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Abstract

Nuclear fusion is one of the great promises as a source of energy for the future.
Magnetic confinement fusion, in which a hot plasma is confined by magnetic fields,
is now nearing the point at which more energy is produced by fusion reactions in
the plasma than is put in. This (temporary) net fusion power gain, is the goal
for ITER, the newest fusion reactor that is still under construction in the south
of France. This is also the place where the research is conducted for this Master’s
graduation project. In order to reach the goal of a positive energy balance, a certain
configuration of the plasma, called high confinement mode (H-mode), is essential.
In this H-mode, which was discovered in the 1980’s and of which the details of the
physics are still not exactly known, there is a high pressure gradient at the edge of
the plasma, also referred to as the pedestal. This increases the stored plasma energy
significantly and causes the increase of the energy confinement time by a factor two.

The height of the pedestal (the pressure at the top of the pedestal) is thus an
interesting parameter and it is known that it is increased by increasing the core
pressure, through an MHD effect called Shafranov shift. On top of that, the height
of the pedestal also has a beneficial effect on the core pressure through stiffness of the
pressure profile, resulting in a positive feedback mechanism. This is researched for
other devices, but since a saturation limit for high βN was found in [1], consequences
for ITER regarding this feedback mechanism are not known.

A comprehensive model was created using the ideal MHD equilibrium code HE-
LENA to calculate 2D equilibria and the ideal MHD stability code MISHKA to
calculate stability of these equilibria. HELENA was adapted so that core and edge
pressure can be changed separately. Using this, a parameter scan over βp,ped, βN for
a range of different toroidal mode numbers is done and a relation between maximum
achievable pedestal height and total pressure is found.

Simulations are done for three different ITER scenarios: 15MA/5.3T (Q=10 sce-
nario), 10MA/5.3T (steady-state scenario) and 7.5MA/2.65T (Half field-half current
scenario). For the 15MA and 7.5MA scenarios, no saturation limit was found, but
it was seen that a pedestal width that scales as ∆ψ ∝ β

1/2
p,ped gives a larger increase

of the maximum attainable pedestal height as function of βN . A difference is seen
comparing those to the 10MA scenario. A large region in the researched parameter
space was found to be limited by n = 2 kink-peeling modes, most likely due to a
reverse in shear near the edge, which stabilizes high-n modes. This region causes a
plateau, a range of βN values over which βp,ped is constant. This is not a saturation
limit, but since ITER operation is mostly in this range, it can have consequences
for operation in this scenario.

For the two inductive scenarios (15MA, 7.5MA), a power law relation gives a good
fit for the data. A comparison to experimental values from JET [2] give ballpark
the same value as found for the simulations in which the pedestal width is varied,
for the experiment that resembles ITER conditions most. The steady-state scenario
(10MA) does not agree with the power law relation, so that comparison is more
difficult.

When assuming values of the profile stiffness, consequences for energy confine-
ment can be looked at. For the same scaling as considered in the IPB98(y,2) ITER



scaling law [3], a stiffness of δ = 0.263 is necessary and in order to have a stable
(controllable) burning plasma the stiffness is limited to δ ≤ 0.424. However, since
values for profile stiffness cannot be obtained from other devices, ITER experiments
will have to show how confinement is actually influenced.
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Chapter 1

Introduction

The way energy is consumed nowadays is causing one of the major problems hu-
manity is dealing with right now. This problem, sometimes referred to as the energy
problem, actually has two separate aspects. First of all, the effects of the cumula-
tive emission of huge amounts of greenhouse gases (due to fossil fuels) are known to
be harmful for earth’s environment, and secondly, we are running out of the finite
supply of these fossil fuels, according to estimates within fifty years [4], especially
with the growing demand for energy. Therefore, new sources of energy are needed.

Quite a few of these alternative energy sources are already being developed, but
for most of them there are some fundamental limits. For example, solar energy
and wind energy are limited through their intermittency and low energy density,
whereas others like geothermal energy and hydro power energy require to be located
in a suitable geological setting. On the other hand, there is also nuclear fission,
which has to cope with other problems: radioactive waste, weapon proliferation and
catastrophic nuclear meltdowns. On top of that, the problem of having a finite
amount of available fuel is also applicable to uranium. There are even more options
for alternative energy sources, but they all have their problems. One of the most
promising amongst them, however, is nuclear fusion, which could be a great source
for base load energy supply. [5, Chapter 2]

The problem with nuclear fusion is the enormous difficulty to obtain energy from
it on earth. The idea has been around since the 1950’s and research is still being
conducted in order to achieve a positive energy balance (getting more energy out
than putting in). However, it has great potential benefits, since it is a clean form of
energy that is not location or weather dependent, produces only minimal radioactive
waste, without possibility of meltdown-like events or weapon proliferation and with
enough fuel (consisting of hydrogen isotopes deuterium and tritium) available to
supply energy for at least thousands of years [5, p53], with other estimates that go
up to as far as six million years [6].

Nuclear fusion is the process that occurs in the sun: energy is released when
small atoms fuse their cores together to form bigger ones. The difference in binding
energy (per nucleon) is released when this reaction occurs. This can only happen
when electrons are separated from the core of the atoms. Heating atoms beyond the
solid, liquid and gaseous phases results in the formation of a plasma. This plasma,
also referred to as the fourth state of matter, is a macroscopically neutral ionized gas,
which contains electrons and ions (and in general often also still neutral particles).
This plasma has to be confined in some way to obtain nuclear fusion. The sun uses
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its own gravity for that, but on earth another solution has to be found.
Different kinds of devices and techniques of confinement are currently researched,

but since the research conducted for this graduation project is done at the fusion
reactor under construction called ITER, this device will be taken as example and will
be explained in more detail. Taking advantage of the charge of the particles in the
plasma, it can be confined by magnetic fields. ITER is such a magnetic confinement
fusion device. More precisely, it is a tokamak: an axisymmetric, toroidal (donut-
shaped) device, firstly designed in the late 1950s at the Kurchatov Institute in
Moscow [7].

The idea for ITER (Latin for ’the way’ and an acronym for ’International Ther-
monuclear Experimental Reactor’) already originated in 1985 and is being built as a
collaboration of 35 nations. It is planned to be the first fusion energy device in which
more power is produced through nuclear fusion than is put in the plasma by various
means of heating, thus showing that controlled fusion works as a source of energy on
earth. Since then, great discoveries were already made at other fusion reactors. One
of these is the so-called high confinement mode (H-mode), which was discovered in
1982 at the Max Planck Institute for Plasma Physics (IPP) in Garching, Germany.
An example of a typical H-mode pressure profile is schematically given in figure 1.1,
in which the pedestal is given by the grey area. A strong pressure gradient at the
edge of the plasma (also referred to as the pedestal) arises when sufficient heating
power is applied, as a result of stabilization of turbulence in a region at the edge of
the plasma. The transport then decreases which leads to a strong pressure gradient.
In H-mode the pressure gradient is typically no longer limited by transport, but
by instabilities calculated through a theory called MagnetoHydroDynamics (MHD),
which is a theory in which the plasma is seen as a conducting fluid moving in a
magnetic field. It is mathematically derived from a combination of the kinetic the-
ory (by Boltzmann and Vlasov) and the Maxwell equations. The emergence of a
pedestal results in a better confinement of the plasma compared to a configuration
in which the pressure gradient does not exist. Confinement is measured through the
energy confinement time (τE), mathematically defined as τE = Wp

P−dWp/dt
with Wp

the total energy stored in the plasma and P the total heating power. This energy
confinement time basically says how long it takes for energy to escape the plasma
(and if this is longer, the confinement is better so that more fusion reactions can oc-
cur). Through H-mode τE is improved roughly by a factor two. Although the exact
physics details of the stabilization of turbulence are not completely understood yet
(there are theories), attaining the H-mode configuration is of major importance for
ITER. [8]

In figure 1.2 the distinction between edge and core is schematically depicted in a
poloidal cross section of a tokamak. Also, the so-called separatrix is shown, which is
the transition between closed and open flux surfaces, and the X-point in which the
magnetic field is purely toroidal. The scrape-off layer (SOL) is the region outside
of the separatrix in which the particles are guided to the divertor region, where
energy is subtracted from the plasma. The edge is defined slightly differently in this
project, only taking the region in which closed flux surfaces are still present, up to
but not including the separatrix. This is done because of numerical reasons.

However, there are also still challenges to overcome before ITER can produce
energy. One of these are the so-called Edge-Localized Modes (ELMs), which are
periodic outbursts of plasma that occur in H-mode plasmas, comparable (at least
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Figure 1.1: Example of a pressure profile for H-mode fusion plasmas, with the
pedestal depicted in the region of high normalized poloidal magnetic flux ψ (a radial
coordinate with ψN = 0 in the core of the plasma, ψN = 1 at the edge). βp is the ratio
between kinetic pressure (integrated pressure) and poloidal magnetic field pressure,
which for reasons discussed later (section 2.3) is split in a pedestal part, βp,ped and
a core part, βp,core.

Figure 1.2: A poloidal cross section of a tokamak. Important for this project is the
distinction between core and edge regions, although in this research the edge region
is only up to the separatrix, which is the at the transition of closed flux surfaces to
open field lines. Also of importance is the X-point, at which the magnetic field is
purely toroidal. Figure taken from [9, figure 1].
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in morphology) to solar flares from the sun [10]. ELMs result in higher heat loads
through which eventually the wall can be damaged, although they can also be ben-
eficial e.g. in impurity removal. [11] The dynamics of these ELMs can be described
through the aforementioned MHD theory. From this perspective, it is stated that
ELMs are the result of MHD instabilities at the edge of the plasma that happen as
a consequence of the high pressure gradient and resulting bootstrap current in the
pedestal region.

This is a current that is caused by some fraction of the particles that don’t have
enough energy to overcome the higher magnetic field close to the center of the torus
(a so-called neoclassical effect: an effect due to the three-dimensional shape of the
torus). These particles don’t completely move around but are trapped in trajectories
that are called banana orbits (due to their shape) and in combination with a pressure
gradient this leads to an extra current, self-induced by the plasma, with the name
bootstrap current. On top of that, in general, a pressure gradient causes a large
current especially at the outboard side of the tokamak, also for particles that aren’t
trapped, which can be seen through the R2 dependence, with R the radial distance
from the center of the tokamak, from equation (2.24). Altogether, this leads to a
peak in the current density profile at the edge of the plasma, but especially at the
outboard side of the tokamak. The corresponding destabilized MHD modes that are
seen when ELMs occur are the ballooning modes (driven by pressure gradients) and
peeling modes (driven by edge currents parallel to the magnetic field) or the coupled
peeling-ballooning modes. These are the main candidate of the theory behind ELMs.
[12]

In this Master’s graduation project the relation between MHD stability at the
edge of the plasma and the core pressure will be looked at through numerical codes.
The stable maximum achievable height of the pedestal is larger for higher core
pressures (because of MHD). On the other hand, there is also a transport effect,
called profile stiffness. This is the relation between core and edge pressure, mainly
determined by pressure gradients at every part of the profile. Profile stiffness causes
the core pressure to increase when the pedestal height increases. Combining both
effects leads to a positive feedback mechanism, in which the core and edge of the
plasma influence each other. This feedback mechanism can be benefited from by
heating the plasma, so that core pressure increases and the feedback mechanism
occurs.

However, a saturation of this effect has been found in [1], as can be seen in
figure 1.3. Here you see the pressure at the top of the pedestal as a function of
βN = βt

aBt
µ0Ip

= <p>
B2
t /2µ0

aBt
µ0Ip

with < p > the volume integrated pressure, a the minor
radius, Bt the toroidal magnetic field, µ0 vacuum permeability and Ip the plasma
current. So βN is a normalized quantity that gives a measure of the total pressure. It
is shown that a saturation limit is found in which pped,top, the pressure at the top of
the pedestal, does not increase anymore with βN . Results are given for two different
parameters that can be of influence to fusion plasmas. Firstly, it is looked at for
low and high triangularity, a parameter regarding the shape of the plasma defined
as triangularity = Rga−Rup

a
with Rga and Rup the distance from the center of the

tokamak to respectively the geometrical axis and the upper most vertical point of the
last closed flux surface. A lower triangularity is shown to give a lower pedestal top
pressure and a saturation limit for smaller βN . Secondly, effective charges are looked
at, which are defined as Zeff =

∑
niZ

2
i∑

niZi
giving a measure for the amount of impurities
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in the plasma. Zeff = 1.3 (solid lines) and Zeff = 2.0 (dashed lines) are compared.
These don’t differ very much although the saturation limit gives a slightly higher top
pedestal pressure and, in the low triangularity case it saturates for slightly larger
βN . These are results from simulations with ideal MHD stability code MISHKA,
used to calculate the maximum stable pedestal height. Unfortunately, it is not clear
what kind of instabilities are dealt with here.

