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Abstract

Collective motion in confluent cell layers plays an important role in biological processes such as embryonic
development, wound healing, cancer and asthma. In these processes the cellular collective can undergo a
jamming transition from a fluid-like to a solid-like state reminiscent of a glass transition in molecular fluids or
a jamming transition in granular systems. Using both simulated data from the self-propelled Voronoi model
and experimental data obtained from MDCK-cells, we study this jamming phenomenon, the accompanying
structural and dynamical changes and the analogy between cells and glasses via correlation functions and
mode coupling theory (MCT) obtained from glassy physics. These static and dynamic correlation functions
show a growth in structural order and a dynamical slowing down upon approaching the jamming transition
and are therefore a powerful tool to characterize this jamming transition. Based on structural information,
standard MCT predicts the dynamics in the unjammed regime correctly and this shows that dynamical changes
are governed by structural changes in confluent cell layers and supports the notion that collective migration
exhibits glass-like dynamics. For the analysis of collective cellular motility, MCT provides us with a new analysis
framework to determine dynamics based on only one snapshot instead of expensive measurements during a long
period. In addition, this MCT analysis in confluent cell layers extends the applicability of mode coupling theory
to a new field of science, namely biophysics. We also investigate jamming and alignment in an extension of the
self-propelled Voronoi model that explicitly includes neighbor-alignment as an organizing principle in collective
motion. We show that increasing the radius that determines the neighbors to which a cell aligns its velocity to
increases the total alignment in the system and can cause the cellular collective to flow like a flock, in agreement
with experimental results. Furthermore, we show that the switch on of this neighbor-alignment can fluidize a
jammed layer and can re-solidify this layer upon further increasing the radius of the neighbor-alignment. The
combination of jamming and alignment results in a rich phase diagram with four different states: a stationary
liquid, a stationary solid, a liquid flock and a solid flock.
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1 INTRODUCTION

1 Introduction

Cells are the building blocks of the human body and of all other living organisms and their motion plays
an important role in many biological processes. Nevertheless, the fundamental rules governing this motion
are still not well understood. Single cells already exhibit very complex motion [1, 2], but in many biological
situations cells are coordinating their movements together as a collective. This resulting collective cellular
motion is even more complicated and has been listed as one of the ten major unsolved mysteries in biology
[3]. Recently, observations in different physiological and pathophysiological processes have revealed that cells
can stay quiescent and fixed around their position in some situations while these same cells can mobilize and
migrate cooperatively over great distances in other situations [4–12]. So just as coffee beans in a chute or grain
in a silo can flow in some circumstances and jam in others, a cellular collective can unjam and flow like a fluid
or instead jam and rigidify like a solid [13–19].

In physiological processes like embryonic development and wound healing, differences in behavior between the
sticky cells in the solid state and the collective motion in the fluid state play an important role. Starting from a
single cell, cell division and differentiation combined with the collective migration of the cells through the whole
body make it possible for organs and the human body as a whole to develop [20, 21]. In this unjammed collective,
each individual cell is guided by chemical and mechanical stimuli from its neighbors. In a jammed state on the
other hand, each individual cell performs the physiological functions that its type dictates. Epithelial cells, for
example, line the inner and outer surface of all organs and cavities in the human body and in a solid state serve
as a barrier to protect, separate, sense, absorb and secrete [14]. Another example of the function of collective
motion of the cells is shown in Figure 1 where epithelial cells move cooperatively towards a wound to remove
harmful bacteria and to close the layer [5, 22–26]. As soon as opposite cells meet, the layer starts to jam again.
The fact that the speed of a single cell does not determine the wound healing rate, shows that the cooperation
between cells play an important role in this process [25].

Figure 1: Cells working together in wound healing. The black area in the left panel is a wound and cells are collectively
moving towards this wound (center panel) to close it (right panel) [25].

In pathophysiological processes like cancer and asthma, unjamming can be a malfunction or failure of human
tissue cells. Cancer [15, 16, 27–30] is characterized by uncontrolled cell growth, invasion into surrounding
tissues and metastases to other parts of the body. Important in cancer metastasis is the epithelial-mesenchymal
transition (EMT), which is a process in which epithelial cells gain migratory and invasive properties and become
mesenchymal stem cells that can differentiate into a variety of cell types. But recently, another gateway to
cellular migration was proposed, namely an unjamming transition in which cells retain their phenotype. It is
yet unknown how these two processes, EMT and unjamming, are intertwined, but the idea that influencing
the unjamming transition might be a key to cancer treatments is growing. More established is the role of
unjamming in airway epithelium cells and their malfunctioning by asthmatic patients [10]. The jammed phase
of these epithelial cells represents a mature and quiescent layer and a good working barrier function, while
the unjammed phase is associated with an immature and harmed layer. To illustrate the difference between
those two states, Figure 2 shows the cell shape of human bronchial epithelial cells (HBEC) in a jammed and
immobile state (left panel) and in an unjammed and rapidly migrating state (right panel). While breathing, the
airway epithelium is subject to repeated mechanical perturbations and injuries due to exposure to, for example,
pollutions and viruses. These disruptions can cause the cellular collective to unjam to repair the epithelial layer.
During this repair, the layer explores different configurations and then resettles into a recovered and remodelled
solid-like state. In this final state, the layer is jammed again. But in asthmatic patients this jamming turns
out to be delayed and the cellular collective stays in a fluid-like state for a longer time period, resulting in
deterioration of the airway function and unwanted structural remodeling of the airway wall.

Collective motion of cell tissues, as described in the examples above, is regulated by many complex physical
and molecular factors which are strongly effected by each other [31]. This causes cells to exhibit a much greater
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1 INTRODUCTION

Figure 2: Human bronchial epithelial cells (HBEC) in a jammed and immobile state (left panel) and in an unjammed
and rapidly migrating state (right panel) [14]. Although the movements of the cells are not visible in these pictures, there
is a clear difference in the cell shapes in the jammed and unjammed state.

range of behavior than possibly be found in non-biological materials [32]. Cells can grow, deform, divide and
die. Signaling molecules can alter a cell’s mechanical properties, complex feedback mechanisms can cause them
to change their behavior and long-range chemical communication can influence their movements. Furthermore,
cells are highly heterogeneous and can have different phenotypes making them communicate differently. It is
therefore very complicated to take into account all these factors in describing biological processes. Therefore,
a unifying framework might be highly valuable for understanding the influence of underlying factors and make
the interactions between them better understood [14]. It has been shown that the transition between solid-like
and fluid-like biological tissues is accompanied by large-scale collectivity, a slowing down of the dynamics and
a dynamic heterogeneity exhibited by multicellular packs and swirls (see Figure 3), even in situations where
no change is observed in the properties of the constituent cells and the structure of the collective [6, 9, 10, 13,
14, 29, 32, 33]. Strikingly, these characteristics are also found in molecular fluids and particulate systems close
to, respectively, the glass or jamming transition. The suggestion that this fluid to solid transition in biological
processes is similar to a glass or jamming transition is called the jamming hypothesis and has the potential to be
a unifying framework that links diverse biological processes and gives insights into the laws governing collective
cellular dynamics [4, 13, 14, 34].

Figure 3: A snapshot of Madine-Darby canine kidney cells (MDCK) close to a jamming transition. The velocity field
(right panel) shows swirls of cells with approximately the same velocity magnitude and direction, which indicate spatially
heterogeneity [4].

So what happens at this glass or jamming transition in non-living materials? In the well-known fluid to solid
transition, a spontaneous ordering of the particles or molecules takes place from an amorphous, disordered fluid
state to a well-ordered, crystallized solid state. But in a jamming or glass transition, this spontaneous structural
ordering is lacking and disorder exists in both liquid- and solid-like phases [F1]. Figure 4 shows an example
of the structural differences between this crystallized (left panel) and the so-called glassy state (right panel).
In molecular fluids, this glassy state is reached by rapidly cooling a material allowing no time for reordering
to the crystalline ground state. Thermal fluctuations are now insufficient to drive local structural arrangement
and the system will stay away from a thermodynamic equilibrium. Consequently, the resulting packing geome-
tries remain disordered. Instead of decreasing the temperature, in particulate systems the transition from a
liquid-like to a solid-like state can be reached by increasing the density. Despite the differences in origins, the
phenomenological characteristics of both transitions are the same. Both the jamming and the glass transition
are characterized by a slowing down of the motions of the individual components due to caging of the immediate
neighbors as shown in Figure 5. In the left panel, particles are in a liquid or unjammed state and can move
around freely without being hindered by their neighbors, but the particles in the right panel are hindered es-
caping from the confinement of their neighbors. This causes the particles to be caged and dynamically arrested.
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Figure 4: Two possibilities for solidification of a simple fluid: a crystalline state (left panel) and a glassy state (right
panel) (source: https://steemit.com/science/@timsaid/myth-or-fact-11-glass-is-a-liquid, date of access: 07-06-2018).

These particles exhibit a solid-like character on short times and a liquid-like on long time scales, because it will
take a long time before the particles escape the confinement of their direct neighbors and obtain new neighbors.
Another feature of the glass and jamming transition is the growth of swirls or clusters that move collectively in
the same direction at similar speed (see the right panel of Figure 3). Because of these similarities between the
glass and jamming transition in molecular fluids and particulate systems, they are now seen as part of a bigger
jamming picture in which there are many possible ways to unjam a material [35, 36]. In Figure 6 a jamming
phase diagram is drawn showing three of these possibilities: increasing the temperature, decreasing the density
or increasing the (shear) stress [37].

Figure 5: Differences between an unjammed, fluid-like state in which particles can move around freely (left panel) and a
jammed, solid-like state in which the particles are caged by their neighbors (right panel).

Living materials might show other pathways to unjam and Figure 7 shows a proposal for a jamming phase
diagram for cellular layers. According to this diagram, unjamming can be obtained by decreasing the cell
density, decreasing the adhesion between cells or increasing the ability of a cell to move autonomously, which is
called motility or activity of a cell [34]. Other examples that can influence the jamming or unjamming transition
are cellular or substrate stiffness, stretch or shear loading or cellular volume. At different positions in Figure
7 a sketch of the corresponding cellular layer is given, showing characteristics reminiscent to molecular fluids
or particulate systems near a glass or jamming transition. In the unjammed state, cells can move freely and
independently of their neighbors. Going towards a jammed situation, these neighbors serve as a cage with some
specific strength that can be expressed in the form of an energy barrier. A cell has to overcome this barrier to
escape, to see new neighbors and to make cellular rearrangements possible. When the caging becomes stronger,
the energy barriers become higher and it becomes more difficult for a cell to escape from its neighbors. Near the
jamming transition, cells can only move when they cooperate in a collective fashion and dynamic heterogeneity
arises in the tissue. Finally, when the barrier becomes so big that cells can only overcome this barrier rarely, the
cell remains trapped in its cage and the layer is said to be jammed. Concluding, the phase diagram in Figure
7 illustrates the importance of understanding the jamming phenomenon in biological processes because a small
change in the value of a parameter can have a large influence on the collective behavior of cells [14].
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Figure 6: Proposal for a jamming phase diagram that
unifies the glass and jamming transition [35].

Figure 7: Proposal for a jamming phase diagram for
cell layers, depending on adhesion, density and motil-
ity. The insets show typical structures and velocity
vectors for a jammed state, an unjammed state and a
state near the jamming transition [34].

Hence, it is very likely that there is some kind of analogy between collective cell behavior and that of simple
fluids or particulate systems near a glass or jamming transition, and this might provide the opportunity to
solve many challenging questions in biology such as the following. What are the forces driving collective
cellular motion [38]? What is the purpose of jamming and unjamming in biological processes [39]? What is
the relation of cell jamming to the dominant mechanisms of collective cellular migration or is cell jamming
itself a dominant mechanism [14]? Is unjamming the cause of migratory events or is it only a result [34]? In
embryonic development, which signals causes the cells to unjam and migrate? In wound-healing, what controls
the unjamming in the cellular layer [13]? In cancer, what is the link between EMT and the unjamming transition
[14]? If EMT is not the principal role in cancer as is suggested, might unjamming then plays this role [40]?
Can the use of mechanical properties give rise to better treatments than the current therapies that often only
consider the biochemical aspects of the disease [34]? In asthma, can we accelerate the process of jamming or
reverse the unjamming as a remedy [10]?

However, before we can start thinking about answering these burning and interesting questions, a better un-
derstanding of the cellular jamming phenomenon and its analogy to simple fluids is necessary. In this thesis,
we aim to get a deeper insight into this collective cellular behavior and we work towards establishing the anal-
ogy with glassy fluids or jammed particles further. We do this by applying analysis methods and a predictive
theory borrowed from glassy physics to living epithelial cells and by extending the current available cell models
with a model that explicitly incorporates a mechanism for collective behavior explicitly. Our research goals are
summarized by the three research questions in the next subsection. Furthermore, in Subsection 1.2 the outline
of this thesis is explained.

1.1 Research questions

1. What do static and dynamic correlation functions obtained from glassy physics teach us about
the jamming phenomenon in epithelial cell layers in experiments and simulations?
The principle of jamming and its characteristics are not well defined yet in cells and, therefore, broader and
more fundamental knowledge is needed to establish this phenomenon and to make jamming a general term in
biological processes. In glassy physics, static and dynamic correlation functions are frequently used to analyze
structure and changes in this structure over time, but these functions are rarely used in studying cell tissues.
By treating cell layers in the same way as glass-forming liquids, we aim to extend this knowledge in terms of
structure and dynamics and possibly push the analogy between cells and glasses further. To start with, this
will provide us with a new lens to look at a successful model for confluent cell layers and already existing
experimental data. Just as in molecular fluids or granular particles, we expect a relation between structure and
dynamics in confluent cell layers. This would call for applying a specific theory of glasses and jammed materials,
called mode coupling theory (MCT).
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2. By applying mode coupling theory on epithelial cells, can we broaden the applicability of MCT,
extend the analogy between glasses and cells, and, ultimately, define a new analysis framework
for epithelial cells?
Mode coupling theory is a promising theory from glassy physics that predicts dynamics based on the structure
of a system. The similarities between the jamming transition in biological processes and the glass transition
motivates us to apply MCT on simulated and experimental data of epithelial cells. The motivation for this
MCT approach is two fold as it can give insights into the analogy between glasses and cells, but also can help
to validate MCT in general. Because MCT is not an exact theory, it is only successful in some cases and fails
in other cases. Validating MCT predictions for confluent cell layers can substantiate this theory and contribute
to its applicability. Furthermore, the intended applicability of MCT to epithelial cells has several benefits to
the research of these cell layers. Until now, only simulation models to explain experimental results exist, but a
theory is lacking. Such a theory can give additional insights in the underlying physical principles and has the
power to make predictions that can be tested in simulations and experiments. Finally, if mode coupling turns
out to be applicable to confluent cell layers, it can provide us with an alternative way to define jamming in
which only one snapshot is needed instead of many snapshots over long time period.

3. How does a model for epithelial cells behave in terms of alignment and jamming when a
principle regulating collective motion is explicitly included?
The existing models for confluent cell layers do not incorporate an explicit rule that regulates the motion of
a cell depending on the movements of its neighbors. Nevertheless, experiments show situations in which this
collaboration might be a dominant mechanism in collective cell motion. Therefore, we propose a model that
includes this mechanism explicitly and will look at how different parameters affect alignment and jamming.
The natural next step is testing mode coupling theory for this new model, but that will be left for future
research.

1.2 Outline

The outline of this thesis is as follows. In the next section we go more deeply into the physics of glasses and
the glass transition for simple fluids. We start with defining the properties of the glass transition in Subsection
2.1 and in Subsection 2.2, the static and dynamic correlation functions are derived. Subsection 2.3 focuses on
mode coupling theory and a sketch of the derivation is given, as well as a description of its applicability. In
Section 3, we return to biophysics and focus on models for confluent cell layers. Subsection 3.1 lists important
properties of these cell layers that have to be taken into account when designing a model. Different model
classes exist for these confluent cell layers and these are described in Subsection 3.2, together with their pros
and cons for our research. We chose to use two different models, and their details as well as their connection
with the literature are described in Subsection 3.3 and Subsection 3.4. In Subsection 3.5 we summarize our
computational details.

The first model we investigate is the Voronoi rotational diffusion-model (VRD) and the results are presented
in Section 4. Subsection 4.1 describes the general working of this model, Subsections 4.2 and 4.3 focus on
respectively the structure and the dynamics using correlation functions and Subsection 4.4 contains a mode
coupling theory analysis. In Section 5 experimental data is analyzed in the same way as the data from the
VRD-model. In Subsection 5.1 a first exploration of the data set is given, Subsections 5.2 and 5.3 discuss
respectively the structure and dynamics using correlation functions and mode coupling theory is applied in
Subsection 5.4. In Section 6 we investigate a second model, called the Voronoi Vicsek-model (VV). A first
exploration of the model is given in Subsection 6.1 and Subsection 6.2 contains a broad parameter analysis. In
Subsection 6.3 the results of the VV-model regarding alignment are compared to experimental results and in
Subsection 6.4 jamming in this model is investigated. In Section 7 we look at future research possibilities, with
in Subsection 7.1 different possibilities to extend the incorporation of the motility in our research, in Subsection
7.2 a review of other research possibilities and in 7.3 some concluding remarks about what the field to which
this research belongs might bring in the far future. Finally, our conclusions are summarized in Section 8.
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2 THEORY OF GLASSES AND THE GLASS TRANSITION

2 Theory of glasses and the glass transition

In Section 1 is explained that confluent cell layers can exhibit the same features as molecular fluids near a glass
transition or granular particles near a jamming transition, but the physics of such a transition in biological
systems is not well established yet. In this thesis we examine this transition through a glassy lens and therefore
we explain in this section the physics that we need to do so [41, 42]. We mostly refer to molecular liquids and
glasses in this section, but we assume that within the unifying jamming framework [35] all the principles can be
extended to granular materials and the jamming transition. Nevertheless, we will call the molecules ’particles’
for clarity reasons. In Subsection 2.1 the properties of glasses as described in Section 1 are explained in further
detail. Static and dynamic correlation functions are a widely used analysis method in glassy physics and they
are defined in Subsection 2.2. These correlation functions are necessary to derive mode coupling theory (MCT),
the only first principle theory to describe the dynamics of glasses. A sketch of the derivation of MCT, its
applicability and its successes and failures are explained in respectively Subsection 2.3.1, 2.3.2 and 2.3.3. We
conclude in Subsection 2.4 with a description of how we can transfer the physics of glasses to the physics of
confluent cell layers.

2.1 Properties of glasses

In Section 1 is described that a material can reach a glassy state via supercooling, in which the formation of
an ordered array and a corresponding crystalline state is suppressed (left panel of Figure 4). In Figure 8 the
difference between glass and crystal forming is sketched. At the melting point Tm, a liquid normally freezes
in a crystalline state resulting in an abrupt decrease in volume and enthalpy (crystal line in Figure 8). But
when the liquid is cooled down fast enough, this first-order phase transition is avoided as each particle becomes
trapped in a local cage preventing the system to reach a completely ordered state (two glass lines in Figure
8). At some temperature Tg the liquid becomes so viscous that it does not flow on any practical time scale
anymore and from that moment on it is called a glass. Hence, the glass transition is not a clear phase transition
between two equilibrium states, but it is an out-of-equilibrium phenomenon. The location of the glass transition
is not a material property either, as it depends on the cooling rate (glass 1 and 2 in Figure 8) and the glass
temperature Tg is empirically determined. One characteristic of the glass transition is the excessive growth of
the viscosity near the transition as is shown for several materials in Figure 9. The temperature for which the
viscosity reaches 1012 Pa (or 1013 poise in Figure 9) is often used as definition for the glass temperature. Other
possible measures are the diffusion coefficient obtained from the mean squared displacement and the relaxation
time obtained from a dynamic correlation function, which are respectively discussed later in this subsection and
in Subsection 2.2.

Figure 8: A material can reach a glassy or crystalline state depending on the cooling rate [43].
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2 THEORY OF GLASSES AND THE GLASS TRANSITION

Figure 9 shows that many different materials exhibit glassy behavior in which the viscosity increases drastically,
but also shows the broad range of temperatures at which this happens. This behavior can be unified using an
Angell plot, where all temperatures are scaled to the glass temperature (see Figure 10). Materials that show
linear growth on the Angell plot are called strong glass formers and materials showing a concave line are fragile
glass formers. These fragile glass formers show super Arrhenius behavior, meaning that the energy barriers for
structural rearrangements grow nonlinearly when the temperature decreases.

Figure 9: Growth of viscosity for several materials upon supercooling [44]. Figure 10: Angell plot of the viscosity for
several materials showing the difference
between strong and glass formers [43].

Besides the viscosity, this huge dynamical slowing down near the glass transition can also be probed via the
mean squared displacement (MSD) given by

MSD(t) =
1

N

N∑
i=1

|ri(t)− ri(0)|2, (1)

with ri(t) the location of particle i at time t. The diffusion coefficient D is the long-time limit of the slope of
the MSD, given by

D = lim
t→∞

MSD

2dt
, (2)

with d the dimensionality of the system. Three phases can be distinguished in a typical graph of the MSD as
displayed in Figure 11. At short times particles behave ballistic because they are not aware of other particles
around them and the slope of the MSD on a log-log plot is two. Once a particle senses it neighbors and undergoes
collisions, the dynamics slows down and a plateau arises in the MSD. When waiting long enough, a particle can
escape from the cage of its neighbor and the MSD grows again. The behavior in this regime is called diffusive
when the slope of the MSD on a log-log plot is one or subdiffusive when this slope is smaller than one. However,
when the caging of the particles is too strong such that hopping events are not possible, the diffusive regime
disappears and the MSD stays at a plateau value. In this case, the system behaves non-ergodically. Because it
is impossible to check the dynamical behavior of a system at infinitely long times, the material is said to be a
glass when the diffusion coefficient is lower than a threshold value after some measurable time.

Another feature of glass formation is the presence of dynamic heterogeneity (see the example in Figure 3). A
consequence of this dynamic heterogeneity is the breakdown of the Stokes-Einstein relation which relates the
diffusion D to the viscosity η, for example via

D =
kBT

6πηr
(3)

for spherical particles, with kB the Boltzmann constant, T the temperature and r the radius of a particle.
Diffusion and viscosity are two ways to measure dynamics in a system and a breakdown between this relation
implies that the two measures do not give similar results anymore. This breakdown can happen because there
are different time scales at play around the glass transition.
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2 THEORY OF GLASSES AND THE GLASS TRANSITION

Figure 11: Typical mean squared displacement of a glass.

Barely anything happens microscopically at the glass transition and the structure of a liquid looks similar upon
supercooling and yet, the glass transition is accompanied with huge changes in the dynamics and macroscopical
quantities such as the viscosity and the MSD. Understanding the origin of the glass transition is a difficult
question and has been listed as one of the 125 unanswered questions in science in 2015 [45]. Different theories
have been proposed to describe the behavior of materials near the glass transition of which some are more
successful and promising than others. The only first principle theory, meaning that it starts from established
physics without using empirical models or fitting parameters, is mode coupling theory. Because the version of
the mode coupling theory that we will apply has a static correlation function as input and a dynamic correlation
as output, we need to define these correlation functions first. Because these correlation functions are also of
interest on its own, we explain them in detail in the next subsection.

2.2 Static and dynamic correlation functions

Starting from the basis definition of a correlation function, we derive four different correlation functions based
on the density, which are either in real space or Fourier space and either static or dynamic. These four functions
are called the radial distribution function, the Van Hove distribution Function, the static structure factor and
the intermediate scattering function. In Appendix B we give the full derivations of these functions based on
Refs. [46–48] together with own interpretations and we summarize the main equations here. We start with a
formal description of the correlation functions in Subsection 2.2.1 and then explain how these functions can be
measured using simulated or experimental data in Subsection 2.2.2.

2.2.1 Correlation functions in theory

In a system with N particles we define the dynamic variable A(r,R(t)), with Fourier transform Âk(t), dependent
on position r and the particles’ coordinates given by R(t) ≡ {R1(t),R2(t), ...,RN (t)}, where Ri(t) is the
position of particle i at time t. The fluctuation δA(r,R(t)) of this variable is given by

δA(r,R(t)) ≡ A (r,R(t))− 〈A(r,R(t))〉 , (4)

and the Fourier transform δÂk(t) is

δÂk(t) =

∫
drδA(r,R(t))eik·r = Âk(R(t))−

〈
Âk(R(t))

〉
. (5)

〈...〉 is the ensemble average given by

〈...〉 ≡
∫

dΓfeq(Γ)..., (6)

where Γ is a 4N -dimensional phase space coordinate Γ ≡ {R1, ...,RN ,P1, ...,PN} ≡ {R,P } in a two- dimen-
sional system with Pi the momentum of particle i and feq(Γ) the equilibrium probability distribution given in
a canonical ensemble by

9



2 THEORY OF GLASSES AND THE GLASS TRANSITION

feq(Γ) ≡ e−βH(Γ)∫
dΓ′e−βH(Γ′)

, (7)

with β = 1/(kBT ) and H(Γ) the Hamilton function. The correlation function C(∆r, τ) of A(r,R(t)) in real
space for a system that is translation and time-invariant is given by

C(∆r, τ) = 〈δA(r,R(t))δA(r + ∆r,R(t+ τ))〉 (8)

and the correlation function C(k, τ) of Âk(t) in Fourier space by

C(k, τ) =
1

V
〈δA∗k(R(t))δAk(R(t+ τ))〉 , (9)

with V the two dimensional volume of the system. This function correlates the variable A at two points ∆r
apart and at two times τ apart. We choose the variable A(r,R(t)) to be the local density function ρ(r,R(t))
defined by (with δ the Dirac delta-function):

ρ(r,R(t)) ≡
N∑
i=1

δ(r −Ri(t)), (10)

and in Fourier space by

ρ̂k(R(t)) =

∫
drρ(r,R(t))eik·r =

N∑
i=1

eik·Ri(t). (11)

Equations 4 -11 are the ingredients we need to determine the four correlation functions we are interested in,
namely the Van Hove distribution function, the radial distribution function, the intermediate scattering function
and the static structure factor.

The Van Hove distribution function G(∆r, τ), also called the dynamic density correlaton function, is defined as
the correlation function (Equation 8) of the local density function (Equation 10) in real space divided by the
average density ρ0 for normalization purposes, which results in

G(∆r, τ) =
1

ρ0

〈
N∑
i=1

δ(r −Ri(t))

N∑
j=1

δ(r + ∆r −Rj(t+ τ))

〉
− ρ0. (12)

The radial distribution function g(∆r) is the static variant of the Van Hove distribution function divided by ρ0

for normalization purposes and with the trivial contribution of an ideal gas subtracted:

g(∆r) =
1

ρ2
0

〈
N∑
i=1

δ(r −Ri(t))

N∑
j 6=i

δ(r + +∆r −Rj(t)

〉
. (13)

The intermediate scattering function F (∆r, τ), also called the dynamic correlation function in Fourier space, is
defined as the correlation function (Equation 9) for the local density function (Equation 11) in Fourier space
divided by ρ0 for normalization purposes:

F (k, τ) ≡ 1

ρ0

1

V

〈
N∑
i=1

N∑
j=1

eik·(Rj(t+τ)−Ri(t))

〉
. (14)

The static structure factor S(k) is the static variant of the intermediate scattering function and is given by

S(k) =
1

ρ0

1

V

〈
N∑
i=1

N∑
j=1

eik·(Rj(t)−Ri(t))

〉
. (15)

10



2 THEORY OF GLASSES AND THE GLASS TRANSITION

2.2.2 Correlation functions in measurements

To calculate the four correlation functions using measured data obtained from simulations and experiments,
we need to define a specific implementation of the ensemble average 〈...〉 of Equation 6. In theory, ρ(r,R(t))
is known for the complete phase space R at time t and for every position r. While in measurements the
value of ρ(r,R(t)) is only known at points r where and at times t when measured. Therefore we average over
Nss different snapshots m in time and over the complete volume of the snapshot to calculate the ensemble
average:

〈 〉 ≡
〈

1

V

∫
dr

〉
t

≡ 1

Nss

Nss∑
m=1

1

V

∫
dr, (16)

where 〈...〉t = 1
Nss

∑Nss

m=1. Applying this implementation of the bracket function to the radial distribution
function g(∆r) of Equation 13 gives

g(∆r) =
1

ρ0N

〈
N∑
i=1

N∑
j 6=i

δ(∆r − (Rj(t)−Ri(t)))

〉
t

. (17)

Besides g(∆r) being a correlation function of local densities, Equation 17 suggests another explanation. g(∆r)
is namely an average of N density functions ρ(r), one for each particle i as origin, and divided by the result of
this average for an ideal gas, namely ρ0. Thus, the radial distribution function measures how many particles
there are on average at vector ∆r from a particle with respect to this number in an ideal gas and is therefore
proportional to the probability p(∆r) of finding a particle at position ∆r given that there is a particle at the
origin.

When the system is isotropic we can change from the vector ∆r to its magnitude |∆r| = ∆r:

g(∆r) =
1

ρ0

1

N

〈
N∑
i=1

N∑
j 6=i

δ(∆r −Rij(t))

〉
t

, (18)

with Rij(t) = |Rj(t)−Ri(t)|. The average number of particles dn in a shell of thickness dr at distance r from
a particle is given by dn(∆r) = ρ0g(∆r)d2(∆r).

Figure 12: A typical structure of a fluid (left panel) with its corresponding radial distribution function (right
panel), where the colors display the contribution of each particle to the radial distribution function (source:
http://www.physics.emory.edu/faculty/weeks//idl/gofr.html, Acces date: 07-05-2018).

An example of a radial distribution of a liquid is given in Figure 12, with in the left panel a typical structure
and in the right panel the corresponding radial distribution function. g(∆r) = 0 means it is impossible to
find a particle at distance ∆r from another particle. In this example particles have a finite size and cannot
overlap with each other, making g(∆r) = 0 for small ∆r. g(∆r) = 1 means that the probability of finding a
particle at ∆r uncorrelated to whether there is a particle at the origin and equal to the probability of finding
two particles at distance ∆r in an ideal gas. For the liquid in this example particles are uncorrelated on the
long-range as g(∆r) = 1 for large ∆r. The radii in the left panel of Figure 12 are given in reduced units of
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2 THEORY OF GLASSES AND THE GLASS TRANSITION

the molecular diameter, and the peak at one is caused by the first circle of particles that touch the center
particle in the right panel of Figure 12. The second peak is caused by the second circle around the target
particle, etcetera. Although the particles have a finite size, the radial distribution function is calculated for the
center of masses. Note furthermore that the radial distribution function is not normalized in the sense that
lim∆r→∞

∫
d(∆r)g(∆r) =∞.

Applying the bracket implementation of Equation 16 to the Van Hove distribution function G(∆r, τ) in Equation
12 gives for an isotropic system

G(∆r, τ) =
1

N

〈
N∑
i=1

N∑
j=1

δ(∆r − |Rj(t+ τ)−Ri(t)|)

〉
t

. (19)

The Van Hove distribution function is a dynamic variant of the radial distribution function and is proportional
to the probability of finding a particle at position ∆R at time t+ τ given that there is a particle at the origin at
time t. To draw a graph of G(∆r, τ)), ∆r is usually chosen to be ∆r = arg max(g(∆r)) although other values
of ∆r are also possible. The graph is then plotted as a function of τ , usually with a log scale on the x - axis.
Two examples of the Van Hove distribution function are shown in Figure 13, with faster dynamics in the left
panel than in the right panel, which results in a faster decay of G(∆r, τ). Normally limτ→∞G(∆r, τ) = 0 and
the ergodicity is broken when this is not the case.

Figure 13: Two examples of the Van Hove distribution function G(∆r, τ) with faster dynamics in the left panel than in
the right panel.

Applying the bracket implementation of Equation 16 to the static structure factor S(k) in Equation 15
gives

S(k) =
1

N

〈(
N∑
i=1

cosk ·Ri(t)

)2

+

(
N∑
i=1

sink ·Ri(t)

)2〉
t

, (20)

or in the isotropic case

S(k) =
1

N

〈(
N∑
i=1

cosk ·Ri(t)

)2

+

(
N∑
i=1

sink ·Ri(t)

)2〉
t

. (21)

S(k) and S(k) measure how much the structure of the system contains a periodicity matching the wave vector
k. Another way to calculate the static structure factor is via the Fourier transform of the radial distribution
function, which is explained in Appendix B.2.3.

An example of a graph of the static structure factor for a liquid is given in Figure 14. S(k) > 1 means that the
structural correlations over the inverse length scale k are more present than in an ideal gas and S(k) < 1 means
that these correlations are less present. In a densely packed system with circularly symmetric hard particles
the first peak is around k = 2π

σ (but not exactly) with σ the diameter of the particles because this reflects the
inverse length scale at which particles touch each other. The higher order peaks are contributions from waves
with smaller wave lengths that also match the periodicity of the system.
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Figure 14: A typical static structure factor of a liquid [49].

Applying the bracket implementation of Equation 16 to the intermediate scattering function F (k, τ) in Equation
14 gives in an isotropic system

F (k, τ) =

1

N

〈(
N∑
i=1

cos(k ·Ri(t))

) N∑
j=1

cos(k ·Rj(t+ τ))

+

(
N∑
i=1

sin(k ·Ri(t))

) N∑
j=1

sin(k ·Rj(t+ τ))

〉
t

.
(22)

The intermediate scattering function measures how much of the structure of a system is still present after some
time τ . Another way to calculate the intermediate scattering function is via the Fourier transform of the Van
Hove correlation function, which is explained in Appendix B.2.4.

Figure 15: The intermediate scattering function for a fluid state (left) and a glassy state (right), where the β-relaxation
and α-relaxation are defined.

Two examples of an intermediate scattering function are given in Figure 15. Normally F (k, τ) is drawn with k
the k-value of the first peak of S(k) (thus for k = arg max (S(k))), with a logarithmic scale for the time τ and
divided by F (k, 0) such that F (k, τ) is normalized for t = 0. Usually limτ→∞ F (k, τ) = 0 and the ergodicity is
broken when this is not the case. The intermediate scattering function in the left panel of Figure 15 decreases
faster than in the right panel and is typical for a fluid. In the right panel a plateau arises, called the β-relaxation
regime. After the plateau, the intermediate scattering function decays further to zero and this is called the
α-relaxation regime. This plateau in Figure 15 is the same plateau as we already saw in the mean squared
displacement (Figure 11) and is typical for a glass. Thus, the intermediate scattering function can be used to
characterize a glassy state and a frequently used criterion is the relaxation time τα. This relaxation time is
the time it takes until the normalized F (k, t) reaches 0.1 or some other small value. A system is said to be in
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a glassy state when this relaxation time is longer than can be measured in simulations or experiments. The
value of the intermediate scattering function at the end of the measurement function is called the non-ergodicity
parameter. The decay of the intermediate scattering function in the early β-regime, the late β-regime and the
α-regime can be fitted to different scaling laws [50].

The intermediate scattering function can be split up in a self Fs(k, τ) and a distinct part Fd(k, τ):

F (k, τ) = Fs(k, τ) + Fd(k, τ), (23)

where the self part is the correlation of the position of a particle at time t with the position of the same particle
at time t + τ and the distinct part is the correlation of the position of a particle at time t with the positions
of all other particles at time t+ τ . Thus, Fs(k, τ) is the contribution to Equation 22 of i = j and Fd(k, τ) the
contribution of i 6= j. For example, Fs(k, τ) is defined as

Fs(k, τ) =
1

N

〈
N∑
i=1

(cos(k ·Ri(t)) cos(k ·Ri(t+ τ))) +

N∑
i=1

(sin(k ·Ri(t)) sin(k ·Ri(t+ τ)))

〉
t

(24)

Fs(k, τ) is also called the incoherent intermediate scattering function and the full version F (k, τ) the coherent
intermediate scattering function.

Summarizing, all correlations functions have the same origin and can be deduced from the Van Hove correlation
function, which is a dynamic correlation in real space. Removing the time dependence of the Van Hove corre-
lation function results in the radial distribution function, which is a static correlation in real space. Taking the
Fourier transform of the Van Hove correlation function results in the intermediate scattering function, which
is a dynamic correlation function in Fourier space. Finally, removing the time dependence in the intermediate
scattering function results in the static structure factor, which is a static correlation in Fourier space.

In the remainder of this thesis we switch from ∆r to r and from τ to t in the arguments of the correlation
functions. Furthermore, we abbreviate the radial distribution function, static structure factor and coherent and
incoherent intermediate scattering function respectively with RDF, SSF and coherent and incoherent ISF. The
algorithms we have used for solving these correlation functions are explained in Appendix E.2.

Mode coupling theory uses the static correlation function as input and predicts the coherent and incoherent
intermediate scattering function. Having derived these correlation functions in this section, we are ready to
discuss mode coupling theory in the next subsection.

2.3 Mode coupling theory

Mode coupling theory (MCT) of the glass transition was first derived in 1984 by Leutheusser [51] and Bengtzelius
et al. [52]. Starting from a microscopic description, mode coupling theory ends up with a complete description
of the dynamics of a supercooled liquid and is therefore a powerful tool for the interpretation an prediction
of the behavior of glass forming liquids. The original derivation of mode coupling theory was done for glass-
forming fluids via the Mori-Zwanzig projection operator. Later, mode coupling theory was also derived for
Brownian dynamics via a Smoluchowski operator and the MCT-equation turned out to be similar [53]. We give
the derivation for glass-forming fluids in a two dimensional system based on Reichman and Charbonneau [49] in
Appendix C.1 and summarize the main equations and approximations in Subsection 2.3.1. In Subsection 2.3.2
we describe how the MCT-equation changes for a Brownian system as well as some other possible modification
to the MCT-equations. In Subsection 2.3.3 we explain some of the successes and failures of mode coupling
theory.

2.3.1 Derivation of standard MCT-equations

The Newtonian dynamics of any set A(r1(t), ..., rN (t),p1(t), ...,pN (t)) of phase space variables, in short written
as A(t), dependent on the positions ri(t) and momenta pi(t) of all N particles i at time t in a classical system
is given by

dA(t)

dt
= {H,A} = iLA(t), (25)
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where H is a classical Hamiltonian, {...} are Poisson brackets and L is the Liouvillian. The Liouville equation is
based on the principle that a phase-space distribution function is constant along the trajectories of the system
and L is given by

iL ≡ −
∑ ∂

∂ri

∂ri
∂t

+
∂

∂pi

∂pi
∂t

. (26)

The first step in the derivation of mode coupling theory is to apply the Mori-Zwanzig formalism [54], which is
a widely used formalism to rewrite an equation of motion based on a separation of time scales. The reason we
apply this principle for supercooled liquids is that they exhibit fluctuations on a microscopic time scale while
other dynamical processes such as the relaxation occur on a time scale that can be many magnitudes of orders
larger. We are only interested in these so-called slow variables and we will assume that fast variables influence
these slow variables only via a fluctuation force. But before applying this assumption, we first split the slow
variables from the fast variables with the Mori-Zwanzig principle, which results in still an exact equation of
motion. To do so, we define a projection operator P that projects a function f along the direction of the slow
variable A,

Pf ≡ (A, f)

(A,A)
A, (27)

where (..., ...) denotes the ensemble average of a dyadic product. Furthermore, we have adapted the notation
A(τ) → A and A(τ + t) → A(τ) to distinguish between A at an arbitrary time τ and at a time t later. We
rewrite Equation 25 to A(t) = eiLtA and divide this equation via the projection operator of Equation 27 into
parts parallel and orthogonal to A. After some calculations this results in

dA

dt
= iΩ ·A(t)−

∫ t

0

dτM(τ) ·A(t− τ) + f(t), (28)

where iΩ = (A, iLA)·(A,A)−1 is a so-called frequency matrix and f(t) = ei(1−P)Lti(1−P)LA is the fluctuation
force orthogonal to A. Furthermore, M(t) = (f ,f(t)) · (A,A)−1 is called the memory function. Equation 28
is called a generalized Langevin equation. The correlation matrix of A(t) is given by C(t) = 〈δA∗δA(t)〉 (see
Subsection 2.2) and using Equation 28 gives for the equation of motion for C(t) in Fourier space

dC

dt
= iΩ ·C(t)−

∫ t

0

dτM(τ) ·C(t− τ), (29)

where the last term of Equation 28 containing fluctuation noise disappears because f(t) is orthogonal to A.
Note that Equation 29 is still exact as there are no assumptions made yet. However, the memory kernel M(t)
cannot be determined exactly and therefore has to be approximated.

To obtain the equation of motion for the intermediate scattering function F (k, t), we use for the specific
implementation of δA the density fluctuations in Fourier space and its derivative, the longitudinal density
current. This implementation is chosen because F (k, t) depends on these density fluctuations as shown by
Equation 22. Thus,

δA(t) =

[∑
i e
k·ri − (2π)2ρδ(k)

1
m

∑
i(k̂ · pi)eik·ri

]
≡
[
δρk
jLk

]
, (30)

where m is the mass. Working out Equation 29 with the specific implementation of A(t) given by Equation 30
we obtain for the exact equation of motion of the intermediate scattering function

d2F (k, t)

dt2
+
k2kBT

mS(k)
F (k, t) +

∫ t

0

dτM(k, t− τ)
dF (k, τ)

dτ
, (31)

with kB the Boltzmann constant, T the temperature and M(k, t) a memory term given by m〈R−k,Rk(t)〉
NkBT

with

Rk(t) =
djLk
dt − i

kkBT
mS(k)δρk. This memory term M(k, t) cannot be solved exactly and we therefore rewrite this

memory kernel using four approximations. We split M(k, t) into a contribution M0(k, t) at short times and
a contribution at long times, which we call MMCT(k, t) . The first approximation to rewrite the short term
contribution M0(k, t) using a δ-function at the origin: M0(k, t) ≈ Aδ(t), with A a constant. The reason for this
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approximation is that we are only interested in the long-term dynamics. From now on we focus on the so-called
mode coupling memory kernel MMCT(k, t) and it can be derived that this depends to leading order on a pair
of density functions (see Appendix C.1). Therefore, the second approximation is to project the random force
Rk onto these pair densities, which results in the following dependence relation for the memory kernel

M(k, t) ∼
∑
q,q′

|Vq,k−q|2 〈δρ−q′(0)δρq′−k(0)δρ−q(t)δρk−q(t)〉 , (32)

with q a wave vector and V a so-called vertex that we will define later. This equation depends on an en-
semble average of the product of four densities, which is unknown. Therefore, the third approximation is the
factorization of this four-point density correlation function into a product of two-point densities:

〈δρ−q′(0)δρq′−k(0)δρ−q(t)δρk−q(t)〉 ≈ 2 〈δρ−q(0)δρq(t)〉 〈δρq−k(0)δρq−k(t)〉 , (33)

in which we recognize in the last step the definitions of F (k, t). This third approximation is uncontrolled, which
means that there is no a priori reason why this approximation might be applied. The last approximation that is
needed to calculate the memory kernel is rewriting 〈δρ−qδρk−qδρk〉 by applying the convolution approximation
to [55]

〈δρ−qδρk−qδρk〉 ≈ NS(k)S(q)S(q − k). (34)

Finally, this leads to the mode coupling theory equation

d2F (k, t)

dt2
+
k2kBT

mS(k)
F (k, t) +

∫ t

0

dτ
(
M0(k, t− τ) +MMCT(k, t− τ)

) dF (k, τ)

dτ
, (35)

with the MCT-part of the memory kernel, MMCT(k, t), given by

MMCT(k, t) =
ρkBT

8π2m

∫
dq|Ṽq,k−q|2F (q, t)F (q − k, t), (36)

with ρ the number density and the vertices Ṽq,k−q given by

Ṽq,k−q = (k̂ · q)c(q) + k̂ · (k − q))c(k − q), (37)

with the so-called direct correlation function defined as

c(k) =
1

ρ

(
1− 1

S(k)

)
. (38)

The mode coupling theory of Equation 35 is a self-consistent second order integro-differential equation for the
intermediate scattering function and consists of an infinite amount of coupled equations, one for every possible
k. Each equation is coupled to all other equations via the vertices and this gives rise to the name mode coupling
theory. The MCT-equation has the form of the equation of motion of a damped harmonic oscillator, which is

given by d2x
dt2 +ω2x+ 2ξω dx

dt = 0, with x the position, ω the frequency of the corresponding undamped oscillator
and ξ the damping coefficient. This damping coefficient appears in the MCT-equation via the memory kernel
and this memory kernel can therefore be seen as a time dependent damping, which takes into account the history
of the system.

