expanding the LHS of Equation (3.29) and rearranging the terms, the following equation is obtained:

∂C

∂t
= −(u ·∇)C︸ ︷︷ ︸

advection

+C ·∇u+ (∇u)T ·C −
f(rP)C − 1

τP
= CRHS. (3.30)

Equation (3.30) is the evolution equation for the conformation tensor C and can be expressed in the form:

y′ = f(t, y) with y(t0) = y0,

where y′ is the derivative of the dependent variable y w.r.t to an independent variable t, and, f(t, y) is the
generalized rule according to which y evolves. Similarly, in direct correspondence with Equation (3.30), C is
dependent on time t, and the rhs of Equation (3.30) is the rule according to which the conformation tensor C
evolves. To evolve C a two-step Adams-Bashforth scheme is used using a polynomial interpolation, according
to which:

y(tn+1) = y(tn) + 3
2∆tf(tn, yn)− 1

2∆tf(tn−1, yn−1),

where the subscript n corresponds to the current time step, ∆t is the discretization in time and f(tn, yn) is
evaluated at the current time step. Using a direct correspondence, the evolution equation for Equation (3.30)
can be written as:

C(tn+1) = C(tn) + 1
2(3CRHS(tn)−CRHS(tn−1)). (3.31)
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CRHS consists of 4 terms, as can be seen in Equation (3.30). These terms are the following:

Term 1 : −(u · ∇)C, (3.32)
Term 2 : +C · (∇u), (3.33)
Term 3 : (∇u)T ·C, (3.34)

Term 4 : −
f(rP)C − 1

τP
, (3.35)

since the conformation tensor C has 9 elements the terms involve a calculation for each of these 9 elements.
A sample calculation for each of the terms is presented here:
Term 1:

− (u ∂

∂x
+ v

∂

∂y
+ w

∂

∂z
)

Cxx Cxy Cxz
Cxy Cyy Cyz
Cxz Cyz Czz

 (3.36)

where u = u(x, y, z), v = v(x, y, z), w = w(x, y, z) are the velocity components and each of the elements of
the conformation tensor C are functions of x, y, z. Using second order finite difference in space the following
is obtained (shown for the first element of the tensor):

−(u∂Cxx
∂x

+ v
∂Cxx
∂y

+ w
∂Cxx
∂z

) =− u(x, y, z, t)
(
Cxx(x+ ∆x, y, z, t)− Cxx(x−∆x, y, z, t)

2∆x

)

− v(x, y, z, t)
(
Cxx(x, y + ∆y, z, t)− Cxx(x, y −∆y, z, t)

2∆y

)

− w(x, y, z, t)
(
Cxx(x, y, z + ∆z, t)− Cxx(x, y, z −∆z, t)

2∆z

)
,

(3.37)

where the discretization in space in the x, y, z directions are given by ∆x, ∆y and ∆z, and are all equal to
1. Similarly, the above set of equations can be written for all the 6 elements.
Term 2: Cxx Cxy Cxz

Cxy Cyy Cyz
Cxz Cyz Czz

 ·
∂u∂x ∂v

∂x
∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 (3.38)

The first element corresponding to (1,1) is:

Cxx

(
u(x+ ∆x, y, z, t)− u(x−∆x, y, z, t)

2∆x

)
+ Cxy

(
u(x, y + ∆y, z, t)− u(x, y −∆y, z, t)

2∆y

)
+

Cxz

(
u(x, y, z + ∆z, t)− u(x, y, z −∆z, t)

2∆z

)
.

(3.39)

The general term (i, j) is
∑
k Ci,k∂kuj where ∂k denotes the derivative w.r.t to the kth direction.

Term 3:
∇uT ·C = (C ·∇u)T . (3.40)

Basically, Term 3 is the transpose of Term 2, and from the basic properties of matrices (AB)T = BTAT,
where A = C and B =∇u. However, since the conformation tensor C is symmetric, CT = C.
Term 4:

f(rP) = L2 − 3
L2 − Tr( C ) (3.41)

Firstly, the FENE-P potential at every location (x,y,z) is evaluated depending on the state of the conformation
tensor C. After this, the potential is multiplied with the conformation tensor C and the following operation
is performed:

1
τP

(f(rP)C − 1), (3.42)
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at every location x, y, z.

Therefore, some key points need to be clarified regarding the initialization of C, evaluation of C
RHS

near
the boundaries:

1. The magnitudes of the elements of the conformation tensor are all initialized to a value 0. Therefore,

C(t = 0) = 0. (3.43)

2. At any instant, when calculating the C
RHS

, the value of C evaluated from the previous time step is
used.

3. The evaluation of the conformation tensor at the boundaries can occur for two different boundary
conditions.

• The first boundary condition is the periodic boundary condition. In this case conformation tensor
C is evaluated exactly similar to the periodic boundary condition as mentioned in the section on
Boundary Conditions (Section (3.1.2)) in this chapter. The evaluation of C

RHS
happens at

the nodes corresponding to k = 1 and k = Nx (see Figure (3.2)) and the magnitudes of the
conformation tensor are then copied to the ghost nodes at k = 0 and k = Nx + 1.

• All of the above calculations are done only for the fluid nodes, see fig Figure (3.2). Therefore, in
order to evaluate the value of C

RHS
at the fluid nodes corresponding to the row j = Ny (see

Figure (3.2)) using a second order finite difference the value of the relevant quantities need to
be known at the ghost nodes. Therefore, the values of the conformation tensor C need to be
evaluated at the nodes in the row j = Ny + 1. To perform this calculation a first order finite
difference (or linear extrapolation) is used.

(j = 0, Cxx,0)

(j = 1, Cxx,1)

(j = 2, Cxx,2)

Figure 3.9: At any given i and k such that j = 0 the value of the conformation tensor is calculated using the
linear extrapolation. For this, 3 points are determined of which j = 0 corresponds to the ghost node and the
j = 1, 2 correspond to the fluid nodes. Cxx,0 corresponds to the value of Cxx at i, j = 0, k. The equation
of the line is given by y = mx+ c.

A sample calculation at the ghost node j=0 and for Cxx, the magnitude of the slope and of the
intercept are given by (see Figure (3.9)):

m = Cxx,2 − Cxx,1,
c = 2Cxx,1 − Cxx,2.

Therefore, using the straight line equation y = mx + c, the value of Cxx,0 is the value of the
intercept itself:

Cxx,0 = 2Cxx,1 − Cxx,2. (3.44)
This calculation can be extended to all the ghost nodes in all directions x, y, z using the same
principles. An important point to note is that the calculation of the conformation tensor at the
boundaries are performed before the evaluation of C

RHS
.
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Therefore, in this section the finite difference scheme used to evolve the conformation tensor C was discussed.
From this we understand how to evaluate the dynamics of the conformation tensor if a particular flow field is
given. In the next section we understand how the polymer stresses are evaluated included in the momentum
equation of the fluid. Basically, this is the polymer feedback mechanism.

3.3 Coupling Lattice Boltzmann method and FENE-P
In the previous section we discussed how the flow field u(x, y) is used to evaluate the dynamics of the
orientation tensor C. Now, we have to account for the feedback of the polymer into the fluid. This is done
by introducing a volumetric body force applied on the fluid in the Navier-Stokes equation, as follows [51]:

ρ[∂tu+ (u · ∇)u] = −∇p+∇ · σ
S

+ ηp
τP
∇ · σ

P︸ ︷︷ ︸
polymeric feedback force

+
∑
ξ

gξ, (3.45)

where ηP is called the polymeric viscosity, τP is the polymeric relaxation time, σ
P

is the polymeric stress
tensor,

∑
ξ gξ is the Shan-Chen interaction force summed over the components ξ ∈ {α, β}, σ

s
is the stress

tensor due to the fluid and p is the pressure field. ηP is a new parameter whose role is to control the the
strength of feedback stresses into the fluid. Now, the feedback force is a vector and the jth component of
the force is given by:

(∇ · σ
P

)j =
∑
i

∂

∂xi
(σP )ij , (3.46)

where i runs over the directions x, y, z. A sample calculation for the x-component of the force is given by:

∂σP,xx
∂x

+ ∂σP,yx
∂y

+ ∂σP,zx
∂z

, (3.47)

where σP,xx = f(rP)Cxx. This is again expanded using the second order finite difference which gives:
x component polymeric force at (x, y, z):

σP,xx(x+ ∆x, y, z)− σP,xx(x−∆x, y, z)
2∆x + σP,yx(x, y + ∆y, z)− σP,yx(x, y −∆y, z)

2∆y

+ σP,zx(x, y, z + ∆z)− σP,zx(x, y, z + ∆z)
2∆z

(3.48)

y component polymeric force:

σP,xy(x+ ∆x, y, z)− σP,xy(x−∆x, y, z)
2∆x + σP,yy(x, y + ∆y, z)− σP,yy(x, y −∆y, z)

2∆y

+ σP,zy(x, y, z + ∆z)− σP,zy(x, y, z + ∆z)
2∆z

(3.49)

z component polymeric force:

σP,xz(x+ ∆x, y, z)− σP,xz(x−∆x, y, z)
2∆x + σP,yz(x, y + ∆y, z)− σP,yz(x, y −∆y, z)

2∆y

+ σP,zz(x, y, z + ∆z)− σP,zz(x, y, z + ∆z)
2∆z .

(3.50)

Therefore, the magnitude of these feedback polymeric forces are controlled by varying the parameter ηP and
also τP . The parameter L2, also called the maximum extensible length of the polymer, is varied in order to
achieve large stresses.

3.3.1 Multicomponent viscoelastic simulations
The goal of this thesis is to investigate the contact line motion in viscoelastic liquids that are surrounded by
Newtonian components. In addition, many physical situations/applications arise where one of the components
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is viscoelastic and the other component is Newtonian [52–55]. Therefore, we need a technique to control the
viscoelasticity so that it can be "switched" on or off at specified regions. For this a smoothing function is
formulated such that the viscoelasticity can be toggled between the multicomponent fluids. The form of the
smoothing function is [51]:

f±(φ) =
(

1± tanh(φ/∆)
2

)
, (3.51)

where φ = ρA(x)−ρB(x)
ρA(x)+ρB(x) , ∆ is a free parameter called the smoothing parameter which controls the thickness

across the diffuse interface during which the polymeric stresses go to zero. The smoothing parameter is fixed
by matching appropriately matching analytical solutions with the solutions obtained from the simulations.
The above concepts can be illustrated using a simple example:

   Matrix (M)
Component B

   Droplet (D)
 Component A

(a) Droplet in a solvent

-0.5

0

0.5

1

1.5

-30 -25 -20 -15 -10 -5 0 5

f
(φ

)

φ

Viscoelastic Droplet, ∆ = 0.5
Viscoelastic Solvent, ∆ = −0.5

(b) Smoothing function, |∆| = 0.5

Figure 3.10: (a) A droplet subjected to a shear flow is shown. The Droplet is Component-A rich and
Component-B poor, whereas, the Matrix is Component-A poor and Component-B rich. (b) The smoothing
function f±(φ) is plotted across the cross section of a droplet. It is seen that in case of a viscoelastic droplet
the smoothing function peaks in the region corresponding to the droplet, whereas, it is zero in the region
corresponding to the solvent. However, in case of a viscoelastic solvent, the smoothing function is unity in
the region of solvent and zero inside the droplet. Therefore, the smoothing function is used to modulate the
polymeric stresses in different regions of the simulation domain.

A confined droplet inside a channel is subjected to shear flow 3. It is of interest to study (a) the steady state
deformation of a viscoelastic droplet and (b) the steady state deformation of a Newtonian droplet inside a vis-
coelastic solvent. For the case of a viscoelastic droplet the polymeric stresses act only inside the droplet, and,
for a viscoelastic solvent they act only inside the solvent. Therefore, it is beneficial if the polymeric stresses
corresponding to σ

P
can be modulated in the simulation domain depending on where the non-Newtonian

components are present. By using the smoothing function we can achieve the modulation of the polymeric
stresses across the simulation domain. From Figure (3.10), by changing the sign of ∆ from positive to a
negative value (maintaining the same magnitude), it is possible to simulate (a) and (b), respectively.

3.3.2 Viscosity ratios
Finally, in this section the concept of viscosity ratios are discussed. In chapter 4, most of the simulations and
results are presented for the case of viscosity ratio, between the viscoelastic component and the Newtonian
component, equal to 1. The concept is again illustrated using the case of the droplet, as shown in figure
Figure (3.10). However, the concept can be extended to any multicomponent viscoelastic simulation.

3In the example where the Shan-Chen multicomponent method was discussed we used the α, β notation for the droplet and
the surrounding (Figure (3.4)). Here, α and β are replaced by components A and B. Hence, it is just a change in the notation.
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Viscosity of viscoelastic droplet

• The viscoelastic droplet’s viscosity is the sum of the viscosity due to component A and the "dissolved"
polymeric viscosity ηP . The relaxation time, and hence the dynamic viscosity, of the LB fluid is given
by:

ρc2s

(
τs −

1
2

)
= ηs = ηAf+(φ) + ηBf−(φ), (3.52)

where τs is determined by the spatial location. For the case of a viscoelastic droplet, the relaxation
time inside the droplet is entirely determined by component A, whereas, in the Newtonian solvent the
contribution to the relaxation time is dominated by component B. However, the values of τ for the
individual components A and B must be chosen in order that ηP + ηA = ηB , in order that the viscosity
ratio is set to 1.