On top of the simulations, this core-edge feedback mechanism is also researched
experimentally. An example of research into this is e.g. [2] at JET, results of which
are given in figure 1.4. Here pedestal, core and total energy (volume integral of
pressure) are looked at separately as function of heating power (directed at the
core). It is seen that all increase, with the core increasing faster than the edge.
Also, three different experiments were done: one with a carbon wall (C-wall) with
a high triangularity plasma, and two with an ITER-like wall (ILW: Beryllium with
Tungsten divertor), for both low and high triangularity. Note that, as with most
results for current fusion devices, extrapolation to ITER is uncertain because of size
and other conditions, such as the foreseen relatively large bootstrap current in ITER
compared to current devices. Also note that the high-triangularity C-wall case is
expected to be correspond best to ITER scenarios, because little gas puffing was
needed, so that colliosionality (ratio of the electron-ion collision frequency to the
banana orbit frequency) is low, so that edge bootstrap current is high, which is also
the case for ITER.

Of course, because of the impact on energy confinement of the pedestal, these
findings raise the question what this feedback mechanism will mean for ITER oper-
ation and if there is a saturation limit for ITER. In order to investigate this effect
for ITER, a research question has been established:

Can a comprehensive computational model be obtained by coupling
MHD equilibrium code HELENA and stability code MISHKA, in order
to see to which extent the feedback mechanism between core pressure and
pedestal stability can be beneficiary for plasma confinement in ITER?

This research has been conducted at ITER Organization, under daily supervi-
sion of Toon Weyens (developer of PB3D, a 3D edge stability code which is still
under development). This project will also be supervised by Guido Huijsmans, ex-
pert in MHD (in fusion) and (co-)developer of HELENA and MISHKA, Alberto
Loarte, expert in modeling in the field of nuclear fusion and by Jan van Dijk, expert
on numerical simulations for plasmas more generally (mainly through the Plasimo
code).

The work done in this Master’s graduation project was also presented at the
European Physical Society (EPS) 45th conference on Plasma Physics, through a
poster on july 3rd, 2018. The poster and accompanying four-page paper are given
in Appendix B.
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Figure 1.3: Figure, taken from [1, figure 1], of pedestal height as function of βN , for
both low and high triangularity and for two Zeff values. It clearly shows a saturation
limit at high βN of the pedestal height.

(a) Pedestal energy as func-
tion of absorbed power.

(b) Core energy as function
of absorbed power.

(c) Total energy as a func-
tion of absorbed minus radi-
ated power.

Figure 1.4: Pedestal, core and total energy separately as function of heating power.
Note that in (c) the plotted absorbed-radiated power is slightly different than the
absorbed power that is plotted in the other two graphs. It is looked at for a Carbon
wall with a high triangularity plasma, and two experiments with an ITER-like wall,
for both low and high triangularity. These graphs are taken from [2, Figures 16 and
17].
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Chapter 2

Theory

In ITER, and other tokamaks, magnetic fields are used to create a magnetic pres-
sure that counteracts the outward kinetic pressure of the plasma. There are several
theories that describe this interaction between magnetic field and plasma , but the
theory on which the research in this graduation project is based is Magnetohydro-
dynamics (MHD). MHD is the description of a conducting fluid moving within a
magnetic field [13, p1].

The starting equations on which MHD was built were already well-known, when
in the late 1930s astrophysicists realized that plasmas interacting with magnetic
fields occur very commonly in space and MHD is a valuable theory to describe
this. In engineering, MHD wasn’t broadly used until the 1960s, in which the main
application is for liquid metals in the metallurgical industries. Plasma physicists
have been interested in MHD since the 1950s. For a great part this was a result of
the rise of fusion energy research, but it is also used considering laboratory plasmas.
Since its emergence, valuable theorems have been developed around the MHD theory,
of which the ’energy principle’ (see section 2.2.1) is an example. [13, paragraph 1.2]

In this chapter the MHD theory, or more precisely ideal MHD theory, will be
described. Then it will be shown how this can be used to calculate equilibria and
stability, which is what MHD is used for in the case of fusion plasmas. The afore-
mentioned energy principle and how it is used in order to calculate this stability will
be explained.

2.1 Ideal MHD

The theory of MHD considers a conducting fluid (Navier Stokes equations) in a mag-
netic field (Maxwell Equations). For the ideal MHD theory an extra assumption is
made: the fluid is perfectly conducting. For fusion plasmas this is a valid approx-
imation, considering the plasma resistivity gets very low at the high temperatures
that are dealt with in fusion plasmas. Having a look at the full derivation of these
ideal MHD equations is recommended (described in many books, for example by
Freidberg [14, chapter 2]), but it is outside the scope of this report. The derivation
starts from the Boltzmann equation, taking a statistical distribution function to
describe a particle model in 6D phase-space (three spatial and three velocity dimen-
sions), macroscopic quantities can be derived by calculating mathematical moments
of this distribution function. This results in a two-fluid model. A low-frequency,
short-wavelength approximation and additionally neglecting electron inertia leads
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to the single fluid description. The low frequency Maxwell’s equations are then also
added and in order to close the system, assumptions about time and length scales
are made. This results in the MHD theory, in which resistivity can be neglected
(ideal Ohm’s law) to obtain ideal MHD. This mathematical derivation, that is often
quite tedious and in some cases requires subtle but clever thinking (according to
Freidberg), ultimately leads to the following equations:

∂ρ

∂t
+∇ · ρv = 0 (2.1)

ρ
dv

dt
= J ×B −∇p (2.2)

d

dt

(
p

ργ

)
= 0 (2.3)

E + v ×B = 0 (2.4)

∇×E = −∂B
∂t

(2.5)

∇×B = µ0J (2.6)

∇ ·B = 0 (2.7)

In these equations, ρ is the density, t the time, v the average velocity, p the pressure,
J the current density, B the magnetic field, E the electric field, γ the ratio of
specific heats and µ0 the vacuum permeability. Also, d

dt
≡ ∂

∂t
+ v · ∇ represents the

convective derivative. [14, chapter 2] These equations can separately be recognized
by their physical meaning: (2.1) is the continuity equation (conservation of mass),
(2.2) the conservation of momentum, (2.3) the conservation of (adiabatic) energy,
(2.4) Ohm’s law (ideal), (2.5) Faraday’s equation, (2.6) Ampère’s law and (2.7) is
the divergence constraint on magnetic fields [15].

The derivation of these equations is achieved using three assumptions that limit
the validity of ideal MHD:

High collisionality:
(
mi

me

)1/2
vth,iτii
a
� 1

Small gyro radius:
rL,i
a
� 1

Small resistivity:
(
me

mi

)1/2 r2
L,i

avth,iτii
� 1

(2.8)

in which me and mi represent the electron and ion mass, vth,i the ion thermal
velocity, τii the ion-ion collision time, a the minor radius of the plasma and rL,i
the ion Larmor radius. In practice, these criteria mean that ideal MHD is valid for
relatively large length (compared to the mean free path and gyro radius) and time
(compared to the collision times) scales. [14]

Because of these assumptions, ideal MHD is a mathematically relatively com-
prehensive theory, with a region of validity that is, compared to other more general
theories (e.g. a description of the plasma in 6D phase space with multiple ion
species), quite narrow. When the three assumptions are compared with the condi-
tions of fusion, it even shows the ‘issue’ that theoretically ideal MHD is not valid for
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Figure 2.1: Validity of ideal MHD in density versus temperature parameter space,

for β = 0.05 and a =1 m. Dimensionless variables x =
(
mi
me

)1/2
vth,iτii
a

and y =
rL,i
a

show the three assumptions made for ideal MHD. The theoretical region of validity
of MHD and the region of (n, T ) values applicable to fusion are shown, which, as
can be seen, theoretically don’t overlap. [14, p30]

fusion plasmas, as shown in figure 2.1. The assumptions of small gyro radius and
small resistivity are satisfied for fusion plasmas, but technically the high collisional-
ity assumption does not apply to fusion plasmas. In practice, however, the magnetic
field takes on the role that collisions play, which leads to strong anisotropy, i.e. be-
havior parallel and perpendicular to the magnetic field is very different, introduced
by the magnetic field in toroidal configurations. As a consequence, ideal MHD can
at least be used for the physics perpendicular to the magnetic field, whereas in the
direction parallel to the magnetic field, ideal MHD, in particular equation (2.3), is
almost always invalid. In that case, one has to resort to more general theories. For
many research questions, though, including the one that is dealt with in this report,
the main interest lies in the behavior of the plasma perpendicular to the magnetic
field lines (in that direction, particles and energy escape from the plasma) so that
this is not an issue. Finally it should be mentioned that at the very edge of the
plasma, MHD is often also not valid, and the full dynamics of the plasma must be
taken into account. In that case, more advanced models are needed. However, this
is outside the scope of this project, which only uses ideal MHD. [16]

2.2 Equilibrium and stability

The purpose for which ideal MHD is used in this graduation project, is to look at the
stability of the plasma. However, in order to check whether a plasma configuration is
stable, the equilibrium needs to be calculated first. An equilibrium is a situation in
which the plasma parameters don’t change in time. Perturbing this situation slightly,
stability can be checked. As depicted schematically in figure 2.2, it is stable when the

9



Figure 2.2: Schematic drawing of a stable, neutral and unstable equilibrium.[17]

perturbed plasma is driven back to the equilibrium situation by the forces that act
upon the plasma and unstable when the plasma is driven away from its equilibrium
by those MHD forces. These forces are described by the MHD equations; ultimately
these will be given later in equation (2.13). For equilibria, there is also the indifferent
case which lies in between the stable and unstable situation, which is called marginal
stability. When longer periods of time are considered, going deeper into this matter
one could also look at non-linear stability (taking higher order effects into account)
but this is outside the scope of this report, which deals with linear stability only.

2.2.1 Energy Principle

One of the powerful theorems developed from (ideal) MHD is the Energy Princi-
ple. The mathematics start by linearizing the ideal MHD equations (2.1)-(2.7) as
Q(r, t) = Q0 +Q1, with Q0 the equilibrium quantity and Q1 the perturbation of that
quantity, taking v0 = 0 and defining v1 ≡ ∂ξ

∂t
(letting ξ be the displacement of the

plasma: r = r0 + ξ). By then taking the situation at t = 0 as the equilibrium (all
perturbation quantities zero) with only a small velocity v1(r0, 0) > 0, the linearized
equations are then solved, which gives equations of ρ1, p1 and B1 as a function of
ξ(r0, t). A normal mode expansion is then used: Q(r, t) = Q̃(r)e−iωt. Using this,
the perturbed quantities can be described as functions of the perturbed position and
equilibrium quantities:

ρ1 = −∇ · (ρ0ξ) (2.9)

p1 = −ξ · ∇p0 − γp0∇ · ξ (2.10)

B1 = ∇× (ξ ×B0) (2.11)

Then, approximating products of perturbed quantities as zero and using equation
(2.6) with J0 ×B0 = ∇p0 from the static equilibrium and plugging these into the
linearized momentum equation (linearization of (2.2)) one gets:

F (ξ) = ρ0
∂2ξ

∂t2
= −ρ0ω

2ξ (2.12)

with
F (ξ) =

1

µ0

(∇×B0)×B1 +
1

µ0

(∇×B1)×B0 −∇p1 (2.13)
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the Force operator, which owes its name to the similarity with the F = ma formula.
With the equations for the perturbed quantities (2.9) - (2.11), it can be seen that it
is only dependent on ξ (and equilibrium quantities and constants of nature).

The variational principle [18] can then be used for the stability problem, as is
justified by the hermiticity of the force operator, so that the kinetic energy term
for the linearized energy can be represented by K ≡ 1

2

∫
ρξ∗ξdV and the perturbed

potential energy by δW ≡ −1
2

∫
ξ∗ · F (ξ)dV . The Rayleigh quotiënt can then be

defined as the ratio of the potential and the kinetic energy and the stationary values
can be shown to be equal to the complex normal mode frequency squared [19]:

Λstat =

(
δW

K

)

stat

= ω2. (2.14)

The energy principle states that a sufficient and necessary condition for stability is:

δW (ξ∗, ξ) ≥ 0, (2.15)

which gives rise to a way of calculating stability. [14, chapter 8]
Extending the model to include a vacuum region surrounding the plasma, the

perturbed potential energy can be written as a sum of the fluid energy (plasma
potential energy), the surface energy and the vacuum energy: δW = δWF + δWS +
δWV . These can, as in [20], be written as:

δWp(ξ,Q) =
1

2

∫

plasma

[ |Q|2
µ0

+ γp|∇ · ξ|2 − 2(ξ · ∇p)(κ · ξ∗)− σ(ξ∗ ×B) ·Q
]
dV,

(2.16)

δWs(ξn) =
1

2

∫

surface

[
|n · ξ|2n ·

s
∇
(
µ0p+

B2

2

){]
dS (2.17)

and
δWv(Qv) =

1

2

∫

vacuum

|Qv|2
µ0

dV, (2.18)

with Q ≡ B1 = ∇ × (ξ × B0) the perturbation of the magnetic field, Q defined
as Q ≡ Q − B µ0ξ·∇p

B2 = Q⊥ − B(∇ · ξ⊥ + 2ξ⊥ · κ), γ the adiabatic index, p the
pressure, κ ≡ 1

2B4 (B×∇(2µ0p+B2))×B the curvature of the magnetic field lines
[21, p.736], ξ∗ the complex conjugate of ξ, n the unit vector perpendicular to the
surface, QV the vacuum magnetic field perturbation and σ = J ·B

B2 proportional to
the parallel current. Because of the way it is written here, it can easily be seen that
the first two (positive) terms from equation (2.16) stabilize the plasma, whereas the
last two can be destabilizing. Separately, those two can be recognized to be pressure
gradient dependent or parallel current density dependent.