The effect of the memory kernel is a nonlinear feedback mechanism that accounts for caging of the particles as
can be understand as follows. The dominant contributions in the MCT-equation come from the first peak in
S(k). When S(k) is stronger peaked, the vertices given in Equation 37 are bigger. This results in an increase
in M(k, t), which increases the damping and slows down the decay of F (k, t). This influences the memory
kernel again because it depends on F (k, t) and this again influences M(k, t), etcetera. This non-linear feedback
mechanism leads to strong dependence of the relaxation time on the static structure factor and can even cause
non-ergodicity breaking.
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A simple interpretation of mode coupling theory is that it takes into account how much a particle is caged
via the static structure factor, determines which inverse length scales dominate the dynamics and takes these
length scales into account via the coupling of these modes. When a particle is highly caged, the dynamics only
depends on the nearest neighbors and is hardly influenced by other particles far away. The system is near a
glass transition. However, when a particle is barely caged the dynamics is also influenced by particles far away
and the dynamics also depend on these long length scales.

A last important note about MCT is that it does not depend on the interaction potential. The specific form of
the potential is not taken into account in the derivation of MCT in Appendix C.1 and logically does not appear
in the MCT-equation given by Equation 35. The effect of the potential is, simply speaking, hidden in the static
structure factor. This makes it possible to apply mode coupling theory on many different systems. Nevertheless,
due to the approximations, and especially the third approximation in which we factorize a four-point density
correlation function into a product of two-point density correlation functions, the applicability of mode coupling
theory is never guaranteed.

2.3.2 Different versions of MCT

In the previous subsection we derived a mode coupling theory for glass-forming, Newtonian fluids, but it is
possible to extend the theory to Brownian particles. This is done by Szamel and Löwen [56], based on the
memory function described by B. Cichocki and Hess [57] in which the equation of motion is governed by
the Smoluchowksi S rather than the Liouvillian operator of Equation 25. This derivation starts with the
Smoluchowski equation for the probability density P (Γ, t) (with Γ ≡ {r1, ..., rN ,p1, ...,pN} the phase space
configuration) for interacting Brownian particles,

∂P (Γ, t)

∂t
= SP (Γ, t), (39)

where S is the Smoluchowski operator of which we omit the definition here. Using this Smoluchowski operator,
the intermediate scattering function can be written as

F (k, t) =
1

N

〈
ρ̂−ke

Stρ̂k
〉
. (40)

From this equation the MCT-equation for Brownian particles is derived applying the same four approximations
as used in Subsection 2.3.1 [56]. Furthermore, we assume an isotropic system such that we can switch from the
vector k to its magnitude k. This leads to (with D0 the self- diffusivity constant)

d2F (k, t)

dt2
+
k2D0

S(k)
F (k, t) +

∫ t

0

dτ
(
M0(k, t− τ) +MMCT(k, t− τ)

) dF (k, τ)

dτ
, (41)

with the MCT-part of the memory kernel, MMCT(k, t), given by

MMCT(k, t) =
ρD0

8π2

∫
dk|Ṽq,k−q|2F (q, t)F (|q − k|, t), (42)

with the vertices Ṽq,k−q given by

Ṽq,k−q = (k̂ · q)c(q) + k̂ · (k − q))c(|k − q|), (43)

and the direct correlation function c(k) given by

c(k) =
1

ρ

(
1− 1

S(k)

)
. (44)

Thus besides the adaptation to an istropic system, the only change to the MCT-equation of Subsection 2.3.1
is

kBT

m
→ D0. (45)
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The MCT-equation given by Equation 41 predicts the behavior of the coherent intermediate scattering function.
A similar equation exists for the incoherent intermediate scattering function and in Appendix C.2 is explained
what changes in the derivation of the MCT-equation [58]. The resulting MCT-equation for the incoherent ISF
is

d2Fs(k, t)

dt2
+ k2D0Fs(k, t) +

∫ t

0

dτ
(
M0(k, t− τ) +MMCT

s (k, t− τ)
) dFs(k, τ)

dτ
, (46)

with

MMCT
s (k, t) =

ρD0

8π2

∫
dq|Ṽ sq,k−q|2F (q, t)Fs(|q − k|, t), (47)

with

Ṽ sq,k−q = (k̂ · q)c(q), (48)

and the direct correlation function c(q) unaltered. The MCT-equation for the incoherent ISF depends on the
coherent ISF which makes it necessary to calculate the latter first via MCT.

Equations 41 and 46 define the two versions of the MCT-equation that we use in this thesis and the algorithm to
solve them is given in Appendix E.3. Besides these two versions, many modifications to these equations exists.
First of all, the full MCT-equation given by Equations 41 and 46 is very complicated due to the coupling of
the equations for different k and can only be solved numerically. Therefore, a simplified version is often studied
to determine the characteristics of the MCT-equation. This simplified version neglects the k-dependence and
is called a schematic MCT-equation [59]. Furthermore, MCT-equations are derived for multidisperse mixtures
[60, 61] and for specific active particles [62–67]. It is also possible predict the mean squared displacement with
MCT instead of the intermediate scattering function [60]. Furthermore, there are methods to improve the
MCT-equation by delaying the factorization of the four-point density correlation, which is called generalized
MCT [68, 69]. We briefly return to these version of mode coupling theory in Subsections 7.1 and 7.2. In the
next subsection we discuss examples of successes and failures of mode coupling theory.

2.3.3 Successes and failures

Because of the (uncontrolled) approximations used in the derivation of mode coupling theory, it is almost a
surprise that it gives accurate predictions. A lot of research is done to verify these MCT-predictions or to
understand the cases in which the predictions do not hold (see among others Refs. [41, 42, 49, 50, 58–61, 65,
70–77]). In this subsection, we summarize some of these successes and failures of mode coupling theory to
illustrate its applicability and shortcomings. Most examples focus on the glass transition with temperature as
control parameter and we expect the conclusions to hold for other control parameters as well, although this is
still an open question.

Successes

• MCT is able to predict a sharp glass transition, even for small changes in S(k). Figure 16 shows results for
the intermediate scattering function from MCT-calculations with a transition to a glassy state at T = Tc.

• In predicting the glass transition, MCT accounts for a caging effect which results in a plateau in the
intermediate scattering function. In Subsection 2.3.1 is explained that this caging is included via the non-
linear feedback mechanism of the memory function and Figure 16 already shows the growth of a plateau.
The MCT-predictions for the ISF of Brownian particles at different effective temperatures is given in the
right panel of Figure 17, while the left panel shows the corresponding ISFs calculated via Equation 22.
Both graphs show similar caging behavior, which verifies the MCT-predictions for this system.

• MCT predicts the scaling relations for the α- and β-regime as given in Figure 15 correctly for temperatures
close to the glass transition, analytically for the schematic MCT-equation and numerically for the full
MCT-equation [59, 72, 75]. For example, in MCT the stretched exponential of the α-relaxation as observed
in experiments and simulations is caused by the fact that each F (k, t) decays with a different exponent
for different k and all these F (k, t) are coupled.
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Figure 16: Glass transition predicted by MCT (source: L.M.C. Janssen).

• MCT predicts a time temperature super position (TTSP) in the asymptotic limit T → Tc. This TTSP
states that the shape of the intermediate scattering function in the late β-relaxation and early α-relaxation
regimes does not depend on temperature. This TTSP is also seen in experiments and simulations, although
only for a specific temperature range (see Figure 18).

• Besides predicting a divergence of the relaxation time at the glass transition (see Figure 16), MCT also
gives the specific form of this divergence, namely via the power law τα(T ) = C(T − Tc)−γ with C and γ
fitting parameters. This power law is also seen in experiments and simulations close but not to close to
the glass transition (see Figure 20).

• MCT predicts the wave vector dependence of the non-ergodicity parameter reasonably well [75, 78]. This
is illustrated in Figure 19 where the non-ergodicity parameter as a function of the wave vector q is given
for a bidisperse Lennard Jones-model. The particles are labeled A and B, which results in three different
combinations for the graphs of the non ergodicity parameter. The direct results from simulations (dots in
Figure 19 and the MCT-predictions (dashed line) of the MCT-equation as given in Subsection 2.3.1 are
similar (while for the solid line an improved MCT-equation is used).

• MCT can predict non trivial glassy re-entrance effects in specific systems. Examples are a system consisting
of hard spheres with short-range attraction [79] or a system with ultrasoft colloids that have a soft repulsive
potential [80]. Ultrasoft colloids are in a fluid-like state at low density and a glassy state can be reached
via increasing the density, while an even further increase might fluidize the system again. This re-entrance
into the glassy state is predicted correctly with MCT, as shown in Figure 21 where the pink line represents
a transition from a fluid to a glass state or vice versa in MD-simulations and the orange line in mode
coupling theory. Despite the mismatch in height of the lines, the re-entrance is visible in both simulations
and the theory.

• Mode coupling theory has turned out to be exact for certain spin-glass models [49, 81, 82].

Failures

• Although MCT predicts a glass transition, the transition temperature Tc is not predicted correctly and is
typically 20 to 30 % higher than the real glass temperature Tg in experiments or simulations. Due to the
fact that MCT is a mean-field theory and neglects the spatial fluctuations in a system, it overestimates the
tendency vitrify. To compare the MCT-predictions with direct calculations of, for example, the relaxation
time, one normally scales the temperatures with the corresponding glass transition Tc or Tg. Thus,
relaxation times are compared for the same ε, with ε = (T −Tc)/Tc in MCT and ε = (T −Tg)/Tg in direct
calculations.

• Although MCT predicts a sharp glass transition, this sharp transition normally does not exist in experi-
ments and simulations because hopping processes cause the intermediate scattering function to decay to
zero. These hopping processes are not included in the mode coupling theory as derived in Subsection 2.3.1
preventing the ISF to decay to zero. However, there are attempts to incorporate these hopping events in
the theory [42].
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Figure 17: Dynamical slowdown in a glass-forming fluid predicted by MCT [61].

Figure 18: Illustration of the TTSP for a molecular
dynamics simulation of supercooled water. The blue
lines are ISFs of different temperatures scaled to their
relaxation time and they all fall on the same master
curve defined by the solid black line [65].

Figure 19: Non-ergodicity parameters for a bi-disperse
mixture of Lennard-Jones particles, labeled with A and
B [41].

Figure 20: Relaxation times as a function of the tem-
perature for a molecular dynamics simulation of su-
percooled water. The dots represent relaxation times
obtained via direct calculations of the ISF according to
Equation 22 and the red line is a fit of the MCT power-
law behavior. The inset shows the inverse relaxation
time as a function of T − Tc [65].

Figure 21: Predictions (orange line) of the re-entrance
into a fluid state in a system with ultrasoft colloids and
the corresponding glass transition obtained from direct
calculations of MD-simulations (pink line) [80].
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• The list of successes states that mode coupling theory predicts the scaling laws of for the α- and β-
regime correctly and also predicts a power law divergence of the relaxation time. Nevertheless, these
predictions are only valid in a certain regime which makes MCT limitedly applicable. Furthermore, the
fitting parameters of these scaling laws are predicted to be constant in MCT, while in reality they are
temperature dependent.

• Because MCT is a mean-field theory, it does not predict dynamic heterogeneity in supercooled liquids,
while this is one of the main characteristics of the glass transition. One of the consequences is that
MCT does not predict a breakdown of the Stokes-Einstein relation, which is thought to be caused by this
dynamic heterogeneity [49, 83, 84].

• MCT is not able to predict the fragility of a material [77]. This is illustrated by the fact that MCT always
predict a power-law divergence of the relaxation time, while strong glass formers exhibit an exponential
form (see Figure 10).

This list of successes and failures makes clear that mode coupling theory is not a perfect theory. Nevertheless,
there does not exist a perfect theory to describe glassy dynamics and the power of MCT lies in the fact that
it is the only first principle-based framework available for glass-forming liquids. Thus, we use MCT but keep
in mind the examples of its successes and failures. In the next subsection we discuss how we can transfer the
knowledge derived from glassy physics regarding MCT and correlation functions to confluent cell layers.

2.4 Extending the theory to confluent cell layers

We derived the correlation functions in Subsection 2.2 because they serve as a basis for mode coupling theory.
Additionally, it is also interesting to investigate these functions on its own, as it is not widely evaluated in
confluent cell layers (see examples in Refs. [85, 86]). The terminology of jamming and the jamming transition
are not well established yet in biophysics and a profound understanding is necessary to do so. Correlation
functions give a rich set of parameters concerning dynamic behavior and can therefore help to establish this
jamming and the jamming transition in confluent cell layers.

To the best of our knowledge, mode coupling theory has never been applied to models for confluent cell layers,
although closest are the MCT-analyses of the self-propelled particle models in Refs. [63, 67, 87–89]. In the next
section we will talk in detail about possible models for confluent cell layers, but the two main differences of these
models with respect to the molecular liquids or Brownian particles for which we derived mode coupling theory
in respectively Subsections 2.3.1 and 2.3.2 are the potential and the motility or internal activity of the cells.
Interestingly, MCT does not depend on the explicit form of the potential and consequently another potential
should not make a difference, although the validity of the approximations in the MCT-derivation might change.
However, the internal activity is a more complex story. Although active particles still undergo kinetic arrest
and caging and the resulting glass transition shares important similarities with its passive counterpart [90, 91],
studies have shown that this glass transition in active materials is profoundly affected by the self-propulsion of
the particles [87, 91–95]. The question is how to take this activity into account in mode coupling theory and we
propose two methods to do so. The first possibility is assuming that the activity-induced change in the static
structure factor fully contains the effect of this activity on the dynamics and that therefore the mode coupling
theory equations as given in Subsection 2.3.2 stay unaltered. The second option is explicitly incorporating the
activity in the derivation of the mode coupling theory which results in an MCT-equation that depends on the
form of the activity. This second method is hard to apply to experimental data as the form of the active force
is unknown in real cell cultures. Hence, we apply the first method in our research and shortly look into the
second method in Subsection 7.1.

In this section we have discussed the principles and theories from glassy physics that we are going to apply on
confluent cell layers. In the next section we will return to these confluent cell layers and describe how we can
model them.
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3 Modelling confluent cell layers

Epithelial cells form confluent cell layers that serve as a barrier between different media or cell types. An
example is the skin epithelium that separates a human body from the outer world. Other epithelial cell layers
can be found in organs and blood vessels. Confluence literally translates to ’moving together’ and in the context
of cell layers it means that the complete layer consists of cells without any gaps between them. In this research
these confluent epithelial cell layers are analyzed in simulations and experiments. Properties of these cell layers
are discussed in Subsection 3.1 and different possibilities to model these cells are described in Subsection 3.2. We
use two models in particular and these are described in detail in Subsection 3.3 and 3.4, with the computational
details we use in this research in Subsection 3.5.

3.1 Properties of epithelial cells

In Section 1 it is explained that the motion and especially the collective motion of epithelial cells play an
important role in biological processes. Cells can crawl over the surface spontaneously or guided by external
signals of their neighbors or their environment. Figure 22 gives a simplified procedure of how cells move. Actin
is a multi-functional protein that plays an important role in this process. The front edge of a moving cell
consists of lamellipodium actin filaments and this is extended by actin polymerization to move. The motor
protein myosin causes the other parts of the cell body to retract. Sufficient friction is needed between the cell
and its substrate and neighbors for a net movement. Thus the cell’s motion depends on a complex force balance
between these protrusion, retraction and friction forces. Furthermore, these forces are influenced by biological
signals. This crawling of cells and how it is influenced by internal and external factors is an active field of
research [[96–98]]. Nevertheless, we only focus on simple coarse-grained models to describe these epithelial cells,
which can already characterize the collective cell motility surprisingly well. Before looking into these models,
three relevant properties of these epithelial cells needs to be clarified first, namely the representation of the cell
layer in a two-dimensional plane, their packing structure and their self propulsion.

Figure 22: A simplified sketch of the crawling of a cells. Protrusion due to actin polymerization in the direction of the
movement and retraction of the other parts of the cell play an important role [99].

Although epithelial cells can form monolayers and multiple layers, we focus only on monolayers. One represen-
tation of such a monolayer is given in Figure 23, where the cells have a columnar shape. Most movements in
this monolayer take place parallel to the plane and the height of the cells do not variate much. Therefore, we
can treat the cell layers as a two-dimensional system.

Epithelial cell layers evolve towards a honeycomb or hexagonal packing structure (see Figure 24) [102], which
is the optimal structure of a partition of a plane into cells of equal area regarding the ratio of the perimeter to
the squared area [103] . The honeycomb structure consists of equally sized hexagons with this ratio equal to
3.72 (see Appendix D.3). For all other configurations that can tile the plane into equal areas, like pentagrams
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Figure 23: A schematic representa-
tion of a columnar epithelial mono-
layer [100].

Figure 24: A honeycomb or hexago-
nal packing structure.

Figure 25: A honeycomb packing
structure in the matured Drosophila
epithelium [101].

and triangles, this ratio is larger. An example of a honeycomb structure in biology is the matured Drosophila
epithelium in Figure 25. However, a layer is often driven away from this optimal packing due to cellular divisions,
apoptosis and the activity of the cells [14]. This results in a cellular arrangement consisting of polydisperse
polygons, but still with a preference for hexagons [104, 105].

The activity of cells is often represented by a self-propulsion force with a specific polarity. This polarity mimics
the spatial asymmetry between the front and rear of the cells and defines the direction of movement (see also
Figure 22) [106–108]. Cells consume energy in the form of adenosine triphosphate (ATP) to move and because
of this energy consumption cell models belong to active matter physics. This addition of an active force can
suppress the glass or jamming transition, as the amount of driving energy in the system increase [94, 95]. But
in practice, it turns out to be very difficult to predict whether activity fluidizes or solidifies a system [95].
In the next section, possible models are described that takes into account these properties of confluent cell
layers.

3.2 Model classes for confluent cell layers

Among many different models, cellular Potts models, self-propelled particle (SPP) models and vertex models
are the most popular classes to describe confluent cell layers [1, 96, 109–111] and in models of all these three
classes features of the glass transition have been demonstrated recently [108, 112–115]. The three models are
illustrated in Figure 26 and explained below.

Figure 26: Illustration of three different cell models: the cellular Potts model (left panel), the self-propelled particle model
(center panel) and the vertex model (right panel).

Cellular Potts model
The cellular Potts model [107, 116–118] is one of the earliest successful cell models and in this model cells are
represented by grid points on a lattice (left panel of Figure 26). Each lattice point has a cell id σ and all points
with the same σ define one cell. An example of a coarse-grained energy function in this model is [117]

E =
∑
a,b//a

Ja,b(1− δσ(a),σ(b)) +
∑
i

λ(Ai −Ai,0)2, (49)
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where lattice points are indexed with a and b and cells with i. The first term counts the interaction energy
between neighboring cells, where b//a means that grid point a shares a border with grid point b and Ja,b is the
interaction strength between those two grid points. The δ-function indicates that two sites belonging to the
same cell do not contribute to the interaction energy. The second term of Equation 49 penalizes deformations
of the area Ai of cell i from its target area Ai,0, with a springlike penalty constant λ. In cellular Potts models
a Monte-Carlo algorithm is applied to find the configuration that minimizes the total interaction energy of
Equation 49. Simply said, the algorithm chooses randomly a lattice point and tries to switch its id σ to the
id from a neighboring point. This trial move is accepted with a specific probability depending on the energy
difference between the previous and the new configuration; the move is always accepted if this difference is
negative. This procedure is repeated until some threshold is reached and the system is in a low energy state.
Motility can be included in the cellular Potts model by adding some specific self-propulsion force. A glass
transition in the cellular Potts model was found by Chang and Marenduzzo [112], where the control parameters
are the interaction energy Ja,b and the strength of the self-propulsion.

Self-propelled particle model
In self-propelled particle models [9, 106, 119–123], each cell is represented by its center and some parameters
that describe its shape (see center panel of Figure 26). For circular or spherical shaped particles this shape
parameter is the radius R and this means that in general the cell layer is not confluent, although there are some
extensions to the SPP-model that incorporate confluence. According to Newton’s first law, the overdamped
equation of motion for cell i is

F friction
i + F act

i + F int
i = 0, (50)

with F friction
i the friction force, F act

i the force due to the self-propulsion of the cells and F int
i a force due to the

interaction between cells. This self-propulsion force can have many forms, but in general contains a stochastic
term. A simple version of the friction force is used that is appropriate to low Reynolds number,

F friction
i = −γ dri

dt
, (51)

where γ is a friction constant. The interaction force F act
i between cells depends on an interaction potential

U(r1, ..., rN ) of which the specific from can be chosen. This potential includes a short-range repulsion arising
from an aversion of cell-cell overlap mimicking cortical tension and cystoskeletal rigidity and an attraction due
to a cell’s adhesion to its neighbors. Based on Equation 50, the resulting equation of motion is

γ
dri
dt

= −∇riU + F act
i , (52)

which is a stochastic differential equation and called a Langevin equation. This equation can be solved nu-
merically using molecular dynamics simulations. As Equation 50 is overdamped because of the neglect of the
acceleration term, this is often called overdamped Langevin or Brownian dynamics. A glass or jamming transi-
tion in the SPP-model can be controlled by changing the packing density or the strength of the self-propulsion
[114].

Vertex models
Vertex models [100, 115, 124–130], first used in 1980 [131], describe a confluent tissue as a polygonal tilling
of space (see right panel of Figure 26), inspired by the packing properties described in Subsection 3.1. The
degrees of freedom in the vertex models are the vertices of the polygons, which allows for complex, non-convex
cell shapes. The model uses a coarse-grained version of the interaction energy E, for example,

Ei = KAi(Ai −A0,i)
2 + ξiP

2
i + γiPi, (53)

where Ai and Pi are the area and perimeter of cell i. A0,i, KAi , ξi and γi are cell properties that take into
account the cortical elasticity, cortical surface tension, bulk incompressibility and cell-cell adhesion. The details
of this interaction energy are explained below in Subsection 3.3. Equilibrium is based upon a force balance at
each vertex. It is possible to solve vertex models using Monte Carlo simulations as described for the cellular
Potts model [132], but more often overdamped Langevin dynamics is used similar to the self-propelled particle
models. In the SPP-model the equation of motion (Equation 52) is defined for the cell centers, while this
equation depends on the positions rv of the vertices v in the vertex model:

γ
drv
dt

= −∇rvE + F act
v , (54)

where F act
v is again a self-propulsion force with a stochastic term, but applied on vertex v. The jamming

transition of this model is studied by Bi et al. [115] and is governed by a parameter that sets the ratio of the
preferred cell perimeter to the preferred area.
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Cellular Potts models, self-propelled particle models and vertex models all have their pros and cons and which
one is preferred depends on the simulation objectives. For example, cellular Potts and vertex models require
more computational time than SPP-models, but are better at representing changes of the cell shapes. Vertex
models are generally restricted to confluent cell layers, while SPP-models are normally not applicable to confluent
cell layers. Potts models can handle both confluent and non-confluent tissues, but makes it more difficult to
include a self-propelled force. Because confluence and self-propulsion are two important properties of epithelial
cell layers, a vertex models seems the best choice for our research. However, the way vertex models include
the active force is not intuitive because the self-propulsion force of a cell is divided over its vertices [128]. A
more natural way is a force that acts on the cell centers instead of the vertices, just as in the SPP-model. Bi
et al. [108] bridge this gap and study a hybrid between the vertex and the SPP-model. This model is called a
self-propelled Voronoi model (SPV) because the cell shapes are obtained from Voronoi tesselations.

In the SPV-model the seeds of a Voronoi tesselation, also called Voronoi centers, are the degrees of freedom
[133, 134] and the location of the seed of cell i is given by ri. The Voronoi cell belonging to seed i is defined
as

Vi = {r ∈ R : D(r, ri) ≤ D(r, rj) ∀j 6= i}, (55)

where D(r, ri) = (r − ri)
2 is the squared Euclidean distance between r and ri. This results in a tiling where

all points r belonging to Voronoi cell i are closer to seed i than to all other seeds j. A Voronoi tesselation is
constructed by drawing perpendicular bisectors of the lines connecting two neighboring seeds. An example of
such a tesselation is given in Figure 27, where the seeds are black dots and the Voronoi vertices and edges are
respectively the red dots and lines. The black tiling is called a Delaunay triangulation and is the dual graph of
the Voronoi tesselation.

Figure 27: Seeds (black dots) and the corresponding
Voronoi tiling (red lines and dots) and Delaunay tri-
angulation (black lines).

Figure 28: Differences between the cell boundaries of
MDCK obtained via imaging methods (blue) and a
Voronoi tesselation of the nuclei (yellow) [86].

Representing a cell layer by a Voronoi tiling is first proposed by Honda [135], and later shown to hold in different
situations. For example, Kaliman et al. [86] show that the cell boundaries of MDCK cells obtained via a Voronoi
tesselation of the nuclei only has an error in cell area and perimeter of ten to fifteen percent with respect to
boundaries obtained from imaging techniques. This agreement in cell boundaries for MDCK-cells is shown
in Figure 28. Due to this success, several cell models exists that implement a Voronoi tesselation [121, 132,
136–138], but we focus only on the SPV-model and possible extensions.

Compared to the original vertex models, using the seeds of a Voronoi tesselation simplifies the process of handling
cell dynamics and makes it easier to add an active force. Furthermore, the Voronoi model has fewer degrees of
freedom in comparison with the vertex models as shown in Figure 29, where the red dots represent the degrees
of freedom. Note furthermore that the variation of cell shapes in the SPV-model is less than in regular vertex
models because the resulting structure has to be a Voronoi tesselation which does not exist for most of the
configurations of the vertex model. Based on its successes, the SPV-model is now used and extended in several
research groups [128, 138–140].

In our research we used two version of the SPV-model, namely the original version and an extension.. We
call these models respectively the Voronoi Rotational Diffusion (VRD) model and the Voronoi Vicsek model
(VV) for reasons that become clear in the next subsections. We only use the 2D version of these models, but
extensions to 3D are possible [141]. We neglect cell proliferation and cell death in our models, although this
could be included as well [142]. Furthermore, we assume that each cell is identical regarding cell properties such
as the preferred shape, the adhesion with other cells, and the form of the self propulsion. In the next subsection
we explain the VRD-model in detail and in Subsection 3.4 we focus on the VV-model.
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Figure 29: Degrees of freedom (red dots) in a vertex model (left panel) and a Voronoi model (right panel).

3.3 Voronoi Rotational Diffusion model

The VRD-model is derived from the SPV-model originally proposed by Bi et al. [108] and we discuss the details
of this model in Subsection 3.3.1 and the relevant literature in Subsection 3.3.2.

3.3.1 Description of the VRD-model

The coarse-grained interaction energy in the VRD-model is similar to the energy in regular vertex models given
by Equation 53 and is for each cell equal to [14, 108, 115, 121, 128]

Ei = KAi(Ai −A0,i)
2 + ξiP

2
i + γiPi, (56)

where the first term results from a combination of three-dimensional cell incompressibility and the monolayer’s
resistance to height fluctuations and the cell bulk elasticity. Ai is the actual cell area (light green area in Figure
30), A0,i the preferred cell area and KA is a penalty constant for deviations from a cell’s preferred cell area.
The second term in Equation 56, quadratic in the perimeter, models the active contractility of the actin-myosin
subcellular cortex that strives to decrease the perimeter Pi (dark green boundary in Figure 30) of the cell with
an elastic constant ξi. The last term in Equation 56, linear in the perimeter, represents a competition between
the cortical tension and the cell-cell adhesion which results in a net line tension given by γi. This net line
tension γi is positive when the cortical tension is larger than the cell-cell adhesion and negative in the opposite
case.

We will only use the derivative of the energy with respect to the degrees of freedom and can therefore simplify
the energy term of Equation 56. In Appendix D.4 it is shown that the preferred area A0,i does not influence
these derivatives [140] and that we can include a preferred perimeter P0,i to rewrite the last two terms of
Equation 56. While doing this, we change from ξi to KP,i and from P0,i to − γi

2ξi
. Furthermore, we assume that

all cells have identical properties such that KA,i = KA, KP,i = KP and P0,i = P0. The rewritten interaction
energy for a system with N cells is

E =

N∑
i

KA(Ai −A0)2 +KP (Pi − P0)2, (57)

where A0 = Atot/N , with Atot the total area of the confluent cell layer. Simply said, each cell strives to obtain
a preferred area and perimeter and each deviation from these values results in a quadratic, spring-like, penalty.
This energy term in Equation 57 results in an effective mechanical interaction force F int

i = −∇iE.

In addition to this interaction force, we add self-propelled motility to the cells by assigning a polarity vector
n̂i = (cos(θi), sin(θi)) along which each cell exerts a self-propulsion force with constant magnitude v0

µ , in which
µ is the mobility and equal to the inverse of the friction constant γ and v0 is a velocity defining the strength
of the self-propulsion force. In the VRD-model, the polarity angle θi undergoes random rotational diffusion
defined by

dθi
dt

= ηi(t), with 〈ηi(t)ηj(t′)〉 = 2Drδ(t− t′)δij , (58)
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Figure 30: Defining the cell area (light green) and perimeter (dark green). Furthermore, the forces acting on the cell are
drawn, consisting of the interaction force F int and an active force F act. The sum of F int and F act defines the direction
of movement of the cell.

such that ηi represents white noise with zero mean and variance 2Dr.

The overdamped equation of motion for regular vertex models is given by Equation 54 and by implementing
the specific form of the interaction and self-propulsion force we obtain the equation of motion in the VRD-
model:

dri
dt

= µF int
i + v0n̂i. (59)

We make this model dimensionless by using r0 = 1/
√
A0 as unit of time and τ0 = 1

µKAA0
as unit of length and

we define ka, a0, ai, kp, p0 and pi to be the dimensionless versions of their counterparts written with capitals.
Three important independent dimensionless parameters remain in the VRD-model, namely p0, v0 and Dr. p0

determines the preferred shape of the cells and a small value pushes the cells towards hexagons, while a large
value makes the cells more elongated. v0 determines the strength of the active force with respect to the influence
of the interaction potential. Dr determines the persistence of the active force and gives rise to a persistence
time scale 1

Dr
. For small values of Dr the noise is very small and the persistence time is long, while for large

values of Dr the dynamics are governed by simple Brownian motion as the persistence timescale 1
Dr

is shorter
than the timescale on which the interaction potential interacts.

Equations 57 - 59 are solved using overdamped Langevin dynamics with a modified version of CellGPU [143].
This algorithm is explained in Appendix E.1 and in Subsection 3.5 we briefly state our simulation details. In
the next subsection we will explain some studies about the VRD-model (called the SPV-model in literature)
and focus on what is known about the jamming phenomenon in this model.

3.3.2 Jamming of the VRD-model in literature

Bi et al. [108] were the first to study the jamming phenomenon in the VRD-model; the mean squared displace-
ment they found for different values of p0 is given in Figure 31. For short times the slope is close to two on a
log-log plot indicating that the cells are free to move and the motion is ballistic. For long times and large p0 the
slope is about one indicating that the motion is diffusive. For lower values of p0 we see a plateau arising, which
is an indication of jamming and happens because cells are caged by their neighbors and their movements are
hindered. Bi et al. [108] define the jamming transition using a (somewhat arbitrarily) threshold for the diffusion
coefficient Deff which is given by the diffusion coefficient D in Equation 2 divided by the diffusion coefficient
D0 of an isolated cell (see Appendix D.5),

D0 =
v2

0

2Dr
. (60)

This dimensionless effective diffusion Deff is given by

Deff = lim
t→∞

2Dr

〈
∆r(t)2

〉
4v2

0t
. (61)
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Figure 31: Mean squared displacements as a function of p0 for the VRD-model. When p0 decreases a plateau arises,
indicating caging and jamming [108].

and the layer is said to be jammed when Deff ≤ 0.001. The resulting jamming phase diagram from Bi et al.
[108] is given in Figure 32. The VRD-model has a jammed state when p0 is smaller than some threshold. In
this case the cortical tension dominates over cell-cell adhesion which makes the energy barriers for local cell
rearrangements and motions high. The system behaves like a solid. This critical value of p0 depends on v0,
because increasing v0 makes it easier for cells to overcome the energy barriers and move around and this results
in a jamming transition at smaller p0. According to this phase diagram, there are two ways to escape from a
jammed state: namely via increasing p0 or via increasing v0. Figure 32 shows furthermore examples of the layer
structure and the trajectories in an unjammed and a jammed state. In the unjammed state the structure is
disordered and the cells have irregular shapes. The cell trajectories show that cells migrate over long distances.
In the jammed state cells are forming a very structured and almost hexagonal packing with approximately
equal cell shapes. Furthermore, cells travel less and stay around their original position. Besides v0 and p0 the
jamming transition can also be controlled by the noise-term Dr. This gives rise to the jamming phase diagram
in Figure 33. When v0 is large enough, decreasing Dr can unjam the layer due to a more persistent motion
which helps cells to escape from the cage of their neighbors and fluidizes the system.

Figure 32: A jamming phase diagram depending on p0 and v0. The insets show the structure and trajectories for a
jammed and an unjammed state [108].

Strikingly, Bi et al. [108] found that the critical value of Deff = 0.001 coincides with a critical value for the
average resulting dimensionless perimeter q , given by

q =
1

N

∑
i

pi. (62)

The critical threshold below which a state is jammed is 3.81 [10, 108]. This value is equal to q in a pentagonal
packing and just above the value in a hexagonal packing, which is the packing structure that minimizes q (see
Subsection 3.1). Figure 32 intuitively shows that the perimeter q is different in a jammed and an unjammed
state. The jamming threshold q = 3.81 is verified in experiments with HBEC-cells, where a decrease in q towards
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3.81 is accompanied by a slowing down of dynamics in the cell layer. Nevertheless, the universality of using q
to define jamming remains questionable. For example, Sussman et al. [113] show in a slightly different model
than the SPV-model that the line q = 3.81 does not completely coincide with standard measures to determine
the glass or jamming transition.

In the VRD-model, the amount of constraints equals exactly the number of degrees of freedom. Each cell has
two constraints, namely the area and the perimeter, and also two degrees of freedom because it can move in
two perpendicular directions. Such a marginal model normally does not have a jamming or glass transition and
Sussman and Merkel [144] prove that this is indeed not the case. Thus, a jamming or unjamming transition
in the SPV-model is only possible in the presence of an active force and therefore we do not investigate the
athermal or non-active case in this thesis.

Our analysis of the VRD-model is given in Section 4. In the next subsection we describe our Voronoi Vicsek-
model, which is an extension to the VRD-model.

Figure 33: A three-dimensional jamming phase diagram showing three ways to unjam: increasing the velocity v0, increas-
ing the preferred perimeter p0 and decreasing the noise Dr [115].

3.4 Voronoi Vicsek model

In the VRD-model the active force undergoes rotational diffusion, but there are many other ways to implement
an active force. As far as we know, only two other version are analyzed in literature. One that includes
translational noise and one that includes an alignment mechanism of a cell’s polarity with its own direction of
movement. In this subsection, we add a force that incorporates a Vicsek-like alignment mechanism in which
cells align with their neighbors and in Subsection 7.1 we list other ideas.

The Voronoi Vicsek model is motivated by experiments that show that a change in connectivity between cells
results in a change in their cooperation [146]. In the VV-model the SPV-model is combined with a Vicsek-like
alignment [145, 147]. The Vicsek alignment is first used in the Vicsek model to explain collective motion in
phenomena such as the swarming of birds or bacterial colony growth. The original Vicsek model is very basic
and only takes into account a self-propulsion force and alignment of this force with its neighbors. How many
neighbors are taken into account depends on the Vicsek radius RV : all neighbors j that are within a distance
RV from particle i contribute to the polarity of particle i. This results in the following equation of motion in
the Vicsek model

dri
dt

= v0n̂i, (63)

with v0 the velocity of a particle and n̂i = (cos(θi), sin(θi)) the polarity of a particle satisfying

dθi
dt

= 〈θj〉|ri−rj |<RV + ηi(t), with 〈ηi(t)ηj(t′)〉 = 2Drδ(t− t′)δij , (64)

with ηi(t) white noise with mean zero and variance 2Dr and 〈θj〉|ri−rj |<RV the average angle of all neighbors

within a radius RV . Besides RV , the density is also an independent parameter in the Vicsek model. The
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Figure 34: Voronoi alignment in three steps. In the first step the neighbors within RV of the red particle are determined
(blue solid particles). In the second step, the red particle aligns its polarity with these neighbors and some noise is added.
In the last step the particle moves in the direction of its polarization, which might give the particle new neighbors[145].

Vicsek-alignment is illustrated in Figure 34. In the second panel, the red particle aligns it motion with its
neighbors within RV (blue solid particles) and some noise is added. In the third panel the red particle moves
which results in new neighbors. The original Vicsek model shows two phases, namely a disordered phase for
low density, strong noise or small RV and an ordered phase for high density, low noise level or high RV . Both
phases are shown in Figure 35.

Figure 35: Examples of a disordered (left panel) and an ordered phase (right panel) in the Vicsek model [147].

Different extensions of this Voronoi model are developed, for example by adding an interaction potential [106,
148] and we make an extension that incorporates the interaction potential of the SPV-model, resulting in the
Voronoi Vicsek model. The details of this model are described in Subsection 3.4.1 and in Subsection 3.4.2 we
look at alignment in comparable models in literature.

3.4.1 Description of the VV-model

The interaction energy in the VV-model is identical to the interaction energy in the VRD-model given by
Equation 57 and is in dimensionless parameters given by

E =

N∑
i

ka(ai − a0)2 + kp(pi − p0)2, (65)

and the equation of motion is again

dri
dt

= µF int
i + v0n̂i. (66)

The time evolution of the polarization angle θi is different in the VV-model, namely
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dθi
dt

=
1

τv
〈φj(t)− θi(t)〉0<|ri−rj |<RV + ηi(t), (67)

where τV is a persistence time for the cell-cell alignment, φj(t) is the angle associated with the instantaneous

velocity vector of neighboring cell j at time t, defined by

(
cosφj(t)
sinφj(t)

)
=

drj/dt
|drj/dt| , the brackets 〈...〉0<|ri−rj |<RV

denote an average over all neighboring cells j that are within a distance RV of cell i and ηi(t) is a white noise
term with mean zero and variance 2Dr. Thus, in the VV-model each cell tends to align its direction of self-
propulsion with the velocity direction of its neighbors over a characteristic time and in the presence of noise,
which mimics the connectivity between cells according to our hypothesis. Note that the velocity direction φ of
its neighbors is used, and not the polarity θ as is common in Vicsek models. The velocity direction φ is the
sum of the polarity θ and the displacements due to the interaction energy E and the reason for the use of φ
is the assumption that cells only feel the direction of total movement of a neighboring cell and are not able to
distinguish between the movement due to self-propulsion and the movement due to the interaction energy. A
second difference with the original Vicsek-alignment given by Equation 64 is that we exclude the alignment of
the polarity of a cell with its velocity and only take into account the velocity vectors of its neighbors.

The dynamics in the VV-model is thus regulated by a competition between the cells’ tendency to minimize the
energy by achieving a target cell geometry and the cells’ tendency to align their velocities through the Vicsek
mechanism with stochastic Brownian noise. The VRD-model contains three independent parameters, p0, v0 and
Dr and in the VV-model two parameters are added: RV and τV . Equations 65 till 67 dictates the full dynamics
of the VV-model and are solved numerically using Langevin dynamics with a modified version of CellGPU [143]
(see Appendix E.1) with simulation details specified in Subsection 3.5. In the next subsection we discuss some
studies of models that are comparable to the VV-model and focus on alignment.

3.4.2 Alignment and jamming in comparable models in literature

The VV-model reduces to existing models in two limits. When τv → ∞, cells are unable to align on any
finite time scale and the model reduces to the VRD-model described in Subsection 3.3 where the direction of
the active force undergoes only simple Brownian rotation. The VRD-model is also obtained when RV = 0,
because the velocity direction of neighboring cells is never taken into account. Secondly, in the limit of µ = 0
we essentially recover the original Vicsek model for point-like self-propelled particles. The only difference is
that we do not take into account the own polarity vector of a particle i in calculating the average angle of its
neighbors 〈...〉0<|ri−rj |<RV , while the original Vicsek force does include this vector.

The VRD-model already exhibits collective behavior without any mechanism regulating it [108]. In the vicinity
of the jamming transition collective motion arises spontaneously because it is the only way for cells to overcome
energy barriers for rearrangements. There are also studies that add to the SPP and SPV-models a subtle
alignment rule, in which the polarity of a cell aligns to the direction of motion of the cell [106, 117, 149, 150].
Since the motion of each cell is affected by neighboring cells, such a mechanism can indirectly induce polarity
alignment of neighboring cells. Nevertheless, it neglects the direct alignment of a cell with its neighbors, and is
therefore fundamentally different from the neighbor-alignment in the VV-model. The advantage of the neighbor-
alignment over the self-alignment is the possibility to tune the alignment with the Vicsek radius. To the best of
our knowledge, this Vicsek-like alignment is never used in combination with the SPV-model [108]. There exist,
however, SPP models that include a Vicsek alignment [1, 119, 145, 148].