Viscosity of viscoelastic droplet The same principle as for the case of a viscoelastic droplet holds here.
Here, the viscosity of the viscoelastic solvent is set in such a way which ensures ηB + ηP = ηA.

3.4 Conclusion
At the end of this chapter we have covered all the required aspects to simulate non-Newtonian flows using
the LB formalism. In other words, we have introduced all the relevant concepts to solve the following
equations [51]:

Continuity : ∂tρξ +∇ · (ρξu) =∇ ·DS,ξ (3.53)

Momentum : ρ[∂tu+ (u ·∇)u] = −∇p+∇ · σ
S

+ ηp
τP
∇ · σ

P
+
∑
ξ

gξ; (3.54)

Conformation tensor evolution : ∂tC + (u · ∇)C = C · (∇u) + (∇u)T ·C−
σP − 1

τP
(3.55)

Closure : σ
P

= f(rP)C. (3.56)

Here, ρξ is the density of the ξ-th component where ξ ∈ {A,B} and ρ =
∑
ξ ρξ indicates the total density.

u represents the velocity evaluated by taking into account both components A and B. pξ is the internal
ideal pressure of component ξ, and the total pressure p =

∑
ξ pξ. The term

∑
ξ gξ takes into account the

body force contributions coming from all the internal and external forces. The internal force in our model is
the "Shan-Chen" interaction force which is a force experienced by each of the component ξ. An interaction
parameter G is defined for this interaction. In addition, adjacent to the wall, the external force due to the
wall on the component ξ is controlled through another interaction parameter Gwall,ξ which helps to control
the wetting properties of component ξ (contact angle). The diffusion of one component into the other and
the viscous stress tensor of the solvent (S) is [51]:

DS,ξ = µ
[(
∇pξ −

ρξ
ρ
∇p
)
−
(
gξ −

ρξ
ρ

∑
ξ

gξ

)]
(3.57)

σ
S

= ηS

(
∇u+ (∇u)T − 2

31(∇u)
)

+ ηb1(∇u), (3.58)

where ηS is the shear viscosity of the and ηb refers to the bulk viscosity. µ refers to the mobility coefficient
4. The reader should note that the dimensions of σ

P
are not the dimensions of a stress tensor, rather,

the dimensions of ηP
τP
σ
P

together have the dimensions of a stress tensor. Following this, we discussed the
methodology to evaluate the effect of the flow field on the dynamics of the conformation tensor.

Most importantly, we obtained the key parameters for simulating non-Newtonian flows using LB. The final
list of parameters that will be used to simulate the moving contact line problem for non-Newtonian fluids are
the following:

• Polymer relaxation time τP to control the relaxation time of the polymers;
4The implementation of the aforementioned equations has not been discussed in this chapter. The interested reader is referred

to [51] and references therein.
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• Maximum extensible length L2 to control the flexibility of the polymer chains;

• Polymeric viscosity ηP to modulate the strength of the polymeric stresses;

• Smoothing parameter ∆ to modulate the polymeric stresses across the simulation domain;

• Wall interaction parameter Gwall,ξ to control the microscopic wetting angle for the component ξ;

• Interaction parameter G to control the surface tension between the two components ξ and ξ′;

• BGK relaxation time τξ and ρξ to control the dynamic viscosity η of the component ξ.
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Chapter 4

Results

We concluded the previous chapter by identifying the key parameters for the FENE-P model, namely: the
polymer relaxation time τP , the square of the maximum extension length L2, polymeric viscosity ηP . Before
we simulate the moving contact line problem for viscoelastic fluids it is necessary to benchmark the LB code
against some standard non-Newtonian flows. We would like to perform the benchmark cases for two reasons:
(a) to obtain a range of values for the aforementioned parameters , (b) to test the working of the LB code
under various flow situations, for example: shear, extensional, and time dependent flows. We divide the
benchmark cases based on single component and multicomponent flows. In the single component case we will
simulate (a) Couette flow, (b) Steady elongational flow, (c) Oscillatory shear flow. In the multicomponent
case we will simulate (a) the shear flow of a confined viscoelastic droplet in a Newtonian matrix (b) the shear
flow of a confined Newtonian droplet in a viscoelastic matrix. Through these simulations we will obtain the
range of parameters necessary for simulating the viscoelastic contact lines. Additionally, these benchmark
cases will allow us to test the LB code under various flow conditions. Following this, we perform a benchmark
case for the Newtonian contact line and obtain the scale separation parameter λs (defined in Chapter 2).
Finally, we investigate the effects of viscoelasticity on the contact line motion for two cases: (a) symmetric
wetting and (b) asymmetric wetting, and report our findings.

All the quantities used in the Lattice Boltzmann simulations have dimensions in the lattice units lbu.

4.1 Validation
In this section, the results of the benchmark cases performed to understand the features of the non-Newtonian
rheology through LB simulations is presented. The following benchmark cases are studied and the non-
Newtonian features which they exhibit is mentioned:

• Couette flow: Able to simulate the shear-thinning behavior of non-Newtonian fluids subjected to high
non-dimensional shear rates.

• Steady elongational flow: Through this test it is shown that the LB simulation can simulate extensional
flows.

• Small amplitude oscillatory shearing: Through this test it is shown that the LB simulations can
simulate the viscous and the elastic behavior of a non-Newtonian fluid subjected to an oscillatory shear
flow. To characterize the elastic and the viscous behavior of the non-Newtonian fluid, the material
functions G′ (elasticity modulus) and G′′ are calculated.

• Deformation of a droplet subjected to viscoelasticity and confinement: We study two cases: (a)
viscoelastic droplet (surrounded by a Newtonian matrix) and (b) Newtonian droplet surrounded by a
viscoelastic matrix. We measure and quantify the deformation of the droplet as a function of Ca and
compare it against standard experimental results.

For the study of the following test cases we closely follow the paper by Gupta et al. [51] and compare the
results of the above simulations against their results.



Results
4.1.1 Dilute polymer rheology for single-component flows
4.1.1.1 Master equation

Before we compare and benchmark the LB simulations we need establish a theoretical platform against which
comparisons can be made. Therefore, in this section we briefly outline the main equations to be solved for
the non-Newtonian flows.

In Chapter 3 we described the equation for the upper convected derivative of the conformation tensor C
(Equation (3.29)). We will utilize this equation in steady state to obtain a master equation. Recalling from
Chapter 3, the dimensionless polymeric feedback stress is given by [51]:

σ
P

= f(rP )C = L2 − 3
L2 − Tr(C) . (4.1)

Taking the trace of the above equation and rewriting the expression for feedback we get:

σ
P

= Z(Tr(σ
P

))C, (4.2)

where Z =
L2−3+Tr(σ

P
)

L2 . Now, substituting C = σ
P
/Z in Equation (3.29) and on simplifying further we

get [51]:
Z(σ

P
− 1) + τp[ DtσP − σP · (∇u)− (∇u)T · σ

P
− σ

P
Dt logZ ] = 0. (4.3)

In Equation (4.3) Dt corresponds to the material derivative and 1 is the unitary matrix. In the upcoming cases
we will use Equation (4.3) in steady state (Couette flow, steady elongational flow) as well as time dependent
case (oscillatory shear rheology) to derive expressions for the following quantities:

S = σP,xy (4.4)
N = σP,xx − σP,yy, (4.5)

where S,N are the polymeric shear stress and the first normal stress difference. Here, the x-axis is along the
direction of the forcing applied and y-axis is perpendicular to it. Hence, the above definitions. These two
quantities will be of importance to us throughout this chapter. Especially in the case of the non-Newtonian
contact lines where the region near the contact line is a region of high shear stresses.

We now begin by simulating the Couette flow for the FENE-P model.

4.1.1.2 Case 1: Couette flow

In this section the steady shear flow is simulated in the presence of polymers inside the flow. The setup for
the flow geometry is shown in Figure (4.1). Initially, an expression for the normal stress N and the shear
stress S will be derived. Following this derivation, the results from the LB simulations for N and S will be
compared against theory.

For theory we substitute in Equation (4.3) the following velocity field u(x, y):

u =


γ̇y

0

0

 , (4.6)

where γ̇ = 2Uw
Ly

(Figure (4.1)) is the constant shear rate. The tensor ∇u, for a shear flow, is given by the
following matrix:

∇u =

∂xux ∂xuy ∂xuz
∂yux ∂yuy ∂yuz
∂zux ∂zuy ∂zuz

 =

0 0 0
γ̇ 0 0
0 0 0

 . (4.7)

where γ̇ is the gradient of ux in the direction normal to the shear. Once the flow has achieved steady state
the components of σ

P
cease to change with time and Equation (4.3) simplifies to:

Z(σ
P
− 1) + τp[ ��

�DtσP − σP · (∇u)− (∇u)T · σ
P
− σ

P��
��Dt logZ ] = 0 (4.8)

Z(σ
P
− 1) + τp[ −σP · (∇u)− (∇u)T · σ

P
] = 0 (4.9)
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The above equations can be represented in the matrix form:

Z

σP,xx − 1 σP,xy 0
σP,yx σP,yy − 1 0

0 0 σP,zz − 1

− τp[ γ̇
2σP,yx σP,yy 0
σP,yy 0 0

0 0 0

 ]
= 0. (4.10)

Solving the above equation gives σP,yy = σP,zz = 1 and then replacing σP,xx − σp,yy with the first normal
stress difference N (Equation (4.5)), σP,xy with the polymeric shear stress S (Equation (4.4)) and γ̇τp with
Λ, we get the following set of equations for N and S:(

1 + N
L2

)
N = 2ΛS, (4.11)(

1 + N
L2

)
S = Λ. (4.12)

The above two equations can be divided and rearranged to obtain a relation between the first normal stress
difference and the polymeric shear stress, given by:

N = 2S2. (4.13)

Substituting the relation for S, from Equation (4.13) back into Equation (4.11), we obtain the following third
degree polynomial equation for S:

2S
3

L2 + S − Λ = 0. (4.14)

This cubic equation can be solved exactly to obtain 1 real and 2 complex roots. The real root is given by:

S(Λ, L) = 2
(L2

6

)
sinh

(1
3arcsinh

(ΛL2

4

(L2

6

)− 3
2
))
, (4.15)

and from Equation (4.13), we find the expression for N as:

N (Λ, L) = 2
(L2

6

)
sinh2

(1
3arcsinh

(ΛL2

4

(L2

6

)− 3
2
))
. (4.16)

Now that we know the mathematical expressions for N and S it is useful to plot their dependence on L,
the maximum extensible length of the polymer (see Figure (4.2)). We see that as L2 → ∞, known as the
Oldroyd-B limit, the relation for S and N :

S → γ̇τP , (4.17)
N → 2γ̇2τ2

P = 2S2. (4.18)

where γ̇ is the shear rate and τP is the polymer relaxation time. Equation (4.18) indicates a perfectly elastic
behavior. For finite values of L2, S and N both are below the Oldroyd-B limit.

Now, the simulation of a shear flow of a FENE-P fluid is simulated using the LB method and compared
against theoretical predictions for N and S. The numerical simulations are performed in a 3D domain and
a cut-section is analyzed for the first normal stress difference and the shear stress. For this we adopt a cell
of size Lx ×H × Lz = 10× 60× 10. Periodic boundary conditions are applied in the direction of the shear,
and the bounce back rule is applied to the fluid population adjacent to both the top wall (y = H) and the
bottom wall (y = 0). The top and the bottom walls are moved with opposite velocities, of magnitude Uw.
Polymer relaxation times in the following range are used: 103 ≤ τp ≤ 105, and, shear rates in the range:
10−6 ≤ γ̇ ≤ 10−2, are used. The numerical simulations were conducted for 2 different maximum extensible
lengths of the polymer: L2 = 102, 104 and a polymeric viscosity of ηP = 0.136 is used.

We normalize the polymeric shear stress S by it’s value in the Oldroyd-B limit to observe the departure
of the polymeric fluid from elastic behavior. The result of the N and the S for the case of the shear flow is
plotted in Figure (4.3).
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Figure 4.1: In this figure the a cut section of the 3 dimensional flow geometry for the Couette flow is plotted.
The simulation domain contains top and the bottom walls which shear the fluid in opposite directions with
the velocity of magnitude Uw. The normal direction direction is denoted by z and the flow domain is periodic
in the x-direction.
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Figure 4.2: The S and N obtained from Equation (4.15) and Equation (4.16) respectively, are plotted against
the non-dimensional shear rate (Λ = γ̇τp) for different values of maximum polymer extension lengths of L2.
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Figure 4.3: S (polymeric shear stress) and N (first normal stress difference) obtained from Lattice Boltzmann
(LB) is plotted against non-dimensional shear rate (Λ = γ̇τp) for two different values of maximum polymer
extension lengths of L2 = 102, 104. The simulation results are compared against the theoretical expressions
for N (Equation (4.16)) and S (Equation (4.15)) obtained in the section on shear flow. As seen from (a)
and (b), S and N depart from the Oldroyd-B limit after crossing a certain Λ. This exhibits the onset of
shear thinning. A smaller L2 exhibits shear thinning earlier in comparison with a larger L2. The above
plots can be reproduced using the test R237_STEADY_COUETTE_FLOW with the help of the gnuplot script
plot_shear_normal_stress.gnu. The simulations for different L2 and Λ is handled by the script rxx.sh
and is registered in gitlab as ISSUE #247. The plots can be found in the folder final_plots.