2.2.2 MHD instabilities: a description of different modes

In this graduation project, MHD is used to look at maximum achievable stable
pedestal height. The height of the pedestal in H-mode is important because the edge
of the plasma adds to the total stored energy of the plasma relatively much, since
this is a volume integral of the pressure. As stated in section 1, this pedestal height
is not limited by transport, but by the existence of MHD instabilities with ELMs
(Edge Localized Modes) as a consequence. In these periodic releases of particles
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(and energy), the pressure slightly drops to a point in which the pedestal is stable,
herewith releasing particles and energy. It then raises again until the pedestal reaches
a point of instability, completing a cycle of the periodicity. ELMs can be a serious
problem for ITER if they are not controlled due to doing damage to the wall. Because
of the size of ITER, energy released in ELMs is larger than in current devices and
thus the first wall components get damage faster. There are two ideal MHD modes
that are known to become unstable during an ELM and are therefore the main
candidate for a theory to explain the ELMs [22]. These are the peeling modes and
the ballooning modes.

The configuration of the magnetic field is important for these instabilities. One
way to express this configuration is through so-called toroidal (n) and poloidal (m)
mode numbers. These indicate the periodicity in toroidal (n) and poloidal (m) direc-
tion. An important quantity connected to this is the safety factor q, mathematically
expressed as q = rBt

RBp
. If this safety factor is equal to a rational number, q = l/k,

field lines close on themselves after l poloidal and k toroidal rotations. A special
case exists when q ≈ m/n. At the radial point where this is the case, the individual
Fourier harmonics locally resonate with the modes, so that instabilities are centered
around these rational flux surfaces. The shear, defined as the radial derivative of
the safety factor s = ψ

q
dq
dψ
, increases the field line bending [23], which is known to

be stabilizing, and it can be seen from e.g. [20, equation (3.9)], that shear increases
this effect.

Peeling and ballooning instabilities can be distinguished by looking at the radial
structure of their Fourier harmonics, in which one harmonic corresponds to a single
poloidal mode number. The superposition of all Fourier harmonics, give a mode
structure for one toroidal mode number, which can be looked at separately because
toroidal harmonics are decoupled in axisymmetric equilibria. The complete structure
has an accompanying growth rate for the instability, equal to the square root of the
imaginary part of the eigenvalue. Mode structures for a typical peeling mode (2.3b)
and ballooning mode (2.3a) are shown in 3D in figure 2.3.

Ballooning modes exist because of pressure gradients. Mathematically, the desta-
bilizing term is represented by the third term in equation (2.16), −2(ξ · ∇p)(κ · ξ∗),
and these are only destabilizing at the low-field side of the plasma. This is because
the curvature generally points toward the center of the tokamak, whereas the pres-
sure gradient always points towards the magnetic axis of the plasma. Therefore
at the high field side they are opposite (negative sign from the dot product gives
a positive term in equation (2.16) which means stability according to the energy
principle, as explained in section 2.2.1), while they are parallel at the low field side
(negative term means instability). Ballooning modes will thus only be destabilizing
at the low field side of the plasma, while being stabilizing at the high field side,
as can be seen in figure 2.3a. Here the low field side is the outboard side of the
tokamak, whereas the high field side is towards the center of the tokamak. Also, the
amplitudes of the harmonics exactly at the edge are zero.

On the other hand, there are peeling modes, which are also edge instabilities,
but not bound to any particular poloidal location. Mathematically described by the
fourth term in equation (2.16), −σ(ξ∗ ×B) ·Q, these modes are driven by a finite
current density at the edge of the plasma. In mode structures, a finite amplitude
of some harmonics is seen at the edge of the plasma and it is often seen that there
is one harmonic having a higher amplitude compared to the others. The definition
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(a)
(b)

Figure 2.3: A typical mode structure for a ballooning mode (a), in this case n = 32
and a kink-peeling mode (b), for n = 1, are shown in 3D. The color or deformation
of the surface give a measure for the amplitude of the perturbation. Both can be
seen to be localized at the edge of the plasma, with the ballooning mode only being
at the low-field side and the peeling mode not dependent on poloidal angle. Figures
are taken from [24, Figure 2]

.

of the peeling mode is not clearly defined, though this is a common definition. The
perturbation of the plasma edge leads to magnetic structures containing O-points
or X-points, which can only be calculated by either taking resistivity into account
or adding a surrounding perturbable vacuum, since field lines can’t reconnect in
ideal MHD and flux surfaces have to be conserved. Since ITER will have a large
bootstrap current compared to current devices,

this edge parallel current may decrease stability as compared to current devices
and it is expected to have a negative influence on the occurrence of ELMs in ITER.

Peeling and ballooning modes separately are both mathematical extremes, but
it is known that in practice, in general, a combination of those modes exists. These
coupled modes are called peeling-ballooning modes. For ELMS, high toroidal mode
numbers (high-n modes) have been found to be important in general. In some
experiments, though, n = 3 modes leading to ELMs have also been seen. Altogether,
these modes limit the height of the edge pedestal, thus limiting confinement and
fusion gain.[25]

Two other modes will also be of importance in this work. These are named
(external) kink modes and infernal modes. External kink modes are very similar to
peeling modes (which are also external), although instead of being caused by finite
values of current density at the edge, it is defined by current density gradients.
Being external here refers to the finite value at the edge of the plasma, whereas
internal modes have an amplitude of zero at the edge. Because they are caused just
by current density gradients, kink modes can also occur in the core of the plasma,
then appropriately called internal kink modes, whereas peeling modes are always
external. In practice external kink and peeling modes are both present, so that
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they are be referred to as kink-peeling modes. Infernal modes are very different
from these current density driven modes. They are always internal modes, caused
by pressure gradients in a region of low shear. [26] These modes can limit plasma
operational space in the center of the plasma, which can lead to disruptions.

2.2.3 HELENA

Equilibria are states in which the plasma is confined and the plasma parameters don’t
change in time, mathematically expressed by ∂/∂t = 0. For a static equilibrium,
there are also no flows involved: v = 0. Plugging this into the ideal MHD equations
(2.1)-(2.7), this leaves us with the following three equations for static equilibria,
which represent the balance of pressure gradient and magnetic force [14]:

J ×B = ∇p, (2.19)

∇×B = µ0J , (2.20)

∇ ·B = 0. (2.21)

Since a tokamak is a toroidally symmetric device, the axisymmetry can be used to
describe the plasma in 2D, although in practice this isn’t perfectly valid because
the real plasma deviates slightly from axisymmetry due to multiple effects. In such
an axisymmetric case, the equilibrium can be described by the Grad-Shafranov
equation. A full derivation can be found for example in [14, paragraph 6.2], but is
outside the scope of this report. B and J can be derived from equations (2.20) and
(2.21) as

B =
1

R
∇ψ × eφ +

F

R
eφ (2.22)

and
µ0J =

1

R

dF

dψ
∇ψ × eφ −

1

R
∆∗ψeφ, (2.23)

with ψ is the poloidal magnetic flux (which can be seen as a radial coordinate
because of the flux surfaces), eφ the unit vector in the toroidal direction, R the radial
coordinate as seen from the center of the tokamak and F (ψ) ≡ RBφ a measure for
the toroidal magnetic field.

Plugging these into equation (2.19), results in the Grad-Shafranov equation:

∆∗ψ = −µ0R
2 dp

dψ
− F dF

dψ
. (2.24)

with p(ψ) the pressure and the operator ∆∗ defined as ∆∗ψ ≡ R2∇ ·
(∇ψ
R2

)
.

In HELENA, bicubic Hermite elements are used to numerically solve the Grad-
Shafranov equation, calculating values of flux surface quantities. It also calculated
the straight field line coordinate system from which MISHKA can calculate stability.
[27]

2.2.4 MISHKA

From perturbing the equilibria calculated by HELENA, (in)stability can be deter-
mined. Starting with the ideal MHD equations for static equilibria (2.19)-(2.21),
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the quantities ρ,v,B and p are linearized as Q = Q0 +Q1 with Q0 the equilibrium
quantity and Q1 the perturbed quantity, separating the spatial and time-dependent
parts according to Q(r, t) = Q̃(r)eλt, so that λ = −iω, with ω the perturbation
frequency. The equilibrium velocity is equal to zero, since only static equilibria are
considered: v0 = 0. The perturbed magnetic field is then written as the curl of a
perturbed vector potential: B1 = ∇ ×A. The perturbed vector potential is then
discretized through:

A(r, t) = eλt
∑

m

Amn(ψ)einφ+imθ (2.25)

with λ, n a toroidal mode number and the summation over a finite number of
poloidal mode numbers m. The Galerkin method is then used to solve as an eigen-
value problem for λ, giving stability for λ < 0 (mode amplitude decaying in time)
and instability for λ > 0 (mode amplitude increasing in time). In contrary to the
axisymmetric equilibrium, the stability calculations are done in three dimensions.
[28]

2.3 Core pressure effects on MHD pedestal stability
The pressure at the top of the pedestal (the height of the pedestal), is, as aforemen-
tioned, an important ingredient in the recipe of fusion power on earth, because of the
relatively large increase in stored plasma energy with the pedestal height. It is seen
in experiments that this height depends on the pressure in the core (although this is
often not taken into account in transport codes) [30]. It is also seen that the pedestal
height depends on the Shafranov shift, which is a displacement of the flux surfaces
in the radial direction towards the low field side [31]. It is schematically shown in
figure 2.4 and can mathematically be approximated by ∆(0)

a
≈ εβp

0.342
1+5.7(pped/p0)1/3

, as
was found by Javier Artola in unpublished work at ITER, with ∆(0) the Shafranov
shift at the magnetic axis, a the minor radius of the plasma, ε = a

R
, the aspect ratio,

which is the ratio of minor to major radius, βp is the poloidal beta, pped the pressure
at the top of the pedestal and p0 the pressure in the core (at ψ = 0). The Shafranov
shift is larger for higher core pressures as a result of the MHD equations, as seen
from the mentioned equation.

A model for this effect can be obtained, when defining the pedestal pressure,
pped, as the pressure at the top of the pedestal. Using this, the poloidal beta, βp
or βp,tot, defined as the ratio of the kinetic energy of the plasma (volume integral
over the pressure profile) and poloidal magnetic field energy, βp,tot = <p>

B2
p/2µ0

, can be

separated in two parts. The pedestal poloidal beta, βp,ped =
<p>ped
B2
p/2µ0

, in which only
the integral of the pressure up to pped is taken into account, which is mathematically
given by

< p >ped

4π2aR
=

∫ ψN,ped

0

ppeddψN +

∫ 1

ψN,ped

p(ψN)dψN (2.26)

with ψped the ψ-coordinate at which the pedestal height is maximum. Also, the core
poloidal beta is defined, βp,core = <p>core

B2
p/2µ0

, in which the integral is taken from pped
upto the maximum value as

< p >core

4π2aR
=

∫ ψN,ped

0

(p(ψ)− pped) dψN . (2.27)
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Figure 2.4: Schematic view of the Shafranov Shift effect. Due to plasma pressure, the
magnetic axis shifts from the center of the plasma (left) to further to the outboard
side (right). The difference in radial coordinate is the Shafranov shift, given by ∆,
or ∆(0), when spoken about the shift at the magnetic axis, although it can be given
at any coordinate. [29]

This way, both add up to the total poloidal beta: βp,tot = βp,ped + βp,core. This is
also shown schematically in figure 1.1.

The interplay between the core and the pressure has been researched before (see
e.g. [1]) and it is believed this is a self-amplifying feedback mechanism, in which
an increase in the core leads to a larger stable pedestal height through a higher
Shafranov shift, which then again raises the pressure in the core because of the
profile stiffness of temperature and pressure profiles, i.e. it is being forced to keep
the same profile shape as a result of the critical gradient everywhere in the profile.
However, in this research, it was also found that this effect might be limited for high
normalized β, βN = βtor

aBT
IP

(in which βtor = <p>
B2
t /2µ0

), which raises questions on its
applicability to ITER.

