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Chapter 1

Introduction

Droplets formation from a liquid jet are ubiquitous in nature, water droplets dripping from a tap
is a common example that we encounter in our everyday life. In fluid dynamics, a jet is a stream
of fluid that is projected into a surrounding medium, usually from some kind of nozzle, aperture
or orifice. An industrial application of liquid jetting is inkjet printing, where droplets are created
in order to print patterns on paper. Recent advances in inkjet printing technology pose large
demands to develop fundamental understanding of the forces and flow conditions that control the
dynamics of the jettings.

This thesis investigates some aspects related to the fluid dynamics and numerical modeling of
liquid jettings, motivated by inkjet printing applications. This problem involves multiphase flows
in 3D complex geometries.

1.1 Drop on Demand (DoD) Inkjet printing

Inkjet printing technology is used to dispense picoliter volumes of liquids onto a substrate. A
broad range of liquids can be dispensed, for example, inks, metals and even recently biological
tissue [5]. Unlike traditional printing methods, which create a pattern by transferring liquids
through a master stencil onto a substrate, inkjet printing progressively builds up patterns by
depositing a large number of individual micrometer-size drops onto the substrate [9].

There exist different methods of inkjet printing, of which Continuous Inkjet (CIJ) and Drop
on Demand (DoD) are two of the most important [5]. In CIJ, liquid is contained in a pressurized
chamber and continuously flows through a nozzle, on which a periodic disturbance is applied to
breakup the liquid jet into a continuous stream of drops. A complex process is used to select
which drops reach the substrate in order to form the pattern. Unused drops are collected back
into the printer. In contrast to CIJ printers, DoD inkjet printers do not use a continuum stream of
drops. Instead, DoD inkjet printheads contain thousands of microscopic-size nozzles which can be
individually controlled [20]. This method allows for a dynamic and more accurate control of drop
deposition— doubted drop on demand (DoD). In this thesis, liquid jetting specifically in Piezo
DoD inkjet nozzles is numerically investigated.

In a Piezo DoD inkjet nozzle unit, liquid jetting is controlled by applying a voltage signal to
a piezoelectric material, which generates a pressure pulse that jets the liquid out of the nozzle.
The amplitude, frequency and shape of this pressure pulse define the size, velocity and frequency
of the droplets [4]. For optimal control of the drop formation process, it is extremely important
to design a pressure pulse which considers both the characteristic features of the nozzle unit and
the physical parameters of the liquid. Fig. 1.1 illustrates a typical piezo DoD inkjet nozzle unit.
The main process in a piezo DoD inkjet nozzle unit can be summarized as follows: i) a voltage
signal is applied to the piezo element, ii) the deformation of the piezo element generates a pressure
pulse inside the liquid chamber, iii) this pressure pulse drives the liquid jetting, iv) resulting in
the formation of a main drop and satellite droplets.

Fully 3D numerical investigation of liquid jetting 1



CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic diagram of (DoD piezo) inkjet nozzle unit. In the nozzle unit, a voltage
signal is applied to the piezo actuator, then the displacement of the piezo generates a pressure
pulse that drives the liquid jetting.

1.2 Drop formation on DoD inkjet printing

Images of experimental DoD liquid jetting are presented in Fig. 1.2. The drop formation process
in DoD liquid jetting can be described in three main stages. In the first stage, the ejection and
stretching of the liquid is governed by inertia. In the second stage, the filament forms a head
droplet and the liquid pinches-off from the nozzle exit due to surface tension. In the last stage,
a tail droplet is formed and the filament may break up into satellite droplets due to Rayleigh
Plateau instability [4]. Ideally, the jet should become a single spherical droplet before reaching
the substrate, however the main droplet is commonly followed by a set of small satellite droplets.
The diameter of the main droplet is determined by the size of the nozzle, both of which typically
vary from 10 to 100 [µm]. The volumes of these droplets are of the order of 0.5 to 500 [pl] [4]. The
velocity of the main droplet typically ranges between 5 to 8 [ms−1] [9]. In Fig. 1.2 the image on
the left shows a droplet that was ejected with a lower amplitude actuation signal than the droplet
on the right image. This amplitude of the actuation signal is directly proportional to the velocity
of the drop i.e the droplet on the left is slower than the droplet on the right. The faster jet breaks
up into satellite droplets.

2 Fully 3D numerical investigation of liquid jetting
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Figure 1.2: Experimental images of liquid jetting in a piezo DoD inkjet printer. The left and right
images represent two different voltage actuation signals. The left side liquid jetting was generated
with a lower amplitude signal than the amplitude the one on the right hand side image. The
amplitude of the actuation signal is directly proportional to the velocity of the drop, which in
fact shows that higher velocities result in a higher number of satellite droplets, figure reproduced
from [4].

1.3 Numerical modeling of liquid jetting

Performing experimental studies on liquid jetting in inkjet printers is a complex task because
of the size and speed of the droplets. It requires either ultra high-speed imaging techniques at
frame rates of 1 million frames per second or stroboscopic techniques with illumination times
< 20 [ns] ([5]). Experimental studies on drop formation and nozzle-fluid interaction have three
main limitations. The first restriction is on the liquid, as one can not investigate all sort of liquids
i.e. the whole parameter space of the liquid. Secondly, the nozzles material, shape, and wetting
condition can not be chosen arbitrarily. Lastly, the processes inside the nozzle chamber, such as
bubble entrainment [10], are difficult to be measured.

In contrast, numerical modeling of liquid jetting offers, in principle, the possibility to explore
the parameter space of the liquid and can reveal detailed information about the fluid dynamics
throughout the entire liquid jetting process [5]. Numerical modeling also provides information
about interactions between the liquid and the nozzle, such as the dynamics of the contact line [16].
For these reasons, numerical modeling is often used to complement experimental studies and is
widely used in the design of droplet production systems [3]. Although numerical modeling has
many advantages over experimental studies, modeling liquid jetting presents its own challenges.
When simulating free surface flows, special mathematical treatments are required to model the
singularities that appear in the pinch-off of liquid jets [3]. Modeling surface tension driven flows also
requires complex and computationally expensive algorithms to track the fluid-fluid interface [13].

In this context, the Lattice Boltzmann Method (LBM) has shown promising results for simu-
lating free surface multiphase flows in complex geometries [8]. Multiphase LBM has already been
applied to simulate Piezo DoD liquid jetting in 2D [7] and 2D axisymmetric systems [16], however
fully 3D numerical simulations could give a deeper insight about the physics behind liquid jetting.
Particularly, 3D simulations are necessary when the features to be measured are not axisymmetric,
for example, the effects caused by structural defects in the nozzle.

The research collaboration between the Vortex and turbulence dynamics group (WDY) at
Eindhoven University of Technology and the R&D department at Océ technologies aims to develop
a numerical toolbox to accurately and efficiently study fully 3D liquid jetting. This thesis focuses
in developing and using this toolbox to study the role of nozzle wettability in inkjet printing.

Fully 3D numerical investigation of liquid jetting 3
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1.4 Outline of the thesis

Chapter 2 provides the theoretical background for the numerical study of liquid jetting. Here we
briefly describe the concepts, definitions, and laws which are necessary for the understanding of
the problem and that are used in the rest of the thesis.

Chapter 3 provides an overview of the Lattice Boltzmann method for multiphase flows. In this
chapter, we discuss the boundary conditions and force implementation in the method. Here we
provide a detailed analysis of the Kupershtokh multiphase model, which helps us to understand
some of the strengths and limitations of the model. We conclude this chapter with a discussion of
the implementation of the wetting conditions in the Kupershtokh method.

Chapter 4 presents the numerical simulations of liquid jetting in inkjet printing. This chapter
describes the important aspects of the LB model to study liquid jetting: first a non-dimensional
analysis shows that we are capable of simulating real inkjet printing systems in 3D; second we
discuss the constraints that must be taken in account while choosing the LB parameters; third
we introduced a way to convert the LB simulations to SI units and vice versa; and finally we
present fully 3D simulations of a real inkjet printing system and we present results of the role of
non-homogeneous nozzle wettabilitty in the liquid jetting.

Finally, in chapter 5, we draw conclusions from our research and give recommendations that
may be used in the future for continuation and extension of the research presented in this thesis.

4 Fully 3D numerical investigation of liquid jetting



Chapter 2

Theoretical background

This chapter provides the essential theoretical background information used in the rest of the thesis.
This includes, the mass and momentum conservation equations, the equations of state, the basic
concepts behind the Lattice Boltzmann equation, as well as essential features of the interfacial
phenomena between fluids and solids.

2.1 Hydrodynamics and Kinetic Theory

The continuity, momentum (Navier-Stokes) and energy equations are reviewed in the first part of
this section. In the second part, the basic of kinetic molecular theory are presented.

2.1.1 Navier Stokes and Continuum Theory

Continuity equation

In fluid dynamics we assume that fluids are described by continuous hydrodynamic fields, such as
density and velocity. Let us consider a small fluid element with density ρ which occupies some
volume V0. By conservation of mass, the change of the mass in this fluid element per unit time,
must equal the amount of fluid flowing into or out of this fluid element. Mathematically this is
expressed by

∂

∂t

∫
V0

ρdV = −
∮
∂V0

ρu · dA (2.1)

where conventionally one takes dA as the outward normal direction to the surface. The surface
integral on the RHS can be transformed into a volume integral by using the divergence theorem
and by removing the volume contribution, we obtain:

∂ρ

∂t
+∇ · (ρu) = 0 (2.2)

where u is the fluid velocity and ρu = j is the momentum density or mass flux density.
If the fluid element is not at a fixed point in space, the continuity equation can be written in

the form
Dρ

Dt
+ ρ∇ · u = 0 (2.3)

here we introduced the material derivative, defined as

D

Dt
=

∂

∂t
+ u · ∇ (2.4)

which denotes the rate of change of the fluid element moving in space.