Observations

• Firstly, from Figure (4.3), we observe that there is an excellent agreement for both N and S ob-
tained from LB simulations and that predicted from the theoretical analysis, see Equation (4.16) and
Equation (4.15), for ranges of non-dimensional shear Λ ranging from 10−3 to 100.

• The shear thinning behavior is captured by the LB model which is characterized by decreasing polymeric
shear stress and the normal stress with increasing Λ. In addition, we observe from Figure (4.3) that
as the flexibility of the polymer denoted by the parameter L2 is increased, the onset of shear thinning
effects is delayed w.r.t Λ.

• Finally, the response of the fluid to an applied shear stress can be divided into 2 regimes: (a) elastic,
and, (b) purely thinning regimes. In the elastic regime, the polymeric shear stress increases linearly
with Λ, and, the first normal stress difference increases quadratically with Λ. However, after Λ crosses
a critical value, the increase in the polymeric shear stress is no longer linear and follows an increase
depending on the flexibility of the polymer.

Hence, the simple shear flow has been simulated and the N and the polymeric shear stress S have been
validated against the corresponding expressions from the FENE-P model. Finally, the model is able to capture
the shear thinning effects, and, through this, the elastic regime can be separated from the shear thinning
regime.

4.1.1.3 Case 2: Steady elongational Flow

The uniaxial elongational flow is relevant to many polymer processing applications like injection molding and
fiber spinning. The velocity field in a steady elongational flow is given by the velocity vector:

u =


− ε̇

2x

− ε̇
2y

ε̇z

 (4.19)
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Figure 4.4: The velocity vector field in the (a) xy and the (b) xz plane for an elongational flow as described
by Equation (4.19) is plotted here. A strain rate magnitude of ε̇ = 0.5 is used.

where ε̇ is the elongational rate. The velocity field as given by Equation (4.19) is visualized in Figure (4.4).
From the Figure (4.4) it is clear that in the xy plane the flow tends to converge towards the point (0, 0),
whereas, in the xz plane the flow indicates a stretching along the z-direction. The velocity field can now
be substituted into Equation (4.3) to obtain the polymeric stresses as a function of the non-dimensionless
elongation rate Λe = τP ε̇, where τP is the relaxation time of the polymer. From this, we derive a measure
for the polymeric viscosity when subjected to a purely extensional flow.

We now substitute the elongational velocity field given by Equation (4.19) and substitute it in Equa-
tion (4.3). The equation can be further simplified in terms of the following 3 terms [51]:

D = σP,zz − σP,xx,
T = Tr(σ

P
)− 3,

Λe = ε̇τP ,

where Λe is the non-dimensional elongation rate. Finally, we obtain a quadratic equation in terms of the
non-dimensional elongation rate Λe:

2L2DΛ2
e +

[
− 4D2 + (L2 −D − 3)(D + 3)

]
Λe + 2D3

L2 − (L2 −D − 3)D = 0. (4.20)

where D = σP,zz−σP,xx, L2 is the maximum extension length squared. As can be seen from Equation (4.20),
for the sake of simplicity in solving, the equation is expressed as a quadratic in terms of Λe rather than a
cubic in terms of D and Λe = ε̇τP is the non-dimensional elongation rate. Further, using Equation (4.20) we
find the solutions for Λe given by:

(Λe)± = D

L2 + (L2 − (D + 3))
4DL2

(
− (D + 3)±

√
9D2 + 6D + 9

)
. (4.21)

Now, the solution to Equation (4.21) are found in two limiting cases: (a) D → 0, and, (b) D → ∞. These
two cases correspond to lowest and highest extensions of the polymers in the elongational flow.

1. D → 0:
After simplification we find that limD→0(Λe)− →∞, and hence, we choose the solution as limitD → 0,
which is given by:

(Λe)+ = D

3 +O(D2). (4.22)

40



Results
It is seen that the term D = σP,zz −σP,xx does not depend on the L2. Therefore, for sufficiently small
Λe the behavior of all polymers is similar.

2. D →∞:
In the limit D →∞ we find:

(Λe)− = D

2L2 +O( 1
D

). (4.23)

where the difference in the elongational stresses D = σp,zz − σp,xx depends on maximum extensi-
ble length squared of the polymer L2 or the flexibility of the polymer, when Λe is approaches large
magnitudes. Physically, high difference in stresses D can be achieved for the following two cases:

• when the polymer relaxes very slowly in comparison to the applied elongational rate ε̇
• when the polymer relaxes fast but the applied elongational rate ε̇ is very high.

Therefore, solutions to Equation (4.21) has two branches, namely: (a) the positive branch (Λe,+), and,
(b) the negative branch (Λe,−). Further, when Λe � 1 the solution is Λe,+, however, when Λe � 1 the
solution is the negative branch Λe,−. The solution branches are plotted in Figure (4.5) for the case of the
maximum extensible length square of the polymer L2 = 104. To quantify the polymeric stress difference D
generated due to an extensional flow we define the elongational viscosity ηe as:

ηe = ηP
τP

D

ε̇
, (4.24)

where ηP is the polymeric viscosity. Therefore, according to the solution of Equation (4.21) the ratio of the
elongational viscosity ηe to the polymeric viscosity ηP simplifies to:

ηe
ηP

= 1
τP

D

ε̇
=
{

3 ε̇τP � 1
2L2 ε̇τP � 1.

(4.25)

Now, we describe the LB simulation methodology to obtain the ratio of extensional viscosity to the polymeric
viscosity. The numerical simulations are carried out in a 3D domain of size Lx × Ly × Lz = 20 × 20 × 20.
Periodic conditions are applied in all three directions. The elongational strain amplitude was varied in the range
of 10−5 ≤ ε̇ ≤ 10−2 and the polymeric relaxation time was varied from 103 ≤ τP ≤ 105. The simulations
were conducted for 3 different finite extensibility lengths of the polymers, L2 = 10, 102, 104. The polymeric
viscosity is maintained to a value ηP = 0. All the results presented were obtained only after the simulation
has reached steady state. The polymeric stresses σP,zz and σxx are subtracted at a given location (x, y, z) in
the simulation domain for different Λe and they are divided by the applied ε̇ and plotted for different L2, see
Figure (4.5b). In addition, we also see that the Figure (4.5a) faithfully follows the positive and the negative
branches for different values of D.

From Figure (4.5), for a fixed polymeric relaxation time (τP ) and polymer flexibility (L2), it can be
concluded that the for small ε̇τP the viscosity ratio has a constant value of 3. However, increasing ε̇ the
viscosity ratio increases and plateaus to a new stable value. Another interesting property of the model
allows the viscosity ratio to diverge when the polymer flexibility is increased. This can be concluded from
Equation (4.25). In addition, this is logically consistent with the fact that higher flexibility of the polymers
allows for higher stresses to be developed, which in turn, allows for a larger value of D.

4.1.1.4 Case 3: Small amplitude oscillatory shearing

The viscoelastic response of soft materials is characterized with the help of oscillatory rheology. In this section,
a numerical small amplitude oscillatory shear experiment is carried out to obtain the loss modulus and storage
modulus of a viscoelastic fluid with the help of LB. The small amplitude implies that the amplitude of the
shear allows us to probe the viscoelastic fluid in the linear viscoelastic regime and, numerically, that translates
into L � 1. Firstly, the theory is presented for the case of small amplitude oscillatory shear rheology using
Equation (4.3). The velocity field is given by the following matrix:

u =


γ̇(t)y

0

0

 . (4.26)
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Figure 4.5: In (a) the positive and negative branches of the solutions to Equation (4.21) are compared against
the LB simulations. and the extensional viscosity as a function of the applied elongational stress ε. The
plot (b) can be reproduced using the test R237_STEADY_EXTENSIONAL_FLOW_FENEP with the help of the
gnuplot script ext_viscosity_compare.gnu. The simulations for different L2 and Λe is handled by the
script rxx.sh and is registered in gitlab as ISSUE #246. The plots can be found in the folder final_plots.

The above sinusoidal velocity field can be substituted into Equation (4.3) to perform further calculations
using the tensor notation. However, we would like to approach this problem using a scalar argument using
the Maxwell mode introduced in Chapter 2. The details of the tensor calculation is provided in [51]. In the
Maxwell model the equation for the spring dashpot model was introduced using Equation (2.28), where σ
corresponded to the stress and ε corresponded to the strain. Substituting a sinusoidal signal for the stress σ
and ε of the form:

σ(t) = σ0 exp(iωτ), (4.27)
ε(t) = ε0 exp(iωτ), (4.28)

where σ0, ε0 correspond to the amplitude of the stress and strain signal, ω corresponds to the frequency
of forcing and τ corresponds to the time scale introduced by the spring dashpot model (Equation (2.28)).
Substituting the above signal in Equation (2.28) and simplifying, we get:

k(iω)ε0 exp(iωt) =
(
iω + 1

τ

)
σ0 exp(iωt). (4.29)

A further simplification by defining a complex modulus E∗:

E∗ = σ0

ε0
= k(iω)
iω + 1

τ

,

and obtaining the above equation in a complex form gives:

E∗ = kω2τ2

1 + ω2τ2 + i
kωτ

1 + ω2τ2 .

Finally, we designate the quantity E∗

k as G∗. Therefore,

G∗ = G′ + iG′′ = ω2τ2

1 + ω2τ2 + i
ωτ

1 + ω2τ2 .

The quantity G′ is called the storage modulus and term G′′ is called the loss modulus, as was described in
Chapter 2. In addition, the term τ is equal to the polymer relaxation time τP . Therefore, we have derived
a storage modulus and loss modulus through the Maxwell model and this will be compared against the LB
simulations.
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Figure 4.6: Shear and normal stress signal obtained from the LB simulations as a function of time for the case
of a small amplitude oscillatory shear. This plot can be reproduced using the test R237_SAOS_COUETTE_FLOW
with the help of the gnuplot script shear_stress_plot.gnu and normal_stress_plot.gnu. The simula-
tions for different ω and τp is handled by the script rxx.sh and is registered in gitlab as ISSUE #245. The
plots can be found in the folder final_plots.

Now the details of the simulations are described. The simulation is performed in a 3D domain of size
Lx × Ly × Lz = 10× 60× 10. As before, the boundary conditions for the fluid are periodic in the direction
of the shear and bounce back boundary condition for the fluid is applied at the walls. The oscillatory shear
flow profile is generated by prescribing the velocities at the top and bottom wall whose velocity directions are
opposite and the magnitude is given by ux = γ̇(t)y = 2Uw

H cos(ωt)y, uy = 0, uz = 0. The frequency of
oscillation ω is varied in the range 10−6 ≤ ω ≤ 10−3 and the polymer relaxation time τP is changed in the
range of 103 ≤ τP ≤ 106. The feedback of the polymer into the fluid is 0 which is controlled by setting the
polymeric viscosity ηP = 0.0. To calculate the storage and the loss modulus it should be ensured that both
S and N have acquired a steady signal. This can be ensured by making sure that the time required for the
growth of the boundary layer is smaller than the time at which the velocities change direction at the walls.
This can be mathematically formulated as:

τνs ∼
H2

νs
, (4.30)

τνs �
1
ω
, (4.31)

where νs is the kinematic viscosity, H is the separation between the walls, τνs gives the time required for
momentum diffusion from the walls to the channel and ω is the frequency of the shear signal γ̇(t). Hence,
the height of the channel H is adjusted in such a way so as to satisfy the criteria given by Equation (4.31).
Now, from the LB simulations, the polymeric shear stress signal S and the normal stress N , as obtained from
the LB simulations are plotted in Figure (4.9). From the S the real and the imaginary components of the
viscosity are obtained to finally calculate G′ and G′′. The method to calculate the real (η′) and imaginary
components (η′′) of the viscosity is by starting off from the expression for S(t) given by [51]:

S(t) = γ̇η′ cos(ωt)− γ̇η′′ sin(ωt).

Multiplying the above equation by cos(ωt) (or sin(ωt)) on both sides of the equation and averaging over the
period of a signal from t = 0 to t = 2π

ω gives the following:∫ 2π
ω

0
dt S(t) cos(ωt) =

∫ 2π
ω

0
dt η′ cos2(ωt)−

∫ 2π
ω

0
dt η′′

��
���

��:0
cos(ωt) sin(ωt) . (4.32)

The terms corresponding to cross terms of the nature sin(ωt) cos(ωt) are canceled out. Therefore, finally we
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Figure 4.7: The elasticity modulus (G′) and the loss modulus (G′′) obtained through LB simulations is plotted
as a function of the product of the frequency of wall oscillation and the relaxation time of the polymer. The
results obtained from the LB simulations are compared against the corresponding theoretical predictions for
the elasticity and loss modulus as a function ωτp, respectively. This plot can be reproduced using the test
R237_SAOS_COUETTE_FLOW with the help of the gnuplot script Gp_Gpp_compare.gnu. The simulations for
different ω and τp is handled by the script rxx.sh and is registered in gitlab as ISSUE #245. The processing
of the normal and shear stress signal is performed using the C code Gp_Gpp.c. The plots can be found in the
folder final_plots.

have expression to obtain η′ and η′′, and hence also G′ and G′′, from the simulations:

η′ = 2〈S(t) cos(ωt)〉
γ̇(0) , η′′ = 2〈S(t) sin(ωt)〉

γ̇(0) , (4.33)

where the 〈·〉 represents the integral of the signal over time t.
Finally, in Figure (4.7), the comparison of G′, G′′ from the LB simulations with that from the theoretical

expressions lead to an excellent matching. This implies that the LB simulation can successfully simulate
polymers under time varying conditions. In addition, a measure of the elasticity of the polymer can be
obtained through the calculation of the storage and of the loss modulus.