In practical situations the benefits of this effect are taken advantage of by increas-
ing the core pressure through heating, which kicks off he feedback mechanism. In
this model the two parts of the feedback mechanism are treated separately. Firstly,
the maximal attainable pedestal height is a function of the total pressure through
MHD, driven by the Shafranov shift. HELENA- and MISHKA-simulations are used
to obtain a relation for this part of the model. The relation is assumed to be a
power law:

βp,ped ∝ βαp,tot (2.28)

in which α is the parameter that is obtained from the results of the simulations.
The second part of the model, the stiffness, gives the coupling to heating input

power. This is defined as a relation for the ratio of the core and the pedestal, in
which again a power law is assumed:

βp,core
βp,ped

∝ P δ
in (2.29)

with Pin the input power and δ representing the stiffness.
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Ultimately, this can then be compared to a scaling law, in which results from
different fusion reactors are used to obtain a relation between the energy confinement
time and several important quantities for fusion, of which one is the input power.
The scaling law that is used for ITER H-mode, IPB98(y,2) [3, p.2204], gives a
relation between the thermal energy confinement time in ELMy H-mode (in seconds)
and important engineering variables:

τELMy
E,th = 0.0562I0.093B0.15P−0.69n0.41M0.19R1.97ε0.58κ0

a.78, (2.30)

with I the plasma current in MA, B the toroidal magnetic field in T, P the loss
power in MW, n the line average density in 1019m−3, M the average ion mass in
AMU, R the major radius in m, ε the inverse aspect ratio, the ratio between minor
and major ratio and κa an alternate definition (see [3, section 6.4]) of the elongation,
the ratio between the long and short side in an elliptically shaped plasma. The total
stored energy can then be written as Wtot = τE · P , which is equal to the volume
integrated pressure so that it is equal to βp,tot multiplied by a constant factor. From
this, a relation between energy and the input power is obtained, according to:

Wtot ∝ P γ
in (2.31)

with γ = 0.31 in IPB98(y,2). This scaling law does not mention different behavior
for pedestal and core. Implicitly, it is assumed that they scale linearly, which would
be given by α = 1 in equation (2.28). However, since a limit to the effect, or at least
a faster growing βp,core than βp,ped, is expected, a more realistic value of α would be
positive but smaller than 1.

2.4 ITER confinement and scaling law comparison
Combining equations (2.28) and (2.29), can then give us a comparison of this model
in which core and edge are treated separately, to compare with both experimental
data in which this is looked at separately (i.e. [2]) and the aforementioned scaling
law in which there is no distinction. This is done by rewriting

βp,core = βp,tot − βp,ped (2.32)

and replacing βp,ped by using equation (2.28). Inserting this in equation (2.29),
results in

βp,tot − βp,ped
βp,ped

=
βp,tot
βαp,tot

− 1 = CβW ·W 1−α
tot − 1 (2.33)

with CβW the constant to convert β into energy. Because of this relation only being
a multiplication with this constant, in this context they can be treated similarly
within the same formulas. Alltogether, this then leads to

Wtot =
(
C1

(
1 + C2P

δ
in

)) 1
1−α (2.34)

with C1 the proportionality constant of equation (2.28) and C2 of equation (2.29),
both here including a factor to write as energy instead of β). Since this can not
directly be compared to equation (2.31), the input power is calculated from some
values of Wtot obtained from the MHD simulations. The obtained values of Wtot
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can then be plotted against the values of input power Pin. Since this is not exactly
according to the power law relation of equation (2.31), another fit has to be done.
These calculated values of Wtot are fitted against that same power law relation,
Wtot ∝ P

γfit
in , so that γfit is obtained from the fit. This can then be compared to

the actual γ from the IPB98((y,2) scaling law [3].
Another thing that has to be taken into account is that γ also has an upper limit,

which is due to plasma control reasons. In order to keep manual control over the
plasma, it is necessary that a temperature perturbation decays in time. Otherwise
a temperature change results in a temperature excursion in which the perturbation
amplifies itself. In this unstable burn the plasma fusion power controls itself. It is
found from internal calculations at ITER that this is limited by γ ≤ 0.5, in which
case the state of the plasma can be controlled more actively, which is desired.
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Chapter 3

Numerical method

As discussed in section 2.3, heating the core of the plasma affects the edge stability.
The way how the core pressure and edge stability influence each other, then gives
information on how the edge pedestal can be increased in ITER. Because of this,
the stored plasma energy is increased and thus the energy confinement time, so that
confinement is improved. The theory was discussed in section 2.3 and in this chapter
the methods are described in more detail. Two numerical codes are used: HELENA
(described in section 2.2.3) is used to calculate an axisymmetric equilibrium for
the different pressure profiles and MISHKA (described in section 2.2.4) is used to
calculate their stability.

3.1 HELENA parameters
A HELENA input file is generated by ASTRA simulations (ASTRA is a transport
code) that are done for different ITER scenarios by Alexei Polevoi. These have to
be adapted because of the different pressure profiles and an example of one of the
adapted HELENA input files is given in Appendix C.1. Also, an example of an
input file used for MISHKA is given in Appendix C.2.

In order to create different pressure profiles, two parameters are added into
HELENA (betap_ped and corep in the input file) to change the core pressure and
the pedestal height separately. Preliminary work for this was done by Javier Artola
in unpublished work during his Master’s project. It is shown in figure 3.1 how these
parameters change the pressure profile. The pedestal beta parameter changes the
height of the pedestal so that the integrated pressure up to the pedestal height gives
an equal βp,ped, as discussed in section 2.3 through equation (2.26) to that of the
input file. The core pressure is then changed by multiplying the whole dp

dψ
profile

with the function

− 0.5 · (tanh

(√
ψ − psiped

0.02

)
− 1) · (corep− 1) + 1. (3.1)

This way the core is multiplied by a factor corep smoothly changing to a multi-
plication of just one at the edge, through a hyperbolic tangent. As a consequence,
only the core pressure changes whereas the edge pedestal stays the same. Note that
βp,ped is determined in an iterative process by a multiplication of the entire normal-
ized profile so that it converges to a pressure profile in which βp,ped is equal to the
set value. This means that the core pressure and core profile change along with
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Figure 3.1: Shown how the pressure profile is changed with the two pressure profile
parameters that are implemented in HELENA. Both are changed separately, in (a)
βp,ped and in (b) the core pressure parameter.

the change in βp,ped and thus βp,core is not completely independent of betap_ped.
However, since a parameter scan is done in a 2D parameter space, this is not a
problem. The corep parameter can be changed as a function of βp,ped so that all of
the parameter space, where an equilibrium exists, can be covered.

In order to use these parameters, some changes in the HELENA input file have
to be made compared to the ASTRA output. Firstly the point of the start of
the pedestal has to be determined. For this project, this is done using the second
derivative of the pressure profile to determine the top of the pedestal. For the
reference case, the value of the second derivative at the pedestal top radius is taken
and when the pedestal is made wider, this same value of the second derivative is
found, so that the new value of ψ at which the pedestal top is, is an actual grid point
in the coordinate system. The psiped input parameter, being the psi coordinate at
which the pedestal top is located, is then used in the calculation of βp,ped.

Also, by changing this psiped parameter as a function of βp,ped, the pedestal
width can be varied. In this work the assumed relation between the pedestal width
and height is ∆ψN ∝ β

1/2
p,ped, according to the EPED pedestal model [32], which

results in an approximately constant pedestal width in real space coordinates (in
meters). Simulations for each scenario are done for both a constant and a varying
pedestal width. The different scenarios are discussed in section 3.3.

A final point is to realistically increase bootstrap current with pedestal height.
In the HELENA file the bootstrap current is calculated, after the simulations are
done, by a formula as derived in [33]. The height of the peak of the bootstrap current
is then manually determined for some cases to approximately being the same as is
calculated. Also the current at the edge is forced to approximately zero. This can be
seen in figure 3.2: the blue line adapted to the same height as the red line, which is
the calculated bootstrap current. A formula for the bootstrap current density peak
height as function of βp,ped is then determined by an interpolation of the test cases.
For this comprehensive model this is thought to be sufficient, since differences in
height are rather small, as are the deviations from zero at the edge. These are found
to be the most important influences on edge stability, so that this should make the
model accurate enough. In this process, the total current is kept constant.
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(a) βp,ped = 0.16 (b) βp,ped = 0.19

(c) βp,ped = 0.215 (d) βp,ped = 0.24

Figure 3.2: Change of the bootstrap current for different β′p,peds, for the 10MA
scenario with constant pedestal width. In blue the used current profile, with the
bootstrap current manually matched at the edge, and in orange the bootstrap cur-
rent as calculated by HELENA with the neoclassical formula after calculation of
the equilibrium. Since it is assumed that bootstrap current is dominant only at the
edge, but not in the core, it only matches there.
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3.2 MISHKA parameters

With the calculated equilibrium, MISHKA then calculates the stability for a range
of mode numbers and grid accumulation is used near the edge (for both HELENA
and MISHKA) in order to get better results. The range of mode numbers is typically
n = [2−40], which was chosen after examination of the modes that typically occur in
each case. An important parameter is sbegin. This sets a lower limit to the radial
coordinate for which stability is calculated, so that only s =

√
ψN ≥ sbegin is taken

into account. This is used to focus on the edge, without taking all internal modes
into account. Also, the n = 1 modes are left out of consideration because these are
known to possibly cause internal kink modes, in the core of the plasma, before the
pedestal limit is reached. Since for this work, pedestal stability is the main interest,
these instabilities in the core of the plasma are not looked at and therefore n = 1
is omitted. In this research sbegin is taken to be 0.5. Also, convergence is checked
by comparing the eigenvalues calculated in the last two iterations. If this relative
change is smaller than 10−6 it is said to be converged. If a solution is converged the
absolute value of the eigenvalue is also check and if this is smaller than 10−4 it is
assumed to be stable. Also, since both HELENA and MISHKA, can’t numerically
deal with the X-point in the ITER-plasma, only coordinates ψ ≤ 0.99 are taken into
account.

The coupling of this code is done through a python script that submits jobs to
the ITER cluster. That way around one hundred jobs are done at the same time,
each doing one HELENA run and subsequent MISHKA run, with a lot of different
MISHKA runs (different toroidal mode numbers) for every equilibrium. Each job
uses HELENA and MISHKA files with parameters changed to calculate equilibrium
for a certain pressure profile (change several HELENA parameters) and do this for
every toroidal mode number (changed in MISHKA input file). Simulations take
about one to four days per scenario. This is only for constant or varying pedestal
width, so both takes double that time.

3.3 A look at different ITER scenarios

In order to prepare as well as possible to obtain the ITER goals, experiments are
planned in detail. These are all described in internal documentation on which the
contents of this section are based. Globally, there are four phases. A first plasma
phase, in which it is shown that a (hydrogen) plasma can be created, although it
doesn’t have the properties of a fusion plasma yet. Only at the end of this phase,
the first wall components are installed. After that, the Hydrogen/Helium phase is
started, in which fusion plasmas are researched, so it can be seen if results from
current machines and models are applicable to ITER. At the end of this phase,
all heating systems should be available. Then the Deuterium (D) phase is started,
in which more studies are done, e.g. on H-mode and (tungsten) impurities and
nuclear operation is started. Also, in this phase the full machine commissioning is
completed (completing heating and current drive systems, diagnostics and more).
The last phase is the Deuterium-Tritium (DT) phase, in which it is planned to
achieve a fusion gain (the ratio between fusion power produced in the plasma and
the input power) of Q = 10, according to the mission of Q ≥ 10. After this is
accomplished, non-inductively driven plasmas are also planned and finally the full
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(a) Safety factor profiles
(b) Zoom on reversed global shear in the
q profile of the 10MA scenario.

(c) Pressure profiles (d) Current density profiles

Figure 3.4: Safety factor (a), pressure (c) and current density (d) profiles for all
three different scenarios in which s <= 0.5 (the grey area) is not taken into account.
In (b), a small part of the 10MA q-profile is shown, in which there is a negative
global shear, that is likely to be the cause of the region of low-n kink-peeling modes.
Real values can be found in figure A.4 in appendix A.2, with pressure center values of
around 1 MPa (15MA), 200 kPa (7.5 MA) and 900 kPa (10MA), and current density
center values around 8 MA/m2 (15MA), 2 MA/m2 (7.5MA) and 900 MA/m2.(10MA)

potential of ITER fusion power amongst other research plans, although these are
not planned in full detail yet.

For this work, three scenarios are looked at in detail. A 15MA/5.3T full current,
full field scenario, a 7.5MA/2.65T half current, half field scenario, which are both
inductive scenarios and a 10MA/5.3T steady-state scenario. The geometry is shown
in figure 3.3 for the 15MA case, although differences in geometries in the different
scenarios are negligible. Other details of all of them are discussed in more detail
below.

For the three cases, the normalized profiles of the safety factor, pressure and
current density of the reference case are plotted in figure 3.4, with the grey areas
not being taken into account in the stability calculations. It stands out that the
safety factor at the edge is much higher for the 10MA case, which is due to the lower
current with the same magnetic field (q = rBt

RBp
∝ Bt

It
). Also, the pedestal β of the

10MA case is relatively much lower, although absolutely that is not the case (150
kPa (15MA), 100 kPa (10MA), 30 kPa (7.5MA)), as can be seen from figure A.4 in

23



Appendix A.2.

3.3.1 Q=10 scenario: 15MA-5.3T

Figure 3.3: Geometry of an ITER
plasma, with the boundary of the
plasma shown in green and the
vacuum vessel in blue. This is
for the 15MA scenario, but all
plasma shapes are similar.