Fully 3D numerical investigation of liquid jetting 5



CHAPTER 2. THEORETICAL BACKGROUND

For a general conserved quantity, φ, fluid conservation equations can be given in two main
forms: conservation form, or material derivative form. The two forms can be related as

∂(φ)

∂t
+∇ · (uφ) =

Dφ

Dt
(2.5)

Navier-Stokes Equation

Consider the change of momentum for a fluid element with density ρ and velocity u occupying
a volume V0. Ideally, the change of net momentum can be due to (i) flow of momentum into
or out the fluid element, (ii) differences in pressure p and (iii) external body forces F. Those
contributions are mathematically expressed in the momentum balance equation:

d

dt

∫
V0

ρudV = −
∮
∂V0

ρuu · dA−
∮
∂V0

pdA +

∫
V0

FdV (2.6)

where uu denotes the outer (tensor) product with components uαuβ . By transforming the surface
integrals into volume integrals, using the divergence theorem and removing the volume contribu-
tion, the above equation leads to the Euler equation:

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+ F (2.7)

a PDE describing the conservation of momentum for an ideal (i.e non viscous) fluid. The general
form of the momentum equation is called the Cauchy momentum equation:

∂(ρu)

∂t
+∇ ·Π = F (2.8)

where Π is the momentum flux density tensor:

Παβ = ρuαuβ − σαβ (2.9)

The term σαβ is called the stress tensor and it corresponds to the non-direct momentum transfer
of the moving fluid. For simple fluids described by the Euler equation we find an isotropic stress
σαβ = −pδαβ i.e. the diagonal elements.

In the Euler equation the momentum flux does not include the contribution of viscosity, which
causes dissipative and irreversible transfer of momentum from one fluid element to another. The
general form of the stress tensor includes the contribution of viscosity. Assume that this contribu-
tion is zero for a uniform flow and that for small velocity gradients the momentum transfer due to
viscosity is represented by terms which are proportional to the first derivative of the velocity [11].
Under those assumptions the second rank stress tensor is

σ
′

αβ = η

(
∂uα
∂xβ

+
∂uβ
∂xα

)
+ ξδαβ

δuγ
∂xγ

(2.10)

where η and ξ are coefficients of viscosity. The viscous stress tensor is often separated in two
terms: shear stress and a normal stress [11]:

σ
′

αβ = η

(
∂uα
∂xβ

+
∂uβ
∂xα

− 2

3
δαβ

∂uγ
∂xγ

)
+ ηBδαβ

∂uγ
∂xγ

(2.11)

Here η is called the shear viscosity and ηB = 2η/3 + ξ is called the bulk viscosity.
Consider the total stress tensor as follows

σαβ = σ
′

αβ − pδαβ (2.12)

where p is the pressure. In this context, the Navier-Stokes equation is

∂(ρuα)

∂t
+
∂(ρuαuβ)

∂xβ
= − ∂p

∂xβ

[
η

(
∂uα
∂xβ

+
∂uβ
∂xα

)
+

(
ηB −

2η

3

)
uγ
∂xγ

δαβ

]
+ Fα (2.13)

6 Fully 3D numerical investigation of liquid jetting
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for a constant viscosities, follows

ρ
Duα
∂xα

+ η
∂2uα
∂xβxβ

+
(
ηB +

η

3

) ∂2uα
∂xαxβ

+ Fα (2.14)

Assuming ρ = constant, which implies ∇ · u = 0, the incompressible Navier-Stokes equation
becomes

ρ
Du

Dt
= −∇p+ η∆u+ F (2.15)

where ∆ is the Laplace operator.

Equations of state

To describe the fluid system we use the continuity equation, which describes the conservation
of mass, and the Navier-Stokes equation (one for each spatial component), which describes the
conservation of momentum. The two equations constitute a system of four equations, however we
have five unknowns, density ρ, pressure p, and the three velocity components ux, uy, uz. To close
the system we can include another equation by using the state principle of equilibrium thermody-
namics. This principle relates the thermodynamic variables that describe the local thermodynamic
state of the system. The principle states that any of the state variables such as density ρ, pressure
p, temperature T , internal energy e, and the entropy s can be related to any other two state
variables through an equation of state [11].

Consider the ideal gas law as a equation of state:

p = ρRT (2.16)

where R is the specific gas constant. The ideal gas law relates the pressure, temperature and
density, which implies that we have now five equations but six variables including the temperature
T . The system is still not mathematically solvable, some approximations are necessary. One of the
possible approximations is the isothermal equation of state, which is central to the LBM. Consider
the fluid as having a constant temperature T ≈ T0, in this case the isothermal EOS is

p = ρRT0 (2.17)

here the pressure p is linearly related to the density ρ. The incompressible approximation is also
commonly applied, it takes a density constant ρ = ρ0. In this case the continuity equation ∇ · u
and N-S equations are themselves sufficient. Those equations form a closed system of four variables
and four equations.

The van der Waals EOS can describe the behaviour of many real fluids [8]. It is given by

p =
RT

Vm − b
− a

(
1

Vm

)2

(2.18)

where Vm = V/n is the volume occupied by one mol of substance at a particular pressure and
temperature, a is a parameter that characterize the attraction between molecules, and b is a
minimum molar volume such that as Vm approaches b, no further compression is possible and the
pressure rises rapidly.

2.1.2 Mesoscopic scale

In computational fluid dynamics, we often use the length and time scales of the fluid system
to categorize the regime of our simulations. The three common descriptions are: microscopic,
mesoscopic and macroscopic, as we can see in Fig. 2.1. Microscopic usually denotes a molecular
level description. Macroscopic refers to a fully continuum picture, which is commonly used in
traditional CFD methods. In between those scales, the mesoscopic description uses kinetic theory
to track representative collections of molecules. LBM is a mesoscopic numerical method based on
kinetic theory.

Fully 3D numerical investigation of liquid jetting 7
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Figure 2.1: Hierarchy of length and time scales in computational fluid dynamics. Reproduced
from [11].

Length scales

From small to large in a classical mechanics description [11], we have: the size of the fluid atom
or molecule la, the mean free path of the particle lmfp, the typical scale of gradients in some
macroscopic properties l, and the system size ls. The ordering of those length scales as illustrated
in Fig. 2.1, is:

la � lmfp � l ≤ ls (2.19)

Time scales

For the description of fluids, we consider the collision time tc scale as the shortest time scale.
This collision time represents the duration of a collision event lc ∼ la

vT
, which is closely related

to the thermal fluctuations of the system by the average thermal velocity of the molecules vT =
(kBT/m)1/2 [11]. It is common to assume that collisions happen instantaneously if tc → 0. The

time scale for the kinetic theory description is tmpf =
lmpf
vt

, and on this time scale the system
relaxes to local equilibrium through collision events [11]. Local equilibrium does not imply global
equilibrium.

Hydrodynamic effects appear at relatively large time and length scales. The shortest times at

this scales are the convective tconv ∼ l
u and the diffusive tdiff ∼ l2

ν time scales., where u is the
macroscopic fluid velocity and ν is the kinematic viscosity. The Reynolds number can be defined
as the ratio between those two time scales as follows

Re =
tdiff
tconv

=
ul

ν
(2.20)

Another time scale which is very important in the LBM formulation is the acoustic time scale

8 Fully 3D numerical investigation of liquid jetting
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tsound ∼ l
cs

, where cs is the speed of sound in the fluid. If the sound time scale is faster than the
advection time scale, the fluid behaves similarly to an incompressible fluid [11]. To characterize
the compressibility of the fluid system, we can define the Mach number

Ma =
tsound
tconv

=
u

cs
(2.21)

for values of Ma ≤ 0.1 we can assume incompressible flow. This assumption is very important in
LBM, and gives a quote for the maximum velocities allowed in our simulations.

In extreme cases the hierarchy of length scales does not follow the one presented above. Con-
sider a nanofluidic device, in those systems the mean free path lmfp can be of comparable mag-
nitude of one length scale of the system size ls ∼ lmfp. To characterize those length scales we can
employ the Knudsen number

Kn =
lmfp
l

(2.22)

for Kn � 1 the system is well described by Navier-Stokes equation, but for Kn ∼ 1 we have to use
the kinetic theory description [11]. The Kn is an important piece in the theoretical development
of LBM, we will see later that it is used in the Chapman-Enskog expansion.

2.1.3 Kinetic theory

As we mentioned before, LBM lies on the mesoscopic length and time scale, as a result we need
kinetic theory to describe the systems. For simplicity we will consider a dilute gas, i.e we will
assume that tc � tmfp. In this description we will not consider polyatomic gases, i.e. we will not
consider inelastic collisions.