The model most comparable to the VV-model is the extension of the SPV-model that includes self-alignment
[149, 151] and therefore we have a look at its results. In this model, Equation 67 changes to

dθi
dt

= −J sin(θi(t)− φi(t)) + ηi(t), (68)

with ηi white noise with zero mean and variance 2Dr. The angles φi and θi are just as in Equation 67 respectively
the velocity angle and the polarization angle. Thus in this flocking model, a cell aligns its polarity with its
own movement. Giavazzi et al. [149] find that by controlling the alignment interaction J and the shape-index
p0 four different phases can be obtained: a stationary solid, a stationary liquid, a solid flock and a liquid flock
(see Figure 36). The stationary solid and liquid states are the same states as in the VRD-model and they are
distinguished by the critical threshold Deff = 0.001. Also the solid and liquid flocking states are distinguished
by this threshold, while an additional parameter that defines the degree of alignment is used to distinguish the
stationary state from a flocking state. The flocking state is defined by a finite value of an alignment parameter
and in the stationary state this parameter goes to zero. The left panel of Figure 36 shows a phase diagram based
on the shape index p0 and the alignment interaction J . The center and right panel illustrate the differences

32



3 MODELLING CONFLUENT CELL LAYERS

Figure 36: Four phases in an SPV-model with self-alignment (left panel): a liquid, a solid, a liquid flock and a solid flock.
The center and right panel show respectively the time evolution of a solid flock and a liquid flock [152].

between a solid flock and a liquid flock. Besides the existence of two extra phases, a key result of this phase
diagram is that alignment promotes solidification. When the alignment interaction J is higher, the critical p0

that distinguish a solid from a liquid also becomes higher. The expectation is that the VV-model shows similar
behavior, and this is investigated in Subsection 6.

Several parameters are used in literature to define alignment. The original Vicsek model uses [145]

VP =
1

Nv0
|
N∑
i=1

vi|, (69)

where VP stands for Vicsek Parameter, |...| denotes the size of a vector, v0 is the input velocity and vi the
instantaneous velocity of each cell or particle. A disadvantage of the VP is that v0 cannot be obtained in
experiments, and therefore makes it hard to compare simulations with experiments. The alignment index (AI)
and instantaneous order parameter (IOP) are two other possibilities in which the use of v0 is avoided [151]:

AI =
1

N

N∑
i=1

vi · 〈v〉
|vi|| 〈v〉 |

, (70)

where 〈...〉 = 1
N

∑N
i=1 ... and thus 〈v〉 the average instantaneous velocity vector. The IOP is only slightly

different than the AI and is given by

IOP =
| 〈v〉 |2

〈|v|2〉
. (71)

An important phenomenon in flocking is that the correlation distances are long because particles far apart move
on average in the same direction. How far this correlation goes is probed by the correlation length, which we
define here as the 5σ − Lcorr,

Lcorr = {max r : µ(Φr) + 5
σr(Φr)

NΦr)
≤ π

2
}, (72)

where Φr is the set of NΦr differences in velocity angles φij between cell i and j, given that the distance
rij = |rj − ri| between cell i and j lies between r − ε and r + ε, with ε a value depending on the simulation
settings. In the next subsection we explain our simulation and analysis details.

3.5 Computational details and measurement procedures

In this subsection we define our computational details for the VRD- and VV-model as well as a short explana-
tion of the experimental data we use. Furthermore, we define our measurement methods and corresponding
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non-trivial details. A complete overview of the algorithms and measurement details are given in respectively
Appendices E and F.

VRD-model

We simulate the VRD-model with a modified version of CellGPU [143] as explained in detail in Appendix E.1.
We set N = 1000 and use a step size of ∆t = 0.01 τ0 (see Appendix G.2 for a verification). We define the glass
or jamming transition as when the relaxation time exceeds 104 τ0, which is an arbitrary value but common in
glassy physics. Therefore, we initialize the system with 106 initializing steps ninitsteps (see Appendix G.3 for a
verification). Thereafter, we perform 106 + 105 simulation steps nsteps, where 105 is the number of time steps
needed for the analysis of dynamic correlation functions. We average the results over ten independent runs,
which is a trade-off between calculation costs and reducing the statistical error. Furthermore, for every run
calculations of the static functions are averaged over 1000 snapshots at a frequency of 104 time steps and the
dynamic functions are averaged over 100 time steps at a frequency of 102 time steps. We set ka = 1.0 τ−2

0 ,
kp = 1.0 r0/τ

2
0 , µ = 1.0 τ0, a0 = 1.0 r2

0 and Dr = 1.0 τ−1
0 . We vary v0 between 0.1 r0/τ0 and 10 r0/τ0 and we

vary p0 between 3.0 r0 and 4.5 r0.

We measure the MSD, the average perimeter q, the RDF, the SSF, the coherent and incoherent ISF and
properties that can be derived from these functions such as the diffusion coefficient and the relaxation time,
of which the latter is defined as the time after which the ISF reaches 0.1. The measurement procedures are
given in detail in Appendix F.1. Important notes are that the average motion of all cells is subtracted from the
individual displacements (see Appendix G.4) to calculate the MSD and coherent and incoherent ISF and that
the coherent and incoherent ISF are evaluated at the location k of the first peak in the SSF (see in Appendix
G.5 that using k = 6.75 r0 does not change the observations).

The MCT-algorithm to predict the coherent ISF is explained in Appendix E.3 and the system specific input
consists of the static structure factor S(k), the self-diffusion coefficient D0 (given by Equation 60) and the
density ρ, which is always 1.0 r−2

0 in our models. We modify the static structure factor by setting S(k) = 0
for the smallest k-values and use a cut-off of k = 30 r−1

0 (see Appendix F.1). The initial time step size is set
to ∆t = 10−6τMCT, in which τMCT is a time unit of MCT (see Subsection 2.3.3) and we use NT = 64. Our
maximum simulation time is tmax = 1020τMCT. Furthermore, we use a threshold for the memory kernel defined
by ε = 10−20 and this threshold is always reached within 20 steps. Adaptations to the MCT-algorithm for the
incoherent ISF are explained in Appendix E.3.7 and we use the same input and algorithm settings as for the
coherent ISF except that this coherent ISF predicted with MCT serves as extra input.

Experimental data

We use experimental data obtained from an MDCK culture and the exact procedure how this data is obtained
is described by Atia et al. [40]. Images were recorded every 3 minutes for 54 hours using phase microscopy (see
supplementary video 1 of Atia et al. [40] for a movie). However, we will only use the data from the time that
confluence is reached, which is after 33.5 hours. We define the waiting time as the time that has passed since
confluence is reached. Each image has a size of 1024 x 1024 pixels, with one pixel equal to 0.89µm × 0.89µm.
The images were processed to find the nucleus of each cell using a method that locates around 95 percent of
the nuclei (see Appendix G.7 for an analysis of the effect of this accuracy).

We perform the same analysis on these experimental data than on the data obtained from the VRD-model,
but there are a few differences between the experimental and the simulated data which we have to take into
account. First, the experimental data shows a variation of cell density over time resulting in a varying number
of cells in the FOV. To account for this, we scale all lengths at waiting time T with r0(T ) according to

r0(T ) =

√
A

N(T )
, (73)

with A the area of the snapshot image in pixels and N(t) the number of cells in the snapshot at time t (see
Appendix G.9 for an analysis of the effect of this scaling). Secondly, the experimental data is not in a steady
state which means that we cannot average over many snapshots to reduce the noise. Therefore, we assume the
changes in the system to be negligible during one hour such that we can take the average over all snapshots
within this hour. We apply a running average where we define the value of a quantity at waiting time T as
the average value of that quantity between waiting time T and T + 1 hour (see Appendix G.8 for an analysis
with different waiting times). Thirdly, we do not have periodic boundary conditions and lastly, the positions
can only be determined with an accuracy of one pixel. In Appendix F.2 we explain in more detail how these
four properties of the experimental data effect the measurement procedures.
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VV-model

We simulate the VV-model with a modified version of CellGPU [143] and explain in Appendix E.1.3 how this
algorithm differs from the implementation of the VRD-model. Similar as in the VRD-model, we set N = 1000
and use a step size of ∆t = 0.01 τ0. Differently than in the VRD-model, we let the system relax without self-
propulsion force before we start measuring. At t = 0.0τ0 we turn on the self-propulsion force and the system
relaxes to a new steady state. Therefore, we initialize the system only for t = 200 τ0 to save time (see Appendix
G.3 for a verification). We always set ka = 1.0 τ−2

0 , kp = 1.0 r0/τ
2
0 , µ = 1.0 τ0 and a0 = 1.0 r2

0.

For the analysis of the alignment in the VV-model we execute 15000 time steps and vary five parameters: RV ,
p0, v0, Dr and τV . We vary one parameter at a time for three different base settings of these five parameters,
called Settings A, B and C, given in Table 1. Setting A has a combination of v0, p0 and Dr that belongs just
to the unjammed regime of the VRD-model (see Figure 32). To verify the results of Setting A, we also analyze
Setting B and C. In Setting B p0 and v0 are changed such that the VRD-model would result in a jammed
state and in Setting C, more collective behavior is added by increasing RV and decreasing τV . We vary RV
from 0.0 r0 till 5.0 r0, p0 from 3.0 r0 till 5.0 r0, v0 from 0.0 r0/τ0 till 10 r0/τ0, Dr from 0.0 τ−1

0 till 10 τ−1
0 and

τV from 0.01 τ0 till 100 τ0. To determine these parameter ranges we have taken into account in which regime
of the parameters the dynamical behavior changes most and what the limitations set by our choice of step size
are. We average the results over 30 independent runs, which is again a trade-off between computational costs
and reducing the statistical error. We measure the alignment index (see Subsection G.6 for a comparison with
VP and IOP), the average perimeter q, the average speed v over time ∆t′ = 1.0 τ0, and the correlation length
Lcorr. The measurement procedures are given in detail in Appendix F.3.

For the analysis of jamming in the VV-model we use an additional 106 initialization time steps with the active
force turned on. Thereafter, we perform 106 +105 simulation steps nsteps, where 105 is the number of time steps
needed for the analysis of dynamic correlation functions. We average the results over ten independent runs and
for every run calculations of the static functions are averaged over 1000 snapshots at a frequency of 104 time steps
and the dynamic functions are averaged over 100 time steps at a frequency of 102 time steps. We additionally
set Dr = 1.0 τ−1

0 , v0 = 0.25 r0/τ0 and τV = 1.0 τ0. We vary RV between 0.0 r0 and 5.0 r0 and p0 between 3.0 r0

and 4.0 r0. We measure the RDF, SSF, coherent and incoherent ISF and their corresponding relaxation time
in a similar way as in the VRD-model. In addition, we also measure the non-ergodicity parameter and the
alignment index (see Appendix F.3).

Table 1: Definition of the three different parameter settings A, B and C.

RV (r0) p0(r0) v0(τ0/r0) Dr(τ
−1
0 ) τV (τ0)

Setting A 1.5 3.8 0.5 1.0 1.0 Basic
Setting B 1.5 3.6 0.1 1.0 1.0 Further jammed
Setting C 2.5 3.8 0.5 1 0.1 More collectivity
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4 RESULTS OF THE VORONOI ROTATIONAL DIFFUSION MODEL

4 Results of the Voronoi rotational diffusion model

In this section we present the results of the Voronoi rotational diffusion (VRD) model concerning correlation
functions and mode coupling theory. As explained in Subsection 3.3.1, the Voronoi rotational diffusion model
is defined by the following equation of motion for cell i:

dri
dt

= µF int
i + v0n̂i, (74)

where the interaction force F int is given by

F int
i = −∇riE = −∇ri

(
N∑
i

ka(ai − a0)2 + kp(pi − p0)2

)
, (75)

and the time evolution of the polarity vector n̂i = (cos(θi), sin(θi)) is given by

dθi
dt

= ηi(t), with 〈ηi(t)ηj(t′)〉 = 2Drδ(t− t′)δij . (76)

Thus, the dynamics of a cell is governed by the tendency of a cell to obtain its preferred shape and by a self-
propulsive motion affected by random rotational diffusion. The key parameters are the preferred perimeter p0,
the magnitude of the self-propulsive motion v0 and the random rotational diffusion D0.

We start with a short exploration of this VRD-model in Subsection 4.1, which is merely a verification of Bi et al.
[108] and serves as a phenomenological description. In Subsection 4.2 and Subsection 4.3 we look at respectively
structure and dynamics in the VRD-model via correlation functions. Mode coupling theory makes predictions
about the dynamics and in Subsection 4.4 we verify these predictions by comparing the MCT-results with the
relaxation time obtained via direct calculations, the diffusion coefficient and the average perimeter q. We end
with summarizing the main conclusions in Subsection 4.5.

4.1 Phenomenological description

The VRD-model has a jamming transition from a fluid-like state to a solid-like state as shown by Bi et al. [108].
One way to cross this transition is by varying the preferred perimeter p0. Figure 37 shows the cell shapes and
trajectories for three different values of p0 corresponding to a jammed state, a state near the jamming transition
and an unjammed state according to Figure 32. Cells form almost hexagons in the jammed state because a
hexagonal tiling is the most ideal tiling of space (see Subsection 3.2) and cells stay around their original positions
due to the caging of their neighbors. Near the jamming transition the variation in cell shapes becomes larger,
but the preferred hexagonal shape is still visible. The cell trajectories become longer as well, although the cells
do not migrate far. In an unjammed state cell shapes are far from hexagonal and exhibit a lot of variation. The
boundaries between cells become longer and the distances between cell seeds (Voronoi centers) variate more.
Furthermore, cells migrate over long distances. The only cause of the unjamming transition as illustrated in
Figure 37 is the change in the preferred perimeter p0, which is too small to be reached in the jammed state
causing cells to have an almost hexagonal shape and large in the unjammed state resulting in long boundaries
and highly irregular shapes. Thus, there is a critical preferred perimeter p0 at which a confluent cell layer
undergoes a jamming transition.

The location of jamming or unjamming transition is also influenced by the two other free parameters v0 and Dr.
An increase in the self-propelled velocity v0 might fluidize a system because a higher velocity makes it easier
for cells to escape from the cage of their neighbors and, consequently, cells migrate further. Bi et al. [108] also
show that increasing the persistence of the self-propelled force by decreasing the rotational noise Dr might lead
to unjamming because a persistent motion also makes it easier for cells to escape from their neighbors. Because
the effect of the parameters p0, v0 and Dr on the location of the jamming transition is studied extensively by
Bi et al. [108], we will not look further into the details of the jamming phase diagram of the VRD-model in
this thesis. Instead, we are going to focus on the structural and dynamical differences around the jamming
transition and the predictions of mode coupling theory.

In doing this, we also incorporate more extreme values of p0 than shown in Figure 37 and Figure 38 shows how
this influences the cell shapes. When p0 is very small (p0 = 3.0 r0) cells can never reach their preferred perimeter,
which results in a high stress level in the layer (note that the minimum value of the average perimeter q is given
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Figure 37: The shapes (top panels) and trajectories (bottom panels) of a subset of the cells with from left to right
p0 = 3.6 r0, p0 = 3.75 r0 and p0 = 3.9 r0 (v0 = 0.25 r0/τ0, Dr = 1.0 τ−1

0 ).

by 3.72, according to Subsection D.3). Cells still are preferably hexagonal for these small p0 values, but the
variation in cell sizes is higher. When p0 is very large (p0 = 4.5 r0), cells tend to increase the boundaries with
their neighbors resulting in more elongated shapes. The resulting Voronoi tesselations are not stable because
they change very rapidly in time and it is questionable whether this is still a representation of real cells. The
reason that we still include these extreme values in our analysis is that we also regard the VRD-model as a toy
model to apply mode coupling theory to, besides its usual implementation to describe biological processes in
confluent cell layers. Including these extreme p0-values results in a larger variation in structural and dynamical
properties. In the next subsection we look at the structural properties of the VRD-model in detail.

4.2 Analysis of the structure

The vectorial radial distribution function for four different values of p0 and v0 = 0.25 r0/τ0 is given in Figure
39 and the corresponding static structure factor in Figure 40. For this value of v0 the jamming transition takes
place around p0 = 3.75 r0 according to Figure 32 in Subsection 4.3. Below the jamming transition the radial
distribution function shows long-range order (right upper panel of Figure 39), which is also reflected in high
peak values of the static structure factor (right upper panel of Figure 40). When we go to even lower values of
p0, the long-range order disappears and the system is less structured (left upper panels of Figures 39 and 40).
Cells can never obtain such a low values of p0 and this results in a high level of stress in the system, which
we call elastic frustration. This frustration hinders the forming of a hexagonal pattern and results in a less
structured RDF and SSF for very low values of p0. Just above the jamming transitions (left bottom panels of
Figures 39 and40), there are still signs in the RDF and the SSF of a long-range order, although much weaker
than on the other side of the jamming transition. This structural arrangement and the long-range order vanish
when we go to even higher p0 (right bottom panels of Figures 39 and 40). A hexagonal packing structure is no
longer optimal, which results in a higher variety of cell shapes and therefore a less structured layer.

The vectorial radial distribution function and static structure factor look isotropic, which means that they show
identical behavior for all r- and k-vectors with the same magnitude. Nevertheless, for highly structured systems
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Figure 38: The cell shapes for the smallest (p0 = 3.0 r0, left panel) and largest preferred perimeter (p0 = 4.5 r0, right
panel) that we investigate in this thesis (v0 = 0.25 r0/τ0, Dr = 1.0 τ−1

0 ).

around the jamming transition the radial distribution function and the static structure factor show an hexagonal
pattern reflecting the hexagonal order of the layer. The graphs of Figures 39 and 40 for p0 = 3.6 r0 already
hints towards this order, but it is not clear visible here because the data is averaged over ten independent runs.
Therefore, in Appendix H.1 the hexagonal pattern in the RDF and SSF is shown for a single run at p0 = 3.7 r0,
which is even closer to the jamming transition than p0 = 3.6 r0 in Figures 39 and 40. Despite this anisotropy,
we will from now on only look at the scalar version of the RDF and SSF and assume that by averaging over
several runs the effect of this anisotropy is negligible.

Figure 39: Vectorial radial distribution function for p0 =
3.0 r0, p0 = 3.6 r0, p0 = 3.8 r0 and p0 = 4.5 r0 (v0 =
0.25 r0/τ0, Dr = 1.0 τ−1

0 ).

Figure 40: Vectorial static structure factor for p0 = 3.0 r0,
p0 = 3.6 r0, p0 = 3.8 r0 and p0 = 4.5 r0 (v0 = 0.25 r0/τ0,
Dr = 1.0 τ−1

0 ).

These scalar versions of the RDF and SSF are shown in Figure 41 and they also reflect the structured order
for values of p0 around the jamming transition and the decrease in this order for extremer values of p0. A
structural order is characterized by higher peaks and the existence of peaks and valleys for large values of r or
k in respectively the RDF and SSF, while these peaks are smaller and the RDF and SSF at large value of r or
k are equal to one for less structured states. The location of the first peak of the RDF represents the nearest
neighbor distance and is for values of p0 < 3.8 r0 slightly larger than 1.0 r0, which is the closest packing for
hard spheres. Because the cells in the VRD-model are confluent, their nearest neighbor distance is a bit higher
and are comparable to the nearest neighbor distance in a hexagonal grid (see Subsection 3.1 with a first peak in
the RDF around r = 1.07 r0. For values of r smaller than this first peak the RDF goes to zero implying mutual
exclusion. Furthermore, the location of the first peak in the SSF for p0 < 3.8r0 corresponds to the inverse
length scale of the first peak in the RDF. What stands out in Figure 41 is the shift in the first peak when p0 is
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large. The mutual exclusion at short range disappears as cell align and have their Voronoi centers closer to each
other to become more elongated to satisfy the higher preferred perimeter. In addition, cells that are not aligned
have seeds that are further apart. This variance in distances between cell seeds results in a broadening of the
peaks in the RDF and SSF. This transition from mutual exclusion to cell seeds sticking to each other happens
around p0 = 4.0 r0, which is above the jamming transition and we will investigate the effect of this transition
on the dynamics further in Subsection 4.3. The almost linearly decay of the SSF to zero when k goes to zero is
known as hyperuniformity. This hyperuniformity is also seen in certain random packings of spheres [153], and
might suggest that the cell layers in the VRD-model are tiled in a similar disordered manner for large but not
too large values of p0. For these too large values (p0 > 4.25 r0) the growth in the first peak of the RDF suggests
a preference for cell seeds sticking to each other instead of a completely random order.

Figure 41: The scalar radial distribution function (left panel) and static structure factor (right panel) for various values
of p0 between 3.0 r0 and 4.5 r0 (v0 = 0.25 r0/τ0, Dr = 1.0 τ−1

0 ).

Although the RDF and SSF are different for other values of v0 (see Appendix H.2 for v0 = 0.1 r0/τ0, v0 =
0.5 r0/τ0 and v0 = 1.0 r0/τ0), the functions look qualitatively similar upon a shift in the value of p0. Our results
for the RDF and SSF are comparable to Li [154], which uses the same model but neglects the self-propulsion
force corresponding to v0 = 0.0 r0/τ0. The changes in structure seen in this subsection are encouraging for
applying mode coupling theory as MCT predicts changes in dynamics based on the changes in structure. Before
applying MCT, we investigate first the dynamics of the VRD-model in the next subsection such that we can
verify these MCT-predictions.

4.3 Analysis of the dynamics

The mean squared displacement for simulations of the VRD-model with v0 = 0.25 r0/τ0 and various p0 values
is given in Figure 42 and looks similar to the graph of Bi et al. [108] in Figure 31. The motion is ballistic on a
short time scale with a slope of the MSD on a log-log plot equal to two and changes to a diffusive motion on
long time scales for large p0 values with a slope equal to one. For values of p0 > 3.75 r0 a plateau arises due
to the caging of cells by their neighbors, which clearly indicates a jamming transition. The effective diffusion
coefficient obtained from the MSD (Equation 1) is one of the parameters to quantify the jamming transition.
The left upper panel of Figure 44 shows this effective diffusion coefficient as a function of p0 for four different
values of v0. Below the black horizontal line Deff = 10−3 the system is conventionally said to be jammed.
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Figure 42: The mean squared displacement for various values of p0 between 3.0 r0 and 4.5 r0 (v0 = 0.25 r0/τ0, Dr =
1.0 τ−1

0 ).

This jamming transition is also visible in the coherent and incoherent intermediate scattering function shown in
Figure 43. For p0 > 3.75 r0 the ISFs fall back to zero within 104 τ0, while for small p0 a plateau arises and the
value at t = 104 τ0 is nonzero. The non-ergodicity parameter is larger when p0 is smaller, which indicates that
the cells migrate less, despite the lower structural order observed observed in the RDF and SSF for p0 = 3.0 r0

in comparison to slightly higher values. The coherent and incoherent ISF show similar behavior for different
values for v0 (see Appendix H.2 for v0 = 0.1 r0/τ0, v0 = 0.5 r0/τ0 and v0 = 1.0 r0/τ0).

A second way to quantify the jamming transition is via the relaxation time τα obtained via the coherent or
incoherent ISF. These relaxation times are shown in respectively the left and right center panel of Figure 44 as
a function of p0 for four different values of v0. A system is said to be jammed when the relaxation times exceeds
104 τ0. Because we only simulate until t = 104 τ0, we cannot obtain relaxation times larger than 104 τ0 and this
is indicated with dashed lines in the graphs of Figure 44.

Figure 43: The coherent intermediate scattering function (left panel) and incoherent intermediate scattering function
(right panel) for various values of p0 between 3.0 r0 and 4.5 r0 (v0 = 0.25 r0/τ0, Dr = 1.0 τ−1

0 ).
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Dynamics and jamming in the VRD-model

Figure 44: The effective diffusion coefficient (left upper panel), the average perimeter q (right upper panel), the relaxation
time of the coherent ISF (left center panel), the relaxation time of the incoherent ISF (right center panel), the mode
coupling predictions for the relaxation time of the coherent ISF (left bottom panel) and the mode coupling theory predictions
for the relaxation time of the incoherent ISF (right bottom panel) for v0 = 0.1 r0/τ0, v0 = 0.25 r0/τ0, v0 = 0.5 r0/τ0 and
v0 = 1.0 r0/τ0, various values of p0 between 3.0 r0 and 4.5 r0 and Dr = 1.0 τ−1

0 .
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Both Deff and τα indicate that below a certain p0 a system is jammed in agreement with our observations in
Subsection 4.1. Around this jamming transition cells become caged by their neighbors and this results in the
arising of a plateau in both the MSD and the ISF. This plateau is included in the values of respectively Deff

and τα, which makes these parameters suitable for defining the jamming transition. The value of p0 where
the jamming transition takes places decreases when v0 increases in agreement with the jamming diagram in
Figure 33. Nevertheless, the exact value of p0 at which the jamming transition takes place differs for the two
methods used to define jamming. One example is that Deff defines p0 = 3.0 r0 and p0 = 3.25 r0 as jammed,
while τα indicates that the system is unjammed. The jamming transition is a continuous transition, meaning
that there is no clear boundary at which this transition occurs and Figure 44 shows that the location of the
jamming transition depends on the method you choose to define this transition and the threshold value for these
methods. For example, we use the thresholds Deff < 10−3 and τα < 0.1τ0 to define jamming and different values
will change the location of the jamming transition. Besides indicating the jamming transition, Deff and τα also
show a slowing down of the dynamics for p0 > 4.1 r0. This coincides with the transition from mutual exclusion
to cell seeds sticking together as explained in Subsection 4.2. For these large values of p0, the structural order
partly returns to the confluent cell layers. However, the form of the structure is based on elongated aligned cells
instead of hexagonal shapes.

Bi et al. [108] discovered a third method to define the jamming transition, which is based on the average
perimeter q. This q is shown in the right upper panel of Figure 44 for the same combinations of v0 and p0

as Deff and τα are calculated. A system is said to be jammed when q < 3.81 r0. According to our data, this
threshold only holds for a certain range of p0. When p0 is far away from the value where jamming takes place, q
is not a valid criterion anymore. For example, q predicts an unjamming transition for p0 < 3.5 r0 or p0 < 3.25 r0

for respectively v0 = 0.1 r0/τ0 or v0 = 0.25 r0/τ0, while the MSD and the ISFs shows even further slowing down
of the dynamics for these values. In addition, the slowing down for large values of p0 is also not captured by
q.

When temperature controls a glass transition, the fragility can be deduced from a plot of the relaxation time as a
function of the temperature (see Figure 10). Because in the VRD-model the relaxation time is a non-monotonous
function of p0, it is hard to define whether the VRD-model is comparable to a strong or fragile glass former.
However, the comparison might be possible with v0 or Dr as control parameter because both influence the
self-diffusivity D0 which plays a similar role in the VRD-model as the temperature in glasses. Furthermore, our
results for v0 and the results of Bi et al. [108] for Dr suggests that Deff and τα depend monotonously on these
parameters.

In the next subsection we investigate the dynamics predicted by MCT and compare them with the results dis-
cussed in this subsection. To do so, we refer to the intermediate scattering function and relaxation times
presented in this subsection as ”direct calculations” and their counterparts obtained via MCT as ”MCT-
predictions”.

4.4 MCT-predictions and verifications

We calculate the predictions of the coherent and incoherent intermediate scattering function via the mode
coupling theory equations given by respectively Equations 41 and 46. Recall that these MCT-equations do not
explicitly take into account the activity of the cells, but that we assume that the activity is captured via its
influence on the static structure factor. Figure 45 shows the results for v0 = 0.25 r0/τ0 and several values of
p0, where the static structure factor of Figure 41 is used as input. The lines for all investigated values of p0

fall back to zero and there is no clear evidence for a jamming transition as was seen in the graphs of the ISF
obtained via direct calculations (Figure 43). MCT can predict the existence of a plateau in the ISF as was
seen in Subsection 2.3.3, so it is noteworthy that it does not do so in the VRD-model. Normally, the caging
behavior of the MCT-predictions is caused by strong values of the vertices in the MCT-equation. These vertices
are larger when the peaks in the static structure factor are larger. So apparently, the static structure factor is
not peaked enough for MCT to pick up this caging behavior.

Despite the absence of the plateau in the MCT-predictions of the ISF, the rate at which the ISFs decrease vary
for different values of p0 and this can be measured with the relaxation time. The left and right bottom panel
of Figure 44 show the relaxation times obtained from respectively the predicted coherent and incoherent ISF.
The data points corresponding to combinations of p0 and v0 of which the direct calculations of the relaxation
times give a jammed state are made transparent. For all other data points we see a remarkably good qualitative
agreement between the MCT-predictions and the computed values via direct calculation of the relaxation time.
Starting from the jamming transition and increasing p0 first results in a decrease of the relaxation time and
thereafter an increase. Mode coupling theory predicts this non-monotonous behavior correctly as well as the
location of the valley in the relaxation time. Furthermore, MCT predicts correctly that the relaxation time
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Figure 45: The mode coupling predictions for the coherent (left panel) and incoherent ISF (right panel) with the SSFs of
Figure 41 as input.

decreases when the velocity increases. Remarkably, it even predicts that this does not hold for p0 = 3.8 r0 and
p0 = 4.0 r0 where the relaxation time of v0 = 0.5 r0/τ0 is larger than the relaxation time of v0 = 0.25 r0/τ0.

MCT does not predict the quantitative value of the relaxation time correctly, which is a well-known failure of
mode coupling theory (see Subsection 2.3.3). Interestingly, MCT predicts smaller relaxation times than they
actually are while it normally predicts slower dynamics. This prediction of too slow dynamics is explained by
the fact that mean field theory generally overestimate the tendency to vitrify due to the lack of ergodicity-
restoring fluctuations, and it is yet unknown why this does not hold in our case. One might think that this is
due to not taking into account the active force explicitly in the mode coupling theory. However, the results of
Bi et al. [108] and the analysis in this section suggests that the active force fluidizes the system and therefore
would lead to smaller relaxation times. Consequently, including this in MCT would probably not increase the
predicted relaxation times. Another explanation for the fact that MCT predicts too fast dynamics could be our
assumption that the layer is monodisperse because we use monodisperse values for p0 and a0. Nevertheless,
multidispersity arises spontaneously in the layer and this could influence the static structure factor which
might lead to an incorrect input in the monodisperse version of the mode coupling theory. A comparable
situation is found by applying mode coupling theory on polymers, where a monodisperse MCT predicts too fast
dynamics and improvements are obtained by applying multidisperse MCT [155]. It is therefore worthwhile to
test whether applying multidisperse MCT predicts slower dynamics in the VRD-model too. As a first test the
static structure factors corresponding to different particle size can be compared and differences in these SSFs
might encourage a multidisperse MCT approach. Besides the multidispersity, the size of the cells also changes
in time and this might also influence the dynamics. Szamel [156] presents a mode coupling theory that includes
size swaps in a binary mixture and show that these swaps speed up the dynamics. Nevertheless, at first view
this might contradict our results as we are looking for a mechanism in mode coupling theory that slows down
the dynamics.

Another failure is that mode coupling theory predicts a decrease in relaxation times in cases where the system
is jammed and becomes further jammed, shown by the transparent parts of the left and right bottom panels of
Figure 44. One explanation for this discrepancy is that the static structure factor used as input for the MCT-
calculations is not correct. Because for these parameter settings it takes longer than t = 104 τ0 for the layer to
relax and we only initialize for t = 104 τ0, the system is not yet in a steady state when we start measuring the
static structure factor. Nevertheless, this discrepancy might also be a failure of mode coupling theory.

The peak height in the static structure factor is a measure of how structured a system is. One might therefore
ask whether a very simple approach that predicts the relaxation time only based on the height of the first peak
gives equally good results as mode coupling theory. If predictions of such a simple ad hoc approach can be
verified as well, this would suggest that the verification of the MCT-predictions as done in this section is not
significant for the validity of mode coupling theory. However, the peak values of the SSF in Appendix H.3 for
the same parameter combinations as in Figure 44 show that the MCT-predictions are not simply a reflection
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of these peaks. Thus, MCT does not only take into account the value of the SSF at its highest peak, but also
uses the SSF at other k-values or modes as its name already suggests.

We only applied a standard version of mode coupling theory and the fact that this already gives verifiable
predictions gives hope that modified versions might improve the results even further. The use of a multidisperse
version of MCT is already suggested and another potential modification is attempting to improve the approx-
imation of the four-point density correlations functions by delaying the factorization using generalized mode
coupling theory (see Subsection 7.2). The projection of the memory kernel in the standard MCT-derivation
of Subsection 2.3.1 on the pair densities is based on pair interactions, while the VRD-model incorporates
multi-particle interactions. Including higher order density correlations via so-called generalized MCT might
therefore result in a better incorporation of these higher order particle interactions and an improvement in the
MCT-predictions.

A different approach to improve MCT is to include the active force explicitly in the mode coupling theory
equations, as we only take into account the activity via the static structure factor. In Subsection 7.1 we look
further into active versions of MCT. On a side note, this assumption to only include the activity via the SSF
might be interesting to test by verifying the MCT predictions for different noise levels. We expect the MCT
predictions to become better when the noise level increases and worse when the noise level decreases, because in
the second case the persistence of the active force increases the impact of this activity on the dynamics.

Based on the literature study in Subsection 2.3.3, MCT predicts scaling laws for the α- and β-relaxation of
the intermediate scattering function as well for the relaxation time as a function of the temperature. Now we
have given a first proof of the applicability of standard-MCT, an interesting next step is to test whether these
scaling laws are also predicted correctly in the VRD-model. A first test is to try whether the scaling laws given
in Figure 15 can be fitted to the intermediate scattering functions given in Figure 43. To test the power-law
scaling for the relaxation time similar to Figure 20, the self-diffusivity D0, depending on v0 and Dr, can be
used instead of the temperature (according to Equation 48). This self-diffusivity can also be used for testing
the equivalent of the TTSP as illustrated in Figure 18. MCT does not analytically predict scaling laws with p0

as control parameter as the MCT-equation does not explicitly depend on p0. Moreover, as far as we know it is
never investigated whether a scaling law for the relaxation time and an equivalent of the TTSP exists for p0.
The existence of these scaling laws in the VRD-model could be investigated first before testing these whether
MCT predicts these laws numerically.

4.5 Conclusions

The jamming transition in the VRD-model is characterized by an increase in structure probed by the radial
distribution function and the static structure factor, caused by the tendency of cells to reach a hexagonal
shape, and by an increase in relaxation time probed by the intermediate scattering function. This makes these
functions a powerful tool to investigate the jamming transition. Further away from the jamming transition,
the correlation functions show that the dynamics is governed by different length scales upon varying p0. The
long-range order decreases by decreasing p0 to very small values due to elastic frustration, while the dynamics
slow down further. By increasing p0 to very high values, a transition arises from a disordered state towards
a more structured state in which cells get elongated, align and have cell seeds arbitrarily close to each other,
which also results in a slowing down of the dynamics. Although a larger v0 decreases the structure according
to the RDF and SSF and increases the relaxation time, the qualitative results about the jamming transition
do not depend on v0. For further research, it might be interesting to investigate the effect of the rotational
diffusion Dr on the correlation functions as well.

Mode coupling theory predicts the relaxation times qualitatively correctly when the system is unjammed or
reaches the jamming transition. The advantage of MCT is that it only needs structural information as input,
which can be obtained from only one snapshot, while direct calculations of the relaxation time require long
simulation runs during t > 104 τ0. Another method that provides information about the dynamics using only one
snapshot is based on the average perimeter q. This method can only be applied close to the jamming transition
and because we showed that the MCT-analysis also works for high p0-values it is broader applicable.

Despite its successes in simulated confluent cell layers, MCT also has its shortcomings. In the jammed regime
MCT does not predict a jammed state and overall the relaxation times predicted by MCT are too short. For
future research we advise to look into possible extensions of mode coupling theory that might reduce these
shortcomings. These extensions include multidisperse MCT, generalized MCT and active MCT.

A big advantage of MCT is that it is a theory based on first principles and therefore has a strong physical
foundation. This makes it possible to use the theory to predict how the dynamics changes when the structure
or input parameters changes. MCT also predicts scaling laws for the α- and β-relaxation as well as the relaxation
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time of the intermediate scattering function, which might be interesting to test in further research. Because
MCT is based on the fact that the dynamics is governed by the structure, this research shows that this statement
is also valid for confluent cell layers.

Concluding, we did not find any evidence that MCT might not be applied to the VRD-model and this supports
the applicability of MCT and the analogy between confluent cell layers and molecular fluids or granular particles.
Because these molecular fluids or granular particles can undergo a glass or jamming transition, this underpins
the existence of an equivalent transition in confluent cell layers. In the next section we use experimental data
instead of simulated data to perform the same analyses as done in this section.
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5 Results of the analysis of experimental data

In this section we extend our analysis to experimental data and we follow the exact same analysis procedure
as for the VRD-model in Section 4. The experimental data was obtained from a maturing MDCK-layer and
snapshots were taken every three minutes until three hours after confluence. In Subsection 5.1 we start with a
first exploration of the data resulting in a phenomenological description, in Subsection 5.2 we study the structure
and in Subsection 5.3 we study the dynamics. The mode coupling predictions and verifications are discussed in
Subsection 5.4 and we end with the main conclusions in Subsection 5.5.

5.1 Phenomenological description

The top panels of Figure 46 show the nuclei after 0 and 1911 min waiting time, which is our maximum mea-
surement time, and Voronoi tessellations are drawn with these nuclei as seeds. Many processes influence the
aging of the cell layer, such as proliferation, cell death and cell motion. One of the results is the significant
increase in density upon aging and this is shown for the complete measurement period in Figure 47. To be able
to compare the system at different densities, we scale all length scales with the square root of the density such
that at all times the scaled density is equal to one according to Equation 73. Although time dependent, this
scaling is similar to the scaling in the VRD-model, where the square root of the average area of each cell is
used. The growth in density and the biological processes working in the layer also influence the dynamics in the
system. Although it is an interesting question what the effect of each process is on the structure and dynamics,
we do not need to take this into account in our analyses because correlation functions and mode coupling theory
are generic tools with which the structure and dynamics can be analyzed regardless of the processes regulating
it.

Figure 46: Nuclei and corresponding Voronoi tessellation at the moment confluence is reached (left top panel) and at the
last measurement time (right top panel). The left and right bottom panel show trajectories at respectively the start and
end of the measurement time period.
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Both snapshots in Figure 46 show structural heterogeneity in cell shapes and a difference in the dynamics
cannot be derived from these images only. Nevertheless, the trajectories of the cells during 600 min in the
bottom panels of Figure 46 suggests a slowing down of the dynamics upon aging. At later times the trajectories
become shorter and cells migrate less, which might be a sign that the system approaches a jamming transition.
Note that the open spaces in the graphs of Figure 46 do not mean that there are no cells at these positions,
but that the nuclei of these cells could not be identified during the entire period of 600 minutes. In the next
subsection we investigate the structural properties of the data in detail.

Figure 47: The number density of the cell layer increases during aging.

5.2 Analysis of the structure

Figures 48 and 49 show respectively the radial distribution function and the static structure factor after four
different waiting times. Both figures show that the structure increases as a function of the waiting time. The
length scale of mutual exclusion in the RDF grows as well and the first peak and valley become clearly visible.
Also in the SSF the first peak and valley grow during aging. Because the vectorial RDF and SSF show that
the system is nearly isotropic, we can look at the scalar version of the RDF and SSF to see the growth of the
peaks and valleys more clearly in respectively Figures 50 and 51.

Figure 48: Vectorial radial distribution function after
waiting 0, 513, 1029 and 1545 min.

Figure 49: Vectorial static structure factor after wait-
ing 0, 513, 1029 and 1545 min.

Although Figures 50 and 51 suggest so, longer waiting times do not always result in a more structured layer.
In Figures 52 and 53 the height of the first peak of respectively the RDF and SSF are shown as a function
of the waiting time and they show a noisy increase. This noise might be partly caused by the measurement
methods, but it might also have a physical relevance. Because many different biological processes are at work
in the cell layer, it is possible that the layer becomes temporarily less structured before increasing its structural
order again. Despite the increase in first peak height, the maximum height in Figures 52 and 53 is still very low
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in comparison to jammed or glassy materials (see for example the RDF and SSF of the VRD-model in Figure
41).

For a classical system with hard spheres the first peak height of the SSF grows according to a power-law as
a function of the density [157], while other systems might exhibit a different growth function. Determining
the function according to which these peak values grow in confluent cell layers might give insights into which
systems these cell layers are comparable to and might help understanding the physics governing the dynamics
in these layers. Unfortunately, the noise in the data prevents determining this function as is shown in Appendix
I.1. Besides, we show in Appendix I.2 that the peak height of the RDF and SSF can both be used as a method
to define when confluence is reached.

The structural changes upon aging indicated by the increase in the height and narrowing in the width of the
peaks and valleys in the RDF and SSF motivate a mode coupling theory analysis. But before looking at the
MCT-predictions for the dynamics, we first investigate the dynamics in the next section.

Figure 50: Scalar radial distribution function after
waiting 0, 513, 1029 and 1545 min.

Figure 51: Scalar static structure factor after waiting
0, 513, 1029 and 1545 min.

Figure 52: Height of the first peak of the radial distri-
bution function as a function of the waiting time.

Figure 53: Height of the first peak of the static struc-
ture factor as a function of the waiting time.

5.3 Analysis of the dynamics

The mean squared displacement after four different waiting times is given in Figure 54. The graphs at different
waiting times have a similar form in which the slope on the log-log plot is around 0.5 for times smaller than
10 min, then increases to a value around 1.3 and after 100 min weakens again. This form of the MSD is not
comparable to typical MSDs for liquids and glasses (see Figure 11) where the slope is 2 at small times reflecting
ballistic motion and 1 or smaller at large times reflecting diffusive motion. Several reasons might be possible for
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this different behavior of the MSD in the experimental data. First, the ballistic regime might be at times smaller
than 3 minutes and therefore not visible in our data. Furthermore, because of the many biological processes
at play, the layer might possess migration phenomenon different than diffusion. And lastly, at large times the
state of the system might have changed a lot resulting in different dynamics and therefore a weakening of the
slope in the MSD.

Despite the odd behavior of the MSD for all waiting times, we see that the quantitative behavior differs
depending on the waiting time. This can be measured via the diffusion coefficient and is displayed in the left
top panel of Figure 55. This diffusion coefficient shows a slowing down of the dynamics upon aging, indicating
that the system becomes increasingly jammed. Because we do not know the self-diffusion coefficient, we cannot
calculate the effective diffusion coefficient as is given in the left top panel of Figure 44 for the VRD-model. For
this reason, we do not know how close we are to the jamming transition by only looking at the the diffusion
coefficient. Nevertheless, the absence of a plateau in the MSD indicates that we are still far away.

Figure 54: Mean squared displacement waiting 0, 513, 1029 and 1545 min.

The same observations can be made from the coherent and incoherent intermediate scattering function given in
respectively Figure 56 and 57, where longer waiting times show a slowing down in the dynamics but a plateau
stays absent. The relaxation times obtained for the coherent and incoherent ISF are respectively given in the
left center and right center panel of Figure 55. Despite the existence of noise, which might or might not be
caused by biological processes within the cell layer, the relaxation times grow steadily as a function of the
waiting time.

A third parameter to define jamming is the average perimeter q proposed by Bi et al. [108] and is given in
the right top panel of Figure 55 where the error bars define the standard deviation in the perimeter. This is
not an error or uncertainty in the measurement of q according to Atia et al. [40], but are physically relevant
as the standard deviation decreases upon reaching the jamming transition. Similar to the diffusion coefficient
and the relaxation time, the results for the average perimeter q also suggests a slowing down of the dynamics
upon waiting as q decreases in time, but the system is still far away from the critical threshold q = 3.81 r0.
Furthermore, we see that the Voronoi tessellation results in slightly different cell shapes because the average
perimeter obtained from the Voronoi tessellation is slightly different than the value directly obtained from the
cell images. Although a good tool for cell models, this shows that Voronoi tessellations have to be used with
care.