4.1.2 Dilute polymer rheology for multicomponent flows
In the previous section single-component flows involving non-Newtonian rheology was simulated and bench
marked against standard non-Newtonian rheological flows. However, since the dynamic contact line problem
involves the participation of 2 fluid components it is required to understand how the LB simulations perform
in simulating multicomponent flows, where one of the component is viscoelastic in nature. In addition, it
should be remembered that in LB, the multicomponent nature of the fluids are simulated using the Shan-Chen
(from here on SC) interaction model. The SC model introduces a diffuse interface between two components
which is characterized by a layer of thickness ζ. Then, the question arises as to what would be the optimal
thickness ζ of the diffuse interface, such that, the results obtained from the Shan Chen model matches the
theoretical predictions? The answer to this lies in controlling the tunable parameters: (a) G - controls the
interaction strength between two components, (b) mobility µ - controls the diffusion of one component into
another. In addition, the introduction of viscoelasticity introduces an additional parameter φ which regulates
the viscoelastic nature of the diffuse interface. Therefore, in order to obtain an estimate for the parameters:
µ, G and φ, it is important that the LB simulation is bench marked for the case of a multicomponent
flow [51]. This exercise provides a platform on which the simulation for the non-Newtonian contact lines can
be conducted.

Droplet deformation in a confined channel is chosen for testing the multicomponent simulation in the
presence of a viscoelastic component. Droplet dynamics in a confined channel, apart from being useful
in industrial applications, has been studied extensively and reviewed for the case of Newtonian and non-
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Figure 4.8: In this figure the schematic of the flow geometry for the confined droplet is shown. The simulation
domain is 2 dimensional and the top and the bottom walls, separated by H, move in opposite directions with
a velocity of magnitude Uw, creating an effective shear rate of γ̇ = 2Uw

H . The Droplet is denoted by
Component A and the Matrix is denoted by Component B. The component A is assigned a viscosity of ηA
and the matrix is assigned a viscosity of ηB . The polymer is added to the component A (or component B)
in terms of a shear viscosity ηP such that the viscosity ratio between the Droplet and the Matrix is given by
ηA+ηP
ηB

(or ηA
ηB+ηP ). The shape of the droplet is assumed to be ellipsoidal and hence allowing for the definition

of a major and minor axis of the ellipse whose lengths are denoted by a and b, respectively.

Newtonian fluids. Hence, it has been chosen as the reference case for studying the performance of LB code.
In this section, two different cases of droplet deformation will be considered and compared, namely [51]:

• Newtonian droplet inside a viscoelastic matrix

• Viscoelastic droplet inside a Newtonian matrix.

The geometry for the flow is shown in Figure (4.8). Two measures are introduced to understand the
deformation of the confined droplet. They are the following:

• Deformation parameter D: The deformation parameter D is given by the ratio:

D = a− b
a+ b

, (4.34)

where a and b are the droplet semi-axes.

• Orientation angle θ: The orientation angle θ is the angle between the shear flow direction and major
semi-axes. This is illustrated in Figure (4.8).

Both the deformation parameter D and the orientation angle θ is measured as a function of the capillary
number Ca, whose definition is given by [51]:

Ca = γ̇RηM
γ

(4.35)

where γ̇ is the shear rate, R is the effective radius of the droplet, ηM is the viscosity of the matrix (Component
B) and γ is the surface tension between the fluid components in Component A and Component B. This
definition of a Ca gives the balance between the viscous forces, acting on the effective surface area of the
droplet, and the surface tension forces acting to stabilize any deformations. Deformation in an unconfined
droplet as a function of the Ca has been derived by Taylor, which is given by [56]:

D = 19χ+ 16
16χ+ 16Ca, (4.36)

where χ = ηD
ηM

represents the viscosity ratio between the droplet and the matrix. However, the simulation
performed in LB will be for a confined droplet. Hence, effects of confinement on the droplet deformation
have to be included in Equation (4.36). This case has been studied by Shapira and Haber who provided
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correction terms to the deformation which is O(Ca). The expression is for the deformation of the droplet
under confinement is given by [57]:

D = 19χ+ 16
16χ+ 16

[
1 + Csh

2.5χ+ 1
χ+ 1

(
R

H

)3]
Ca, (4.37)

where Csh is a numerical factor accounting for the distance between the center of the droplet to the wall and
R is the effective radius of the droplet. For the case of a droplet placed halfway in between the plate the
value of Csh is 5.6996. In addition, the expression for θ, orientation angle, as a function of Ca as derived by
Maffetone and Minale [58] is given by:

θ(Ca) = 1
2 arctan

( f1

Ca

)
(4.38)

where f1 and it’s associated expressions are listed below:
f1 = 40(1+χ)

(3+2χ)(16+19χ)(1+Cshf1c( RH )3) ,

f1c = 1+2.5χ
1+χ − f2c,

f2c = − 10−9χ
12+χ ,

(4.39)

where χ is the viscosity ratio between the droplet and the matrix, Csh is a constant determined by the relative
position of the droplet center with respect to the wall value (equal to 6.6996).

Hence, now that the relevant parameters D and θ, corresponding to the deformation and the orientation
of the droplet, have been defined the simulation details will be outlined.

Simulation Details A droplet of radius R = 30 grid nodes is initialized in the center of a 2 dimensional
flow domain. The dimensions of the flow domain are chosen to be Lx × H × Lz = 288 × 128 × 1, where
the flow is periodic in the x-direction and bounded by walls in the y-direction (also the direction of shear).
A schematic is shown in Figure (4.8). The densities of the two components are initially chosen to have the
values: ρ1 = 2.0, ρ2 = 0.1 and interaction parameter value of G = 1.5. The following combination of ρ1, ρ2
and G is used to obtain the magnitude of surface tension γ through a standard Laplace test through which
we obtain the value of γ=0.09. The shear viscosity of the droplet and the matrix component is set to be
equal to ηD = ηM = 1.74, where the polymer can be dissolved either inside the droplet or inside the matrix.
Finally, neutral wetting properties are chosen for the two components at the walls y = 0 and y = H, which
implies that a droplet initialized with a suitable combination of ρ1, ρ2 and G will achieve a contact angle
of 90o in equilibrium. With regards to the non-Newtonian effects, either the matrix or the droplet is made
viscoelastic with polymer relaxation times of τp = 2000, 4000 and a maximum extensibility of L2 = 104.
Once the droplet is initialized at the center of the channel a shear flow field is applied on the droplet with
the velocity profile: ux = γ̇y, uy = 0, uz = 0, through the top and bottom walls. The simulation is run for
approximately 5× 105 time steps for the flow to reach steady state. Following this the deformation and the
orientation of the droplet are measured and used for compared for the cases of different polymer relaxation
times τP .

4.1.2.1 Newtonian droplet in a viscoelastic matrix

In this case a Newtonian droplet is embedded inside a visco-elastic fluid whose viscosity ratio and the polymeric
concentration is:

χ = ηD
ηM

= ηA + ηP
ηB

= 1.0, ηP
ηP + ηA

= 0.4, (4.40)

where ηD = ηM = 1.74 corresponds to the dynamic viscosities of the droplet and the matrix component,
respectively, and the polymeric viscosity is set to a value of ηP = 0.6993. It is important to quantify the
effects of the viscoelastic matrix, and for this the Deborah Number is introduced whose definition is given
by [51]:

De = NR
2γCa2 , (4.41)
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Figure 4.9: The steady deformation parameter D as a function of Ca for a Newtonian droplet inside Newtonian
solvent is plotted in Figure (a). The confinement ratio of the droplet is given 2R

H = 0.47, and, the viscosity
of the droplet and the matrix are equal. D from the LB simulations are compared against theory. The D for
an unconfined droplet is given by Newt. Unconfined (Equation (4.36)), and, D for a confined droplet is given
by Newt. Confined (Equation (4.37)). In (b) the steady state orientation angle of the droplet is plotted as
a function of Ca. Similar to (a) the droplet is compared against the steady state orientation angle obtained
from Newt. Unconfined and Newt. Unconfined.

where N is the first normal stress difference generated in a simple shear flow (Equation (4.18)), R is the
effective radius of the droplet, γ is the surface tension and Ca is the capillary number as defined in Equa-
tion (4.35). Equation (4.41) can be recast into a form which compares the timescale introduced by the
polymer and the droplet [51]:

De = τP
τem

ηP
ηM

, (4.42)

where τem = RηM
γ and the definition of the first normal stress difference in the Oldroyd limit (Equation (4.18))

is used. From Equation (4.42), it can be seen that De is dependent on the ratio of the timescale of the emul-
sion and the polymer relaxation time, τP [51]. We would like to digress for a moment and clarify the difference
between the Deborah number De and the Weissenberg numberWi (introduced in Section (2.4) and later used
to study viscoelastic contact lines). According to [33] the definitions of the De andWi are often confused. In
De the external time scale τext (time scale not related to the polymer relaxation time τP ) is the time scale of
observation, whereas, in Wi the external time scale is τext is related to the reciprocal of the deformation rate
of the flow. Therefore, according to the above definition, De is 0 for the case of steady state flows whereas
the Wi is non-zero. Therefore, in view of this definition, for the case of the droplet the external time scale is
τext = τem which is the time scale set by the interfacial properties of the droplet.

The deformation, D, and the orientation, θ, of a Newtonian droplet in a viscoelastic medium of a relaxation
time of τP = 2000, 4000 are simulated and compared against the Newtonian case (a Newtonian droplet inside
a Newtonian solvent). For the parameters: R = 30, H = 128, χ = 1, ηM = 1.74, γ = 0.09 , τP = 2000
and 4000 the corresponding values of the De = 1.42 and 2.84, respectively. The variation of D and θ as a
function of Ca for the two polymer relaxation times is shown in Figure (4.10a) and Figure (4.10b).

Observations

• From Figure (4.10a), it can be seen that the deformation parameter for the Newtonian droplet in a
viscoelastic solvent is smaller in comparison with a Newtonian droplet inside a Newtonian solvent. Thus,
it can be concluded that a matrix viscoelasticity inhibits the deformation of a droplet.

• From Figure (4.10b), where the steady state orientation of the droplets are compared, it is observed
that droplets inside a viscoelastic matrix with higher polymer relaxation times (oe De) align more easily
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Figure 4.10: The steady state deformation parameter D and steady state orientation θ as a function of
the Ca is plotted for a Newtonian droplet inside a viscoelastic matrix. The concentration of the polymer
inside the viscoelastic matrix is given by ηP

ηB+ηP = 0.4, and the confinement ratio for the droplet is 2R
H =

0.47. The De = 1.42, 2.84 correspond to polymer relaxation times of τP = 2000, 4000, respectively.
This plot can be reproduced using the test R237_DROPLET_IN_VISCO with the help of the gnuplot scripts
steady_state_deformation.gnu and steady_state_orientation.gnu. The simulations for different
Deborah number De and Capillary number Ca is handled by the script r237.sh and is registered in gitlab as
ISSUE #242. The plots can be found in the folder final_plots.

with the flow.

• The tensor feedback stress magnitude ((Equation (4.43))) calculated for the current case is shown
Figure (4.11) where the magnitude of the tensor feedback is plotted for two different Ca. The tensor
feedback stress magnitude is calculated according to the formula:∥∥∥σ

P

∥∥∥ = √σ
P

: σ
P

= √σPijσPij , (4.43)

where the repeated index ij corresponds to an Einstein summation. Firstly, we see that the feedback
stresses are certainly higher for the case of a higher Ca. In addition, when a constant Ca is maintained,
a higher De number gives rise to a higher magnitude of feedback stresses around the Newtonian droplet.

4.1.2.2 Viscoelastic droplet in a Newtonian matrix

In this section a viscoelastic droplet is placed inside a Newtonian matrix. The viscosity ratio between the
droplet and the matrix, as before, is maintained at unity, and, the polymer concentration inside the droplet is
maintained at ηP = 0.6933. 2 different polymer relaxation times are used for the droplet: τP = 2000, τP =
4000, giving rise to the same set of De = 1.42, 2.84. Firstly, we compare the results of the steady state
deformation and the steady state orientation of the droplet. This has been plotted in Figure (4.12a) and
Figure (4.12b). In addition, the tensor stress magnitudes inside the droplet are shown in Figure (4.13).

Observations

1. From Figure (4.12a), it can be seen that the deformation parameter for a viscoelastic droplet is smaller
in comparison with it’s Newtonian counterpart. However, these differences are significant for higher Ca.