The distribution function

We can consider the distribution function f(x, ξ, t) as a representation of the density of mass in
both three-dimensional physical space and in three dimensional velocity space [11]. Therefore, f
has the units

[f ] =
kgs3

m6
(2.23)

in this sense, f(x, ξ, t) can be seen as the density of particles with velocity ξ at position x and
time t. By calculating the momenta of f , one can obtain the macroscopic variables such as mass
density ρ, momentum density ρu, and total energy density ρE, as follows

ρ(x, t) =

∫
f(x, ξ, t)d3ξ (2.24a)

ρ(x, t)u(x, t) =

∫
ξf(x, ξ, t)d3ξ (2.24b)

ρ(x, t)E(x, t) =
1

2

∫
|ξ|2f(x, ξ, t)d3ξ (2.24c)

The equilibrium distribution function

Due to the collisions between molecules, if the gas is left alone for a sufficient long time, one
can assume that f(x, ξ, t) will reach an equilibrium distribution, feq(x, ξ, t), which is isotropic
in velocity space around ξ = u [11], where u is the mean velocity. If we see our system from a
reference frame moving with speed u, the equilibrium distribution can be expressed as feq(x, |v|, t).
By considering feq as a separable solution, and by using the ideal gas and statistical mechanics,
the equilibrium distribution can be found to be [11]

feq(x, |v|, t) = ρ

(
3

4πe

)3/2

e−3|v|2/(4e) = ρ

(
1

2πRT

)3/2

e−|v|
2/(2RT ) (2.25)

Fully 3D numerical investigation of liquid jetting 9
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The Boltzmann Equation and the Collision Operator

We want to obtain the evolution of the distribution function f = f(x, ξ, t). In order for obtaining
that one can start by expressing the total derivative of f with respect to time t as:

df

dt
=

(
∂f

∂t

)
dt

dt
+

(
∂f

∂xβ

)
dxβ
dt

+

(
∂f

∂ξβ

)
dξβ
dt

(2.26)

here
dxβ
dt = ξβ and from Newton’s second law

dξβ
dt =

Fβ
ρ [11].

By applying the reasoning developed above, the Boltzmann equation is

∂f

∂t
+ ξβ

∂f

∂xβ
+
Fβ
ρ

∂f

∂ξβ
= Ω(f) (2.27)

this equation can be seen as an advection type equation, where the first two terms represent the
distribution function being advected with the velocity ξ of its particles and Ω(f) is called the
collision operator.

The conservation of mass, momentum and energy can be expressed in terms of the moments
of the collision operator Ω(f), as follows:

mass :

∫
Ω(f)d3ξ = 0 (2.28a)

momentum :

∫
ξΩ(f)d3ξ = 0 (2.28b)

energy :

∫
|ξ|2Ω(f)d3ξ = 0 (2.28c)

In LBM one often uses a simplified version of the collision operator. One of the possible simplific-
ations is the well known Bhatnagar, Gross and Krook (BGK) collision operator

Ω(f) = −1

τ
(f − feq) (2.29)

it accounts for the relaxation of the distribution function towards the equilibrium distribution.
The constant τ determines the speed of this equilibration, and it is a very important parameter in
the LBM simulations, as we will see later, eg. the value of τ is directly related with the viscosity
of the system.

Macroscopic conservation equations

The moments of the Boltzmann equation over the velocity space provide the macroscopic equations
of fluid mechanics. The moments are [11]

Π0 =

∫
fd3ξ = ρ Πα =

∫
ξαfd

3ξ = ρuα (2.30a)

Παβ =

∫
ξαξβfd

3ξ Παβγ =

∫
ξαξβξγfd

3ξ (2.30b)

here the second order momenta Παβ is found to be the momentum flux tensor, which was intro-
duced before in the Cauchy equation (2.8). To obtain the conservation equations we need the next
result, which can be found by using multidimensional integration by parts [11]∫

∂f

∂ξβ
d3ξ =0 (2.31a)∫

ξα
∂f

∂ξβ
d3ξ =−

∫
∂ξα
∂ξβ

fd3ξ = −ρδαβ (2.31b)∫
ξαξα

∂f

∂ξβ
d3ξ =−

∫
∂(ξαξα)

∂ξβ
fd3ξ = −2ρuβ (2.31c)

10 Fully 3D numerical investigation of liquid jetting



CHAPTER 2. THEORETICAL BACKGROUND

at this point one can obtain the mass, momentum and energy conservation equations, respectively,
as follows:

∂ρ

∂t
+
∂(ρuβ)

∂xβ
= 0, (2.32a)

∂(ρuα)

∂t
+
∂Παβ

∂xβ
= Fα, (2.32b)

∂(ρE)

∂t
+

1

2

∂Πααβ

∂xβ
= Fβuβ . (2.32c)

2.2 Surface tension

An insect walking on water is shown in Fig. 2.2. Those insects can walk on water as a consequence
of surface tension, a thermodynamic material property for a system maintaining liquid-liquid or
liquid-air interfaces. On the region between the liquid and gas, the density changes smoothly.

Figure 2.2: Water strider walking on the liquid-air interphase, figure reproduced from [6].

This transition layer is of the order of nanometers for common thermodynamic conditions. As a
result, the transition layer is very small compared with the size of a macroscopic system. From a
mechanical description, the effect of surface tension have two manifestations; i) a force per unit
length acting on the molecules which lie close to the interfacial region. ii) A pressure jump across
a curved interface, which is known as the capillary pressure. These pressure difference can be
described by the Young-Laplace law [1]:

∆p = γ

(
1

R1
+

1

R2

)
(2.33)

here R1,2 are the radii of curvature of a general surface. In drops and bubbles, there is a pressure
difference between the inside and outside. The pressure is always higher on the inside of the
bubble, or drop, and it reduces to

∆p =
2γ

R
(2.34)

In this thesis, we will use this mathematical expression to estimate the surface tension on the
interface between the liquid and vapor in our Lattice Boltzmann simulations.

Fully 3D numerical investigation of liquid jetting 11
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2.2.1 Contact angle

The contact angle of a liquid on a solid is a parameter that quantifies the affinity of the liquid to
this material. The contact angle is defined as the angle formed by the intersection of the liquid-
solid interface and the liquid-vapor interface, as shown in Fig. 2.3. The Young equation describes

Figure 2.3: Image of contact angles formed by droplets resting on a flat solid surface, figure
reproduced from [22]. Here θ is the contact angle, γlv, γsv and γsl are the liquid-vapor, solid-
vapor, and solid-liquid interfacial tensions.

the mechanical equilibrium of the droplet on a solid surface

γlvcosθ = γsv − γsl (2.35)

here θ is the contact angle; γlv, γsv, and γsl are the liquid-vapor, solid-vapor, and solid-liquid
interfacial tensions. It is common to consider consider that a droplet wets the solid for values of
θ < 90 and that the droplet non-wets the solid for values of θ > 90. In this thesis, we will study
the role of the wettability conditions on the nozzle of the inkjet printer.

In this chapter we provided the essential background information that will be used in this thesis.
In the next chapter, we continue with a detailed overview of the Lattice Boltzmann method for
multiphase flows. This computational method will be used to simulate the liquid jetting.

12 Fully 3D numerical investigation of liquid jetting



Chapter 3

Simulation method

In the previous chapters we have motivated the problem of liquid jetting in inkjet printing and
described the fluid dynamics theory behind this process. Next, we numerically model the problem
by using the Lattice Boltzmann Method for fluid dynamics. In this chapter, we introduce the Lattice
Boltzmann Method (LBM), including the typical lattices and the basic algorithms used to impose
boundary conditions. Since our problem involves a liquid surrounded by a vapor, a multiphase
LBM model known as the multiphase Kupershtokh model is introduced here. Finally, we describe a
procedure for estimating surface tension and discuss the implementation of the wetting conditions
for our model.

3.1 The Lattice Boltzmann Method

The Lattice Boltzmann method is a discretization of the continuous Boltzmann equation (Eq. 2.27).
In our model, the collision operator is simplified by using the single relaxation time BGK approx-
imation (Eq. 2.29). In absence of external forces, the discretized Boltzmann equation for a finite
set of m velocity vectors ci can be expressed as:

∂fi
∂t

+ ci · ∇fi = −1

τ
(fi − feqi ), (i = 0, 1 · · · ,m− 1), (3.1)

where fi ≡ f(v, c, t), m is the number of discrete velocities and τ the single relaxation time from
the BGK approximation. The function feqi is the equilibrium distribution function which in its
discrete form is given by

feqi = ρ[a+ b(ci · u+ c(ci · u)2 + d(u · u)2] (3.2)

where the constants a, b, c and d depend on the choice of the lattice. The macroscopic variables,
mass density, ρ, and velocity, u, are defined as:

ρ(x, t) =

m−1∑
i=0

fi(x, t), u(x, t) =
1

ρ(x, t)

m−1∑
i=0

cifi(x, t) (3.3)

Fig. 3.1 shows the typical two (D2Q9) and three (D3Q19) dimensional lattices, with 9 and 19
velocities, respectively. The table 3.1 reports the properties of these lattices.

For the D2Q9 model, the equilibrium distribution function feq is defined in [19] as

feqi (x) = wiρ(x)

[
1 + 3

ci · u
c2s

+
9

2

(ci · u)2

c4s
− 3

2

u2

c2s

]
(3.4)

where wi are the weights, and cs = 1/
√

3.
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Figure 3.1: Illustration of typical two and three dimensional lattices. On the left the D2Q9 and on
the right the D3Q19, with 9 and 19 discrete velocities, respectively, figure reproduced from [18].

Notation Velocities ci Number Length |ci| Weight wi
D2Q9 (0, 0) 1 0 4/9

(±1, 0), (0,±1) 4 1 1/9

(±1,±1) 4
√

2 1/36

D3Q19 (0, 0, 0) 1 0 1/3
(±1, 0, 0), (0,±1, 0), (0, 0,±1) 6 1 1/18

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 12
√

2 1/36

Table 3.1: Properties of the D2Q9 and D3Q19 lattices. The speed of sound for these velocity sets
is cs = 1/

√
3.

