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Abstract

Graphene exhibits an extremely high strength-to-weight ratio, which can amongst others be
used to create large scale ultrathin optical windows. For further development and upscaling in
size it is essential to acquire information on its thickness and stiffness, being two focus areas
of this thesis. Furthermore, since graphene shows large potential for use in electromechani-
cal resonators due to its large stiffness and light weight, potential operating characteristics of
graphene-CMUT devices are assessed.

Combining excitonic resonance, the so-called Fano resonance effect, with the linear scaling
conductivity in multilayer graphene, a full range UV-vis (∼250-1100 nm) transmission model
is proposed. This model is used to determine the thickness of different multilayer graphene
membranes. Additionally, this model provides a method to calculate the reflection of multi-
layer graphene membranes based on the fitted transmission curves, where reflection is generally
neglected in optical studies on graphene.

In order to investigate the stiffness of the multilayer membranes, bulge test have been performed
on two different membrane configurations, being able to individually extract the Young’s mod-
ulus E and Poisson ratio ν. Graphene membranes with a thickness of t = 11.5 nm show a
relatively constant intrinsic Young’s modulus of E ≈ 80 GPa, which increases to E ≈ 150 GPa
for membranes with a thickness of t = 2.76 nm. These values are lower than the theoretical
value of E = 1 TPa for single-layer graphene, indicating the mechanical response might be
more towards graphite-like values of E = 15− 30 GPa. The Poisson ratio ν on the other hand
shows a significant increase, clearly different from the generally used constant value of ν = 0.16
throughout literature. The Poisson ratio increases from a near-zero value at low stress, to well
above the theoretical isotropic limit of ν = 0.5. This suggests the Poisson ratio ν is the main
effect contributing to the non-linear effective response Eb and Ep for square and rectangular
membranes, respectively. Quantitative analysis of the non-linear effect suggests small-scale
crumpling of the graphene membranes can be the main cause for this effect.

Multilayer graphene membranes have been electromechanically actuated, showing proof-of-
principle operation as present in CMUT devices. Through modeling suggestions are made
for optimal design parameters. While this states potential ranges of operation in for example
medical imaging, more information is needed on certain output parameters. Main parameter
to be investigated is the output sound wave pressure, before assessing the benefits of graphene
membranes over current membrane materials.
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Chapter 1

Introduction

In this introduction a general overview on graphene and graphene membranes in specific is
given. This thesis focuses on graphene membranes, since they prove to be excellent candidates
for use as optical windows and electromechanical resonators. This introduction shortly touches
upon the different aspects of the graphene membranes, such as the importance of its thickness
and mechanical stiffness. The corresponding research questions are formulated and the added
value of this thesis to the current literature knowledge on (multilayer) graphene membranes is
indicated. At the end of this introduction a detailed outline of this thesis is given, describing
the different chapters and their research focus.

1.1 Graphene: the golden age in physics

It can be safely assumed that graphene is one of the most heavily researched materials nowa-
days. Despite its relatively recent experimental discovery, the number of publications related
to graphene has increased to 14,000 within a decade, with on average 40 papers being published
on graphene per day in 2014 [1]. Applications incorporating graphene are researched across
numerous fields, ranging from biological engineering [2] and optical electronics [3], to filtration
systems [4, 5] and photovoltaic devices [6].

Graphene consists of carbon atoms arranged in a 2-dimensional honeycomb lattice. Figure 1.1
shows a schematic overview of this 2D structure, which acts as building block for other well-
known shapes such as zero dimensional buckyballs, one dimensional nanotubes and three di-
mensional graphite [7]. Before its experimental discovery, 2D graphite, now known as graphene,
already was a theoretical topic of interest. It was thought however, that graphene was never
able to exist as a free material due to being thermodynamically unstable [8]. Researchers posed
random fluctuations would ripple the 2D structures to such an extent, it is more suitable to
consider them 3D structures in stead of 2D materials. In 2004 though, Geim and Novoselov
experimentally extracted the first graphene samples at the University of Manchester [9]. Their
method of extracting a single layer of graphene by means of mechanical exfoliation is often re-
ferred to as the ’Scotch tape’-method. This method involves peeling of a layer of carbon atoms
from a larger chunk of highly oriented pyrolytic graphite (HOPG) using a piece of Scotch tape.
Nowadays, the Scotch tape-method is still used to extract micrometer size graphene flakes gen-
erally used in research. Improvements have been made to generate techniques more suitable
for incorporation in industrial applications, which are based on wafer-scale processing. Tech-
niques such as chemical vapour deposition (CVD) or synthesis on silicon carbide (SiC) wafers
have been developed, resulting in a more large scale production of graphene more suitable for
semiconductor applications [10].

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Graphic representation of a sheet of graphene. Choosing an appropriate area
within the lattice, graphene can be restructured into 0D buckyballs, 1D nanotubes or 3D
graphite.1

Despite graphite commonly being known as an insulator, graphene is shown to have an ex-
tremely high electron mobility, thus exhibiting aspects more resembling conducting materials
[11]. The extraordinary properties of graphene have rapidly accelerated research across various
fields. An example is the possibility to study the Quantum Hall Effect at room temperature
[12, 13]. Before the experimental discovery of graphene, this research field was only accessible
to low-temperature, high energy physicists.

One of the main focus areas of this thesis is the mechanical behavior of graphene. This topic is
motivated by the awarding of the Nobel in Physics to Geim and Novoselov for their experimental
discovery of graphene. In their Nobel prize lecture the potential of graphene is nicely illustrated:
’It [graphene] is so strong that a 1 m2 hammock, no heavier than a catÂŠs whisker, could bear
the weight of an average sized cat without breaking’ [14]. This extreme strength-to-weight-ratio
can be implemented in various applications which require strong mechanical properties but very
little material mass itself. Examples of these applications are ultra-thin optical windows [15]
or extremely sensitive pressure sensors [16]. These forms of (multilayer) graphene membranes
are currently being researched at Philips Innovation Services, of which this work is a part.

1.2 Graphene membranes

Large scale graphene membranes show large potential for use as optical windows in X-ray
spectroscopy [17, 18], electron microscopy [19] and cryoTEM analysis [20]. These applica-
tions require a high photon-transmission, while simultaneously spanning large surface areas.

1Image source: Geim et al. (2007) [7]

2



CHAPTER 1. INTRODUCTION

Although it already has been shown multilayer graphene membranes can be spanned over mm2-
size areas [22, 21, 23], see Figure 1.2, the exact thickness of the graphene membranes is still
a point of discussion. Since this thickness determines the amount of light transmitted, it is
crucial to investigate of how many graphene layers the multilayer membranes consist. Here
transmission spectroscopy has shown to be a prime candidate for thickness determination of
multilayer graphene membranes [22, 24].

Figure 1.2: Typical 11x11 mm2 multilayer graphene membrane as studied in this thesis. The
nanometer thin semi-transparent graphene membrane can be identified by eye.

In order to acquire even larger surface areas of graphene membranes, its mechanical response
has to be optimized to meet these requirements. While the mechanical properties of small
scale ∼ µm2 single-layer graphene membranes are a field of interest in current research [25, 26],
the mechanical properties of large scale ∼ mm2 multilayer graphene membranes have been less
frequently investigated. Therefore it is also necessary to acquire insight into the mechanical
characteristics such as the stiffness of the multilayer graphene membranes. Being commonly
used in thin film characterization, bulge testing has proven to be an excellent technique for
determining the mechanical characteristics of thin membranes [27].

1.3 Research questions
As described in the previous section, applications such as optical windows require detailed
characterization of the thickness and stiffness of the material. Additionally, ultrasound trans-
ducers are currently researched at Philips, in which graphene membranes could be potentially
incorporated, replacing standard micromachined materials [28, 29]. These properties form the
basis of this thesis, formulated in the three main research questions:

1) “How can the thickness of freestanding multilayer graphene membranes be accurately
determined through UV-vis spectroscopy?”

UV-vis spectroscopy has proven to be an excellent non-invasive technique for multilayer graphene
analysis. Current research on full-range UV-vis spectroscopy on single-layer graphene has de-
livered detailed models, whereas for multilayer graphene mostly single-wavelength UV-vis spec-
troscopy is applied. In this thesis a full-range multilayer graphene UV-vis model is proposed
and fitted with transmission measurements on membranes with different thicknesses.

2) “What is the mechanical response of freestanding multilayer graphene membranes?”

3



CHAPTER 1. INTRODUCTION

Since literature knowledge on the mechanical response of multilayer graphene membranes is
very sparse, it is chosen to investigate the mechanical response of the membranes in more detail,
thus leading to this second research question. This thesis describes a method to independently
determine the Young’s modulus E and Poisson ratio ν of the multilayer graphene membranes,
applying the method of bulge testing on large scale graphene membranes.

3) “Can freestanding multilayer graphene membranes replace current membrane structures in
ultrasound transducers?”

Combining the mechanical and electronic properties of multilayer graphene membranes has led
to formulation of the third research question of this thesis. The potential use of graphene in
ultrasound transducers is investigated using a proof-of-principle experimental setup. Combined
with modeling of potential output parameters, this proves insight into the possible character-
istics of such graphene-transducer devices.

1.4 Thesis outline
This thesis is structured according to the three research questions mentioned above. Since
these questions each require a different analysis approach of the graphene membranes, they are
centralized in individual chapters.

• Chapter 2: Sample design, processing and experimental setups
This chapter describes the preparation of the multilayer graphene membranes studied in
this thesis. The multilayer graphene is characterized through Raman spectroscopy, and
the two main experimental setup used in this thesis are described: UV-spectroscopy and
bulge testing.

• Chapter 3: Thickness determination
Here the first research question is addressed. First, a literature overview on transmission
spectroscopy on multilayer graphene is given. The transmission through single-layer
graphene is related to its optical conductivity, describing the relevant excitonic effects in
the UV-vis regime. Extending to multilayer graphene, a full-range UV-vis transmission
model is proposed, eventually used to analyze different graphene thicknesses.

• Chapter 4: Membrane characterization: bulge testing
This chapter outlines the second research question, characterizing the mechanical re-
sponse of the multilayer graphene membranes. First, a general introduction on the me-
chanical characteristics and the principle of bulge testing is given. Different membrane
configurations and thicknesses are tested, comparing the mechanical response to recent
literature on the bulging of single-layer graphene.

• Chapter 5: Graphene incorporation in CMUT
The third research question is investigated in this chapter, reporting the potential for
the use of graphene membranes in ultrasound transducers. The working principle of con-
ventional ultrasound transducers is explained, additionally discussing recent attempts to
incorporate graphene in electromechanical resonators. Proof-of-principle actuation of the
graphene membranes created in this thesis is shown. Lastly, potential characteristics of
graphene-transducer are modeled, suggesting optimal parameters for desired applications.

• Chapter 6: Conclusions and outlook
At the end of this thesis, the findings in this work concerning the three research topics are
outlined. Based on the different results acquired, recommendations for future research
are given.

4



Chapter 2

Sample design, processing and
experimental setups

This chapter provides a description of the processing of the multilayer graphene membranes
studied throughout this thesis. The processing steps for fabrication of the graphene membranes
are discussed, after which a characterization of the graphene through Raman spectroscopy is
presented. Lastly, the two experimental setups, UV-vis spectroscopy and bulge testing are dis-
cussed, centralizing the experimental discussion of this work in this chapter.

2.1 Introduction
The process of manufacturing graphene membranes has always followed a similar approach
over the past decade. It essentially involves two separate substrates used in fabrication: one
on which the graphene is grown, and a second permeated substrate onto which the graphene is
transfered, forming the actual membranes [30]. Although this process does deliver freestanding
graphene membranes, it often results in transferal residue on the membranes. Besides sample
contamination, transferring large areas of graphene entails manual processing and low repro-
ducibility. Since industrial process flows are based on full wafer scale processing, especially this
last restriction is unfavorable for semiconductor processing and the potential for incorporation
of graphene.

This chapter describes the manufacturing process for the graphene membranes used in this
thesis. Production of the graphene membranes is performed using the cleanroom facilities at
Philips Innovation Services (PInS) at the High Tech Campus in Eindhoven, The Netherlands.
In contrast to the graphene transfer process, the fabrication process in this thesis selectively
removes the substrate from underneath the graphene. Using this method the membranes are
directly created on the substrate wafer and the transferring process is bypassed. A similar
process has already been presented producing graphene membranes in the order of 100− 3000
µm2 [31]. In this thesis we extend this method to produce freestanding multilayer graphene
membranes in the order of ∼mm2 to ∼cm2.

2.2 Graphene membrane preparation
In this thesis two type of graphene membranes with different thicknesses are created, through-
out this thesis referred to as type 1 and type 2. Although the graphene growth process is
outside of the scope of this work, the process of graphene deposition is shortly described below.
After graphene deposition the wafers are further processed at Philips, obtaining the individual
graphene membrane samples.

5



CHAPTER 2. SAMPLE DESIGN, PROCESSING AND EXPERIMENTAL SETUPS

2.2.1 Pre-deposition processing and CVD graphene deposition1

The multilayer graphene is grown by chemical vapour deposition (CVD) on a metal catalyst.
This metal catalyst is sputtered on the front side of a silicon (100) wafer. The multilayer
graphene growth process is based on the procedure presented by Grachova et al. (2014) de-
scribing a wafer-scale CVD graphene growth process [32]. A temperature profile of the growth
process is shown in Figure 2.1. The wafer is gradually heated to a temperature of 1010 ◦C in
an environment of Ar and H2. When the desired temperature is reached, an annealing step
is initiated to remove any native oxide from the metal catalyst’s surface. After annealing,
methane gas (CH4) is introduced to start the graphene growth. By selecting the duration of
the methane gas flow, the amount of graphene deposition and therefore the multilayer thickness
can be controlled.

Cooling down
Anneal +
growth

Temperature ramp up

Figure 2.1: Typical temperature profile of the multilayer graphene deposition process. The
three main processes are indicated: temperature ramp up, anneal and graphene growth, and
cooling down.2

The growth process of multilayer graphene depends on multiple factors such as C-solubility
of the metal catalyst [33] and the cooling-rate after growth [34], factors which are outside the
scope of this thesis and therefore will not be discussed here. For more details on the growth
process of graphene, see the papers of Munoz et al. (2013) [33] and Grachova et al. (2014) [32].

2.2.2 Postgraphene deposition processing

After graphene deposition the wafer is further processed in the cleanroom at Philips Innova-
tion Services. As mentioned in the introduction of this chapter, the graphene membranes are
created using a transferfree process. Applying standard lithography techniques the backside
of the silicon wafer is patterned. Using a KOH-solution the wafer is anisotropically etched

1In the time period of this graduation project, Philips does not yet have the resources to grow graphene on
location. Therefore the actual graphene deposition is outsourced, with the resulting thickness being determined
through UV-vis spectroscopy as described in this thesis.

2Image adapted from Grachova et al. (2014) [32]
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CHAPTER 2. SAMPLE DESIGN, PROCESSING AND EXPERIMENTAL SETUPS

Figure 2.2: 4" graphene wafer after KOH-etching. The 5x1 mm2 and 1x1 mm2 bulge test
samples can be identified, together with 3x3 mm2 samples used for transmission spectroscopy.

Si support wafer
Metal catalyst
Graphene

Backside view

Backside view(a) (b)

Figure 2.3: (a) Schematic description of the graphene membrane after anisotropic KOH-
etching and removal of the underlaying metal catalyst. (b) Backside microscopic image of an
individual 1x1 mm2 multilayer graphene membrane.

along the vertical (100) direction and characteristic (111) planes become visible, see Figure
2.2. After wet-echting of the underlaying metal catalyst the freestanding graphene membranes
are acquired, see Figure 2.3. The graphene is still supported by the silicon wafer on which it is
grown, this creating the membranes on the same substrate wafer without the use of transfer.

Folds

Figure 2.4: Rectangular 5x1
mm2 graphene membrane with
folds along the full width of the
membrane.

After wet-etching of the metal catalyst, the final challenge in
obtaining freestanding graphene membranes is an even dry-
ing process. After rinsing, the sample is air dried to let the
remaining water evaporate. Due to the surface tension of wa-
ter, caused by the strong hydrogen bonds between the water
molecules, the graphene sometimes backfolds over itself, see
Figure 2.4. Attempts are made to reduce the number of folds,
for example by adding acetone to reduce surface tension. While
this slightly reduces the number of folds, it is still an effect
which has to be taken into account, especially in choosing the
appropriate samples for bulging.

7



CHAPTER 2. SAMPLE DESIGN, PROCESSING AND EXPERIMENTAL SETUPS

2.3 Raman characterization

Figure 2.5: Schematic illustration of the working principle of Raman scattering. Multiple
transition paths are shown between the different energy levels. The Stokes Raman scattering
and anti-Stokes Raman scattering cause minor shift in the emitted light, identified by the so-
called Raman shift.3

A typical technique to characterize (multilayer) graphene is Raman spectroscopy [35]. Raman
spectroscopy uses low-frequency light to excite lattice vibrations, see Figure 2.5. By absorption
of the light, the crystal is excited to higher virtual energy states. When falling back to lower
energy states, the photons interact with the lattice vibrations, causing minor shift in the
emitted wavelength. This so-called Raman shift can be used as fingerprint for specific crystal
configurations and identification of lattice anomalies.
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D+G
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Figure 2.6: Raman spectrum of freestanding type 1 multilayer graphene. The characteristic
G- and 2D-peak can be distinguished, with the D-peak indicating defects present in the graphene.
Higher order peaks (D+D" and D+G) can also be identified around the 2D-peak.

3Image source: https://en.wikipedia.org/wiki/Raman_spectroscopy

8



CHAPTER 2. SAMPLE DESIGN, PROCESSING AND EXPERIMENTAL SETUPS

Graphene is typically characterized by the presence of aG- and 2D-peak in the Raman spectrum
[36], see Figure 2.6. Indeed the multilayer graphene fabricated for this thesis shows the presence
of G- and 2D-peaks at the expected wavenumbers, 1579.8± 0.2 cm−1 and 2709.5± 0.5 cm−1,
respectively. The appearance of a peak at 1349.9 ± 0.2, the D-peak, indicates the presence
of defects in the graphene [37, 38, 39]. Transitioning from single- to multilayer graphene,
the intensity ratio I(G)/I(2D) of the graphene Raman spectra changes [40]. Similarly, the
structure of the 2D peak changes with increasing layers, from a single peak in the case of
single-layer graphene, to multiple peaks for N = 10, similar to Raman spectra of graphite [41].
Surprisingly, the 2D-peak in Figure 2.6 consist only of a single contribution, a characteristic of
turbostratically grown graphene [42, 43].

Figure 2.7: Schematic representation of bilayer graphene in (a) Bernal, or AB, stacking order
and (b) in the turbostratic configuration . Bernal stacking implies graphene layers are stacked
with similar orientation directions, positioning the next layer such that the carbon atoms are
aligned accordingly. Turbostratic graphene entails the graphene layers are stacked in random
orientation directions.4

In contrast to Bernal, or AB, stacked graphene, turbostratic graphene consists of graphene
layers randomly stacked on top of each other, see Figure 2.7. Characteristic of turbostratic
graphene is that the individual layers are electronically decoupled, having electronic properties
resembling that of single-layer graphene [44]. This explains the fact turbostratic graphene’s
2D-peak consists of only a single contribution. Furthermore, this property is used to calculate
the conductivity of multilayer graphene, which is discussed in detail in Chapter 3.

2.4 UV-vis experimental setup

UV-vis transmission experiments are performed using a homebuilt setup, schematically shown
in Figure 2.8. The setup consists of three components: a broadband light source, optical fiber
for direction ot the light, and a broadband detector. The broadband light is generated by an
UV-vis light source (Mikropack DH-2000-BAL, 200 to 1118 nm). The light is guided through
optical fibers towards a pinhole directly above the sample opening, over which a sample can
be suspended. The optical path after transmission is similar to that before, continuing directly
below the sample and guiding the collected light to a broadband detector.

4Image source: Garlow et al. (2016) [44]
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Broadband light 
source

Detector 𝐼0(𝐸) 𝐼(𝐸)

1 2

Detector

Figure 2.8: Schematic representation of the homebuilt UV-vis transmission setup. The light is
generated by a broadband light source and is guided through optical fiber to and from the sample
where it is collected by a detector. The transmission spectrum is measured by comparing a
baseline run (1) with a run including the light passing through a sample (2). Right: top view
of a 11x11 mm2 graphene membrane with the laser spot (∼1x1 mm2) indicated.

The transmission spectra are generated by comparing two individual measurements. First, a
baseline spectrum I0(E) is acquired, in which the optical path is undisturbed (1). Second,
the sample is placed in the optical path, resulting in different spectrum I(E) (2). These
measurements are converted to a transmission spectrum through

T (E) = I(E)
I0(E) (2.1)

Besides transmission this setup can also measure reflection. Reflection is determined by mea-
suring the amount of light that reflects from the sample along the same line of normal incidence.
It has to be noted that the spectrum collection, in both transmission and reflection, is limited
to normal incident light only. Minimum random refraction and diffraction is expected for the
extremely thin membranes studied in this work. Diffuse reflection however, could be an effect
influencing the reflection spectra, depending on the surface roughness of the sample. This effect
has to be taken into account when analyzing the reflection spectra.