2. From Figure (4.12b), it is observed that as the viscoelastic nature of the droplet is increased (an increase
in the De) the droplet resists to orient with the flow when compared to smaller De. However, this effect
is only shown at higher Ca (Ca > 0.15). At lower Ca the differences between De = 0, 1.42, 2.84 are
rather small.
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(a) Ca = 0.145, De = 1.42 (b) Ca = 0.145, De = 2.84

(c) Ca = 0.24, De = 1.42 (d) Ca = 0.24, De = 2.84

Figure 4.11: Contour plots of the feedback stress magnitude from the 2D LB simulation for a Newtonian
droplet inside a viscoelastic matrix for a unity viscosity ratio ( ηA

ηB+ηP ) is shown. The confinement ratio
of the droplet is maintained at a constant value of 2R

H = 0.47 for all the figures shown above. The first
row corresponds to a Ca = 0.145 and the two polymer relaxation times of τP = 2000, 4000 corresponding
to De = 1.42, 2.84, respectively. The color bar indicates the magnitude of the tensor feedback stress
(Equation (4.43)) which ranges from a minimum magnitude of 10−9 to a maximum stress magnitude of
0.0015.
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Figure 4.12: The steady state deformation parameter D and steady state orientation θ as a function of the Ca
is plotted for a viscoelastic droplet inside a Newtonian matrix. The concentration of the polymer inside the
droplet is given by ηP

ηB+ηP = 0.4, and the confinement ratio for the droplet is 2R
H = 0.47. The De = 1.42, 2.84

correspond to polymer relaxation times of τP = 2000, 4000, respectively. This plot can be reproduced using
the test R237_VISCO_DROPLET with the help of the gnuplot scripts steady_state_deformation.gnu and
steady_state_orientation.gnu. The simulations for different Deborah number De and Capillary number
Ca is handled by the script r237.sh and is registered in gitlab as ISSUE #243. The plots can be found in
the folder final_plots.

3. It is also instructive to look at the polymeric feedback stress magnitudes inside the droplet, for both
increasing Ca and De. This is shown in Figure (4.13). As expected, the tensor feedback stresses are
higher for higher Ca and De, due to stronger velocity gradients of the flow inside the droplet. The
larger deviations from the Newtonian case at higher Ca for De = 1.42, 2.84 can be attributed to the
increase in the magnitudes of the tensor feedback stresses arising inside the droplet.

4.1.3 Conclusion
It is beneficial to conclude this section by summarizing the results obtained from the all validation cases
which were performed, and most importantly: to adopt the knowledge obtained from the validation cases in
simulating the non-Newtonian contact line problem. The summary of the tests are as follows:

1. Couette flow

• The excellent matching for the polymeric shear stress S and the first normal stress difference N
in comparison to theoretical predictions for a steady shear flow showed that the LB model could
be effectively combined with the FD formalism for evolving the dynamics of polymers (governed
by the FENE-P potential) in a simple shear flow.

• In addition, it also showed that the model could simulate shear thinning effects at high Λ, and,
the shear thinning can be delayed by increasing the flexibility of the polymer, controlled by the
parameter L2. This knowledge will be useful in isolating the elastic effects from the shear thinning
effects when simulating the non-Newtonian contact line problem.

2. Steady elongational flow

• It is known that elongational flow generates flow fields which are purely stretching with zero
vorticity, in contrast with the flow field generated in a shear flow. Through this test the elongational
viscosity of a dilute FENE-P solution was obtained from the LB simulations and compared to
theoretical predictions. The matching between theory and simulation suggests that the model is
robust and efficient in predicting the dynamics of FENE-P polymers under different flow condition.
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(a) Ca = 0.145, De = 1.42 (b) Ca = 0.145, De = 2.84

(c) Ca = 0.24, De = 1.42 (d) Ca = 0.24, De = 2.84

Figure 4.13: Contour plots of the feedback stress magnitude from the 2D LB simulation for a viscoelastic
droplet inside a Newtonian matrix for a unity viscosity ratio ( ηA

ηB+ηP ) is shown. The confinement ratio of
the droplet is maintained at a constant value of 2R

H = 0.47 for all the figures shown above. The first
row corresponds to a Ca = 0.145 and the two polymer relaxation times of τP = 2000, 4000 corresponding
to De = 1.42, 2.84, respectively. The color bar indicates the magnitude of the tensor feedback stress
(Equation (4.43)) which ranges from a minimum magnitude of 10−9 to a maximum stress magnitude of
0.00162.
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3. Oscillatory shear flow

• Unlike the previous two cases this test was performed to understand the robustness of the LB under
time dependent flows. For this, the storage and loss modulusG′ andG′′, which is characteristic of a
viscoelastic material, were calculated using the polymeric shear stress signal, once it had stabilized.
An excellent matching of G′ and G′′, as a function of the non-dimensionalized oscillation frequency
(ωτP ), with the theoretical prediction implied that the LB model could handle time dependent
flows.

• However, the LB model seemed to work best when the criteria ωτνs � 1, which necessitates that
the time required for the momentum diffusion from the moving walls should be lesser in comparison
with the time period of velocity signal.

4. Droplet deformation:

• Both, Newtonian droplet in a viscoelastic matrix and Viscoelastic droplet in a Newtonian matrix,
were simulated using multicomponent Shan-Chen LB. The effects of viscoelasticity on steady state
deformation and steady state orientation, as a function of the Ca, were captured very well by the
LB simulations (when compared with the theoretical predictions).

• In addition, as stated at the beginning of the chapter, the values of relevant parameters: (a) mo-
bility µ, (b) smoothing parameter ∆ were obtained for simulating multicomponent flows involving
viscoelastic fluids.

Now, since the role of all the relevant FENE-P parameters: τP , L2, φ and the fluid LB parameters: τ ,
G and µ under various flow conditions have been explored and understood, non-Newtonian contact lines can
now be studied using this knowledge. Hence, first, a simple validation is performed to understand the case
of a Newtonian contact line using the multicomponent LB, following which the non-Newtonian contact lines
will be studied using the features studied in this section.

4.2 Contact lines
In this section the non-Newtonian contact line problem is addressed. Firstly, we describe the Couette flow
model for binary fluid systems in which the contact line problem will be investigated. Following the description
of the Couette model, it’s LB implementation will be discussed and the relevant parameter values will be
presented. The results for the steady state macroscopic contact angle θM as a function of the Ca will be
shown and validated against the theoretical θM vs Ca, using a single free parameter: separation of scales λs.

Once the benchmarking for the case of Newtonian contact lines has been established, the results of the
non-Newtonian contact lines will be discussed in the final section.

4.2.1 Couette flow geometry setup
The problem of dynamic contact lines has been extensively studied in the past few years. Different authors
have adopted different geometries for studying the dynamic contact lines. Jacqmin [19] studied the steady
state and the wetting failure for dynamic contact lines using lubrication theory and phase field simulations in a
Couette flow geometry. Bryant et al. [59,60] studied the dynamic contact lines using phase field LB simulations
for both liquid-gas and binary liquid systems, in a Couette flow setup. Further, Sbragaglia et al. [28] extended
the work done by Jacqmin [19] in terms of theory to study the wetting failure in multicomponent systems with
variable viscosity ratio, χ, separation of length scales, λs, and microscopic wetting angle, θm. The extended
theory was validated with results from the multicomponent LB simulations for the macroscopic θM as a
function of Ca, and, the accuracy in the predictions of diffuse interface measurements towards sharp-interface
theoretical predictions was also addressed.

Hence, considering the amount of literature available on the study of dynamic contact lines for multi-
component systems in a Couette flow, our simulation can be readily compared against existing theoretical
predictions. In addition, the Couette flow model is simple with regards to the implementation of relevant
boundary conditions and also with regards to the run time of a single simulation.
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Fluid A Fluid B

Figure 4.14: The figure represents a schematic of the flow geometry for the problem being studied. The
geometry is infinite in the x direction. 2D rectangular channel with two fluids (Fluid A and Fluid B) are
sandwiched between the top and bottom walls. Fluid A and Fluid B have dynamic viscosities of ηl and ηr,
respectively. The fluids are sheared by the top and bottom walls with a velocity of −Uw and Uw, respectively.
The angle subtended by the interface at the center of the channel is defined as θM , whereas, the microscopic
contact angle of Fluid A at the top and bottom walls are defined as θm,1 and θm,2, respectively. In addition,
the interface profile is captured by the function h(x), where x is set to zero at the center of the channel.

Geometry Description :
The Couette flow geometry used in the LB simulations is described and explained in Figure (4.14).

The Couette flow cell consists of two fluids, Fluid A and Fluid B. The Couette cell is bounded by moving
walls in the y direction: y = 0 (−Uw) and y = H (+Uw), and, periodic in the direction of the shear. The
Shan-Chen multicomponent model is employed for obtaining two immiscible fluids. Fluid A is initialized with
components: ρ1 = 2.0 (major) and ρ2 = 0.1 (minor), and, Fluid B: ρ1 = 0.1 (minor) and ρ2 = 2.0 (major).
The surface tension between the fluids in the multicomponent model is controlled by the interaction strength
G = 1.3 and the total bulk density ρ1 + ρ2 = 2.1 [61]. The viscosity of Fluid A and B are set to a value equal
to ηl = ηr=1.75 and, as a consequence, a viscosity ratio of 1.0 is maintained between them. The microscopic
contact angle at the top and bottom wall for the two fluids are controlled by the wettability parameters GA,wall
and GB,wall [47]. The following values are chosen:{

GA,wall,bottom = −0.22, GA,wall,top = +0.22,
GB,wall,bottom = +0.22, GB,wall,top = −0.22,

(4.44)

where the integer 1 or 2 in the subscript of GA/B,wall corresponds to fluid 1 or 2 respectively, the term bottom
or top corresponds to the top and bottom wall. Hence, a negative value of the G corresponds to a hydrophilic
behavior of the fluid towards the wall, and, a positive value of G corresponds to a hydrophobic behavior.
Therefore, Equation (4.44) suggests that the fluids wet the top and bottom wall with opposite wettability.
This implies that when Uw = 0 the interface between the two fluids is a straight line between the top and
bottom wall whose slope is given by tan(π − θm), where θm is the microscopic wettability.

Now that the Couette flow geometry for the problem has been described in detail, the bench marking for
the case of Newtonian contact lines for a multicomponent system will be performed.

4.2.2 Newtonian contact lines
In this section the bench marking for the case of dynamic contact lines in a Newtonian fluid will be done.
Prior to the benchmarking it is useful to identify the relevant non-dimensional quantities and the observables
for the bench marking.

The requisite equations accompanied by simplifications effected by lubrication theory to describe the
interface in multicomponent systems has been comprehensively dealt by Sbragaglia et al. [28]. Here, the key
parameters from the article will be highlighted and used for bench marking our system:

1. The capillary number for the system is defined as:

Ca = ηlUw
γ

, (4.45)

where ηl is the dynamic viscosity of Fluid A, Uw is the velocity of the wall and γ is the surface tension
between the two fluids.
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2. The viscosity ratio χ is defined as:

χ = ηr
ηl
, (4.46)

where ηl, ηr represent the dynamic viscosities of Fluid A and Fluid B, respectively, see Figure (4.14).

3. The separation of length scales λs is defined as:

λs = ls
H
, (4.47)

where ls is the microscopic slip length and H is the channel height. This quantity represents the separa-
tion between length scales at which the hydrodynamic theory successfully describes flow characteristics
near a contact line. However, it is important to note that in the LB method the no-slip boundary con-
dition is imposed and a diffuse interface is used to regularize the contact line singularity [19,28,60,62].

4. Finally, the microscopic contact angle θm is a parameter which allows for the control of the wetting
angle at the wall, see fig Figure (4.14). The smaller the value of θm, higher the tendency for the fluid
to wet the wall.

The following features of the Newtonian contact lines are studied using LB simulations and they are
compared against relevant theoretical predictions as obtained by Sbragaglia et al. [28]:

1. θM vs Ca: As shown in Figure (4.14), the angle at the center of the channel is determined as a function
of Ca. This is compared against theoretical predictions to determine the scale separation parameter λs.

2. Interface profile: For a particular Ca, using the value of λs, the interface from the LBE simulations is
compared against the theoretical predictions.

3. Velocity profile: For the same Ca the velocity profile at a particular position x
L , where L is the span

of the contact line, and compared against the theoretical results, using the slip length parameter λs. In
addition the velocity field near the contact line is visualized using the velocity vectors.

The above measurements are made in the simulations once they have achieved a steady state. We check for
the steady state by measuring the velocity of the contact line at the top and bottom walls, see Figure (4.15).
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Figure 4.15: In (a) the LB setup for the Couette flow geometry is shown. The contour of Fluid A is shown in
the figure. Equal volumes of Fluid A and Fluid B are initialized inside the Couette flow geometry. In (b) the
magnitude of the contact line velocity at different simulation times are plotted. The blue line corresponds to
the contact line at the top wall and the black line corresponds to the contact line at the bottom wall.

54



Results
4.2.2.1 θM vs Ca

As shown in Figure (4.14), the angle at the center of the channel θM is measured as a function of Ca. To
extract the angle θM a contour plot of the density field on the interface at the level ρav = ρA+ρB

2 , with ρA
and ρB being the densities of Fluid A and Fluid B (see Figure (4.14)), respectively. The result of θM vs Ca is
shown in Figure (4.16) for a microscopic wetting angle of θm =40.48, and, a viscosity ratio χ of 1.0 between
Fluid A and Fluid B.
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Figure 4.16: In (a) θM vs Ca obtained from LB simulations is compared against the theoretically derived
curves, for different values of the scale separation parameter λs. The viscosity ratio of χ = 1.0 is maintained
between the two fluids in Couette flow setup and the microscopic contact angle θm =40.48 is used to derive
the theoretical curves. The value of ρA = 2.00, ρB = 0.06 and the interaction parameter value G = 1.3 is
used, which gives a surface tension γ = 0.0634 and a dynamic viscosity value of ηl = ηr = 0.3433. The BGK
relaxation time for both the components is 1.0 and the multi relaxation time is utilized. In (b) a magnified
view of the plot in (a) for the range of Ca between 0 and 0.001 is shown.