The time derivative in the BE (Eq. 3.1) is approximated by forward finite difference, and the
spatial derivative by an upwind scheme [21], resulting in:

fi(x, t+ ∆t)− fi(x, t)
∆t

+ |ci|
fi(x, t)− fi(x− ei∆xi, t)

∆xi
= −1

τ
[fi(x− ei∆xi, t)− feq(x− e∆xi, t)]

(3.5)
where ei = ci/|ci| and ∆xi = |x − xi|, and x is the nearest neighbor node in the ei direction.
From this equation, we can obtain the popular form of the Lattice Boltzmann equation [16] given
by

fi(x+ ci∆t, t+ ∆t)− fi(x, t) = −∆t

τ
[fi(x, t)− feqi (x, t)] (3.6)

where the equilibrium distribution function is given by (Eq. 3.2). Through a formal asymptotic
technique called Chapman-Enskog method [17], the lattice Boltzmann Equation gives us the con-
tinuity equation and the N-S equations presented in section 2.1.1. This procedure shows that the
dynamic viscosity µ and the thermodynamic pressure on the lattice are:

µ = νρ = ρc2s

(
τ − ∆t

2

)
, p = c2sρ (3.7)

where ν represent the kinematic viscosity, in addition, if τ ≤ ∆t/2 the method becomes unstable.
The term cs =

√
dp/dρ can be interpreted as the speed of sound.

3.1.1 Forcing scheme in LBM

Body forces, such as gravity or intermolecular forces, can be included included in the numerical
scheme. In this thesis, an intermolecular force between neighbor fluid nodes is introduced to

14 Fully 3D numerical investigation of liquid jetting
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simulate the vapor-liquid phase transition. The LB equation which includes the body force is
written as

fi(x+ ci∆t, t+ ∆t)− fi(x, t) = −∆t

τ
[fi(x, t)− feqi (x, t)] + ∆fi (3.8)

where ∆fi is the body force term. This term can be implemented in many different ways. In
this thesis, we use the so called Exact Difference Method proposed by Kupershtokh [12]. In this
scheme, the proposed force term is

∆fi = feqi (ρ,u+ ∆u)− feqi (ρ,u) (3.9)

where ∆u = F∆t/ρ. The real fluid velocity (Eq. 3.3) is then modified as follows

u =
1

ρ

[∑
i

cifi +
F∆t

2

]
(3.10)

here u is calculated at half time steps.

3.1.2 Units in The Lattice Boltzmann method

The elementary numerical units in LBM are presented in Tab. 3.2. All the physical quantities in
the simulations can be expressed in terms of these elementary parameters.

unit symbol

Mass mass unit mu
Length lattice unit lu
Time time step ts
Temperature temperature unit tu

Table 3.2: Units in Lattice Boltzmann Methods.

3.2 Boundary conditions

Boundary conditions must be defined before we can obtain a solution for a given flow problem. In
LBM we need boundary conditions for the distribution functions. It has been shown that non-slip
and free-slip boundary conditions can be easily implemented [19]. In fact, this is one of the main
advantages of LBM over traditional CFD methods. The basic forms of periodic, no-slip and open
boundary conditions are described here.

3.2.1 Periodic boundary conditions

In periodic boundary conditions the system becomes closed by the edges, as if the flow leaving a
boundary enters the opposite boundary. It implies that the flow properties at the east boundary
are the same than the ones at the west boundary in Fig 3.2. The ghost nodes in the figure must
be initialized before the streaming step. In our notation, periodic boundaries are implemented as:

fi(X
′
A,j , t) = fi(XC,j , t), fi(X

′
C,j , t) = fi(XA,j , t) (3.11)

where this relation holds for all times t, velocity directions i and indices j.
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Figure 3.2: Illustration of the distribution functions at the boundary of D2Q9 lattice, reproduced
from [16]. The solid dots are fluid nodes, and the hollow dots are ghost nodes, used to impose the
periodic boundary conditions.

3.2.2 No-slip boundary condition

We use the bounceback algorithm [19] for the simulation of solid walls. The implementation of
this is quite simple, one simply needs to designate a particular node as a solid obstacle and no
special programming treatment is required. From Fig. 3.3, the standard bounceback boundary
condition for D2Q9 model can be expressed as:

f2(X ′B,k, t) = f4(XB,k, t), f5(X ′B,k−1, t) = f7(XB,k, t), f6(X ′B,k+1, t) = f8(XB,k, t)
(3.12)

where the same algorithm applies for all times.

Figure 3.3: Illustration of the distribution functions for bounceback boundary conditions of D2Q9
lattice, reproduced from [16].
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3.2.3 Open boundary condition

In this thesis, we use this condition on the upper-lower boundaries. For the LB simulations
we apply this condition for the distribution functions [16].. We use the equilibrium distribution
function given by Eq. ( 3.4) for the unknown values of f5(X ′B,k, t), f2(X ′B,k, t), f6(X ′B,k, t) at the

ghost nodes X ′B , see Fig. 3.2. To calculate the equilibrium distribution function one requires the
value of density and velocity at the ghost nodes. Different values of density and velocities lead to
different values of the equilibrium distribution function. The choice of density and velocity at the
ghost nodes impose different hydrodynamic boundary conditions.

3.3 Multiphase Lattice Boltzmann methods (LBM)

Multiphase LBM have become an efficient and robust technique for simulating complex flows
that undergo phase transitions between liquid and vapor [8] [18]. The following are few of the
advantages of multiphase LBM over traditional CFD methods:

1. In LBM non ideal equations of state can be incorporated to accurately describe both liquid
and gas phases [12].

2. LBM automatically recovers the interfacial dynamics and explicit interface tracking is not
required [8] [7] [12], which allows us to simulate coalescence and break up dynamics of the
liquid jetting.

3. In LBM, complex solid boundaries with different wetting conditions are easily implemented,
and the contact line dynamics on the nozzle can be accurately studied [16].

4. LBM has all the features of efficient parallel computing execution, which allows for fully 3D
simulations at a reasonable computational time [17].

For these reasons, multiphase LBM are an excellent option for performing fully 3D simulations
during the whole fluid dynamics process of liquid jetting. There exist many multiphase models
for LBM, all of them with their own advantages and disadvantages [8]. In this research, the
Kupershtokh [12] multiphase method is used. This model allows for incorporation of arbitrary
EOS to describe the phase separation. In addition, the Kupershtokh model is able to achieve high
density ratios ∼ 107 between the liquid and vapor phases. These features of the Kupershtokh
model are both key factors for simulations of liquid jetting in inkjet printing. In the next section,
the Kupershtokh model will be described.

3.4 Kupershtokh multiphase LBM

Special mesoscopic forces are required for simulating the vapor-liquid phase transition in LBM.
These forces act between every pair of neighbor nodes. One of the most typical LB multiphase
models is the one implemented for Shan and Chen [19], where the total force acting on a fluid
node is:

F (x) = ψ(ρ(x))

N∑
i=1

wiψ(ρ(x+ ei))ei (3.13)

where wi are the coefficients for basic and diagonal directions in the lattice (see table 3.1), and ψ
is the interaction potential:

ψ(ρ) = ρ0(1− exp(−ρ/ρ0)) (3.14)

in this model, phase transition is possible for some values of ρ0, which is an arbitrary constant.
The EOS for this model has the form

P = ρθ − αw1ψ
2 (3.15)
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where α and w1 depend on the model, for example, α = 3/2 and w1 = wi/4 in the D2Q9 model.
The Zhang and Chen multiphase model allows for incorporating arbitrary EOS [12]. In this

model the total force acting on a fluid node is expressed as the gradient of a special potential,
which depends on the EOS

F = −∇U, U = P (ρ, T )− ρθ (3.16)

The Kupershtokh model [12] is based on the Zhang and Chen model. In Kupershtokh, the
mesoscopic force is expressed as a function of a special function Φ as follows

F = F (∇Φ,Φ) (3.17)

where Φ is constructed in such a way that any arbitrary EOS can be included into the model and
is defined as

Φ(ρ̄, T̄ ) =
√
−Ū(ρ̄, T̄ ) (3.18)

where Ū is the reduced potential Ū = U∆t2/ρch, h is the lattice spacing.
In this case, Ū = kP̄ − ρ̄θ̄ represents a potential function which depends on the particular

EOS, with θ̄ = θ(∆t/h)2 = 1/3. The coefficient k = Pc
ρc

∆t2

h2 is related to the simulated material,
which for most inert gases it is k ' 0.01. Throughout this thesis, the van der Waals EOS will be
used, and it can be expressed as

P̄ =
8ρ̄T̄

3− ρ̄
− 3ρ̄2 (3.19)

where the quantities are expressed in reduced variables: P̄ = P/Pc, ρ̄ = ρ/ρc, T̄ = T/Tc, where
Tc, Pc and ρc are the values at the critical point. The numerical approximation of this force for
the D2Q9 and D3Q19 LBM models is

F = β

[
A

N∑
i=1

wiΦ
2(x+ ei)ei + (1− 2A)Φ(x)

N∑
i=1

wiΦ(x+ ei)ei

]
(3.20)

where ei = ci∆t and the constant β is equal to 18/3 and 6 for the D2Q9 and D3Q19, respectively.
In this force, the coefficient A is a free parameter which can be adjusted in order to fit the simulated
and theoretical liquid-vapor coexistence curves.