Besides identifying the dynamics in simulations and experiments, correlation functions and especially the re-
laxation time can also be used to compare the simulation model with experiments. Because many biological
processes are at work during aging of the cell layer, it is hard to identify how each individual process influences
the dynamics of the system. Effects that might slow down the dynamics include the increase in density, the
decrease in the ability of cells to move on their own and the increase in cell-cell adhesion. The last two are
accounted for in the VRD-model via decreasing respectively v0 and p0. In future experimental work it might
be interesting to test these hypotheses by executing experiments under different circumstances that change the
ability of cells to move or changes the cell-cell adhesion. With the VRD-model, predictions can be made about
how this influences the relaxation times observed in experiments and thus enhance or undermine the agreement
between the VRD-model and experiments.

In the next subsection we apply MCT to predict the dynamics and verify these predictions by comparing them
with the results of this subsection.
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Dynamics and jamming in experiments

Figure 55: The diffusion coefficient (left upper panel), the average perimeter q (right upper panel), the relaxation time
of the coherent ISF (left center panel), the relaxation time of the incoherent ISF (right center panel), the mode coupling
predictions for the relaxation time of the coherent ISF (left bottom panel) and the mode coupling theory predictions for
the relaxation time of the incoherent ISF (right bottom panel) as a function of the waiting time.
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Figure 56: Coherent intermediate scattering function
after waiting 0, 513, 1029 and 1545 min.

Figure 57: Incoherent intermediate scattering function
after waiting 0, 513, 1029 and 1545 min.

5.4 MCT-predictions and verifications

Figures 58 and 59 give the mode coupling theory predictions for respectively the coherent and incoherent
intermediate scattering function at the same waiting times as used in Figures 56 and 57. Just as for the MCT-
predictions of the ISFs for the VRD-model in Figure 45, we do not see a plateau arising. Because we are still
far away from the jamming transition and the peaks in the SSF (Figure 53) are relatively small, the vertices in
the MCT-equation are not strong enough to predict a large caging effect. However, direct calculations of the
ISFs in the experimental data (Figures 56 and 57) do not show this plateau either and the MCT-predictions
are in this respect consistent with the direct calculations.

From these predictions we obtain the predicted relaxation times of the coherent and incoherent ISF in respec-
tively the left and right bottom panels of Figure 55. These graphs show that the growth in the relaxation time
as a function of the waiting time is captured correctly by MCT. Because we are far from the jamming transition,
we cannot scale the relaxation times to compare the predicted and calculated values quantitatively as is done
normally (see Subsection 2.3.1).

Figure 58: Mode coupling theory predictions for the
coherent ISF.

Figure 59: Mode coupling theory predictions for the
incoherent ISF.

Although MCT predicts an increase in the relaxation time upon aging, these predictions contain large fluctu-
ations. This is not a surprise, because the static structure factor, used as input for the MCT, also contains
large fluctuations as illustrated by the peak heights in Figure 53. Furthermore, the direct calculations of the
relaxation times in the center panels of Figure 55 show fluctuations too. Therefore, these fluctuations are not
a failure of MCT and might even represent real fluctuations in the state of the cell layer. On a side note, the
fluctuations in the SSF and the MCT predictions are not similar, meaning that a peak or valley in the SSF
does not always coincides with a peak or valley in the MCT predictions and vice versa. This shows that MCT
does not simply take into account the peak height of the SSF but the complete SSF to predict dynamics, just
as was explained for the VRD-model in Subsection 4.4.
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Summarizing, all graphs in Figure 55 show a slowing down of the dynamics when the layer ages and the mode
coupling theory predictions for the relaxation time perfectly satisfies these observations. This provides us with
a new way to measure dynamics in experiments based on only one or a few snapshots of the system. This
method is advantageous with respect to methods that use the diffusion coefficient or relaxation time based on
experimental measurements during a long period. Such long measurements are usually expensive and difficult
or are even impossible because the state of the cell layer continuously changes.

So far we have neglected the self-diffusion coefficientD0 because we cannot obtain its value from the experimental
data. In the mode coupling theory we inserted D0 = 1.0 r2

0/τ0 and a different value only scales the time according
to Appendix D.2. However, it is likely that D0 changes as well during proliferation. In Figures 60 and 61 we
divided the relaxation time predictions of MCT by the relaxation time obtained via direct calculations for
respectively the coherent and incoherent static structure factor. Assuming MCT predicts the relaxation time
correctly up to a constant, this ratio should be a measure for the diffusion coefficient D0. Unfortunately, we
cannot test this because D0 is unknown, but it is plausible that the self-diffusivity D0 of cells decreases when
the cell layer ages in agreement with the predictions of Figures 58 and 59. It is tempting to use this ratio as a
measure for D0 because direct measurement of its value is impossible, but this has to be done with great caution
for two reasons. First the ratio also depends on a friction constant µ governing the short term dynamics and
its value is unknown too. And secondly, this approach is based on one of the main failures of MCT, namely the
prediction of the exact time scales (see Subsection 2.3.1 and the VRD-results of Subsection 4.4).

For the VRD-model several adaptations to mode coupling theory that possibly improve the predictions are
summarized, including multidisperse MCT, generalized MCT and active MCT for self-propulsive systems. Cells
are definitely self-propulsive, but it is unknown how this active force can be described in experimental data.
One possibility is a force exhibiting only rotational diffusion as in the VRD-model [10] and another possibility
is a force which aligns with its neighbors as will be discussed in Section 6. It would be very useful if MCT could
be used to make predictions about the nature and properties of the active force in experiments. One approach
would be to assume and test several MCT-predictions for different active forces and based on a comparison
of the accuracy of the predictions conclusions can be made. Nevertheless, given the current accuracy of MCT
there are a lot of steps to be taken first before MCT can possibly be used to make these predictions and it is
doubtful whether MCT would be suitable for this at all.

Although adapting the MCT-equations to improve the predictions is very valuable, we think that the most
interesting next step is to repeat the MCT-analysis with experimental data of different cell lines or under
different circumstances. This would be especially useful in data that show a larger variation in dynamics and
approach or even cross the jamming transition. This results in a much larger growth of the relaxation time and
it would strengthen our conclusions of the applicability of standard mode coupling theory on experimental data
of confluent cell layers.

Figure 60: Ratio of predicted to calculated relaxation
times of the coherent ISF.

Figure 61: Ratio of predicted to calculated relaxation
times of the incoherent ISF.

5.5 Conclusions

The radial distribution function and static structure factor show an increase in structural order in the confluent
cell layer during aging. Despite this growth, the structural order is still low in comparison with hexagonal
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ordered states that are reached in the VRD-model and the rich variation in the RDF and SSF that the VRD-
model displays is not obtained. From the mean squared displacement and the intermediate scattering function
we derive that this increase in structural order is accompanied by a slowing down of the dynamics, but that
we are still far away from the jamming transition. Analysis of the average perimeter also suggests this slowing
down. Which biological and physical processes are responsible for the change in dynamics is a complex question,
but the fact that we can still investigate this dynamics without knowing the effects of these underlying processes
is a powerful property of the correlation functions and mode coupling theory.

In this region far before the jamming transition, mode coupling theory captures the qualitative growth in
relaxation times correctly. This verification of MCT on experimental data is in line with the verification of
MCT in the VRD-model in the same region before the jamming transition (Section 4) and we can draw the
same conclusions. Firstly, our analyses extend the applicability of mode coupling theory to a new field of
physics. And secondly, this validity of MCT provides us with a theory that describes the physics of confluent
cell layers and strengthens the analogy between confluent cell layers and non-living materials approaching a
glass or jamming transition.

Besides this theoretical significance, MCT provides us as well with an alternative tool to get insights into the
dynamics of a cell layer based on only one snapshots instead of many snapshots during a long period of time.
This is a big advantage because in experiments it is often very expensive to measure during a long time window.
Moreover, it might even be impossible to calculate the diffusion coefficient or relaxation times based on these
long measurements because the state of living materials is continuously changing.

In this research, we only tested the MCT predictions in a limited range of relaxation times. Therefore, we
suggest to repeat our analyses in the future using experimental data of cells that reach a further jammed state
to verify our conclusions. In the next and last result section, we switch back to simulations and investigate the
VV-model in which a different active force is incorporated than in the VRD-model.
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6 Results of the Voronoi Vicsek model

In Subsection 3.4 we proposed a new model which combines the Self-Propelled Voronoi model [108] with a
Vicsek-like alignment [145]. The equation of motion for this model is given by

dri
dt

= µF int
i + v0n̂i, (77)

where the interaction force F int is given by

F int
i = −∇riE = −∇ri

(
N∑
i

ka(ai − a0)2 + kp(pi − p0)2

)
, (78)

and the time evolution of the polarity vector n̂i = (cos(θi), sin(θi)) is given by

dθi
dt

=
1

τv
〈φj(t)− θi(t)〉0<|ri−rj |<RV + ηi(t) with 〈ηi(t)ηj(t′)〉 = 2Drδ(t− t′)δij (79)

with φj the angle of the velocity vector of cell j. This last equation distinguishes the VV-model from the
VRD-model that does not contain the neighbor-alignment term.

The dynamics in the VV-model is regulated by the competition between the cell’s tendency to obtain its
preferred shape and to align its polarity with the velocity of its neighbors under influence of stochastic noise.
The VV-model adds the Vicsek radius RV and the Vicsek persistence time τV to the free parameters of the
VRD-model, which are p0, v0 and Dr. The main purpose to investigate the VV-model is to see whether tuning
of RV could be a mechanism to influence the connectivity between cells and therefore their alignment in a
similar way as observed in experiments. We first investigate the effect of RV on the alignment of the cells in
Subsection 6.1 and in Subsection 6.2 we perform a broad parameter analysis where we investigate how the five
free parameters influence the alignment and the structure. In Subsection 6.3 we compare the results of the
Voronoi Vicsek model regarding alignment to experiments that have inspired this model. Besides influencing
the alignment, the Vicsek radius also effects the dynamics and jamming properties and this is demonstrated in
Subsection 6.4. We end with summarizing the main conclusions in Subsection 6.5.

6.1 Phenomenological description

Figure 62 illustrates the effect of the Vicsek radius RV on the velocity field (left) and the trajectories (right) of
the cells. The Vicsek radius is 0.0 r0, 1.0 r0 and 3.0 r0 for respectively the top, center and bottom panels, and
in the left top corners of the velocity field the size of this Vicsek radius is illustrated with a circle. All velocity
vectors φ that are within π/4 from the average velocity vector φavg = 1

N

∑N
i=1 φi are marked green in the velocity

field graphs. The velocity vectors that deviate between π/4 and π/2 from the average velocity vector are orange
and all other vectors are marked red. The time is chosen such that the system has reached a steady state and
waiting longer does not alter the alignment. We see that there is no long-range alignment for RV = 0.0 r0, for
which the VV-model is equal to the VRD-model. When we increase RV to 1, we see the number of orange
velocity vectors increases indicating that some alignment arises in the layer. For RV = 3.0 r0 the velocity
field turns green, which means that there is significant long-range alignment. This difference in alignment as
a function of RV influences the trajectories of the cells, as shown in the right graphs. The trajectories of 10
percent of the cells are drawn during 50 τ0. For RV = 0.0 r0 the trajectories do not show alignment and all
have different forms. For RV = 1.0 r0, the cells move in one preferred direction, but the fluctuations are high.
Ultimately, for RV = 3.0 r0 the cells are highly aligned and they flow all in the same direction.

Figure 64 gives the alignment index AI as a function of time for several values of RV . All lines start at 0 because
the system is relaxed without an active force. At time t = 0 τ0 the VV-force is turned on and if RV is large
enough, cells start to align until a certain value is reached. This value and the time it takes to reach it depends
on RV and we look further into this in Subsection 6.2.1. Figure 63 shows how this velocity alignment takes
place for RV = 3.0 r0. At three different times the velocity field is given and as time evolves (from left to right
panel) the velocity vectors become more correlated indicating a higher alignment.

Now we have seen qualitatively that RV can indeed be used to tune the alignment, we investigate how this
alignment is influenced quantitatively by RV and the other four free parameters in the next subsection.
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Velocity field and trajectories as a function of the Vicsek radius

Figure 62: The velocity field (on the left side) and the trajectories (on the right side) for three different values of RV :
0.0 r0 (top), 1.0 r0 (center) and 3.0 r0 (bottom). For the trajectories, only ten percent of the cells are drawn. The other
parameters are given by Setting A in Table 1.
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Alignment of the velocity vectors

Figure 63: Velocity field at three different times: t = 0.0 τ0 (left), t = 50.0 τ0 (center) and t = 100.0 τ0 (right) for
RV = 3.0 r0 and Setting A. The legend is defined in the left top panel of Figure 62

Alignment index as a function of RV

Figure 64: The effect of RV on the alignment rate and the alignment value at t→∞ for Setting A in Table 1 (with RV
varying between 0.0 r0 and 5.0 r0).

6.2 Parameter analysis

In this subsection we focus on the effect of the five free parameters on the value of the alignment index at
t→∞, the alignment time τAI , the average perimeter and the average velocity v at t→∞. We use Setting A
given in Subsection 3.5 and check our conclusions with the two other Settings B and C. The parameter values
of these settings are repeated in Table 2.

Table 2: Definition of the three different parameter settings A, B and C.

RV (r0) p0(r0) v0(τ0/r0) Dr(τ
−1
0 ) τV (τ0)

Setting A 1.5 3.8 0.5 1.0 1.0 Basic
Setting B 1.5 3.6 0.1 1.0 1.0 Further jammed
Setting C 2.5 3.8 0.5 1 0.1 More collectivity
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6.2.1 Effect of the Vicsek radius

Effect of RV

Figure 65: The influence of RV on the alignment index (left top panel), the alignment time (right top panel), the average
perimeter (let bottom panel) and the speed (right bottom panel) for Setting A, B and C in Table 2 and RV varying
between 0.0 r0 and 5.0 r0.

The left top panel of Figure 65 shows the effect of RV on the long-time alignment index. There is no alignment
for small RV because there are no or a only few neighbors within the Vicsek radius. Around RV = 1.0 r0 the
alignment increases, almost switch-like, to a high value of alignment of which the specific value depends on the
other parameters. In a hexagon tiling the distance between two neighbors is 1.07 r0 (see Appendix D.3) and
it is therefore worth mentioning that the transition in AI takes place around RV = 1.0 r0. This means that
the layer is driven away from an optimal packing structure causing some cells to deform and have seeds closer
to each other. When RV is increased further the value of AI does not change much, but the alignment rate is
much faster as indicated by τAI in the right top panel of Figure 65. The reason for this increase in alignment
rate is that each cell aligns its polarity with more neighbors.

Correlation length Energy

Figure 66: Correlation length as a function of RV for
Setting A in Table 2 and RV varying between 0.0 r0

and 5.0 r0.

Figure 67: Potential and kinetic energy as a function
of RV for Setting A in Table 2 and RV varying between
0.0 r0 and 5.0 r0.
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The switch-like behavior as a function of RV is also visible in the correlation length Lcorr,t→∞ in Figure 66. The
correlation length goes to 22.4 r0 when RV is around one, which indicates that all cells are correlated as this is
the maximum distance between two particles in a square box with periodic boundaries and area A = 1000 r2

0

(orange line). When the correlation length is smaller but nonzero, different clusters exists in the system in which
the velocity is correlated but a long-distance correlation is lacking. The fact that the correlation length goes
to its maximum possible value very rapidly suggests that there are finite-size effects at play. It might therefore
be good in further research to verify our results in larger system sizes. Because the correlation length shows
always similar behavior as AI in our analysis, we will not look at the correlation length in the remainder of this
analysis anymore and focus on the AI.

An increase in RV promotes collective behavior and a flow arises when RV is large enough and cells migrate over
large distances. This is reflected in an increase in the average speed v around RV = 1.0 r0 (right bottom panel
of Figure 65) and in a larger average squared displacement (Figure 68). Note that this squared displacement
is unequal to the MSD, because the average displacement of the cellular collective is not subtracted. The
reason for these large displacements is that aligned cells have the ability to move efficiently in a flock in which
the configuration barely changes. As a consequence, the displacements are mostly regulated by the aligned
self-propelled forces and barely disrupted by the interaction force. This results in an increase in the kinetic
energy, while the potential energy decreases because cells are getting closer to their preferred shape (see Figure
67).

The left bottom panel of Figure 65 shows q as a function of the Vicsek radius and show that for Setting A
and C q decreases around RV = 1.0 r0. The average perimeter even reaches q = 3.81 r0 in Setting C, which is
the jamming criterion according to Bi et al. [108]. These results are in line with the conclusions of Giavazzi
et al. [149] that flocking promotes solidification. Their explanation for the decrease in q when the alignment
increases is as follows. When there is no alignment, the motion is Brownian. This gives rise to an effective
temperature that can help cells to overcome energy barriers. When RV increases and cells align more, this
effective temperature decreases resulting in more strongly caged cells as it becomes more difficult to overcome
energy barriers. In Subsection 6.4 we look further into the effect of RV on the dynamics and jamming and will
see that the dependence of jamming on RV is more complex than q suggests. In conclusion, around RV = 1.0 r0

the alignment increase from almost zero to a finite value depending on the other parameters and increasing RV
to larger values increases the alignment rate but does not increase the alignment further.

Displacement as a function of RV

Figure 68: RV influences the mean squared displacement (where the average collective displacement is not subtracted)
for Setting A given in Table 2 and RV varying between 0.0 r0 and 5.0 r0.
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6.2.2 Effect of the preferred perimeter

Effect of p0

Figure 69: The influence of p0 on the alignment index (left top panel), the alignment time (right top panel), the average
perimeter (let bottom panel) and the speed (right bottom panel) for Setting A, B and C in Table 2 and p0 varying between
2.75 r0 and 4.5 r0.

The left top panel of Figure 69 shows that decreasing p0 leads to a higher alignment. This is accompanied
by respectively an increase or decrease in the alignment rate according to the right panel of Figure 69. Most
interesting is the increase from p0 = 3.5 r0 till p0 = 4.0 r0 as that is the most physical regime (see Subsection
4.1). In Section 4 is already showed that increasing p0 promotes fluidification in the VRD-model and the
graph of q in the left bottom panel of Figure 69 shows that this also holds in the VV-model at and above the
jamming transition. When a system becomes more fluid-like, cells are moving more and more randomly and
this opposes alignment. Due to this smaller alignment, the speed of the cells also slightly decreases (left bottom
panel of Figure 69). In Subsection 6.2.1 we showed that flocking promotes solidification and these results also
suggests the opposite statement that solidification promotes flocking. For p0 > 4.2 r0 another effect arises which
counteracts velocity alignment, namely that the seeds of the cells are sticking to other seeds (see right panel of
Figure 38). This can results in clustering of cell seeds in which cells do not have neighbors within RV outside
their cluster, which causes the alignment to be only local and the alignment index to decrease further. This
effect is slightly reduced by the fact that cells belonging to different clusters still influence each other via the
interaction potential E and consequently the alignment index has still a finite value. In conclusion, increasing
the preferred perimeter decreases the alignment and increases the alignment rate.
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6.2.3 Effect of the velocity

Effect of v0

Figure 70: The influence of v0 on the alignment index (left top panel), the alignment time (right top panel), the average
perimeter (let bottom panel) and the speed (right bottom panel) for Setting A, B and C in Table 2 and v0 varying between
0.0 r0/τ0 and 5.0 r0/τ0.

The left panel of Figure 70 shows the effect of v0 on the alignment. For v0 = 0.0 r0/τ0 the self-propulsion force is
absent and no alignment takes place. Setting A and B has a maximum in the alignment around v0 = 1.0 r0/τ0
for the following reason. There is always an interplay between the self-propulsion force that tends to align the
cells and the interaction force that tends to optimize the shape of the particles. At the maximum of AI, this
self-propulsion force is strongest in relation to the interaction force. For smaller values of v0, the self-propulsion
force becomes weaker and for larger values of v0 the interaction force becomes stronger as the cell shapes are
more disrupted by the larger displacements due to the self-propulsion force. These less optimal cell shapes for
large v0 is shown in the left bottom panel of Figure 70 where q grows when v0 grows (for v0 > 1.0 r0/τ0). The
interaction force tries to recover the more optimal shapes and this causes cells to move in different directions
than their alignment and this accounts for the decrease in AI for RV > 1 r0 (in Setting A and B). For very
high velocities (v0 > 4.0 r0/τ0) the alignment does not decrease further while the alignment rate increases (right
top panel of Figure 70). We expect this faster alignment to be caused by the fact that cells see more different
neighbors due to the higher instantaneous velocity. The right bottom panel of Figure 70 shows that for Setting
A a higher v0 does not result in a higher velocity while it does so for Setting B and C. The reason for this
opposite behavior of Setting A is that the persistence in the movement of the cells is lower because the system
is more fluid-like than in the other settings.

The left bottom panel of 70 shows furthermore that the Vicsek force can lower q for small v0 in comparison to
the average perimeter at v0 = 0.0 r0/τ0. Activation of the self-propulsion force lowers the energy barriers for cell
rearrangements as more pathways become dynamically accessible. This can help the cells to optimize their cell
shape, which raises the energy barriers again and causing cells to be trapped and eventually, when the caging is
strong enough, to be jammed when q < 3.81 r0. When v0 increases further, the self-propulsion force can help the
cells to escape their cage again and this results in an increase in q. Sussman and Merkel [144] find that there is
no unjamming transition in the athermal limit of the SPV-model (see Subsection 3.3.2), where athermal means
that there is no active force via setting v0 = 0.0 r0/τ0, while the results of Bi et al. [108] for small values had
suggested that there is a transition. In Figure 70 we also see how the athermal limit differs from higher values
of v0, in line with the conclusions of Sussman and Merkel [144] for the SPV-model to which the VV-model
reduces in the athermal limit. In conclusion, alignment only takes place when the velocity v0 has a finite value.
Increasing v0 does not change the alignment much, but changes the alignment rate non-monotonously.
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6.2.4 Effect of the rotational diffusion

Effect of Dr

Figure 71: The influence of Dr on the alignment index (left top panel), the alignment time (right top panel), the average
perimeter (let bottom panel) and the speed (right bottom panel) for Setting A, B and C in Table 2 and Dr varying between
0.1 τ−1

0 and 10 τ−1
0 .

The left top panel of Figure 71 shows the effect of Dr on the alignment index. For small values of the noise, the
alignment goes to almost 1. AI does not become exactly 1 because of the influence of the interaction potential.
When Dr increases the alignment index increases and the rate decreases (right top panel of Figure 71). At
larger Dr cells have less time to align before becoming disrupted by rotational diffusion and this results in a
smaller AI as well. The resulting value of AI is an interplay between Dr and the Vicsek persistence time (see
Subsection 6.2.5), because a smaller persistence time causes cells to align faster and counteracts the effect of an
increase in noise and vice versa. Setting C has a smaller τV and a higher RV than Setting A and this results in
a higher AI. The left bottom panel of Figure 71 shows a decrease in velocity upon increasing Dr because cell
motions are less persistent.

Time evolution of q

Figure 72: Time evolution of q as a function of Dr for Setting A in Table 2 and Dr varying between 0.0 τ−1
0 and 10 τ−1

0 .
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The left bottom panel of 71 shows q as a function of Dr and the results differ for the different settings. Focusing
on Setting A we can distinguish two regimes. For the regime until roughly Dr = 1.0 τ−1

0 an increase in the
rotational diffusion results in an increase in q and increasing Dr in the regime Dr > 1 τ−1

0 has an opposite
effect. These differences in behavior can be explained with Figure 72, which shows the time evolution of q.
At t = 0.0 τ0 the active force is turned on and this always results in an increase of q because the cells are not
aligned yet. The smaller Dr the bigger this increase because of more persistent motion of the cells resulting in
larger shape deformations. At large Dr in comparison to other inverse time scales, the motion is more Brownian
and this promotes a smaller q-value. But what stands out in Figure 72 is that for small Dr the perimeter
eventually reaches a smaller value than for the large values of Dr. All cells align for small Dr and move as one
flock in which the self-propulsion does no longer influence the shape of each cell and the interaction force has
no competition in optimizing the shape anymore. This non-monotonous behavior of q shows that there are two
similar states possible regarding the shape, but with different dynamics. The cellular collective is stationary in
one state and flowing in the other state. This is the same distinction as Giavazzi et al. [149] make between a
flocking liquid and a stationary liquid and is illustrated by Malinverno et al. [151] in Figure 36. In conclusion,
an increase in Dr decreases the alignment while the alignment rate decreases and has a non-monotonous effect
on the average perimeter q.

6.2.5 Effect of the Vicsek persistence time

Effect of τV

Figure 73: The influence of τV on the alignment index (left top panel), the alignment time (right top panel), the average
perimeter (let bottom panel) and the speed (right bottom panel) for Setting A, B and C in Table 2 and Dr varying between
0.01 τ0 and 100 τ0.

The left top panel of Figure 73 shows the effect of τV on the alignment index. When τV is the smallest time
scale in the system, the alignment is almost one. The alignment decreases when τV increases because other time
scales disrupting the alignment become more important, like the time scale of rotational diffusion D−1

r . The
alignment rate decreases together with the alignment index as shown in the right top panel of Figure 73. Also
the speed decreases (right bottom panel of Figure 73) because cells move more randomly resulting in a smaller
net displacement.

The effect of τV on q in left bottom panel of Figure 73 differs for the three Settings A, B and C. Focusing on
Setting A shows that in general q decreases when τV decreases and vice versa, except for very small values of τV .
This confirms the statement in Subsection 6.2.1 that flocking promotes solidification and the same arguments
hold in this case. Tuning τV is a way to reach the jamming transition according to the threshold q = 3.81 r0. q
suggests an unjammed state for very small τV when there are barely random movements that can help cells to
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decrease their perimeter. Nevertheless, analysis of the diffusion coefficient or relaxation time has to be executed
to determine whether this is really an unjammed state or that q is not a good measure in this regime.

The effect of changing Dr in Figure 71 looks similar to the effect of changing τV in Figure 73. Although
the physical origin of both parameters is different, they both influence the persistence of the cells’ motion.
Furthermore, the combination of Dr and τV is dimensionless. This raises the question whether the product
DrτV can be treated as one control variable; further analysis is needed to verify this hypothesis. In conclusion,
an increase in τV decreases the alignment while the alignment rate decreases, which is similar to the effect of
Dr.

6.3 Comparison to experiments

The Voronoi Vicsek model is inspired by experiments of L̊ang et al. [146] that show that a depletion of calcium
can decreases the velocity alignment of cells and in this subsection we explain how these experimental results can
be compared to our VV-model. In these experiments, HaCaT keratinocytes cells derived from human epidermis
are used. After starvation for 48 hours in different calcium concentrations, they are activated with epidermal
growth factor (EGF). Before looking at the effect of calcium, the effect of this EGF is examined. Normally,
quiescent epidermal cells get activated when they get in touch with blood serum. The serum signals the cells
that they have to close a wound and also provide nutrition to do so. The function of EGF is to mimic the
effect of the serum as is shown in the left and right top panels of Figure 74. Both the speed (left panel) and
the alignment (right panel) increase when the serum is added and addition of EGF shows similar behavior. In
our simulations the addition of EGF is represented by turning on the self-propulsion force by giving v0 a finite
value. This is shown in Figure 75, where the purple line has v0 = 0 r0/τ0 and the red line v0 = 0.5 r0/τ0.

Experimental results for speed and alignment

Figure 74: Experimental results on HaCaT keratinocytes cells. Serum and EGF have similar effects on the speed (left
top panel) and the IOP (right top panel). The calcium concentration does not influence the speed (left bottom panel), but
does influence the IOP (right bottom panel) [146].
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Speed

Figure 75: The speed in absence (v0 = 0.0 r0/τ0) and presence (v0 = 0.5 r0/τ0) of a self-propulsion force (and other
parameters given by Setting A in Table 2).

The effect of calcium in experiments is examined by exposing the cells to a low calcium concentration prior to
starvation. It is known that calcium plays a critical role in promoting cell-cell adhesion and depleting it reduces
the cell-cell connectivity. L̊ang et al. [146] shows that depletion of calcium decreases the collective behavior
(right bottom panel of Figure 74), while it does barely influence the speed (right bottom panel of Figure 74). It
is yet unknown how cells align their velocities and our hypothesis is that the mechanism behind this alignment
can be described with the VV-model. In this model the depletion of calcium is represented by a decrease of
the Vicsek radius RV and Figure 64 shows indeed this intended effect of the Vicsek radius on AI. Although
Appendix G.6 showed that the AI and IOP behave similarly, we show in the right panel of Figure 76 the IOP
for clarification (and during a shorter time period). Because the IOP depends also on other parameters than
RV , we cannot derive to which RV the experimental data corresponds. However, it is likely that only a subsets
of the RV values used in Figure 76 is captured by the experimental data and the left panel of Figure 76 shows
that for a small range of RV the speed barely changes.

In our simulations v0 is increased instantaneously at time t = 0.0 τ0 causing an immediate increase in alignment
and speed in Figure 76. However, the experimental results of Figure 74 show a much slower build up of the
alignment. Our hypothesis is that cells require some time to assimilate the EGF and to respond to the new
situation. A possible way to improve our simulations might be incorporating this response time by making the
parameters v0 and RV time-dependent such that at small values of t these parameters are still very small and
they increase gradually to their finite value. We expect this adaptation to slow down the alignment rate in the
right panel of Figure 76. Furthermore, the experimental results in Figure 74 show that after some finite time
the alignment and speed decreases again. One hypothesis is that this is caused by the depletion of EGF or
other biological substances necessary for the cells to move and this might be imitated by tuning down v0 and
RV again. Additionally, it is also interesting to see whether the alignment in experiments can increase further
when cells are being fed during a longer period.

In addition to changing RV , there are many ways to tune the alignment of the cell layer and to get identical
situations as shown in Subsection 6.2. Nevertheless, not all ways are experimentally available. RV has its
representation in biological experiments by varying calcium, but it is questionable how easy it is to change, for
example, Dr or τV in experiments. Furthermore, p0 is thought to be a function of the cell-cell adhesion (see
Subsection 3.3.1) and an decrease of the adhesion is reflected by a decrease in p0. This results in an increase
in the alignment of the VV-model according to 6.2.2, while in the experiments of Lang [146] a decrease in
adhesion causes a decrease in alignment. This contradiction does not show that the VV-model is incorrect, but
that only taking into account the effect of adhesion on p0 and neglecting RV is not sufficient to describe the
alignment. Moreover, in this light it is an interesting question whether it is sufficient to mimic the effect of
calcium by only tuning RV and not by tuning a set of multiple parameters like RV and p0 at the same time.
Nevertheless, our results show that by only varying RV the main characteristics of the experiments with calcium
are captured.

Now we have shown that the VV-model can qualitatively account for the effect of calcium in experiments, it
is interesting to see whether the model can also provide quantitative information about the experiments such
as with how many cells a cell interacts on average, which is measured by RV . Because the alignment depends
on the combination of all parameters in the VV-model, this requires first more knowledge about the values of
these parameters in experiments.
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Figure 76: The speed (left panel) and IOP (right panel) as a function of time for Setting A in Table 2 and RV varying
between 0.0 r0 and 5.0 r0.

6.4 Jamming analysis

In addition to tuning alignment, the Vicsek radius can also be used to tune dynamics in the VV-model. In
analogy with our analysis of the VRD-model and experimental data, we demonstrate this using correlation
functions. We have chosen to use the Vicsek radius RV together with the preferred perimeter p0 as control
parameters, because we have shown in the previous subsections that RV is a powerful parameter to tune
alignment in the VV-model and in Subsection 4.3 that p0 dominates the dynamical behavior in the VRD-
model. In Subsection 6.4.1 we show how RV effects the intermediate scattering function and how this relates
to alignment. The combination of jamming and alignment results in a rich phase diagram, which we discuss in
Subsection 6.4.2.

6.4.1 Effect of the Vicsek radius on the dynamics

In Figure 77 the coherent and incoherent intermediate scattering function are drawn for several values of the
Vicsek radius RV , with the preferred perimeter p0 set to 3.55 r0 and the velocity v0 to 0.25 r0/τ0, corresponding
to a jammed state in the VRD-model (see Figure 33). This jammed state of the VRD-model corresponds to
the bold purple line in Figure 77, where RV = 0.0 r0. When the Vicsek radius is increased to 1.0 r0 the layer
becomes more fluid-like, which is shown by the bold cyan line. Increasing the Vicsek radius even further slows
down the dynamics again as shown by, for example, the bold red line for RV = 3.0 r0. The alignment index
corresponding to the values of RV at which the ISFs are evaluated is drawn in the left bottom panel of Figure
77 and we conclude that the layer is most fluid around the transition point between zero and a finite alignment.
This fluidification caused by RV is not limited to the jammed regime as we show in Appendix J.1 where we
evaluate the intermediate scattering function for p0 = 3.8 r0, corresponding to an unjammed state in the VRD-
model (see Figure 33). This intermediate scattering function decays faster when the Vicsek radius is around
1.0 r0 in comparison with smaller or higher values of the Vicsek radius.

The fluidification or increase in dynamics caused by the Vicsek radius can be understood as follows. A finite
value of RV adds persistence to the motion of the cells due to alignment of the cell with its neighbors. This
persistence counteracts the Brownian noise in the polarity vector, which is given by Dr, and the effect of the
neighbor-alignment can therefore be seen as an effective decrease in the Brownian noise. Bi et al. [108] show
that such a decrease can make a layer more fluid-like in the VRD-model, because a persistence in the motion
of cells helps to escape from caging by their neighbors and therefore lowers the energy barriers for structural
rearrangements. However, when RV is so high that all cells are aligned in the same direction, the layer moves
essentially as a flock. In this flock the self-propulsion force does not help the cells to escape from the cage of their
neighbors because they move all cells in the same direction and consequently the energy barriers for structural
rearrangements increase again, resulting in a jammed state. These three phases are illustrated in Figure 78
where the trajectories of the cells are drawn in the comoving frame. The left panel shows a so-called stationary
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flock for RV = 0.0 r0 and the right panel a stationary solid for RV = 3.0 r0. In the center panel (RV = 1.0 r0) a
transition between these two states is captured in which individual cells travel over longer distances, indicating
a more fluid-like state.

Figure 77: The coherent ISF (top left panel), the incoherent ISF (top right panel) and the alignment index (left bottom
panel) for p0 = 3.55 r0 and RV varying from 0.0 r0 till 3.0 r0 (v0 = 0.25 r0/τ0, Dr = 1.0 τ−1

0 and τV = 1.0 τ0).

Trajectories in co-moving frame

Figure 78: Trajectories in the co-moving frame for RV = 0.0 r0 (left panel), RV = 1.0 r0 (center panel) and RV = 3.0 r0

(right panel) with p0 = 3.55 r0 (v0 = 0.25 r0/τ0, Dr = 1.0 τ−1
0 and τV = 1.0 τ0).

This increase of the dynamics by RV does not correspond to an increase of the average perimeter q according
to Figure 68 in Subsection 6.2.1, which underlines the limited applicability of q as a measure for the dynamics
in the VV-model. In Appendix J.2 we repeat this analysis of q but for the same parameters as in Figure 77.
The reason that q does not captures the increase in dynamics around RV is that this change is accompanied
by an increase in structure as probed by the RDF and SSF (see Appendix J.2). This is in contrast with our
observations in the VRD-model, where we concluded that an increase in structure indicates a slowing down of
the dynamics. Apparently, the structural rearrangements in the VV-model for a value of RV around 1.0 r0 also
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make lower energy configurations dynamically accessible. This would imply that the standard MCT-analyses
that we have applied in the VRD-model and on experimental data is not applicable in the VV-model with RV as
control parameter and this calls for further research to active MCT in which the Vicsek-alignment is explicitly
taken into account.

6.4.2 Jamming and alignment phase diagram

To quantitatively describe the change in dynamics upon varying RV we measure two different parameters for
the unjammed and jammed regime. In the unjammed regime, we look at the relaxation time similar as done
in the VRD-model. This relaxation time is not defined in the jammed regime as the ISFs never falls back to
zero and therefore we use the non-ergodicity parameter (NEP), which we define as the height of the ISF at
t = 104 τ0. The relaxation time and the NEP are shown in respectively the top left and top right panel in
Figure 79. We have chosen to evaluate the incoherent ISF because Figure 77 indicates that this function is less
influenced by noise than its coherent counterpart. Because both ISFs shows similar behavior in our analysis of
the VRD- and VV-model, we do not expect that the coherent ISF would give different results in the VV-model.
The relaxation time and the non-ergodicity parameter show the increase in dynamics caused by the Vicsek
radius for all evaluated values of the preferred perimeter. For these preferred perimeters the fastest dynamics is
always observed around RV = 1.0 r0, but the exact value shifts to lower RV when p0 decreases, which is in line
with the shift in transition point from zero to a finite alignment as shown by the AI in the bottom left panel
of Figure 79. Several effects may cause this shift in transition point such as a larger variety in interparticle
distances and more motion in the cell layer for higher values of p0. The effect of the latter can be understood
by the fact that the interaction potential highly influences the velocity vector in an unjammed state (high p0),
which counteracts the Vicsek-like alignment in which cells align their polarity to the velocity of their neighbors.
In appendix J.3, we show zoomed-out versions of the graphs in Figure 79, which includes values of RV ranging
from 0.0 r0 and 5.0 r0 and we observe that the interesting region regarding dynamics and alignment is indeed
located around RV = 1.0 r0 as Figure 79 suggests.

Figure 79: The relaxation time of the incoherent ISF (left top panel), the non-ergodicity parameter of the incoherent ISF
(right top panel), the alignment index (left bottom panel) for RV varying between 0.5 r0 and 1.5 r0 and p0 varying between
3.0 r0 and 4.0 r0 (v0 = 0.25 r0/τ0, Dr = 1.0 τ−1

0 and τV = 1.0 τ0).
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Based on the jamming and alignment captured in Figure 79 we obtain the phase diagrams in Figure 80, where
an interpolation according to the tricontour function of python 2.7.12 is used. The jamming phase diagram
consists again of two separate plots for the unjammed (left top panel) and jammed regime (right top panel),
based on respectively the relaxation time and the non-ergodicity parameter of the incoherent ISF. Furthermore,
the alignment phase diagram (left bottom panel) is again based on the alignment index. The combination of
jamming and alignment results in four different states, which we summarize in the sketch in the right bottom
panel of Figure 80. We have chosen the contour line NEP=0.2 to distinguish between an unjammed state and
a jammed state, because the NEP is less influenced by the noise in the ISF than the relaxation time as we can
average the NEP during a short time period t′ << 104τ0 at the end of the measurement period. In addition,
we have chosen the value 0.2 as threshold instead of lower values to reduce the influence of the noise as well.
To distinguish between an aligned and unaligned state we have chosen the contour line AI=0.2, also for the
reason that lower values of AI might be under influence of noise and, besides, that contour lines corresponding
to higher values are close to the line of AI=0.2, at least for p0 > 1.0 r0.

Figure 80: Jamming phase diagram of the unjammed regime according to the relaxation time of the incoherent ISF (top
left panel), jamming phase diagram of the jammed regime according to the non-ergodicity parameter of the incoherent ISF
(top right panel), alignment phase diagram (bottom left panel) and a combined phase diagram for jamming and alignment
based on NEP=0.2 and AI=0.2.

69



6 RESULTS OF THE VORONOI VICSEK MODEL

Thus, the phase diagram of the VV-model shows four phases in which the Vicsek radius dominates the flock
forming and the preferred perimeter controls the dynamics. Interesting behavior occurs around the meeting
point between these four states, where a solid state is suppressed. These four states are identical to the
four states observed in the SPV-model with self-alignment (see Giavazzi et al. [149] and given in Figure 36),
although the dependence of the states on the alignment differs in both models. For example, in the VV-model
with RV as control parameter is not observed that flocking promotes solidification, which is one of the main
conclusions of Giavazzi et al. [149]. This could be a difference in the definition of the jamming transition
as we evaluated the intermediate scattering function and Giavazzi et al. [149] applied the effective diffusion
coefficient obtained from the mean squared displacement, but can also mark a fundamental difference between
self-alignment controlled with an interaction strength and neighbor-alignment controlled with the Vicsek radius.
Because the Vicsek persistence time τV determines the interaction strength of the neighbor-alignment in the
VV-model, an additional comparison in which τV is tuned in the VV-model might give further insights in the
similarities and differences between the two models with different alignment mechanisms. Examining this effect
of the Vicsek persistence time τV results in an extra axis in the phase diagram given in the left bottom panel of
Figure 80. Also the velocity v0 or the rotational noise Dr can be added, resulting in different opportunities to
make a rich three-dimensional phase diagram for the VV-model, similar to the phase diagram of the VRD-model
in Figure 33. This is left to further research.

6.5 Conclusions

We have shown that the alignment in the VV-model can be tuned with the Vicsek radius RV , in line with the
intended behavior of this model. In addition, the other four free parameters also influence the alignment, which
results in numerous options to reach similar states. Increasing the Vicsek radius RV , decreasing the preferred
perimeter p0, tuning the velocity v0 towards 1.0 r0/τ0, decreasing the rotational diffusion Dr or increasing the
Vicsek persistence time τV leads in general to a larger alignment. Furthermore, a larger alignment is usually
accompanied by a faster alignment rate. Analyses of the average perimeter q suggest that in most cases flocking
promotes solidification and vice versa.

However, further investigation of the dynamics and jamming in the VV-model using correlation functions suggest
that this connection between flocking and solidification is more complex when RV is used as control parameter.
A jammed state without neighbor-alignment might become unjammed when the Vicsek radius is increased to
a value around 1.0 r0 and a further increase might re-solidify the layer. In contrast to the VRD-model, this
fluidification or increase in dynamics is accompanied by an increase in structure. Consequently, the average
perimeter q fails to capture this dynamic behavior, which makes a mode coupling theory analysis even more
interesting. However, an applicability of MCT would be highly non-trivial as MCT in general predicts that the
dynamics slows down when the structure increases.

The combination of alignment and jamming results in a rich phase diagram consisting of four phases: a stationary
fluid, a stationary liquid, a solid flock and a liquid flock. For further research we suggest to evaluate this phase
diagram further and extend the diagram to three-dimensions using one of the other free parameters (τV , v0

or Dr) as a third axis. We expect that an increase in v0 or a decrease in Dr might result in an unjamming
transition in analogy with the VRD-model. Furthermore, we expect that a decrease in τV might slow down the
dynamics in analogy with the SPV-model with self-alignment (Figure 36).

The VV-model suggests a mechanism of cell alignment in experiments with EGF and varying calcium concen-
tration. The addition of EGF is reflected by a nonzero value of the velocity v0 and an increase or decrease in the
calcium concentration by respectively an increase or decrease in RV . This is physically explained by the fact
that cell are less connected under low calcium concentrations in experiments which results in fewer neighbors
that influence a cell’s alignment in the VV-model. Experiments and model show different behavior on short
times and on long times, respectively due to the adaptation time and the depletion of EGF and calcium in
experiments. It might therefor be interesting for further research to connect the simulations and experiments
for these periods as well.