Firstly, a 15MA/5.3T (full current, full magnetic
field) scenario, as part of the DT phase is cho-
sen. In this scenario the power gain should reach
Q = 10. This is chosen, because of the impor-
tance of this scenario in the planning of ITER:
it will be showing that the ITER goal of Q ≥ 10
can be accomplished. In order to do this, the
core-edge feedback mechanism can be especially
important. To reach H-mode 50MW of auxil-
iary power is used. In this scenario an average
electron density of < ne >= 11.2 · 1019, edge
safety factor of q95 = 3.2, core temperatures of
Te0 ≈ Ti0 ≈ 24keV and energy confinement time
of τE = 3.7s are expected to be achieved.

3.3.2 Half field-Half current sce-
nario: 7.5MA-2.65T

The 7.5MA/2.65T used is from the Deuterium
phase, in the ITER planning it is done to inves-
tigate properties of H-mode in ITER and to look
at how scaling laws extrapolate to ITER. The
amount of auxiliary power used here 53MW. Ex-
periments can then be done in preparation of in-
creasing both current and field. This scenario is
chosen because normalized MHD quantities are
the same as the 15MA/5.3T scenario, so it can
be compared to this scenario. The difference is
in the profiles that are different. Especially note
the bump in the current density profile, the (smaller) bump in the pressure profile
in figure 3.4 and the safety factor being constant further towards the edge (up to
around s ≥ 0.6. This is caused by off-axis neutral beam injection, which is also
slightly larger (PNBI ≈ 12MW ) than for the Q=10 scenario (PNBI ≈ 10MW ). The
deviation from the axis is because at lower density, < ne >= 3.6 · 1019 for this sce-
nario, beams penetrate beyond the core. Since the total NBI power is the same, the
beam driven current is the same, which means that for the 7.5MA scenario (thus half
current) the beam driven fraction is twice as high as for the 15MA scenario. Other
parameters are the edge safety factor q95 = 4.0, electron/ion core temperatures of
Te0 = 16keV and Ti0 = 11keV and energy confinement time of τE = 1.8s.

3.3.3 Q=5 steady-state scenario: 10MA-2.65T

Finally, a completely different case is chosen with a 10MA/5.3T steady-state sce-
nario, which takes place during the DT phase. It is meant to succeed the ITER goal
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of Q ≥ 5 in steady-state. This scenario is mainly chosen because of the high value
of the safety factor at the edge, that is known to be important for edge stability. In
this case that is q95 = 5.9 and in such a scenario these are high because improved
confinement and stability are shown in such experiment at current device only for
high edge safety factor.

Steady-state refers to the fact that there is no inductively driven current, i.e.
no ohmic heating after start-up, as opposed to the inductive scenarios, where most
current is driven inductively, or the hybrid scenarios, in which about half of the
current is driven inductively and the other half non-inductively. Since inductive
current drive limits the pulse length, for the steady-state ITER scenarios a longer
pulse length is expected. To achieve this non-inductive current, 79.5W of auxiliary
power is used. In this scenario, the average density is < ne >= 5.9·1019, electron/ion
core temperatures of Te0 = 16keV and Ti0 = 11keV and energy confinement time of
τE = 2.6s.
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Chapter 4

Results and discussion

Simulations can be done as described in chapter 3, covering a range in the parameter
space of βp,ped and βN , with a certain range of toroidal mode numbers. The n = 1
modes are as said not taken into account.

For each scenario discussed in section 3.3, stability is determined for all toroidal
mode numbers for all different pressure profiles. This is done for both constant and
varying pedestal width. The most unstable point is plotted in the stability graphs
(figures 4.1, 4.3, 4.5 and 4.7), in which stable points are empty circles and otherwise
the most unstable toroidal mode number is given by the color. There are also some
empty spots, which are points where an instability was calculated by MISHKA but
after examining the mode structure, these are considered to be only of numerical
nature and not real instabilities. For the core modes that are found around s = 0.5,
the plots of the mode structures are shown with a range in radial coordinates of
s ≥ 0.1 and without using grid accumulation near the edge. This is done to see
the complete mode with more points in the region where it exists. This is done
only for a few points (for all scenarios) after the regular simulation were done. In
these regular simulations all points are done with grid accumulation at the edge
and s ≥ 0.5 in order to focus on edge modes also when core modes are found. By
looking at a couple of these core instabilities, it was concluded that all of them are
real instabilities. The dark crosses in the stability graphs represent the reference
cases, which are directly taken from ASTRA simulations.

4.1 15MA-5.3T constant pedestal width

For the 15MA case, the stability graph is given in figure 4.1 and the positive relation
between maximum achievable pedestal height and βN clearly shows. It stands out
that the reference point (βp,ped ≈ 0.135, βN ≈ 1.95) is at the boundary of stability
limited by the pedestal height. This is not a coincidence, but is enforced by ASTRA.
Results of the EPED pedestal stability model [34] are used to push to the limits
of edge stability. By using a different approach, namely MISHKA, it is also found
in this work that the point is limited by the pedestal height. Besides the limit by
pedestal height, there is also a global limit that limits the total pressure. For high
βN , the exact value only slightly depending on βp,ped, with βN between 2.7 and 3.1,
instabilities are found that lead to a disruption, in which confinement is quickly
lost and the plasma is destroyed, herewith doing damage to the machine. Looking
at the maximum achievable pedestal heights again, in theory, the path could be
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followed from the reference point to higher total and pedestal β, βN ≈ 3.05 and
βp,ped ≈ 0.145, but in practice ITER will not have enough heating power to achieve
the complete path. However, if this would be possible and fusion energy is assumed
to scale with the core pressure squared, Pfus ∝ p2

0, an increase in fusion power by a
factor of 3.7 (from 0.86 MPa to 1.66 MPa) would theoretically be possible.

To get a better understanding of the instabilities, the mode structure is looked at
for a couple of points in the stability graph, as can be seen in figure A.1. The radial
dependence of a poloidal harmonic, which are given by Amn(φ) in equation (2.25), are
plotted. These mode structures are made by the so-called ’fast’ option in MISHKA,
which automatically choses a range of poloidal mode numbers, different for each
toroidal mode number, that are resonant, i.e. m ∼ nq, which causes instabilities.
As a consequence, a peaked behavior can be seen in the mode structure, since one
line can correspond to different poloidal mode numbers.

What can be seen in this scenario is that instabilities for high βN are most
unstable for a toroidal mode number around n = 40, whereas for high βp,ped unstable
modes are closer to n = 30. The unstable modes for high βp,ped are peeling-ballooning
(edge) modes, whereas the unstable modes for high βN are internal (core) modes,
the so-called infernal modes.

The first equilibrium looked at, is an unstable point just at the stable-unstable-
boundary, for low βN , as shown in the lower left plot of figure A.1. Each line gives
the radial dependence of the poloidal harmonic, of which the amplitude is given
by Amn in equation (2.25). This is clearly an edge mode, and it is recognized as a
peeling-ballooning mode, due to, as explained in section 2.2.2, a large part of the
harmonics lying within the plasma, although there are also still poloidal harmonics
with a finite value at the edge. Going further along the boundary gives similar
(slightly broader) peeling-ballooning modes, as is also shown in the upper right
graph. These peeling-ballooning modes are also found going to higher βp,ped (not
shown). However, when going to large values of βN the mode structure no longer
shows an edge instability. For, in this case, starting from βN ≥ 2.8 (for low βp,ped),
core instabilities can be found, as can be seen in the lower right plot in figure A.1.
These core instabilities are called infernal modes, which were already discussed in
section 2.2.2. These infernal modes are known to be caused by a combination of a
high pressure gradient and low shear. The physical consequence of these infernal
modes, has to do with what Troyon discovered already in the 1980’s, which is now
known as the Troyon limit. This is caused by global kink and ballooning modes as a
consequence of global pressure gradients (the total pressure profile considered). As
mentioned, this leads to disruptions. It is known that this gives a limit at βN ≈ 4li
[35], with li the internal inductance, which is also seen here since li = 0.73 for this
scenario. Growth rates are 0.047 for the infernal mode, 3.9 · 10−4 for the low βN
peeling-ballooning mode and 3.9 · 10−4 for the high βN peeling-ballooning mode.
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Figure 4.1: Stability graph for the 15MA, 5.3T scenario. βp,ped vs βN , in which for
each point the most unstable mode is depicted. Empty circles give stable modes
and for the unstable modes, the most unstable toroidal mode number is given by
the color. The original ASTRA point is given by the cross.

Figure 4.2: Mode structure for three points of the 15MA case with constant pedestal
width, with also given which point it is in the stability graph from figure 4.1. For
these stability calculations the ’fast’ mode of MISHKA is used, in which the mode
numbers are chosen automatically.
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4.2 7.5MA-2.65T constant pedestal width
The Half current-half field scenario (7.5MA-2.65T) is very similar to the 15MA case.
This is also expected, since the combination of half current and half field yields iden-
tical normalized MHD quantities. However, due to off-axis neutral beam heating,
which is also relatively much more power than for the 15MA case, a combination of
a flat q-profile with a steep pressure gradient causes the infernal modes to occur for
much smaller βN , also more depending on βp,ped, around βN ≈ 1.6− 2.0.

The modes that are seen for the 7.5MA scenario, are similar to the 15MA sce-
nario, with peeling-ballooning modes for high βp,ped and infernal modes for high βN ,
although it can be seen that mode numbers until n = 60 are taken into account.
This was done because the interval of n = [2, 40] was found to be too narrow, so
that higher mode numbers were taking into account to give more details. It can be
seen that, indeed, small regions of different mode numbers are found to be the most
unstable, with mode number around n = 50 for the peeling-ballooning modes. The
limit for high βN is still caused by infernal modes, also with slightly higher toroidal
mode numbers going up to n = 60 for the most unstable mode. Also, the reference
point (βp,ped ≈ 0.15, βN ≈ 2.05) is not exactly at the most stable pedestal height,
but it is very close. This difference can be attributed to effects other than MHD.

Finally, for this scenario, the mode structures, as can be seen in figure 4.4, are
almost the same as for the 15MA case. The biggest difference between the 15MA
and 7.5MA cases here is the exact structure of the occurring infernal modes, which
in the 7.5MA scenario is only consisting of one peak, whereas for the 15MA scenario,
it is a broader structure. Growth rates are 0.0037 for the infernal mode, 0.044 for
the low βN peeling-ballooning mode and 0.205 for the high βN peeling-ballooning
mode.
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Figure 4.3: Stability graph for the 7.5MA, 2.65T scenario. βp,ped vs βN , in which
for each point the most unstable mode is depicted. Empty circles give stable modes
and for the unstable modes, the most unstable toroidal mode number is given by
the color. The original ASTRA point is given by the cross.

Figure 4.4: Mode structure for three points of the 7.5MA case with constant pedestal
width, with also given which point it is in the stability graph from figure 4.5. For
these stability calculations the ’fast’ mode of MISHKA is used, in which the mode
numbers are chosen automatically.
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4.3 10MA-5.3T constant pedestal width

For the 10MA case, the large region of n=2 modes stands out, but for lower βN
the mode numbers for the instabilities limiting βp,ped are lower for the 10MA case
(around n=10) compared to the 15MA case (around n=30). This can be explained
through the higher stable βp,ped, which is a logical result of a lower current with
the same magnetic field, which is known to stabilize MHD. Note that this is βp,ped,
not the absolute pressure, which can be seen in section A.2 for the reference case.
The higher βp,ped results in a relatively higher edge bootstrap current (compared to
the core current density), i.e. the fraction of the pedestal current from the total
current is much larger. This leads to low-n modes, which is recognized to be the
same behavior that is also seen in [36, figure 13]. Here instabilities are shown in a
graph where Iped/Itot is plotted versus pped. The higher Iped/Itot ratio, that is seen
for the 10MA scenario, results in the low-n modes.

Because of these n = 2 modes, there is a ’plateau’ around βN = 2.0 in which the
maximum stable pedestal height doesn’t increase (or at least increases much slower)
when changing βN . This is due to the safety factor, q, which is getting close to a
rational number (5.5 in this case), giving unstable modes. For example, the five
n = 2 modes at βp,ped = 0.20 have values for the edge safety factors of, from low
to high βN , q95 = 5.37, 5.39, 5.41, 5.42, 5.44, showing a build-up towards q = 5.5,
after which stability is again found for larger βN at the same value of βp,ped = 0.20.
This is because a rational q means that field lines close on themselves so that, when
the perturbation is aligned with q there is no field line bending, which is known to
be stabilizing, as explained in section 2.2.2. With further increasing βN , q changes
so much that stability can be reached again, so that the stable pedestal height can
be increased again. For higher βN and βp,ped an area of n = 3 modes can be seen.
To go from n = 2 to n = 3 is a fifty percent increase in toroidal mode number,
whereas between higher-n modes this is a relatively smaller step. Therefore, since
low-n modes alternate slower, a much larger area of low-n modes can be seen.