Throughout this research the van der Waals EOS will be used. It was found in [12] that
for the Kupershtokh model with vdW EOS, the simulated coexistence curve virtually coincides
with the theoretical curve for temperatures T̄ in the range 0.4 < T̄ < T̄c. In addition, with this
configuration of parameters density ratios of the order of 1× 107 are achieved [12].

Fig. 3.4 shows the simulated coexistence curve for Kupershtokh model with van der Waals
EOS and for A = −0.152 and k = 0.01. For this curve, a 2D spherical droplet (R = 40 [lu]) was
initialized in the center of a rectangular domain (144× 144 [lu]) and the temperature was varied
through the simulation. Fig 3.5 shows that the density ratio ρl/ρv increases as the temperature
T̄ decreases. In inkjet printing applications, the density ratio is of the order of 1 × 103. In our
simulations, this density ratio is achieved for temperatures around T̄ = 0.3. In addition to the
density ratio, surface tension is a key parameter to describe the behavior of liquid jetting. The
next section describes the procedure to estimate the surface tension in our simulations.
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Figure 3.4: Liquid-vapor coexistence curve for kupershtokh multiphase model with van der Waals
equation of state. Liquid ρ̄l and vapor ρ̄v densities are plotted as a function of the reduced
temperature T̄ . The value of the parameters are: A = −0.152 and k = 0.01. In this simulation, a
2D spherical droplet with R = 40 [lu] was initialized in the center of a rectangular domain with
dimensions of 144× 144 [lu].
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Figure 3.5: Liquid-vapor density ratio ρ̄l/ρ̄v as a function of the temperature T̄ . This density
ratio corresponds to the phase diagram presented in Fig. 3.5 The density ratio required for inkjet
printing is of the order of ρl/ρv ∼ 1× 103. In this plot the desired density ratio was achieved for
temperatures T̄ < 0.4.
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3.5 Estimating surface tension

The Laplace equation (Eq. 2.34) can be used to estimate the surface tension in our simulations.
For this task, a set of droplets of different radius R are simulated. To calculate the surface tension,
γ, the difference in capillary pressure ∆P inside and outside each droplet has to be measured. The
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Figure 3.6: Plot of curvature of the droplets 1/R vs pressure difference inside and outside the
droplets ∆P/2 . The slope of the linear fit gives the value of the surface tension γ = 3.25× 10−2

[lu mu ts−2]. In the simulations, the parameters are: k = 0.01, T̄ = 0.7, and the radius R were
varied from 20 to 70 [lu]. In this plot, the red droplets illustrate the relative sizes of the droplets
for each point.

radius R of the droplet can be estimated as follows [14]:

RD =

(
M −NxNyρv
π(ρl − ρv)

)1/2

(3.21)

where M is the total mass of the system, and Nx and Ny the size of the domain in X and Y
directions, respectively. The capillary pressure ∆P can be obtained by measuring the densities
inside ρl and outside of the droplet ρv and converting them to pressure P via the EOS. Once R
and ∆P are measured, the slope of the plot 1/R vs ∆P/2 gives the surface tension, see Eq. 2.34.
Fig. 3.6 shows results for a set of droplets, yielding a surface tension γ = 3.25× 10−2 [lu mu ts−2].
The Kupershtokh parameters in this simulation are k = 0.01, T̄ = 0.7, and the radius R of the
droplets was varied from 20− 70 [lu].

One minor drawback of our numerical scheme is that there is a coupling between density ratio
ρl/ρv and surface tension γ. As shown in Fig. 3.7, surface tension γ increases as temperature T̄
decreases. From Fig 3.5 and Fig. 3.7 this implies γ increases along with the density ratio ρl/ρv.
In addition, Fig. 3.7 shows 2D images of a droplet at two different temperatures. From these
images, we can see that the thickness of the liquid-vapor interface decreases as the surface tension
increases. In the next section we present the modeling of the wetting conditions.
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Figure 3.7: Plot of surface tension γ of a 2D droplet vs temperature T̄ . In our simulations, the
surface tension γ and density ratio ρl/ρv increases as temperature decreases, see Fig. 3.5.

3.6 Modeling of the wetting conditions

In multiphase LBM, wetting conditions between fluids and solid surfaces can be modeled by
incorporating an adhesive force between fluid and solid nodes [19]. Lets consider a solid node that
interacts with a fluid node which has a density ρn. If the density of the fluid node is imposed at the
solid node, it leads to a zero gradient of pressure between these two nodes i.e. a neutral wetting
condition with a contact angle equal to 90 degrees. To impose a different wetting condition, we
mirror the density and then we modify the value of the pseudopotential Φ when the fluid node
interacts with the solid node. In this case, the pseudopotential Φw which accounts for the wetting
conditions is

Φw = Φ− w (3.22)

where the parameter w controls the wetting conditions and is a free parameter in our simulations.
The wetting conditions imposed by the choice of w can be quantified by measuring the contact
angle of a droplet sitting on a solid surface. The procedure for measuring the contact angles is
described in the following section 3.7. The results of the simulated contact angles are presented
in section 3.8.

3.7 Geometrical determination of contact angles (CA)

In order to determine the contact angles, the surface of the liquid phase must be located within
the liquid-gas interface. As shown in Fig 3.7, this interface is a thin transition layer of fine width
where the density changes smoothly. The droplet surface is defined as a set of points, each one of
which connects a gas node and a liquid node. A gas node is defined as a node that has a density
smaller than the mean density. A liquid node has density greater than the mean density. The
mean density is defined as follows

ρm =
ρl + ρv

2
(3.23)

where ρl and ρv are the liquid and vapor densities, respectively. Fig 3.8 illustrates the procedure
for finding the surface of a liquid droplet. For this example, a droplet is situated in the center of
a rectangular domain. To find the surface of the droplet, the density in the center of the domain
is plotted as a function of the Y coordinate. From this plot, the points that belongs to the liquid
surface are estimated, and the radius of the droplet calculated.
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Figure 3.8: Illustration of the procedure used to find the surface of a droplet. Left panel: image
of a spherical droplet in the center of a rectangular domain. Right panel: one dimensional plot
for the density ρ of the droplet presented in the right panel, as a function of the position along a
line parallel to the Y -axis.

Now that the droplet interface can be located, the contact angle θ can be estimated. This
estimation is based on a geometrical approach [15] in which the sessile droplet is assumed to be a
perfect spherical segment. From this spherical segment, the base b, height h and radius r have to
be measured and the contact angle θ is estimated as follows

θ = π − arctan

[
b/2

r − h

]
(3.24)

Fig 3.9 shows a graphical description of the geometrical approach for the estimation of contact
angles. In our simulation,the base b of the sessile droplet was measured at a distance of two nodes

Figure 3.9: Geometrical determination of contact angle, figure reproduced from [15].

from the solid wall, and the height h was measured at the center of the droplet.

3.8 Contact angles as a function of the wetting parameter

The plot showed in Fig. 3.10 demonstrates that different contact angles can be obtained by ad-
justing the wetting parameter w. When the parameter w varies between −0.04 to 0.04 the contact
angle varies from θ = 36 to θ = 151, respectively. In these simulations the domain is 144×384×384
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[LU], the upper and lower boundaries are solid walls, and the east and west boundaries are peri-
odic. Here The vdW EOS is used with k = 0.01, T̄ = 0.08, and the liquid density ρl = 1.95345
and the vapor density ρv = 0.261737. For the simulations, a spherical 3D droplet of radius R = 40
[LU] is initialized in contact with the solid wall.
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Figure 3.10: Contact angles for a fluid interacting with a surface as a function of the control
parameter w. Simulation domain is 144×384×384 with solid walls in the upper-lower boundaries
and periodic in the east-west boundaries. A droplet with R = 40 [lu] is initially in contact with
the solid wall; it is simulated till equilibrium is reached. The red droplets represent the regions of
wetting, non-wetting and neutral wetting conditions.

Fig 3.11 shows fully 3D droplets with wetting, neutral and non-wetting contact angles. In these
images, from left to right w1 = 0.04, θ1 = 36; w2 = 0.00, θ2 = 90; and w3 = −0.04, θ3 = 151.

Figure 3.11: Simulation of 3D droplets wetting, neutral, and non-wetting contact angles. These
wetting conditions are obtained by the force balance controlled by the parameter w. For this
simulation w1 = 0.04, θ1 = 36; w2 = 0.00, θ2 = 90; and w3 = −0.04, θ3 = 151.

In this chapter we reviewed the necessary concepts that allow us to use the multiphase Lattice
Boltzmann method for the simulations of liquid jetting. With this numerical model we performed
the simulations that are presented in the next chapter.
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Chapter 4

Numerical simulations

In the previous chapters, we presented the theoretical and numerical framework of our multiphase
numerical model. Our model, in principle, is able to simulate density ratios of the order of 1×107.
In this model we can easily impose open, periodic, and no-slip boundary conditions in complex
geometries; in addition, in this model we can accurately control the wetting conditions in our
simulations. Now we have the necessary framework to simulate fully 3D liquid jetting and to study
the role of nozzle wettabilitty in the liquid jetting. In this chapter, we present our results for the
3D simulations. First, the geometry of the system is introduced in section 4.1. Second, a non-
dimensional analysis of the problem is presented in section 4.2. Third, an estimation of the LB
parameters is performed in section 4.3. Finally, we present results of the fully 3D simulations and
the role of nozzle wettability on liquid jetting (section 4.4 and 4.5).