Before continuing to the final conclusions of our research, we explain how this research can be improved and
extended in the next section.
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7 Future research possibilities

The main goal of this thesis has been to understand the collective behavior in confluent cell layers better,
but the research has also lead to many ideas for improvements and extensions. Some of these possibilities are
already mentioned in this thesis and in this section we summarize them together with some extra ideas we have
gained. One of the main interesting pathways is to investigate the activity further by investigating different
forms of the active force in cell models and by applying active mode coupling theory, which we will both discuss
in Subsection 7.1. In Subsection 7.2 we list other research possibilities regarding model extensions, structure
and dynamic heterogeneity, MCT, the VV-model and experiments. We conclude in Subsection 7.3 by looking
at the bigger picture concerning both mode coupling theory in general and jamming and collective behavior in
confluent cell layers.

7.1 Activity and active MCT

It is clear that cells are self-propulsive, but it is unknown how this active force behaves in confluent cell layers.
In this thesis we investigated two implementations of this self-propulsion, namely via a force whose polarity
undergoes rotational diffusion (VRD-model) and via a force whose polarity aligns with its neighbors (VV-model).
However, the list of possibilities are endless and the differences in dynamic behavior between the VRD-model
and the VV-model suggest that other implementations of the active force might give rise to other interesting
dynamical phenomena. Below we highlight one specific implementation of the active force based on biology and
two implementations for which an active version of mode coupling theory is already studied in a self-propelled
particle model (SPP). These SPP-models have a different interaction potential than the Voronoi potential in
our cell models, but the fact that MCT is independent of the specific form of this potential implies that an
active MCT-analysis can be relatively easily implemented in these latter two cell models. This active MCT
might improve the results as until now we have only applied standard MCT in which the activity is only taken
into account via the static structure factor. We first explain these possible cell models below before explaining
the active versions of MCT further.

Figure 81: Five implementations of the active force.

The active force in the VRD-model, the VV-model and three new models are sketched in Figure 81 and defined
as follows.

• Voronoi rotational diffusion model: the direction of the force changes according to Brownian noise, while
the size of the active force is constant. This is our basis model.

• Voronoi Vicsek model: the direction of the force alters via a Vicsek-like alignment and Brownian noise,
while the size of the active force is constant. In this Vicsek-like alignment the direction of the force changes
towards the average direction of all particles that are within a specific radius. This model is investigated
in Section 6.

• Voronoi major axis model: the active force aligns with the major axis of the cell, while the size of the
active force stays constant. This model takes into account the biological interpretation that cells generally
move along the direction in which the cytoskeleton is stretched. In simple Voronoi models, the behavior
of the cytoskeleton is not explicitly included. Arguably the simplest means to account for cytoskeletal
orientation is to assume that the cytoskeleton is stretched along the major axis of the cell.

• Voronoi Ornstein-Uhlenbeck model: the active force changes due to an effective temperature in the pres-
ence of a persistence time. This type of active force is already investigated in cell models [1, 96], but not
yet in combination with the Voronoi interaction potential.
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• Voronoi run-and-tumble model: the active force changes according to a white noise term in both the
direction and in the magnitude and an extra shear flow is added. Run-and-tumble models are a good
way to model single cells and it is interesting to investigate whether it has a counterpart in confluent cell
layers.

For the remainder of this subsection we focus on active mode coupling theory and especially on the versions
derived for an Ornstein-Uhlenbeck and run-and-tumble model. In general, to derive an active MCT-equation,
the Smoluchowski operator S in Equation 39 changes according to the form of the active force. This implies
additional assumptions in the derivation of the mode coupling theory and gives rise to different routes to derive
the MCT-equation, which results in the existence of different active MCT-versions for similar models.

Refs. [62] and [63] both proposed a mode coupling theory for Ornstein-Uhlenbeck particles. Szamel et al. [62]
(see also Szamel [75]) make the assumption that the particle positions evolve on a time scale much larger than
the time scale governing the evolution of the activity vector, which means that the persistence length is much
smaller than the caging length, and they make a projection onto a local steady state to be able to assume
quasi-equilibrium. The resulting MCT-equation needs the Fourier transform of the velocity correlations as an
extra input. A completely different route is followed by Feng and Hou [63] and includes an effective diffusion
coefficient and a modification of the static structure factor, both dependent on the form of the active force.
Despite the differences in approach, it turns out that the effective diffusion coefficient plays the same role as
the velocity correlations in Refs. [62, 75]. The MCT-predictions of Szamel et al. [62] give a non-monotonous
behavior of the relaxation time based on persistence time, which is in agreement with simulations. Feng and
Hou [63] conclude from their MCT-predictions that the location of the jamming transition also depends on the
persistence time and on the magnitude of the self-propulsion force, which is in agreement with simulations as
well.

Farage and Brader [64] derived a mode coupling theory for run-and-tumble particles. They apply a so-called
diffusion limit in which they assume that a single, non-interacting particle behaves effectively as a passive
particle but with a higher effective diffusion coefficient, which is comparable to the assumption made by Szamel
et al. [62]. In essence, this approach leads to the removal of explicit rotational freedom and results in an
MCT-equation similar to the standard version in Subsection 2.3.1 but with an activity dependent prefactor
for the memory kernel and frequency term. Farage and Brader [64] show that this version of MCT predicts a
monotonous shift in the glass transition by varying the velocity as seen in simulations.

Perhaps the most complete version of active MCT is derived by Liluashvili et al. [65] for active Brownian particles
that move with a constant self-propulsion speed in a random direction, subject to translational and rotational
Brownian noise. In their derivation they treat both the translational and rotational degrees of freedom on an
equal footing instead of making a reduction to a near-equilibrium state. The rotational degrees of freedom are
now explicitly coupled to the translational motion and the static velocity correlations are not needed as extra
input. The MCT-analysis of Liluashvili et al. [65] results in a phase diagram dependent on the velocity of the
self-propulsion force, the rotational noise and the packing fraction.

Other studies of active mode coupling theory include the approach of Kranz et al. [66] for driven granular
fluids and the study of Nandi and Gov [67] for an Ornstein-Uhlenbeck process, but we will not discuss them
further.

Despite the many assumptions that are done in the several derivations for active MCT, the different theories all
give some accurate predictions about, for example, the relaxation time depending on the characteristics of the
active force. This makes it highly relevant for us to look further into these active MCT-versions. Nevertheless,
more research is needed to investigate the different approaches and assumptions made in the active MCT
derivations described above. This can hopefully lead to an active MCT-version for the VRD-model that can
improve the results presented in this paper for the VRD-model and to an adequate active MCT-analysis for the
VV-model. In the next subsection we summarize further research extensions and improvements.

7.2 Further research extensions and improvements

In Subsection 7.2.1 we explain possibilities to extend the cell models that we have used and in Subsection 7.2.2
we list options to delve further into structural and dynamical heterogeneity. Possibilities to verify, extend and
improve our MCT-analysis are discussed in Subsection 7.2.3. In Subsection 7.2.4 we explain how the Voronoi
Vicsek model can be further investigated and in Subsection 7.2.5 we give suggestions for new experiments based
on our theoretical analyses.
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7.2.1 Model extensions

In this subsection we list several possibilities for extending the models used in this research, but first we make
one remark about the current model. In our research, we have assumed that the Voronoi centers represent cell
nuclei and we have calculated the correlation functions and applying mode coupling theory using these Voronoi
centers, which sounds reasonable as in the VRD-model the equation of motion is solved for these Voronoi centers
as degrees of freedom. Nevertheless, each cell also possesses another characteristic point, namely the centroid.
The centroid, also called the center of mass or the geometric center, has equal cell volume on all sides and
might represent the nucleus of the cell as well. Therefore it might be useful to investigate how the correlation
functions change when using the centroid instead of the Voronoi centers. Especially in cases where p0 is high
and the Voronoi centers are sticking together (see right panel of Figure 38), the centroids might give different
results including a weakening in the vanishing of the mutual exclusion. Furthermore, there is no strong reason
to assume that the relaxation times for the seeds and the centroids are the same, which makes it useful to look
at the MCT-predictions for the centroids as well.

We have used a simple Voronoi potential in our VRD- and VV-model, because this is sufficient to study the
glassy behavior of confluent cell layers, but adapting this potential can give rise to interesting research. For
example, Sussman et al. [130] add an extra interfacial tension between different cells in a bidisperse mixture,
mimicking the dislike of cells to share boundaries with a different type of cell. Other possible additions are
terms that take into account the substrate adhesion or the attraction or repulsion of the nuclei. Using a
more complicated potential, similar analysis can be performed as done in this thesis to study the changes in
structure and dynamics. Because mode coupling theory does not take into account the form of the potential
explicitly, it would be useful to verify our MCT-results using different potentials as this does not change the
MCT-equation.

Another modification to the VRD- and VV-model is changing the Voronoi tesselation defined by Equation 55
by adapting the distance function D(r, ri) using weights depending on cell i. One way to do this is using the
Euclidean squared distance with subtracted weights wi called the difference method,

D(r, ri) = (r − ri)
2 − w2

i , (80)

and a second method is dividing the Euclidean distance by the weights, called the quotient method,

D(r, ri) =
(r − ri)

2

w2
i

. (81)

Figure 82 shows how the two methods changes the Voronoi tesselation, with in the left panel the difference
method and in the right panel the quotient method. The green stars define the Voronoi centers and the green
circles have a radius equal to the weight. In the quotient method, the edge between cell i and j is at equidistant
from the circles of cell i and j. This relation is more difficult in the difference method and results in piecewise
spherical edges. These non-linear boundaries might provide a better way to describe real cellular systems than
the straight edges that we are using in our VRD- and VV-model. However, we do not expect that these adapted
Voronoi tesselation changes the dynamics fundamentally and this adaption would therefore mainly serve to
increase the understandability of cell models in describing real cell layers.

In our models we have neglected cell proliferation and death, while this has a significant influence on the
behavior of cell systems and specifically on the glassy behavior [12, 142]. Cell divisions can fluidize a layer as it
can decrease the energy barriers by adding movements to the system, while it can also cause self-driven jamming
in confined organisms because of an increase in density. Cell death fluidizes the system because the living cells
obtain more free space to migrate to, which results in lower boundaries for structural rearrangements. Cell
division and death can be incorporated in simulation models by adding a probability that a cell divides or dies
in each time step. This is not taken into account in the mode coupling theory equations and it might therefore
be interesting to investigate its effect on the mode coupling theory predications. Note that when the division
rate is not equal to the rate at which cells die, the density changes and this makes it hard to calculate the
static structure factor and the intermediate scattering function. This is the same difficulty as we faced in the
experimental data in Section 5, where we solved it by normalizing the inter-particle distances with the square
root of the density. A similar approach could be applied in a VRD-model where cell divisions and death are
included and might reveal interesting dynamic behavior.

Glassy behavior is also observed in three-dimensional cellular systems [141, 158] and it is possible to extend
our research to 3D systems. This can be done for the VRD- and VV-model by applying a 3D-version of the
interaction potential, given by
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Figure 82: Illustration of the difference method (left panel) and the quotient (right panel) to define the edges in a Voronoi
tesselation, where the green stars are Voronoi centers, the green circles have a radius equal to the weight and the red lines
define the resulting Voronoi tesselation [137].

Ei = KV (Vi − V0)2 +KA(Ai −A0)2, (82)

in which a deviation from a cell’s volume Vi from its preferred value V0 has a penalty constant KV and a
deviation from a cell’s preferred area has a penalty constant KA. Although the equation of motions for the
molecular dynamics is more complicated in 3D than in 2D, the simulation procedures are similar. Because the
correlation functions and MCT can easily be extended to 3D [49, 159, 160], the analyses done in this thesis all
have their analogy in 3D.

In Subsection 3.2, the Cellular Potts models, the SPP models and the vertex models are explained and in all
three classes a jamming transition and associated glassy behavior are observed. Therefore, the three classes all
have the potential for a mode coupling theory analysis. We only applied MCT on one subversion of the vertex
model class in this thesis and it might be useful to check our conclusions by applying MCT on other cell models
as well. Although the models use different energy potentials and simulation procedures, the fundamentals and
the resulting dynamics are similar. Verification of MCT in these different models could enhance the validity of
MCT in cellular layers and the concept that cells can be described as simple glasses.

7.2.2 Strutural and dynamic heterogeneity investigations

Dynamic heterogeneity is one of the main characteristics of the glass transition (see Subsection 2.1) and is
observed in many experiments of confluent cellular layers that exhibit a jamming transition (see Section 1).
The two-point density correlation functions (described in Subsection 2.2) are insufficient to describe spatially
heterogeneous dynamics, and therefore we have to go to the next non-trivial, higher order function which is
the time dependent four-point density correlation function G4(r1, r2, t) [161, 162] for positions r1 and r2, given
by

G4(r1, r2, t) = 〈δρ(r1, 0)δρ(r1, t)δρ(r2, 0)δρ(r2, t)〉 − 〈δρ(r1, 0)δρ(r1, t)〉〈δρ(r2, 0)δρ(r2, t)〉t, (83)

with ρ(r, t) given by Equation 10, ∆ρ(r, t) = ρ(r, t) − 〈ρ〉 and 〈ρ〉 = N/V . Extending our analysis using
correlation functions with G4(t) or its analogy in Fourier space to probe dynamic heterogeneity might give
additional insights in the dynamics in confluent cell layers. Furthermore, being able to describe this dynamics
with mode coupling theory might be even more valuable. Standard MCT is not suitable for this as it is a
mean-field theory. Biroli et al. [163] derive an inhomogeneous mode coupling theory equation for a three-point
correlation function dependent on two different wave vectors and time, which can be used as an approximation
for the four-point correlation function. This inhomogeneous MCT is derived by applying an external field and
assuming that the fluctuations caused by this external field are similar to the internal fluctuations of the system.
To the best of our knowledge, there do not exist MCT versions that predicts G4(r1, r2, t) or its counterpart in
Fourier space and the search for an MCT-version that predicts G4(r1, r2, t) will be a challenging and interesting
task.

Besides dynamic heterogeneity, the layer may also contain structural heterogeneity. An example is the sponta-
neous arise of cell size heterogeneity, which might be one of the reason that MCT predicts too fast dynamics as
suggested in Subsection 4.4. Although the input parameters would suggest a monodisperse system, when the cell
shapes do not match their preferred shape, a variety of cell shapes and sizes exist in the layer. This influences

74



7 FUTURE RESEARCH POSSIBILITIES

the monodisperse static structure factor which, consequently, captures less structure and this might result in
the prediction of too fast dynamics according to monodisperse MCT. By binning the cells according to their cell
sizes and calculating the corresponding static structure factors, we can apply a multidisperse MCT [60, 61] in
which a matrix equation is solved for different intermediate scattering functions corresponding to the different
static structure factors for different cell sizes and this might improve the quantitative MCT-predictions.

Structural heterogeneity can also explicitly be added to the cell layer and one of the main reasons to do so is to
prevent crystallization, which is unnecessary in our models as the active force already ensures that crystallization
does not occur. Nevertheless, another reason to look at multidisperse mixtures is the fact that real cell are
never monodisperse. A natural way to incorporate multidispersity might be applying a Gaussian distribution
for the cell areas ai and adapting the preferred perimeters pi such that the ratio pi/

√
ai is the same for every

cell i. Cell size heterogeneity can also be added via a weighted Voronoi tesselation as explained in Subsection
7.3. A simpler way to incorporate multidispersity is using a bidisperse mixture in which there are only two
different preferred areas ai and preferred perimeters pi, mimicking two different cell types. A more complicated
way to add cell size heterogeneity is applying a weighted Voronoi tesselation as explained in Subsection 7.3.
The bidisperse mixture is investigated by Sussman et al. [113] and they show that the relaxation time and
the mean squared displacement are comparable between the monodisperse and bidisperse case. Consequently,
mode coupling theory should give similar predictions. However, both cell types have a different characteristic
length scale and the radial distribution function and the static structure factor changes when multidispersity is
applied. This makes it useful to verify whether MCT still predicts similar dynamics as that would contributes
to the validation of MCT.

7.2.3 Additional verifications and extensions of MCT

In Subsections 7.1 till 7.3 we have already suggested that MCT in confluent cell layers can be further verified
and improved by using centroids instead of Voronoi seeds, using adapted or different cell models and adding cell
size heterogeneity. Furthermore, we suggested to extend our MCT-analysis with active MCT, inhomogeneous
MCT and MCT for multidisperse mixtures. In this subsection we will summarize other ideas for verifying and
extending mode coupling theory in confluent cell layers.

To start with, we can vary the rotational diffusion constant in the VRD-model as this is the only free parameter
we have held constant. Bi et al. [108] already showed that an increase in Dr shifts the jamming transition to a
higher velocity and a larger preferred perimeter p0. This implies that the persistence of the self-propelled motion
helps cells to escape from the cage of their neighbors and can therefore fluidize the layer. First, it might be
interesting to investigate how Dr changes the structural and dynamical correlation functions and secondly, how
this influences the mode coupling theory predictions. We expect that these predictions become more accurate
when the rotational diffusion increases and less accurate when this decreases, because a low noise level increases
the persistence of the active force and consequently its effect on the motion of the cells. Therefore, not taking
into account this activity explicitly in the MCT-equations may have a higher impact on the predictions when
Dr is relatively small.

We only tested the MCT-predictions for the value of k at the first peak of the static structure factor. At this
inverse length scale the intermediate scattering function shows the slowest dynamics and therefore the broadest
range of relaxation times for different values of the input parameters p0 and v0. Nevertheless, comparing the
mode coupling theory predictions for the relaxation times at different k-values with the direct calculations of
the corresponding relaxation times could give additional insights in the validity of MCT. Normally, the ISF at
k-values corresponding to the peaks in the SSF show longer relaxation times than at k-values corresponding
to valleys and we expect MCT to predict these peaks and valleys as well, which would be in line with the
predictions of the non-ergodicity parameter in Figure 19.

Furthermore, we have only tested the MCT-predictions for the coherent and incoherent intermediate scattering
function and their relaxation times, but MCT can also make predictions about the mean squared displacement
[60]. Because the background and assumptions of the MCT-derivation is still the same, the MCT-predictions for
the MSD should give similar agreement as MCT-predictions for the ISF. Our conclusions about the applicability
of MCT could therefore be substantiated by verifying these predictions for the MSD.

Finally, we can test further predictions of mode coupling theory such as the scaling behavior in the α- and
β-regime as given in Figure 15, the scaling of the relaxation time and an equivalent of the time temperature
superposition, as explained in Subsection 2.3.3.

We conclude this subsection with a promising extension of mode coupling theory. Standard mode coupling theory
makes use of the approximation of a four-point density correlation function into a product of two-point densities
(see Equation 33) and it is unknown beforehand whether this is a valid approximation, although the accuracy of
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MCT-predictions suggests its legitimation. Nevertheless, it is tempting to try to improve this approximation and
one possibility is to apply generalized mode coupling theory (GMCT) [68, 69]. In this extension, a new equation
of motion is made for the four-point density correlations on the left hand side of Equation 33 which results in
an unknown six-point density correlation. This can be approximated or again solved via an equation of motion
resulting in an unknown eight-point density. Because GMCT still uses uncontrolled approximations, it is not
guaranteed that it improves the results with respect to standard MCT. However, studies have shown that GMCT
indeed improves the MCT-predictions qualitatively and quantitatively [71, 157]. A reason why GMCT might
give improvements for the VRD-model is that the pair density correlations in standard-MCT are motivated by
a pair-interaction potential, while the VRD-model possesses a multi-particle potential. The inclusion of higher
order density correlations might account for this and this can possibly improve the quantitative results of MCT
in the unjammed regime of the VRD-model and extend the applicability of MCT to the jammed regime.

7.2.4 Further investigations for the VV-model

Based on our research of the VV-model, the most interesting step to take is to investigate the jamming phase
diagram further. This might lead to a better understanding of the non-monotonous behavior of the relaxation
time and corresponding structural changes upon varying the Vicsek radius RV . Furthermore, jamming as a
function of the other free parameters such as the velocity and persistence time of the self-propulsion force might
be useful to map out. This will probably lead to a rich three-dimensional jamming phase diagram for the VV-
model, similar to the jamming diagram in Figure 33 for the VRD-model. In the remainder of this subsection
we list several other possibilities to improve and extend the research of the VV-model.

It might be useful to scale up our simulations to larger cell numbers as it is likely that our results are influenced
by finite size effects. Only 1000 cells are used in our simulation and Figure 66 shows how easily the maximum
correlation length of Lcorr = 22.4 r0 is reached. This maximum correlation length increases when the number
of cells in the simulation increases and we expect that the time it takes to reach this length increases as well.
As a result, there might be parameter combinations for which the N = 1000 case reaches complete correlation
while this is not reached using much larger cell numbers and this would result in different collective behavior
depending on the system size. In addition, we expect that swirls of comoving cells arise when the correlation
length is smaller than the maximum distance between two cells in the system, similar as observed in experiments
[146]. We expected that this swirl-forming is completely suppressed in the N = 1000 case and increasing the
numbers of cells gives the opportunity to investigate whether the VV-model can capture this behavior. One
method to test for swirls in a system is by dividing the simulation box in different fields of view (FOV) such
that in each FOV the cells are aligned. Differences in the direction of the average velocity vector in each frame
of field indicates the existence of swirls.

Another feature of the experiments that we did not capture in our VV-model is the slow increase of alignment
at the beginning of the measurement period and the decay of the alignment at the end. We expect that this is
respectively caused by the fact that cells in experiments require some time to process the EGF, which delays
the alignment, and that the EGF is depleted causing cells to starve again, which cancels the alignment. Our
suggestion to mimic these effects in simulations of the VV-model is to implement a time-dependent Vicsek radius
and velocity that both start at zero, increase slowly to a certain steady value and after some time decreases back
to zero. This might enhance the agreement between the experiments of E. Lang [146] and the VV-model.

On a different note, the phase diagram of the VV-model consists of the same phases as a comparable cell
model with a self-alignment mechanism in which the director of a cell aligns with its own velocity vector (see
Subsection 3.4.2). In both models flocking is seen and in both models the jamming transition can be shifted
by tuning the self-propulsion force. However, we use the Vicsek radius as control parameter in the VV-model
and in the model with self-alignment the interaction strength is used. This marks one difference between both
models as the self-alignment model does not account for a length scale that can be tuned to change alignment.
In addition, we expect that similarities between both models can be found by comparing the effect of the Vicsek
persistence time in the VV-model and the alignment interaction strength as both determine a time scale over
which alignment takes place. Therefore, we suggest for further research to study the similarities and differences
between these models in more detail and, finally, draw conclusions about the alignment mechanisms in real
cells.

There are five free parameters in the VV-model that can be tuned, but our results in Subsection 6.2 suggest that
not all parameters are independent. The similarities between the effect of Dr and τV on the alignment and the
fact that their product is dimensionless, gives rise to the hypothesis that we can combine them to one parameter
DrτV such that we can study the effect of this new parameter on alignment and jamming instead of studying the
effect of both parameters independently. This can be tested by checking whether simulations for the same value
of DrτV with different combinations of Dr and τV hold the same results. Besides the combination of Dr and
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τV , there might also be other groups of parameters that can be combined to one dimensionless parameter. For
example, p0 and RV both have a typical length scale and the ratio of the two values is independent. Although
the alignment index as a function of p0 and R−1

V does not show similar behavior, both decrease when the
parameter increases. This investigation has been left to future research.

Our simulations are done with periodic boundary conditions, mimicking the large number of cells in experi-
ments. However, in experiments also hard walls or free boundaries are investigated [164] and it is interesting
to investigate how our VV-model behaves under these conditions. When hard walls are applied, we expect a
circular migration when the system size is large enough and when a free border is applied, we expect the velocity
of the cells to align in the direction of this border. Furthermore, we expect the system to show slower dynamics
close to a hard boundary and faster dynamics at a free boundary. Consequently, the form of the boundaries
might therefore fluidify or solidify a confluent cell layer. However, due to the requirement that the layer has to
stay confluent and the finite value of the preferred cell area, we do not expect complete diffusion through the
free wall.

7.2.5 Experimental suggestions

Although our work has been completely theoretical, it gives rise to several suggestions and possibilities for
experiments, which we will explain here. To start with, it would be very useful to repeat our MCT-analysis
of Section 5 using cells that exhibit a broader range of relaxation times and become more jammed. Our
current analysis of MDCK-cells already show an increase in structure and slowing down of the dynamics upon
aging. However, these effects are small because the MDCK-cells never reach a jammed state and to verify our
MCT-conclusion we should look at cell systems that jam further to see a larger variation in relaxation times.
Furthermore, from our results we can only say that the relaxation time increase during aging, but we cannot
make conclusions about how these relaxation times increases because the results are too noisy in comparison
with the range of relaxation times that are found. One of the candidate cell lines that reaches a further jammed
state are HBEC cells and consequently they show a broader range of relaxation times according to Atia et al.
[10].

The comparison of the mode coupling theory predictions with direct calculations of the intermediate scattering
function for experimental data suggests that the self-diffusion coefficient decreases upon aging in MDCK-cells
(see graphs 60 and 61). This prediction can be verified by executing experiments on single, isolated MDCK-cells
to determine its diffusion coefficient. In order to do this, cell division has to be suppressed and this alters the
experimental circumstances. This might influence the self-diffusivity of the cell, but hopefully still could give
qualitative insights in the behavior of the self-diffusion coefficient upong aging.

Furthermore, the analysis of the VRD-model predicts how changes in experimental conditions might alter the
relaxation time of the intermediate scattering function. For example, decreasing the ability of cells to move on
its own or decreasing the cell-cell adhesion slows down the dynamics according to simulations of the VRD-model
and decreasing the self-diffusivity slows down the dynamics as well according to our MCT-analysis. All these
predictions could be tested by designing experimental setups in which the conditions can be adjust such that,
for example, the cell-cell adhesion or the motility changes.

Using a completely different setup, namely one according to E. L̊ang et al. [146], we can test predictions
obtained from the VV-model. For example, it is an interesting question what the cause of the neutralization
of the alignment is after some finite time. One hypothesis is that this is due to the depletion of EGF and this
suggests that by constantly adding EGF the alignment can be increased even further than the values reported
in L̊ang et al. [146].

7.3 The bigger picture

The physics of glasses is a complex field of science and one of the theories that seek to describe its dynamics
is mode coupling theory, which is the only framework entirely based on first principles. However, MCT is not
an exact theory because its derivation involves uncontrolled approximations and yet, it predicts the dynamic
behavior of supercooled liquids remarkably well using only static information. By investigating different versions
of MCT and applying MCT to different fields of science, the aim is to better understand why MCT-predictions
are accurate in some cases and in other cases not. This understanding can eventually lead to an even broader
applicability and further extensions to the theory. We contribute to this research by applying MCT on confluent
cell layers and thus extending MCT to a completely different field of research, namely that of living matter.
There are no fundamental reasons to a priori believe that the behavior of cells can be described with standard
MCT, especially because it does not incorporate the active force explicitly, but the observed correlation between
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structure and dynamics in confluent cell layers already suggested this applicability of MCT. The fact that MCT
indeed describes the observed dynamical behavior at least qualitatively correctly, even for the simplest version
of MCT, is promising and suggests that MCT might be a suitable framework for a predictive theory of cell
dynamics. The research possibilities listed prior in this section can help to develop this framework further
and, in addition, can lead to a better understanding of MCT, a broader applicability of MCT and further
improvements of the MCT-predictions in general.

Our analysis of MCT on confluent cell layers and the prior analysis of correlation functions contributes to
the understanding of glassy behavior in these layers and enhances the analogy between cells and supercooled
liquids, and our model extension that includes neighbor-alignment sheds light on the observed alignment during
collective migration. Understanding the jamming phenomenon and collective behavior of confluent cell layers
is necessary to answer challenging questions such as what is the physics governing jamming, what is the role of
jamming in biological processes and is jamming a cause or an effect in these processes. Furthermore, can we
influence the jamming or unjamming in biological processes, what is the relationship of unjamming to collective
migration and what is the physics behind cell alignment? Solving these questions is essential to understand
biological processes such as embryonic development, wound healing, cancer metastasis and asthma better and
this understanding might lead to the development of new and better medical diagnosis and interventions in the
human body.
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8 Final conclusions

For our final conclusions we return to the research questions that motivated our research and answer them
based on the knowledge we have gained.

1. What do static and dynamic correlation functions obtained from glassy physics teach us about
the jamming phenomenon in epithelial cell layers in experiments and simulations?

Using correlation functions we were able to analyze experimental and simulated data through a lens that is not
yet widely applied in biological physics. This gave us additional understanding about the fluid-like to solid-like
transition in confluent cell layers and enables us to investigate this transition in the same light as the glass
transition in molecular liquids or the jamming transition in particulate systems. Specifically, this jamming
transition in confluent cell layers is accompanied by an increase in structure probed by the radial distribution
function and the static structure factor and by a slowing down of the dynamics as seen in the intermediate
scattering function. When approaching the jamming transition a plateau arises in the intermediate scattering
function, which signifies the caging of a cell by its neighbors. This is a characteristic of jamming and is reflected
in the relaxation time of the intermediate scattering function, which can therefore be used as a parameter to
define when or to what extent a system is jammed. In the VRD-model, we have used the preferred perimeter
and the velocity of the self-propulsion force as control parameters to reach the jamming transition. We observed
that a jammed state is reached below a threshold value of the preferred perimeter and that this critical value
decreases with increasing velocity. This may be understood from the fact that small values of the preferred
perimeter drive cells to a hexagonal packing in which the energy barriers for cellular rearrangements are high,
while increasing the velocity makes it easier for cells to overcome these barriers. In addition to the behavior at
the jamming transition, the correlation functions teach us about interesting behavior for values of the preferred
perimeter further away from this transition, like the decrease in structural order for very small values or the
tendency to obtain a differently ordered state with elongated cells for very large values. Hence, correlation
functions are a broadly applicable analysis method and will also be worthwhile for investigating and comparing
extensions to the VRD-model, like the VV-model. In experimental data of confluent cell layers, correlation
functions show a growth in structure and a slowing down of the dynamics upon aging similar as seen in the
VRD-model upon reaching the jamming transition, although over a much smaller range of dynamics and further
away from this jamming transition. Many complex biological processes govern this aging behavior, and corre-
lation functions offer a generic tool to analyze structural and dynamical changes without complete knowledge
of these contributing processes.

2. By applying mode coupling theory on epithelial cells, can we broaden the applicability of MCT,
extend the analogy between glasses and cells, and, ultimately, define a new analysis framework
for epithelial cells?

Mode coupling theory predicts the non-monotonous behavior of the relaxation time of the incoherent interme-
diate scattering correctly up to a constant in our simulations of the VRD-model. Furthermore, MCT captures
the slowing down of dynamics upon aging correctly in experiments. These results verify that, at least in the
unjammed regime, MCT can be applied to confluent cell layers and we have thus found a new field of science
for MCT-analyses. Moreover, the applicability of MCT solidifies the analogy between cells and glass-forming
liquids and shows that MCT has the potential to be a suitable theory that describes the dynamics of confluent
cell layers. These cell layers exhibit complex collective motion and a theory can help to better understand this
dynamics and gives the opportunity to make predictions. Because in MCT the dynamics is fully explained
by its structure, we learned that dynamical changes in cell layers are governed by structural changes. Fur-
thermore, MCT predict certain scaling laws for the ISF and its relaxation time, and the applicability of MCT
gives the opportunity to test these scaling laws in confluent cell layers. Besides its theoretical relevance, MCT
provides us with a new analysis method in which we can get insights into the dynamics of the system based
on only one snapshot. This is advantageous as measuring over long times is very expensive in simulations and
experiments and might even be impossible in experiments due to continuous changes in the state of cells in
the layer. In spirit, our results confirm previous findings that a specific structural measure, namely the ratio
of cell perimeter to area, can capture the jamming and unjamming dynamics. However, our results and those
of other published work also suggest that this measure only applies close to the transition. MCT is therefore
more broadly applicable but appears to require some adaptations to make more accurate predictions. We did
not find agreement of MCT with direct calculations of the dynamics in the jammed regime and also failed
to predict the correct time scaling, but extensions of MCT might give improvements and even remove these
shortcomings. These possible extensions include generalized MCT and an active MCT version that incorporates
the self-propulsion force explicitly. This defines an interesting pathway for further research. Another suggestion
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for further research is to apply MCT to experimental data that reach a state that is more jammed in compari-
son with the data we used in order to verify the MCT-predictions experimentally on a broader range of dynamics.

3. How does a model for epithelial cells behave in terms of alignment and jamming when a
principle regulating collective motion is explicitly included?

By combining the Voronoi potential with a Vicsek-like alignment, the VV-model explicitly regulates collective
motion via neighbor-alignment. The Vicsek radius, the preferred perimeter, the velocity and the persistence
time of the self-propulsion force all influence the alignment in the VV-model, resulting in several regulatory
opportunities to tune the collective behavior of cells. Specifically, the Vicsek radius and the self-propulsive
velocity may be interpreted directly in experimental terms; we find that experiment and theory map well onto
each other when we interpret an increase in the EGF fueling the motion as an increase in the velocity in the
VV-model, and an increase in calcium (which regulates the cell-cell contacts and thereby increases intercon-
nectivity in the layer) as an increase in the Vicsek radius. Furthermore, we found that the switching on of
the Vicsek-alignment via the Vicsek radius can fluidize a jammed layer and can solidify the layer again upon
further increasing the Vicsek radius. Fluidization happens for intermediate values of the Vicsek radius because
of a higher persistent motion of the cells, while for a high value of the Vicsek radius all cells move in the same
direction as a solid flock. The combination of jamming and alignment leads to a rich phase diagram in which
four phases can be distinguished, namely a stationary solid, a stationary liquid, a solid flock and a liquid flock.
For further research, we suggest to investigate this phase diagram further and extend it with other control
parameters such as the velocity or persistence time of the self-propulsion force. Furthermore, this interesting
jamming behavior motivates an MCT-analysis for which an active version has to be derived that matches the
active force of the VV-model.

Concluding, via correlation functions and mode coupling theory obtained from glassy physics and an extension
of an existing cell model we gained a better understanding of the collective behavior of confluent cell layers
regarding structure, jamming and alignment and contribute to a field of research that might eventually lead to
new and better medical diagnosis and interventions in the human body.
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A LIST OF SYMBOLS

A List of symbols

Subsection 2.1
Tm Melting temperature
Tg Glass temperature
MSD(t) Mean squared displacement at time t
N Number of particles
t Time
ri Position of particle i
i Particle index
D Diffusion coefficient
d Dimensionality
τα Relaxation time
η Viscosity
kB Boltzmann constant
T Temperature
r Radius

Subsection 2.2.1
A(r,R(t)) A dynamic variable dependent on location r and particle configuration R(t) at time t
r Position
R(t) Particle configuration

Âk(t) Fourier transform of dynamic variable A(r,R(t))
k Wave vector
Ri(t) Position of particle i at time t
Γ Phase-space
P Momentum configuration
Pi Momentum of particle i
feq(Γ) Equilibrium probability of Γ
β Thermodynamic beta
H(Γ) Hamiltonian for Γ
C(∆r, t) Correlation function in real space
τ Time difference
C(k, t) Correlation function in Fourier space
V Two dimensional volume
ρ(r,R(t)) Local density function in real space
ρ̂k(t) Local density function in Fourier space
G(∆r, τ) Van Hove correlation function
ρ0 Average number density
j Particle index
g(∆r) Radial distribution function
F (k, τ) Intermediate scattering function
S(k) Static structure factor

Subsection 2.2.2
Nss Number of snapshots
m Snapshot index
Rij(t) Distance between particle i and j
∆r Magnitude of ∆r
p(∆r) Probability of finding a particle at a vector ∆r from another particle
n Number density

∆r Location of the first peak of g(∆r)
k Magnitude of k
σ Diameter

k Location of the first peak of S(k)
Fs(k, τ) Incoherent or self intermediate scattering function
Fd(k, τ) Distinct intermediate scattering function

Subsection 2.3.1
A(t) Set of phase space variables
ri(t) Position of particle i at time t
pi(t) Momentum of particle i at time t
H Hamilton operator
L Liouvillian operator
P Projection operator

93



A LIST OF SYMBOLS

f A function
Ω Frequency matrix
M Memory kernel
f(t) Fluctuation force
C(t) Correlation matrix
m Mass
jLk Longitudinal density current
Rk(t) Random force
M0(k, t) Short-time memory kernel
MMCT(k, t) Long-time memory kernel
A A constant
Vq,k−q Vertex dependent on wave vectors q and k
q Wave vector
c(k) Direct correlation function
c A spring constant

Subsection 2.3.2
P (Γ, t) Probability density
S Smoluchowski operator
D0 Self-diffusion coefficient
MMCT
s (k, t) Memory kernel for the incoherent ISF

V sq,k−q Vertex dependent on wave vectors q and k for the incoherent ISF

Subsection 2.3.3
C A fitting parameter
γ A fitting parameter
ε Reduced temperature

Subsection 3.2
E Interaction energy
a Grid point index
b Grid point index
Ja,b Interaction energy between grid point a and b
σ(a) Cell id of grid point a
λ Penalty constant
Ai Area of cell i
Ai,0 Target area of cell i

F friction
i Friction force on cell i
F act
i Active or self-propulsion force of cell i
F int
i Interaction force on cell i

γ Friction constant
U Interaction potential
Ei Energy of cell i
KAi Height elasticity of cell i
ξi Elasticity constant of cell i
γi Net line tension of cell i
Pi Perimeter of cell i
v Vertex index
rv Position of the vertex v
Vi Voronoi cell i

Subsection 3.3.1
P0,i Preferred perimeter of cell i
KPi Penalty constant for cell i for deviation from the preferred perimeter
Atot Total area of a layer
ni Polarity vector of cell i
θi Angle of the polarity vector of cell i
v0 Velocity due to the self-propulsion force
µ Mobility
ηi White noise term for cell i
Dr Rotational diffusion coefficient
r0 Unit of length
τ0 Unit of time
ka Dimensionless penalty for deviations from preferred area
ai Dimensionless area of cell i
a0 Dimensionless preferred area
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A LIST OF SYMBOLS

kp Dimensionless penalty for deviations from preferred perimeter
p0 Dimensionless perimeter of cell i
pi Dimensionless preferred perimeter

Subsection 3.3.2
D0 Diffusion coefficient of a free cell
Deff Effective diffusion coefficient

Subsection 3.4.1
RV Vicsek radius
τV Vicsek persistence time
φi Angle of the velocity vector of cell i

Subsection 3.4.2
J Alignment interaction strength
τ Reorientation time
N Number of cells
VP Vicsek parameter
vi Velocity vector of cell i
AI Alignment index
vavg Average instantaneous velocity of all cells
IOP Instantaneous order parameter
Lcorr Correlation length
r Distance
µ Mean
σ Standard deviation
Nφr Number of velocity angles at distance r
ε Analysis parameter

Subsection 3.5
∆t Step size
ninitsteps Number of initialization steps
nsteps Number of steps
tmax Maximum simulation time
v Average speed over time ∆t

Subsection 7.3
wi Weight factor for cell i
G4(r1, r2, t) Time dependent four-point density for positions r1 and r2 in real space
KV Penalty constant for deviation from a cells preferred volume
Vi Volume of cell i
V0 Preferred volume

Subsection C.1
O(t) A time-dependent function

vki Velocity of particle i in the direction of vector k
Rk Random force
φ(r) Potential in real space
φk Potential in Fourier space
P2 Projection operator

Subsection C.2
δρk,s,i Density of particle i
jLk,s,i Longitudinal current of particle i
Rs,k Random force belonging to one particle
Ps2 Projection operator

Subsection D.2
α Scaling parameter

Subsection D.3
α Angle
β Angle
h height
a Edge size
Atri Area of triangle
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A LIST OF SYMBOLS

Subsection D.4
µ A constant

Subsection D.5
n An integer

Subsection E.1.1
x Cartesian coordinate
y Cartesian coordinate

Subsection E.1.2
hijk Circumcenter of the triangle given by ri, rj and rk
k Cell seed index
R Radius of a circumcircle
α Weight factor
β Weight factor
γ Weight factor
d Scaling factor
µ Carthesian coordinate
ν Carthesion coordinate
g Cell seed index
lij Length of the shared edge between cell i and j in a Voronoi tesselation
n̂ij Unit vector perpendicular to lij

Subsection E.2
s Snapshot index
H Histogram
∆h Bin size
hx Bin index
hy Bin index
Stemp Temporary function
Nw Number of wave vectors
w Wave vector index
Y cos
k A function depending on the cosine of wave vector w
Y sin
k A function depending on the sine of wave vector w

Subsection E.3.1
Tm Time period indexed with m
NT Number of time segments in one period
ε Algorithm parameter
Ak Function dependent only dependent on wave vector k
Btk Function dependent dependent on wave vector k and times before t
Ck Function dependent only dependent on wave vector k
Dt
k Function dependent dependent on wave vector k and times before t

Mnew(k, t) New estimate for M(k, t)

Mold(k, t) Old estimate for M(k, t)

Subsection E.3.3
φ Polar coordinate
p Wave vector

Subsection E.3.5
A(τ) Arbitrary time-dependent function
B(τ) Arbitrary time-dependent function
Tj Time period indexed with j
j Time index
n1 Integer
n2 Integer

Subsection F.2
T Waiting time
Q Area of FOV
P Area smaller than FOV
Lc Length defining the difference between Q and P
NP Number of cells in p
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B Derivation of static and dynamic correlation functions in de-
tail

In Subsection 2.2 the static and dynamic correlation functions and their origin are explained and in this stand-
alone appendix section we give a full derivation of these correlation functions. In analogy with Subsection
2.2, we first derive the formal definitions of the radial distribution function, the static structure factor, the Van
Hove correlation function and the intermediate scattering function in Appendix subsection B.1 and in Appendix
subsection B.2 we derive how these functions can be measured in simulated or experimental data.

B.1 Correlation functions in theory

We start with determining the correlation function and density function in general. We consider a system with
N point particles in a volume V and define the volume to be 2D in agreement with our research. We consider
a dynamical variable A(r,R(t)) that is a function of position r and the space configuration of the particles,
given by R(t) ≡ {R1(t),R2(t), ...,RN (t)} with Ri(t) the position of particle i at time t. The thermodynamic
average (or ensemble average) of A(r,R(t)) is defined as

〈A(r,R(t))〉 ≡
∫

dΓfeq(Γ)A(r,R(t)), (84)

where Γ is the 4N -dimensional phase space coordinate Γ ≡ {R1, ...,RN ,P1, ...,PN} ≡ {R,P } with Pi the
momentum of particle i and feq(Γ) is the equilibrium probability distribution of the positions and momenta of
the particles. Because we assume a canonical system, the distribution function feq(Γ) is given by

feq(Γ) ≡ e−βH(Γ)∫
dΓ′e−βH(Γ′)

, (85)

with β = (kBT )−1 and H the Hamiltonian depending on the momenta Pi and interparticle distances |Rj −Ri|
of all particles i and j. The fluctuation in A(r,R(t)) is given by

δA(r,R(t)) ≡ A(r,R(t))− 〈A(r,R(t))〉 . (86)

The spatial Fourier transform of A(r,R(t)) is given by (ˆindicates a function in Fourier space and k is a wave
vector):

Âk(R(t)) ≡
∫

drA(r,R(t))eik·r, (87)

and the inverse Fourier transform of Âk(R(t)) gives A(r,R(t)) again:

A(r,R(t)) ≡ 1

(2π)2

∫
drÂk(R(t))e−ik·r. (88)

The fluctuations of the local density function in Fourier space as given in Equation 86 are

δÂk(t) =

∫
drδA(r,R(t))eik·r = Âk(R(t))−

〈
Âk(R(t))

〉
, (89)

with
〈
Âk(R(t))

〉
the Fourier transform of 〈A(R(t))〉.