All of this is thought to be caused by the small ’wiggle’ of reversed global shear at
the edge of the q-profile, as can be seen in figure 3.4b, which are known to stabilize
high-n ballooning modes [37], so that the low-n modes appear. Another difference
is the place of the reference point, which is clearly not limited by the height of the
pedestal, but by high βN (infernal modes). This is because this case was designed
to push the limits of ITER, by having high pressure gradients in the core of the
plasma. These gradients are present, because the high bootstrap current in the core
needs to compensate for the missing inductively driven current, so that steady-state
can be reached. More elaborate simulations on this scenario were also done at ITER
and there it was seen that it is near the limit of stability. Therefore, although the
reference point is even just in the unstable part, here it could also be interpreted as
marginally stable.

The mode structures, see figure 4.6, show that modes in the high βp,ped region,
outside of the n = 2 region, in the lower left plot, are peeling-ballooning modes
although lower mode numbers than for the 15MA case (around n = 10 instead of
n = 30 in the 15MA case), the mode structure looks very similar. However, when
looking at the mode structure of the n = 2 modes, in the upper right plot, these show
a relatively high amplitude for one mode at the edge. This finite value of current
density, especially for one harmonic, is characteristic for a kink-peeling mode, as
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was discussed in section 2.2.2. The smaller n = 3 region shows similar modes. It is
possible that these low-n localized kink-peeling modes lead to a saturated mode, the
so-called quiescent H-mode, or QH-mode, in which ELMs are replace with EHOs,
edge harmonic oscillations, that shows a similar periodic behavior, but without the
devastating outbursts of energy. [31] It must be noted that such low-n kink-peeling
modes in general have been found to be sensitive for the value of q at the edge and
they might be stable in a real x-point plasma.[38] Therefore in some models, it is
chosen that these modes are not taken into account.

Again, the high βN instabilities are infernal modes, as can be seen in the lower
right graph of figure 4.6. These are now a bit wider (looking at the main structure),
consisting of more toroidal mode numbers and shifted slightly towards the edge:
highest peak around s = 0.5 instead of s = 0.4, as was the case for the 15MA case.
Growth rates are 0.142 for the infernal mode, 0.097 for the low βN peeling-ballooning
mode and 0.0613 for the kink-peeling mode.
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Figure 4.5: Stability graph for the 10MA, 5.3T scenario. βp,ped vs βN , in which for
each point the most unstable mode is depicted. Empty circles give stable modes
and for the unstable modes, the most unstable toroidal mode number is given by
the color. The original ASTRA point is given by the cross. For these stability
calculations the ’fast’ mode of MISHKA is used, in which the mode numbers are
chosen automatically.

Figure 4.6: Mode structure for three points of the 10MA case with constant pedestal
width, with also given which point it is in the stability graph from figure 4.5.
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4.4 Varying pedestal width

The pedestal width is then varied according to ∆ψN ∝ β
1/2
p,ped, so that it is ap-

proximately constant in real space. This change in pedestal width in poloidal flux
coordinates is a process that has been seen in experiments to happen spontaneously.
For these simulations, the ASTRA simulation is used as the reference point to scale
the pedestal width.

When compared with the reference case, a lower βp,ped than the reference case,
would give a lower pedestal width. With the same gradient, this leads to a lower
achievable stable pedestal. For a βp,ped higher than the reference case, the opposite is
true. This gives a wider pedestal, for which the same gradient gives a higher pedestal.
Overall, the change in βp,ped would then be expected to be bigger for the same change
in βN (lower βp,ped for low βN and higher βp,ped for high βN). This effect can clearly
be seen for the 7.5MA and 15MA scenarios. For the 15MA scenario, for basically the
same range of βN , the constant pedestal width gives βp,ped = [0.125, 0.145], whereas
for the varying pedestal width this is βp,ped = [0.105, 0.16]. For the 7.5MA scenario,
the constant pedestal width gives βp,ped = [0.13, 0.155], while for the varying pedestal
width there is a range of βp,ped = [0.125, 0.17].

However, for the 10MA case this is not seen, as for both a constant and varying
pedestal width, the range of pedestal heights is the same: βp,ped = [0.18, 0.225].
Although slight differences between constant and varying pedestal width are seen
(e.g. the plateau is slightly wider), there is not a big difference between the two. It is
believed that this is the case because for these kink-peeling modes, it is the gradient
at the edge, which doesn’t change with changing the width, that is important. For
the peeling ballooning modes, on the other hand, it is the integral of this gradient,
i.e. the pedestal height, which does change, that is important.
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(a) 15MA, 5.3T (b) 10MA, 5.3T

(c) 7.5MA, 2.65T

Figure 4.7: Stability graph for all scenarios, with the pedestal width scaling as
∆psi ∝ β

−1/2
p,ped , normalized to the ASTRA reference cases. βp,ped vs βN is plotted, in

which for each point the most unstable mode is depicted. Empty circles give stable
modes and for the unstable modes, the most unstable toroidal mode number is given
by the color. The original ASTRA point is given by the cross. Note that the axes
ranges are not exactly the same.
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4.5 Derivation of a relation between pedestal and
total pressure from MHD stability graphs

For all scenarios, we can then take the most stable points, only including those for
which βN is large enough to have passed the L-H transition, which is about βN > 1.5.
This can be calculated from the formula

βN,minHmode = βNref

(
PL−H
Pref

)0.67

, (4.1)

[A. Loarte, private communication], resulting in βN,minHmode ≈ 1.57.
A relation between pedestal and total pressure, in terms of poloidal β, can be

derived for both assumptions: either keeping the pedestal width constant (from
sections 4.1, 4.2 and 4.3) and or varying the pedestal width with the square root of
βp,ped (section 4.4), as described in section 3.1.

For all different scenarios, for both constant and varying pedestal width, the
most stable points (beyond the L-H transition) are plotted together in figure 4.8.
The fit according to equation (2.28), βp,ped ∝ βαp,tot, is plotted, with the determined
value of α. As mentioned, the higher βp,ped for the 10MA case is because of the
lower current to magnetic field ratio. The difference between the 15MA and 7.5MA
cases exists because of different pressure and current density profiles (with the small
βp,tot maximum because of off-axis neutral beam heating). This is because different
ASTRA reference cases were chosen.

For the inductive scenarios, it is clear that a varying pedestal width gives a
stronger relation than a constant pedestal width. For each line, taking only the first
and last points the relative increase in both βp,tot and βp,ped can be calculated and
this can be compared. For the 15MA scenario, the constant pedestal width gives a
12% increase in βp,ped for an increase by a factor 2 of βp,tot. For the varying pedestal
width there is a similar difference in βp,tot by a factor 2.11, but a larger increase
of βp,ped by 28%. For the reference point, compared to the most left point, which
is assumed to be just after the L-H transition, an increase in βN of 23% gives an
increase in βp,ped of 8%. For the 7.5MA case, the constant pedestal width gives an
increase in βp,tot of 42% and an accompanying increase in βp,ped of 7%. For a varying
pedestal width in this scenario, a 51% increase in βp,tot gives an increase in βp,ped of
17%. This shows that the (more realistic) assumption of the varying pedestal width,
is necessary to make the core-edge feedback mechanism a valuable effect for ITER.

For the 10MA case, firstly, in the fit it can be seen that the power law relation,
equation (2.28), is not suitable. Also, it doesn’t change when varying the pedestal
width. Both effects are related to the nature of the modes that are found, as ex-
plained in sections 4.3 and 4.4. It must be noted that the region of βp,tot that is
achievable for ITER, up to around βp,tot ≈ 1.1 for the 10MA case, is within the
region of the plateau. Therefore, in this scenario the core-edge feedback mechanism
might only be useful for a small range of βp,tot values near at the high end of what
is achievable for ITER.

This plateau could also be the saturation of the effect that is (thought to be)
found in [1]. However, they didn’t find a subsequent rise in βp,ped because βN wasn’t
increased enough, or that wasn’t possible, so that a saturation limit was concluded,
instead of the plateau that is seen in this work. This is thus only found for the 10MA
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steady-state scenario as no saturation limit (or plateau) is found for the 7.5MA or
15MA inductive scenarios.

The values of α resulting from the fit, can be compared to experiments. In [2, fig-
ures 16 and 17], the core energy and the pedestal energy, which are similar definition
as βp,ped and βp,core, are looked at separately as function of power. Combining those,
values of the power law relation between βp,ped and βp,core can be found, and for three
different scenarios, they are given in table 4.1. These scenarios are: a carbon wall
with a high triangularity plasma, an ITER-like wall (ILW) with high triangularity
and an ILW with low triangularity. It should be noted that, as mentioned before in
chapter 1, due to the experimental conditions the carbon wall experiment represents
ITER most. This is because in this experiment, gas puffing is low, so that collision-
ality is low, which results in a high bootstrap current at the edge of the plasma, as
is also the case for ITER. Especially comparing the value of α from this experiment,
αCwall = 0.412, to the values of the inductive scenarios with varying pedestal width,
α7.5MAvw = 0.416 and α15MAvw = 0.319, these values are in good agreement.

It must be noted that the experiments described in [2], are hybrid scenario ex-
periments. It could mean that a difference in inductive or hybrid scenario, has no
effect on the relation between βp,ped and βp,tot. However, it could also mean that
the agreement is just a coincidence that exists because the difference in conditions.
Thus, although it seems that simulation of ITER agree with experiments that resem-
ble ITER conditions, not enough research is done to make a thorough comparison
between experiments in current devices and the simulations done in this work for
ITER.

Table 4.1: Values of α calculated from [2] for three different experiments: a carbon
(C) wall, and for an ITER-like wall (ILW) with both a high and low triangularity
plasma configuration.

α from [2]
C-wall high triangularity 0.412
ILW high triangularity 0.788
ILW low triangularity 0.619
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Figure 4.8: For different scenarios, both a simulation with constant and one with
varying pedestal width are done. The most stable pedestal heights are taken from
figures 4.1, 4.3, 4.5 and 4.7, only for βp,tot greater than the L-H threshold. These
points are fitted to the relation βp,ped ∝ βαp,tot, with α given for all fits.

4.6 Comparison to scaling law

As mentioned before, the IPB98(y,2) gives a scaling law, τELMy
E,th ∝ P−0.69, so that

W = τE · P ∝ P 0.31. However, the results from this project only give half of the
core-edge feedback mechanism, namely the MHD part, given by equation (2.28).
To include the transport part, given by equation (2.29), a value for the stiffness
is needed. Since no data about this for ITER is known, different values for the
profile stiffness ,δ in equation (2.29), are assumed. Taking the points of the 15MA
scenario with varying pedestal width from figure 4.8, an input power, Pin, can be
calculated through equation (2.34). As explained in section 2.4, the values of βp,tot
can then be plotted against the calculated Pin values and it can be fitted for equation
(2.31), however with another γ then the IPB98(y,2) scaling law, thus: Wtot ∝ P

γfit
in .

Note that these cases are normalized on the reference case. The difference in βp,tot
here and the expected value of βp,tot ≈ 0.65 is because fast particles are not taken
into account, which are indeed expected to deliver about ten percent of the total
pressure. For each assumption of stiffness δ, this fit can be made and a value for γfit
is obtained. These fits and the values found for γfit for each δ are given in figure
4.9. This is done for stiffnesses in the range of δ = [0.1, 0.6]. The resulting values of
γfit turn out to give a linear relation with δ:

γfit = 1.18δ. (4.2)

Because an expected value of this δ, the stiffness parameter, for ITER is not known,
hard conclusions can’t be drawn from this. Also it is not possible to extrapolate the
value of this stiffness from experimental data, e.g. [2]. However, an interesting value
is that for which γ = 0.31, the IPB98(y,2) value. For that a stiffness of δ = 0.263
is necessary. Another interesting value is for which γ = 0.5, which, as explained
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Figure 4.9: Fit through βp,tot, taken from the point of the 15MA scenario with vary-
ing pedestal width, for which α = 0.32, in figure 4.8, as function of Pin, calculated
from equation (2.34), for different assumptions of profile stiffness δ. This results in
a γfit for each δ, from a fit according to βpol,tot ∝ P

γfit
in .

in section 2.4, is the boundary between a stable and unstable burning plasma. To
keep a stable burning plasma, δ = 0.424 is the maximum value of the stiffness that
should be obtained.

Even though the stiffness is not exactly known, an estimate can be made of the
impact of this effect on confinement. When looking at figure 4.8 again, let’s consider
the 15MA case with varying pedestal width. The point with the lowest βp,tot is
assumed to be just after L-H transition. Without any feedback effect, this scenario
the pedestal height would be constant at βp,ped ≈ 0.125. To go to the reference case
(around βp,tot ≈ 0.58 and βp,ped ≈ 0.135, it would be an increase of 8%. Moreover,
when enough power would be available to use the effect all the way up to global
instability, and increase of 28% could be reached. Since it can be assumed that the
pedestal carries about half of the energy of the plasma, confinement increases only
by half of this. This estimate would thus give an increase of 4-14% of confinement
due to the core-edge positive feedback mechanism. This is thus dependent on the
amount of heating power available, and the total effect of course also depends on
core confinement.
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Chapter 5

Conclusions and future work

A comprehensive model using axisymmetric ideal MHD equilibrium code HELENA
and stability code MISHKA is created, in order to research the positive feedback
mechanism between core pressure and edge stability in ITER. This feedback mech-
anism was found to have limits in other devices, but that was not found in the
scenarios that are researched for ITER.