Figure 4.1: Schematic representation of the 3D nozzle geometry. In the computational domain
every node is either a fluid node or a solid node. This model has a liquid chamber (fluid), nozzle
(solid) and vapor channel (fluid). For the boundary conditions: upper and lower are open, east-
west and front-back are peridodic, and no-slip in the nozzle.
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4.1 Nozzle geometry

Fig. 4.1 shows a schematic view of the 3D nozzle geometry. In the computational domain every
lattice node is either a fluid node (liquid and vapor chambers) or a solid node (nozzle). In the
nozzle the bounceback algorithm is applied to mimic a non-slip boundary condition. The boundary
conditions in our model are: upper and lower are open, and east-west and front-back are periodic.
Fig. 4.2 shows the relevant parameters of the geometry. They are radius of the nozzle (Rn),
velocity of the liquid at the nozzle (Un), width of the chamber (Rc) and length of the channel
(H). With these parameters and the properties of the liquid, we can calculate the non-dimensional
groups of the system, and then we can estimate the Lattice Boltzmann parameters to make our
simulations analogous to reality.

Figure 4.2: Image of a 2D slice of the domain. The relevant parameters of the geometry are:
nozzle radius Rn, velocity of the liquid at the nozzle outlet Un, width of the chamber Rc, and
axial-length of the channel H.

4.2 Non-dimensional groups in inkjet printing

Surface tension, inertia, and viscosity can be used to describe the behavior of liquid jetting. To
characterize the relative importance of these quantities we introduce the Reynolds (Re) and Weber
(We) numbers as follows:

Re =
ρlUnRn

µ
, We =

ρlU
2
nRn
γ

(4.1)

where ρl is the density of the liquid, Un its velocity at the nozzle outlet, µ its dynamic viscosity,
Rn is the radius of the nozzle, and γ is the surface tension. Additionally, a third non-dimensional
number, the Ohnesorge number (Oh) describes the ratio between surface tension and viscosity:

Oh =

√
We

Re
=

µ√
ρlγRn

(4.2)

For optimal printing conditions the liquid jetting should have enough kinetic energy to eject
from the nozzle, overcoming surface and viscous forces, characterized by We and Re. In addition,
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Figure 4.3: Non-dimensional parameter space map. It is suggested that stable operation regime
of DoD printing is quoted by the black and pink lines, which represent pair of values of Ohnesorge
and Reynolds numbers [9] [2]. Each color points on the plot represent a DoD inkjet system, which
belongs to different regimes such as typical parameters in red color, high velocities, plotted in blue,
and high viscosities, plotted in green. The values of these parameters are shown in Table 4.1.

optimal liquid jetting avoids satellite droplets and splashing onto the substrate, characterized by
Oh. It is suggested in [2] that if Oh > 1, viscous forces will prevent jetting. On the other hand,
if Oh < 0.1, surface forces dominate resulting in large number of satellite droplets [2]. It is also
suggested in [9] that liquids can be optimally printed if Oh and Re follow the relations:

Oh > 50/Re5/4, Oh < 2/Re (4.3)

These four suggested inequalities for Oh define a region called the printable fluid region [2]. This
region is shown in Fig. 4.3 enclosed by the black and purple lines. Fig. 4.3 also contains color
points which represent the Re and Oh numbers for various inkjet printing systems. The red points
represent real DoD inkjet printing systems [9]. The blue and green points represent hypothetical
printing systems with relatively high velocity (high Re), and high viscosity (high Oh), respectively.
This parameter space map offers a useful guide for selecting the physical properties of the domain
and the liquid for our simulations.

Additionally to the Re, We, and Oh numbers, we need to consider a fourth non-dimensional
number that represents the pressure pulse that drives the liquid jetting. This pressure difference
across the nozzle and the resulting inertia of the liquid are time-dependent. In order to jet the
liquid, the transient inertia must overcome surface and viscous forces. To characterize the relative
importance between these forces the Womersley [16] (Wo) number is introduced:

Wo = Rn

√
2πω

ν
(4.4)

where the angular frequency ω is the reciprocal value of the characteristic time scale of the problem.
The modeling of the pressure pulse is presented in the next section.

4.2.1 Velocity pulse in the nozzle

We model the pressure pulse as a time-dependent velocity (inflow) boundary condition defined as
follows:

Un(t) = Un−max exp[−ξ2t2] cos[ωt] (4.5)
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Parameter Symbol Value SI units

Density of liquid ρl 1.0 ×103 [kg m−3]
Radius of nozzle Rn 10.0 - 70.0 ×10−6 [m]
Velocity at the nozzle Un 5.0 - 15.0 [m s−1]
Surface tension γ 20.0 - 70.0 ×10−3 [kg s−2]
Viscosity µl 1.0 - 50.0 ×10−3 [kg m−1 s−1]

High viscosity µl 60.0 - 90.0 ×10−3 [kg m−1 s−1]
High velocity at the nozzle Un 20.0 - 60.0 [m s−1]
Small radius of nozzle Rn 1.0 - 10.0 ×10−6 [m]

Table 4.1: Set of parameters in SI for different DoD inkjet printing systems. Combinations of
these parameters are plotted in the non-dimensional parameter space in Fig. 4.3.

where Un−max is the maximum velocity at the nozzle, ω is the frequency, and ξ is a constant
that controls the damping of the pulse. A typical velocity pulse from our simulations is plotted in
Fig. 4.4, for Un−max = 9 [m/s], ξ = 1.87× 104 [1/s], and ω = 1.04× 105 [1/s].
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Figure 4.4: Plot of the velocity pulse given by Eq. 4.5. In this plot, the parameters in SI units
are: Un−max = 9 [m/s], ξ = 1.87× 104 [1/s], and ω = 1.04× 105 [1/s].

In the last two sections the non-dimensional groups Oh, Re, We and Wo were introduced.
Based on these numbers, the Lattice Boltzmann parameters for our simulations are estimated in
the next section 4.3.

4.3 Estimation of the Lattice Boltzmann parameters

To simulate the flow conditions in the nozzle of a real inkjet printer the Oh, Re, We and Wo
numbers should be identical in both the simulation and reality. This presents some challenges
for our numerical model. There is a restriction on the maximum velocity in the system due to
the fact that LBM provides a solution for flows only in the incompressible regime [19] [16] [17].
Further, there is also a restriction on the size of the computational domain, which is related to
the computational infrastructure available. Finally, our numerical model has a coupling between
density ratio and surface tension, as shown in section 3.5. As a result, the estimation of the LB
parameters for our simulation is a delicate task. Based on the practical knowledge of our system, to
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calculate the LB parameters we consider a balance between the capabilities of our computational
infrastructure, the real system we want to simulate, and the desire to get a high density ratio
(ρl/ρv ∼= 2× 102). We propose the following procedure for estimating the LB parameters:

1. obtain the parameters of an inkjet printer in SI units,

2. calculate the dimensionless numbers Oh, Re, We, and Wo, and

3. estimate the Lattice Boltzmann parameters as a function of the non-dimensional groups.

As an example of this estimation, let us consider the parameters in SI units presented in table 4.2.
These parameters were found in [9].

Parameter Value SI units

Rn 15.00 ×10−6 [m]
Un−max 9.00 [m s−1]
ρl 1.00 ×103 [kg m−3]
ρv 4.67 [kg m−3]
γ 8.00 ×10−2 [kg s−2]
µl 5.00 ×10−3 [kg m−1 s−1]
ω 1.04 ×105 [s−1]

Table 4.2: Parameters in SI units of a real inkjet printer. The non-dimensional numbers for the
system are: Re = 27.00, We = 14.28, Oh = 0.14, and Wo = 5.44. The Re and Oh numbers define
a point inside the parameter space map, as shown by the red point in Fig. 4.5. This point lies
inside the printable fluid region of the map.

The non-dimensional numbers for this system are: Res = 27.00, Wes = 14.28, Ohs = 0.14 and
Wos = 5.44. The values of Res and Ohs define a point inside the printable fluid region of the
map, as shown by the red point in Fig 4.5.
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Figure 4.5: Space map for the Lattice Boltzmann simulations of liquid jetting. The red dot
represents our fully 3D simulations, the blue dot is from a 2D simulation [7], and the green dot a
2D axisymmetric simulation [16].

Now, we need to find a set of LBM parameters that match the Res and Wes numbers:

Wes =
ρlU

2
nRn
γ

, Res =
UnRn
ν

(4.6)
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For Wes, the temperature T̄ of the system defines the density ρl and surface tension γ. Therefore,
the velocity Un can be expressed as a function of Rn as follows

Un =

√
γWes
ρl

1√
Rn

= Π
1√
Rn

(4.7)

where Π = Π(T̄ ) is a constant, Fig. 4.6 shows the contour lines for T̄ = 0.4 and T̄ = 0.8.
For Res, the relaxation parameter τ = 1

2 + ν
c2s

gives the kinematic viscosity ν, analogously the

velocity Un is expressed as a function of Rn as follows

Un = νRes
1

Rn
= Z

1

Rn
(4.8)

where Z = Z(τ), Fig. 4.6 shows the contour lines for τ = 0.9 and τ = 1.3.

The region enclosed by the contour lines of Wes and Res gives the appropriate values of Rn and
Un for the Lattice Boltzmann simulations. Note that the velocity in our system has to be Un < 0.1
due to the incompressibility of our method. In the next section a procedure for converting Lattice
Boltzmann units to SI units and viceversa is presented.
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Figure 4.6: Phase diagram for selection of LBM parameters. This plot represents a system with
Re = 27, Oh = 0.14, and Wo = 5.44. The enclosed region between red and blue lines represent
LB systems that match the non-dimensional numbers. Each point in the enclosed region has a
unique value of Un, Rn, τ , and T̄

.