Having defined the density fluctuation functions in real and Fourier space, respectively δA(r,R(t)) and δÂk(R(t)),
we can now define correlation functions for these variables. The general space-time correlation function of
A(r,R(t)) is

C(r′, t′; r, t) ≡ 〈δA(r′,R(t′))δA(r,R(t))〉 , (90)
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with 〈 〉 again the ensemble average defined in Equation 84. After assuming spatially and temporal invariance,
Equation 90 is only a function of the difference in space and time, respectively ∆r and τ (assuming t ≥ t):

C(r − r′, t− t′) = 〈δA(r′,R(t′)δA(r,R(t))〉 = 〈δA(r,R(t))δA(r + ∆r,R(t+ τ))〉 ≡ C(∆r, τ), (91)

where ∆r and τ are space and time differences.

The second correlation function that we will need is the spatial Fourier transform of Equation 91:

C(k, τ) =

∫
d(∆r)C(∆r, τ)eik·(∆r) =

1

V
〈δAk(R(t))δA∗k(R(t+ τ))〉 , (92)

where A∗ is the complex conjugate of A. The proof of the second step is given in Appendix D.1.

To determine structure functions in real space we choose the variable A(r,R(t)) to be the local density function
ρ(r,R(t)) defined by (with δ is the Dirac delta-function):

ρ(r,R(t)) ≡
N∑
i=1

δ(r −Ri(t)), (93)

such that
∫
V

drρ(r,R(t)) is the total number of particles N in volume V . This formula measures whether at time

t there is a particle at a vector r from the origin (limε→0

∫ r+ε

r−ε dr′ρ(r′,R(t)) = 1) or not (limε→0

∫ r+ε

r−ε dr′ρ(r′,R(t)) =
0). The density function depends on how the origin is chosen and is therefore called local.

By taking a spatial Fourier transform of Equation 93 we get the local density in Fourier space ρ̂k(t) and this
will be our implementation of Âk(t). This Fourier transform is given by

ρ̂k(R(t)) =

∫
drρ(r,R(t))eik·r =

N∑
i=1

eik·Ri(t), (94)

where the wave vector k has a magnitude given by k = 2π
λ with λ the wavelength. The density in Fourier

space given by Equation 94 decomposes the real density function given by Equation 93 into the waves it is build
of. This can be visualized as follows. Assuming we choose the origin random, then ρ̂k(t) = 1 when there is a
particle i for which k ·Ri(t) = 2πn, with n an integer. This means that a wave with wave vector k arrives at
particle i after n full cycles, because the position of that wave is then given by 2πn

k = Ri(t). If k ·Ri(t) 6= 2πn
the contribution of particle i to ρk(t) is complex and the real value <(ρ̂k)(R(t)) = cos (k ·Ri(t)) measures
the value of a wave with wave vector k, starting at the origin with value 1, at the position of particle i. So
the combination of the functions for all these wave vectors k defines the local density in Fourier space. From
Equation 94 we derive the following relationship

ρ̂∗k(R(t)) = ρ̂−k(R(t)). (95)

According to Equations 86 and 89 the fluctuation functions in the local density in real and Fourier space are
respectively

δρ(r,R(t)) = ρ(r,R(t))− 〈ρ(r,R(t))〉 = ρ(r,R(t))− ρ0, (96)

where ρ0 ≡ 〈ρ(r,R(t))〉 is the average density, and

δρ̂k(R(t)) = ρ̂k(R(t))− 〈ρ̂k(R(t))〉 = ρ̂k(R(t))− ρ̂0, (97)

where ρ̂0 = 〈ρk(R(t))〉 is the Fourier transform of the average density.

Using the density fluctuation function in real space given by Equation 96 and the correlation function in real
space given by Equation 91, we determine the Van Hove distribution function G(∆r, t) in Appendix Subsection
B.1.1 and the radial distribution function g(∆r), a static equivalent of G(∆r, t), in Appendix Subsection B.1.2.
Using the density fluctuation function in Fourier space given by Equation 97 and the correlation function in
Fourier space given by Equation 92, we determine the intermediate scattering function F (k, τ) in Appendix
Subsection B.1.3 and the static structure factor S(k), a static equivalent of F (k, τ), in Appendix Subsection
B.1.4.
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B.1.1 Van Hove distribution function G(∆r, τ)

The Van Hove distribution function G(∆r, τ), also called the dynamic density correlation function, is defined
as the correlation function (Equation 91) for the local density fluctuations (Equation 96) divided by ρ0 for
normalization purposes :

G(∆r, τ) ≡ 1

ρ0
C(∆r, τ) (98)

=
1

ρ0
〈δρ(r,R(t))δρ(r + ∆r,R(t+ τ))〉 (99)

=
1

ρ0
〈(ρ(r,R(t))− ρ0) (ρ(r + ∆r,R(t+ ∆t))− ρ0)〉 (100)

=
1

ρ0
〈ρ(r,R(t))ρ(r + ∆r,R(t+ τ))〉 − ρ0 (101)

=
1

ρ0

〈
N∑
i=1

δ(r −Ri(t))

N∑
j=1

δ(r + ∆r −Rj(t+ τ)

〉
− ρ0, (102)

where in Equation 101 is used that the system is translational and time invariant.

B.1.2 Radial distribution function g(∆r)

The pair correlation function h(∆r) is a static variant of the the Van Hove distribution function (Equation 102)
where we divide again by ρ0 for normalization purposes and subtract the correlation of a particle with itself
(i = j) as this gives a δ-peak at the origin ∆r = 0 ,

h(∆r) ≡ 1

ρ0
(G(∆r, 0)− δ(∆r)) (103)

=
1

ρ2
0

〈
N∑
i=1

δ(r −Ri(t)

N∑
j 6=i

δ(r + ∆r −Rj(t))

〉
− 1. (104)

To obtain the radial distribution function g(∆(r)) we add the trivial contribution of an ideal gas to the pair
correlation function h(∆(r):

g(∆r) ≡ h(∆r) + 1 (105)

=
1

ρ2
0

〈
N∑
i=1

δ(r −Ri(t))

N∑
j 6=i

δ(r + ∆r −Rj(t))

〉
. (106)

B.1.3 Intermediate scattering function F (k, τ)

The intermediate scattering function F (∆r, τ), also called the dynamic correlation function in Fourier space,
is defined as the correlation function (Equation 92) of the local density fluctuations in Fourier space (Equation
97) divided by ρ0 for normalization purposes:
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F (k, τ) ≡ 1

ρ0
C(k, τ) (107)

=
1

ρ0

1

V
〈δρ̂∗k(R(t))δρ̂k(R(t+ τ))〉 (108)

=
1

ρ0

1

V
〈(ρ̂−k(R(t))− ρ̂0) (ρ̂k(R(t+ τ))− ρ̂0)〉 (109)

=
1

ρ0

1

V
〈ρ̂−k(R(t))ρ̂k(R(t+ τ))〉 − ρ̂0

V
(110)

=
1

ρ0

1

V

〈
N∑
i=1

e−ik·Ri(t)
N∑
j=1

eik·Rj(t+τ)

〉
− ρ̂0

V
(111)

=
1

ρ0

1

V

〈
N∑
i=1

N∑
j=1

eik·(Rj(t+τ)−Ri(t))

〉
− ρ̂0

V
. (112)

Because ρ̂0 is the Fourier transform of a constant and therefore causes a δ-function at k = 0, this term will be
neglected and we redefine the intermediate scattering function as

F (k, τ) ≡ 1

ρ0

1

V

〈
N∑
i=1

N∑
j=1

eik·(Rj(t+τ)−Ri(t))

〉
. (113)

B.1.4 Static structure factor S(k)

The static structure factor S(k) is the static variant of the intermediate scattering function given by Equation
113:

S(k) ≡ F (k, 0) (114)

=
1

ρ0

1

V

〈
N∑
i=1

N∑
j=1

eik·(Rj(t)−Ri(t))

〉
. (115)

Note that we did not divide F (k, τ) by ρ0 to get S(k) as we did with G(∆r, τ) to get g(∆r).

B.2 Correlation functions in measurements

In the previous appendix subsection we have derived the general formulas for four correlation functions and in
this appendix subsection we will define how we can measure these structure functions in data obtained from
experiments or simulations. In theory, ρ(r,R(t)) is known for the complete phase-space R at time t and for
every position r. However, in measurements the value of ρ(r,R(t)) is only known at points r where and times
t when measured. So, to calculate an estimate of the ensemble average given by Equation 84, we use two
modifications: one concerning r and one concerning t.

We assume that the data consists of Nss snapshots m of the system with volume V at different moments in
time. Furthermore, we will assume that the system is ergodic, which means that the fraction of time the system
is in a certain microscopic state is equal to the a priori probability to find the system in this state. This means
that the ensemble average of a system can be obtained by measuring the time average, which we will do by
calculating the unweighted average over Nss snapshots. A second modification to calculate the ensemble average
is done by averaging over the whole volume (area in 2D) of a snapshot. For each snapshot m we only have
one configuration R but by varying r over the whole volume, we average over all possible origins. Because the
interparticle distances |Rj −Ri| and therefore the Hamiltonian H(Γ) and the value of feq(Γ) are independent
of the location of the origin, we can again calculate an unweighted average but now over all possible positions of
the origin. Combining this with the averaging over time, we define a new ensemble average that we can actually
measure:
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〈 〉 =

∫
dΓfeq(Γ) ≈

〈
1

V

∫
dr

〉
t

≡ 1

Nss

Nss∑
m=1

1

V

∫
dr, (116)

where 〈 〉t means an unweighted average over all Nss snapshots.

Using this new ensemble average we can calculate the average density ρ0

ρ0 = 〈ρ(r,R(t))〉 =
1

Nss

Nss∑
m=1

1

V

∫
drρ(r,R(t)) =

1

Nss

Nss∑
m=1

1

V

∫
dr

N∑
i=1

δ(r −Ri(t)) =
N

V
, (117)

and its Fourier transform ρ̂0 is given by

ρ̂0 =

∫
drρ0e

ik·r = (2π)2ρ0δ(k). (118)

Using the new ensemble average of Equation 116, we will calculate the measurable versions of the correlation
functions defined in Appendix Section B.1. Following a more logical order, we start with the radial distribution
function in Appendix Subsection B.2.1 followed by the Van Hove distribution function in Appendix Subsection
B.2.2. In Appendix Subsection B.2.3 we discuss the static structure factor and in Appendix Subsection B.2.4
the intermediate scattering function.

B.2.1 Radial distribution function g(∆r)

Applying the bracket implementation defined in Equation 116 to the radial distribution function g(∆r) given
in Equation 105, we obtain

g(∆r) =
1

ρ2
0

〈
N∑
i=1

δ(r −Ri(t))

N∑
j 6=i

δ(r + ∆r −Rj(t))

〉
(119)

≈ 1

ρ2
0

〈
1

V

∫
dr

N∑
i=1

δ(r −Ri(t)

N∑
j 6=i

δ(r + ∆r −Rj(t))

〉
t

(120)

=
1

ρ0N

〈
N∑
i=1

N∑
j 6=i

δ (∆r − (Rj(t)−Ri(t)))

〉
t

. (121)

Besides g(∆r) being a correlation function of local densities, Equation 121 shows another interpretation. g(∆r)
is namely an average of N density functions ρ(r), one for each particle i, and divided by the result of this
average for an ideal gas, namely ρ0. So the radial distribution function measures how many particles there are
on average at vector ∆r from a particle with respect to this number in an ideal gas and is therefore proportional
to the probability p(∆r) of finding a particle at position ∆r, given that there is a particle at the origin.

In case the system is isotropic (identical in all directions) we can change from the vector ∆r to its magnitude
|∆r| = ∆r:

g(∆r) =
1

ρ0

1

N

〈
N∑
i=1

N∑
j 6=i

δ(r −Rij(t))

〉
t

, (122)

with Rij(t) = |Rj(t) −Ri(t)|. The average number of particles n in a shell of thickness d(∆r) at distance ∆r
from a particle is given by dn(∆r) = ρ0g(∆r)d2(∆r).
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B.2.2 Van Hove distribution function G(∆r, τ)

Applying the bracket implementation defined in Equation 116 to the Van Hove distribution function G(∆r, τ)
given in Equation 102, we obtain

G(∆r, τ) =
1

ρ0

〈
N∑
j=1

δ(r −Ri(t))

N∑
i=1

δ(r + ∆r −Rj(t+ τ))

〉
− ρ0 (123)

≈ 1

ρ0

〈
1

V

∫
dr

N∑
i=1

δ(r −Ri(t))

N∑
j=1

δ(r + ∆r −Rj(t+ τ))

〉
t

− ρ0 (124)

=
1

N

〈
N∑
i=1

N∑
j=1

δ(∆r − (Rj(t+ τ)−Ri(t)))

〉
t

− ρ0. (125)

The Van Hove distribution function is a dynamic variant of the radial distribution function and is proportional
to the probability of finding a particle at position ∆R at time t+ τ given that there is a particle at the origin
at time t.

Again, in case of an isotropic system we can write

G(∆r, τ) =
1

N

〈
N∑
i=1

N∑
j=1

δ(r − |Rj(t+ τ)−Ri(t)|)

〉
t

. (126)

B.2.3 Static structure factor S(k)

Applying the bracket implementation defined in Equation 116 to the static structure factor S(k) given in
Equation 115, we obtain

S(k) =
1

ρ0

1

V

〈
N∑
i=1

N∑
j=1

eik·(Rj(t)−Ri(t))

〉
(127)

≈ 1

ρ0

〈
1

V

∫
dr

N∑
i=1

N∑
j=1

eik·(Rj(t)−Ri(t))

〉
t

(128)

=
1

N

〈
N∑
i=1

N∑
j=1

eik·(Rj(t)−Ri(t))

〉
t

(129)

=
1

N

〈
N∑
i=1

N∑
j=1

cos (k · (Rj(t)−Ri(t))) + i sin (k · (Rj(t)−Ri(t)))

〉
t

(130)

=
1

N

〈(
N∑
i=1

cos (k ·Ri(t))

)2

+

 N∑
j=1

sin (k ·Rj(t))

2〉
t

. (131)

where we have used that the ensemble average of the sinus, an uneven function, vanishes. S(k) measures how
much the structure of the system contains a periodicity matching the wave vector k.

In case of an isotropic system we can change from the wave vector k to its magnitude k = |k| to get

S(k) =
1

N

〈(
N∑
i=1

cos (k ·Ri(t))

)2

+

 N∑
j=1

sin (k ·Rj(t))

2〉
t

(132)

The static structure factor can also be calculated by taking the Fourier transform of the radial distribution
function and to derive this we start with rewriting Equation 129 to
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S(k) =
1

N

〈
N∑
i=1

N∑
j=1

eik·(Rj(t)−Ri(t))

〉
t

(133)

= 1 +
1

N

〈
N∑
i=1

N∑
j 6=1

eik·(Rj(t)−Ri(t))

〉
t

(134)

= 1 +
1

N

〈∫
d(∆r)

N∑
i=1

N∑
j 6=1

δ(∆r − (Rj(t)−Ri(t)))e
ik·(∆r)

〉
t

(135)

= 1 + ρ0

∫
d(∆r)(g(∆r)− 1)eik·(∆r) + (2π)2ρ0δ(k). (136)

Note that we have used the pair correlation function h(∆r) because the Fourier transform of g(∆r) does not
converge (lim∆r→∞ g(∆r) = 1 while lim∆r→∞ h(∆r) = 0). The non-converging term arises now as a δ-peak at
k = 0.

When we again assume isotropy, we can define the static structure factor S(k) as a function of the radial
distribution function g(∆r). In doing this, we neglect the δ-term, making S(k) indetermined for k = 0.

S(k) = 1 + ρ0

∫
d(∆r)eik·∆r(g(∆r)− 1) (k 6= 0) (137)

= 1 + ρ0

∫
d(∆r)(cos (k ·∆r) + i sin (k ·∆r))(g(∆r)− 1) (k 6= 0) (138)

= 1 + ρ0

∫ ∞
0

d(∆r)∆r

∫ 2π

0

dθ (cos (k(∆r) cos θ) + i sin (k(∆r) cos θ)) (g(∆r)− 1) (k 6= 0) (139)

= 1 + ρ0

∫ ∞
0

d(∆r)∆r

∫ 2π

0

dθ (cos (k(∆r) cos θ)) (g(∆r)− 1) (k 6= 0) (140)

= 1 + 2πρ0

∫ ∞
0

d(∆r)∆rJ0(k∆r)(g(∆r)− 1) (k 6= 0). (141)

where is used that
∫ 2π

0
dθ sin(k(∆r) cos θ) = 0 and J0(k∆r) is a Bessel function of the first kind.

B.2.4 Intermediate scattering function F (k, τ)

Applying the bracket implementation defined in Equation 116 to the intermediate scattering function F (k, τ)
given in Equation 113, we obtain

F (k, τ) =
1

ρ0

1

V

〈
N∑
i=1

N∑
j=1

eik·(Rj(t+τ)−Ri(t))

〉
(142)

≈ 1

ρ0

〈
1

V

∫
dr

N∑
i=1

N∑
j=1

eik·(Rj(t+τ)−Ri(t))

〉
t

(143)

=
1

N

〈
N∑
i=1

N∑
j=1

cos (k · (Rj(t+ τ)−Ri(t))) + i sin (k · (Rj(t+ τ)−Ri(t)))

〉
t

(144)

=
1

N

〈(
N∑
i=1

cos(k ·Ri(t))

) N∑
j=1

cos(k ·Rj(t+ τ))

+

(
N∑
i=1

sin(k ·Ri(t))

) N∑
j=1

sin(k ·Rj(t+ τ))

〉
t

,

(145)

where we have used that the ensemble average of sinus, an uneven function, vanishes. The intermediate scattering
function measures how much of the structure of a system is still present after some time τ . Again we can define
an isotropic version of the intermediate scattering function
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F (k, τ) =

1

N

〈(
N∑
i=1

cos(k ·Ri(t))

) N∑
j=1

cos(k ·Rj(t+ τ))

+

(
N∑
i=1

sin(k ·Ri(t))

) N∑
j=1

sin(k ·Rj(t+ τ))

〉
t

.

(146)

The intermediate scattering function can also be calculated by taking the Fourier transform of the van Hove
correlation function, and to derive this we start with rewriting Equation 146 to

F (k, τ) =
1

N

〈
N∑
i=1

N∑
j=1

eik·(Rj(t+τ)−Ri(t))

〉
t

(147)

=
1

N

〈∫
d(∆r)

N∑
i=1

N∑
j=1

δ (∆r − (Rj(t+ τ)−Ri(t))) e
ik·(∆r)

〉
t

(148)

=

∫
d(∆r)(G(∆r, τ)eik·(∆r). (149)

When we again assume isotropy this results in

F (k, τ) =

∫
d(∆r)(G(∆r, τ)eik·(∆r) (150)

=

∫
d(∆r)(cos (k ·∆r) + i sin (k ·∆r))(G(∆r, τ) (151)

=

∫ ∞
0

d(∆r)∆r

∫ 2π

0

dθ (cos (k(∆r) cos θ) + i sin (k(∆r) cos θ)) (G(∆r, τ) (152)

=

∫ ∞
0

d(∆r)∆r

∫ 2π

0

dθ (cos (k(∆r) cos θ)) (G(∆r, τ) (153)

= 2π

∫ ∞
0

d(∆r)∆rJ0(k∆r)G(∆r), (154)

where is used that
∫ 2π

0
dθ sin(k(∆r) cos θ) = 0 and and J0(k∆r) is a Besselfunction of the first kind.

The intermediate scattering function can be split up in a self Fs(k, τ) and a distinct part Fd(k, τ) as follows

F (k, τ) (155)

=
1

N

〈(
N∑
i=1

cos(k ·Ri(t))

) N∑
j=1

cos(k ·Rj(t+ τ))

+

(
N∑
i=1

sin(k ·Ri(t))

) N∑
j=1

sin(k ·Rj(t+ τ))

〉
t

(156)

=
1

N

〈
N∑
i=1

(cos(k ·Ri(t)) cos(k ·Ri(t+ τ))) +

N∑
i=1

(sin(k ·Ri(t)) sin(k ·Ri(t+ τ)))

〉
t

(157)

+
1

N

〈
N∑
i=1

cos(k ·Ri(t))

N∑
j 6=i

cos(k ·Rj(t+ τ)

+

N∑
i=1

sin(k ·Ri(t))

N∑
j 6=i

sin(k ·Rj(t+ τ))

〉
t

(158)

= Fs(k, τ) + Fd(k, τ), (159)

where Fs(k, τ) describes the correlation of the position of a particle at time t+ τ with the position of the same
particle at time t.
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C Derivation of mode coupling theory for glass-forming liquids in
detail

In Subsection 2.3.1 the derivation of the standard mode coupling theory for glass-forming fluids is sketched and
in this appendix section we give the full derivation based on Reichman and Charbonneau [49]. In Appendix
Subsection C.2 we explain how the derivation changes for the incoherent instead of the coherent intermediate
scattering function.

C.1 Derivation of the standard MCT-equation for the coherent ISF

Consider an N -particle system with A(r1(t), ..., rN (t),p1(t), ...,pN (t)) a set of phase-space variables dependent
on the positions ri(t) and momenta pi(t) of all particles i at time t, which we shortly denote with A(t). The
derivation of A(t) to time can be written as

dA(t)

dt
=
∑
i

(
δA(t)

δri

δri
δt
− δA(t)

δpi

δpi
δt

)
≡ {A(t),H} ≡ iLA(t), (160)

where the Hamilton equations are used, given by

dpi
dt

= −∂H
∂ri

,
dri
dt

=
∂H
∂pi

. (161)

Furthermore, { , } defines the classical Poisson brackets, which for arbitrary functions A and B is expressed
as

{A,B} ≡
∑
i

(
δA

δri
· δB
δpi
− δA

δpi
· δB
δri

)
, (162)

and the Liouvillian operator L is given by

iL ≡ −
∑ ∂

∂ri

∂ri
∂t

+
∂

∂pi

∂pi
∂t

. (163)

Starting with this Liouvillian equation, mode coupling theory can be derived in three steps. First, the Mori-
Zwanzig formalism is applied to rewrite the equation of motion for an arbitrary correlation function of A(t) to
a generalized Langevin equation (Appendix Subsection C.1.1). Secondly, a specific implementation of A(t) is
used to obtain the equation of motion for the incoherent intermediate scattering function (Appendix Subsection
C.1.2). This equation of motion depends on a memory kernel that cannot be solved exactly and we approximate
this memory kernel in Appendix Subsection C.1.3. We give the resulting MCT-equation in Appendix Subsection
C.1.4.

On a notational note, we use A ≡ A(τ) and A(t) ≡ A(τ + t) to distinguish between the two values at an
arbitrary time τ and at a time t later. We apply the same definitions for other variables like the fluctuation
force f , the density ρ, etc. Furthermore, pay attention to two different uses of i, namely as the imaginary unit
and as index for particles.

C.1.1 Application of the Mori-Zwanzig formalism to obtain a generalized Langevin Equation

The first step in the derivation of mode coupling theory is to apply the Mori-Zwanzig formalism [54], which is
a widely used formalism to rewrite an equation of motion based on a separation of time scales. The reason we
apply this principle for supercooled liquids is that they exhibit fluctuations on a microscopic time scale while
other dynamical processes such as the relaxation occur on a time scale that can be many magnitudes of orders
larger. We are only interested in these so-called slow variables and we assume that fast variables influence these
slow variables only via a fluctuation force. With the Mori-Zwanzig principle we split the slow variables from
the fast variables. To do so, we define a projection operator P that projects a function f along the direction of
the slow variable A,
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Pf ≡ (A, f)

(A,A)
A, (164)

where (..., ...) denotes the ensemble average of a dyadic product, given by 〈A∗A〉. Integrating Equation 160
gives

A(t) = eiLtA, (165)

and taking again the derivative to t gives

dA(t)

dt
= eiLtiLA = eiLt(P + 1− P)iLA, (166)

because we are free to insert (P + 1−P). Working out Equation 166 (with applying Equation 165) gives

dA(t)

dt
= iΩ ·A(t) + eiLt(1− P)iLA, with iΩ = (A, iLA) · (A,A)−1, (167)

where Ω is called the frequency matrix.

We split eiLt into a normal and orthogonal part as follows

eiLt = eiLtO(t) + ei(1−P)Lt, (168)

because 1− P is orthogonal to P and we derive O(t) by first deriving Equation 168 to t. This results in

iLeiLt = iLeiLtO(t) + eiLt
dO(t)

dt
+ i(1− P)Lei(1−P)Lt (169)

iL(eiLtO(t) + ei(1−P)Lt) = iLeiLtO(t) + eiLt
dO(t)

dt
+ i(1− P)Lei(1−P)Lt (170)

eiLt
dO(t)

dt
= iPLei(1−P)Lt. (171)

With O(0) = 0 obtained from Equation 168, the integral of Equation 171 is given by

O(t) = i

∫ t

0

dτe−iLτPLei(1−P)Lτ . (172)

Filling Equation 172 in in Equation 168 and multiplying by i(1− P)LA gives

eiLti(1− P)LA =

∫ t

0

dτeiL(t−τ)iPLf(τ) + f(t), (173)

with f(t) the fluctuating force defined by

f(t) ≡ ei(1−P)Lti(1− P)LA, (174)

and f(t) is orthogonal to A. Therefore, we can write

(A, iLf(t)) = i(LA,f(t)) = i((1− P)LA,f(t)) = −(f ,f(t)). (175)

Filling in Equation 173 together with Equation 175 into Equation 167 gives for the equation of motion of
A(t):

dA(t)

dt
= iΩ ·A(t)−

∫ t

0

dτeiL(t−τ)(A,PLf(t))(A,A)−1A + f(t), (176)

which can be rewritten with Equation 175 to
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dA(t)

dt
= iΩ ·A(t)−

∫ t

0

dτM(t) ·A(t− τ) + f(t), (177)

where the memory function M(t) is defined as

M(t) ≡ (f ,f) · (A,A)−1. (178)

The correlation matrix of A(t) in Fourier space is given by (see Subsection 2.2.1)

C(t) ≡ 〈A∗(τ)A(t+ τ)〉 = (A(τ),A(t+ τ)), (179)

which we will write as C(t) ≡ (A,A(t)) according to our notation definition explained in Appendix Subsection
C.1 and the assumption of time invariance. By multiplying Equation 177 from the left side by A∗ and taking
the ensemble averages gives for the equation of motion of the correlation matrix C(t):

dC(t)

dt
= iΩ ·C(t) +

∫ t

0

dτM(t) ·C(t− τ), (180)

because
〈
A∗ dA(t)

dt

〉
=
〈

d(A∗A(t))
dt

〉
, 〈A∗A(t− τ)〉 = C(t− τ) and 〈A∗f(t)〉 = 0.

C.1.2 Specific implementation of A(t) to derive the equation of motion for the coherent ISF

Because our goal is to obtain an equation of motion for the intermediate scattering function, which depends on
density fluctuations, we choose A(t) to be these density fluctuations and their derivative, called the longitudinal
current jLk :

A =
[
δρk jLk

]
, (181)

with (see Appendix Subsection B.2)

δρk =
∑
i

eik·ri − (2π)2ρδ(k) (182)

jLk =
1

m

∑
i

(k̂ · pi)eik·ri . (183)

The correlation function C for this implementation of A(t) is

C(t) = 〈A∗A(t)〉 =

[
〈δρ−kδρk(t)〉

〈
δρ−kj

L
k (t)

〉〈
jL−kδρk(t)

〉 〈
jL−kj

L
k (t)

〉 ] , (184)

which is only valid for k 6= 0 because we have neglected the δ-term in Equation 182.

Before rewriting the equation of motion in Equation 180 for this specific implementation of A(t), we start
with deriving some equations and identities for the correlation functions of the density and the longitudinal
current.

Using Equation 22 we obtain

〈δρ−kδρk(t)〉 = NF (k, t). (185)

The right top and left bottom entry of Equation 184 are equal, which is derived as follows

〈
jL−kδρk(t)

〉
=
〈
jL−k(t1)δρk(t2)

〉
=
−1

ik

d

dt1
〈δρ−k(t1)δρk(t2)〉 (186)

=
−1

ik

d

dt1
〈δρ−k(−t2)δρk(−t1)〉 =

〈
δρ−k(−t2)jLk (−t1)

〉
(187)

=
〈
δρ−kj

L
k (t)

〉
, (188)
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and given by (using Equation 22)

〈
jL−kδρk(t)

〉
=
〈
δρ−kj

L
k (t)

〉
=

1

ik

d

dt
〈δρ−kδρk(t)〉 =

N

ik

d

dt
F (k, t). (189)

Furthermore, at time t = 0 the right bottom entry of Equation 184 is

〈
jL−kj

L
k

〉
=

〈
1

m2

∑
i

(k̂ · pi)2 +
1

m2

∑
j,i 6=j

(k̂ · pi)(k̂ · pj)eik·(rj−ri)
〉

(190)

=
〈
N(vki )2

〉
=
NkBT

m
, (191)

where vki is the velocity of particle i in the direction of k. To derive this equation we have used that the ensemble
average is zero when i 6= j and that

〈
1
2m(vki )2

〉
= 1

2kBT according to the equipartition theorem.

The ensemble average of a variable with its derivative is always zero because〈
A∗

dA

dt

〉
=

d

dt
〈A∗A〉 −

〈
dA∗

dt
A∗
〉

= 0, (192)

because the ensemble average is constant in time and 〈A∗B〉 = 〈B∗A〉 for arbitrary observables A and B. The
time derivative of the right top and left bottom entry of Equation 184 are equal according to Equation 188 and
given by

d

dt

〈
jL−kδρk(t)

〉
=

d

dt

〈
δρ−kj

L
k (t)

〉
=

〈
d2

dt2

(
1

ik
δρ−kδρk(t)

〉)
=
N

ik

d2F (k, t)

dt2
. (193)

Furthermore, the following relationship holds (using Equation 192)

〈
jL−k

dδρk
dt

〉
= − d

dt

(
1

ik

〈
δρ−k

dδρk
dt

〉)
+

〈
δρ−k

djLk
dt

〉
=

〈
δρ−k

djLk
dt

〉
, (194)

(195)

and both terms can be written as〈
jL−k

dδρk
dt

〉
=

〈
δρ−k

djLk
dt

〉
(196)

=

〈
1

m

∑
i

(k̂ · pi)e−ik·ri
∑
j

i(k · drj
dt

)eik·rj

〉
(197)

=
i

m2

∑
i,j

〈
(k̂ · pi)e−ik·ri(k · pj)eik·rj

〉
(198)

=
i

m2

∑
i

〈
(k̂ · pi)(k · pi)

〉
(199)

=
ik

m

∑
i

〈
m(vki )2

〉
=
iNkkBT

m
. (200)

To obtain the equation of motion for the intermediate scattering function, we solve the left bottom entry of the
matrix Equation 180 using the relations given by Equations 185 till 200. First we derive the expression of the
left bottom entry of the three parts separately, defined by

dC(t)

dt︸ ︷︷ ︸
Part 1

= iΩ ·C(t)︸ ︷︷ ︸
Part 2

+

∫ t

0

dτM(t) ·C(t− τ))︸ ︷︷ ︸
Part 3

. (201)
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The bottom left corner of Part 1 is given by N
ik

d2F (k,t)
dt2 according to Equation 193. For the bottom left corner

of Part 2, we first write down the explicit form of the frequency matrix Ω:

iΩ =

〈
A∗

dA

dt

〉
· 〈A∗A〉−1

(202)

=

〈δρ−k dδρk
dt

〉 〈
δρ−k

djLk
dt

〉〈
jL−k

dδρk
dt

〉 〈
jL−k

djLk
dd

〉  · 〈A∗A〉−1
(203)

=

[
0 iNkkBT

m
iNkkBT

m 0

]
·C−1 (204)

=

[
0 iNkkBT

m
iNkkBT

m 0

] [ 1
NS(k) 0

0 m
NkBT

]
(205)

=

[
0 ik

ikkBT
mS(k) 0

]
, (206)

where Equations 192, 194 and 200 are used for Equation 204. Furthermore, in Equation 205 the correlation
function at time t = 0 is used given by (using Equations 185, 191 and 192)

C(0) =

[
NS(k) 0

0 NkBT
m

]
, (207)

because S(k) = F (k, 0) and Equations 185 and 191 are used. This results in:

iΩ ·C(t) =

[
0 ik

ikkBT
mS(k) 0

]
·
[
〈δρ−kδρk(t)〉

〈
δρ−kj

L
k (t)

〉〈
jL−kδρk(t)

〉 〈
jL−kj

L
k (t)

〉 ] , (208)

which gives for the left bottom term of Part 2: ikkBTN
mS(k) F (k, t).

For Part 3 of Equation 201 we need to rewrite the memory kernel, given by (f ,f(t)) · (A,A)−1. First, the
fluctuation force is given by (see Equation 174)

f = (1− P)
dA

dt
(209)

=
dA

dt
− iΩA (210)

=

[
δ dρk

dt
djLk
dt

]
−
[

0 ik
ikkBT
mS(k) 0

]
·
[
δρk
jLk

]
(211)

=

[
0

djLk
dt −

ikkBT
mS(k)δρk

]
≡
[

0
Rk

]
, (212)

where for Equation 210 is used that: P dA(t)
dt = iΩA. This can be verified by multiplying Equation 167 from

the left by P to get

P dA(t)

dt
= iPΩ ·A(t) + PeiLt(1− P)iLA (213)

= iΩA(t), (214)

because Ω is already along the direction of A. According to Equation 174 the time dependence of the fluctuation
force is given by

Rk(t) = ei(1−PLtRk, (215)

and the conjugate R∗k(t) is R−k(t).
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The memory matrix is given by

M(t) =

〈[
0

R−k

]
·
[
0 Rk(t)

]〉
· 〈A∗A〉−1

(216)

=

[
0 0
0 〈R−kRk(t)〉

]
·

[
k

NS(k) 0

0 m
NkBT

]
(217)

=

[
0 0

0 m〈R0kRk(t)〉
NkBT

]
. (218)

This results in the following expression for Part 3 in the equation of motion given by Equation 201:

∫ t

0

dτM(t) ·C(t− τ) =

∫ t

0

dτ

[
0 0

0
m〈R∗kRk(t)〉
NkBT

]
·
[
〈δρ−kδρk(t− τ)〉

〈
δρ−kj

L
k (t− τ)

〉〈
jL−kδρk(t− τ)

〉 〈
jL−kj

L
k (t− τ)

〉 ] , (219)

of which the left bottom entry is given by

m

NkBT

∫ t

0

dτ 〈R−kRk(τ)〉
〈
jL−kδρk(t− τ)

〉
=

m

ikkBT

∫ t

0

dτ 〈R−kRk(τ)〉 d

dt
F (k, t− τ). (220)

Combining the expressions for Part 1, 2 and 3 gives for the left bottom entry of Equation 201

d2F (k, t)

dt2
+
k2kBT

mS(k)
F (k, t) +

∫ t

0

dτM(k, τ)
d

dt
F (k, t− τ), (221)

with the memory kernel M(k, t) given by

M(k, t) =
m

NkBT
〈R−kRk(t)〉 . (222)

This is the exact equation of motion for the coherent intermediate scattering function F (k, t). Unfortunately,
〈R−kRk(t)〉 cannot be solved exactly and therefore needs to be approximated.

C.1.3 Approximation of the memory kernel

We apply four approximations to rewrite the memory kernel of Equation 222. We start with splitting M(k, t)
in a part containing fast and slow modes, which we call respectively M0(k, t) and MMCT(k, t):

M(k, t) = M0(k, t) +MMCT(k, t). (223)

The first approximation is to approximate the fast part M0(k, t) with a δ-function around the origin times a
constant α,

M0(k, t) ≈ αδ(t), (224)

because this only reflects the behavior of the intermediate scattering function at short times and we are interested
in longer times, which makes the exact form at short times irrelevant. Now we focus on MMCT(k, t) and we
can derive that hidden in the random force Rk is a pair of densities. First, rewriting the random force Rk
gives

Rk =
djLk
dt
− i kkBT

mS(k)
δρk (225)

=
d

dt

(
1

m

∑
i

(k̂ · pi)eik·ri
)
− i kkBT

mS(k)
δρk (226)

=
1

m

∑
i

(
k̂ · dpi

dt

)
eik·ri +

i

m2

∑
(k̂ · pi)2eik·ri − i kkBT

mS(k)
δρk, (227)
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where dpi
dt is a force which we can approximate using potential φ as follows

∑
i

dpi
dt
∼ −

∑
i

∑
j 6=i

∇φ(|ri − rj |) =
∑
q

iqφqδρqδρ−q, (228)

where in the last equation is used that φ(r) =
∑
k φke

ir·k. This dependency of the pair of densities in the
fluctuation force is remarkable as we first have removed the slow modes δρk from it and now see that this force
still depends on it. Therefore, the second approximation is to project the random force onto its slow modes
using the projection operator P2

P2 ≡
∑

q1,q2,q3,q4

Aq1,q2
〈
A∗q3,q4 ...

〉 〈
A∗q1,q2Aq3,q4

〉−1
with (229)

Aq1,q2 = δρq1δρq2 , (230)

with q1, q2, q3 and q4 wave vectors. The the projection P2 of Rk is

P2Rk =
∑
q1,q2

Vk(q1, q2)δρq1δρq2 , (231)

with

Vk(q1, q2) =
∑
q3,q4

〈δρ−q3δρ−q4Rk〉 · 〈δρ−q1δρ−q2δρq3δρq4〉
−1
. (232)

The numerator 〈δρ−q3δρ−q4Rk〉 is given by

〈δρ−q3δρ−q4Rk〉 =

〈
δρ−q3δρ−q4(

djLk
dt
− i kkBT

mS(k)
δρk)

〉
(233)

=

〈
δρ−qδρq−k(

djLk
dt
− i kkBT

mS(k)
δρk)

〉
(234)

= −
〈

dδρ−q
dt

δρq−kj
L
k

〉
−
〈
δρ−q

dδρq−k
dt

jLk

〉
− ikkBT

mS(k)
〈δρ−qδρq−kδρq−k〉 , (235)

where in Equation 234 is used that the ensemble average is only nonzero when −q3− q4 +k = 0. Furthermore,
in Equation 235 we have used that

〈
δρ−qδρq−k

djLk
dt

〉
=

d

dt

〈
δρ−qδρq−kj

L
k

〉
−
〈

dδρ−q
dt

δρq−kj
L
k

〉
−
〈
δρ−q

dδρq−k
dt

jLk

〉
(236)

= −
〈

dδρ−q
dt

δρq−kj
L
k

〉
−
〈
δρ−q

dδρq−k
dt

jLk

〉
. (237)

We can write

〈
dδρ−q

dt
δρq−kj

L
k

〉
= −i

〈∑
i

(q · pi)e−iq·ri
∑
j

ei(q−k)·rj
∑
l

(k̂ · pl)eik·rl
〉

(238)

= −i

〈∑
i,j

(q · pi)ei(k−q)·riei(q−k)·rj (k̂ · pi)

〉
(239)

= −i

〈∑
i,j

ei(k−q)·riei(q−k)·rj

〉
kBT

m
(k · q̂) (240)

= −i(q · k̂)
kBT

m
NS(q − k), (241)
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where we have used that the ensemble average is zero when i 6= l in Equation 239, the equipartition theorem in
Equation 240 and the definition of the density correlation given by Equation 15. In analogy with Equation 241
we have

〈
δρ−k

dδρk−q
dt

jLq

〉
= −i((q − k) · k̂)

kBT

m
NS(q). (242)

The third approximation is rewriting the third term in Equation 235 according to the convolution approximation
[55] as

− ikkBT
mS(k)

〈δρ−qδρq−kδρk〉 ≈ −
ikkBT

mS(k)
NS(q)S(k)S(q − k). (243)

The fourth approximation is used for the denominator of Equation 232, where we factorize a four-point density
term into products of two-point density terms. This gives,

∑
q3,q4

〈δρ−q1δρ−q2δρq3δρq4〉 (244)

≈
∑
q3,q4

(〈δρ−q1δρ−q2〉 〈δρq3δρq4〉+ 〈δρ−q1δρq3〉 〈δρ−q2δρq4〉+ 〈δρ−q1δρq4〉 〈δρ−q2δρq3〉) (245)

= 2 〈δρ−q1δρq1〉 〈δρ−q2δρq2〉 (246)

= 2N2S(q1)S(q2). (247)

Because of translational variance, only the differences of the wave vectors q1 and q2 matters and therefore we
can define q1 → q and q2 → k − q. This gives for Equation 231

P2Rk =
∑
q

Vq,k−qδρqδρk−q. (248)

Combining Equations 235, 241, 242, 243 and 247 to fill in Equation 232 gives for the vertices

Vq,k−q = Vk(q,k − q) (249)

=
ikBT

2mN

{
q · k̂
S(q)

+
(k − q) · k̂
S(q − k)

− k

}
(250)

= − ikBTρ
2mN

{
q · k̂c(k) + (k − q) · k̂c(k − q)

}
, (251)

with c(k) = 1
ρ (1− 1

S(k) ) the direct correlation function. The memory kernel of Equation 222 can now be written
as
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M(k, t) =
m

NkBT
〈R−kRk(t)〉 (252)

≈ Aδ(t) +
m

NkBT

〈
P∗2R−kei(1−P)LtP2Rk

〉
(253)

= Aδ(t) +
m

NkBT

〈∑
q′

V ∗q′,k−q′δρ−qδρq′−ke
i(1−P)Lt

∑
q

Vq,k−qδρqδρk−q

〉
(254)

= Aδ(t) +
m

NkBT

∑
q,q′

V ∗q′,k−q′Vq,k−q

〈
δρ−q′δρq′−ke

i(1−P)Ltδρqδρk−q

〉
(255)

= Aδ(t) +
m

NkBT

∑
q,q′

V ∗q′,k−q′Vq,k−q 〈δρ−q′δρq′−kδρq(t)δρk−q(t)〉 (256)

≈ Aδ(t) +
2N2m

NkBT

∑
q,q′

V ∗q′,k−q′Vq,k−qF (q, t)F (k − q, t)(δq′,q + δq′,k−q) (257)

= Aδ(t) +
2N2m

NkBT

∑
q

|Vq,k−q|2F (k, t)F (k − q, t) (258)

= Aδ(t) +
2N2mV

4NkBTπ2

∫
dq|Vq,k−q|2F (k, t)F (k − q, t) (259)

= Aδ(t) +
NmV

2kBTπ2

∫
dq|Vq,k−q|2F (k, t)F (k − q, t), (260)

where we have neglected the term 1 − P in the exponent in Equation 255. Furthermore, for Equation 257 we
have again used the Guassian approximation (fourth approximation) to rewrite a four-point density correlation
function into a product of two two-point density functions (see Equation 247) as follows

∑
q,q′

〈δρ−q′δρq′−kδρq(t)δρk−q(t)〉 (261)

≈
∑
q,q′

(〈δρ−q′δρq′−k〉 〈δρq(t)δρk−q(t)〉+ 〈δρ−q′δρq(t)〉 〈δρq′−kδρk−q(t)〉+ 〈δρ−qδρk−q(t)〉 〈δρq′−kδρq(t)〉)

(262)

≈
∑
q,q′

2N2F (q, t)F (k − q, t)(δq′,q + δq′,k−q) (263)

Furthermore, in Equation 260 we have switch from a discrete sum to a continuous integral via
∑
q →

V
(2π)2

∫
dq.