2.5 Bulge test experimental setup
In this thesis the mechanical characteristics of the graphene membranes are determined through
bulge testing. This experimental method involves pressuring a membrane from one side, caus-
ing a deflection, or bulging, of the membrane. Measuring the deflection pattern at different
pressure setting, a characteristic bulging response can be distinguished. This response is mainly
governed by the intrinsic material parameters, further discussed in Chapter 4. The bulge test
setup consists of two main components: a sample holder able to pressurize the membrane from
one side, and a profilometer used to accurately determine the membrane’s deflection pattern.
The experimental setup applied in this thesis is depicted in Figure 2.9, with a more detailed
view on the bulge holder in combination with the profilometer shown in Figure 2.10.
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Profilometer 
(Sensofar PLμ 2300)

Pressure regulator

(MFCS-EZ: 
mircofluidic flow 
control system, 
0-2000 mbar)

Pressure cylinder

Figure 2.9: Experimental setup for bulge testing. The profilometer (Sensofar PLµ 2300) is
placed in a temperature and shock-proof chamber. Both the sample location, supplied pressure
and measurement setup can be controlled from outside of the controlled chamber.

(a) (b)

Figure 2.10: (a) Image of the bulge sample holder placed directly beneath the rotating lens
system of the profilometer. (b) Schematic description of the working principle of the profilome-
ter.
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The membrane is placed in an aluminum holder with a hollow interior, sealed with a copper
ring and connected to an inlet tube. The required pressure is supplied by a nitrogen tank con-
nected to a pressure regulator (Fluigent MFCS-EZ), operating in the pressure range of 0-2000
mbar with a 0.03% (∼0.6 mbar) full range accuracy. The height profile of the membrane is
scanned using an optical surface profiler Sensofar Plµ 2300, shown in more detail in Figure
2.10. The surface height of the sample is determined by fitting the intensity of the reflected
light as function of the detector height. When at a certain height an object passes through the
focal point of the lens, the reflected light intensity peaks. By simultaneously measuring the
reflected intensity of the whole area as function of scan height the exact surface profile of the
membrane can be determined.

Before initializing a bulge test run, the sample has to be horizontally leveled in order to have
a correct starting point. This is done by using an interferometry objective which makes height
differences directly visible by means of interference rings. Since the sample table can be tilted
in both horizontal directions, the interference pattern can be used to place the sample aligned
with the horizontal plane. During the bulging procedure the pressure is manually increased in
increments of 1 mbar and after each pressure increase the membrane profile is extracted. The
membrane profile is measured using a 20x objective which corresponds to an area of ∼650x500
µm2 divided in an equidistant grid with 0.83 µm spacing.

12



Chapter 3

Thickness determination

This chapter focuses on UV-vis transmission spectroscopy of multilayer graphene membranes
with the main purpose to determine the number of layers, and thus its thickness. After the in-
troduction, a short literature overview on transmission spectroscopy of graphene is provided, in-
dicating the added benefit of a full-range transmission model for multilayer graphene. The theo-
retical background on the transmission through and optical conductivity of single-layer graphene
is discussed, followed by a detailed explanation of the proposed multilayer transmission model.
This transmission model is compared with measurements on multilayer graphene membranes
with different thicknesses.

3.1 Introduction

As the name suggests, single-layer graphene consist of only one layer of carbon atoms. Mea-
suring the thickness of one-atom-thick materials is not as trivial as it may seem, requiring
extremely accurate experimental techniques. Over the years different methods have been de-
veloped, each utilizing a different characteristic of graphene in order to determine its thickness.
These methods can be optical by nature (reflection and contrast spectroscopy [45, 46], using sur-
face plasmon resonance [47]), electronic properties (Scanning Electron Microscopy (SEM) [48]),
using crystal features (X-ray diffraction [49]) or simply direct height measurements (Atomic
Force Microscopy (AFM) [50]).

While all these methods have been perfected to determine the thickness of single-layer graphene,
multilayer graphene requires a different approach. For multilayer graphene thicknesses, Raman
spectroscopy, AFM and transmission spectroscopy are the most suitable experimental methods.
Raman spectroscopy can however only distinguish up to 10 layers of stacked graphene, making
it less useful for thicker graphene membranes [41]. AFM provides a more direct measurement
of its thickness, but experimental fluctuations due to surface roughness are in the order of
nanometers, reducing its accuracy to several layers. Transmission spectroscopy, on the other
hand, can extend its reach beyond 10 layers and being a non-invasive technique, it is extremely
suitable to determine the thickness of multilayer graphene.

It is generally assumed that light absorption in graphene is constant over a broad wavelength
regime. In the infrared regime, the ’constant’ absorption of 2.3% for single-layer graphene is
valid, but absorption can reach up to 10% around ∼ 5 eV (≈ 250 nm). Determining multilayer
graphene thickness with transmission spectroscopy is usually performed at a single wavelength.
This method requires a priori input on optical parameters of graphene before acquiring its
thickness. Since the light absorption of single-layer graphene is not constant in the UV-vis
regime, choosing one specific wavelength can lead to discrepancies. These discrepancies become
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larger in the case of multilayer graphene. A full-range transmission model can take into account
the non-constant light absorption, avoiding any discrepancies between optical properties of
transmission measurements at specific wavelengths. Additionally, this thesis shows such a full-
range multilayer transmission model can be used to model the reflected intensity of the light,
a property which is generally neglected for single- and few-layer graphene.

3.2 Conventional transmission spectroscopy on graphene

Within transmission spectroscopy multiple data analysis procedures exist to determine the
thickness of a semi-transparent material. These procedures require input on the theoretical or
experimentally determined optical properties of the material. One method exploits the relation
between the transmission T , reflection R and absorption coefficient α [51]

T = (1−R)2e−αt

1−R2e−2αt with α = 4πk
λ
,R =

∣∣∣ ñ− 1
ñ+ 1

∣∣∣2 (3.1)

with t the thickness, λ the wavelength and ñ = n + ik the complex refractive index of the
material. A different approach is adopted by Kim et al. (2014), applying the Beer-Lambert
law to determine the thickness of a multilayer graphene stack [22]

T = e−4πkt/λ (3.2)

which essentially is the same as Equation 3.1 with R = 0, an assumption valid only in the
case of few-layer graphene. Figure 3.1 shows a typical transmission spectrum for multilayer
graphene. Table 3.1 shows several literature references of the optical properties of graphene,
used to calculate the thickness from the transmission spectrum of the multilayer graphene in
Figure 3.1. From these figures two main complications arise in determining the thickness:

• In the UV-visible regime the transmission spectrum is not flat, giving rise to the discussion
at which wavelength the transmission and optical properties have to be determined.

• Both formulas 3.1 and 3.2 assume the material is a continuous absorbing material. Gener-
ally this assumption is valid. However, graphene approaches the thickness limit in terms
of a finite, countable number of atomic layers, requiring an approach which incorporates
the discrete number of absorbing layers.

In literature the first problem is circumvented by the convention to determine the optical prop-
erties at λ = 550 nm. Unfortunately, as Table 3.1 shows, different experimentally determined
values for ñ consequently result in different thicknesses t for the same transmission measure-
ment and an alternative is needed. The second problem requires a more detailed examination
of the optical properties of graphene, how these evolve over multiple layers, and lastly how
they relate to the transmission.

Table 3.1: Optical properties of graphene at λ = 550 nm. The thickness t is calculated from
the same transmission data in Figure 3.1 at 550 nm using the literature and Equation 3.1.

Reference Refractive index ñ Graphene thickness t (nm)
Jellison et al. (2007), experimental [52] 2.52 + 1.94i 3.08
Skulason et al. (2010), theoretical [53] 1.88 + 1.59i 8.05

Skulason et al. (2010), experimental [53] 2.92 + 0.77i 20.74
Kim et al. (2014), theoretical [22] 1.30i (Beer-Lambert) 32.56
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Figure 3.1: Typical UV-vis transmission spectrum for a multilayer graphene membrane studied
in this thesis.

Both these problems can be solved by considering the transmission over the full wavelength
regime over which it is measured. Combining the full range transmission with a discrete number
of layers in a multilayer graphene stack, it is possible to create a more robust transmission
model. Key in this model is to correctly model the full range transmission of single-layer
graphene, before extending this method to a multilayer graphene stack. Therefore, in the next
two sections first conventional ’constant’ light absorption and the energy depence of the optical
conductivity is discussed, after which the transmission is extended to multilayer graphene.

3.3 Single-layer graphene universal conductivity σ0 and light
transmission

Nair et al. (2008) have shown that graphene absorbs 4 ∼2.3% of light over a broad wavelength
range [54]. This constant absorption is a results of the valence and conductance band having
a linear dispersion around the so-called Dirac point. This leads to a constant transmission T
and a universal optical conductivity σ0

T =
(
1 + σ0

2cε0

)−2
≈ 1− σ0

cε0
= 1−A (3.3)

with c the speed of light, ε0 the vacuum permittivity and σ0 given by

σ0 = e2

4~ (3.4)

resulting in an absorption A = 2.3%, which indeed has has been confirmed in the transmission
experiments, see Figure 3.2.

Although not explicitly mentioned by Nair et al., their experimental data shows that transmis-
sion slightly decreases towards shorter wavelengths. Indeed when photon energy increases the
graphene energy bands start to deviate from the linear dispersion around the Dirac point and
the conductivity σ does become dependent upon the photon energy. Especially around the sad-
dle point in the conductance band the conductivity peaks, resulting in a higher absorption [55].
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Figure 3.2: Single- and bilayer graphene white light transmission as measured by Nair et al.
(2008).1

Besides the saddle point singularity, it has also been observed that the presence of excitons has
a considerable effect on the absorption of light in the UV-vis regime, enhancing the absorption
up to four times the regular 2.3% [56, 57]. This large absorption difference in the UV-vis range
of the electromagnetic spectrum indicates that it is not enough to only take into account the
universal optical conductivity σ0, but that energy dependence has to be considered. In the
next section this energy dependence will be described in more detail.

3.4 Energy depence of the conductivity of single-layer graphene

Before extending the transmission from single-layer to multilayer graphene, the energy depen-
dence of the conductivity has to be discussed, σ0 → σ(E). First, the optical conductivity of
single-layer graphene is modeled, after which the Fano-resonance effect is introduced, showing
to have a profound effect on the optical conductivity of single-layer graphene.

3.4.1 Empirical single-layer graphene conductivity model

In the infrared region the optical conductivity of graphene approximates the universal optical
conductivity σ0 of Equation 3.4. When the photon energy increases, the optical conductivity
also increases to a maximum around the saddle point in the conductance band. At this point
the joint density of states (JDOS) ρ has got a singularity which leads to a peak in the conduc-
tivity [58].

An empirical approach to describe the optical conductivity around the saddle point can also
be adopted. Here by considering the two main effects in the UV-vis wavelength range are
considered: the constant universal optical conductivity σ0 and the absorption peak at the
singularity point [56, 59, 60]. Around the singularity the optical conductivity can be described
by σ ∼ − log(E), is used to approximate the total optical conductivity in the UV-vis regime

σ(E)/σ0 = 1− log |1− E/E0| (3.5)
1Image source: Nair et al. (2008) [54]
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with E0 = 2t the saddle-point energy of the singularity and t the nearest-neighbor hopping
parameter in the C−C lattice. The constant term 1 is used to represent the background uni-
versal optical conductivity σ0.
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Figure 3.3: Optical conductivity of single-layer graphene according to the empirical approach
σ ∼ − log |1 − E/E0|. Equation 3.5 is also shown convoluted with a Lorentzian (width = 250
meV) to account for experimental broadening.

In Figure 3.3 the empirical description for σ(E) is plotted (black line). To account for experi-
mental broadening, Equation 3.5 is also plotted convoluted with a Lorentzian with a width of
250 meV [56] (red line). Noticeably, the convolution smears out the peak, resulting in a less
intense peak around the singularity. The convoluted empirical formula reaches a height of ∼4.0
σ0. Despite the relatively elementary approach in describing σ(E), it agrees well with numer-
ical tight-binding bond-orbital, so called GW, calculations [58]. These numerical calculations
confirm that the optical conductivity of graphene is close to σ0 in the infrared region and rises
to a height of 4σ0 at its maximum, similar to the model shown here. This indicates that the
empirical formula for the optical conductivity is indeed representable for single-layer graphene
in the UV-vis regime.

3.4.2 Exciton effect: Fano resonance and its effect on optical conductivity

In the previous section the optical conductivity has been determined by empirical approxima-
tion of the band structure. While the empirical formula does give an accurate description of
the intrinsic properties of graphene, measurements on the optical conductivity show a different
response then predicted by the convoluted empirical model in Figure 3.3 [61]. Main observation
is the redshift of the conductivity peak from the expected 5.2 eV to ∼4.6 eV, together with a
profound asymmetry of the peak. Yang et al. (2009) [58] observe a similar effect on the ab-
sorbance of graphene when incorporating electron-hole interactions in their GW -calculations.
Mak et al. (2011) [56] and Chae et al. (2011) [57] describe this effect as the presence of an
exciton state existing within the continuum band structure of graphene, see Figure 3.4.

17



CHAPTER 3. THICKNESS DETERMINATION

Figure 3.4: Conductance (yellow) and valence (red) band of graphene. The maximum of the
conductance band (Γ) and the linear dispersion around the Dirac point (K) can be distinguished.
Point of interest is the saddle point M where the exciton state with resonance energy Eres is
schematically shown.2

The excitonic effect can quantitatively be described by resonance between the continuum back-
ground optical conductivity and the exciton state, an effect first described by Fano in 1961 [62].
Combining this Fano resonance with the optical conductivity results in [56, 57]

σFano(E)
σcont(E) = A

(q + ε)2

1 + ε2
with ε = E − Eres

Γ/2 (3.6)

where q2 is the strength of the coupling between the excitonic transition and the continuum
energy bands, ε the normalized energy in which Eres equals the resonance energy and Γ the
phenomenological width of the excitonic state. Lastly, A is a scaling factor, since from mea-
surements it is known the optical conductivity reaches σ0 at lower energies and ∼ 4σ0 at its
maximum. Without this factor the overall effect would be too large and does not correspond
to literature references on the Fano resonance effect. A is chosen such that the resulting con-
ductivity always peaks at ∼ 4σ0.

Figure 3.5 shows the optical conductivity σcont (black), the non-scaled effect of the Fano multi-
plication σFano/A (green) and the resulting optical conductivity σFano (blue). The continuum
optical conductivity σcont from Equation 3.5 results in a symmetrical peak around the singu-
larity. Since in high and low energy limits the Fano resonance goes to 1, the continuum optical
conductivity is not affected and thus σFano = σcont. Around the exciton resonance energy
Eres though, an asymmetric resonance takes place, with its maximum just below the resonance
energy. When multiplied with the continuum optical conductivity σcont, this results in an asym-
metric signal σFano/A. This response is scaled down by A, leading to the single-layer graphene
optical conductivity σFano, shown by the blue line in Figure 3.5. Despite a relative empirical
description, the optical conductivity σFano matches measurements on single-layer graphene as
reported by Mak et al. (2011), Gogoi et al. (2012) and Santoso et al. (2014) [56, 59, 60].

2Image source: Chae et al. (2011) [57]
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Figure 3.5: Optical conductivity before Fano resonance (empirical convoluted) and after mul-
tiplication with the Fano resonance (q = −1, Eres = 5.02 eV and Γ = 1.0 eV). The resulting,
scaled, optical conductivity corresponds to literature references in the range of 1.0 to 5.0 eV.

3.5 Multilayer graphene UV-vis transmission
After describing the optical conductivity of single-layer graphene, the model is extended to
calculate the transmission through a stack of multilayer graphene. From first principle optical
calculations it follows the transmission T , reflection R and absorption A of a freestanding thin
film are related to the conductivity of the film by [63]

T = 1∣∣1 + σ̃tot/2cε0
∣∣2 (3.7)

R =
∣∣∣ σ̃tot/2cε0
1 + σ̃tot/2cε0

∣∣∣2 (3.8)

A = Re(σ̃tot)/cε0∣∣1 + σ̃tot/2cε0
∣∣2 (3.9)

in which σ̃tot represents the total (complex) optical conductivity of the thin film. Considering
the UV-vis regime, the imaginary part of the conductivity is negligible [64], simplifying the
formulas above. As shortly discussed in section 2.3, specifically in turbostratic multilayer
graphene, it has been shown that the conductivity scales linearly with the number of layers N

σtot = NσSLG (3.10)

with σSLG the optical conductivity of a single-layer of graphene [65]. Stacking order of the
graphene layers does influence the optical conductivity of the total stack in certain configura-
tions, amongst others AB/Bernal stacking, but mainly at energies E < 1.0 eV [66]. Since this
thesis focuses on the UV-vis region from 1.0 to 5.0 eV, it can be safely assumed the conductivity
scales linearly with N .
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From the optical formulas shown above it follows that R ∼ σ2
tot and reflection indeed can be

ignored in the case of single- and few-layer graphene. In multilayer graphene though, the con-
ductivity increases linearly according to Equation 3.10 and reflection cannot be neglected.

Zhu et al. (2014) [24] were the first to explicitly apply the correlation between the transmission
and conductivity to multilayer graphene according to

T (E) =
(

1 +N
f(E)σ0

2cε0

)−2

(3.11)

with f(E) = 1.13 a correction factor to account for the deviation of the optical conductivity at
550 nm compared to the universal optical conductivity σ0. Although this model captures the
energy dependence of the optical conductivity, still only one wavelength is used to determine
the number of layers N . Furthermore the correction factor f(E) has been determined empir-
ically from the conductivity of a single-layer of graphene, raising questions on the impact of
small deviations in this factor for large values of N .

Instead of using a correction factor for the optical conductivity as applied by Zhu et al., a
full-range UV-vis description of the optical conductivity based on the Fano resonance principle
is adopted. The transmission is given by Equation 3.7, in which the total conductivity σtot is
given by Equation 3.10 and the single-layer conductivity σSLG by Equation 3.6. This leads to
the overall transmission formula

T (E,N, q, Eres,Γ) =
(

1 +N · σFano(E, q,Eres,Γ)
2cε0

)−2

(3.12)

In this formula 4 parameters have to be determined by fitting the equation:

• q the Fano coupling parameter,

• Eres the resonance energy of the exciton,

• Γ the phenomenological width of the excitonic state,

• N the number of graphene layers.

Potentially a fifth fitting parameter can be added. If there is any indication the graphene
lattice is slightly distorted, the singularity energy can be shifted from the pristine graphene
value of E0 = 5.2 eV as used until now:

• E0 the saddle point energy of the JDOS singularity from Equation 3.5.

From Equation 3.12 the parameter of interest N can be determined. To establish the thickness
of the graphene, the number of layers is multiplied with the distance between the graphene
layers

t = Nd (3.13)

with d the interlayer distance. In line with literature, d is chosen equal to the interlayer distance
in graphite crystals d = 3.35 Å [44, 47]. In the next section the derived model for multilayer
graphene is fitted with measurement data for different multilayer thicknesses.
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3.6 UV-vis results
The UV-vis measurements are performed in the range of 200 to 1118 nm, in which the 250
to 1100 nm (4.96 to 1.13 eV, respectively) is used to fit the transmission model. The main
objective is to determine the number of layers N of the graphene membrane. Multiple spots on
the same membrane are measured to confirm growth uniformity. Similarly, different graphene
membrane thicknesses are compared to investigate the validity of the model and cross-referenced
with reflection data.

3.6.1 Conductivity fitting and growth uniformity
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Figure 3.6: (a) Optical conductivity extracted from two transmission spectra on type 1 (blue)
and type 2 (black) graphene with corresponding model fits. The fit parameters are reported in
Table 3.3. (b) Measured and modeled reflection of the same transmission measurements.

Figure 3.6a shows the optical conductivity of type 1 and type 2 graphene, calculated from
the corresponding transmission spectra using Equation 3.7, and the corresponding fits. The
nearest-neighbor hopping parameters t = 2.70 and 2.88 match literature values reported be-
tween t = 2.5 and 3.0 eV from first principle calculations [64, 67]. This agreement indicates
the carbon atoms are arranged in a not too severely distorted graphene lattice. Comparing the
Fano fit values to literature values, see Table 3.2, some discrepancies become apparent: The
relatively low coupling parameter q and high resonance energy Eres indicate smaller interaction

Table 3.2: Comparison of the Fano parameters from the fits in Figure 3.6 with literature
values reported for single-layer graphene.