The condition of opposite wall wettabilities is used (see Section (2.2)). Using these parameters the non-
linear boundary value problem, as stated in chapter 2, is solved for various scale separation parameters λs.
LB simulation results are compared to theoretical curves to identify the scale separation parameter λs. We
observe the following:

• In Figure (4.16), for λs = 4×10−4 the LB simulation matches the theoretical prediction. To understand
the sensitivity of the simulated curve to the value of λs, a comparison between a lower λs = 1× 10−4

and a higher λs = 1.5× 10−3 is also shown.

• The critical capillary number observed in the LB simulations (indicated by an arrow) in Figure (4.16)
is smaller than the critical Ca predicted by the theory. This could be due to the finite size effects
introduced by the finite size of the channel.

Using λs obtained above, we also validate the shape of the interface from simulations against theory.

4.2.2.2 Interface comparison

In Figure (4.17) we study the behavior of interfaces for the following parameters: χ = 1.0, θm =40.48,
λs = 4 × 10−4. Before we compare the interfaces obtained from LB with theory, we first compare the
theoretical curves themselves in Figure (4.17a). Following this, the interface is obtained through LB for the
highest Ca before the system reaches critical wetting, Ca = 2.47 × 10−3. We compare this results against
theory as well.

We observe the following:
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Figure 4.17: In (a) the shape of the interface, as obtained from theory, characterized by the normalized y
co-ordinate y

H is plotted against the normalized x co-ordinate x
H , where H is the distance between the walls

(see Figure (4.14)). The shape of the interface is plotted for different values of Ca. The parameters used for
plotting the interface are:χ = 1.0, θm =40.48, λs = 4 × 10−4. The case of Ca = 0 is compared with the
equation of a straight line whose slope is given by π - θm. In (b) the interface shape as obtained through
LBE is compared against the theoretical predictions. The comparison is done for Ca = 0& 2.47× 10−3, for
the following set of parameter values ρA = 2.00, ρB = 0.06, G = 1.3,GA,ads = −0.4. The interface for
Ca = 2.47× 10−3 is compared for three different values λs.

• In Figure (4.17a) the shape of interface at Ca = 0 is benchmarked against the equation to a straight
line y=mx+c with slope m = π − θm and intercept c = 0.5. We see that they match perfectly and
therefore can be used for comparison at higher Ca.

• From Figure (4.17a) we observe that as the Ca approaches towards the Cacr the interface curvature
increases and the position of the receding contact line is pushed backward.

• In Figure (4.17b) the interface shapes as obtained from LBE is compared against the theoretical interface
shapes. Firstly, Ca = 0 is compared with the theoretical prediction. It can be seen that the interface
matches well with theory for y

H > 0.02. For y
H < 0.02 the interface starts to bend and hence deviates

from theory. A similar bending of the interface near the wall is seen for Ca = 2.47× 10−3. For both:
Ca = 0 & .00247 the value of λs = 4× 10−4.

• To probe the sensitivity of the simulated interface w.r.t λs a comparison between a lower λs = 1×10−4

and a higher λs = 1.5 × 10−3 is also shown. The position of the contact line for λs < 4 × 10−4 lags
behind in comparison with the position of the contact line for λs > 4× 10−4.

In the next section the velocity field near the contact is visualized and we try to quantitatively match the
velocity profile with that obtained from theory.

4.2.2.3 Velocity fields

We look at the velocity fields from a qualitative and a quantitative perspective. For this χ = 1.0, θm =
40.48, λs = 4 × 10−4, Ca = 5.362 × 10−4 is chosen. At the cross section x

L=0.5 (L is the span of the
receding contact line) the x-component of the velocity field vx(y) is plotted in Figure (4.18). It is interesting
to observe the velocity vector field u(x, y) near the receding contact line and qualitatively compare it to
Huh-Scriven velocity fields which was introduced in Chapter 2, see Figure (4.18b).

The following are the observations:

• From Figure (4.18a) it is seen that the x-velocity component is quadratic in the y-direction. Hence, it
resembles a Poiseuille-like velocity distribution. In addition, the slip at the wall is negligible and very
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Figure 4.18: In (a) the x-component of the velocity profile vx is plotted as a function of the normalized y
co-ordinate y

H at a location x
L = 0.5, where L is the span of the interface. Spurious oscillations in vx are

observed at the diffuse interface and the position of the interface is indicated in the figure. In (b) the velocity
vector field v(x, y) is plotted for a region close to the receding contact line. The magnitude of the velocities
is represented by the changing color of the arrows at different spatial locations and the color code provides
the magnitude. The black line represents the interface.

close to zero 1.

• However, it can be observed that the magnitude of the velocity gradient for the LB simulation, as
y
H → 0, is higher in comparison to theory. In addition, the magnitude of the velocity at the diffuse
interface (5 grid points) is comparable to the wall velocity Uw.

• From Figure (4.18b) we see that the velocity vectors qualitatively behave in a manner similar to the
Huh-Scriven velocity fields, i.e. when they approach the diffuse interface they take a turn and the mass
diffusion across the interface is low.

• In addition, the spurious velocity vectors at the contact line are high in magnitude, as seen in Fig-
ure (4.18b). However, the velocity of the contact line itself (w.r.t to a stationary frame of reference) is
very close to zero, as suggested by Figure (4.15).

With this we conclude the benchmarking for Newtonian contact lines. For all the three features − θM vs
Ca, interface profile and velocity profile, we have found very good agreement between simulation and theory.
In the next section non-Newtonian contact lines will be investigated.

4.2.3 Non-Newtonian contact lines
We now simulate the non-Newtonian contact lines. As was discussed in Chapter 2 (Section (2.4)), the addition
of polymers to the Newtonian fluid gives rise to an additional time scale, the polymer relaxation time τP . τP
competes with the time scale of the flow and the non-dimensional Weissenberg number Wi is defined as:

Wi = τP γ̇, (4.48)

where τP is the polymer relaxation time, and γ̇ is the shear rate. Based on our knowledge of contact lines
from Chapter 2 we can define two different Wi depending on the position from the contact line. The first
definition can be called the global Wi which is calculated using the global shear rate γ̇global = 2Uw

H . However,
close to the contact line the local shear rate is higher in magnitude when compared to the global shear rate.
Roughly:

γ̇local ≈ Hγ̇global, (4.49)
1When velocity data is extrapolated at the position of the wall, the magnitude of the velocity is negligible.
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where H is the height of the channel in Couette flow geometry and Uw is the LB wall velocity. The above
argument can be rationalized based on the fact that close to the contact line the velocity vectors have to
negotiate sharp turns within a very small height h(x), where x is the distance from the contact line. In a LB
simulation the smallest distance is the distance between any two lattice points and, close to the contact line
the change in the velocity component parallel to the wall is close to 2Uw (Figure (4.19)). Therefore, the local
shear rate γ̇local ≈ Hγ̇global. As a consequence:

Interface

contact line

Figure 4.19: A schematic of the velocity field close to the contact line is shown. The distance from the contact
line is given by the distance x. The height to the interface is given by h(x). The wall velocity is given by Uw
and the direction is towards the positive x-axis. Close to the contact line the change in the x-component of
the velocity of the fluid is approximately twice the wall velocity. In a LB simulation the minimum grid length
is 1 cell. Therefore, the local shear rate γ̇local is approximately H times the global shear rate γ̇global.

Wilocal ≈ HWiglobal. (4.50)

In the following sections we investigate the contact line problem for (a) symmetric wetting, and (b)
asymmetric wetting.

4.2.3.1 Symmetric wetting

Firstly, we investigate opposite wettability for the case where both Fluid A and Fluid B have equal wetting
angles at the top and bottom walls (Figure (4.20)).

We compare the shape of interface at Ca = 1.75× 10−3 for both the receding (RCL) and the advancing
contact lines (ACL) in Figure (4.21). We observe the following:

• At the receding contact line the displacement of the contact line increases as τp decreases. Even though
we observe a trend for the displacement of the contact line for varying τP , it is weak.

• At the advancing contact line the differences in the displacement of the contact line between different
polymer relaxation times are negligible. However, the displacement of the contact line for τP = 0 is the
largest.

In addition to the shape of the interface, interestingly, we observe that the polymer relaxation time τP has
no influence on the critical wetting behavior. In other words the Cacr did not change for different polymer
relaxation times τP . The reason for this can be argued along the following lines.

Critical wetting occurs at a critical capillary number Cacr due to instabilities at the moving contact line.
For the case of symmetric wetting in Newtonian contact lines, the instability at Cacr will occur at both the
top and bottom walls, due to the symmetries in dynamical viscosities η and microscopic wetting angles of
Fluid A and Fluid B (Figure (4.22)). However, when either Fluid A or Fluid B is replaced with a viscoelastic
fluid, the symmetry is broken by the presence of polymers in one of the fluids which introduces additional
normal and polymeric shear stresses. Therefore, contact line instability at the top and bottom wall, might not
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Figure 4.20: Symmetric wetting (θm,1 = θm,2) is depicted. To simulate contact lines for non-Newtonian
fluids, Fluid A is made viscoelastic and Fluid B is Newtonian. The viscoelasticity of Fluid A is controlled
through the polymer relaxation time τP for a fixed L2, and polymeric viscosity ηP . The dynamic viscosity
of Fluid A is the sum of viscosity due to component A (ηA) and due to the polymer (ηP ). For Fluid B the
dynamic viscosity is given by the viscosity of component B (ηB). The viscosity ratio χ between the 2 fluids
is 1.
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Figure 4.21: The interfaces corresponding to the (a) receding and (b) advancing contact lines are plotted
for different τP . In the x-axis the normalized x-coordinate (normalized by the height of the channel H).
Similarly, the y position of the interface is normalized by the height H between the walls. The x position
corresponding to y = H

2 is set to 0. The LB parameters chosen for the simulation are: (a) ρA = 2.00,
ρB = 0.1 and G = 1.3 gives a surface tension γ = 0.1. The BGK relaxation times of the two fluids is given
by τ = 3 which gives a value of dynamic viscosity ηr = ηl = 1.75. The viscoelasticity of the central fluid
is changed by controlling the polymer relaxation time τP . For the above simulations L2 = 104, τP = 0.693,
and, τP = 0 case is where both Fluid A and Fluid B are Newtonian. The above plots can be reproduced using
the test R237_COUETTE_WETTING_MC with the help of the gnuplot script interface_compare_plot.gnu.
The simulations for different τp is handled by the script r237.sh and is registered in gitlab as ISSUE #133.

occur at the same velocities at the top and bottom walls. In other words, the critical wetting at the receding
contact line for the viscoelastic fluid might be delayed in comparison with the Newtonian fluid. The instability
of the interface itself is governed by the smaller of the two wall velocities. Hence, it becomes impossible to
probe the effects of viscoelasticity on the critical wetting behavior.
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Therefore, we adopt a wetting condition which prevents the Newtonian fluid from causing the wetting

failure, and allows us to perceive only the effects of viscoelasticity on critical wetting at the receding contact
line. We impose a microscopic wetting angle of 90o at the bottom wall and maintain the same angle, as the
symmetric wetting case, at the top wall. This ensures that velocities required to cause critical wetting at the
bottom wall contact line is much larger in magnitude than the velocity required to cause critical wetting at
the top wall. This allows us to exclude the contribution of the Newtonian fluid towards critical wetting and
exclusively probe viscoelastic effects on the moving contact line. The next section deals with the asymmetric
case. In the parameter range investigated the symmetric wetting case does not allow us to investigate the
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Figure 4.22: In the symmetric wetting case instability at the contact line can occur due to Fluid A (top wall)
or Fluid B (bottom wall) due to the symmetric conditions in viscosities and microscopic wetting angles.

influence of viscoelasticity on the critical wetting behavior. Therefore, we adopt an asymmetric wetting case
where the microscopic contact angle at the top and bottom walls are changed.

For the case of symmetric wetting we observed that the maximum wall velocity that could be achieved
(before critical wetting) was Uw = 2× 10−4. Therefore, the range of Wi that was simulated was:

τP Wiglobal Wilocal
250 0.001 0.1
500 0.002 0.2
750 0.003 0.3
1000 0.004 0.4

4.2.3.2 Asymmetric wetting

Our aim now is to probe solely the effects of viscoelasticity on the critical wetting behavior. Therefore, the
following set of wetting angles at the top and bottom wall are used:

θm,top ≈ 43o, θm,bottom ≈ 90o.

These wetting angles ensure that the wetting failure will occur first at the top wall. More importantly,
the wetting failure occurs solely due to the viscoelastic component. With this motivation we move ahead
to investigate the contact line at the interface of a viscoelastic component and a Newtonian component.
Before that, we outline the LB parameters used for this simulation using Figure (4.23). A point to note in
Figure (4.23) is that the relaxation time of the two components A and B inside Fluid A and Fluid B are
changed in a way that ensures a viscosity ratio χ = 1.0 = ηP+ηA

ηB
.

Before presenting the results for the asymmetric wetting case, we provide the range of Wi investigated.
The results in the following section are discussed for Ca = 5.25 × 10−3 for which the velocity is the wall
velocity Uw = 3 × 10−4 and H = 120. Therefore, the range of global and local Wi are summarized in the
table:
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Figure 4.23: The setup for studying the contact line in the asymmetric wetting configuration in presented in
the above figure. The density contour plot of component A is shown in the figure. The densities of component
A and B in the channel are initialized to ρA = 2.00, ρB = 0.1 with the interaction strength G = 1.3 between
the two components. The BGK relaxation time of the two components is given by τA = τB = 3.0 inside
Fluid B. However, the relaxation time of the two components inside Fluid A is equal to τA = τB = 1.0.
The distance between the walls is given by H = 120, and, Lx = 1200. With regards to the FENE-P
parameters, the τP of the viscoelastic component is varied between 1000 to 5000, the maximum extensible
length is L2 = 104 and the polymeric viscosity ηP=1.4. The adopt the asymmetric wettabilities at the top
and bottom wall GA,wall,top = −0.22 at the top wall and GA,wall,bottom = 0. Similarly, for component B, the
GB,wall,top = +0.22 and GA,wall,bottom = 0. Finally, Fluid A is made the viscoelastic component and Fluid B
is made the Newtonian component.