C.1.4 Final mode coupling theory equation

Using the approximation of the memory kernel of Equation 260, the mode coupling theory equation given by
Equation 221 becomes

d2F (k, t)

dt2
+
k2kBT

mS(k)
F (k, t) +

∫ t

0

dτM(k, t− τ)
δF (k, τ)

δτ
, (264)

via the coordinate transformation t− τ → τ , with

M(k, t) = M0(k, t) +
ρkBT

8π2m

∫
dq|Ṽk−q,q|2F (k, t)F (k − q, t), (265)

with

Ṽk−q,q = k · q̂c(q) + (k − q) · q̂c(k − q), (266)

with
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c(k) ≡ 1

ρ
(1− 1

S(k)
). (267)

When the systemic is isotropic, we can rewrite the above equations according to F (k, t)→ F (k, t), M(k, t)→
M(k, t) and S(k)→ S(k).

C.2 Adaptations to the MCT-derivation for the incoherent ISF

The derivation for the incoherent MCT follows the same steps as the derivation for the coherent MCT described
in Appendix Subsection C.2. Below we explain which equations are changing in the derivative. We start with
adapting the specific implementation of A of Equation 181, which is now given by

A =
[
δρk,s,i jLk,s,i

]
, (268)

with

δρk,s,i = eik·ri (269)

jLk,s,i =
1

m
ri · pieik·ri . (270)

Because we are only looking at correlation functions including δρk,s,i and jLk,s,i and these correlation functions
are defined as ensemble averages which include taking the sum over all particles i, we omit the subscript i from
now on. Following a similar derivation as in Appendix Subsection C.1.2 gives for the equation of motion of the
incoherent intermediate scattering function

d2Fs(k, t)

dt2
+
k2kBT

mS(k)
Fs(k, t) +

m

NkBT

∫ t

0

dτ 〈Rs,−kRs,k(τ)〉 d

dt
Fs(k, t− τ), (271)

with the random force Rs,k(t) given by

Rs,k(t) =
djLk,s

dt
− ikkBT

m
δρk,s. (272)

Instead of projecting the fluctuation force on the product of the densities, we project it on the product of the
self-density and the collective density. Thus, the projection operator P2 is now

Ps2 ≡
∑

q1,q2,q3,q4

Aq1,q2
〈
A∗q3,q4 ...

〉 〈
A∗q1,q2Aq3,q4

〉−1
with (273)

Aq1,q2 = δρq1,sδρq2 . (274)

Applying the same four approximation as explained in Appendix Subsection C.1.3 results in the following
MCT-equation for the incoherent intermediate scattering function:

d2Fs(k, t)

dt2
+
k2kBT

m
Fs(k, t) +

∫ t

0

dτMs(k, t− τ))
dFs(k, τ)

dτ
, (275)

with

Ms(k, t) = M0(k, t) +
ρkBT

8π2m

∫
dq|V sq,k−q|2F (q, t)Fs(k − q, t), (276)

with

V sq,k−q = (k̂ · q)c(q), (277)

and c(q) the direct correlation function.
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D Other mathematical derivations and proofs

In this appendix section we give the mathematical proofs and derivations of non-trivial mathematical equations
that we have used in this thesis. We start with a proof of the correlation theorem in Appendix Subsection
D.1 and a derivation of the time-diffusion scaling in Appendix Subsection D.2. In Appendix Subsection D.3 we
derive some properties of the honeycomb tiling and in Appendix Subsection D.4 we explain how the Voronoi
interaction potential can be simplified. Finally, we derive the equation for the self-diffusion coefficient in the
VRD- and VV-model in Appendix Subsection D.5.

D.1 Proof of correlation theorem

The correlation theorem is used in Equation 92 in Appendix B.1 to derive a general correlation function in
Fourier space and in this Appendix subsection we derive this theorem. Hence, we want to prove that the
Fourier of the correlation function can be written as

∫
d(∆r)C(∆r, τ)eik·∆r =

1

V
〈δA∗k(R(t))δAk(R(t+ τ))〉 , (278)

given the following definitions and identities:

C(∆r, τ) = 〈δA(r,R(t))δA(r + ∆r,R(t+ τ))〉 (279)

Âk(R(t)) =

∫
drA(r,R(t))eik·r (280)

A(r,R(t)) =
1

(2π)2

∫
drÂk(R(t))e−ik·r (281)

Â∗k(R(t)) = Â−k(R(t)). (282)

So,

∫
d(∆r)C(∆r, t)eik·(∆r) (283)

=

∫
d(∆r) 〈δA(r,R(t))δA(r + ∆r,R(t+ τ))〉 eik·(∆r) (284)

=

∫
d(∆r)

〈
1

(2π)4

∫
dk1Ak1(R(t))e−ik1·r

∫
dk2Ak2(R(t+ τ))e−ik2·(r+∆r)

〉
eik·(∆r) (285)

(286)

=
1

(2π)4

1

V

∫
dr1

∫
dr2

〈∫
dk1

∫
dk2Ak1(R(t))Ak2(R(t+ τ))e−ik1·r1e−ik2·r2

〉
eik·(r1−r2) (287)

=
1

(2π)4

1

V

〈∫
dk1

∫
dk2Ak1

(R(t))Ak2
(R(t+ τ))

∫
dr1

∫
dr2e

−i(k1−k)·r1e−i(k2+k)·r2
〉

(288)

=
1

V

〈∫
dk1

∫
dk2Ak1(R(t))Ak2(R(t+ τ))δ(k − k1)δ(k + k2)

〉
(289)

=
1

V
〈δA−k(R(t))δAk(R(t+ τ))〉 (290)

=
1

V
〈δA∗k(R(t))δAk(R(t+ τ))〉 , (291)

where we have used the coordinate transformation r1 = r+∆r and r2 = r, which changes the integral
∫

d(∆r)
to 1

V

∫
dr1

∫
dr2.

D.2 Time-diffusion scaling in the MCT-equation

In this appendix subsection we show that a change in the self-diffusion coefficient D0 only results in a rescaling
of the time in mode coupling theory. The mode coupling theory equation is given by (see Equation 41)
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dF (k, t)

dt
+ Ω2F (k, t) +

∫ t

0

dτM(k, t− τ)
dF (k, τ)

dτ
, (292)

where Ω2 = k2D0/S(k) and M(k, t) is linear in D0. By multiplying the equation with a scaling constant α we
obtain

α
dF (k, t)

dt
+ αΩ2F (k, t) + α

∫ t

0

dτM(k, t− τ)
dF (k, τ)

dτ
. (293)

We make the following substitution: t→ αt′, which results in

τ = ατ ′ (294)

dF (k, t)

dt
=

1

α

dF (k, αt′)

dt′
(295)∫ t

0

dτM(k, t− τ)
dF (k, τ)

dτ
= α

∫ αt′

0

dατ ′M(k, αt′ − ατ ′) 1

α

dF (k, ατ ′)

dτ ′
(296)

=

∫ αt′

0

dτ ′M(k, αt′ − ατ ′)dF (k, ατ ′)

dτ ′
. (297)

Filling this in in Equation 293 results in

dF (k, αt′)

dt′
+ αΩ2F (k, ατ ′) + α

∫ αt′

0

dτ ′M(k, αt′ − ατ ′)dF (k, ατ ′)

dτ ′
. (298)

Keeping in mind that both Ω2 and M(k, t) are linear in D0, this shows that D0 → αD0 leads to F (k, t) →
F (k, αt) resulting in a time rescaling of t → αt. Hence, the rescaled relaxation time for αD0 is given by
τα
α .

D.3 Honeycomb tiling properties

A honeycomb or hexagonal tiling minimizes the ratio of perimeter to the squared area [103]. In this appendix
subsection we show that this ratio is 3.7224 and that the ratio of the interparticle distance to the squared area
is 1.0745 in a hexagonal tiling.

Figure 83: Calculation of the perimeter to squared area ratio and the interparticle distance to squared area ratio in a
hexagonal grid.
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The central hexagon in Figure 83 can be divided in six triangles with identical shape and size due to symmetry
reasons. The angle near the center is called α and obeys the formula 6α = 2π → α = 1

3π. Looking at one triangle,
we see that both angles near the border are equal due to symmetry, which results in α + 2β = π → β = 1

3π.
Thus, each triangle is equilateral and we define the length of the edges with a. The height of the triangle h

(blue line in Figure 83) is given by h =
√
a2 − 1

4a
2 =

√
3

2 a which results in an area of Atri = 1
2ah =

√
34a2. The

hexagon consists of 6 triangles and its area is A = 6Atri. The perimeter of the pentagons is 6a and this results
in the following ratio

P√
A

=
6a√
3
√

3
2 a2

= 3.7224... (299)

The distance between the centers of two neighboring hexagons is 2h (see red line in 83) and the ratio with
respect to the squared area is

2h√
A

=

√
3

2 a√
3
√

3
2 a2

= 1.0745... (300)

D.4 Simplification of the Voronoi interaction potential

In Subsection 3.3.1 we have simplified the Voronoi potential, starting from the total interaction energy in a
system with N cells, given by

E =

N∑
i=1

KA(Ai −A0)2 + ξP 2
i + γPi, (301)

where we already have assumed that all cells are identical such that KAi = KA, A0,i = A0, ξi = ξ and γi = γ.
In this appendix subsection we rewrite this integration to a form that is easier interpretable. The interaction
force on a cell i is a function of the derivative of the energy with respect to the position of cell i and therefore
we are free to add or subtract terms to the interaction energy that do not depend on the position of cell i. With
this in mind, we rewrite

E =

N∑
i=1

KA(Ai −A0)2 + ξ(P 2
i +

γ

ξ
Pi) (302)

=

N∑
i=1

KA(Ai −A0)2 + ξ(P 2
i +

γ

2ξ
)2 − (

γ

2ξ
)2 (303)

∼
N∑
i=1

KA(Ai −A0)2 + ξ(Pi +
γ

2ξ
)2 (304)

=

N∑
i=1

KA(Ai −A0)2 +KP (Pi − P0)2, (305)

where in the last line is used that KP = ξ and − γ
2ξ = P0, and the last equation is similar to Equation 57 in

Subsection 3.3.1.

Next step is to show that the derivative of the interaction energy with respect to the position of cell i is
independent of the choice of A0 and therefore we can choose A0 to be equal to the average cell area Aavg = AT

N ,
with AT the total area of the system. To show this, assume that we choose a preferred area A0 = Aavg + µ, in
which µ is an arbitrary positive or negative constant.
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E =

N∑
i=1

KA(Ai −Aavg − µ)2 +KP (Pi − P0)2 (306)

=

N∑
i=1

KA((Ai −Aavg)2 − 2µ(Ai −Aavg) + µ2) +KP (Pi − P0)2 (307)

=

N∑
i=1

KA((Ai −Aavg)2 +KP (Pi − P0)2 −
N∑
i=1

2KAµ(Ai −Aavg) +

N∑
i=1

KAµ
2 (308)

=

N∑
i=1

KA(Ai −Aavg)2 +KP (Pi − P0)2 −KAµAT +KAµAT +NKAµ
2 (309)

=

N∑
i=1

KA(Ai −Aavg)2 +KP (Pi − P0)2 +NKAµ
2 (310)

∼
N∑
i=1

KA(Ai −Aavg)2 +KP (Pi − P0)2, (311)

where we have used in the last step that the derivative of NKAµ
2 to the position of a cell i is zero.

D.5 Self-diffusion coefficient in the VRD- and VV-model

In this appendix subsection we show that the diffusion coefficient of a free particle with velocity v0 and rotational
diffusion with diffusion coefficient Dr is given by D0 = v0

2Dr
. We start with the equation of motion for a free

self-propulsive particle under influence of rotational noise:

dr

dt
= v0n (312)

with n = (cos θ, sin θ) and

dθ

dt
= η, (313)

with 〈η(t)η(t′)〉 = 2Drδ(t− t′). By integration Equation 312 we obtain

r(t) = r(0) +

∫ t

0

dt1vn(t1). (314)

By choosing r(0) = 0 we obtain for the mean squared displacement

〈
r2(t)

〉
=

〈∫ t

0

dt1v0n(t1)

∫ t

0

dt2v0n(t2)

〉
(315)

= v2
0

∫ t

0

dt1

∫ t

0

dt2 〈n(t1) · n(t2)〉 (316)

= v2
0

∫ t

0

dt1

∫ t

0

dt2 〈cos θ(t1) cos θ(t2) + sin θ(t1) sin θ(t2)〉 (317)

= v2
0

∫ t

0

dt1

∫ t

0

dt2 〈cos (θ(t1)− θ(t2))〉 . (318)

(319)

Using ∆tn = t2−t1
n with n an integer, we rewrite the term in the integral as follows
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〈 cos (θ(t1)− θ(t2))〉 =
〈
R
(
ei(θ(t2)−θ(t1))

)〉
(320)

=
〈
R
(
ei(θ(t2)−(θ(t2−∆t)+(θ(t2−∆t)−(θ(t2−2∆t)+(θ(t2−2∆t)−...−(θ(t2−(n−1)∆t)+(θ(t2−(n−1)∆t)−(θ(t2−n∆t))

)〉
(321)

=
〈
R
(
ei(θ(t+∆t)−θ(t))

)n〉
(322)

= 〈cos (θ(t+ ∆tn)− θ(t))〉n (323)

= lim
n→∞

〈cos (θ(t+ ∆tn)− θ(t))〉n (324)

= lim
n→∞

(
1− 1

2

〈
(θ(t+ ∆tn)− θ(t))2

〉)n
(325)

= lim
n→∞

(1−Dr|∆tn|)n (326)

= e−Dr|t2−t1|, (327)

where in Equation 325 is used that cos(θ) ≈ 1− 1
2θ

2 for small θ and in Equation 327 that limn→∞(1+ ax
n )n = eax,

with a a constant. Filling Equation 327 in in the mean squared displacement of Equation 318 gives

〈
r2(t)

〉
= v2

0

∫ t

0

dt1

∫ t

0

dt2e
−Dr|t2−t1| (328)

= v2
0

(∫ t

0

dt1

∫ t1

0

dt2e
−Dr|t2−t1| +

∫ t

0

dt1

∫ t

t1

dt2e
−Dr|t2−t1|

)
(329)

=
v2

0

Dr

(∫ t

0

dt1(1− e−Drt1) +

∫ t

0

dt1(1− e−Drt2)

)
(330)

=
2v2

0

Dr

(
t− 1− e−Drt

Dr

)
. (331)

With the MSD we can compute the diffusion coefficient D0 as follows

D0 = lim
t→∞

〈
r2(t)

〉
4t

(332)

= lim
t→∞

2v20
Dr

(
t− 1−e−Drt

Dr

)
4t

(333)

=
v2

0

2Dr
. (334)

Because the Vicsek-like alignment in the VV-model does not influence the MSD for an isolated particle, Equation
332 is also the self-diffusion coefficient of the VV-model.
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E Algorithms

In this appendix section we explain the algorithms that we have used in this thesis. In Appendix Subsection
E.1 we give the algorithm for the VRD-model and the adaptations in this algorithm for the VV-model. In
Appendix Subsection E.2 the algorithms for the static and dynamic correlation functions are given and in
Appendix Subsection E.3 the MCT-algorithm for the coherent ISF and the adaptations in the algorithm for the
incoherent ISF are explained.

E.1 Algorithms for the VRD-model and VV-model

We explain the algorithm of the VRD in Appendix Subsection E.1.1. Hardest part of this algorithm is to
implement the derivation of the Voronoi interaction potential and this is explained in Appendix Subsection E.1.2.
In Appendix Subsection E.1.3 we describe how we have adapted the VRD-algorithm for the VV-model.

E.1.1 Overview of the algorithm

The VRD-model is defined by Equations 57 till 59 in Subsection 3.3.1 and we solve these equations using
molecular dynamics. In a molecular dynamics simulation Newton’s equations of motion are solved, and the
trajectories of the particles in configuration space are obtained. In order to do so, we rewrite the equations of
motions for ri and θi using Euler’s method to

ri(t+ ∆t) = ri(t)− µ∆t∇iE + v0∆tn̂i, (335)

and
θi(t+ ∆t) = θi(t) + ηi, with 〈ηi(t)ηj(t′)〉 = 2Dr∆tδ(t− t′)δij , (336)

with ∆t the size of a time step. The interaction potential E stays unaltered and is in dimensionless form given
by

E =

N∑
i

ka(ai − a0)2 + kp(pi − p0)2. (337)

The algorithm we have used to solve Equations 335 till 337 is sketched in Figure 84 and each individual step is
briefly described below.

Figure 84: Molecular dynamics algorithm for the VRD-model.
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1. Initialization
We start with N cells in a square box of size

√
N ×

√
N with periodic boundary conditions and choose the

position of the seeds ri randomly. Different algorithms can be used for the initial position of the seeds to speed
up the process to reach a steady state, like random sequential addition, but we do this completely random.
Furthermore, each cell is assigned a preferred area a0 and perimeter p0 and because these values are identical
for all cells the system is monodisperse.

2. Calculate Delaunay triangulation
The Delaunay triangulation is the dual graph of the Voronoi tesselation, see Figure 27. The Voronoi seeds
(red dots in Figure 85) are the vertices in a Delaunay triangulation and the edge (black and green lines) are
drawn such that the circumcircle (purple) of any triangle (green) does not contain any seeds. There is only one
triangulation that satisfies this condition.

Figure 85: Delaunay triangulation of the seeds (red) with the circumcircle (purple) for one Delaunay triangle (green).

3. Calculate the interaction force
The interaction force on cell i depends on the derivative of the interaction energy Ei of cell i and on the derivative
of the energy Ej of its nearest neighbors NN(i). Nearest neighbors are vertices in the Delaunay triangulation
connected via only one edge. Thus, the interaction force on cell i is given by

Fi = −∇iE = −

(
∂Ei
∂ri,x

+
∑
j∈NN(i)

∂Ej
∂ri,x

∂Ei
∂ri,y

+
∑
j∈NN(i)

∂Ej
∂ri,y

)
, (338)

with x and y Cartesian coordinates. The derivation and expressions for the derivatives are quite complex and
are therefore given in the next appendix subsection.

4. Update the director of the self-propulsion force
A random number is drawn from a standard normal distribution and multiplied by the standard deviation of
the noise:

√
2∆tDr. This random number is added to the current angle of the director.

5. Update the positions
Since all terms of Equation 335 are known, the displacements for all cells i are executed.

6. Test Delaunay triangulation
The displacements do not always disrupt the Delaunay triangulation and we test this first to save time. This
test is done by checking for each Delaunay triangle if its circumcircle contains a seed.

7. Update Delaunay triangulation
If there are Delaunay triangles that contain a seed inside its circumcircle, the triangulation is incorrect. For each
incorrect triangle, the triangulation is locally repaired. One possible method is using an edge-flipping algorithm
in which one of the edges of the incorrect triangulation flips to connect two other seeds.

One time step contains of step 3 till 7 and we let the system reach a steady state by performing ninitsteps time
steps before we start measuring the system.

The VRD-algorithm is implemented in CellGPU [84] and we use a modified version for our simulations. CellGPU
is an open source software program to simulate regular vertex and SPV-models. The SPV-model is implemented
with a hybrid CPU/GPU-approach because the GPU highly reduces the calculation costs by doing parallel
calculations. The largest time saving is obtained in step 3 where the interaction forces on the cells are calculated
parallel due to the GPU-implementation.
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E.1.2 Implementation of the Voronoi interaction potential

In this appendix subsection we derive the equation for the derivative of the interaction potential given in
Equation 338. But before looking into this derivatives, we need to define some of the properties of a Delaunay
triangle. An example of a Delaunay triangle is given in Figure 86. The three vertices ri, rj and rk belong to the
three cells i, j and k. The Voronoi vertex hijk inside the triangle is given by the crossing of the perpendicular
bisectors of the three edges rij , rjk and rki, where rij is the vector rj − ri. By drawing lines from hijk to ri,
rj and rj , we obtain three times two equal triangles resulting in the following property:

|hijk − ri| = |hijk − rj | = |hijk − rk| = R (339)

in which R the radius of the circumcircle. By solving Equation 339 using Mathematica we obtain the coordinates
of the vertex hijk. After rewriting in a neat way, the vertex hijk becomes

hijk = αri + βrj + γrk, (340)

with

α = |rjk|2(rij · rik)/d (341)

β = |rik|2(rij · rkj)/d (342)

γ = |rij |2(rik · rjk)/d (343)

d = 2(rij,xrkj,y − rij,yrkj,x)2. (344)

Figure 86: Delaunay triangle connecting cells i, j and k and its circumcircle and circumcenter.

The dimensionless interaction potential E is given by (see Equation 57)

E =

N∑
i

ka(ai − a0)2 + kp(pi − p0)2, (345)

and to calculate the force Fi on cell i, we need to take into account cell i and its neighboring cells NN(i),

Fi = −∇iE = −

(
∂Ei
∂ri,x

+
∑
j∈NN(i)

∂Ej
∂ri,x

∂Ei
∂ri,y

+
∑
j∈NN(i)

∂Ej
∂ri,y

)
. (346)
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Figure 87: Nomenclatuur and vertices (red and blue) that have to be taken into account to calculate the total interaction
force on cell i.

The energy term is a function of the perimeter and area of a cell and this is calculated easiest via the vertices.
By using the chain rule, the partial derivatives in Equation 346 can be rewritten as a function of the vertices.
For example, the derivative of the energy of cell j to the position of cell i depends on the two shared vertices
of cell i and j, namely hijk and hgij (blue dots in Figure 87), because all other vertices of cell j do not depend
on the location of cell i. Thus,

∂Ej
∂riµ

=
∑
ν

(
∂Ej
∂hijk,ν

∂hijk,ν
∂ri,µ

+
∂Ej
∂hgij,ν

∂hgij,ν
∂ri,µ

), (347)

in which µ and ν both represent Cartesian coordinates. To calculate the derivative of the energy of cell i to the
position of cell i, all the vertices of cell i have to be taken into account (see red and blue dots in Figure 87).
The total force on cell i is for Cartesian coordinate µ is given by

Fi,µ =−
∑

j∈NN(i)

∑
k>j,k∈NN(i)∧NN(j)

∑
ν

(
∂Ei

∂hijk,ν

∂hijk,ν
∂ri,µ

)

−
∑

j∈NN(i)

∑
k∈NN(i)∧NN(j)

∑
ν

(
∂Ej
∂hijk,ν

∂hijk,ν
∂ri,µ

+
∂Ej
∂hgij,ν

∂hgij,ν
∂ri,µ

),

(348)

with ν representing the Cartesian coordinates x and y. The last step is defining the derivative of the energy of
a cell to one of its vertices, given by ∂Ei

∂hijk,ν
, and the derivative of a vertex to the position of one of its adjacent

cells
∂hijk,ν
∂ri,µ

. We start with the derivative of the energy, which is rewritten with Equation 345 to

∂Ei
∂hijk,ν

= 2ka(ai − a0)
∂ai

∂hijk,ν
+ 2kp(pi − p0)

∂pi
∂hijk,ν

, (349)

where the derivative of the area to one of the vertices is given by

∂ai
∂hijk,ν

=
1

2
(lij n̂ij,ν + ljkn̂jk,ν) (350)

where lij is the length of the edge between cell i and j, given by |hgij − hijk| with g ∈ NN(i) ∧ NN(j),
k ∈ NN(i) ∧ NN(j) and l 6= g. The vector n̂ij is the unit vector perpendicular to the edge between i and j

given by
(hgij−hijk)⊥
|hgij−hijk| . The factor 1/2 in Equation 350 is because the derivative is taken to one of the vertices

of the edge, while the position of the other vertex stays fixed, resulting in a triangular-like displacement of the
edge.
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The derivative of the perimeter to one of the vertices is given by

∂pi
∂hijk,ν

=
(hijk,ν − hgij,ν)

|hijk − hgij |
+

(hijk,ν − hikl,ν)

|hijk − hikl|
, (351)

where again g ∈ NN(i) ∧NN(j) , l ∈ NN(i) ∧NN(j) and l 6= g.

For the derivative of the vertex hijk to ri, we go back to the formula of the vertex in Equation 340 and notice
that α+ β + γ = 1 (Mathematica). Now we choose ri as the origin and rewrite the equation to

hijk = αri +
1

d
(dβrij + dγrik) with ri = 0, (352)

where rij is the vector from j to i. Next step is to take the derivative to ri as follows

∂hijk,ν
∂ri,µ

=
∂αri,ν
∂ri,µ

+
∂ 1
d (dβrij,ν + dγrik,ν)

∂rik,µ
with ri,µ = 0, (353)

= αδµν +
1

d
(rij,ν

∂(βd)

∂ri,µ
+ rik,ν

∂(βd)

∂ri,µ
− 1

d

∂d

∂ri,µ
) (354)

= (1− γ − δ)δµν +
1

d
(rij,ν

∂(βd)

∂ri,µ
+ rik,ν

∂(βd)

∂ri,µ
− 1

d

∂d

∂ri,µ
). (355)

The derivatives in Equation 355 are now the derivatives of Equations 341 till 344 and given by

∂(βd)

∂ri,µ
= 2rik,µ(rij · rjk) + |rik|2rjk,µ (356)

∂(γd)

∂ri,µ
= −2rij,µ(rik · rjk)− |rij |2rjk,µ (357)

∂d

∂ri,µ
= 4(rij,xrkj,y − rij,yrkj,x)(rjk,xδyµ − rjk,yδxµ). (358)

Thus, the force Fi on cell i is calculated by Equation 348, after filling in Equations 349 till 351 and 355 till
358.

E.1.3 Adaptations for the VV-algorithm

The algorithm for the VV-model is similar to the algorithm shown in Figure 89 for the VV-model, only with a
change in Step 4. In this step the cell director is updated according to Equation 67, which is rewritten using
Euler’s method to

θi(t+ ∆t) = θi(t) +
∆t

τv
〈φj(t)− θi(t)〉0<|ri−rj |<RV + ηi(t), (359)

with ηi(t) a random number with mean zero and variance 2Dr∆t. Equation 359 is implemented in the CellGPU-
code as follows. First all neighbors that are within RV from cell i are determined and because the algorithm
stores a neighbor list this can be done efficiently using an iterative algorithm. First the algorithm determines
which direct neighbors j that share an edge with cell i are at a distance less than RV and we call them first
neighbors. Next the direct neighbors of the first neighbors are checked and we call them second neighbors if they
are within RV from cell i. Then, the direct neighbors of the second neighbors are checked, and this continues
until no more direct neighbors are found within RV from cell i. Then, the average angle 〈φ〉RV of the velocity
vectors of all neighbors is calculated and a random number from a standard normal distribution is drawn and
multiplied with

√
2Dr∆t. The new director is now calculated using Equation 359.
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E.2 Algorithms for the correlation functions

In this appendix subsection we summarize the algorithms that we used to calculated the scalar and vectorial
radial distribution function, the scalar and vectorial static structure factor and the coherent and incoherent
intermediate scattering function. N is the number of particles, and Nss the number of snapshots that are taken
into account. rij(s) = (rij,x, rij,y) = rj(s)− ri(s) is the vector from particle i to particle j in snapshots s and
rij(s) is its magnitude.

The algorithm for calculating the vectorial radial distribution function is given by Algorithm 1. The algorithm
makes a two dimensional histogram H with bin size ∆h of all interparticle distances in the x- and y-direction.
The algorithm for calculating the scalar radial distribution function is given by Algorithm 2. This algorithm
makes a one dimensional histogram H with bin size ∆h of all interparticle distances.

Algorithm 1 Radial distribution function - vector

for all Nss snapshots s do
for all N particles i do

for all N particles j 6= i do

Add 1 to histogram entry H(hx, hy) where the index hx is given by round
(
rij,x(s)

∆h

)
with ∆h the

bin spacing and hy is given by round
(
rij,y(s)

∆h

)
end for

end for
end for
Calculate g(rh,x, rh,y) =

H(hx,hy)
NssNρ0h2 with rh,x = (hx + 1

2 )∆h and rh,y = (hy + 1
2 )∆h

Algorithm 2 Radial distribution function - scalar

for all Nss snapshots do
for all N particles i do

for all N particles j 6= i do

Add 1 to histogram entry H(h) where the index h is given by round
(
rij(s)
∆h

)
with ∆h the bin

spacing
end for

end for
end for
Calculate g(rh) = H(h)

NssNρ0V (h) with rh = (h + 1
2 )∆h and V (h) the 2D volume of the bin given by V (h) =

4π((h+ 1)2 − h2)∆h

The algorithm for calculating the vectorial static structure factor via the direct method is given by Algorithm 3
and for the scalar static structure factor by Algorithm 4. First Nw wave vectors k = (kx, ky), indexed with w,

are created satisfying kx = 2πnx
L and ky =

2πny
L and having magnitude k. We calculate the contribution of each

particle for each wave vector and add this to a temporary function Stemp. In the last step, we bin the results of
S(k) or S(k) to reduce the statistical error.

Algorithm 3 Static structure factor - vector

Make Nw wave vectors matching the periodicity of the box
for all Nss snapshots s do

for all Nw wave vectors w do
for all N particles i do

Calculate Stemp(kw,x, kw,y)+ = (
∑N
i=1 cos (kw · ri(s))2 + (

∑N
i=1 sin (kw · ri(s)))2

end for
end for

end for
Calculate the average static structure factor S(kx, ky) =

Stemp(kx,ky)
NNss

Bin S(kh,x, kh,y) by taking the average S(kx, ky) with kh,x − ∆h
2 ≤ kx < kh,x + ∆h

2 and kh,y − ∆h
2 ≤ ky <

kh,y + ∆h
2
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Algorithm 4 Static structure factor - scalar

Make Nw wave vectors matching the periodicity of the box
for all Nss snapshots s do

for all Nw wave vectors w do
for all N particles i do

Calculate Stemp(kw)+ = (
∑N
i=1 cos (kw · ri(s))2 + (

∑N
i=1 sin (kw · ri(s)))2

end for
end for

end for
Calculate the average static structure factor S(k) =

Stemp(k)
NNss

Bin the average static structure factor S(kh) by taking the average S(k) with kh − δh
2 ≤ k < kh + δh

2

The algorithm for calculating the coherent intermediate scattering function F (k, τ) is given by Algorithm 5.
First k where S(k) has its first peak is determined and a set of wave vectors W is made that fall within a bin of
size ∆h around k and satisfy the periodic boundary conditions. Next, we calculate for each time τ smaller than
the maximum time τmax the intermediate scattering function. The algorithm for the incoherent intermediate
scattering function Fs(k, τ) is given by Algorithm 6.

Algorithm 5 Coherent intermediate scattering function

Define the set of wave vectors W satisfying the boundary conditions of the box and satisfying kw− ∆h
2 ≤ k <

kw + ∆h
2 with k = arg max(S(k)), using Algorithm 4

for all Nss + τmax snapshots s do
for all Nw wave vectors w do

Calculate Y cos
w (s) =

∑N
i=1 cos(kw · ri(s)) and Y sin

w (s) =
∑N
i=1 sin(kw · ri(s))

end for
end for
for τ < τmax do

for all Nss snapshots s do
for all Nw wave vectors w do

Ftemp(τ)+ = Y cos
w (s)Y cos

w (s+ τ) + Y sin
w (s)Y sin

w (s+ τ)
end for

end for
Calculate the intermediate scattering function F (k, τ) =

Ftemp(τ)
NssNNw

end for

Algorithm 6 Incoherent intermediate scattering function

Define the set of wave vectors W satisfying the boundary conditions of the box and satisfying kw− ∆h
2 ≤ k <

kw + ∆h
2 with k = arg max(S(k)), using Algorithm 4

for τ < τmax do
for all Nss snapshots s do

for all Nw wave vectors w do
for all N particles i do

Fs,temp(τ)+ = cos(ri(τ) · kw)
end for

end for
end for
Calculate the intermediate scattering function Fs(k, τ) =

Fs,temp(τ)
NssNNw

end for
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E.3 Algorithms for mode coupling theory

In this appendix subsection we explain the algorithm that we have used to in our mode coupling theory analysis,
which is an adapted version of the algorithm written by L.M.C. Janssen. In Appendix Subsection E.3.1 we give
a general overview of this algorithm and in Appendix Subsection E.3.2 till E.3.6 we give the details of the
algorithm. We conclude in Appendix Subsection E.3.7 with the adaptations in the MCT-algorithm for the
incoherent ISF.

E.3.1 Overview of the algorithm

The MCT-equation for the coherent intermediate scattering function is given by Equation 41. Because our
simulations are overdamped, we use the overdamped version of the MCT-equation by neglecting the second
order term. Furthermore, we normalize F (k, t) via dividing by F (k, 0) = S(k) and set the short term memory
kernel to Aδ(t) with A = 1. Thus, we solve the following MCT-equation (see Appendix Subsection E.3.2):

dF (k, t)

dt
+ Ω2F (k, t) +

∫ t

0

dτMMCT(k, t− τ)
dF (k, τ)

dτ
= 0, (360)

with Ω2 = k2D0

S(k) and

MMCT(k, t) =
ρD0

8π2

∫
dq | Ṽk−q,q |2 F (q, t)S(q)F (| k − q |, t)S(| k − q |), (361)

with
Ṽk−q,q = (k̂ · q)c(q) + k̂ · (k − q)c(| k − q |), (362)

with

c(k) =
1

ρ

(
1− 1

S(k)

)
. (363)

Figure 88: Illustration of the integration pattern used by Fuchs et al. [84], where in each period the step size ∆t is doubled.

To solve this first-order integro-differential equation in time for many orders of magnitude efficiently, we apply
the algorithm specified by Fuchs et al. [84] and illustrated in Figure 88. We start with Period 1 of length T1

and divide the period in 4NT equal segments of ∆t = T1/4NT (NT = 2 in Figure 88). We assume that the
value of F (k, t) for the first 2NT segments is known (for example via a Taylor expansion) and based on these
points we calculate the value at the last 2NT segments of Period 1. Then, we double the period to T2 = 2T1

and again divide the period in 4NT equal segments with ∆t = T2/4NT . Again the value of F (k, t) for the first
2NT segments is known and we can calculate F (k, t) for the last 2NT segments. This procedure is iterated until
the maximum time tmax is reached.

The overview of the full MCT-algorithm to calculate F (k, t) is given in Figure 89 and we discuss the main steps
below.
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Figure 89: Schematic overview of the MCT-algorithm to calculate the coherent intermediate scattering function.

1. Input
The scalar static structure factor, the self-diffusion coefficient D0 and the density ρ serve as input for the
MCT-algorithm.

2. Calculate vertices
The vertices in Equation 362 do not depend on time, and therefore only need to be calculated once. The formula
for calculating these vertices is derived in Appendix Subsection E.3.3.

3. Calculate F (k, t) for small t
Because we are not interested in what happens at short-time scales, we approximate F (k, t) for small t by using
a Taylor expansion, given in Appendix Subsection E.3.4.

4. Calculate M(k, t) for small t
Knowing F (k, t) for small t, we can calculate M(k, t) for the same values of t using Equation 361. To do this,
we change the integral in Equation 361 to a sum over a discrete set of k-values at which the S(k) is known and
this rewritten equation is given in Appendix Subsection E.3.3.

5. Make an ansatz for M(k, t)
To calculate F (k, t+ ∆t) we solve the following equation for all k-values until the cut-off value of S(k):

AkF (k, t+ ∆t) +Btk = DkM(k, t+ ∆t) + Ctk, (364)

where Ak and Dk are functions independent of t, and Btk and Ctk depend only on times smaller than the current
time t. The explicit expressions of Ak, Btk, Ctk and Dk are given in Appendix Subsection E.3.5. There are nk
equations of Equation 364 with nk the number of wave vectors, and M(k, t) depends on all of them. Therefore
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we need to solve Equation 364 for M(k, t + ∆t) and F (k, t + ∆t) at the same time using an iterative method.
To do this, we start with the ansatz M(k, t+ ∆t) = M(k, t).

6. Calculate F (k, t) for current M(k, t)
With the current M(k, t+ ∆t) (either known from the ansatz or previous iterations), we calculate F (k, t+ ∆t)
using Equation 364.

7. Calculate M(k, t) for current F (k, t)
With Equation 361, we calculate a new value for Mnew(k, t + ∆t) based on the current value of F (k, t + ∆t).
The relative error is defined as

Error =
Mnew(k, t+ ∆t)−Mold(k, t+ ∆t)

Mold(k, t+ ∆t)
, (365)

with Mold(k, t + ∆t) the previous estimate of M(k, t + ∆t)). When this relative error is larger than ε, the
algorithm returns to Step 5 to calculate a new estimate for F (k, t + ∆t). Step 5 and 6 are iterated until the
error is smaller than ε and the algorithm proceeds.

8. Double the step size
When F (k, t) has been calculated for 2NT time points within the current time Period Ti, we double the step
size and calculate F (k, t) for the next 2NT time points. How the discrete values of F (k, t), M(k, t) and their
integrals are updated for ∆t→ 2∆t is described in Appendix E.3.6.

E.3.2 Rewrite of the MCT-equation

In deriving the mode coupling theory, we have removed the fast modes from the memory kernel (see Subsection
2.3.1) because we are only interested in the long-term dynamics. We include these fast modes by adding Aδ(t)
to the memory kernel in the isotropic version of the MCT-equation as follows

dF 2(k, t)

dt2
+ Ω2F (k, t) +

∫ t

0

dτ M(k, t− τ)

=

Aδ(t)︸ ︷︷ ︸
fast modes

+MMCT(k, t− τ)︸ ︷︷ ︸
slow modes

dF (k, τ)

dτ
= 0, (366)

where the superscript MCT is used to emphasize that it represents the memory kernel from mode coupling

theory and Ω2 = k2D0

S(k) . Equation 366 is rewritten to

dF 2(k, t)

dt2
+A

dF (k, t)

dt
+ Ω2F (k, t) +

∫ t

0

dτMMCT(k, t− τ)
dF (k, τ)

dτ
= 0. (367)

Because our simulations are based on an overdamped equation of motion, we neglect the second-order derivative.
Furthermore, we set A = 1, because a change in A corresponds to a change in D0, which only scales the time
axis in the MCT-results (see Subsection D.2). This results in

dF (k, t)

dt
+ Ω2F (k, t) +

∫ t

0

dτMMCT(k, t− τ)
dF (k, τ)

dτ
= 0. (368)

Because we want to calculate the normalized F (k, t), we divide F (k, t) by F (k, 0) = S(k). Equation 368 stays
the same, but the memory kernel changes to

M(k, t) =
ρD0

8π2

∫
dq | Ṽk−q,q |2 F (q)S(q, t)F (| k − q |, t)S(| k − q |). (369)

This results in the MCT-equation specified by Equations 360 - 363.
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E.3.3 Discretization of M(k, t) and calculation of the vertices (step 1)

We only know the static structure factor for discrete k-values given by (i + 1
2 )∆k, with i an integer and ∆k

the spacing between grid points. Therefore, we transform the integral over dq in Equation 369 to a sum
dependent only on the magnitude of the wave vectors. First we rewrite Equation 369 using polar coordinates

(
∫

dq... =
∫∞

0
dφ
∫ 2π

0
dqq) to

M(k, t) =
ρD0

8π2

∫ ∞
0

qdq

∫ 2π

0

dφ | Ṽk−q,q |2 S(q)S(| k − q |)F (q, t)F (| k − q |, t) (370)

=
2ρD0

8π2

∫ ∞
0

qdq

∫ π

0

dφ | Ṽk−q,q |2 S(q)S(| k − q |)F (q, t)F (| k − q |, t) (371)

Figure 90: Defining the vector p = k − q.

We choose k to be in the x-direction such that the angle between k and q is given by φ (see Figure 90). The
circle shows all possible q-vectors with the same magnitude. We define a new vector p from k to q such that
p = |k − q|. We apply the cosine rule on the triangle OQK given in Figure 90 for angle φ:

cosφ =
q2 + k2 − p2

2qk
, (372)

and the derivative is

sinφdφ =
2pdp

2kq
=
pdp

kq
, (373)

because only p depends on φ.

Furthermore,

sinφ =
√

(1− cos(φ)2 =

√
1− 1

4q2k2
(q2 + k2 − p2) =

√
4k2q2 − (q2 + k2 − p2)2

2qk
. (374)

Now qdφ is

qdφ =
pdp

k sinφ
=

2pqdp√
4k2q2 − (q2 + k2 − p2)2

, (375)

and with this equation for qdφ we can rewrite the memory kernel given in Equation 371 as

M(k, t) =
2ρD0

8π2

∫ ∞
0

dq

∫ |k+q|

|k−q|
dp

2pq√
4k2q2 − (q2 + k2 − p2)2

| Ṽp,q |2 S(q)S(p)F (q)F (p, t), (376)
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where we have used that |k − q| ≤ p ≤ |k + q|. We transform the integrals into sums to get

M(k, t) =
4ρD0

8π2
(∆k)2

qmax∑
q=0

|k+q|∑
p=|k−q|

pq√
4k2q2 − (q2 + k2 − p2)2

| Ṽp,q |2 S(q)S(p)F (q)F (p, t), (377)

where we have used that q has a maximum value qmax because S(k) is cut off.

The vertices can be rewritten to

Ṽp,q = (k̂ · q)c(q) + (k̂ · p)c(p) (378)

= (k̂ · q)c(q) + (k̂· | k − q |)c(p) (379)

=
1

2k

(
(k2 + q2 − (k2 − 2k · q + q2))C(q) + (2k2 − 2k · q − q2 + q2)C(p)

)
(380)

=
1

2k

(
(k2 + q2 − p2)C(q) + (k2 − q2 + p2)C(p)

)
. (381)

This results in the following equation for the total memory kernel

M(k, t) =
ρD0

8π2k2
(∆k)2

qmax∑
q=0

|k+q|∑
p=|k−q|

pq
(
(k2 + q2 − p2)C(q) + (k2 − q2 + p2)C(p)

)2√
4k2q2 − (q2 + k2 − p2)2

S(q)S(p)F (q, t)F (p, t), (382)

in which the the summation over q is over the same equidistant grid as k.

The only time dependency in the memory kernel comes from F (q, t)F (p, t), thus Z(k, p), defined by

Z(k, p) =
ρD0

8π2k2
(∆k)2 pq

(
(k2 + q2 − p2)C(q) + (k2 − q2 + p2)C(p)

)2√
4k2q2 − (q2 + k2 − p2)2

S(q)S(p), (383)

only has to be calculated once during the execution of the algorithm.