Parameter Type 1 Type 2 Mak (2011) [56] Gogoi (2012) [59] Santoso (2014) [60]
Hopping parameter t (eV) 2.70 2.88 2.60 (fixed) 2.60 (fixed) 2.60 (fixed)

Fano coupling q (-) -0.83 -1.00 -1.00 -1.16 -1.10
Exciton resonance Eres (eV) 5.18 5.05 5.02 4.90 4.94
Resonance width Γ (eV) 1.11 1.34 0.78 0.99 0.93
Number of layers N (-) 34 8 - - -
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between the exciton and the graphene lattice in multilayer graphene and more energy needed to
excite the exciton. This observation is supported by recent simulation models which show the
small binding energy of excitons in multilayer graphene (∼0.05 eV) compared to single-layer
graphene (∼0.5 eV) [68]. Similarly, the broad phenomenological width Γ signals an extremely
short lifetime (∆E∆t ≥ ~/2: ∆t = 0.30 fs) possibly originating from defects in the membrane
such as grain boundaries, already observed in the Raman spectra in Chapter 2. Since excitons
essentially are electron-hole pairs, defects points are ideal recombination locations.

The conductivity is also related to the reflection according to Equation 3.8, being able to com-
pare the model with the measured reflection. Figure 3.6b shows the measured reflection and
modeled reflection based on the transmission fits. Although the measured reflection follows the
same upward trend as the model, and does overlap in the lower energy regime, the discrep-
ancy becomes larger towards higher energies. Since only normal incident light is captured by
the reflectance detector, diffuse reflected light is lost, resulting in lower reflection than mod-
eled. Diffuse reflection can especially be large if the surface roughness is in the order of the
wavelength. The type 1 graphene indeed shows signs of more surface roughness, possibly en-
hancing the amount of diffuse reflection. This might account for the fact the deviation from the
upward trends occurs at lower energies in the type 1 graphene compared to the type 2 graphene.
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Figure 3.7: Transmission spectra measured for five spots on an 11x11 mm2 type 1 multilayer
graphene membrane. Inset: schematic sample description with measurement locations.

Figure 3.7 shows multiple transmission spectra on a multilayer graphene membrane suspended
over an 11 mm by 11 mm square opening. The transmission spectra do not differ significantly,
suggesting the multilayer graphene is uniform in its thickness over areas in the order of mil-
limeters. Fitting the different transmission curves, the corresponding parameters show some
localized discrepancies, see Table 3.3, which also might be due to artificially small error mar-
gins. The number of layers on the other hand is very consistent around N = 34, resulting in
an overall thickness of 11.5 nm.
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Table 3.3: Fitting parameters for the five transmission spectra shown in Figure 3.7. For each
transmission measurement all the five parameters are fitted.

Model parameters Center spot Spot 1 Spot 2 Spot 3 Spot 4
t = E0/2 (eV) 2.62 ± 0.01 2.64 ± 0.01 2.70 ± 0.04 2.71 ± 0.08 2.74 ± 0.09

q (-) -0.83 ± 0.03 -0.84 ± 0.01 -0.83 ± 0.01 -0.83 ± 0.05 -0.84 ± 0.07
Eres (eV) 5.13 ± 0.01 5.14 ± 0.02 5.18 ± 0.01 5.184 ± 0.009 5.170 ± 0.006

Γ (eV) 1.067 ± 0.008 1.06 ± 0.01 1.11 ± 0.02 1.10 ± 0.02 1.06 ± 0.02
N (-) 35 ± 6 35 ± 7 34 ± 7 34 ± 2 33.4 ± 0.4

Thickness (nm) 12 ± 2 12 ± 3 11 ± 2 11.2 ± 0.8 11.2 ± 0.1

To directly verify the thickness of the multilayer graphene, AFM measurements are performed
on a transferred piece of type 1 graphene. Figure 3.8 shows the average height profile along
10 AFM line scans. It can be seen the AFM measurements suffer from large height variations,
largely caused by the transfer procedure. Due to the large height variations it is difficult to
determine thickness of the graphene over a large area. The graphene is crumpled due to drying
and possible imprint of the metal substrate. Therefore it is assumed the graphene is more evenly
positioned along the silicon substrate at the transition from graphene to silicon. The height
of different ’plateaus’ is determined by fitting a linear relation on the flat silicon surface and
fitting the graphene height using a linear relation with the same slope. Along the edge of the
graphene a region can be distinguished where the graphene has back-folded, also giving results
on double the thickness. The different plateaus correspond to an average graphene thickness
of 12 ± 2 nm, in agreement with 11 ± 0.5 nm found in the UV-vis full range model. The
AFM height error is estimated to be in the order of nanometers, mainly due to tip-substrate
interactions and possible residual water between the silicon wafer and the transfered graphene
[50].
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Figure 3.8: AFM line scan of transferred type 1 graphene on a clean piece of silicon. The
datapoints are averaged over 10 horizontal linescans. Inset: AFM map of the transferred
multilayer graphene and indicated region of the linescan.
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3.7 Conclusion
In this chapter a full-range UV-vis transmission model (∼250-1100 nm) is proposed for mul-
tilayer graphene. The correlation between the transmission and linear scaling conductivity is
combined with the Fano resonance effect observed in single-layer graphene. This results in
a more robust method to determine the thickness of multilayer graphene compared to previ-
ous models, which in general only use a single wavelength as reference for thickness calculations.

The full-range UV-vis transmission model has been fitted on transmission measurements from
two type of multilayer graphene membranes. The model is fitted with the available data and
confirms growth uniformity on a centimeter scale. The experimentally found membrane thick-
ness is verified with AFM measured on transfered graphene. Additionally, this model is used
to predict reflection spectra, which are compared with reflection measurements. The modeled
reflection shows a similar upward trend as the reflection measurements. Deviations towards
higher energies are most likely due to diffuse reflection. Since the detector only captures nor-
mal incident light, diffuse reflection is not captured. Added benefit of the UV-vis model is
that information on excitonic effects in graphene is acquired. The graphene membranes show
a higher than previously reported exciton resonance energy. Furthermore, a relatively low ex-
citon coupling is observed, which can be explained due to low binding energy of excitons in
multilayer graphene. Additionally, very short exciton lifetimes (∼30 fs) are observed, mainly
attributed to defects in the membrane.

Since in this thesis only normal incident light is measured, the reflection of graphene membranes
can be studied in more detail with angular detectors collecting light in all angular directions.
This can be used to verify the model for diffuse light reflection. The excitonic effects can also
be studied in more detail, for example determining the influence of the defect density on the
exciton lifetime.
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Chapter 4

Membrane characterization: bulge
testing

In this chapter, graphene membranes are mechanically characterized by means of bulge testing.
After the introduction, the main material characteristics Young’s modulus E and Poisson ratio
ν are explained. The principle behind bulge testing is illustrated in detail, clarifying the methods
to determine the stress and strain exerted in different membrane configurations. Stress-strain
curves of two configurations are analyzed to independently determine the Young’s modulus and
Poisson ratio. The membranes exhibit a non-linear response which is quantitatively described
using a literature model based on the crumpling of graphene membranes. Lastly, the effect of
varying thickness on the stiffness and strength of the graphene membranes is discussed.

4.1 Introduction

Graphene is amongst others known for its large strength-to-weight ratio, an ability used to
create ultrathin, but extremely strong membranes. These membranes can be used for filtering
purposes [4, 5], optical windows [23, 69] or electromechanical resonators [70]. Since each of
these applications requires certain minimum standards of the graphene membranes, it is of
importance to acquire information on its mechanical properties. This thesis focuses on charac-
terizing the Young’s modulus E and the Poisson ratio ν of the multilayer graphene menbranes.
The Young’s modulus in particular has been thoroughly investigated for both single- and mul-
tilayer graphene. Pristine single-layer graphene is commonly accepted to exhibit a value of
E ≈ 1 TPa [71]. This high stiffness establishes graphene as an extremely thin but at the same
time exceptionally strong material. Extending into multilayer graphene, a decrease in stiffness
is observed [72]. Since these multilayer graphene membranes are currently also used for appli-
cations at Philips, it is of interest to determine the exact stiffness of the multilayer graphene
membranes.

In literature the stiffness of graphene has been investigated using a broad variety of techniques,
ranging from numerical simulations on graphene bending [25] and Raman spectroscopy [73], to
nanoindentation [74], high-resolution electron energy loss spectroscopy [75] and more recently
bulge testing [26, 76]. The method of bulge testing has become an almost standard charac-
terization technique for thin film membranes, i.e. µm thick silicon nitride membranes [77].
Although bulge testing has been applied to single-layer, transfered graphene membranes, it has
only been used in a limited pressure range and in one single, relatively small (∼ µm) config-
uration. In this thesis we extend the bulge testing method to millimeter size, non-transfered
graphene membranes.
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CHAPTER 4. MEMBRANE CHARACTERIZATION: BULGE TESTING

Additionally, while current research mainly focuses on analyzing the Young’s modulus of
graphene membranes, this work also determines the Poisson ratio independently from the
Young’s modulus. The Poisson ratio of single- and multilayer graphene is generally assumed to
be constant around ν ≈ 0.16 [26, 76], after which it is used to derive the Young’s modulus of
the graphene. In this thesis, by using different membrane configurations, the Young’s modulus
E and the Poisson ratio ν are determined independently without making a priori assumptions
on material parameters. The following section provides a short introduction on the theory
behind the Young’s modulus and Poisson ratio.

4.2 Young’s modulus E and Poisson ratio ν

In order to describe the multilayer graphene membrane’s mechanical response, two fundamental
material characteristics have to be determined: the Young’s modulus E and Poisson ratio ν.
The Young’s modulus is defined by

E ≡ σ

ε
(4.1)

in which σ and ε are the stress and the strain, respectively. The stress is defined by σ ≡ F/A,
in which with F the applied force and A the pressurized surface area, and can be seen as a
measure for pressure. The strain ε ≡ ∆L/L0 can be interpreted as the amount of relative
expansion of the material, in which ∆L is the change in length and L0 the initial length of the
object. An intuitive interpretation of the Young’s modulus is the stiffness of a material, since
it essentially indicates how much pressure is needed to stretch the material a certain amount.
This can also be seen when rewriting Equation 4.1 into

0 Strain ε = Δ𝐿/𝐿0

S
tr

es
s 

 σ
=
𝐹
/𝐴

𝐹𝐹

𝐴

𝐿0 Δ𝐿

Young’s modulus 𝐸 = 𝜎/ε

Elastic deformation Plastic deformation

Figure 4.1: Typical stress-strain curve of a material when subjected to a stretching force.
Examining Equation 4.1, the Young’s modulus can be perceived as the slope of the curve. At
a certain point the material deviates from linear (elastic) deformation and shows permanent
(plastic) deformation, perceived by the decreasing slope of the curve.
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F = EA

L0
∆L = kx (4.2)

which can be interpreted as Hooke’s law for extension or compression with a spring constant
of k = EA

L0
for a deformation length of x.

Figure 4.1 shows a typical stress-strain curve as measured in bulge testing. Following Equation
4.1, the slope of the curve can be identified as the Young’s modulus E. In general all materials
follow a linear stress-strain relation at low stress. In this regime the expansion is an elastic
and thus reversible process. Beyond a certain stress level any material will start to undergo
irreversible changes. Ceramic materials will break at the end of their linear mechanical re-
sponse regime, while other materials such as metals show their stress-strain curves leveling off.
This process essentially indicates permanent or plastic deformation of the material, resulting
in less stress needed to deform the same length of material. Most materials follow this trend,
with exception of a special class of materials: hyperelastic materials [78]. The stress-strain
curve of a hyperelastic material does not follow a linear trend, but actually becomes steeper
with increasing strain, the opposite of what is shown here. Certain rubbers and mechanically
engineered foams can behave hyperelastically, meaning they become more stiff when stretched
out further. In other words: the stress-strain slope, and thus Young’s modulus, becomes larger.
This deformation still happens elastically, meaning it is an intrinsic material characteristic
and not a failure mechanism such as the plastic regime in metals.

Figure 4.2: Schematic view of different expansion directions in a cube with sides L (green).
When force in the x-direction is exerted, the cube expands a distance ∆L along the x-axis (red),
while contracting by ∆L′ in the directions perpendicular to the x-direction.1

While the Young’s modulus does give a measure of strength in one dimension, it lacks a
connection to other expansion or compression directions in a material. In general, when a

1Image source: https://en.wikipedia.org/wiki/Poisson%27s_ratio

27



CHAPTER 4. MEMBRANE CHARACTERIZATION: BULGE TESTING

material expands in a certain direction, for example the x-direction, it is likely to shrink in the
directions perpendicular to that direction, the y- and z-direction, see Figure 4.2. The relation
between these directions is given by the Poisson ratio

ν = −dεtrans
dεaxial

(4.3)

in which dεaxial and dεtrans are the strain differences along the force axis and perpendicular to
the force axis, respectively. The green cube with sides L in Figure 4.2 describes the unstrained
situation, while the red cube represents the cube when subjected to a strain in the x-direction.
Along this direction the cube expands by ∆L, while it contracts in the y- and z-direction by
∆L′. In the case of small deformations, the Poisson ratio can be approximated by simply giving
the ratio between the expanded and contracted material

ν ≈ −∆L′
∆L (4.4)

For linear elastic, isotropic materials the Poisson ratio is bound by −1 < ν < 0.5, where the
boundaries can be derived based on theory of elasticity considering thermodynamically stable
conditions [79, 80]. A positive Poisson ratio is common for most materials, since in general they
tend to contract in the directions perpendicular to the direction of the expansion force, thus
∆L′ < 0 and ν > 0. While a positive Poisson ratio can be intuitively understood, negative
Poisson ratio’s are less intuitive but also possible. These are so-called ’auxetic’ materials,
actually expanding in the directions perpendicular to the applied pressure direction. This
characteristic can be observed in certain meta-materials and mechanically-engineered foam
structures [81]. Materials that show a non-linear elastic stress-strain response or which are
non-isotropic can posses values for the Poisson ratio outside of the thermodynamical limits
of −1 and 0.5 [82]. Especially in the case of non-isotropic materials one has to be careful in
describing the Young’s modulus and Poisson ratio for specific strain directions.

4.3 Bulge testing
As touched upon in the introduction of this chapter, the Young’s modulus and Poisson ratio of
the multilayer graphene membranes are determined through bulge testing. For decades, bulge
testing has been an almost standard experimental method to determine mechanical character-
istics of membranes. The basic idea behind bulge testing is that when a pressure difference
is set over a membrane, the membrane bulges away from the pressurized region. The defor-
mation pattern of the membrane is characterized by the material properties, see Figure 4.3.
This deformation depends on multiple parameters: membrane strength, width, thickness, etc.
By choosing the proper membrane configuration and analysis method, the desired material
characteristics such as the Young’s modulus E and Poisson ratio ν can be extracted.

Bulge testing has already been used to determine the Young’s modulus of single-layer graphene,
showing values ranging from 30 to 500 GPa [76, 26]. While these values vary largely, possibly
due to different preparation conditions, they both significantly differ from numerical studies
which predict the value to be around E ≈ 1 TPa (see Coa et al. (2014) [25] for a numerical
study overview on the mechanical properties of single-layer graphene). Additionally, Zhang et
al. (2012) [72] shows a decrease in stiffness for multilayer graphene, although again assumptions
on multiple material parameters, amongst others the Poisson ratio, are used to determine
the absolute value for the Young’s modulus. In each experimental study so far, a specific
geometrical configuration is used in combination with a theoretical value for the Poisson ratio.
This value is always assumed to be constant around ν ≈ 0.16. This is due to the fact that the
Young’s modulus E and the Poisson ratio ν are both needed to describe the material stiffness
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in a specific geometrical configuration. A single stress-strain curve as shown in Figure 4.1 only
gives information on the elastic modulus in that specific configuration. At least two bulging
configurations are needed to obtain information on both the Young’s modulus and the Poisson
ratio independently, as is described in more detail in section 4.3.2 [83, 84].

4.3.1 Membrane profile analysis

In this thesis two different membrane configurations are applied to determine the mechanical
characteristics of the multilayer graphene: a rectangular and square shape. Ideally a round
membrane shape is chosen, but due to processing limitations the square membranes are spher-
ically approximated. In this section round membranes are used to illustrate the bulge test
principle. From both configurations the stress-strain curves are extracted to determine their
mechanical response.

Figure 4.3: Schematic description of the membrane parameters used to determine the stress
and strain applied to the membrane.2

The pressure difference P over the membrane causes the membrane to bulge upward, as seen
in Figure 4.3. The deflection curvature can be used to determine the stress and strain applied
to the membrane. For a membrane of width 2a, thickness t and deflection δ, the strain ε is
given by

ε = a2 + δ2

2aδ sin−1
( 2aδ
a2 + d2

)
− 1 = R

a
sin−1 ( a

R

)
− 1 (4.5)

with R = (a2 + δ2)/(2δ) the radius of curvature of the pressurized membrane [84]. This strain
equation is valid for both rectangular and round membranes. Similarly, the stress applied to
the membrane can be determined by

σ = P (a2 + δ2)
2δt = PR

t
(4.6)

and

σ = P (a2 + δ2)
4δt = PR

2t (4.7)

for a rectangular and round membrane, respectively [84, 85]. As seen in the equations above,
the strain and stress can be determined either measuring the deflection δ or the radius of
curvature R. In this thesis it is chosen to fit the full membrane profile to extract the radius of
curvature R. By choosing this method it is not necessary to determine initial deflections and
possible sample tilt is corrected for.

2Image source: MSc thesis S.Shafqat (2014) [84]
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Rectangular membrane: cylindrical fit

Rectangular membranes with aspect ratios > 4 have been shown to follow deflection patterns
virtually independent from the elongated direction, experiencing only strain in one direction,
a so-called planar strain [86]. Rectangular membranes can therefore be approximated by an
infinitely long cylindrical shape when pressurized, see Figure 4.4. The radius of curvature R is
extracted by fitting a three dimensional cylinder trough the point-cloud data z(x, y)

z(x, y) = b+ e · y +
√
R2 − (x− a− d · y)2 (4.8)

The cylindrical formula is derived from the general equation for a cylinder in the y-direction
x2 + z2 = R2 including offsets in the z- and x direction, b and a, respectively. Although
the samples are leveled in the x − y plane during initialization, offsets are unavoidable and
corrected for by including the terms e · y and d · y in the model. It is indeed found these terms
are relatively small (d, e� 1) indicating the sample orientation is close to horizontal.

Figure 4.4: Height profile of a pressurized 5x1 mm2 rectangular multilayer graphene membrane
(t = 2.76 nm, P = 6 mbar) taking a cylindrical shape.

Square membrane: spherical approximation

The second configuration required for the bulge test procedure is a round geometry. Round
membranes take a spherical shape when pressurized, experiencing a strain in two directions,
so-called biaxial strain. Unfortunately, due to processing limitations, only square configura-
tions can be created which have to be spherically approximated. As long as the spherical fit
stays away from the edges, the spherical approximation is justified. Unfortunately, full 3D-fits
of the membrane profile show too large deviations. Therefore a semi-3D cross section model
is used, which is shortly discussed here. A more detailed comparison of the different spherical
approximation methods of the square membrane is given in Appendix B.

Figure 4.5a shows the height profile of a pressurized square multilayer graphene membrane.
The schematic illustration in Figure 4.5b shows an intuitive interpretation of the membrane
regions in which the square membrane can be spherically approximated. In the dark blue
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center area the membrane takes an approximate spherical form, while towards the light blue
corners regions the membrane deflection clearly deviates from spherical behavior. The radius
of curvature is determined by taking two cross sections of the height profile, along the x- and
y-axis, which intersect at the maximum deflection point of the membrane. The cross sections
in the x and y directions, zx and zy respectively, are simultaneously fitted with{

zx(y) = c+
√
R2 − (y − a)2

zy(x) = c+
√
R2 − (x− b)2

(4.9)

which share the z-offset c and radius of curvature R, but include different offsets a and b in
the y- and x-direction, respectively.

y-cross section

x-cross section

(a) (b)

Figure 4.5: (a) Height profile of a 1x1 mm2 square multilayer graphene membrane when
pressurized (t = 11.5 nm, P = 28 mbar). (b) Schematic top view of a pressurized square
membrane. The typical area where the square membrane can be approximated by a sphere
is shown in dark blue. Towards the corners the spherical approximation is no longer valid,
indicated by the light blue areas. The two cross sections largely cover an area in which the
spherical approximation is justified.

4.3.2 Geometrical configurations

A rectangular membrane be approximated by a cylindrical shape when pressurized, see Figure
4.6a. In this configuration the membrane is only constrained in one direction, experiencing a
planar strain Ep. This planar strain relates to the Young’s modulus and Poisson ratio through

Ep = E

1− ν2 (4.10)

In case of a square configuration the membrane takes a spherical shape when pressurized, see
Figure 4.6b. Since the membrane is fixed at its edges, it now experiences a constraint in two
directions undergoing a biaxial strain modulus Eb. The biaxial strain is given by

Eb = E

1− ν (4.11)
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𝐸𝑝 𝐸𝑏(a) (b)

Figure 4.6: Two membrane configurations required to independently determine the Young’s
modulus E and the Poisson ratio ν. (a) In a cylindrical configuration the membrane is only
constrained in one direction undergoing planar strain Ep. (b) In a square configuration the
membrane is constrained in two directions experiencing biaxial strain Eb.