There are two sides to this feedback mechanism: MHD, through Shafranvo
shift, and transport, through profile stiffnes. The MHD part is researched numer-
ically. MHD simulations are done for different scenarios: two inductive scenarios
(15MA/5.3T and 7.5MA/2.65T) and one steady-state scenario (10MA/5.3T). For
all of these, firstly a constant pedestal width was assumed, after which the model
was refined to take into account a pedestal width varying according to the EPED
model [34].

For the inductive scenarios the maximum attainable pedestal height is limited
by peeling-ballooning modes. For the beneficiary effect on the pedestal height by
increasing total pressure no saturation limit to the pedestal height is found. However,
the effect is eventually limited by infernal modes in the core of the plasma for large
βN , which lead to disruptions. In both inductive cases, however, the strength of the
effect is only practically valuable if the pedestal width is scaled more realistically to
the pedestal height, rather than keeping it constant. Therefore the varying of the
width is shown to be a necessary refinement in this model.

In the steady-state scenario the maximum attainable pedestal height is limited
by low-n kink-peeling instabilities, at much higher values of βp,ped, compared to the
inductive scenarios. A clear saturation limit is not found here either, but in the range
of βp,tot that ITER operates in, there is a plateau for which the pedestal height is
constant for a range of βp,tot. This plateau is possibly the apparent saturation limit
that was found in [1].

Comparison with experimental results from JET [2] shows good agreement of
the inductive scenarios in which the pedestal width is varied, with the experiment
that is most resemblant to ITER conditions. It might be possible that experimental
results from current devices are a good estimate for ITER, although more research
is needed to confirm this.

The other side of the feedback mechanism is determined by transport. Since
no values of profile stiffness are known for ITER, these are assumed theoretically.
Using this, two interesting values of the stiffness are looked at. In order to obey the
IPB98(y,2) ITER scaling law, a value for the stiffness of δ = 0.263 is determined to
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be necessary. Furthermore, to keep a stable burning plasma, a stiffness of δ ≤ 0.424
is found to be needed.

Only looking at the MHD results, gives an estimate of the increase in confinement
that can be obtained through the feedback mechanism in ITER. An increase of 4-
14% in confinement is estimated, which depends on the available heating power.
Also, not knowing the exact details of core confinement gives an uncertainty here.

Although a lot of information can be taken from this research, further research
is required. Especially for the steady-state scenario, it should be looked at whether
this plateau still exists for simulations using more sophisticated theories than ideal
MHD. These can include resistive MHD, with a finite resistance, or extended MHD,
taking higher order effect into account that can be described by a single fluid.

Also other cases can be investigated such as, for example, a lower triangularity
case since it was seen it has a definite impact. Also, a hybrid scenario could be
chosen. When this is done, a further comparison with [2] can be made. Further-
more, other plasma parameters can be studied and the framework developed in this
graduation project can be applied to other tokamaks, so that direct comparison with
experiments becomes a possibility.

Finally, another thing that is found experimentally is that the position of the
maximal gradient in the pedestal can shift outward, which is especially seen when
Tungsten is present [39]. This is an effect that could be added to the model.

It was shown with this comprehensive model that the effect of the core-edge
feedback mechanism differs within ITER operational space. The interesting results
from this work shows some details about ITER operation. Combining this with
future research will help going towards the development of ITER and fusion energy
on earth.
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Appendix A

Additional graphs

A.1 Mode structures

The 2D mode structure are given for the edge modes, for the three different scenarios,
for a constant pedestal width. For the peeling-ballooning modes it shows that modes
are also localized at the high field side, although they are larger at the small field
side, typical for a peeling-ballooning mode.
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A.1.1 15MA-5.3T

Figure A.1: 2D Mode structure for the 15MA case with constant pedestal width,
with also given which point it is in the stability graph from figure 4.1.
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A.1.2 7.5MA-2.65T

Figure A.2: 2D Mode structure for three points of the 7.5MA case with constant
pedestal width, with also given which point it is in the stability graph from figure
4.5.
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A.1.3 10MA-5.3T

Figure A.3: 2D mode structure for two edge modes of the 10MA case with constant
pedestal width, with also given which point it is in the stability graph from figure
4.5.
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A.2 Non-normalized current density and pressure
profiles

In figure A.4, the current density and pressure profiles are shown that were also
shown in figure 3.4 are here given without normalization, so that real values are
shown.

(a) Current density profile
for 15MA/5.3T case.

(b) Current density profile
for 7.5MA/2.65T case.

(c) Current density profile
for 10MA/5.3T case.

(d) Pressure profile for
15MA/5.3T case.

(e) Pressure profile for
7.5MA/2.65T case.

(f) Pressure profile for
10MA/5.3T case.

Figure A.4: Current density and pressure profile for all three scenarios with real
values on axes.
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Appendix B

EPS conference

B.1 Poster
The poster as was presented on the EPS conference is shown on the next page.
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• Positive feedback mechanism between core and edge

• MHD: 𝛽𝑝𝑒𝑑 = 𝑓(𝛽𝑐𝑜𝑟𝑒) Shafranov shift

• Transport: 𝛽𝑐𝑜𝑟𝑒 = 𝑔(𝛽𝑝𝑒𝑑) Profile stiffness

• Saturation of pedestal height for high 𝛽𝑁 in ASDEX-Upgrade [1]

• JET experiments done to investigate core and edge separately

• Is this positive feedback expected in ITER, will there be saturation ?

• Results of EPED model → ASTRA reference at 

stability boundary

• High 𝛽𝑝𝑒𝑑 limited through edge instabilities

• Peeling-ballooning modes

• high 𝛽𝑁 limited through core instabilities

• Infernal modes.

2. Model

• Ideal MHD → different pressure profiles → simulate edge stability

• Defining 𝛽𝑝𝑒𝑑 and 𝛽𝑐𝑜𝑟𝑒 so that 𝛽𝑝𝑜𝑙𝑜𝑖𝑑𝑎𝑙 = 𝛽𝑡𝑜𝑡 = 𝛽𝑝𝑒𝑑 + 𝛽𝑐𝑜𝑟𝑒 → vary core and edge separately

• Numerical: 

• HELENA: 2D Grad-Shafranov equation for equilibrium

• MISHKA: stability 

• Reference case from ASTRA-CORSICA simulations

• Adaptation

• Pressure profile in HELENA

• Pedestal width can be varied: Δ𝜓𝑁
∝ 𝛽𝑝𝑒𝑑

1/2

• Bootstrap current in HELENA realistically scaled

• Take only 𝑠 = 𝜓 > 0.5 in MISHKA → exclude core modes

• Scan  over {𝛽𝑁, 𝛽𝑝𝑒𝑑}→ highest stable pedestals

• Relation between 𝛽𝑝𝑒𝑑 and 𝛽𝑡𝑜𝑡 deduced

• Assume power law: 𝛽𝑝𝑒𝑑 ∝ 𝛽𝑡𝑜𝑡
𝛼

• 𝛼 determined through fit

• Comparison with IPB98(y,2) scaling law: 𝑊𝑡𝑜𝑡 ∝ 𝑃0.31

• Assume profile stiffness: 
𝛽𝑝,𝑐𝑜𝑟𝑒

𝛽𝑝,𝑝𝑒𝑑
∝ 𝑃𝛿

• Input powers calculated → deduce relation between 𝛽𝑝,𝑡𝑜𝑡 and input power

• 𝛽𝑝,𝑡𝑜𝑡 ∝ 𝑃𝛾 , with 𝛾 determined by another fit

5. Steady-state 10MA / 5.3T Q = 5

4. 7.5 MA / 2.65 T

• Similar to 15MA (scaled with Ip
2) but different core profiles

• Unstable at lower 𝛽𝑁; off-axis NBI heating with large CD

• Wide region of low shear with high pressure gradient

• Lower current with same magnetic field  → higher attainable 𝛽𝑝𝑒𝑑
• Reference case designed for high 𝛽𝑁. 

• Much lower toroidal mode numbers → big n=2 region of kink-

peeling modes

• Negative global shear near the edge → likely to stabilize high-n 

modes. 

• Plateau because n=2 to n=3 is 50% increase, whereas this is 

relatively much less for high-n modes.

• MHD simulations → 𝛽𝑝𝑒𝑑 ∝ 𝛽𝑡𝑜𝑡
𝛼

• Both for constant and varying pedestal width 

• Take highest stable pedestals

• Only H-modes studied → 𝛽𝑁 ≥ 1.5
• Fit through these points to determine 𝛼

• 7.5MA and 15MA cases

• Very similar; feedback mechanism found and power law relation is a good assumption

• Effect of varying width very important for strong core-edge feedback mechanism

• No saturation limit found up to 𝛽𝑡𝑜𝑡 ~ 1 (much higher than 𝛽𝑡𝑜𝑡 ~  0.6-0.7 required for Q =10)

• 10MA steady-state

• A plateau exists in which 𝛽𝑝𝑒𝑑 is constant in a large range of 𝛽𝑡𝑜𝑡
• Caused by kink modes

• ITER steady-state scenario 𝛽𝑡𝑜𝑡 ≈ 1.2, which is in the region of the plateau

• No hard saturation limit, but 𝛽𝑝𝑒𝑑 does not dependent on 𝛽𝑡𝑜𝑡 in the operational space of ITER

• Varying width doesn’t result in significant changes for 10MA case

• Feedback mechanism between core and edge studied for ITER

• Three different ITER plasmas 15 MA/5.3 T Q = 10, 7.5 MA / 2.65 T and 10 MA / 5.3 T Q = 5 

• No saturation of bped with bN has been identified limit but relation varies strongly with plasma scenario

• 15MA and 7.5MA bped ~  bN
0.2 - 0.4

• Varying pedestal width as function of bped maximizes feedback loop

• ITER results similar to JET carbon wall with high triangularity

• 10MA

• Low-n kink-peeling modes limit bped

• bped independent of  bN up to βN ≈ 2.7 (near ITER operational conditions) 

• No influence of varying pedestal width

• Power degradation of confinement for ITER 15 MA/5.3 T plasmas evaluated as a function of core stiffness (𝛿)

Figure 1. For low 𝛽𝑁 , the pedestal height 

increases with 𝛽𝑁 , but for high 𝛽𝑁 this effect is 

limited: the pedestal height does not increase 

with 𝛽𝑁 anymore. [1, fig.1, ASDEX-Upgrade]

• Assume range of stiffness values

• Deduced: 𝛾 = 1.18𝛿
• Comparison to IPB98(y,2), 𝛾 = 0.31

• 𝛿 = 0.263

• Comparison 𝜏𝐸 ∝ 𝛽𝑡𝑜𝑡
2 ∝ 𝑃𝑖𝑛

2𝛾
, 𝛾 = 0.5 gives linear 

relation

• 𝛿 = 0.424

• Comparison to JET [2]

• ITER 15 MA and 7.5 MA 

plasmas with varying pedestal 

width are close to JET high 

triangularity with carbon wall →

JET with high pedestal 

pressure and high bootstrap 

current with low gas fuelling.

Figure 3. Simulations of pedestal beta as function of total beta 

with different pressure profiles. For every point n=[2,40] are all 

simulated, and the most unstable modes are plotted in the upper 

graph, in which the colour gives the mode number and open 

circles are stable. The black cross is the reference point from 

ASTRA. The lower graphs are examples of modes, with lower 

left a peeling-ballooning mode and lower right an infernal mode.

Figure 4. Graph with stable and unstable equilibria for different 

pressure profiles, similar to fig. 3 for 7.5 MA/ 2.65 plasma. The 

black cross is the reference point from ASTRA.

Figure 5. Mode structure of one of the n=2 kink-peeling 

modes. One mode clearly gives a high value at the edge, 

so that it can be distinguished as a kink-peeling mode.

Figure 6. Graph with stable and unstable equilibria for different 

pressure profiles, similar to fig. 3, although with a different ASTRA 

reference case (black cross), the 10MA/5.3T steady-state case.

Figure 7. q-profile of the steady-state case, showing the 

region of negative global shear at the edge.

Figure 8. Combination of highest 

stable pedestal as a function of 

𝛽𝑡𝑜𝑡 , and fitted to 𝛽𝑝𝑒𝑑 ∝ 𝛽𝑡𝑜𝑡
𝛼 , with 

𝛼 the parameter resulting from that 

fit.

Figure 9. By combination of MHD and stiffness

relations (𝛿), the power input for every point from

fig. 8 can be calculated. This is done for the 15MA

case with varying pedestal width ( 𝛼 = 0.3231 ).

Taking stiffness values in 𝛿 = [0.1 − 2.0], for every

value a fit to 𝛽𝑝,𝑡𝑜𝑡 ∝ 𝑃𝛾 is made, and different

values of 𝛾 for assumptions of 𝛿 are given.