τP Wiglobal Wilocal
1000 0.005 0.6
2000 0.010 1.2
3000 0.015 1.8
4000 0.020 2.4
5000 0.025 3.0

We now investigate various aspects of the non-Newtonian contact line.

(a) Shape of interface
In this section the shape of the interface for different relaxation times of the polymer is studied. Here, we
study both the receding and the advancing contact lines. All measurements are made once the simulation has
reached steady state. Steady state is ensured by checking the shape of the interface at 2 different times and
checking for their superposition. In addition, the receding and advancing contact line velocity is monitored
and checked for steady state. Once steady state is ensured, the x-coordinate of the contact line at the bottom
wall are all coincided to a single point and their shape at different heights are compared. This is shown in
Figure (4.24). The following observations are made:

• It seen that for the receding interface the normalized interface profiles start to deviate from about
y
H ≈ 0.5 and upwards . Whereas the deviations for the advancing contact line are more evident from
y
H ≈ 0.2 and upwards.

• With respect to the final steady state position of the receding contact line, we see that the Newtonian
contact line has receded the most. As the Wi increases the displacement of the receding contact line
decreases. However, for the case of the advancing contact lines it is seen that the the Newtonian contact
line has advanced the most. Further, for a higher Wi the displacement of the advancing contact line is
lower.

Further, the shape of the interface can also be characterized by the local slope of the interface for different
Wi. This is shown in Figure (4.25). From Figure (4.25) the following observations can be made:
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Figure 4.24: The interfaces corresponding to the (a) receding and (b) advancing contact lines are plotted
for different τP .τP = 0 case corresponds to the case where both Fluid A and Fluid B are Newtonian. In the
x-axis the normalized x coordinate (normalized by the height of the channel H) is plotted where the positions
of the contact line at the bottom wall are assembled at a single point, for the sake of comparison. Similarly,
the y position of the interface is normalized by the height H between the walls. The above plots can be
reproduced using the test R238_NON_NEWTONIAN_COUETTE_WETTING_MC with the help of the gnuplot script
interface_plot.gnu. The simulations for different τp is handled by the script r238.sh and is registered in
gitlab as ISSUE #182. The plots can be found in the folder final_plots.
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Figure 4.25: The local slope of the interface for (a) receding contact line, (b) advancing contact line. The
above plots can be reproduced using the test R238_NON_NEWTONIAN_COUETTE_WETTING_MC with the help of
the gnuplot script interface_slope_compare.gnu. The simulations for different τp is handled by the script
r238.sh and is registered in gitlab as ISSUE #182. The plots can be found in the folder final_plots.

• Receding contact line: We observe the viscous bending of the interface as the interface approaches
the wall near y = 120. The bending is highest for Wi and as the Wi is increased we observe that the
bending is less pronounced.

• Advancing contact line: Just as in the case the receding contact line the viscous bending is observed
for the case of the advancing contact line, see Figure (4.25b). However, the onset of the bending is
much closer to the wall rather than the earlier onset observed in the receding contact line. In addition,
interestingly, it is similar to the receding contact line in the sense that the bending is most pronounced
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for the case of Wi = 0 and the bending starts to disappear for the case of higher Wi. For the case of
the highest Wi we observe negligible bending.
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Figure 4.26: The normalized total arc length of the interface for the (a) receding and the (b) advancing
contact line is plotted. The total arc length is normalized with the height of the channel H. The total arc
length is calculated by summing the discrete arc lengths dsi =

√
dx2

i + dy2
i for i = 1, · · · , 120.

In the above analysis, a comparison at a single Ca was carried out. However, it is interesting to see what
happens for a range of Ca. For this, we compare the total arc length of the interface as a function of the Ca.
From the above analysis it seems to suggest that the viscous bending of the interface and the displacement
of the interface from it’s initial position is somehow minimized for higher Wi. Therefore, it is interesting to
compare the total arc length as a function of the Ca for the interfaces corresponding to the receding and
advancing contact line. This comparison is shown in Figure (4.26). The following observations can be made:

• Receding contact line: From Figure (4.26a), for the case of the receding contact line it is seen that
the differences between the total arc lengths between different Wi is not observable. In addition, it is
seen that at Ca = 0 the arc lengths are different. This is not expected, since at Ca = 0 τP is not
a parameter. However, it is known that LB method is susceptible to artifacts like spurious currents
which drive velocity fields leading to generation of stresses even at Ca = 0. This departure of the total
interface length is possibly due to these spurious currents.

• Advancing contact line: From Figure (4.26b), similar to the case of receding contact lines, the arc
lengths do not start from the same value at Ca = 0. However, the differences between the arc lengths
become more evident at higher Ca. For the case of higher Ca it is clear that the interface length is
smallest for the case of the highest Wi.

Therefore, in this section the shape of the interface for the non-Newtonian contact lines was investigated
for a range of polymer relaxation times τP . It could be concluded that for the range of Wi simulated here,
significant effects were seen at the advancing interface, whereas, at the receding interface the effect were not
as pronounced. To arrive at this conclusion, we investigated the steady state position of the interface for a
particular Ca, the slope of the interface θ as a function of y, and, finally, we also compare the total interface
length as a function of the Ca.

It is instructive to measure the polymeric shear (S) and normal stress (N ) components near the contact
line to see if the observations of this section can be explained.

(b) Polymeric shear stress and Normal stresses
The polymeric shear stress S(x,y) or σP,xy is measured at the fluid node next to the wall, i.e. y = 120.
Similarly, the first normal stress difference N or σP,xx− σP,yy is measured at the fluid node next to the wall.
We measure both N (x) and S(x) for a Ca = 5.25 × 10−3. The results are plotted in Figure (4.27). We
observe the following from Figure (4.27) for the polymeric shear stresses S(x,y=120):
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Figure 4.27: The first normal stress N (x, y = 120) and the polymeric shear stress S(x, y =
120) is plotted for a Ca = 5.25 × 10−3. The above plots can be reproduced using the
test R238_NON_NEWTONIAN_COUETTE_WETTING_MC with the help of the gnuplot script
normal_stress_plot.gnu and shear_stress_plot.gnu. The simulations for different τp is handled by the
script r238.sh and is registered in gitlab as ISSUE #182. The plots can be found in the folder final_plots.

• Receding Contact Line:

– The magnitude of S is 0 in the region corresponding to Fluid B (Figure (4.23)). Inside the
viscoelastic region the shear stresses are maximum close to the contact line and then decrease and
finally plateau. This implies that the non-Newtonian effects are localized to regions close to the
contact line. This can be rationalized, since that is the location where the shear rates are largest.

– From Figure (4.27a) the magnitude of the polymeric shear stresses are lower for higher Wi. This
could explain why the steady state displacement of the receding contact line decreased as Wi
was increased, see Figure (4.24a). Since, the polymeric shear stresses directly affect the polymeric
viscosity ηP a higher ηP would correspond to a higher viscosity and therefore a higher entrainment.

• Advancing Contact Line:

– Interestingly, for the advancing contact line we see that the gradients of the polymeric shear stresses
are sharper in comparison with the receding contact line. In addition, the magnitudes are also
higher. Therefore, the advancing contact lines are characterized by larger and steeper polymeric
shear stress profiles.

– The second interesting observation is regarding the trend of shear stress profile. It can be seen
that the magnitude of the shear stresses increases with increase in Wi. This is opposite to what
was observed at the receding contact line.

Now we look at the N (x, y = 120):

• Receding contact line:

– From Figure (4.27b), surprisingly, it can be seen that at the receding interface the normal stresses
do not vary in magnitude with an increase in the Wi.

• Advancing contact line:

– For the advancing contact line we see that the magnitude of normal stresses are larger for higher
Wi.

Therefore, from the above observations, we see that at the advancing contact line the magnitude of shear
stresses and the normal stresses are both high. In addition, the magnitude of both the stresses increase with
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an increase in the Wi. However, for the case of the receding contact line, a trend in the magnitude of
the shear stresses is seen, where the magnitude of the shear stresses decreases with an increase in the Wi.
However, surprisingly, the magnitude of the normal stresses do not alter for increasing Wi.

These observations can be used to make a hypothesis. If the polymer in the viscoelastic fluid is replaced by
a Newtonian fluid the polymeric shear stresses and the normal stresses can be replaced with the hydrodynamic
stresses. This leads to a larger displacement of the contact line, as seen in Figure (4.24a). However, increasing
the Wi leads to a decrease in the magnitude of the polymeric shear stresses which seem to exert a force in
the negative x direction on the contact line, which stops it from being entrained. This seems to suggest that
the polymeric shear stresses have the effect of an additional viscosity added to a Newtonian solvent.

Let us apply the hypothesis developed in the previous paragraph and apply it to the case of the advancing
contact line. A higher magnitude of polymeric shear stresses is observed for higher Wi. In addition, the
normal stresses are also higher for higher Wi. From Figure (4.24b), we observe that the interface advances
the least for the highest Wi. Also, from Figure (4.25b) we see that the viscous bending is highest for the
Newtonian case and this bending reduces drastically on increasing the Wi. From the previous paragraph
we hypothesized that the polymeric shear stress is responsible for the entrainment of the fluid through an
"effective" viscosity. If the same hypothesis is applied to this particular case we end up with the conclusion
that the entrainment should be highest for the case of the highest polymeric shear stress which happens to
be for the highest Wi. We see that in fact the interface is "pulled" back for the case of the highest Wi.
However, the involvement of normal stresses on the curvature of interface can only be hypothesized and this
requires a detailed analysis.

To conclude this section we analyze the behavior of the normal and shear stresses with respect to the
analytical predictions of the Oldroyd-B model. According to the Oldroyd-B model (Equation (4.15) and
Equation (4.16) in the limit of L2 → ∞) the expressions for the normal stress N and the shear stress S is
given by:

N = 2ηP τP γ̇2, (4.51)
S = ηP

τP
γ̇τP , (4.52)

and from the above equations we can manipulate to get the following relation between S and N 2:

N
2S2 = τP

ηP
. (4.53)

Equation (4.53) is plotted for the shear and normal stress signals for Ca = 5.25× 10−3 and different polymer
relaxation times τP . This is shown in Figure (4.28). From figure we see that the Oldroyd-B definition of
the polymer is only obeyed away from the contact line for different polymer relaxation times. However, close
to the contact lines the ratio ηP

τP

(
N

2S2

)
becomes negative as well. The reason for this might be due to

the accumulation of errors in the numerical scheme used for the solving conformation tensor dynamics of
the FENE-P polymer [63]. Similarly, the normalized normal stress is plotted for different relaxation times in
Figure (4.29). This is a direct indication of the square of the shear rate γ̇. In this figure we see that the
peaks at the receding contact decrease for increasing relaxation time, and, at the advancing contact line the
peaks show a constant value except for the case of τP = 1000. But drawing conclusions from this plot might
not be accurate, since from the previous analysis we observed that the Oldroyd-B assumption might not hold
near the contact lines.

4.2.4 Critical wetting
In this section we comment on the dependence of the Cacr on Wi. We remind the reader that in the case of
symmetric wetting we observed negligible changes in the Cacr as a function of the Wi. Hence, we decided
to adopt the asymmetric wetting case to ensure that the critical wetting happens at the receding contact line
for the viscoelastic fluid.

For asymmetric wetting case we observed changes in the Cacr as Wi was varied. However, the changes
were very weak. Cacr varied from a value of 5.25× 10−3 to 7× 10−3 for the Wiglobal varying from 0.005 to

2We see that an additional term ηP
τP

is multiplied to both N and S. This is because of the way the polymeric feedback stress
is introduced into the Navier Stokes equation (Equation (3.45)). The entire term ηP

τP
σ
P

is considered as the feedback stress.
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0.025.

Therefore, we can conclude that the critical wetting is delayed by increasing the Wi, or in other words,
the polymer relaxation time τP .

4.2.5 Finite size effects
In this final section, we analyze some aspects related to the finite size effects. In the previous section, all the
numerical simulations were done using a channel length Lx = 1200. However, it is interesting to observe the
influence of length of the channel on the shape of the interface, as well as on the shear and normal stresses.
Therefore, in this section the channel length is increased to Lx = 2400, where the half of the grid points
are allocated to the viscoelastic component and the other half to the Newtonian component, and polymer
relaxation time τP = 5000 and the maximum extensible length square L2 = 104. Firstly, the influence of
channel length on the shape of the interface is investigated. The results for the receding and the advancing
interface is shown in Figure (4.30). It is seen from Figure (4.30a) that for the receding interface the steady
state displacement of the contact line is higher for the larger channel Lx = 2400. In addition, it is seen that
the Newtonian contact lines (N/N in Figure (4.30a)) recede farther back when compared to the viscoelastic
case (N/NN). However, qualitatively they are still similar to the observation in Figure (4.24a). Further, the
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Figure 4.30: The interface corresponding to the (a) receding and the (b) advancing contact line is plotted for
Lx = 2400, τP = 5000, L2 = 104, and compared against the case of Lx = 1200. Here, the N/N corresponds
to the case where both Fluid A and Fluid B are Newtonian, and, N/NN corresponds to the case where Fluid
A is a viscoelastic component, see Figure (4.23).

slope of the interface is compared as a function of distance from the wall is plotted in Figure (4.31). It is
seen that the viscous bending close to the wall for the Newtonian contact line (N/N) for Lx = 2400 is more
in comparison with Lx = 1200. Similarly, the viscous bending in non-Newtonian component (N/NN) for
Lx = 2400 is more in comparison with Lx = 1200. However, the trends previously seen are still retained with
minor changes. For the case of the advancing interface Figure (4.24b) a similar trend as seen for the case
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Figure 4.31: The local slope θ at different y positions for the case of Ca = 1.75×10−3, τp = 5000, L2 = 104

is plotted. Here, the N/N corresponds to the case where both Fluid A and Fluid B are Newtonian, and, N/NN
corresponds to the case where Fluid A is a viscoelastic component, see Figure (4.23).

of the receding interface is observed. The differences in the position of the contact line are not pronounced
when compared to the case of Lx = 1200.