After characterizing the stress-strain curves of the two membrane configurations, the biaxial and
planar strain modulus can be determined from the slope of their respective curves. Equations
4.11 and 4.10 can then be solved for E and ν:

E = 2Eb −
E2
b

Ep
(4.12)

and

ν = Eb
Ep
− 1 (4.13)

This results in a method to calculate the Young’s modulus and Poisson ratio separately, in stead
of a generally composed elastic modulus like Equations 4.10 and 4.11 when adopting only a
single geometrical configuration. In the next section this method is applied to determine the
Young’s modulus and Poisson ratio of the multilayer graphene membranes created in this thesis.

4.4 Bulge test results

The bulge tests are performed using the setup described in section 2.5 and analyzed according
to the procedure described above. The thickness of the multilayer graphene is determined
through UV-vis spectroscopy as described in Chapter 3.

Similar to the UV-vis chapter, two different thickness of graphene membranes are used for
bulge testing: type 1 graphene with a thickness of t = 11.5 nm and type 2 graphene which is
2.76 nm thick. First, the bulge results of the thickest t = 11.5 nm membrane are discussed
and the non-linear response is described. Second, the non-linear effect in the stress-strain
response is quantitatively analyzed using a recent literature model on the bulging of single-
layer graphene. Lastly, bulge test results on the thinner 2.76 nm graphene membrane are
discussed and compared to literature values on the stiffness of single- and multilayer graphene.

4.4.1 Young’s modulus & Poisson ratio determination

Figure 4.7 shows the stress-strain curves of multilayer graphene membranes with thickness
t = 11.5, in both the square and rectangular configurations. All membranes are pressurized
until membrane rupture, capturing the largest possible part of the stress-strain curve. In both
the square and rectangular membrane configurations, there is no well-defined stress limit the
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Figure 4.7: Stress-strain curves of multilayer graphene (t = 11.5 nm) in (a) a square configu-
ration and (b) a rectangular configuration, with each color indicating a bulge test on a different
sample. The biaxial Eb and planar Eb modulus are linearly approximated for low stress up to
∼250-300 MPa and high stress from ∼300-350 MPa.

membranes withstand, although individual samples have been observed enduring stress levels
of 700 − 750 MPa (Pmax = 73 and 46 mbar for the square and rectangular membrane, re-
spectively). It is interesting to observe the large onset of the curves. This can be attributed
due to the large scale wrinkling, see Figure 4.8. When even slightly pressurized, wrinkles will
be suppressed by smoothening of the membrane through off-center deflection, resulting in a
strongly curved membrane R1. The difference in onsets, which is most prominently visible in
the rectangular membranes, can be attributed attachment of the membrane to the edges. The
resulting curvature is less strong, leading to a larger radius R2 > R1 and thus ε2 < ε1.

All the stress-strain curves in Figure 4.7 follow a similar trend, showing a non-linear response
with increasing stress and having similar steepnesses. Hysteresis test have been performed
to verify the non-linear response, see Appendix C. Both in loading and unloading cycles the
non-linear behavior is observed, confirming it is an intrinsic material characteristic and can-
not be attributed to for example material failure at high stress. As described earlier in this
chapter, materials that describe such a non-linear stress-strain response are called hyperelastic
materials. While the curves in Figure 4.7 suggest hyperelastic behavior, they only provide
direct information on the biaxial Eb and planar Ep modulus. To extract information on the
Young’s modulus E and the Poisson ratio ν, the square and rectangular responses are linearly
approximated in order to make a first approximation of Eb and Ep. The stress-strain curves

Table 4.1: Extracted biaxial and planar modulus from Figure 4.7. Between brackets the number
of samples used to determine the elastic modulus is given. The resulting Young’s modulus and
Poisson ratio of the two stress regimes are calculated using Equations 4.12 and 4.13.

Low stress (< 250-300 MPa) High stress (> 300-350 MPa)
Biaxial modulus Eb (GPa) 82± 15 (N = 10) 157± 21 (N = 6)
Planar modulus Ep (GPa) 79± 11 (N = 8) 106± 22 (N = 4)
Young’s modulus E (GPa) 79± 12 82± 51

Poisson ratio ν (-) 0.0± 0.4 0.5± 0.4
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suggest two regimes of operation: below and above ∼250-300 MPa. In the lower stress regime,
both configurations have similar responses: Eb = 82 ± 15 GPa and Ep = 79 ± 11 GPa, while
these values increase to Eb = 157±21 and Ep = 106±22 in the high-stress regime, see Table 4.1.

𝑅1

𝑅2

Figure 4.8: Schematic de-
scription of the difference
in strain onset. Since in
the bottom configuration the
membrane is attached to the
sides, R1 < R2 after the ini-
tial pressurization.

Surprisingly, while the individual configurations show an in-
crease in elastic modulus Eb and Ep, the Young’s modulus E does
not show this trend and stays relatively constant at E = 79±12
GPa in the low stress regime and E = 82 ± 51 GPa under high
stresses. A literature discussion on how this stiffness compares
to other literature values will be given in section 4.4.3. As E re-
mains constant, the Poisson ratio ν increases from ν = 0.0± 0.2
to ν = 0.5±0.4, close to the isotropic limit. A near-zero value for
the Poisson ratio indicates neglectable directionally in multilayer
graphene membranes, clearly different from literature assump-
tions on single-layer graphene. A more pronounced directional
effect can be seen at high stress, where the Poisson ratio increases
to ν = 0.5±0.4. This value is larger than the generally assumed,
and numerically calculated, value of ν = 0.16 [25, 87]. Although
the high value of ν = 0.5 can be compared to some individual
simulation results which predict values around ν = 0.40 − 0.45
[88, 89, 90, 91], the Young’s modulus in these specific simulations sometimes reaches up to
E = 1− 4 TPa, questioning the validity of the corresponding Poisson ratio.
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Figure 4.9: (a) Typical biaxial and planar stress-stain curves of the multilayer graphene
membranes. (b) Biaxial and planar moduli are calculated from the corresponding stress-strain
curves. The resulting Young’s modulus and Poisson ratio (c) are plotted over the full stress
range. For comparison the statistically determined values for the Young’s modulus and Poisson
ratio in both the low stress and high stress regime are indicated.

Figure 4.9a shows a more detailed comparison of the biaxial and planar response of two typ-
ical stress-strain curves. The two curves are fitted with a smoothed cubic b-spline, being
able to extract the slope and thus the biaxial Eb and planar modulus Ep as function of the
applied stress, see Figure 4.9b. Since now a continuous distribution for Eb and Ep is given,
the Young’s modulus E and Poisson ratio ν can also be calculated as function of the applied
stress. This extends the linear approximation described above into a more detailed description.
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The continuous upward trend of Eb and Ep confirms the observed stiffening derived in Table
4.1. The resulting Young’s modulus shows a slight fluctuation in stiffness, but stays relatively
constant. This corresponds with the values of E = 79 ± 12 GPa and E = 82 ± 51 GPa for
the low and high stress regime, respectively, indicated with the two points in Figure 4.9b.
The continuous distribution of the Poisson ratio in Figure 4.9c also supports the observed
upward trend. The Poisson ratio at low stress deviates slightly compared to the statistically
determined value. This can be caused by the fact the response of the chosen sample is slightly
different compared to the statistically determined value over multiple samples. At high stress
the Poisson ratio actually surpasses the theoretical limit for isotropic materials of 0.5. This can
be explained by the consideration that graphene does not fit the aspects of an isotropical crystal
configuration, but can rather be described by an orthotropic configuration [92]. Orthotropic
materials have properties which are equal in one plane, for example x− y, but can be different
in the directions perpendicular to that plane, z-direction. (Multilayer) graphene meets these
requirements due to its in-plane hexagonal symmetric structure. For orthotropic materials the
Poisson ratio is restricted by

−1 < ν < 1 (4.14)

imposing an upper boundary of +1 instead of the previously reported 0.5 for isotropic materi-
als. This corresponds with the observation in Figure 4.9c where the Poisson ratio increases to
well above 0.5. While this explains the high values of the Poisson ratio, the value of ν ≈ 0, in-
dicating low directionality dependence, can be understood when examining SEM-images of the
multilayer membranes, see Figure 4.10. The graphene shows significant small-scale crumpling.
When stress is applied it first flattens out the membrane’s roughness, not specifically being
constrained by any boundary conditions in other directions, thus ν ≈ 0. When the wrinkles
are flattened out, constraints in other directions become more important, leading to a more
noticable value for the Poisson ratio ν > 0. This crumpling effect is further quantitatively
analyzed in the following section.

Figure 4.10: SEM-image of a t = 11.5 nm multilayer graphene membrane under a 45◦ angle.
At this angle the small-scale crumpling is clearly visualized.
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4.4.2 Membrane crumpling and non-linear bulging

The pronounced non-linear effect in bulging of graphene membranes has already been encoun-
tered in measurements from Nicholl et al. (2015) [26] and Berger et al. (2016) [76]. Nicholl
observes this non-linear response by an increase of 400% in biaxial modulus and qualitatively
describe its possible origin: static wrinkling and crumpling of the graphene membrane. Indeed,
as shown in the previous section, SEM-images of graphene membranes show small-scale rough-
ness and large-scale wrinkling of the multilayer membranes. This undulation has a softening
effect on the stiffness of the membrane, which can intuitively be understood by comparing
the crumpled graphene to a corrugated board. Pulling the ends of an undulated board, the
wrinkles of the board are smoothened out. When the pressure is increased further, the in-
trinsic strength of the board starts to dominate over the waviness of the material, leading to
an increase in stiffness. A different softening effect can contribute to the non-linear response:
flexural phonons, lattice vibrations in 2D material [93]. This effect is dismissed by Nicholl,
since it is observed the temperature dependence of the elastic modulus is relatively small in
single-layer graphene. In this work, it is expected that the contribution of flexural phonons is
negligible, since the increasing number of atomic layers suppresses the out-of-plane vibrations
[94].

A quantitative model of the non-linear response of graphene has been developed by Gornyi et
al. (2016) [95], and applied in a follow-up paper by Nicholl et al. (2017) [96]. The response of
the strain ε as function of stress σ is given according to

ε(σ) = σ∗
k

( σ
σ∗

+ 1
α

( σ
σ∗

)α)
(4.15)

with k the elastic modulus of the specific configuration (for example Eb or Ep), σ∗ the crossover
stress and α a coefficient which is determined by amount of disorder in the graphene. This expo-
nent is predicted to be α ≈ 0.1 for strongly disordered graphene, governed by static wrinkling,
and α ≈ 0.5 for clean graphene, with its main contribution from flexural phonons. Equation
4.15 implicates at low stress (σ < σ∗) the strain is a non-linear function ε ∼ σα. At sufficiently
high stress (σ > σ∗) the conventional linear behavior ε ∼ σ is reached.

In contrast to Nicholl et al. (2017) [96], all three parameters k = Eb, α and σ∗ are determined
by fitting, where Nicholl fixes Eb as the value determined from profilometry in the high-stress
regime. Futhermore, the initial strain-offset due to the large-scale wrinkling of the membrane
is incorporated into the non-linear response, thus neglecting any stress- or strain-offset while
fitting. Equation 4.15 is fitted to the stress-strain curves showing the most pronounced non-
linear effects, see Figure 4.11.

The average non-linear exponent found by fitting is α = 0.17± 0.05, in correspondence to the
value of 0.12 found by Nicholl [96] for single-layer graphene and close to the value of α = 0.1
expected for static wrinkling [95]. In agreement with literature, it supports the assumption
flexural phonons are suppressed in multi-layer graphene and the non-linear response is governed
by static wrinkling. The average value of Eb = 256± 87 GPa for the linear response regime is
higher than the value found in section section 4.4.1 in the high stress regime Eb = 157 GPa,
but is close to the maximum value for Eb observed in Figure 4.9b. This suggest the membranes
break before fully reaching the linear regime where ε ∼ σ, indicating wrinkling might still
be present at the high stresses applied in this thesis. Lastly, the average cross-over stress of
σ∗ = 282 ± 187 MPa shows a broad cross-over regime, possibly supporting the assumption of
wrinkling still being present. Despite a large uncertainty, this value is close to the value of
σ = 250− 300 MPa used to separate a low and high stress regime for linear approximation.
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Figure 4.11: Non-linear strain-stress curves of the square membranes including the fits ac-
cording to Equation 4.15. The individual fit parameters are given in Appendix E.

While Equation 4.15 does give a quantitative description of the effective elastic modulus in a
specific configuration, for example the biaxial strain modulus Eb, it does not necessarily relate
to the intrinsic value for the Young’s modulus E. In the previous section it has been shown
the Young’s modulus is relatively constant and the Poisson ratio varies largely with increasing
stress. Following Equations 4.11 and 4.10, Eb, Ep ∼ ν,E, it suggests the Poisson ratio actually
is the largest contributor to the non-linear response of the graphene membranes. While current
research has mainly focused on the effect of crumpling on the effective stiffness of graphene,
it would be interesting to investigate the effect of crumpling on the Poisson ratio. Besides the
non-linear Poisson ratio, it is of interest to investigate the change in stiffness with membrane
thickness, which is discussed in the next section.

4.4.3 Layer dependent membrane stiffening

In order to investigate the effect of the thickness on the stiffness of the graphene, a thinner
graphene is grown for comparison. The graphene in question is determined to be 2.76 nm
thick, approximately 8 layers, and subjected to similar bulge tests as the first type of graphene,
t = 11.5 nm. Figure 4.12 shows the stress-strain curves of square and rectangular shaped
membranes. A similar non-linear response up to ∼900 MPa can be observed, specifically in
the biaxial configuration. Since the membrane are much thinner, and the stress is inversely
proportional with the thickness σ ∼ 1/t, the data points are spaced further apart and the
corresponding error is larger.

Unfortunately, a full non-linear description like performed in the previous section is not possible
due to the large data spacing, but similar to the previous type of graphene, the biaxial Eb and
planar modulus Ep are linearly approximated in two stress regimes: below and above ∼ 600
MPa. The number of data points in the rectangular configuration is very limited, choosing to
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Figure 4.12: Stress strain curves of multilayer graphene (t = 2.76 nm) in (a) a square
configuration and (b) a rectangular configuration, with each color indicating a bulge test on
a different sample. The biaxial Eb and planar Eb modulus are linearly approximated for low
stresses up to ∼600 MPa and high stresses from ∼600 MPa.

appoint the curve up to 700 MPa as the planar modulus Ep for the lower regime. Directly
comparing the biaxial and planar moduli of the two different thickness, see Table 4.2, it can
be seen the 2.76 nm membrane response is significantly stiffer in both configurations. The
biaxial moduli Eb are almost a factor two higher, 130± 19 GPa and 243± 71 GPa for the low
and high stress regime, respectively, compared to 82 GPa and 157 GPa for the t = 11.5 nm
graphene. Similarly, the planar modulus increases from 79 GPa to 154± 60 GPa, showing the
same increase in stiffness.

Table 4.2: Extracted biaxial and planar modulus from Figure 4.12. The Young’s modulus and
Poisson ratio of the two stress regimes are calculated using Equations 4.12 and 4.13. No planar
modulus for the high stress regime is extracted due to low number of datapoints.

Low stress (< 600 MPa) High stress (> 600 MPa)
Biaxial modulus Eb (GPa) 130± 19 (N = 9) 243± 71 (N = 7)
Planar modulus Ep (GPa) 154± 60 (N = 7) − (N = 0)
Young’s modulus E (GPa) 150± 44 −

Poisson ratio ν (-) −0.2± 0.4 −

The Poisson ratio found in the lower stress regime is close to zero and even slightly negative,
ν = −0.2±0.4, similar to measured in the case of the t = 11.5 nm graphene. Some simulations
even suggest the possibility of a non-linear Poisson ratio in single-layer graphene approaching
negative values towards high strains [97, 98]. It has to be noted these simulations ignore the
effect of crumpling, which, as shown in the previous section, can be of great influence on the
mechanical response. While the extracted Young’s modulus of 150±44 GPa is higher than the
value of ∼ 80 GPa for the t = 11.5 nm membrane, see Table 4.2, both are still significantly
lower than the theoretical value of E ≈ 1 TPa for single-layer graphene [25]. Zhang et al.
(2012) [72] measure a decrease in Young’s modulus from 891 GPa to 393 GPa, 51 GPa and
27 GPa for mono-, bi-, tri- and tetralayer graphene, respectively. Interestingly, the multilayer
graphene in this thesis shows higher stiffnesses. The Young’s moduli of 80 and 150 GPa for 34
and 8 layers, respectively, are both significantly larger than the stiffness of trilayer graphene
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as measured by Zhang. Main reason for this discrepancy can be attributed to the measuring
method applied by Zhang, having to correct for substrate effects and assumptions on materials
parameters, resulting in Young’s moduli of which the correctness can be questioned, specifically
in the case of multilayer graphene. It might be more applicable to compare the Young’s moduli
of 80 and 150 GPa measured in this thesis to more graphite-like materials, since the material
at hand is multilayer graphene. Literature values on the Young’s modulus for HOPG (15− 30
GPa [99]), amorphous carbon (4.1 − 27.6 GPa [100]) and graphite-like carbon films (∼ 180
GPa [101]) might be more representative for the multilayer membranes. These values indeed
indicate lower Young’s moduli than the values found for single-layer graphene. In combination
with the experimentally determined values for E found in this work, this indicates multilayer
graphene membranes are less stiff compared to their single-layer counterparts.
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Figure 4.13: SEM- and AFM images of freestanding graphene membranes with thickness
t = 11.5 nm (top row) and t = 2.76 nm (bottom row). (a),(d) SEM-images top view taken
around the center of the membrane, visualizing the small holes (dark spots) in the membrane.
(b),(e) SEM-images taken under a ∼ 45◦ angle, showing the large-scale wrinkling and small-
scale crumpling. (c),(f) AFM height profiles visualizing the surface roughness on the frame of
the membrane. The green bar indicates a distance of 1 µm.

A critical note has to be placed on the interpretation of the Young’s modulus towards possible
applications. While this thesis shows the stiffness of multilayer graphene membranes increases
when the number of layers decreases, this does not give a direct measure for the membrane’s
strength. As intuitively expected, the thinner membranes are weaker and can only withstand
a maximum pressure of Pmax = 15 and 7 mbar for the square and rectangular configuration,
respectively, where the t = 11.5 nm membranes can be pressurized until Pmax = 73 and 46
mbar. The corresponding maximum stress, on the other hand, is slightly higher for the thinner
membranes, ∼ 900 MPa compared to ∼ 700 MPa for the thicker membranes. The 2.76 nm
membranes also are more consistent in reaching the same maximum pressure.
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The eventual rupture of the graphene membranes can be the result of different factors, such as
holes in the membranes, localized stress nodes or substrate edge effects. SEM-images indeed
suggest the thinner membranes retain a lower hole density, see Figure 4.13, indicating this
failure mechanism is less likely to be responsible for the membrane rupture than in the thicker
membranes. A similar difference can be noted comparing the AFM height profiles of the
graphene on top of the metal catalyst along the edge of the frame. The t = 11.5 nm grown
graphene shows larger surface roughness than the t = 2.76 nm graphene, measuring a root-
mean-square average height deviation of Rq = 10.8 nm, compared to Rq = 6.79 nm for the
thinner graphene. Assuming this surface roughness is imprinted into the graphene membranes
when being etched free, see the 45◦ SEM-images in Figure 4.13, it also could lead to more
nodes in the graphene membranes. These nodes could experience higher local stress build-up,
thus being potential failure points.

4.5 Conclusion

In this chapter it has been shown that conventional bulge testing can be applied on large
scale (∼ mm2), non-transfered freestanding multilayer graphene membranes. Two membrane
configurations are applied, bypassing any a priori assumptions on Poisson ratio or multilayer
thickness. Using this method the intrinsic value for the Young’s modulus E and the Poisson
ratio ν of multilayer graphene membranes are determined.

Multilayer graphene membranes of t = 11.5 nm have been shown to have a non-linear response
to increasing stress in specific configurations. They do posses an intrinsic, relatively constant
Young’s modulus though, achieving a value of E = 79 ± 12 GPa at low stresses and 82 ± 51
GPa towards higher stress levels. More interesting is the fact that the Poisson ratio increases
from a near-zero value ν = 0.0±0.2 at low stress, to a value of ν = 0.5±0.4 at high stress. This
value equals the isotropic limit of ν = 0.5, but can be explained by accentuating that graphene
is actually more resemblant to orthotropic materials, of which the Poisson ratio exhibits an
upper boundary of ν = 1. The non-linear behavior of the Poisson ratio is clearly different than
the commonly used literature value of ν = 0.16, almost always assumed to be constant.

Examining the biaxial non-linear response more closely, it can be quantitatively investigated
according to a recently developed theory assessing the crumpling of graphene membranes.
This literature model predicts ε ∼ σα in the non-linear regime of the strain-stress response,
achieving a linear response ε ∼ σ at high stress. According to theory, the observed value of
α = 0.17 ± 0.05 suggests the graphene is dominated by static wrinkling, similar to recent lit-
erature observations. SEM-images indeed confirm the freestanding graphene is dominated by
small-scale crumpling.

Comparing with a different graphene thickness t = 2.76 nm, the stiffness of the material
increases from E ≈ 80 GPa to E = 150 ± 44 GPa. While the intrinsic response becomes
increasingly stiff, it is still more resembling graphite materials (E = 15− 30 GPa) than single-
layer graphene (E ≈ 1 TPa).