4.3.1 Unit conversion

This research is focused on industrial applications of inkjet printing. For this reason, it is desired
to express all the quantities of our simulations in the international system of units, SI units. Here
we present the procedure proposed in [16] to convert the parameters from Lattice Boltzmann units
(LU) to SI units. For this task, only three basic dimensions are considered: mass [M ], length [L],
and time [T ]. Any physical quantity in the system can be expressed as a product of these basic
quantities as follows

[q] = MαLβT δ (4.9)
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In the inkjet system, the characteristic length, mass and time scales are: Rn, ρlR
3
n, and ω−1,

respectively. With these scales any physical quantity q can be non-dimensionalized as follows

q∗ =
q

(ρl)α(Rn)3α+β(ω)−δ
(4.10)

where q∗ is dimensionless and α, β and γ are determined by the dimensions of q.

For the system presented in table 4.2, the characteristic scales in SI units are: Un = 9 [m/s],
Rn = 15 [µm], ρl = 103 [kg/m3], γ = 0.08 [N/m], µl = 0.005 [kg/m/s] and ω = 1.04 ×
105 [Hz]. For these quantities, the dimensionless groups are: Re = 27.00, We = 14.28, Oh =
0.14, and Wo = 5.44.

First, T̄ = 0.43, and τ = 1.00, which leads to Rn = 45 and Un = 0.1 in LU. The values of
ρl = 2.572, ρv = 0.012, and γ were dictated by T̄ = 0.43. The density ratio is: ρl/ρv = 214.
In addition, τ = 1 in combination with the density gives µl = 0.428. This set of parameters in
combination with Wo = 5.44 gives us ω = 3.88 × 10−4 in LU. Now, we use the phasediagram
presented in Fig. 4.6

Finally, the rule presented in Eq. 4.10 is used to calculate the values of q∗ for all the parameters.
The table 4.3 present the results for the estimation of the LB parameters and the conversion factors
between systems of units. In the next section, we present the simulations performed with this set
of parameters.

q LU q* SI (kg,m,s) [q]

∆x 1.00 2.20×10−2 3.30×10−7 L
∆m 1.00 4.26×10−6 1.44×10−18 M
∆t 1.00 3.88×10−4 3.73×10−9 T
Rn 45 1.00 1.50×10−5 L
Rc 240 5.33 7.99×10−5 L
H 1104 24.53 3.67×10−4 L
Un 0.1 5.70 9.00 LT−1

ρl 2.572 1.00 1.00×103 ML−3

ρv 0.012 4.66× 10−3 4.67 ML−3

γ 0.08 2.20 8.00×10−2 MT−2

µl 0.428 0.21 5.00×10−3 ML−1T−1

ω 3.88×10−4 1.0 1.04×105 T−1

ξ 7.22×10−5 0.18 1.87×104 T−1

Table 4.3: Table for parameter conversion between LB, SI units and other simulation methods.
The set of parameters correspond to the following dimensionless numbers: Re = 27.00, Oh = 0.14,
and Wo = 5.44. The LB parameters: Un, Rn, ρl, µl, γ, and ω where calculated with the phase
diagram presented in Fig 4.6. The density ratio for LB is equal to 214. Fully 3D simulations for
these parameters are shown in Fig. A.1.

4.4 Fully 3D numerical simulations of liquid jetting

In the previous chapters, we presented the theoretical framework and a detailed analysis of our
multiphase numerical model. Now we are capable of performing fully 3D simulations of liquid
jetting, and also capable of measuring the relevant parameters of the jetting, for example, densities,
velocities, contact angles, isovolumes, and positions of the liquid droplets. The results of our
simulations are presented here.

Fig. 4.7 shows qualitative numerical results of a 3D liquid jetting. This image shows a visu-
alization of an isovolume of the density, which represents the liquid phase. The geometry used
for this simulation is shown in Fig. 4.2 and the parameters in SI and LB units are presented in
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Figure 4.7: Qualitative numerical results of 3D liquid jetting. The red droplet is an isovolume
of densities, ρiso > ρm, where ρm is defined in Eq. 3.23, therefore, the red droplet represents the
liquid phase. The density ratio in this case is ρl/ρv = 214. Times are expressed in [µs]. From left
to right we can observe: (a) meniscus, (b) stretching of the liquid, (c) pinch-off at the nozzle, (d)
head droplet, (e) tail droplet, (f) pinch-off behind the head droplet, and (g,h) satellite droplet. The
geometry and set of parameters for this simulation are shown in Fig. 4.2 and table 4.3, respectively.
Time series of this drop formation are shown in Fig. A.1.

table 4.3. The density ratio in this simulation is ρl/ρv = 214. In this image we can observe the
main stages of the drop formation process, which are summarized as follows:

In the initial stage (t = 0.37 [µs]) the meniscus shows a typical parabolic profile. We can ob-
serve at t = 11.19 [µs] that the liquid is stretching due to surface tension effects. This stretching
leads to the formation of the head droplet (t = 11.19−31.70 [µs]). Next the pinch-off at the nozzle
is observed at t = 26.11 [µs] and tail drop formation at t = 29.84 [µs]. After the pinch-off at
the nozzle, a second pinch-off takes place behind the head droplet (t = 31.70 [µs]). This second
pinch-off breaks the jet into two parts, a head droplet and a ligament (t = 35.43 [µs]). In the last
stage, the ligament contracts to form a secondary droplet, a satellite droplet (t = 55.95 [µs]). A
complete time series of this drop formation is showed in Fig. A.1. From the simulations, we can
also obtain information about particular points inside the liquid region, for example the positions
and velocities of the head droplet, tail droplet, and tip of the tail.

Fig. 4.8 shows plots for the positions and velocities as a function of time of the head droplet
(c), tail droplet (a) and tip of the tail (b). To find the surface of the liquid jet, we used the
algorithm presented in section 3.7, once the points are found, we can measure the velocity at these
particular points. In the left panel, we can observe the time of pinch-off from the nozzle, and the
time of pinch-off behind the head droplet. In addition, from the positions of (a) and (b) we can
observe the contraction of the ligament into a satellite droplet.

In the right panel, the velocities of (a), (b) and (c) are plotted as a function of time. In this
plot, one can observe the maximum velocity of the meniscus (U ∼= 9 [m/s]), which is imposed
by the maximum velocity of the velocity pulse (Un = 9 [m/s]). In addition, we can observe that
after some time, t ∼= 60 [µs], both the main and satellite droplets reach a final common velocity,
U ∼= 3.9 [m/s]. In this velocity plot (Fig. 4.8), we can also observe fluctuations between the
velocity of the tail droplet (a) and the velocity of tip of the tail (c). It is observed that when the
velocity of (a) is at a maximum, at the same time the velocity of (b) is at a minimum and vice
versa.

To recapitulate, in this section, we have presented results of the 3D simulations of liquid
jetting. This results qualitatively show that we have set up a computational tool that is capable
of simulating the whole drop formation process in inkjet printing. In addition, our approach shows
that we are able of measuring the relevant physical quantities in the system. To end this section,
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Figure 4.8: Left panel: position of the head droplet (c), tail droplet (a), and tip of the tail (b),
as a function of time. The surface of the liquid jet was found with the algorithm presented in
section 3.7. Right panel: velocity magnitude of (c), (a), and (b) as a function of time. In this
image we can observe that initially the meniscus has a maximum velocity, U ∼= 9 [m/s], imposed
by the maximum velocity, Un = 9 [m/s], of the velocity pulse; in addition, we can observe that
both the main and head droplet reach a final common velocity, U ∼= 3.9 [m/s]. Fig. A.3 and
Fig. A.2 show colorbar images of the velocity magnitude and isovolumes of the density of the
jetting as a function of time, respectively.

we highlight three aspects that show the achievements of our simulations when compared with
similar attempts ([16]) to simulate liquid jetting with the multiphase LBM: (i) our simulations
have a higher density ratio 224 vs 10, (ii) our model is capable of simulating liquid jetting with
parameters that lie inside the printable fluid region of the parameter space map (see section 4.2),
and (iii) our simulations do not show numerical enhanced evaporation of the satellite droplets.
Now that we are capable of perform the 3D simulations of liquid jetting, in the next section, we
present a preliminary investigation of the role of nozzle wettability in the liquid jetting.

4.5 The role of nozzle wettability in the liquid jetting

The research topic presented here is motivated by experiments that have been carried at the
laboratories in Océ technologies. These experiments suggest that structural defects in the nozzle,
such as non-homogeneous wetting conditions, may play an adverse role on the liquid jetting. These
defects could change, for example, the size and shape of the droplets, and could also deviate the
jet from its axial trajectory. If these effects appear in a real inkjet printer, they could drastically
compromise the quality of the printing. At this time, we have not found numerical investigations in
this topic. We think that these investigations ideally must be performed in a 3D domain, because
the undesired effects are in principle not axisymmetric.