Challis comparison 𝜶

C-wall high triangularity 0.412

ILW high triangularity 0.788

ILW low triangularity 0.619

𝜶𝒕𝒐𝒕 𝜶𝒑𝒆𝒅 𝜶𝑴𝑯𝑫

C-wall high tria. 0.34 0.14 0.412

ILW high tria. 0.66 0.52 0.788

ILW low tria. 0.63 0.39 0.619

Table 1. Calculation of values of 𝛼 from [2], 

with 𝐸 ∝ 𝑃𝛼, to compare with MHD results.

Table 2. Values from [1] for 𝛼 to 

compare with figure 8.

Figure 2. Pedestal energy (left) and total energy (right) separately as a function of 

the absorbed power, with 𝛼 defined by 𝐸 ∝ 𝑃𝑎𝑏𝑠
𝛼+1. [2,fig.17, JET]



B.2 four page paper
The 4-page paper is given in the next four pages.
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Abstract

The maximum stable pedestal pressure has been shown to increase with core pressure and

in combination with profile stiffness this can lead to a positive feedback mechanism. How-

ever, the effect is shown to saturate for high β in ASDEX-Upgrade [1]. This paper investigates

whether this effect appears in ITER scenarios, using ideal MHD numerical codes HELENA

and MISHKA for different ITER scenarios from inductive 7.5-15 MA plasmas to steady-state

scenarios at 10 MA. No pedestal pressure saturation is found for inductive scenarios; on the

contrary for the 10MA steady-state scenario the pedestal pressure is the same for a wide range

of total β and is limited by low n kink-peeling modes. Finally, a comparison of the achievable

pressure for various levels of core profile stiffness is made with the IPB98(y,2) scaling law.

Introduction

To achieve the ITER fusion production goals it is essential to achieve high energy confine-

ment plasmas (H-mode). Ideal MHD studies of the pedestal stability have shown that the max-

imum stable pedestal pressure increases with more peaked core pressure profiles due to the

Shafranov shift [1]. On the other hand, because of profile stiffness a higher pedestal pressure

results in a larger core pressure and higher plasma energy; i.e. a positive feedback mechanism.

This effect is shown to have a saturation limit in some cases (e.g. ASDEX-Upgrade [1]), so

that extrapolations from current devices, such as JET, [2] may not necessarily be applicable to

ITER.

Model

In order to describe this core-edge feedback mechanism, the plasma poloidal beta, βtot , is

split into two components: the poloidal pedestal beta, βped which considers the pedestal, and

the poloidal core beta, βcore for the core plasma. In this paper we investage the relation between

βped and βtot , which is assumed to be a power law dependence:

βped ∝ β α
tot . (1)

The stiffness of the core pressure profile is represented by a another power law, in which the

ratio of core and pedestal is related to the input power:
βcore

βped
∝ Pδ

in (2)
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with Pin the input power and δ a measure for the stiffness. Finally, the relation

βtot ∝ Pγ
in (3)

determines the energy confinement scaling with power that can be compared with the IPB98(y,2)

scaling law, for which γ = 0.31 [3]. We determine the parameter α by ideal pedestal MHD sta-

bility analysis and then we can evaluate γ for various stifness coefficients δ in a self-consistent

form and compare to the ITER scaling law value.

The edge MHD stability analysis performed with MISHKA has been carried out for a range

of self-consistent plasma equilibria generated with HELENA in which the bootstrap current has

been evaluated according to [4] and the pedestal width (in normalized poloidal flux coordinates)

has been assumed to be either constant or to scale as ∆ψ ∝
√

βped [5]. The reference pedestal

width has been evaluated by application of the model in [6] to ITER plasmas. Our studies have

been performed for the flat-top phase of three ITER scenarios (15MA/5.3T Q=10, 10MA/5.3T

Q = 5 steady-state and 7.5MA/2.65T half current-half field H-mode scenarios) modelled with

ASTRA and CORSICA. MHD stabilty is only evaluated for s =
√ψ ≥ 0.5 as the focus of our

study is on the plasma edge.

Results

Figure 1 summarizes the results of the analysis both for constant pedestal width for the 15

MA/5.3 T Q = 10 and the 10 MA/5.3 T steady-state plasma. The stability diagram shows a

high βN limit for both scenarios which corresponds to infernal modes in the core plasma. βped

is limited by external modes which depend on the plasma scenario. For the Q =10 scenario

these are the usual peeling-balooning modes with n = 20-30. On the contrary, the steady-state

scenario pedestal pressure is limited by low n = 2-4 kink-peeling modes. This difference also

modifies the dependence of βped on βN which is gradual for the Q = 10 plasma while it is weakly

dependent on βN for wide ranges in this parameter for the steady-state plasma, except at very

high βN values, because of the low n of the instabilities.

The steady state 10 MA case has a much higher stability limit for βped than the Q = 10 case.

This is the result of the lower plasma current and the fact that the stability limit is dictated by

kink-peeling modes which scales as Ip×Bt instead of I2
p for ballooning modes.

The points of the upper boundary of stability diagrams have been fitted according to equation

1 to obtain the values of α considering only H-mode conditions (βN ≥ 1.5 for Q = 10). The re-

sults of these fits are shown in figure 2 for the three plasmas studied both considering a constant

and varying pedestal width. The 15 MA/5.3 T and 7.5 MA/2.65 T plasmas show similar trends,

as expected from balooning stability being dominant, with an increasing βped with total poloidal

βtot . There is no saturation even for βtot values well beyond those required for the achievement

of the the Q = 10 goal in ITER at 15 MA (βtot = 0.6− 0.7). The values of α (also given in

figure 2) for constant pedestal width are much lower than for varying pedestal width showing
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(a) 15MA/5.3T (b) 10MA/5.3T

Figure 1: Edge MHD stability diagram characterized by βped and βN for the 15MA/5.3T (left)

and 10MA/5.3T (right) plasmas with constant pedestal width. Each point represents a different

pressure profile for which stability is calculated for toroidal mode numbers n=[2,40]. The most

unstable mode is plotted by color with open circles being stable cases. The reference cases,

from ASTRA-CORSICA simulations, are indicated by the black cross.

that the positive feedback between core and edge is increased with the widening of the pedestal

at higher pressures. For the 10 MA steady-state case the use of a power law is less suitable due

to the different nature of the MHD limit stability. Despite this, the results in 1 show that for

this case the results are weakly dependent on the changes of the pedestal width with βped . In

particular for the steady-state Q = 5 reference operating the positive feedback is only significant

for βtot > 1.2 for both cases, which is close to the ITER operational point for this scenario.

The values found for α in these ITER plasmas can be compared to experimental values. From

[2], values for α in JET plasmas can be evaluated (α = 0.41,0.62 and 0.79), depending on wall

material (C vs. W/Be) and plasma shapes. The case closest to the ITER studies for 15 MA and

7.5 MA plasmas corresponds to the JET high triangularity with the carbon wall; this is also

most likely to be the condition in which JET edge stability resembles most that of ITER with

high pedestal pressure and high bootstrap current achievable with low gas fuelling.

By assuming values for stiffness, the data from figure 2 can be used to find a value for γ from

equation 3. This is done for the 15MA case with varying pedestal width in figure 3. Stiffness

values of δ = [0.1,2.0] are taken, which then gives a relation between δ and γ:

γ = 1.18δ . (4)

γ = 0.31 corresponding to the IPB98(y,2) scaling law requires a stiffness of δ = 0.26 according

to our modelling.

Summary

We have applied ideal MHD numerical codes HELENA for equilibrium and MISHKA for

edge stability analysis to evaluate self-consistently the MHD stability of a range of ITER plas-
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Figure 2: Highest stable βped values as a function

of βtot and corresponding fits for the three ITER

plasmas studies, for both constant pedestal width

and a pedestal width changing according to the

EPED model

Figure 3: Predicted βtot versus input power for

the 15MA plasma with varying pedestal width

and βped limited by edge stability for a range of

stiffness parameter δ and resulting energy con-

finement scaling (γ from equation 3).

mas in terms of the achievable βped versus βtot . For the 15MA and 7.5 MA plasmas we find

that βped is limited by peeling-balooning modes and increases with βtot according to a power

law, whose exponent depends on pedestal width assumptions up to βtot ≈ 1. For the 10 MA

steady-state plasmas βped is limited by low n kin-peeling modes and depends weakly on βtot up

to the reference βtot ≈ 1.2. An estimate of the power degradation of energy confinement for a

range of core stiffnes parameters for 15 MA plasmas has been provided.

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

ITER is the Nuclear Facility INB no. 174.
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Appendix C

Input files

C.1 HELENA input file example

Here, an example of a HELENA input file is given. First, some shape parameters are
given and the shape is ultimately given by a fourier series (fm(i)). Then the profile
parameters are given, and the profiles are given by a number (npts) of datapoints.
Finally, physical and numerical parameters are given.

HELENA namel i s t from EQDSK f i l e ( eqdsk2helena )
B(vacuum) : 5 .3000 [T]
cur r ent : 15 .0000 [MA]
Rgeo , Zgeo : 6 .2149 0 .5985 [m]
Rmag, Zmag : 6 .3924 0 .5985 [m]
q (0 ) : 1 .0086
p (0 ) : 0 .8360E+06 [ Pa ]
&shape i shape=2, i a s =1, mharm=256 , xr1 = 0 .98 , s i g 1 =0.1 ,

imesh=2
fm( 1)= 0.255460E+01, fm( 2)= −0.000000E+00,
fm( 3)= −0.782176E−01, fm( 4)= −0.111122E−01,

. . .
. . .
. . .
fm( 253)= −0.788277E−06, fm( 254)= 0.172089E−05,
fm( 255)= 0.375688E−05, fm( 256)= 0.496898E−05,

mfm= 256 &end
&p r o f i l e

igam = 7 , ega = 10 .0 , fga = 1 . 0 , gga=0.01
i p a i = 7 , ep i = 0 .92 , f p i = 2 . 0 , gp i =0.04 ,

ICUR=11, DCUR=1.0 , ECUR=0.955 , FCUR =
8.8285293 , GCUR=1.0 ,

npts = 128 , COREP = 1.936 , PSIPED = 0 .96 ,
dpr ( 1) = −0.367561E+05, df2 ( 1) = 0.131333E+02, qin (

1) = 0.100856E+01, z j z ( 1) = 1 . 0 ,
dpr ( 2) = 0.912921E+05, df2 ( 2) = 0.637637E+01, qin (

2) = 0.101804E+01, z j z ( 2) = 0.999870720254 ,
dpr ( 3) = 0.131931E+06, df2 ( 3) = 0.424936E+01, qin (

3) = 0.102528E+01, z j z ( 3) = 0.999484765421 ,
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. . .

. . .

. . .
dpr (126) = 0.146067E+06, df2 (126) = −0.267300E+01, qin

(126) = 0.345190E+01, z j z (126) = 0 .1440 ,
dpr (127) = 0.125890E+06, df2 (127) = −0.254721E+01, qin

(127) = 0.361183E+01, z j z (127) = 0 .0752 ,
dpr (128) = 0.104434E+06, df2 (128) = −0.258045E+01, qin

(128) = 0.382997E+01, z j z (128) = 0 . 0 ,

&end
&phys

eps = 0.318087E+00, a l f a = 0.200000E+01, B =
−0.198464712374 , XIAB = 0.179907E+01,

RVAC = 6.214856 , BVAC = 5.300000 , BETAP = 0 .1 ,
BETAP_PED = 0.17 ,

&end
&num nr=201 , np=251 , nrmap=401 , npmap=512 ,

nchi =1024 , n i t e r =99, nmesh=200 ,
NRCUR = 201 , NPCUR = 251 , ERRCUR = 1 . e−5,

&end
&pr i npr1 = 1 , npr2=1, nrout = 401 &end
&p lo t npl1 = 1 & end
&ba l l nqb = 1 &end

C.2 MISHKA input file example
A MISHKA input file is given with parameters to start the simulation. However, an
elaborate explanation of all parameters is out of the scope of this report.

&NEWRUN
MODE=4, NLTORE = .T. , IAS=1
NG=201 ,
IFAST=1,
RFOUR(1)=−1.,
VFOUR(1)=−9.,
q0zy l=−1,
NTOR = −40,
VSHIFT(1) = ( 1 . 0 , 0 ) ,
VSHIFT(2) = ( 0 . 3 , 0 ) ,
VSHIFT(3) = ( 0 . 1 , 0 ) ,
VSHIFT(4) = (0 . 0 3 , 0 ) ,
VSHIFT(5) = (0 . 0 1 , 0 ) ,
VSHIFT(6) = (0 . 0 03 , 0 ) ,
VSHIFT(7) = (0 . 0 01 , 0 ) ,
NSHIFT= 7 ,
IEQ = 1 , DSURF=0. , DSURF1=0. ,
ALPHIN = 1 .0 ,
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SIG1=0.1 ,
XR1=0.98 ,
RWALL =2.0 , IVAC=1,

SBEGIN=0.8

NVPSI = 51 , NGV = 51 ,
SIGV = 0 .1 ,

&END
&NEWLAN &END
&NEWRUN MODE=0 &END
&NEWLAN &END
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