Ideally, the multilayer graphene membranes are pressurized until a full linear response is mea-
sured, verifying the biaxial modulus found in Equation 4.15 with linear approximation of the
stress-strain curve. The maximum stress applied to the membranes could be increased by using
circular membrane configurations, avoiding stress build-up towards the edges of the membrane.
Besides the membrane shape, SEM- and AFM-images show the large surface roughness of the
metal catalyst, likely creating nodes for pressure build-up and possible starting points for mem-
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brane rupture. Improving membrane smoothness and creating more flat graphene membranes
could strengthen the membranes. In addition, the multilayer graphene membranes exhibit
multiple defects and holes, as identified in the SEM-images and Raman spectra. Improvements
can be made in the growth process of the multilayer graphene.

From a more theoretical point of view, while current literature has mainly focused on modeling
the crumpling effect in bulging of single-layer graphene, it would be interesting to investigate
the effect of multiple layers on the presence of crumpling. This work has shown that the
non-linear response of the stress-strain curves can be largely explained by a non-linear Poisson
ratio. A possible explanation for this nonlinearity, besides crumpling, can be the orthotropic
nature of (multilayer) graphene. The orthotropicity of graphene will need to be examined more
closely, assessing its effect on the elasticity of graphene and other material parameters.
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Chapter 5

Graphene incorporation in CMUT

This chapter investigates a potential application for graphene membranes in capacitive mi-
cromachined ultrasound transducers: CMUTs. In the introduction the working principle of
CMUTs is explained and recent attempts to incorporate graphene in ultrasound applications are
discussed. Next, attempts to electro-mechanically manipulate the multilayer graphene mem-
branes fabricated in this work are described, showing proof-of-principle actuation similar to the
working principle of CMUTs. Finally, graphene-CMUT devices are modeled to obtain device
characteristics, such as the capacitance, collapse voltage and resonance frequency using typical
multilayer graphene parameters.

5.1 Introduction

Ultrasound devices are well known for their ability to provide non-invasive detection and sens-
ing techniques, especially in the field of medical applications [102]. A typical application of
ultrasound can be found in imaging and therapy, such as echography [103], but other possibil-
ities have been explored, for example in the field of biometrics as fingerprint sensors [104].

Figure 5.1 shows two typical devices used to generate ultrasound waves: a piezoelectric trans-
ducer and a capacitive micromachined ultrasonic transducer, in short CMUT. A piezoelectric
transducer consists of a stack of materials which can be actuated by applying a voltage to
the structure. Applying an AC-voltage, the piezoelectric material will expand and contract,
inducing pressure waves in the surrounding medium. The process can also be reversed by first
applying a pressure difference to the stack of materials. This induces a measurable voltage
difference over the device. By using these two characteristics, a piezoelectric transducer can be
used to either transmit or receive (ultra)sound waves.

V
DC

V
AC

V
AC

(a) (b)

Figure 5.1: Schematic representation of (a) a piezoelectric transducer, driven by an AC
voltage source, and (b) a CMUT device, driven by both an AC and DC voltage source.
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Until 20 years ago piezoelectric transducers were the most common devices to create and detect
ultrasound waves [105]. Although still widely used in various other types of applications, piezo-
electric transducers had trouble keeping up with the increasingly demanding requirements for
ultrasound applications. In particular the large impedance difference between the transducer
and the surrounding medium, in general air, gave rise to below-average performance standards.
Low efficiency and narrow bandwidth regions forced researchers to think differently on gener-
ating and sensing ultrasound. The solution was found in a different type of sound generating
mechanism, provided by CMUTs [106]. As the name implies, a CMUT essentially consists of a
capacitance, comparable to a parallel plate capacitance. Since the top electrode is suspended
over a cavity, see Figure 5.1, imposing a DC voltage will create an electrostatic force, pulling
the top electrode downward. Superimposing an AC-voltage will cause the top plate to vibrate,
creating sound waves in the surrounding medium.

CMUTs have shown to posses broader bandwidth regions of operation than piezoelectric trans-
ducers, resulting in an improved axial resolution. This increased axial resolution leads to better
quality imaging, e.g. blockages in blood vessels and echography [107]. In addition, using mi-
cromachining methods, CMUTs can be produced on a wafer scale, thereby reducing fabrication
costs. CMUT devices are favorable in specific environments, especially due to their ability to
operate under extreme conditions. CMUTs can be used in environments of high temperature
(500 ◦C [108]) and under high pressure (up to 8 atmosphere [109]), while also being suitable for
underwater imaging [110]. Outside of creating and sensing ultrasound waves, CMUT devices
can also be modified to act as wind speed gauges [111], CO2 detectors [112] and immunosensors
detectors [113], showing their large potential for other types of applications.

5.2 CMUT design and processing

Although the operation of CMUTs is based on a relatively simple principle, the output proper-
ties are influenced by numerous factors. Parameters such as the CMUT design (cavity height,
width, etc.) and material properties (membrane stiffness, pre-stress, etc.) all determine the
response of the CMUT. The operating frequency determines whether a CMUT is more suit-
able for for example medical imaging or diagnostic purposes, see Figure 5.2. Other operating
characteristics such as the collapse voltage and capacitance of the CMUT are all influenced
by the design parameters. It is crucial to choose the right design, processing techniques and
materials resulting in a CMUT device with the desired specifications. This section discusses
the conventional design of CMUTs and typically used materials, as well as a short mention of
recent attempts to incorporate graphene in ultrasound devices.

Figure 5.2: Frequency ranges for sound waves determining the type of application. Ultrasound
is generally considered as frequencies of 20 kHz and upwards.1

1Image source: https://en.wikipedia.org/wiki/Ultrasound
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5.2.1 Conventional CMUT designs

A typical CMUT design is illustrated in Figure 5.3a. As is standard practice in semiconductor
processing, fabrication steps are performed on a silicon wafer, potentially acting as the bottom
electrode of the capacitance structure. An insulating material, in this case silicon nitride (SiN)
is deposited, after which the top part of the capacitor structure, for example aluminum (Al),
is deposited. To seal the structure, another insulating material, in this case low-temperature
silicon dioxide (SiO2), is deposited over the structure to complete the membrane and isolate
the top electrode from its surroundings. Using different lithography and etching techniques a
cavity is created in the SiN, leaving a membrane suspended over a thin gap and completing
the capacitance structure. For more details on the exact fabrication of CMUT devices, see the
paper of Ergun et al. (2004) on CMUT processing [114].

(a) (b)

Figure 5.3: (a) Design layout of a CMUT device. The different components of the CMUT
are indicated, with the two electrodes highlighted in dark grey. (b) Top view of a CMUT array
showing the electrodes being interconnected. This enables simultaneous actuation of multiple
CMUTs.2

Figure 5.3b shows a top view of a CMUT array. It can be seen that the top electrodes on each
individual CMUT are interconnected, indicating the individual membranes can be actuated
simultaneously [115]. Actuating an array of CMUTs in stead of only a single CMUT gives the
advantage of being able to create 2D images. This is of great advantage in tissue imaging,
being able to focus the ultrasound in specific directions only probing areas of interest [116].

5.2.2 Graphene incorporation in resonators and CMUTs

In CMUTs the membrane in general consists of multiple materials, with the conducting elec-
trode packed in-between two insulating layers. By combining the ability to conduct electricity
on one side, with extreme flexibility on the other, graphene is a prime candidate for incorpo-
ration in CMUT devices. Especially the ability to tune the frequency of graphene, in stead of
a general fixed resonance frequency for macroscopic materials, is a promising feature [117].

The idea of incorporating single-layer graphene in CMUT-structures has already been studied
in different forms. An example of graphene incorporation is shown by Tian et al. (2012) [118],
describing transfered graphene on top of patterned anodic aluminum oxide resonating from 20
kHz to 50 kHz. Lebental et al. (2011) [119] show a different design in which carbon nanotubes
are suspended over a trench, resulting in a resonance frequency of 10 MHz in air, within the
application range for diagnostic imaging.

2Image sources: Ergun et al. (2004) [114] and Ergun et al. (2005) [115]
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(a) (b)

Figure 5.4: (a) SEM image of Ni/DLC/Ni membrane suspended over a micromachined
trench. (b) Optical image of transfered graphene onto round cavity structures. The circle
in the cavity center indicates graphene sticking to the bottom of the structure.3

Devices with more membrane-like graphene resonator components have also been investigated.
Thibert et al. (2015) [120] have created a membrane out of diamond like carbon (DLC) in-
between two layers of nickel (Ni) for support. As seen in Figure 5.4a, the membrane is suspended
over a trench with a second electrode positioned at the bottom of the trench. The resonance
frequency has not been determined experimentally, but simulations suggest resonance frequen-
cies ranging from 15 MHz to 1 GHz. Chong et al. (2014) [121] have shown a configuration most
resembling an actual CMUT device. Using micromachining steps round cavities are created
onto which single-layer graphene is transfered. As seen in Figure 5.4b, the cavity is indeed
covered by the graphene membrane. Despite the fact the graphene is sticking to the bottom of
the cavity, frequency measurements have been performed determining a resonance frequency
of 95 MHz.

Current research into conventional, silicon-based CMUT devices mainly focuses on improving
the processing steps towards more precise dimension control of the structure, for example the
cavity height [118, 122]. Although the frequencies generated by the graphene resonator and
CMUT devices are within the MHz regime, the processing methods to construct such a device
largely depend on the transfer of graphene on top of a CMUT base-structure. This method
is not desirable for large scale production, mainly due to low reproducibility and transferal
residues contaminating membrane areas. The solution for this problem has to be found in the
processing of graphene membranes directly from the source wafer, making the incorporation
in current full scale CMUT-processing easier and more cost-efficient for semiconductor com-
panies. The graphene membranes in this thesis are fabricated bypassing the transfer process,
making the processing more suitable for current semiconductor processing. It has to be noted,
while single-layer graphene is generally grown using copper as the metal catalyst, this metal is
extremely unsuitable for use in cleanrooms and even seen as pollutant [32]. Other metals such
as nickel or molybdenum are more suitable for semiconductor processing, but generally result
in the growth of multilayer graphene. In this chapter actuation of non-transfered freestanding
multilayer graphene membranes is shown, in combination with modeling on possible device
parameters.

5.3 Membrane actuation

In order to create a proof-of-princple CMUT-like configuration, the graphene membranes are
suspended over a gap. Figure 5.5 shows the setup used in this section. A basic configuration
is chosen, using a conducting wafer piece as second bottom electrode. Insulating tape (tin ≈
55 µm) is used as non-conducting material for the gap. On top of the two layers of insulating

3Image sources: Thibert et al. (2015) [120] and Chong et al. (2014) [121]
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Figure 5.5: (a) Schematic overview of the experimental setup used for membrane actuation.
Insulating tape is patched on a bare graphene deposited wafer, on top of which aluminum foil is
cut to similar dimensions. The sample is placed up-side-down on top of the aluminum, placing
the membrane directly over the gap with height h. (b) Image of the voltage setup without the
graphene membrane sample, visualizing the gap over which the membrane is placed.

tape, shaped aluminum foil is placed (tAl ≈ 10 µm). The graphene membrane sample is placed
up-side-down on top of the aluminum foil, being able to probe the graphene directly through
the aluminum foil, since it is in direct contact. The electrical contacts are connected to a DC-
voltage source, supplying voltages in the range of 0−1000 V. To represent CMUT actuation, a
DC- and AC-voltage source can also be placed in series, superimposing the alternating voltage
while the membrane is electrostatically influenced. Membrane movement is captured by a
camera, placed directly above the sample.

5.3.1 Electrostatic attraction

0 V

100 V 200 V 300 V 400 V 500 V

600 V 700 V 800 V 900 V 1000 V

Figure 5.6: Top view images of a square ∼1x1 mm2 multilayer graphene membrane, t = 11.5
nm, suspended over a h ≈ 120 µm gap while electrostatically actuated. The images show the
membrane subjected to DC-voltages ranging from 0 to 1000 V.

Figure 5.6 shows the DC actuation of a square ∼1x1 mm2 multilayer graphene membrane
(t = 11.5 nm), suspended over the gap, approximately h = 120 µm in height (2tin + tAl). At
0V, it can be clearly seen the membrane is wrinkled, similar as shown earlier in this thesis.
Increasing the voltage, the membrane wrinkles are smoothened out, attracting the graphene
towards the bottom electrode4. Simultaneously, the number of wrinkles on the edge of the
membrane increases, indicating increasing stress is applied to the membrane.

4Since the camera’s point-of-view is directly above the membrane, it is not directly visible whether the
membrane is deflecting upward or downward, but due to the nature of electrostatic attraction, it can be safely
assumed the membrane is pulled downward.
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Figure 5.7: Broken t = 11.5 nm
membrane at 560 V.

In order to increase the electrostatic influence, the gap dis-
tance between the membrane and the bottom wafer is de-
creased further. By removing one of the two layers of in-
sulating tape, the gap distance is reduced to only h = 65
µm (tin+ tAl). Since the electric field in the gap scales with
E = V/h, it is estimated the electric field, and with that
the force exerted on the membrane, is roughly two times
as large as in the h = 120 µm gap configuration. Similar
patterns of deflection as shown in Figure 5.6 can be identi-
fied, up until a voltage of ∼560 V. At this point membrane
breakage is observed around the center of the membrane,
see Figure 5.7, possibly due to physical contact between the
membrane and the bottom electrode, causing a discharge. When comparing with the bulge
experiments from Chapter 4 on the t = 11.5 nm membrane, the maximum strain is observed
to be around ε = 0.01. From geometrical considerations, it can be calculated that this strain
corresponds to a maximum deflection of 62.5 µm, indeed similar to the estimated gap height.

5.3.2 Membrane vibration

To resemble CMUT actuation, an AC voltage is applied to the graphene-CMUT structure and
membrane oscillation is observed through video recordings. Initially, a 50 V, 1 Hz AC-voltage,
without DC-bias, is applied to the membrane. This indeed initiates oscillations in the mem-
brane, although an interesting feature is observed: While the driving voltage is set to 1 Hz, the
membrane vibrates at a frequency of 2 Hz. An explanation for this doubled frequency can be
found in the nature of the electrostatic force. One oscillation period exhibits both a minimum
of -50 V and a maximum of +50 V. Since the reference voltage is 0 V, both extremes produce
a voltage difference of 50 V over the gap, causing attraction of the membrane at two moment
during a single period. It has to be noted oscillation of the membrane is not perfectly smooth,
since the wrinkling distorts a clean oscillation pattern.

Similar 50 V, 1 Hz membrane resonance has also been delivered including a 100 V DC-bias.
Applying the DC-bias indeed decreases the response frequency to 1 Hz, and since the increase
in stress decrease the amount of wrinkles in the membrane, a more stable membrane resonance
is observed. Higher frequencies are also supported by the membrane, which up to 20 Hz can
still be observed by eye, indicating the membrane is stable enough to withstand fast driven
oscillations.

5.4 CMUT characteristics modeling

Having shown proof-of-principle actuation of the graphene membranes, potential parameters of
operation of a graphene-CMUT device are investigated. Main parameters of interest are (i) the
capacitance of the CMUT structure, (ii) the collapse voltage and (iii) the resonance frequency of
the CMUT [103]. The capacitance and collapse voltage indicate the range in which the CMUT
can be operated, while the frequency determines the relevant field of application, as discussed
in the Introduction of this chapter. First, the capacitance and collapse voltage of a graphene-
CMUT like device are calculated for different geometrical dimensions, suggesting optimal device
dimensions for processing purposes. Lastly, the operating frequency of the graphene membrane
is discussed, one of the most crucial operating parameters since it determines which type of
application it is most suitable for.
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5.4.1 Capacitance
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Figure 5.8: Schematic cross section of CMUT configurations and corresponding parameters.
(a) Configuration in which the membrane is not actuated and the total capacitance C consists
of two capacitances in series C1 and C2 induced by the cavity and insulating SiO2, respectively.
(b) CMUT in collapse configuration in which part of the membrane touches the bottom of the
cavity, covering an area with radius a. The total capacitance C in this configuration comprises
two capacitances: A central round area C1 for 0 < r < a, and an edge capacitance C2 for
a < r < b, positioned in parallel.

A CMUT device can be operated in two different modes: (i) vibration as a free membrane
(Figure 5.8a), or (ii) in the so-called ’collapse mode’. Each mode provides a different operating
regime with different frequencies and output pressures (Figure 5.8b) [123]. Since the ideal
CMUT essentially consists of two electrodes separated by a gap, it can be approximated by
the general formula for a parallel plate capacitance

C = εA

h
(5.1)

in which A equals the surface area of the electrodes, h the gap distance and ε the permittivity
of the material between the two electrodes. Calculating the total capacitance C in the parallel
configuration can be done by adding the reciprocal capacitances of the cavity C1 = ε0πb

2/d0
and the insulting oxide layer C2 = ε0εrπb

2/dm according to 1/C = 1/C1 + 1/C2, resulting in
the capacitance of the round CMUT device given by

C = πb2ε0
d0 + dm/εr

(5.2)

with d0 the distance of the gap, dm the height of the insulating layer, b the radius of the
membrane, ε0 the vacuum permittivity and εr the relative permittivity of the insulating layer.
In collapse mode the calculation of the capacitance becomes slightly more complicated, since
now two regions can be distinguished, see Figure 5.8b: The region between 0 < r < a is
given by the regular parallel plate capacitance over the insulating material, indicated by C1.
The second region between a < r < b is given by a more complex capacitance C2, which is
composed of a non-linear capacitance over the cavity in series with a capacitance through the
insulating material. The non-linear capacitance C2 can be calculated by approximating the
membrane profile h(r), and with that the height of the gap, as a linear function of radius r:
h(r) = d0

b−a(r − a). Similar to Equation 5.2 an expression can be derived for the capacitance
C2, integrating over small ring-shaped areas dA = 2πrdr which are spaced a distance htotal =
h(r) + dm/εr of the bottom electrode. This gives the two different capacitances
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0 < r < a : C1 = πa2ε0
dm/εr

a < r < b : C2 =
∫

εdA

htotal
=
∫ b

a

2πrε0
h(r) + dm/εr

dr

(5.3)

in which the capacitance C2 is found by analytically solving the integral. The factor f = a/b
is introduced as a measure for the fraction of the cavity that has collapsed, resulting in the full
form of the two different capacitances:

C1 = πf2b2ε0
dm/εr

(5.4)

C2 = 2πε0b2(1− f)2

d0

(
1− β · ln

(
1 + (1− f) d0

dm/εr

))
with β = dm/εr

d0
− f

1− f (5.5)

Since the two capacitances in this configuration are placed in parallel with respect to each
other, the total capacitance C is found by simply adding the two individual capacitances

C = C1 + C2 (5.6)

Figure 5.9 shows the capacitance as function of cavity height d0 and membrane radius b, both
in the parallel plate configuration 5.9a and in collapse mode 5.9b with f = a/b = 0.5. In both
models the thickness of the SiO2 is taken to be dm = 100 nm with the corresponding relative
permittivity εr = 3.9. As can be expected from the general form of the capacitance, the capac-
itance increases quadratically with membrane radius C ∼ b2 and inversely with cavity height
C ∼ 1/d0 in the parallel plate configuration, taking on values in the order of fF to pF. While
these general trends seem to coincide with the collapse mode configuration, it is interesting to
notice the decrease in dependence on the cavity height. This can be understood by the fact
that the total capacitance C is largely governed by the capacitance of the collapsed part of the

(a) (b)

Figure 5.9: Capacitance of a CMUT configuration as function of cavity height and membrane
radius. Both the capacitance in the parallel plate configuration (a) is given according to Equa-
tion 5.2, as well as the capacitance in collapse (b) with f = a/b = 0.5 according to Equation
5.6 with the partial capacitances given by Equations 5.4 and 5.5.
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membrane C1 from Equation 5.4. When the cavity height approaches the SiO2 thickness, the
effect of the edge capacitance C2 becomes large, showing a more significant increase around
d0 < 300 nm. For typical CMUT dimensions around d0 = 500 nm and b = 50 µm, the ca-
pacitance increases from C = 134 fF in the parallel plate configuration to around C = 748
fF in collapse mode. While this model provides insight in the capacitance of a single CMUT
configuration, CMUTs are generally structured in arrays for 3D-imaging, for example 6 by 6
[123] or an 1D array of 128 elements [116]. This implies the total measurable capacitance being
the sum of the number of individuals capacitances N · C.

The increase in capacitance by a factor ∼ 5.4 is much larger than reported by for example
Oralkan et al. (2006) [123], reporting a relatively small 10% increase in capacitance when the
membrane is pulled into collapse mode. This difference can largely be attributed to the smaller
gap height d0 = 120 nm and thicker insulating layer dm = 290 nm used by Oralkan, while it is
also unknown which fraction f of the membrane is in touch with the cavity. Future modeling
would provide more insight into the relation between the force exerted on the membrane and the
fraction which has collapsed. While the capacitance is a useful device characteristic, the model
shown here does not require any input on membrane characteristics, being a very general (high
level) description of the capacitance. The next section does provide a more graphene multilayer
specific description, focusing on the DC-voltage required to pull the membrane into collapse
mode.