In this context, we use our computational toolbox to perform a preliminary investigation of
the role of non-symmetric wetting conditions in the nozzle. In this first study, we set up a simple
case which simulates a nozzle that has a wetting condition in one half of it, and a different wetting
condition in the other half. The 3D geometry for these simulations is shown in Fig. 4.1 and
the configuration of the non-homogeneous wetting conditions is illustrated in Fig. 4.9. The non-
symmetric wetting conditions in the nozzle are imposed by the wetting parameters w1 and w2.
It results in two different contact angles in the nozzle, θ1 in one half and θ2 in the other half,
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respectively.
Fig. 4.10 shows qualitative numerical results of a simulation with non-symmetric wetting con-

ditions in the nozzle, where in one half θ1 = 36 and in the other half θ2 = 151. In this figure,
we can see that the jetting shows a different shape as compared with a jetting ejected from a
nozzle with symmetric wetting conditions. In addition, a similar comparison shows that the head
droplet does not have a typical symmetric profile. The parameters in LB and SI units for these
simulations are presented in table 4.4.

q LU SI Units [q]
Rn 45 1.50×10−5 L
Rc 288 7.99×10−5 L
H 1440 3.67×10−4 L
Un 0.1 9.00 LT−1

ρl 1.95345 1.00×103 ML−3

ρv 0.261736 134 ML−3

γ 0.017 2.30×10−2 MT−2

µl 0.428 6.50×10−3 ML−1T−1

ω 3.88×10−4 7.84×105 T−1

Table 4.4: Table of parameters in LB and SI units for the simulations with non-homogeneous
wetting conditions in the nozzle. The set of parameters correspond to the following dimensionless
numbers: Re = 20.50, We = 51.7 and Wo = 4.74.

The non-symmetric wetting condition may also influence the contact line dynamics in the
nozzle. Fig. 4.11 shows images of the contact line in the nozzle. In this image, we can observe
that there exist two different contact lines in each half of the nozzle, and we can also observe that
the liquid jetting pinches-off first on the side of the nozzle that has a non-wetting contact angle,
θ2 = 151. This qualitative results illustrates the influence of the non-symmetric wetting conditions
in the shape of the droplet and contact line.

Now we investigate if these conditions in the nozzle also deviate the liquid jetting from its
axial trajectory. Fig. 4.9 illustrates this problem, where a droplet hypothetically deviates from its
axial trajectory. For this task, we measure the trajectory of the center of mass of the jetting as a
function of the non-symmetric wetting conditions in the nozzle. This center of mass is calculated
from an isovolume of the density, which represents the liquid phase. This isovolume is defined as
a set of points inside the domain, where each point has a density greater than the mean density
defined in Eq. 3.23. Once the isovolume is calculated, we measure the center of mass of the liquid
jetting as follows:

CM(x, t) =
1

M

n∑
i=1

ρixi, M =

n∑
i=1

ρi (4.11)

where n is the number of points inside the isovolume, xi and ρi are the position and the density
at the point i, respectively, and t is the time. Note that computing the center of mass is a
relatively demanding task, because our domain contains 119439360 nodes, and every node has its
own density and positions.

Fig. 4.12 shows the trajectories of the center of mass of the jetting for different combinations
of w1 and w2. In these set of simulations, we maintain half of the nozzle with a fixed wetting
condition, w1 = 0.4, which represents θ1 = 36. The value of w2 will be varied from w2 = 0.4 to
w2 = −0.4, which imposes contact angles from θ2 = 36 to θ2 = 151, respectively. The left panel
shows the position of the center of mass in the center of the domain in a plane parallel to the Y
axis. This is a 2D plot, because the center of mass does not deviate in the direction parallel to
Z, see Fig. 4.9. In this plot, we can observe that the non-symmetric wetting conditions in the
nozzle deviate the trajectories of the jetting in the direction paralel to Y . The plot also shows that
by increasing the difference of contact angles, ∆θ = |θ2 − θ1|, the deviation, Rdev, increases. To
estimate the value of the angle α and the deviation Rdev, we applied a linear fit to the trajectories.
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Figure 4.9: Left panel: Schematic top view of a nozzle plate with non-symmetric wetting condi-
tions. The parameters w1 and w2 represent a particular wetting condition, θ1 and θ2, in the nozzle
surface. Right panel: Side view of the 3D geometry. This image illustrates the deviation of the
droplet from its perfect axial trajectory. The angle α and deviation distance Rdev depend on the
combination of wetting conditions w1 and w2 on the nozzle.

From the linear fit, we calculated the deviation, Rdev, as a function of w2, and for different lengths
of the channel, Ldev. Fig. 4.12 shows these results of the deviation, Rdev, as a function of the
wetting condition w2 and for different lengths of the channel Ldev. It was found that for a channel
of 2 [mm] length, the center of mass of the droplet can deviate 25 [µm], in the case of θ1 = 36
and θ2 = 151. Note that this deviation, Rdev, is equal to zero for the case of symmetric wetting
conditions, ∆θ = 0, in the nozzle.

Now we calculate the Y velocity of the center of mass as a function of the wetting conditions.
Fig. 4.13 shows a plot of the trajectories of this center of mass as a function of time. From this
trajectories, we apply a linear fit to the tail of the plot to obtain the final velocity of the droplet,
U . This final velocity of the center of mass increase as ∆θ = θ2 − θ1 increases. It implies that by
increasing the value of ∆θ, the liquid jetting acquire a higher momentum in Y direction. For a
nozzle with symmetric wetting conditions, this velocity is equal to zero.

In this section, we applied our computational tool to study the role of non-symmetric wetting
conditions in the nozzle. The results have shown that these conditions modify the shape and
symmetric profile of the liquid droplets, and ligaments. It was also found that these conditions
lead to two different contact lines in each half of the nozzle. Finally, the results have shown that
these non-symmetric wetting conditions deviate the liquid jetting from its perfect axial trajectory.

In the next section, we briefly discuss some conclusions of this thesis.
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Figure 4.10: Qualitative numerical results of the simulations with non-symmetric wetting condi-
tions in the nozzle. In this image, we can observe the effects of these wetting conditions, which
result in changes in the typical dynamics and shape of the droplet and ligament. In this simula-
tion, the left side of the nozzle has w1 = 0.4, and the right side has w2 = −0.4, with θ1 = 36 and
θ2 = 151, respectively. The parameters of this simulation are shown in table 4.4.

Figure 4.11: Images of a 2D slice in the center of the domain, where red is the liquid phase. This
figure shows that the non-symmetric wetting conditions result in two different contact lines in
each half of the nozzle. The left side of the nozzle refers to a contact angle θ1 = 36, and the right
side to θ2 = 151. In images a) and b), we can observe that there exist two different contact lines
in each half of the nozzle. In images c) and d), we can observe that the liquid pinches-off first on
the right side.
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Figure 4.12: Left panel: Position of the center of mass of the liquid jetting. The jet deviates in
the Y direction. It is a 2D plot, because the center of mass has a perfect axial trajectory in the Z
direction (see Fig.4.9). In this plot, w1 = 0.04 and θ1 = 36, and the values of θ2 were varied from
θ2 = 36 to θ2 = 151. The black lines represent a linear fit, which is used to calculate the value of
the deviation Rdev. Right panel: shows the calculations of the deviation Rdev for different wetting
conditions, ∆θ = θ2 − θ1, and for different channel lengths, Ldev.
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Figure 4.13: Left panel: Plot of the Y coordinate of the center of mass of the jetting as a function
of time. The value of θ1 = 36 and θ2 is varied from θ2 = 36 to θ2 = 151. In this plot, a linear fit
of the tail of the plot gives us the value of the velocity, U , of the droplet. Right panel: the values
of the final velocity, U , are plotted for different wetting conditions.
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Chapter 5

Conclusions

In this report, we have shown how to numerically simulate liquid jetting in inkjet printing by
using the multiphase Lattice Boltzmann method. We found that the Kupershtokh LB method is
a viable tool for performing fully 3D simulations of real liquid jetting under some restrictions on
Re, We, and Wo, and a restriction on the density ratio between the liquid and vapor phase, ρl/ρv.
Many of the conditions encountered are intrinsic to the Kupershtokh model and not to LBM in
general.

The results of the simulations qualitatively show that our approach is capable to simulate
the whole drop formation process of the liquid jetting. We also show that the relevant physical
quantities of the system can be quantitatively measure in the simulations. In this simulations, we
were able to obtain a density ratio of the order of 2×102, and also able to overcome the numerical
enhanced evaporation that other multiphase LBM models have shown.

Furthermore, we applied our computational tool to study structural deffects in the nozzle,
particularly, the role of non-symmetric wetting conditions in the nozzle. We found that this
non-symmetric wetting conditions can change the typical shape, and symmetric profile of the
liquid jetting. In addition, it was found that this conditions can deviate the jetting from its axial
trajectory. It was found that by increasing the difference in contact angles, ∆θ = θ2 − θ1, the
deviation from the axial trajectory, Rdev, increases.

Finally, further improvements in the approach are necessary in order for it to become a more
useful and quantitative computational tool. The major remaining issues include: (1) further
enhancement of numerical stability to achieve higher density ratios; (2) further improvements of
the numerical scheme in order to decouple density ratio and surface tension; (3) including a more
realistic pressure pulse and the acoustic dynamics in the nozzle chamber; (4) and direct comparison
with experimental or other numerical results.
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Appendix A

Numerical results and parameters

Figure A.1: Time series of qualitative numerical results of 3D liquid jetting, times are expressed
in µs. The red color represents the liquid phase (isovolume of the density). Fig. 4.2 shows the
geometry for this simulation and the parameters in SI and LU units are presented in table 4.3. In
this simulation, the density ratio is ρl/ρv = 214.
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APPENDIX A. NUMERICAL RESULTS AND PARAMETERS

Figure A.2: Time series of a slice in the center of the domain showing the density field. The
position of the head droplet, the tail droplet and the tip of the tail are plotted as a function of
time in Fig. 4.8.
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Figure A.3: Time series of a slice in the center of the domain showing the magnitude of the velocity
field. The velocity of the head droplet, the tail droplet and the tip of the tail are plotted as a
function of time in Fig. 4.8.
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