Finally, we also check the influence of finite size on the normal and polymeric shear stresses. This is shown
in Figure (4.32a). Firstly, it can be seen that the differences in S and N for the case of Lx = 1200 and
Lx = 2400 are negligible at the receding contact line. However, at the advancing contact line the magnitude
of the S and N slightly decrease with the increased channel length.

However, surprisingly, we see that the critical wetting occurs at a much smaller Ca when the size Lx
is increased. The case of Lx = 3600 was also attempted, however, the Ca = 1.75 × 10−3 had already
exceeded the Cacr and wetting failure had occurred. The reason for this might be the interacting flow
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Figure 4.32: In this figure the polymeric shear stress S and the first normal stress difference N for τP = 5000
is plotted for the case of Lx = 1200 and Lx = 2400.

features present in the channel and is accounted for as hydrodynamic interactions. A workaround to avoid
the interference of the finite size effects on the measurements made in the system is to implement a special
boundary condition called the rotating boundary condition [28, 60]. However, the rotating boundary condi-
tions has been implemented for the case of opposite wettability and without polymers. The implementation
for the case of arbitrary wetting angles with the addition of polymers is non-trivial and requires additional work.

We conclude the results and findings of the non-Newtonian contact lines in next chapter.
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Chapter 5

Conclusion and Outlook

In this chapter we conclude by summarizing the main findings in this thesis and also discuss some open
questions.

In this thesis we discussed the moving contact line problem for the case of non-Newtonian fluids. In
particular, we investigated the effects of viscoelasticity on contact line motion. In order to carry out this
investigation we adopted the Couette flow geometry, involving wetting of two fluids, Fluid 1 and Fluid 2,
sandwiched between two walls, top and bottom, and separated by an interface. Our findings are as follows:

• We started our investigation by looking at symmetrical wetting of Fluid 1 and Fluid 2, at the top and
bottom walls. We observed that there were differences in the shape of the interface as the viscoelasticity
of Fluid 1 was increased. However, these differences were weak. Further, the influence of Weissenberg
number (Wi) on the critical wetting behavior was also negligible. The reason for this negligible in-
fluence of viscoelasticity on the critical wetting behavior of the contact line is because the Newtonian
fluid reaches critical wetting before the viscoelastic fluid. Hence, the effects of viscoelasticity are not
perceivable.

• To clarify the effects of viscoelasticity on the contact line we introduced an asymmetric wetting condition.
We imposed a neutral microscopic wetting angle (θm,bottom = 90) at the bottom wall, and maintained
a smaller wetting angle at the top wall (θm,top ≈ 43o). This ensured that the critical wetting behavior
at the receding contact line is primarily due to the viscoelastic fluid, instead of the Newtonian fluid.

• For the case of asymmetric wetting we studied (a) shape of the interface and (b) the polymeric shear
stress (S) and the first normal stress difference (N ) near the contact line. For the shape of the
interface, we observed the following:

– The displacement of the receding contact line decreased with increasing Wi. Further, we saw that
the receding contact line for the Newtonian fluid was displaced the farthest. A similar trend was
observed for the advancing contact line.

– We consistently observed that the viscous bending near the wall decreased with increasing Wi.
This was observed for both the receding contact line, and advancing contact line. This seems to
suggest that the non-Newtonian effects reduce the effective friction induced by a moving contact
line. However, this raises the question of whether shear thinning is responsible for such a behavior?
This is currently not addressed in this thesis and is part of an ongoing work.

– Finally, we also measured the total length of the interface for the receding and advancing contact
lines. We observed that the interface length is more sensitive to Wi for the advancing contact
line. An increase in the Wi led to a decrease in the length of the interface. However, the variation
in length of the interface was negligible for the receding contact line when we increased the Wi.
Interestingly, we also found that the interface lengths at Ca = 0 did not coincide. This was
unexpected since the addition of polymer should not have had any influence on the interface at
Ca = 0, because the polymeric stresses are all zero. This might be an artifact of the LB method,
and has to be probed further.

For the polymeric shear stress and the normal stress we observe the following:
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– The viscoelastic effects were confined to a region close to the contact line. This can be rationalized

by considering that the regions of highest shear stresses are the ones closest to the contact line.
Therefore, non-Newtonian effects are observed only close to the contact line.

– Interesting trends appeared for the polymeric shear stress and the normal stress close to the
contact line. For the receding contact line we observed that the magnitude of the polymeric shear
stress S decreased with increasing Wi, whereas, at the advancing contact line the magnitude
of the polymeric shear stress increased with increasing Wi. On the contrary, we observed that
the normal stress N for the receding contact line did not vary appreciably with increasing Wi.
However, at the advancing contact line the normal stresses increased with an increase in Wi.

– Finally, we compared the ratio ηP
τP
N

2S2 in the Oldroyd-B limit, at distances close to and far away
from the contact line. We found that the curves for various polymer relaxation times τP collapsed
into a single curve, indicating that Oldroyd-B behavior is achieved only far away from the contact
lines. Close to the contact lines the magnitude of the stresses for receding and the advancing
contact lines show deviations from Oldroyd-B behavior.

• The dependence of the critical wetting behavior characterized by Cacr was investigated as a function
of Weissenberg number Wi. We observed that increasing Wi delayed the onset of critical wetting.
However, the changes in the Cacr was not appreciable. The Cacr varied from a value of 5.25× 10−3

to 7× 10−3 for the Wiglobal varying from 0.005 to 0.025.

• Finally, we also investigated for any finite size effects and compared it to our previously obtained results.
We observed that increasing the length of the channel Lx gave rise to an increase in the displacement of
both the receding and advancing contact lines. We find this to be worrisome because in principle we are
simulating a channel which is infinite in the x-direction (through the application of a periodic boundary
condition). However, practically, the imposition of a periodic boundary condition on an insufficiently
finite channel may give rise to hydrodynamic interactions between the flow fields present at the receding
and advancing contact lines. On a positive note, the qualitative behaviors of the shear and normal
stresses at different channel lengths are similar. Further, even the viscous bending at the receding
contact line is qualitatively the same across varying channel lengths.

5.1 Open questions
At the end of this thesis we also present some open questions that require additional probing, and that require
further probing. We list them here.

• We consistently observe that the interface shapes for varying polymer relaxation times Wi do not
coincide at Ca = 0. This is unexpected since τP is not a parameter at Ca = 0.

• Influence of finite size effects are certainly worrisome if one is interested in investigating accurately the
influence of viscoelasticity on the critical wetting behavior. One possible solution is to increase the
size of the channel Lx until the features do not change appreciably. However, this also implies that
the simulation requires more time to reach steady state. This makes the approach computationally
expensive. Alternatively, one could adopt a boundary condition which uses the symmetry of the system
to negate finite size effects and reduce computational time. However, this is not an easy exercise and
requires further efforts.
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List of Figures

1.1 Figure (a) shows a photograph capturing the sliding of rain drops on a window pane (the figure
has been taken from https://www.shutterstock.com. The droplet highlighted using red dotted
lines is schematically represented in (b). The window pane is represented as a solid and the
liquid droplet is moving on the solid with a velocity Udrop. The moving droplet constitutes
an advancing and a receding contact line, as highlighted in the figure. The apparent contact
angle at the advancing end and at the receding end of the droplet is different and is given by
the value: θadv and θrec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Impacting of spheres on a water surface for two kinds of sphere surfaces is shown:(a) hy-
drophilic, (b) hydrophobic. In (c) the multiscale nature of a moving contact line problem is
depicted by an advancing contact line. The presence of an apparent dynamic contact angle is
represented by the symbol θap. On further zooming into the contact line region the equilibrium
or the static contact angle is represented by the symbol θe. Finally, on the smallest length
scales of less than 10nm, the molecular picture of the fluid becomes important. Figures (a),
(b), (c) are adopted from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 (a) In this figure a rod is rotated with its end immersed inside the polymeric solute inside a
Newtonian solvent. In the case of a Newtonian fluid the inertia would dominate and the fluid
would move to the edges of the container,away from the rod. Here however the elastic forces
generated by the rotation of the rod (and the consequent stretching of the polymer chains)
result in a positive normal force and hence the fluid rises up the rod. The figure has been
adopted from https://http://web.mit.edu/nnf/ research/phenomena/rod_climb _highres.jpg
(b) The typical shear stress σ in a non-Newtonian fluid as a function of the applied shear rate
γ̇ is shown. Shear thinning fluids are compared against Newtonian fluids and shear thickening. 4

2.1 The schematic of the Huh-Scriven problem is shown in this figure. Two phases A and B are
separated by a wedge whose angle is φ with the wall. The wall is moving with a velocity U (in
either +x or −x directions). The viscosity ratio between the two phases is given by χ. The
radial distance from the contact line is given by r which is composed of a horizontal distance
x from the contact line and a vertical distance y. . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Huh-Scriven velocity fields inside Phase A (Blue) and Phase B (Red) are plotted for
different inclination angles φ and viscosity ratio χ=1.0, refer to Figure (2.1). For the plots the
velocity U is taken in the direction of positive x-axis. It can be seen that as the wedge angle
φ→ 0 the velocity vectors take sharper turns within smaller heights h(x). . . . . . . . . . . . 7

2.3 A schematic of the curved interface near a moving contact line is shown. The contact line
depicted here is an advancing contact line. The microscopic wetting angle and the dynamic
wetting angles are represented by θe (represented from hereon as θm) and θap. The figure is
taken from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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2.4 In (a) the schematic for the Couette flow geometry is shown. Two immiscible fluids Fluid

A (dynamic viscosity ηl, lower wall microscopic wetting angle θm,1) and Fluid B (dynamic
viscosity ηr, upper wall microscopic wetting angle θm,2) are sandwiched between the top and
bottom walls, at a distance H apart, and, form an interface. The length of the channel along
the x-direction is infinite. The top and bottom walls are moved in the opposite directions with
a magnitude of velocity Uw due to which interface is deformed and reaches steady shape h(x),
where x is the distance from the contact line. The measure of the dynamic contact angle θap
(as shown in Figure (2.3)) is the angle at the center of the channel θM . The x co-ordinate at
the central blue point is 0 and the y coordinate is H/2. (b) The quasi-parallel approximation
is depicted. Given very low microscopic wetting angles θm,1 and θm,2 every segment of the
interface ds is almost parallel to the wall [19]. Therefore, an approximation ds ≈ dx is made. 10

2.5 The stable branch of the central channel angle θM (in deg.) is plotted as a function of Ca
for different microscopic wetting angles θm, viscosity ratio χ = 1.0 and scale separation ratio
λ = 10−5. The microscopic wetting angles satisfy the opposite wettability criteria. In the
figure the blue circles correspond to the data obtained by solving the eqn’s Equation (2.18)-
Equation (2.21) for θm = 40o and it is compared against the data obtained from figure 2(a)
in [28]. The critical Capillary number Cacr is pointed for the case of θm = 40o. The points
above the Cacr correspond to stable equilibrium interfaces, whereas, the points below the Cacr
correspond to the unstable equilibrium interfaces. Unstable equilibrium interfaces correspond
to strongly bent interfaces near the wall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 The Maxwell model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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4.13 Contour plots of the feedback stress magnitude from the 2D LB simulation for a viscoelastic

droplet inside a Newtonian matrix for a unity viscosity ratio ( ηA
ηB+ηP ) is shown. The confine-

ment ratio of the droplet is maintained at a constant value of 2R
H = 0.47 for all the figures

shown above. The first row corresponds to a Ca = 0.145 and the two polymer relaxation times
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fluids, Fluid A is made viscoelastic and Fluid B is Newtonian. The viscoelasticity of Fluid A is
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The dynamic viscosity of Fluid A is the sum of viscosity due to component A (ηA) and due to
the polymer (ηP ). For Fluid B the dynamic viscosity is given by the viscosity of component B
(ηB). The viscosity ratio χ between the 2 fluids is 1. . . . . . . . . . . . . . . . . . . . . . . 59

4.21 The interfaces corresponding to the (a) receding and (b) advancing contact lines are plotted
for different τP . In the x-axis the normalized x-coordinate (normalized by the height of the
channel H). Similarly, the y position of the interface is normalized by the height H between
the walls. The x position corresponding to y = H

2 is set to 0. The LB parameters chosen for
the simulation are: (a) ρA = 2.00, ρB = 0.1 and G = 1.3 gives a surface tension γ = 0.1.
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N
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