5.4.2 Collapse voltage

As demonstrated in section 5.3 and as part of the CMUT working principle, the CMUT mem-
brane can be actuated by a DC-voltage. As shortly touched upon in the previous section, the
membrane can also be actuated in collapse mode, which can be created by applying a high
enough DC-voltage overcoming the mechanical stiffness of the membrane. This results in the
membrane collapsing on the bottom of the cavity. This section provides a method to calculate
the maximum DC-voltage which can be applied to the membrane, the so-called collapse volt-
age, before it falls into collapse mode. This method is largely based on calculations by Wygant
et al. (2006) [124].

𝑤𝑝𝑘

Bottom electrode

𝑑0

𝑏
𝑟

Figure 5.10: Schematic description of the CMUT configuration for calculation of the collapse
voltage.

When a DC-voltage is applied to the configuration, the membrane experiences an electric force

Fe = 1
2V

2 dC

wavg
(5.7)

which is proportional to the applied voltage V 2 and the change in capacitance as function of
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the average membrane displacement dC
wavg

. The capacitance over the gap as function of the
average displacement wavg is given by

C =
ε0πb

2 arctanh(
√

3wavg/d0)√
3wavgd0

(5.8)

with d0 the total gap height and πb2 the circular membrane area. The capacitance can be
derived using the deflection profile w(r) = wpk(1 − r2/b2)2, see Figure 5.10, with the peak
deflection wpk related to the average deflection through wpk = 3wavg. An advantage of this
expression is that it takes the capacitance as function of the deflection profile into account, in
contrast to other models which in general assume a parallel plate capacitance. A concession
has to be made though, since the effect of the insulating SiO2 layer is neglected.

While the plate is electro-statically attracted to the bottom electrode, it tends to move back
to its original position by the mechanical response Fm of the membrane. In the case of small
deflections the mechanical force follows Hooke’s law, having only a linear response to the
average plate displacement wavg. Since in this configuration the average deflection becomes
relatively large, it is representative to include a term that is proportional to the cubic of the
average deflection w3

avg

Fm = k1wavg + k3w
3
avg (5.9)

with the corresponding linear and cubic spring constant given by

k1 = 192πD
b2 with D = Et3

12(1− ν2)

k3 = D
−24π(−896585− 529610ν + 342831ν2)

29645b2t2

(5.10)

respectively. Here the influence of material parameters becomes apparent, with D the flexural
rigidity of the material, E the Young’s modulus, ν the Poisson ratio and t the thickness of the
membrane.

In order to reach an equilibrium deflection situation the electric force Fe has to equal the
mechanical force Fm for a certain plate deflection wavg

Fe(wavg) = Fm(wavg) (5.11)

For small forces Equation 5.11 can be solved for wavg. When the voltage V is increased further,
at some point the mechanical force Fm is unable to withhold the electric force Fe, resulting in
the membrane collapsing onto the bottom of the cavity. The collapse voltage in this work is
found by numerically increasing the voltage V until no solution can be found for Equation 5.11,
appointing the corresponding voltage as the collapse voltage. The parameters used for calcula-
tion of the collapse voltage are: E = 0.7 TPa for the Young’s modulus, ν = 0.24 as the Poisson
ratio and t = 8 nm for the thickness. It is expected the high value for the Young’s modulus
can be reached when improving process steps, and crumpling of the graphene membranes is
decreased. The Poisson ratio is chosen to be that of HOPG [99], which has a similar structure
as multilayer graphene. It has to be noted the Poisson ratio can vary largely with increasing
stress, as observed in the previous chapter. A thickness of 8 nm is chosen as representative
value for a multilayer graphene stack.
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Figure 5.11: Collapse voltage as function of membrane radius and cavity height. Membrane
parameters of E = 0.7 TPa, ν = 0.24 and t = 8 nm are chosen to represent typical graphene
multilayer parameters.

Figure 5.11 shows the collapse voltage of the modeled multilayer graphene membrane as func-
tion of membrane radius b and cavity height d0. It can be seen relatively low voltages (<5 V)
are needed to pull the membrane into collapse mode. This sharply increases towards smaller
radii below 20 µm, rising to well above 200 V. It can be understood that large membranes
require less voltage to pull the membrane into collapse, since the mechanical force decreases
with increasing radius Fm ∼ 1/b2 and exactly the opposite applies to the electric force Fe ∼ b2,
Although the collapse voltage is relatively low compared to standard CMUT devices, 130 V
for a silicon membrane (d0 = 500 nm, b = 15 µm and t = 1 µm) [125] and 100V for a silicon
nitride membrane (d0 = 120 nm, b = 15 µm and t = 900 µm) [123], recent measurements by
Metten et al. (2016) [126] have observed similar low collapse voltages for graphene-CMUT like
structures. Metten shows a single-layer graphene membrane suspended over a trench (d0 = 288
nm and width of 4.9 µm) with a second electrode placed under 212 µm of SiO2, resulting in a
collapse voltage of 20 V, compared to 120 V for dimensions of in this model d0 = 500 nm, b = 5
µm. The discrepancy in collapse voltage can be largely attributed to the difference in thickness,
varying a factor of ∼23. Additionally, the effect of the insulating SiO2 layer is neglected in this
model, attributing to a lower than actually present collapse voltage.

The model in this section shows collapse voltages calculated for a typical multilayer graphene
membrane. Main finding is the strong dependence of the collapse voltage on the membrane
radius, suggesting geometrical parameters around d0 ≈ 500 nm and b ≈ 10 µm for collapse
voltages useful for applications, V ∼ 30 V. The next section discusses the last parameter of
interest, the resonance frequency, determining the potential of graphene-CMUT devices for
ultrasound applications.
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5.4.3 Frequency modeling

One of the key characteristics of ultrasound devices is its resonance frequency. In order to
acquire an insight into possible resonance frequencies of the multilayer graphene membranes
used in this thesis, the resonance frequency of circular membranes is calculated according to

f0 = 1
2π

√
k

m
= 1

2π
10.22t
b2

√
E

12ρ(1− ν2) (5.12)

in which the spring constant k is given by the mechanical stiffness km and the mass m by the
effective mass meff of circular clamped membranes [127]

k = km = 16πEt3
b2(1− ν2) m = meff = 1.84πb2ρt (5.13)

with ρ the density of the membrane material. Similar to the previous section, the parameters
for multilayer are chosen to be t = 8 nm, E = 700 GPa and ν = 0.24, with the density of the
graphene given by ρ = 2200 kg/m3, similar to the density of graphite [128]. The simulated
results are compared with resonance frequencies of a silicon nitride membrane with a thickness
of t = 400 nm and mechanical parameters E = 222 GPa and ν = 0.28 [27], and a density of
ρ = 3400 kg/m3 [129].
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Figure 5.12: Resonance frequency as function of membrane radius for a silicon nitride mem-
brane (t = 400 nm, E = 222 GPa, ν = 0.28 and ρ = 3440 kg/m3) and multilayer graphene
(t = 8 nm, E = 700 GPa, ν = 0.24 and ρ = 2200 kg/m3).

Figure 5.12 shows the simulated resonance frequency of the multilayer graphene membrane
and the silicon nitride membrane as function of the membrane radius. While the upward trend
with decreasing radius can be expected from Equation 5.12, the graphene membrane exhibits
resonance frequencies a factor of ∼10 lower than the silicon nitride membrane. Main reason for
this difference is the thickness variation between the two membranes t, largely governing the
resulting resonance frequency. Around dimensions of b = 10− 20 µm the resonance frequency
of multilayer graphene reaches values around 105 − 106 Hz. This approaches the MHz regime,
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showing potential for medical imaging. These frequencies are lower than produced by experi-
mentally created graphene resonators, generally in the order of 10-200 MHz (see Zhang et al.
(2015) [28] for a clear overview on graphene mechanical resonators), even reaching 1 GHz as
calculated by Poot et al. (2008) [130]. Below possible scenarios for this difference are illustrated.

The model used in this section is a very elementary first order approximation of the resonance
frequency of a circular multilayer graphene membrane. Other factors that influence the res-
onance frequency can cause frequency shifts up to multiple orders of magnitude. The main
effect influencing CMUT operation is the DC-actuation of the membrane. It is known that
a DC-voltage decreases the effective stiffness k and with that resonance frequency f0 of the
membrane [131]. Although this effect can take place in graphene-CMUT devices, it is more
likely the resonance frequency is increased due to an increase in tension in the membrane.
This process is similar to the tuning of a guitar string, already observed in different graphene
resonator devices [132, 133, 134]. Additionally, the output in terms of amplitude, or dB, of
the sounds waves has been outside the scope of this thesis, where it can be crucial for the
penetration depth of the sounds waves to achieve a minimum oscillation strength. Before these
effects can be incorporated in a model for actuation of circular graphene-CMUT-like mem-
branes, first the experimental preparation of flat graphene membranes has to be realized. As
has been shown in the previous chapter, the graphene exhibits multiple wrinkling effects which
largely influence its mechanical response. It is crucial to first create non-wrinkled membranes
before the characterization of parameters such as the frequency and amplitude strength can be
performed.

5.5 Conclusion

In this chapter an outlook has been given on the application of multilayer graphene membranes
in capacitive micromachined ultrasound transducers, CMUTs. The graphene has the potential
to simultaneously act as both membrane and top electrode, replacing the original concept of
an electrode packed in between an insulating membrane.

In this work proof-of-principle electronic actuation of non-transfered multilayer graphene mem-
branes has been shown. Applying DC-voltages up to 1000V for 1x1 mm2 membranes suspended
over a 120 µm high gap, membrane actuation is captured by a camera, directly observing the
electrostatic membrane actuation. Simultaneously, AC-voltages are applied simulating CMUT-
operation. This confirms the graphene membranes can be actuated using oscillating signals,
both unbiased and when imposing a DC-voltage.

Information on possible operating parameters has been acquired by modeling of the multilayer
graphene membranes structures. Although individual predicted values for the capacitance are
relatively low (∼100 fF), CMUTs are generally structured in arrays for amongst others 3D-
imaging. This implies a higher total capacitance and being well within range of standard
measuring equipment. Modeling of the collapse voltage and resonance frequency suggest ideal
dimensions of graphene-CMUT dimensions are around a gap height of d0 = 500 nm and mem-
brane radius b = 10 µm, resulting in a collapse voltage of ∼30 V and resonance frequencies of
∼106 Hz, suitable for medical applications.

While the simulations and proof-of-principle actuation suggests multilayer graphene membrane
can indeed be used in electromechanical resonators, information on critical parameters such
as output pressure in dB has been outside of the scope of this work. It would be of great
interest to create array-structured graphene-CMUT devices and test actual output parameters
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to validate application opportunities. A different point of interest is the wrinkling of the
graphene membranes, already observed in the previous chapter, which is generally ignored in
modeling of the output parameters. Improvements from a processing point of view are essential
in create suitable graphene membranes for applications purposes.
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Chapter 6

Conclusions and outlook

This chapter combines the individual research areas, relating back to the research questions
formulated at the beginning of this thesis. The conclusions of the three different research ar-
eas are discussed, after which an outlook for future research and recommendations for further
development is given.

6.1 Thesis conclusions

Graphene is considered one of the strongest and thinnest materials in existence today, showing
potential for incorporation in optical windows and electromechanical resonators. For future
development and further upscaling towards larger freestanding membrane areas, is it essential
to study the characteristics of these multilayer graphene membranes. Factors including the
thickness and mechanical response can determine the robustness of the membranes, making
these aspects of the graphene membranes focus areas of this thesis.

The thickness of the multilayer graphene membranes is studied with UV-vis spectroscopy
(∼250-1100 nm). It is shown that excitonic resonance, the so-called Fano resonance effect,
causes an asymmetric transmission profile. This indicates that the optical conductivity of
multilayer graphene is strongly energy dependent in the UV-vis regime σ ∼ σ(E), similar to
what is observed in single-layer graphene. The number of layers, and with that the graphene
thickness, is determined by fitting of the in this thesis proposed UV-vis model, additionally
cross-referenced with AFM measurements. The UV-vis model provides additional information
on the optical properties of the multilayer graphene, showing very short exciton lifetimes ∼30
fs. This can be attributed to the presence of defects in the graphene lattice, indeed observed
in the Raman spectra. Based on the fitted transmission curves, the UV-vis model can be
used to predict reflection of the graphene membranes, a property generally ignored in optical
research on graphene. The measured reflection of the multilayer graphene membranes agrees
reasonably well with the modeled reflection, with deviations towards higher energies probably
due to diffuse reflection on the rough surface of the graphene membrane. The results clearly
show that reflection cannot be neglected for multilayer graphene.

The mechanical response of the graphene membranes is determined using the thickness de-
termined through UV-vis spectroscopy as input. This thesis has shown that the method of
bulge testing indeed can be applied to large scale ∼mm2 graphene membranes. For multilayer
graphene membranes with a thickness of t = 11.5 nm, the effective stress-strain responses Eb
and Ep show a non-linear behavior. Using two different membrane configurations it is shown
the intrinsic Young’s modulus is relatively constant around E ≈ 80 GPa. The Poisson ra-
tio on the other hand increases from near zero, thus low directionally dependence, to values
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close to the isotropic limit of ν = 0.5. This suggests the Poisson ratio is the largest con-
tributor to the non-linear effective response. SEM-images confirm crumpling of the graphene
membranes, possibly contributing to the varying Poisson ratio. Quantitative analysis of the
non-linear response confirms the stress follows a non-linear strain response at low stress ε ∼ σα
and reaching an expected linear response at high stress ε ∼ σ. Unfortunately, this theory only
describes bulging in a specific configuration, thus neglecting any effects from the Poisson ratio,
as suggested by this thesis to have a significant effect. Thinner graphene membranes with a
thickness of t = 2.76 nm have also been analyzed, showing a larger stiffness of E ≈ 150 GPa.
Although closer to the value of E ∼ 1 TPa predicted for single-graphene, the response is still
lower, most likely due the multilayer membranes being more resemblant to HOPG or graphite,
having values of E = 15− 30 GPa.

Having characterized both the thickness and mechanical response, a possible application for the
graphene membranes is studied in the form of capacitive micromachined ultrasound transduc-
ers, CMUTs. While proof-of-principle electromechanical membrane actuation has been shown
on the freestanding graphene membranes, the large scale wrinkling is an effect which has to be
resolved before implementing the graphene membranes into ultrasound transducers. If these
problems would be resolved, optimal geometrical configurations would be around a cavity
height of d0 = 500 nm and a membrane radius of b = 10 µm, resulting in a collapse voltage of
V ≈ 30 V and expected resonance frequencies of 105−106 Hz, suitable for medical applications.

6.2 Outlook and recommendations for future research

This thesis shows a detailed description of multilayer graphene membranes, both from an op-
tical and mechanical point of view. Additionally some attention points for future development
were indicated, as well as interesting future research opportunities for gaining a more complete
understanding of the physics behind multilayer graphene membranes.

The most distinct effect observed in this thesis is the crumpling of the graphene membranes. It
has been shown that this effect has a large impact on the effective mechanical response during
bulging. While current research has focused on the effect of this crumpling on the mechanical
response, this work suggest the Poisson ratio actually is the largest contributor. It would be
interesting to investigate the effect of crumpling on the Poisson ratio of graphene membranes,
possibly by creating crumpling-engineered graphene structures. Simultaneously, theoretical
work on the Poisson ratio for crumpled graphene can provide insight into the strength of this
effect and how it relates to the value of ν = 0.16 generally used throughout literature.

AFM and SEM-images suggest the crumpling is largely caused by the roughness of the under-
laying metal catalyst. It is very likely this is effect occurs during growth of the graphene. Since
the growth process of the multilayer graphene has been outside the scope of this work, factors
that could have been the cause of crumpling have not been investigated. It would be inter-
esting to examine the effect of different metal catalysts on the graphene’s surface roughness.
Additionally, this would be a good method to objectively investigate the effect of crumpling
on the mechanical response of graphene membranes with similar thicknesses, whereas in this
thesis the comparison has to be made between two graphene membrane types with different
thicknesses. Furthermore, the SEM-images show the large number of defects in the graphene
membranes. These defects are possible causing the membranes to rupture before the intrinsic
linear elastic response ε ∼ σ is achieved. As pointed out in Chapter 4, the difference between
the stiffness and strength of a material has to be taken into account towards possible applica-
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tions. While the stiffness of the thinner graphene membranes is a positive effect, the absolute
pressure the membranes can withstand is actually lower. Most likely the absolute strength
of the membranes increases when the number of defects is decreased. It is still expected the
thinner graphene membrane will break at lower pressures compared to thicker membranes.
Somewhere an equilibrium might be reached, where the optimum thickness of the multilayer
membranes still meets the requirements for amongst others optical windows. Here the UV-vis
transmission model can also be used, investigating the exciton coupling and lifetimes observed
in the multilayer graphene membranes and how they relate to the defect density in the mem-
branes.

Towards possible applications the potential of graphene in CMUTs has also been investigated.
While the current investigation states a positive outlook for the application of graphene mem-
branes in ultrasound transducers, an important parameter, the amplitude of the sound waves
in dB, has been outside of the scope of this thesis. Both the amplitude and the crumpling effect
have to be investigated before stating a definite answer to this research question, and whether or
not the graphene resonators indeed exhibit superior characteristics over current membrane ma-
terials. The outcome could be that graphene membranes simply cannot be processed without
wrinkles. In that case heterostructured membranes could be potentially investigated. Graphene
could still provide the advantage of a membrane with a large strength-to-weight ratio, while a
different material could be stress-engineered to create tensile membranes.

Alongside the work described in this thesis, attempts have been made to create more CMUT-
like array devices with multilayer graphene membranes. While large steps have been made
towards a proof-of-principle device, processing of the graphene membranes in combination
with CMUT-like device components still needs improvement. Mainly wet-ech techniques have
been used, where it would be interesting to investigate to what extend these can be replaced
by dry-etching techniques. The bulk of the graphene membranes break during drying, where it
is expected dry-etching techniques would greatly enhance yield of the graphene membranes.
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Appendix A

Continuous versus discrete
convolution1

In this appendix a short note on the incorporation of the convolution in the MATLAB scripts
is given, since it is found that literature references scarcely elaborate on the exact numerical
incorporation. The convolution is applied to account for spectral broadening of the signal in
the model, a technique regularly used in spectroscopy. The continuous convolution of two
responses f(t) and g(t) is given by

f(t) ∗ g(t) = (f ∗ g)(t) =
∫ +∞

−∞
f(τ)g(t− τ)dτ (A.1)

which essentially shifts the function g(t) by τ over the function f(t) integrating for all values
of τ from −∞ to +∞.

Unfortunately, it is inherent to all experimental techniques that their responses are reported
in discrete datapoints, not continuous functions. Equation A.1 then has to be rewritten in
discrete form for two responses f and g with an infinite range

(f ∗ g)[n] =
+∞∑

m=−∞
f [m]g[n−m] (A.2)

which is similar as the expression used in the convolution function conv in MATLAB. When the
conv-function in MATLAB is used to convolute two signals and to calculate a physical response,
some assumptions have to be taken into account to ensure the correct physical response is
acquired:

• In Equation A.2 there is no mention of any kind on the spacing between the datapoints.

• The discrete convolution has got an infinite range, while discrete signals always have
truncated tails.

Considering the first issue: in the continuous integral in Equation A.1 the ’spacing’ between
the datapoints is taken into account by the dτ factor. In the discrete case this can be solved by
ensuring the two arrays f and g both have equally spaced points with a spacing ∆t. Equation

1Sources on numerical convolution for MATLAB:
- MATLAB-information page on the conv-function, https://nl.mathworks.com/help/matlab/ref/conv.html
- MATLAB forum thread on discrete convolution, http://nl.mathworks.com/matlabcentral/newsreader/
view_thread/168559
- Instruction video on numerical approximation of continuous convolution, https://www.youtube.com/watch?
v=LZ0qjZezGkQ
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APPENDIX A. CONTINUOUS VERSUS DISCRETE CONVOLUTION

A.2 therefor has to be multiplied by ∆t to gain a comparable and physical response.

The second issue of finite datapoints is solved by simply truncating the summation at the
end of the dataset. Unfortunately, truncating the discrete convolution leads to artificial edge
effects in the convoluted function. Numerically this can be solved by extending the original
domain of the function both at the lower and upper end. After the convolution these extended
regions, where the edge effects are located, are in turn removed from the domain to obtain the
convoluted region of interest.

Summarizing: the convolution is applied to the original signal for spectral broadening. This is
done via the discrete, truncated convolution function conv in MATLAB

(f ∗ g)[n] = ∆t •
+M∑

m=−M
f [m]g[n−m] = [∆t • conv(f,g,’same’)]nthelement (A.3)

in which the original (extended) function f (length n, ranging from −M to +M) is convoluted
with a Lorentzian g (also length n), while taking into account the equal spacing ∆t to acquire
a physical response. The ’same’ input is given to only return the region of interest with length
n, since the standard convolution returns a vector with a length of the two initial vectors f
and g combined.
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Appendix B

Square membrane fitting

Ideally a circular membrane is used to represent the biaxial strain situation, with the resulting
spherical shape appearing when pressurized. Due to processing limitations square membranes
are created which are spherically approximated. This Appendix chapter describes the differ-
ent spherical approximations of the square membranes. The different models shown here are
compared for the same bulge test dataset for direct comparison. Eventually the best spherical
approximation method is found, which is used in acquiring the resulting membrane radius R
during bulging.

B.1 Spherical fit
A first order approximation of the square membrane is simply assuming a pure spherical shape.
The height profile can then be fitted using the general form for a sphere with radius R

(x− a)2 + (y − b)2 + (z − c)2 = R2 (B.1)

with (x, y, z) = (a, b, c) the sphere’s center location. The height profiles are determined from
profilometry on a 500 by 650 equidistant grid with 0.83 µm spacing. From each height profile
the maximum is determined, after which a k x k area around the maximum is chosen. By
varying the k-value the size of the area for fitting of the sphere can be determined. Ideally, the
chosen area and k-value is small, minimizing the influence of the square membrane shape. In
Figure B.1 multiple area sizes with k = 100, 200, 300 and 400 are shown, including the corre-
sponding spherical fits. The height profiles with k = 100, 200 in Figure B.1a and b, respectively,
show a good agreement with the spherical fits. In the fits of Figure B.1c and d, k = 300 and
400 respectively, the corner effects are more prominently visible, suggesting k < 300 for a good
spherical approximation.

From the spherical fits the radius of curvature R is determined for area sizes ranging from
k = 50 to k = 450, shown in Figure B.2a. For height profiles at multiple pressures this process
is repeated, visualizing the area dependence k of the resulting radius of curvature R. It can
be seen at k < 100 the radius of curvature shows large fluctuations, most likely due to the
noise spread on the data. Towards higher values for k some pressures show an increase in
curvature, although clear deviations at for example P = 50 mbar can be seen. At k = 250 the
radius of curvature at P = 50 and 60 mbar are the same according to the fits, while during the
experiment a clear increase in deflection is observed. Similarly, Figure B.1b shows the large
fluctuations in the corresponding stress-strain curves for low values of k. Only towards large
enough areas k > 400 the curves show a continuous upward trend as is expected from the
increase in applied pressure. Unfortunately as seen in Figure B.1, for these large values of k
the spherical approximation is not suitable anymore. Since both suggested regions for k do not
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APPENDIX B. SQUARE MEMBRANE FITTING

(a) (b)

(c) (d)

Figure B.1: Multiple select areas of a membrane height profile for a type 1 multilayer graphene
membrane with a thickness of t = 11.5 nm bulged at P = 73 mbar. The different areas are: (a)
100 by 100 points, (b) 200 by 200 points, (c) 300 by 300 points and (d) 400 by 400 points.
Each area is fitted using the spherical formula of Equation B.1.
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Figure B.2: Extracted radius of curvature R and corresponding stress-strain curves for mul-
tiple values of k. (a) Radius of curvature extracted for several pressures P . Each pressure
profile is analyzed for k-values ranging from 50 to 450. (b) Stress-strain curves calculated for
multiple k-values on the same bulge test run.
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overlap, a different approach to a spherical approximation of the square membrane has to be
found.

B.2 Individual cross-sectional fits

y-cross section

x-cross section

Figure B.3: Schematic top view of a pressurized square membrane. The typical area where the
square membrane can be spherically approximated is shown in dark blue, with the non-spherical
parts indicated in light blue. The two cross-sections used for the spherical approximation are
shown in red and are within the dark blue spherical region.

A different approach is adapted which accounts for the square shape of the membrane. Figure
B.3 shows a schematic view of a square membrane and the regions that can be spherically
approximated. Around the center and towards the edges the membrane can be assumed to be
spherical, indicated in dark blue. Towards the corners of the sample the spherical approxima-
tion is no longer valid, indicated in light blue. This is similar to observed in Figure B.1. By
taking two cross sections of the height profile, as shown in red, the largest part of the curvature
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Figure B.4: Comparison of stress-strain curves calculated with the 3D model (k = 450),
indicated in black, and calculated using the cross section model, shown in red.
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within the spherical region is taken. These two 2-dimensional height profiles zx(y) and zy(x)
are simultaneously fitted according to{

zx(y) = c+
√
R2 − (y − a)2

zy(x) = c+
√
R2 − (x− b)2

(B.2)

which share a common height offset c and individual offsets a and b in the x-direction and
y-direction, respectively. The fitted radius R is used to determine the resulting stress-strain
curve. Figure B.4 shows the stress-strain curve determined through the cross section model as
well as the continuous curve using a 3D area with k = 450. It can be seen the cross-section
model exhibits much larger strain values, which corresponds to the smaller values for R as
determined in the fits. Comparing to the 3D area fit from Figure B.1d, it can indeed be seen
the spherical fit overshoots the actual membrane profile towards the edges. Since this results
in a larger value for R, the corresponding strain is less than the cross section model. Since the
cross section model is more reliable in fitting spherically correct areas, this model is used to
determine the deflection radius R of the bulged square membrane.
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Appendix C

Stress-strain curve: hysteresis effects

In Chapter 4 is it shown the graphene membranes exhibit a non-linear stress-strain response. To
verify this stress-strain response is an intrinsic material characteristic, not a result of membrane
failure, hysteresis test are performed. In the hysteresis test the pressure difference P over the
membrane is increased and decreased, meanwhile monitoring the resulting membrane deflection
profile. Applying the described analysis method in Chapter 4, the corresponding stress and
strain are calculated along loading and unloading of the membrane. After a loading and
unloading cycle, the following loading and unloading cycle is performed up to a higher pressure.
This process is repeated until membrane rupture, with the maximum pressure increasing by
10 mbar per cycle.
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Figure C.1: Stress-strain curve of a square multilayer graphene membrane (t = 11.5 nm)
over multiple loading (solid marks) and unloading (open marks) cycles. After each unloading
cycle the maximum applied pressure is increased with 10 mbar to 10, 20, 30, 40 and 50 mbar
until membrane rupture.

Figure C.1 shows a hysteresis test run performed on a square type 1 (t = 11.5 nm) multilayer
graphene membrane. Each color indicates the stress and strain up until a certain pressure, with
the solid and open marks representing the loading and unloading part of the cycle, respectively.
As expected the bulging experiments show the non-linear effect, mainly in the cycles with
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P > 20 mbar. Comparing the loading and unloading part within each cycle individually, it can
be seen they follow similar patterns. In the case of the loading up to 40 mbar the curve shows
a small discrepancy at the high end, possibly due to small membrane rearrangement. Despite
this discrepancy, the unloading curve follows the loading part quite accurately. Comparing the
loading and unloading curves of all the different cycles, no significant discrepancy is observed.
This indicates the non-linear stress-strain effect indeed is a material property and can be
attributed to intrinsic graphene characteristics.

80



Appendix D

Parameter error analysis

The errors in the parameters of interest are in general determined from the corresponding fit
through the dataset. In the case of the full-range UV-vis transmission model in Chapter 3, the
error in the thickness St is determined by linear scaling of the error in the number of layers SN
the with the interlayer distance d:

St = d · SN (D.1)

All the other error propagations, mainly in the procedure of determining the mechanical char-
acteristics in Chapter 4, are determined through the standard 68%-error propagation formula

Sy =

√√√√ N∑
i=1

( ∂y
∂xi

)2
· S2

xi
(D.2)

with Sy the error for a parameter y(x1, x2, ..., xN ) with individual errors Sxi .

D.1 Individual strain moduli and Young’s modulus

The average values for the biaxial and planar strain modulus are determined by calculating the
average of the different individual strain moduli Ex, i, determined from linear approximation
of the stress-strain curves

Ex = 1
N

N∑
i=1

Ex,i (D.3)

with N the number of individual moduli and x = p pr x = b either for the planar or biaxial
modulus, respectively. The error in Ex is determined by the standard deviation in the spread
in Ex,i

SEx
=

√√√√ 1
N − 1

N∑
i=1

(
Ex,i − Ex

)2 (D.4)

The formulas described above to determine the average values and errors for Eb and Ep are
a general procedure to determine an average value and its corresponding error. In this thesis
this procedure is also used to determine the values for the non-linear fitting parameters α, k
and σ∗ from Equation 4.15.

Since the Young’s modulus is determined from the biaxial Eb and planar Ep modulus through
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E = 2Eb −
E2
b

Ep
(D.5)

the corresponding error can be determined using Equation D.2 with the errors SEb
and SEp

the errors in the biaxial and planar modulus, respectively

SE =

√√√√(2− 2Eb
Ep

)2
S2
Eb

+
(E2

b

E2
p

)2
S2
Ep

(D.6)

D.2 Poisson ratio
Similar to the Young’s modulus, the Poisson ratio is a function of the biaxial Eb and planar
Ep modulus

ν = Eb
Ep
− 1 (D.7)

The corresponding error in the Poisson ratio can be calculated using Equation D.2

Sν =
√( 1

Ep

)2
S2
Eb

+
(Eb
E2
p

)2
S2
Ep

(D.8)
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Appendix E

Individual bulge test fit parameters

In this appendix the individual values are given for parameters determined through the different
fitting procedures performed on the stress-strain curves in Chapter 4. The average values and
errors of the average values are calculated according to the procedure described in Appendix
D.

E.1 Biaxial Eb and planar Ep modulus

As discussed in section 4.4, the individual biaxial Eb and planar Ep moduli of the different
graphene membranes are determined by linearly approximation of the stress-strain curves in
certain stress-regimes. The following sections present an overview of all the individual elastic
moduli determined from the bulge test experiments performed on the individual graphene
membranes.

E.1.1 Type 1 graphene: thickness t = 11.5 nm

Tables E.1 and E.2 show the individual biaxial Eb and planar moduli Ep, respectively, for the
type 1 square graphene membranes with a thickness of t = 11.5 nm. The individual elastic
moduli are determined by linear approximation of a low stress regime (< 250-300 MPa) and a
high stress regime (> 300-350 MPa) of the stress-strain curves in Figure 4.7.

Table E.1: Individual biaxial moduli Eb from the stress-strain curves of the square membranes
in Figure 4.7 with a thickness t = 11.5 nm. The biaxial moduli are determined by linear
approximation in the corresponding stress regime.

Curve color Eb low stress regime
(< 250-300 MPa, in GPa)

Eb high stress regime
(> 300-350 MPa, in GPa)

Black 87.8± 2.6 192.4± 4.7
Red 114.1± 3.3 166.0± 6.3

Orange 73.4± 2.6 -
Pink 68.6± 1.9 -

Light blue 79.9± 2.0 129.7± 3.4
Dark blue 70.9± 2.2 -
Purple 77.4± 2.1 152.1± 2.4
Green 79.9± 1.9 143.3± 1.8

Dark yellow 66.5± 1.7 -
Dark brown 96.7± 3.0 158.3± 3.8
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Table E.2: Individual planar moduli Ep from the stress-strain curves of the rectangular mem-
branes in Figure 4.7 with a thickness t = 11.5 nm. The planar moduli are determined by linear
approximation in the corresponding stress regime.

Curve color Ep low stress regime
(< 250-300 MPa, in GPa)

Ep high stress regime
(> 300-350 MPa, in GPa)

Black 93.6± 8.1 -
Red 81.1± 1.6 -

Orange 69.8± 4.4 -
Pink 70.7± 1.4 90.7± 10.5

Light blue 85.8± 2.5 113.3± 4.3
Dark blue 69.0± 1.5 133.9± 2.6
Purple 92.4± 5.4 -
Green 66.7± 1.3 87.7± 2.1

E.1.2 Type 2 graphene: thickness t = 2.76 nm

Similar to the type 1 graphene membranes with a thickness t = 11.5, stress-strain curves are
determined for the type 2 graphene membranes with a thickness of t = 2.76 nm. Tables E.3
and E.4 show the individual biaxial Eb and planar moduli Ep, respectively, again determined
for two stress regimes in Figure 4.12, below and above ∼600 MPa.

Table E.3: Individual biaxial moduli Eb from the stress-strain curves of the square membranes
in Figure 4.12 with a thickness t = 2.76 nm. The biaxial moduli are determined by linear
approximation in the corresponding stress regime.

Curve color Eb low stress regime
(< 600 MPa, in GPa)

Eb high stress regime
(> 600 MPa, in GPa)

Black 96.7± 24.5 197.4± 57.6
Red 130.1± 16.5 375.4± 16.2

Orange 131.8± 15.9 -
Light blue 110.3± 16.9 233.6± 26.2
Dark blue 126.8± 14.3 167.0± 62.2
Purple 137.7± 18.2 194.5± 100.0
Green 132.3± 16.5 294.6± 11.9

Dark yellow 165.0± 19.2 -
Dark red 142.5± 10.8 235.1± 65.0

Table E.4: Individual planar moduli Ep from the stress-strain curves of the square membranes
in Figure 4.12 with a thickness t = 2.76 nm. The planar moduli are determined by linear
approximation in the corresponding stress regime.

Curve color Ep low stress regime
(< 600 MPa, in GPa)

Ep high stress regime
(> 600 MPa, in GPa)

Black 92.4± 5.4 -
Red 81.1± 1.6 -
Green 69.8± 4.4 -
Pink 70.7± 1.4 -
Blue 69.0± 1.5 -

Dark green 85.8± 2.5 -
Dark yellow 66.7± 1.3 -
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E.2 Non-linear strain-stress analysis parameters
As described in section 4.4.2 the non-linearity of the strain-stress curves of the type 1 graphene
is quantitatively analyzed using the equation derived by Gornyi et al. (2016) [95]

ε(σ) = σ∗
k

( σ
σ∗

+ 1
α

( σ
σ∗

)α)
(E.1)

Table E.5 shows the individual values for α, k = Eb and σ∗ determined by fitting the strain-
stress curves of the type 1 graphene membranes, as seen in Figure 4.11.

Table E.5: Individual non-linear strain-stress parameters from Equation 4.15 determined by
fitting the strain-stress curves of the type 1 graphene membranes in Figure 4.11.

Curve color Non-linear exponent α (-) Elastic modulus Eb (GPa) Cross-over stress σ∗ (MPa)
Black 0.185± 0.010 355± 35 457± 94
Red 0.198± 0.020 371± 82 568± 253
Blue 0.117± 0.011 158± 11 89± 17
Green 0.140± 0.008 223± 16 208± 33
Purple 0.137± 0.009 203± 15 168± 30

Dark red 0.257± 0.044 227± 40 201± 106

85



APPENDIX E. INDIVIDUAL BULGE TEST FIT PARAMETERS

86



Appendix F

Bulge test sample deviations

In general the stress-strain curves of the type 1 graphene follow the same upward trend, showing
a reproducible mechanical response. The difference in the onset of the stress-strain curves has
already been discussed, being an artifact of the presence of membrane attachments to the
sidewalls.
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Figure F.1: Stress-strain curves of type 1 square graphene membranes. The stress-strain
curves as reported in Chapter 4 are indicated in grey, with the two deviating samples indicated
in red and blue.

Two samples measured during bulging have shown different stress-strain responses, indicated
by the red and blue curves in Figure F.1. The sample indicated in red follows a relatively
irregular stress-strain pattern. During bulging the sample deflection is followed by a camera
along the same optical path as the interferometer signal. No folds are observed on the sample,
but during bulging multiple irregular jumps in deflection are noticed. These jumps in deflection
influence the measured curvature R and therefore lead an irregular stress-strain pattern. It
is chosen not to take this sample into account in the statistical analysis due to the observed
irregularity.
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Figure F.2: Optical image
of the graphene multilayer sam-
ple showing the deviating stress-
strain response. The corre-
sponding stress-strain response is
shown in blue in Figure F.1.

The stress-strain response indicated in blue does show a
smooth continuous upward trend. Unfortunately, this trend
does not correspond with the other stress-strain curves. An-
alyzing an optical image of the membrane, see Figure F.2,
no large folds or other defects are identified. The sam-
ple does however show a much larger large-scale wrinkling
compared to previous graphene membranes. This wrinkling
results in the largest observed strain value of all the mem-
branes ε ≈ 0.011. Although no definitive cause for this
effect is identified, manual processing could have effected
the graphene wrinkling. Since the stress-strain response is
significantly different from the other coinciding curves, it is
chosen to exclude this curve from statistical analysis.
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Appendix G

MATLAB scripts

In this Appendix the MATLAB scripts developed in this thesis are reported. The script for
fitting of the full-range UV-vis model is reported, as well as the coupled files required to
calculate the conductivity of the multilayer graphene stack. Similarly the files used for fitting
the height profiles are reported. The files are provided with comment lines for more detailed
explanation, as well as previous code which can be potentially used for further improvement of
the analysis method.

G.1 UV-vis transmission model

The MATLAB-file presented here is used to fit the multilayer graphene transmission spectra.

1 % In this script the thickness of a multilayer graphene stack is determined
2 % by fitting transmission data over the full wavelength range with a model
3 % for the conductivity, based on exciton resonance (Fano peak resonance).
4 % Main source is Mak et al. (2011), supported by Gogoi et al. (2012) and
5 % Santoso et al. (2014). Transmission and reflectivity are converted to and
6 % from conductivity according to Matthes et al. (2014)
7 % Most parameters can be initialized here, but in the file
8 % 'Graphene_conductivity_function.m' parameters can be chosen:
9 % 1) Use empirical conductivity or Stauber et al. (2008) model

10 % 2) Convolution type (Gaussian or Lorentzian) and corresponding width
11 % 3) Parameters can be set fixed in function file
12 % Model valid in range of [0,5.5] eV (not strict boundaries), and only at
13 % T=300 K.
14 % More information in MSc thesis of Jochem Huijs (2017)
15

16 clear all
17

18 %% Set constants
19 e = 1.60217662e-19; % elementary charge (in C)
20 h_bar = 1.054571628e-34; % reduced Planck constant (in J*s)
21 c = 2.99792458e8; % speed of light (in m/s)
22 epsilon_0 = 8.82e-12; % vaccuum permittivity (F/m)
23

24 % calculate universal optical conductivity
25 sigma_0 = e^2/(4*h_bar); % universal optical conductivity (no unit)
26

27 %% Parameters to initialize!
28 % set the start and end wavelenght of the fitting region
29 interlayer_distance = 0.335; % in nm
30 w_start = 250; % in nm
31 w_end = 1100; % in nm
32 filename = '170913_UV-vis_to_thickness_UVVIS_05012017_&_08032017.xlsx';
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33 sheet = 'Spectra_08032017';
34 X = 13; % column number of transmission in Excel-file (X=>2 since column 1 ...

is x_data)
35 Z = 1; % set to 1 for reflectance data incoorporation
36 Y = 14; % column number of reflectance in Excel-file (Y=>2 since column 1 is ...

x_data)
37

38 % Initial parameters and boundary conditions for fit
39 N_start = 10; % number of layers (no unit)
40 N_lower = 1;
41 N_upper = 100;
42 t_start = 2.60; % hopping parameter (in eV)
43 t_lower = 2;
44 t_upper = 4;
45 q_start = -1; % Fano coupling parameter (no unit)
46 q_lower = -4;
47 q_upper = -0.1;
48 E_res_start = 5.02; % exciton resonance frequency (in eV)
49 E_res_lower = 4;
50 E_res_upper = 7;
51 Gamma_start = 1.0; % width of exciton resonance (in eV)
52 Gamma_lower = 0.1;
53 Gamma_upper = 3;
54

55 %% Fitting procedure starts from here
56 T_data = xlsread(filename,sheet);
57 m = size(T_data);
58

59 % set rows outside of selected wavelength range to zero and remove rows
60 for i = 1:m(1)
61 if T_data(i,1) < w_start
62 T_data(i,:) = 0;
63 elseif T_data(i,1) > w_end
64 T_data(i,:) = 0;
65 end
66 end
67 T_data(all(T_data==0,2),:)=[];
68

69 % Convert wavelength to energy basis and extract selected column to fit
70 x_data = T_data(:,1);
71 E_data = 2 .* pi .* c ./ (x_data .* 1e-9) .* h_bar ./ e;
72 y_data = T_data(:,X);
73

74 % Convert transmission to conductivity (in units of sigma_0)
75 sigma = (sqrt(1./y_data)-1).*2.*c.*epsilon_0./sigma_0;
76

77 % Create new evenly spaced array in the energy domain(in wavelength to
78 % energy conversion spacing is NOT conserved), necessary for convolution
79 E_start = min(E_data);
80 E_end = max(E_data);
81 n = size(E_data);
82 E_even_spaced = transpose(linspace(E_start,E_end,max(n)));
83

84 % Fit spline through data and extract new (evenly spaced!) datapoints
85 f = fit(E_data,sigma,'smoothingspline','SmoothingParam',0.999);
86 sigma_data_even = feval(f,E_even_spaced);
87 %plot(f,E_data,sigma)
88

89 %% Define formula for fit and include initial startparameters
90 formula = @(x,E)Graphene_conductivity_function(E,x(1),x(2),x(3),x(4),x(5));
91 x0 = [t_start,N_start,q_start,E_res_start,Gamma_start];
92
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93 % Include additional opties for fit, increase in nummber of evaluations and
94 % iterations, fit data with evenly spaced data sigma_data_even
95 options = optimoptions(@lsqcurvefit,'Algorithm','trust-region-reflective',...
96 'MaxFunctionEvaluations',50000,'MaxIterations',10000);
97 [x,¬,resid,¬,¬,¬,J] = lsqcurvefit(formula,x0,E_even_spaced,sigma_data_even,...
98 [t_lower N_lower q_lower E_res_lower Gamma_lower],...
99 [t_upper N_upper q_upper E_res_upper Gamma_upper],options);

100

101 %% Calculate corresponding errors in parameters
102 Error = nlparci(x,resid,'jacobian',J);
103 x=transpose(x);
104 x(1,2) = (Error(1,2)-Error(1,1))/4;
105 x(2,2) = (Error(2,2)-Error(2,1))/4;
106 x(3,2) = (Error(3,2)-Error(3,1))/4;
107 x(4,2) = (Error(4,2)-Error(4,1))/4;
108 x(5,2) = (Error(5,2)-Error(5,1))/4;
109

110 % Manual method to determine error
111 % dif = sigma_data_even - formula(x,E_even_spaced);
112 % Cov = inv(J'*J);
113 % x = transpose(x);
114 % x(1,2) = sqrt(Cov(1,1));
115 % x(2,2) = sqrt(Cov(2,2));
116 % x(3,2) = sqrt(Cov(3,3));
117 % x(4,2) = sqrt(Cov(4,4));
118 % x(5,2) = sqrt(Cov(5,5));
119

120 %% Calculate thickness of graphene multilayer membrane & plot data and fit
121 x
122 thickness = x(2,1)*interlayer_distance;
123 thickness(1,2) = x(2,2)*interlayer_distance
124

125 figure
126 fig1 = subplot(1,2,1);
127 plot(fig1,E_data,sigma)
128 hold on
129 plot(fig1,E_even_spaced,sigma_data_even)
130 plot(fig1,E_even_spaced,formula(x,E_even_spaced))
131 hold off
132

133 %% Calculate reflectance from the fitted conductance
134

135 R = ((formula(x,E_even_spaced)*sigma_0/(2*c*epsilon_0))./...
136 (1+formula(x,E_even_spaced)*sigma_0/(2*c*epsilon_0))).^2;
137

138 fig2 = subplot(1,2,2);
139 plot(fig2,E_even_spaced,R)
140

141 if Z == 1
142 hold on
143 plot(fig2,E_data,T_data(:,Y))
144 hold off
145 end

In order to keep the MATLAB-scripts concise, the conductivity modeling is separated into an
individual function-file Graphene_conductivity_function.m.

1 function conductivity = Graphene_conductivity_function(E,t,N,q,E_res,gamma)
2 % parameter as basis
3 % E: energy of the light (in eV)
4 % parameters to fit
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5 % t: hopping parameter (in eV)
6 % N: number of graphene layers (no unit)
7 % q: Fano coupling parameter (no unit)
8 % E_res: exciton resonance frequency (in eV)
9 % gamma: width of exciton resonance (in eV)

10

11 %% Variable parameters
12 % choose sigma ¬log (W = 1) or sigma ¬Stauber (W = 2)
13 W = 1;
14 % choose to convolute with Lorentzian (Y = 1) or Gaussian (Y = 2) and width
15 Y = 1;
16 width = 0.25; % in eV
17

18 % Possibility to set parameters fixed
19 %t = 5.20/2;
20 %q = -1;
21 %E_res = 5.02;
22 %gamma = 1.0;
23 %N = 35;
24

25 %% Continuation of script
26 % create basis for calculations and arrays for calculation
27 X = 1500; % extra numbers on side of convolution
28 n = size(E); % determine number of datapoints
29 m = max(n)+2*X; % number of datapoints for larger range for convolution
30 sigma_real = zeros(m,1);
31 sigma_imag = zeros(m,1);
32 epsilon = zeros(m,1);
33 Fano = zeros(m,1);
34 sigma_real_Fano = zeros(m,1);
35 sigma = zeros(m,1);
36 conductivity = zeros(m,1);
37

38 % create larger base for convolution extending original base with X, since
39 % discrete convolution leads to edge effects
40 E_start = E(1);
41 E_end = E(max(n));
42 E_diff = median(diff(E));
43 E_back = transpose(linspace(1,X,X))*E_diff+E_end;
44 E_front = transpose(linspace(-1*X,-1,X))*E_diff+E_start;
45

46 % merge sides with original base
47 E_full = [E_front;E;E_back];
48

49 %% Test of functions (NOT CORRECT due to mismatch in base)
50 % Lorentz_base1 = linspace(2*t-2.5,2*t+2.5,101);
51 % Lorentz_base2 = linspace(2*t-2.5,2*t+2.5,501);
52 % Lorentz_base3 = linspace(2*t-2.5,2*t+2.5,1001);
53 % Lorentz_base4 = linspace(2*t-2.5,2*t+2.5,max(n));
54 % Lorentz_base5 = linspace(E(1),E(max(n)),10000);
55 % Lorentz1 = ...

Conductivity_functions.Lorentzian_func(Lorentz_base1,0.250,2*t);
56 % Lorentz2 = ...

Conductivity_functions.Lorentzian_func(Lorentz_base2,0.250,2*t);
57 % Lorentz3 = ...

Conductivity_functions.Lorentzian_func(Lorentz_base3,0.250,2*t);
58 % Lorentz4 = ...

Conductivity_functions.Lorentzian_func(Lorentz_base4,0.250,2*t);
59 % Lorentz5 = ...

Conductivity_functions.Lorentzian_func(Lorentz_base5,0.250,2*t);
60 % sigma_real_conv1 = ...

median(diff(Lorentz_base1)).*conv(sigma_real,Lorentz1,'same');

92



APPENDIX G. MATLAB SCRIPTS

61 % sigma_real_conv2 = ...
median(diff(Lorentz_base2)).*conv(sigma_real,Lorentz2,'same');

62 % sigma_real_conv3 = ...
median(diff(Lorentz_base3)).*conv(sigma_real,Lorentz3,'same');

63 % sigma_real_conv4 = ...
median(diff(Lorentz_base4)).*conv(sigma_real,Lorentz4,'same');

64

65 % for i = 1:max(n)
66 % sigma_real_convfunc(i) = ...

Conductivity_functions.Lorentz_conv(E(i),t,mu);
67 % end
68

69 % Tested FFT in stead of convolution, but gave similar results
70 % sigma_test1 = abs(median(diff(E)))*ifft(fft(sigma_real).*fft(Lorentz6));
71 % sigma_test2 = ...

median(diff(Lorentz_base4))*ifft(fft(sigma_real).*transpose(fft(Lorentz4)));
72

73 %% Continuation of script
74 % calculate conductivity for full range (for functions, see file:
75 % 'Conductivity_funtions.m')
76

77 if W == 1
78 for i = 1:m
79 sigma_real(i) = 1-1.0*log(abs(1-E_full(i)/(2*t)));
80 % sigma_real_gogoi(i) = -1.7*log(abs(1-E_full(i)/(2*t)))+0.8;
81 end
82 elseif W == 2
83 % ignore warning in integral calculation for Stauber method
84 warning('off', 'MATLAB:integral:MinStepSize')
85

86 mu = 0.2; % set chemical potential fixed for Stauber method
87 for i = 1:m
88 sigma_real(i) = ...

Conductivity_functions.sigma_real_func(E_full(i),t,mu);
89 sigma_imag(i) = ...

Conductivity_functions.sigma_imag_func(E_full(i),t,mu);
90 end
91 end
92

93 % create shifted base for Lorenztian/Gaussian
94 E_base = E_full+2*t-(E_full(m)+E_full(1))/2;
95 if W == 1
96 conv_func = Conductivity_functions.Lorentzian_func(E_base,width,2*t);
97 elseif W == 2
98 conv_func = Conductivity_functions.Gaussian_func(E_base,width,2*t);
99 end

100

101 % convolute sigma with the Lorentzian/Gaussian, median necessary to
102 % gain correct physical response
103 sigma_real_conv = median(diff(E_full)).*conv(sigma_real,conv_func,'same');
104

105 % multiply convoluted conductivity with Fano resonance peak
106 for i = 1:m
107 epsilon(i) = (E_full(i)-E_res)./(gamma./2);
108 Fano(i) = (q+epsilon(i)).^2./(1+epsilon(i).^2);
109 sigma_real_Fano(i) = sigma_real_conv(i).*Fano(i);
110 end
111

112 % scale Fano corrected conductivity down to value from convoluted
113 % conductivity
114 if W == 1
115 A = max(sigma_real_Fano)/max(sigma_real_conv);
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116 elseif W == 2
117 A = 1.0;
118 end
119 sigma_real_Fano_scaled = sigma_real_Fano./A;
120

121 for i = 1:m
122 if (i > X) && (i ≤ m-X)
123 sigma(i) = sigma_real_Fano_scaled(i) + 0*sigma_imag(i);
124

125 % calculate total conductivity for total stack of N layers
126 conductivity(i) = abs(N*sigma(i));
127 end
128 end
129 % Only return the same shape array as the input by removing not-used rows
130 conductivity(all(conductivity==0,2),:)=[];
131 end

The experimental broadening of the conductivity can be done using a Lorentzian or Gaussian
distribution. These functions are separated into a different file Conductivity_functions.m.
Additionally, this file incorporates the conductivity described by Stauber et al. (2008) [64],
but it is found the empirical description using σ ∼ − log(E) is more representative for the
background optical conductivity of single-layer graphene.

1 classdef Conductivity_functions
2

3 methods(Static)
4

5 function [x] = rho_func(E,t)
6

7 n = size(E);
8 x = zeros(n);
9

10 for i = 1:max(n)
11 F_func = @(x,t) (1+x/(2*t))^2 - 0.25*((x/(2*t))^2-1).^2;
12 K_func = @(x,m) ((1-x.^2).*(1-m.*x.^2)).^(-1/2);
13

14 if E(i)/2 < t
15 x(i) = 1./sqrt(F_func(E(i),t)) .* ...

integral(@(x)K_func(x,2.*E(i)./(F_func(E(i),t).*t)),0,1);
16 elseif t < E(i)/2 %< 3*t
17 x(i) = 1./sqrt(2.*E(i)./t) .* ...

integral(@(x)K_func(x,F_func(E(i),t).*t./(2.*E(i))),0,1);
18 else
19 x(i) = 0;
20 end
21 end
22 end
23

24 % real part of conductivity (function)
25 function [x] = sigma_real_func(E,t,mu)
26

27 k_b = 8.617343e-5; % Boltzman constant (in eV/K)
28 T = 300; % temperature (in K), only valid for these experiments
29

30 x = 1/(12*sqrt(3)*pi) .* Conductivity_functions.rho_func(E,t) ...
.* ...

31 (18 - (E./t).^2) .* (tanh((E + 2.* mu)./(4*k_b*T))+...
32 tanh((E - 2.* mu)./(4*k_b*T)));
33 end
34

35 % imaginary part of conductivity (function)

94



APPENDIX G. MATLAB SCRIPTS

36 function [x] = sigma_imag_func(E,t,mu)
37

38 x = 4./(E* pi) .* (mu - 2/9 * mu^3 / t^2) - ...
39 1/pi * log (abs(E+2*mu)/abs(E-2*mu)) - 1/(36*pi) .* ...
40 (E./t).^2 .* log (abs(E+2*mu)/abs(E-2*mu));
41 end
42

43 % Lorentzian function (normalized)
44 function [x] = Lorentzian_func(E,w,E_center)
45

46 x = 1./(pi*w.*(1+((E-E_center)./w).^2));
47 end
48

49 % Convolution with Lorentzian centered around 2*t and width 0.250
50 % (integral goes from -10*width to +10*width around center 2*t)
51 function [x] = Lorentz_conv(E,t,mu) %NOT FUNCTIONAL
52

53 integral_func = @(x) ...
Conductivity_functions.sigma_real_func(x,t,mu).*...

54 Conductivity_functions.Lorentzian_func(E-x,0.250,2*t);
55 x = integral(@(s)integral_func(s),2*t-2.5,2*t+2.5);
56

57 end
58

59 % Gaussian function (normalized)
60 function [x] = Gaussian_func(E,w,E_center)
61

62 x = 1./(w.*sqrt(2*pi))*exp(-0.5*((E-E_center)./w).^2);
63 end
64 end
65 end

G.2 Bulge test: membrane profile fits

The membrane profiles in the cylindrical and square configurations are analyzed according to
the procedures described in section 4.3.1. The fitting files shown here return the extracted
radius of curvature R, which consequently can be used to determine the stress σ and strain ε
applied to the membrane at the different pressures P . The height profile files are given as an
’.plu’-file output by the Sensofar. The file pluread.m (not reported here) is used to convert
the .plu-files to regular matrices, used for further analysis in the MATLAB-files.

G.2.1 Cylindrical membrane

1 clear all
2

3 % filename needs to be in the format '5x1mm_"N",0mb_20x.plu' with "N" the
4 % corresponding pressure in mbar, steps need to be constant and in
5 % integers!
6

7 % Insert the experiment parameters here, needs to be in integers
8 P_start = 1; %insert the starting pressure here in mbar (in integers!)
9 P_end = 5; %insert the end pressure here in mbar (in integers!)

10 stepsize = 1; %insert the stepsize between the pressures in mbar
11

12 M = (P_end-P_start)/stepsize+1; %calculates the number of measurements
13

14 R = zeros(P_end-P_start,3); %create matrix to insert all radius values
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15 % note: if stepsize>1 then rows with zeros will stay in the matrix, this is
16 % corrected at the end of the script
17

18 % Create empty matrix to collect Y-data for wrinkles
19 %Y_data = zeros(1000,M+1);
20

21 for P = P_start : stepsize : P_end
22

23 R(P-P_start+1,1)=P; % Sets the first number of the row to the ...
corresponding pressure

24

25 file = strcat('5x1mm_',int2str(P),',0mb_20x.plu');
26 Profile = pluread(file);
27

28 [n,m] = size(Profile.Z);
29 xyzPoints = zeros(n*m,3);
30

31 for i = 1 : m
32 for j = 1 : n
33 t = n*(i-1)+j;
34 xyzPoints(t,1) = Profile.x(i);
35 xyzPoints(t,2) = Profile.y(j);
36 xyzPoints(t,3) = Profile.Z(j,i);
37 end
38 end
39

40 xyzPoints=xyzPoints(¬isnan(xyzPoints(:,3)),:);
41

42 %print pressure to screen
43 P
44

45 %fit the model through the pointcloud and store radius and error
46 ft = fittype('b+e*y+sqrt(R^2-(x-a-d*y)^2)','dependent',{'z'},...
47 'independent',{'x','y'},'coefficients',{'a','b','R','d','e'});
48 f = fit([xyzPoints(:,1),xyzPoints(:,2)],xyzPoints(:,3),ft,...
49 'StartPoint',[400,-3500,1000,0.001,0.001],'Lower',[200,-30000,50,-1,-1],...
50 'Upper',[600,-50,30000,1,1])
51 Err = confint(f);
52

53 R(P-P_start+1,2)=f.R;
54 R(P-P_start+1,3)=(Err(2,3)-Err(1,3))/4;
55

56 % Save the data on the central line for plotting:
57 %for k = 1 : n
58 %Y_data(k,1)=Profile.y(k);
59 %Y_data(k,P-P_start+2)=Profile.Z(k,m/2)+1.0*(P-P_start);
60 %end
61 end
62

63 R(all(R==0,2),:)=[] % Remove rows containing zeros and print the end result
64

65 % Clear the whole matrix from zeros
66 %Y_data(all(Y_data==0,2),:)=[]

G.2.2 Square membrane

1 clear all
2

3 % filename needs to be in the format '5x1mm_"N",0mb_20x.plu' with "N" the
4 % corresponding pressure in mbar, steps need to be constant and in
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5 % integers!
6

7 % Insert the experiment parameters here, needs to be in integers
8 P_start = 1; %insert the starting pressure here in mbar (in integers!)
9 P_end = 11; %insert the end pressure here in mbar (in integers!)

10 stepsize = 1; %insert the stepsize between the pressures in mbar
11

12 k = 50; % determines how many points around the 3D-fit maximum are
13 % taken into account to fix the actual maximum
14

15 M = (P_end-P_start)/stepsize+1; %calculates the number of measurements
16

17 R = zeros(P_end-P_start,5); %create matrix to insert all fitting parameters ...
and radius values

18 % note: if stepsize>1 then rows with zeros will stay in the matrix, this is
19 % corrected at the end of the script
20

21 %% Start loop here:
22

23 for P = P_start : stepsize : P_end
24

25 R(P-P_start+1,1)=P;% Sets the first number of the row to the ...
corresponding pressure

26

27 file = strcat('1x1mm_',int2str(P),',0mb_20x.plu');
28 Profile = pluread(file);
29

30 %print pressure to the screen
31 P
32

33 [m,n]=size(Profile.Z);
34 xyzPoints = zeros(n*m,3);
35

36 for i = 1:n
37 for j = 1:m
38 t = m*(i-1)+j;
39 xyzPoints(t,1) = Profile.x(i);
40 xyzPoints(t,2) = Profile.y(j);
41 xyzPoints(t,3) = Profile.Z(j,i);
42 end
43 end
44

45 % Fit a sphere through the pointcloud to image the surface
46 xyzPoints=xyzPoints(¬isnan(xyzPoints(:,3)),:);
47

48 ft1 = fittype('c+sqrt(R^2-(x-a)^2-(y-b)^2)','dependent',{'z'},...
49 'independent',{'x','y'},'coefficients',{'a','b','c','R'});
50 f1 = fit([xyzPoints(:,1),xyzPoints(:,2)],xyzPoints(:,3),ft1,'StartPoint',...
51 [400,400,-4000,4050],'Lower',[200,200,-20000,50],'Upper',[600,600,0,20000])
52

53 % Find index numbers of the maximum point from the 3D fit
54 % x-direction
55 tmp1 = abs(Profile.x-f1.a); % calculate array with difference between ...

target value f.a and position Profile.x
56 [idx idx] = min(tmp1); %index of closest value
57

58 % y-direction
59 tmp2 = abs(Profile.y-f1.b); % calculate array with difference between ...

target value f.a and position Profile.x
60 [idy idy] = min(tmp2); %index of closest value
61

62
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63 % Create a new matrix with zeros which only center around around the
64 % values from the 3D-fit maximum
65 MaxMatrix = zeros(m,n);
66 for i = idx-k/2:idx+k/2
67 for j = idy-k/2:idy+k/2
68 MaxMatrix(j,i) = Profile.Z(j,i);
69 end
70 end
71

72 MaxValue = max(MaxMatrix(:));
73 [rowMax colMax] = find(Profile.Z == MaxValue);
74

75 % Calculate the x and y position of the maximum value
76 y = Profile.y(rowMax(1,1));
77 x = Profile.x(colMax(1,1));
78

79 % x-cross section
80 x_cross = zeros(m,2);
81 x_cross(:,1) = Profile.y;
82 x_cross(:,2) = Profile.Z(:,colMax(1,1));
83 %removes all the NaN values from the matrix
84 x_cross=x_cross(¬isnan(x_cross(:,2)),:);
85

86 % y cross section
87 y_cross = zeros(n,2);
88 y_cross(:,1) = Profile.x(:);
89 y_cross(:,2) = Profile.Z(rowMax(1,1),:);
90 %removes all the NaN values from the matrix
91 y_cross=y_cross(¬isnan(y_cross(:,2)),:);
92

93 % This method uses combined-dual fits for the two directions
94 f2 = ...

@(par)nonlinmodel(par,x_cross(:,1),y_cross(:,1),x_cross(:,2),y_cross(:,2));
95 [optimal_par,no_use1,no_use2,no_use3,no_use4,no_use5,J] = ...
96 lsqnonlin(f2,[f1.c;f1.R;f1.b;f1.a],[-20000;50;200;200],[0;20050;600;600]);
97

98 dif1 = ...
x_cross(:,2)-(optimal_par(1)+sqrt(optimal_par(2).^2-(x_cross(:,1)-optimal_par(3)).^2));

99 dif2 = ...
y_cross(:,2)-(optimal_par(1)+sqrt(optimal_par(2).^2-(y_cross(:,1)-optimal_par(4)).^2));

100 dif = [dif1;dif2];
101 Cov = inv(J'*J)*var(dif);
102

103 R(P-P_start+1,2)=optimal_par(4);
104 R(P-P_start+1,3)=optimal_par(3);
105 R(P-P_start+1,4)=optimal_par(2);
106 R(P-P_start+1,5)=sqrt(Cov(2,2));
107 end
108

109 R(all(R==0,2),:)=[] % Remove rows containing zeros and print the end result

The combined cross-section fits are given in a separate file for practical purposes nonlinmodel.m.

1 function z = nonlinmodel(par,loc1,loc2,x_height,y_height)
2 z = [x_height-(par(1)+sqrt(par(2).^2-(loc1-par(3)).^2));...
3 y_height-(par(1)+sqrt(par(2).^2-(loc2-par(4)).^2))];
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