E.3.4 Calculation of F (k, t) and M(k, t) for small t (step 2 and 3)

We use a Taylor expansion to calculate F (k, t) for small values of t:.

F (k, t) = F (k, 0) +
dF (k, 0)

dt
(t− 0) +

1

2

d2F (k, 0)

dt2
(t− 0)2 (384)

From Equation 368 we know

dF (k, 0)

dt
= −Ω2F (k, 0) = −Ω2, (385)

and by taking the derivative of Equation 367 we obtain

d2F (k, 0)

dt2
+ Ω2 dF (k, 0)

dt
+M(k, 0)

dF (k, 0)

dt
= 0, (386)

which gives

d2F (k, 0)

dt2
= Ω4F (k, 0) + Ω2M(k, 0)F (k, 0) = Ω2(Ω2 +M(k, 0)). (387)

Thus the formula of F (k, t) for small t is

F (k, t) = 1− Ω2t+ Ω2(Ω2 +M(k, 0))t2. (388)

Now we know F (k, t) for small t, we can compute M(k, t) for the same values of t using Equation 382.
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E.3.5 Iterative solving for F (k, t) and M(k, t) (step 4, 5 and 6)

Assume we want to calculate F (k, ti) at time ti, then we first rewrite Equation 382 in terms that depend only

on t < ti and M(k, ti). We start with rewriting
∫ t

0
dτM(k, t− τ)dF (k,τ)

dt and break these integral into two parts
at an arbitrary point t2

∫ t

0

dτM(k, t− τ)
dF (k, τ)

dτ
(389)

=

∫ t2

0

dτM(k, t− τ)
dF (k, τ)

dτ
+

∫ t

t2

dτM(k, t− τ)
dF (k, τ)

dτ
(390)

= M(k, t− τ)F (k, τ)
∣∣∣t2
0
−
∫ t2

0

dτ
dM(k, t− τ)

dτ
F (k, τ) +

∫ 0

t−t2
dτM(k, τ)

dF (k, t− τ)

dτ
, (391)

where in the last formula we have integrated the first integral of Equation 390 by parts and have applied the
coordinate transformation τ → t− τ on the second integral.

We break both integrals into integrals of length δt, the first in n1 parts and the second in n2 parts:

... = M(k, t− τ)F (k, τ)
∣∣∣t2
0
−

n1∑
j=1

∫ tj

tj−1

dτ
dM(k, t− τ)

dτ
F (k, τ)−

n2∑
j=1

∫ tj

tj−1

dτM(k, τ)
dF (k, t− τ)

dτ
. (392)

Both integrals have the form
∫ tj
tj−1

dτ dF (A(τ)B(τ)
dτ , which we can approximate with (by using the trapezoidal rule

for the integral) ∫ tj

tj−1

dτ
dA(τ)B(τ)

dτ
≈ [A(tj)−A(tj−1)]

∆t

∫ tj

tj−1

dτB(τ) (393)

≈ [A(tj)−A(tj−1)I[B(tj)], (394)

with I[B(tj)] times ∆t an approximation for the integral
∫ tj
tj−1

dτB(τ). This integral is in the first period T1

given by I[B(tj)] = 1
2 [B(tj−1) + B(tj)] and in next periods calculated when the step size is doubled in step

7.

We obtain

∫ t

0

dτM(k, t− τ)
dF ((k, τ)

dτ
= M(k, t− t2)F (k, t2)−M(k, t)F (k, 0)

−
n1∑
j=1

[M(t− tj)−M(t− tj−1)]I[F (tj)]−
n2∑
j=1

[F (t− tj)− F (t− tj−1)]I[M(tj)].

(395)

Furthermore, we approximate dF (k,t)
dt by

dF (k, t)

dt
≈ 1

2∆t
F (k, ti−2)− 2

∆t
F (k, ti−1) +

3

2∆t
F (k, ti). (396)

Now we have all the ingredients to rewrite Equation 368 for time ti as follows

1

2∆t
F (k, ti−2)− 2

∆t
F (k, ti−1) +

3

2∆t
F (k, ti) + Ω2F (k, ti) +M(k, ti−i2)F (k, ti2)−M(k, ti)F (k, 0)

−
i2∑
j=1

[M(ti−j)−M(ti−j+1)I][F (tj)]−
i−i2∑
j=1

[F (ti−j)− F (ti−j+1)I[F (tj)] = 0,
(397)

where we have used t2 = i2 = i/2. From this it follows that n1 = i2 and n2 = i− i2.
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Equation 397 has the following form

AkF (k, ti) +Btik = DkM(k, ti) + Ctik , (398)

where Ak, Btik , Ctik and Dk are as defined by

Ak =
3

2∆t
+ Ω2 + I[M(t1)] (399)

Btik =
1

2∆t
F (k, ti−2)− 2

∆t
F (k, ti−1) (400)

Ctik =−M(k, ti−i2)F (k, ti2) + F (k, ti−1)
1

2
[M(t0) +M(t1)] +M(k, ti−1)

1

2
[F (t0) + F (t1)] (401)

+

i2∑
j=2

[M(ti−j)−M(ti−j−1)]
1

2
[F (tj−1) + F (tj)] +

i−i2∑
j=2

[F (ti−j)− F (ti−j+1)]
1

2
[M(tj−1) +M(tj)] (402)

Dk =1− 1

2
I[F (t1)]. (403)

(404)

Thus, for the current estimate of M(k, ti), we calculate an estimate for F (k, ti) using Equation 398 with Equation
399 till 403. With this F (k, ti), we can calculate a new M(k, ti) using Equation 369. This procedure is repeated
until

Mnew(k, t+ ∆t)−Mold(k, t+ ∆t)

Mold(k, t+ ∆t)
< ε, (405)

with ε a small algorithm parameter of which the value can be chosen.

E.3.6 Step size doubling (step 7)

When i = NT and F (k, ti) and M(k, ti) are calculated, the step size is doubled to 2∆t. Let i denote the
numbering in the current period, and j the numbering in the next period, we now define a mapping for F (k, ti),
I[F (ti)], M(k, ti) and I[M(ti)] to the corresponding functions dependent on tj .

For 1 ≤ j ≤ N/2, we know the values of F (k, tj) and M(k, tj) and the mapping is

2i→ j (406)

F (k, t2i)→ F (k, tj) (407)

M(k, t2i)→M(k, tj) (408)

(409)

The mapping of I[F (ti)] and I[M(ti)] is more complicated and is different for 1 ≤ j ≤ N/4 and N/4 + 1 ≤ j ≤
N/2. For the first N/4 points we write

1

2
(I[F (k, t2i−1)] + I[F (k, t2i)])→ I[F (k, tj)] (410)

1

2
(I[M(k, t2i−1] + I[M(k, t2i])→ I[M(k, tj)]. (411)

This can be understood as follows for F (k, t) and for M(k, t) the same explanation holds. I[F (k, tj ] is the
average value of F (k, t) over the interval tj−1 ≤ t ≤ tj . In the previous period, this interval can be split up in
t2i−2 ≤ t ≤ t2i−1 and t2i−1 ≤ t ≤ t2i, and the average values of these intervals are respectively I[F (k, t2i−1] and
I[F (k, t2i].

For N/4 + 1 ≤ j ≤ N/2, we do not know the corresponding values of I[F (k, t2i] and I[M(k, t2i] and therefore
we use the following approximation
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1

6
[F (k, t)2j + 4F (k, t2j−1) + F (k, t2j−2)]→ IF (k, tj) (412)

1

6
[M(k, t)2j + 4M(k, t2j−1) +M(k, t2j−2)]→ IM(k, tj). (413)

E.3.7 Changes in the MCT-algorithm for the incoherent ISF

The work flow of the algorithm for the incoherent intermediate scattering function is the same as for the coherent
intermediate scattering function in Figure 89, except that the coherent intermediate scattering function is needed
as an extra input and therefore has to be calculated first. Some of the equations in the algorithm changes and
this is discussed in this Appendix subsection. The mode coupling theory equation that we are solving is given
by Equation 46 and becomes after normalizing with F (k, 0) and taking the overdamped limit:

dFs(k, t)

dt
+ Ω2Fs(k, t) +

∫ t

0

dτMMCT
s (k, t− τ)

dFs(k, τ)

dτ
= 0, (414)

with Ω2 = k2D0 and

MMCT
s (k, t) =

ρD0

4π2

∫
dq | Ṽk−q,q |2 F (q, t)S(q)Fs(| k − q |, t), (415)

with
Ṽk−q,q = (k̂ · q)c(q), (416)

with

c(k) =
1

ρ
(1− 1

S(k)
). (417)

Following the derivations of the algorithm for the coherent intermediate scattering function, we make the
following adaptations. The memory kernel becomes

Ms(k, t) =
ρD0

4π2k2
(∆k)2

qmax∑
q=0

|k+q|∑
p=|k−q|

pq
(
(k2 + q2 − p2)C(q)

)2√
4k2q2 − (q2 + k2 − p2)2

S(q)F (q, t)Fs(p, t). (418)

The formula for Fs(k, t) for small t is

Fs(k, t) = 1− Ω2t+ Ω2(Ω2 +Ms(k, 0))t2 (419)

and the formula to solve Ms(k, ti) and Fs(k, ti) simultaneously becomes

AkFs(k, ti) +Btik = DkMs(k, ti) + Ctik , (420)

with Ak, Btik , Ctik and Dk unaltered.
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F Detailed explanation of the measurement methods

In Subsection 3.5 we already summarized the methods we used to analyze the simulated and experimental
data and in this appendix subsection we explain the measurement procedures in detail for the VRD-model, the
experimental data and the VV-model in respectively Appendix Subsection F.1, Appendix Subsection F.2 and
Appendix Subsection F.3.

F.1 VRD-model (Section 4)

For the VRD-model we measure the mean squared displacement and diffusion constant, the average perimeter
q, the scalar and vectorial radial distribution function, the scalar and vectorial static structure factor and the
coherent and incoherent intermediate scattering function and their relaxation times. Below we list the details
of these measurements.

• Mean squared displacement and diffusion coefficient : We use Equation 1 to calculate the MSD with the
transformation r(t) → r′(t) = r(t) − 〈r(t)〉 with 〈r(t)〉 the average displacement of all cells in time t.
The reason for the subtraction of this average displacement is that the average director is nonzero due
to finite-size effects and this results in a non-physical displacement for the complete system for which we
make a correction (see Appendix G.4). The effective diffusion coefficient is derived from the MSD via
Equation 61, where we use tmax = 104 τ0, because this is our maximum measurement time.

• Average perimeter q: We use Equation 62 to calculate q.

• Vectorial and scalar radial distribution function: The vectorial RDF is given by Equation 17 and the scalar
version by Equation 18 and algorithms to calculate them are respectively Algorithm 1 and Algorithm 2
in Appendix E.2. For the vectorial RDF we calculate a two-dimensional histogram for the interparticle
vectors r with two times 70 bins between −5.0 r0 and 5.0 r0 and for the scalar version we calculate a
one-dimensional histogram for the interparticle distance |r| with 300 bins between 0.0 r0 and 5.0 r0.

• Vectorial and scalar static structure factor : There are two ways to calculate the static structure factor,
namely via a Fourier transform and using direct calculations. Appendix G.1 shows that both ways give
similar results and we choose to use the direct way. The formula to calculate the vectorial static structure
factor directly is given by Equation 20 and the scalar version by Equation 21 and their algorithms are
respectively Algorithm 3 and Algorithm 4 in Appendix E.2. Because we are measuring in a finite system
of size LxL with periodic boundary conditions, we choose the wave numbers in the x- and y-direction
(respectively kx and ky) to be multiples of 2π

L . Although this is not necessary in a system with low
structural order where the influences of the periodic boundaries on the structure can be neglected, in a
highly structured system this is important because the structure is periodically in L and therefore only
waves that fit exactly in the box can probe this structure. Furthermore, wavelengths larger than L are
impossible, and therefore the results of S(k) for k < 2π

L are unphysical. Thus, we calculate the static
structure factor in Equation 20 and Equation 21 for respectively k = (kx, ky) and k = |(kx, ky)| with

kx = 2πnx
L and ky =

2πny
L , where we use − 15L

2π ≤ nx ≤
15L
2π and − 15L

2π ≤ ny ≤
15L
2π . We bin the results for

the vectorial static structure factor with bins of size 1.0 r−1
0 and for the scalar static structure factor with

bins of size 0.5 r−1
0 .

• Coherent and incoherent intermediate scattering function and their relaxation times: Both ISFs can also
be calculated via a Fourier transform or via direct calculations. Following on the static structure factor,
we use the direct way for the ISFs too, which is given by Equation 22 and Equation 24 for respectively the
coherent and incoherent ISF. Similar as for the MSD we change from r(t) to r′(t) = r(t)−〈r(t)〉 to correct
for the average displacement of the complete layer (see Appendix G.4). We implement Algorithm 5 and
Algorithm 6 of Appendix E.2 for respectively the coherent and incoherent ISF in which we only take into
account wave vectors that are within 0.25 r−1

0 of the peak of the static structure factor k. This results in
different k-values for different values of p0 and v0. Another option is to always analyze the ISF at the same
value of k, but this has as drawback that there are combinations of p0 and v0 at which one probes a valley
instead of a peak in the SSF. For this reason we choose the first method to determine k. Nevertheless, in
Appendix G.5 we checked that both methods give similar results. We define the relaxation time as the
time it takes until the coherent or incoherent ISF reaches a value of 0.1.

• Mode coupling theory : The MCT-algorithm to predict the coherent ISF is explained in Appendix E.3.1
and the system specific input consists of the static structure factor S(k), the self-diffusion coefficient D0

(given by Equation 60) and the density ρ, which is always 1.0 r−2
0 in our models. Because for small values

of k the static structure factor goes to N due to the finite size and periodic boundary conditions, we modify
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the static static structure factor by setting S(k) = 0 for the smallest k-values. Furthermore, we cut-off the
static structure factor at k = 30 r−1

0 because in all simulations the SSF is steady at a value of one at this
k-value. Our MCT-algorithm settings are as follows. The initial time step size is set to ∆t = 10−6τMCT, in
which τMCT is a time unit of MCT (see Subsection 2.3.3) and we use NT = 64. Our maximum simulation
time is tmax = 1020τMCT, but in practice we see that F (k, t) has reached zero within machine accuracy
far before tmax. Furthermore, we use as threshold for the memory kernel ε = 10−20 and this threshold is
always reached within 20 steps. Adaptations to the MCT-algorithm for the ISF are explained in Appendix
E.3.7 and we use the same input and algorithm settings as for the coherent ISF except that this coherent
ISF predicted with MCT serves as extra input. The output of the MCT-algorithm is F (k, t) (or Fs(k, t))
and we define the predicted relaxation time τα to be the time at which the predicted F (k, t) reaches 0.1
with k the position of the first peak in the static structure factor.

F.2 Experimental data (Section 5)

We perform the same analysis in the experimental data as in the VRD-model, which includes the mean squared
displacement and diffusion constant, the average perimeter q, the scalar and vectorial radial distribution func-
tion, the scalar and vectorial static structure factor and the coherent and incoherent intermediate scattering
function and their relaxation times. As explained in Subsection 3.5 there are a few differences between the
experimental and the simulated data which we have to take into account and we explain them in more detail
here.

First, the experimental data show cell proliferation, cell death, cells escaping the FOV and cells entering the
FOV, which all leads to a variation of cell density over time resulting in a varying number of cells in the FOV.
To account for this, we scale all lengths at waiting time T with r0(T ) according to

r0(T ) =

√
A

N(T )
, (421)

with A the area of the snapshot image in pixels and N(t) the number of cells in the snapshot at time t. Although
time dependent, this scaling is similar to the scaling in the VRD-model, where the square root of the average
area of each cell is used. We investigate the effect of this scaling in Appendix G.9.

Secondly, the experimental data is not in a steady state which means that we cannot average over many
snapshots to reduce the noise. Nevertheless, we assume the changes in the system to be negligible during one
hour such that we can take the average over all snapshots within this hour. We apply a running average where
we define the value of a quantity at waiting time T as the average value of that quantity between waiting time
T and T + 1 hour. In Appendix G.8 we show how much the noise depends on this averaging time.

Thirdly, we do not have periodic boundary conditions and lastly, the positions can only be determined with
an accuracy of one pixel. How this influences the procedure to calculate the correlation functions and other
analysis parameters is explained below, where we summarize the measurement methods as well.

• Mean squared displacement and diffusion coefficient : The mean squared displacement is calculated via
Equation 1 and there is no need to subtract the average displacement as is done in the VRD-model. We
measure the MSD during 300 min and calculate the diffusion coefficient by Equation 2 with tmax = 300
min. Because fast moving cells that escape the FOV are not taken into account, the calculated MSD and
diffusion coefficient might be slightly too low.

• Average perimeter q: The perimeter is calculated both using the boundaries from the phase image and
using the Voronoi tessellation. In the latter, cells within 2 r0 from the boundary are not taken into account
because these Voronoi cells are incorrect due to the non periodic boundary conditions. Error bars define
the standard deviation in the average perimeter.

• Vectorial and scalar radial distribution function: The vectorial radial distribution function is calculated
via

g(r) =
1

ρ0NP

〈
N∑

i=1,i∈P

N∑
j 6=i,j∈Q

δ(r − rij(t))

〉
t

, (422)

where Q is the complete area of the FOV and P the inner square within Lc from the boundary. NP
is the number of cells within this area P . This is a simple modification to Equation 17 to account for
the non-periodic boundary conditions. Nevertheless, noise might be further reduced by taking the cells
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near the boundary (cells in Q− P ) into account in the sum of i using a weight factor. The scalar radial
distribution function of Equation 18 is modified in a similar way as Equation 422. A second modification
to g(r) and g(r) is made by changing the area in the denominator of Algorithm 1 and 2 (respectively
given by h2 and V (h)) to the number of grid points within that area divided by the grid point density.
This is done because the previous method results in a wrong normalization due to the discrete values of
the positions of the nuclei. We set the bin size to 3

45 r0, which is chosen such that for the highest density
the unscaled bin size is still larger than 1 pixel. Furthermore, we use Lc = 3 r0. We take the average over
all RDFs within one hour weighted by the number of cells and the errorbars define the standard deviation
of the RDF within this hour.

• Vectorial and scalar static structure factor : The vectorial and scalar static structure factor are calculated
via respectively Equation 20 and 21 and the algorithms are respectively Algorithms 3 and 4. We tested in
Appendix G.10 if it makes a difference to take into account the discrete values of the position of the nuclei
in the choice of vectors k at which the SSF is calculated. This modification means that we only use k- or
|k|-values that satisfy kx = 2π

nx,1
nx,2 and ky = 2π

ny,1
ny,2 with nx,1, nx,2, ny,1 and ny,2 integers. However, we

find that these wave vectors did not reduce the noise and therefore we apply the same method to choose
the vectors k as used for the VRD-model described in Appendix Subsection F.1. Furthermore, we use a
bin size of 0.5 r−1

0 , which is a trade-off between noise reduction and preservation of the shape of the SSF.
We take the average over all SSFs within one hour weighted by the number of cells and the errorbars
define the standard deviation of the SSFs within this hour.

• Coherent and incoherent intermediate scattering function and their relaxation times: The coherent and
incoherent intermediate scattering function are respectively given by Equation 22 and 24 and there is
again no need to subtract the collective displacement. In analogy to the VRD-model, we calculate the
coherent and incoherent ISF at the location k of the first peak in the SSF. The algorithms are respectively
given by Algorithm 5 and 6, where we use the same sampling of wave vectors as explained for the static
structure factor. To calculate the coherent ISF starting at time t, we scale all positions with r0(t) given
by Equation 421. For the incoherent ISF starting at time t, we only take into account all cells that stay
in the FOV during the whole period of which the ISF is measured. This means that we neglect some cells
that escape the FOV or enter the FOV, proliferate, die or get missed in the nuclei detection. We tested
this approach of only taking into account the cells that stay for the coherent ISF as well and Appendix
G.11 shows that the results are similar to taking into account all detected cells at time t. We calculate
the coherent and incoherent ISF over a time period of τ = 240 min and use a bin size of 0.5 r−1

0 .

• Mode coupling theory : The MCT predictions for the coherent and incoherent ISF and their corresponding
relaxation times are obtained in a similar way as described in F.1 for the VRD-model and we use the
same algorithm settings. The static structure factor S(k) is used as input and we set D0 = 1 r2

0/τ0 as we
do not know its value D0. Therefore we have to keep in mind that the scaling of the relaxation time τα
is arbitrarily as a different D0 results in a different scaling (see Appendix D.2).

F.3 VV-model (Section 6)

For the parameter analysis in the VV-model, we measure alignment, the correlation length Lcorr, the average
perimeter q and the average speed. Below we list the details of these measurements.

• Alignment : In Subsection 3.3.2 we have defined three alignment parameters, namely the Vicsek parameter
(VP), the alignment index (AI) and the instantaneous order parameter (IOP). In Appendix G.6 is shown
that these parameters give similar results and therefore we only look at one of them. Because the imple-
mentation of VP given in Equation 69 cannot be extended to experiments where v0 is unknown and AI
shows a broader range of values than IOP (Equation 71), we choose to use AI which is given by Equation
70 and we emphasize that we the instantaneous velocity vi is used. We measure AI as a function of time
and look as well at the steady state value AIt→∞ and the alignment time τAI, which is defined as the time
it takes to reach AI= 0.5 and is undefined if AI never reaches this threshold.

• correlation length Lcorr: The correlation length Lcorr is defined in Equation 72 and calculated as follows.
The maximum distance between two particles in a box of size

√
1000 ×

√
1000 is 22.36 r0 and we divide

this into fifty bins. For every particle combination i and j we calculate the difference in velocity angle φij
and the distance rij . This angle φij is then added to the bin where rij to belongs. After doing this for all
runs, we calculate the mean µ and the standard deviation σ of the list of angles belonging to a bin. The
correlation length is now defined as the largest bin for which µ+ 5σ/Nφr ≤ π/2, with Nφr the number of
angles in that bins.
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• Average perimeter q: We use Equation 62 to calculate q and use this parameter to get insights into the
dynamics of the system, because other methods, such as the diffusion coefficient Deff and the relaxation
time τα of the ISF, have high computational costs. However, it is not guaranteed that q gives correct
information about the dynamics as we already saw in Section 4 and therefore we keep in mind that the
conclusions have to be verified with the relaxation time or diffusion coefficient.

• Average speed : The instantaneous velocity might not give a correct interpretation of the velocity of the
cells. For example, when a cell moves at time t a distance v∆t in one direction and at time t + ∆t the
same distance in the opposite direction, the instantaneous velocity has a finite value v while the cells are
barely moving. Therefore we define another measure for the speed, namely

v =
1

N

N∑
i=1

|ri(t+ ∆t′)− ri(t)|
∆t′

, (423)

where ∆t′ >> ∆t and we choose ∆t′ = 1.0 τ0.

For the jamming analysis in the VV-model we measure the alignment index as described above and the scalar
RDF, scalar SSF and the coherent and incoherent ISF and their relaxation times in a similar way as described
for the VRD-model in Appendix Subsection F.1. In addition, we also measure the non-ergodicity parameter,
which we define as the average value of the ISF between t = 0.9 · 104τ0 and t = 1.0 · 104τ0.
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G Supportive data to verify the measurement choices

In this appendix section we verify the most important simulation and measurement choices. We start with
comparing the Fourier and direct method to calculate the static structure factor in Appendix Subsection G.1.
In Appendix Subsections G.2 and G.3 we test respectively the step size and the initialization time used in the
VRD- and VV-model. In both models we subtracted the collective displacement to calculate the MSD and
the ISF and in Appendix Subsection G.4 we explain why. In Appendix Subsection G.5 we investigate how
the choice of k at which the ISF is probed influences the results and in Appendix Subsection G.6 we compare
three alignment parameters for the VV-model. In Appendix Subsection G.7 till G.11 we investigate the effect
of several properties of the experimental data and choices made to analysis them, including the accuracy of
the nuclei detection, the averaging, the scaling, the discrete grid for the cell positions and the tracking of
nuclei.

G.1 Fourier and direct calculations of the SSF and ISF

There are two ways to calculate the static structure factor, namely via a Fourier transform of the radial
distribution function (Equation 21) or via direct calculations (Equation 141). Figure 91 shows the SSF via
direct and Fourier calculations for three different parameter settings in the VRD-model, representing a jammed
sate, a state near the jamming transition and an unjammed state. Differences between both methods are the
peak at small k for the direct method, which is an artifact of the algorithm, and the oscillations of the Fourier
results for small k due to oscillations of g(r) about 1 for big r. Figure 92 shows the SSF via direct and Fourier
calculations for two different snapshots of the experimental data used in Section 5. One of the snapshots is
chosen in the beginning of the time window and one at the end. Although the noise is higher than for simulated
data, the direct and Fourier method give similar results too. From these figures we conclude that we can use
both methods to calculate the static structure factor. Because the direct way is normally applied in literature,
we choose to use this method as well. In addition, the intermediate scattering function can also be calculated
via a direct way or via a Fourier transform and because both methods hold no difference for the SSF, we
assume that this statement is also valid for the ISF and we therefore use the direct method in analogy with the
SSF.

Figure 91: Comparison between the direct way and the
Fourier transform to calculate the SSF in the VRD-
model. We use v0 = 0.25 r0/τ0 and three values of p0,
namely 3.5 r0, 3.8 r0 and 4.0 r0.

Figure 92: Comparison between the direct way and the
Fourier transform to calculate the SSF for experimen-
tal data after 240 and 1740 minutes of waiting time.

G.2 Simulation settings VRD- and VV-model: step size

In MD simulations it is important to choose the time step size wisely because a small step size results in long
simulation times and a big step size might lead to incorrect results. In Figure 93 we show the effect of the
choice of the step size on the MSD in two situations for the VRD-model. In the first situation (left panel) p0 is
chosen large such that the dynamics is fast and in the second situation (right panel) p0 is chosen such that the
system is in a jammed state and the dynamics is slow. Because the results for ∆t = 0.001 τ0, ∆t = 0.1 τ0 and
∆t = 1.0 τ0 are not averaged over multiple runs to save time, errorbars are not shown.
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We see that ∆t = 1.0 τ0 gives incorrect results, while the lines for the other three step sizes lay close to each
other. When the dynamics is fast (left panel), ∆t = 0.1 τ0 gives a slightly higher MSD than ∆t = 0.01 τ0 and
∆t = 0.001 τ0, while this difference is not visible in the jammed state (right panel). Because we want to apply
the same step size in every simulation, we choose ∆t = 0.01 τ0 in our simulations.

We assume that the effect of the step size in the VV-model is similar to the VRD-model, and we have tested
the extreme cases (results not shown). From this we concluded that we have to be cautious in choosing the
minimum values of τV and the maximum value of Dr, because both extremes are limited by the choice of
∆t.

Figure 93: MSD for ∆t = 0.001 τ0, ∆t = 0.01 τ0, ∆t = 0.1 τ0 and ∆t = 1.0 τ0 and with p0 = 4.0 r0 in the left panel and
p0 = 3.7 r0 in the right panel (v0 = 0.25 r0/τ0).

G.3 Simulation settings VRD- and VV-model: initialization time

Just as the time step size, the initialization time also has to be chosen wisely, because the simulations are very
expensive when this time is too long and the system might not be in a steady state yet when the initialization
time is too short. Figure 94 shows the potential and the kinetic energy for the VRD-model with the same two
parameter settings as the MSD in Figure 93 in the previous appendix subsection. The potential energy Ep is
the same as in Equation 65 and given by

Ep(t) =

N∑
i=1

ka(ai(t)− a0)2 + kp(pi(t)− p0)2 (424)

and the kinetic energy Ek is defined as

Ek(t) =
1

2

N∑
i=1

|vi(t)|2, (425)

with vi(t) the instantaneous velocity at time t. We use an initialization time of 104 τ0 for the VRD-model and
this is shown by the red line in Figure 94. Because for both settings the potential and kinetic energy have
reached their minimum before the red line, we conclude that in these cases an initialization period of 104 τ0 is
sufficient.
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Figure 94: The potential (top panels) and kinetic energy (bottom panels) as a function of the time, with p0 = 4.0 in the
left two panels and p0 = 3.7 r0 in the right two panels (v0 = 0.25 r0/τ0). The red line defines the end of the initialization
period.

For the alignment analysis in the VV-model we use a shorter initialization period, namely t = 200 τ0, to save
time. In the VV-model we turn on the self-propelled force after the initialization period, which causes a jump in
both the potential and the kinetic energy. Therefore, we assume that the fact that we did not reach the absolute
minimum in energy after the initialization period does not influence the results. In Figure 95 the potential and
kinetic energy for Setting A and varying RV are shown and the jump in energies after the initialization period
is clearly observed. However, there are exceptions in which the activation of the self-propulsion force can lower
the potential energy and in these situations a longer initialization time is used.

Figure 95: The time evolution of the potential (top) and kinetic energy (bottom) in the VV-model for Setting A in Table
1 and RV varying from 0.0 r0 till 5.0 r0. The black line defines the end of the initialization period.

G.4 Correction for collective displacement in the VRD- and VV-model

To calculate the mean squared displacement and the intermediate scattering function in the VRD- and VV-
model, we subtract the collective displacement from the individual displacements. The reason for this is that
due to finite size effects the system moves as a collective in addition to the individual particle movements.
Figure 99 shows an example of the trajectories of several cells in a highly jammed system (p0 = 3.5 r0 and
v0 = 0.1 r0/τ0). The similarity in the trajectories of these cells is caused by the finite size effects and can be
explained as follows. The directors of all particles are independently distributed with values between -1 and 1
and standard deviation σ in the x-direction and in the y-direction. According to the central limit theorem, the
sum of the values in one of the Cartesian directions approaches a Gaussian distribution with mean nµ = 0 and
standard deviation σ

√
N . This results in an average director in the x- and y-direction with standard deviation

σ/
√
N , which is finite when N is finite. Hence, this average director moves the cellular collective in the average

direction of the director. The effect of this movement decreases when system size N increases.

In Figure 97 the influence of this collective movement is shown for the coherent intermediate scattering function.
Only in the left panel the collective motion is subtracted and we see that we obtain glassy states for p0 small
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enough. While the right panel suggests that there are no glassy states because of the effect of the collective
movement.

In the VV-model it is obvious that not subtracting the collective behavior highly influences the intermediate
scattering function and the mean squared displacement because in aligned situations the cells can move as a
flock. When we do not subtract the collective behavior the relaxation time or diffusion coefficient might tell us
that a layer is unjammed in cases that we define as a jammed flock.

Figure 96: The trajectories of several cells during t = 103 τ0 for a highly jammed state (p0 = 3.5 r0 and v0 = 0.1 r0/τ0).

Figure 97: The differences in the coherent intermediate scattering function when corrected for the collective displacements
(left panel) and not corrected (right panel) for v0 = 0.25 r0/τ0 and p0 varying from 3.0 r0 till 4.5 r0.

G.5 Effect of the choice of the k-value for the ISF

To evaluate the intermediate scattering function we need to choose a k-value at which we probe this ISF.
Normally, the location k of the peak in the static structure factor is chosen because the relaxation time is
longest for k. However, Figure 41 shows that this location of the peak highly depends on p0 in the VRD-model
and this give rise to two ways to choose k for our analysis. The first method is to define the peak value k
for every p0 separately and calculate F (k, t). The second method is to choose one k in general and probe, for
example, F (6.75, t) for all parameter settings. The relaxation times calculated for both methods are shown
in Figure 98 and 99 for respectively the coherent and incoherent intermediate scattering function. For higher
p0 values the relaxation times are different, but the trends are the same. Therefore, we choose to use F (k, t)
because of the physical motivation to choose k as the location of the first peak of the SSF.
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Figure 98: The relaxation time obtained for the coher-
ent intermediate scattering for two different ways to
choose k, with v0 = 0.25 r0/τ0 and p0 varying from
3.0 r0 till 4.5 r0.

Figure 99: The relaxation time obtained for the inco-
herent intermediate scattering for two different ways
to choose k, with v0 = 0.25 r0/τ0 and p0 varying from
3.0 r0 till 4.5 r0.

G.6 Similar behavior of the three alignment parameters in the VV-model

In Subsection 3.4.2 three different alignment parameters are defined that are used in literature. In this appendix
subsection we show that in the VV-model all three alignment parameters give similar behavior except the Vicsek
parameter in some cases. Figure 100 shows this comparable behavior as a function of five parameters for Setting
A. The only large difference is seen when v0 is used as control parameter in the third graph of Figure 100.
The Vicsek parameter decreases to zero for large values of v0, while the other alignment parameters stay at a
finite value. The reason for this deviation of VP is that v0 is explicitly taken into account in the formula of
VP (see Equation 69). This explicit use of v0 is a drawback of VP because this value cannot be determined in
experiments and this reduces our choice to either AI or IOP. Because the range of the AI-values is broader than
that of the IOP-values, we choose to use this alignment index in our analysis.

Figure 100: The three different alignment parameters (AI, VP and IOP) as a function of the five different input param-
eters for Setting A in Table 1.

G.7 Experimental data: effect of the accuracy of nuclei detection

In the currently used imaging method to analyze the snapshots of the MDCK-cells not all nuclei are detected
and by comparing the located nuclei with the raw images, the percentage of missed nuclei has an estimated
value of 5. To test how our results depend on this accuracy we evaluate in Figure 101 the relaxation time of the
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coherent ISF in cases were an additional 1, 2, 5 or 10 percent of the cells stay undetected, where the undetected
cells are chosen randomly from the data set. All five graphs show the growth in relaxation time during aging,
however the fluctuations become less when more cells are detected. This suggests that we can reduce some noise
by improving the nuclei detection up to one hundred percent.

Figure 101: Relaxation time of the coherent intermediate scattering function for the current accuracy of the nuclei
detection and for 1 %, 2 %, 5 % and 10 % less nuclei detected.

G.8 Experimental data: effect of averaging

In our analysis of the experimental data, we chose to use an average of twenty snapshots, which equals one
hour. In general, averaging over a higher number decreases the noise, but in the case of experiments on living
cells the system changes significantly when averaging over a too long period and a trade-off has to be made.
Figure 102 shows the relaxation time for the coherent intermediate scattering function averaged over 1, 10, 20
and 40 snapshots and suggests that 20 snapshots is a good trade-off.

Figure 102: Relaxation time of the coherent intermediate scattering function averaged over 1, 10, 20 and 40 snapshots.

G.9 Experimental data: effect of scaling according to the density

In our analysis of the experimental data in Section 5 we have scaled the data according to the density to be
able to compare the data at different waiting times and densities. However, for the analysis of the dynamics it
should not make a difference whether we apply this scaling as long as we are probing at the same inverse length
scale k. This can be seen, for example, in the formula for the coherent intermediate scattering function:
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F (k, τ) =

1

N

〈(
N∑
i=1

cos(k · ri(t))

) N∑
j=1

cos(k · rj(t+ τ))

+

(
N∑
i=1

sin(k · ri(t))

) N∑
j=1

sin(k · rj(t+ τ))

〉
t

,
(426)

where we scale r with r0(t) and k with r−1
0 (t). This results in a product that does not depend on the scaling

factor. In Figure 103 we show the relaxation time of the coherent intermediate scattering function for both the
unscaled and scaled method. The trend is comparable, but the exact values are different. This is due to the
fact that the k-sampling and bin size slightly differs in both methods. In the next subsection, we look further
into the effect of this k-sampling.

Figure 103: Difference between the relaxation time of the coherent ISF when we do or do not apply a scaling according
to the density.

G.10 Experimental data: effect of the discrete grid of the cell positions

The accuracy of the data is limited by the pixel size and we take this into account by calculating the correlation
functions in real space, but neglect this discrete grid by the correlation functions in Fourier space. In Figure
104 we have compared both methods for the relaxation time of the coherent intermediate scattering function to
test whether this neglect is legitimate. Both graphs show noise and the data points are slightly different, but
the overall trend is equal. From this we conclude that the neglect of this discrete grid does not influence the
results regarding the experimental data in Section 5. However, the graph in Figure 104 suggests that we might
reduce some of the noise when we average over even more k-vectors than we did to obtain the results in Section
5.

Figure 104: Difference between the relaxation time of the coherent ISF when we do or do not take into account the
discrete grid for the positions of the cells.
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G.11 Experimental data: effect of nuclei tracking on the coherent ISF

For the incoherent intermediate scattering function we only take into account the cells that are in the field of
view during 300 minutes. However, this cell tracking is not necessary when calculating the coherent intermediate
scattering function and this gives us the choice whether we take into account all cells or only the cells we use
for the incoherent ISF. Figure 105 shows the relaxation time of the coherent ISF for both methods. The results
are comparable and we choose to take into account all cells.

Figure 105: Difference between the relaxation time of the ISF when all cells are taken into account or only the cells that
stay in the field of view during 300 minutes.
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H Additional results for the VRD-model in Section 4

In this appendix section we show some additional results for the VRD-model. First, in Appendix Subsection
H.1 we show that the layer exhibits a hexagonal structure when values of p0 and v0 are chosen close to the
jamming transition. In Appendix Subsection H.2 we give the RDF, SSF and coherent and incoherent ISF for
v0 = 0.1 r0/τ0, v0 = 0.5 r0/τ0 and v0 = 1.0 r0/τ0 and in Appendix Subsection H.3 we give the peak height of
the SSF as a function of p0 and v0.

H.1 A hexagonal structure near the jamming transition

When the VRD-model is highly jammed, we can observe a high structural order in the layer in which the cells
are almost hexagons. Because we average over ten runs and the orientation of the hexagons is different in each
run, this hexagonal pattern is not clearly visible in Figures 39 and 40. However, Figures 106 and 107 show
respectively the RDF and SSF for only one run and this clearly indicates this hexagonal structure for p0 = 3.7 r0

and v0 = 0.25 r0/τ0.

Figure 106: The radial distribution function for p0 =
3.7 r0 and v0 = 0.25 r0/τ0 shows a hexagonal pattern.

Figure 107: The static structure factor for p0 = 3.7 r0

and v0 = 0.25 r0/τ0 shows a hexagonal pattern.

H.2 RDF, SSF and ISF for v0 = 0.1 r0/τ0, v0 = 0.5 r0/τ0 and v0 = 1.0 r0/τ0

In Subsection 4.2 and 4.3 we have respectively investigated the structural and dynamical changes upon varying
p0 for v0 = 0.25 r0/τ0. In this appendix subsection we show the RDF, SSF and ISFs for three other values of
the velocity (v0 = 0.1 r0/τ0 in Figure 108, v0 = 0.5 r0/τ0 in Figure 109 and v0 = 1.0 r0/τ0 in Figure 110) and
conclude that an increase in v0 can decrease the structural order and shifts the jamming transition to lower
values of p0. Furthermore, we conclude that the qualitative changes upon varying p0 in the RDF, SSF and
ISFs are similar for different values of v0. The graphs in this appendix subsection are used to obtain the direct
calculations of the relaxation times in Figure 44.
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Figure 108: Correlation functions for v0 = 0.1 r0/τ0 and p0 varying from 3.0 r0 till 4.5 r0.

Figure 109: Correlation functions for v0 = 0.25 r0/τ0 and p0 varying from 3.0 r0 till 4.5 r0.
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Figure 110: Correlation functions for v0 = 1.0 r0/τ0 and p0 varying from 3.0 r0 till 4.5 r0.

H.3 Peak height of the static structure factor

Figure 111 shows the height of the first peak of the SSF as a function of p0 and v0 in the VRD-model to compare
with MCT. These values are derived from the SSFs given in Figures 41 (in Subsection 4.2), 108, 109, and 110
(in the previous appendix subsection), and the comparison with the MCT-predictions is discussed in Subsection
4.4.

Figure 111: Peak height of SSF for different v0 = 0.1 r0/τ0, v0 = 0.25 r0/τ0, v0 = 0.5 r0/τ0 and v0 = 1.0 r0/τ0 and p0

varying from 3.0 r0 till 4.5 r0
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I Additional results for the experimental data in Section 5

In this appendix section we give two additional analysis regarding the experimental data in Section 5. First,
in Appendix Subsection I.1 we look at the height of the first peak as a function of the density and second, in
Appendix Subsection I.2 we explain how we can determine confluence based on the RDF and SSF.

I.1 Peak height versus density

In Subsection 5.2 we raised the questions whether we can compare the experimental layer to physical systems
based on the growth of the height of the first peak as a function of the density. The graph for this first peak
height is given in Figure 112 and we conclude that we cannot deduce how this peak height grows due to the noise
in comparison with the range of peak heights. Therefore, this analysis has to be postponed until improvements
of the experimental data are available.

Figure 112: Height of the first peak of the SSF as a function of the density.

I.2 Looking before confluence

In Subsection 5.2 we stated that the RDF and SSF can be used to determine when confluence is reached
and in this appendix subsection we explain this further. Figures 113 and 114 show respectively the radial
distribution function and scalar function from the moment measurements are started, which is 2000 minutes
before confluence is reached. The RDF peak value has its minimum at the moment confluence is reached and
the reason for the higher peak values before confluence can be understood as follows. Different isolated islands
exists in a preconfluent layer and only the interparticle distances of cells on the same island contribute to the
RDF on short and medium length scales. Because of the gaps in the cell layer, the cell number density on the
island is higher than the calculated average density of the layer. The radial distribution function is normalized
by the average density, which is too small on the islands and therefore results in values of the RDF that are too
high. The SSF, however, is not normalized by the density and the peak height grows barely before confluence.
After confluence is reached the peak height grows steadily and this transition point can also be used to determine
confluence.

Figure 113: Height of the first peak of the RDF
during the complete measurement period.

Figure 114: Height of the first peak of the SSF
during the complete measurement period.
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J Additional results for the VV-model in Section 6

In this appendix section we present additional data that show the effect of the Vicsek radius RV together with
the preferred perimeter p0 on the structure and dynamics in the VV-model. Appendix Subsection J.1 shows
how the coherent and incoherent ISF changes upon varying RV for a value of p0 corresponding to an unjammed
state in the VRD-model. In Appendix Subsection J.2 we show the structural changes in the layer upon varying
RV for a value of p0 corresponding to a jammed state and in Appendix Subsection J.3 we show the effect of
extremer values of RV on the jamming and alignment in the layer.

J.1 Effect of the Vicsek radius on the dynamics in the unjammed regime

In Figure 115 the coherent and incoherent ISF (top left and right panel) are drawn for p0 = 3.8 r0 and v0 =
0.25 r0/τ0, which corresponds to an unjammed state in the VRD-model according to Figure 33. From these
graphs we conclude that in the unjammed regime the relaxation time can be tuned with the Vicsek radius, in
line with the observations for the jammed regime in Figure 33 in Subsection 6.4.1. Around RV = 1.0 r0 the
decay in the ISFs is fastest, which is around the transition point from almost no to a finite alignment (left
bottom panel of Figure J.1), similar as in the jammed regime.

Figure 115: The coherent ISF (top left panel), the incoherent ISF (top right panel) and the alignment index (left bottom
panel) for p0 = 3.8 r0 and RV varying from 0.0 r0 till 3.0 r0 (v0 = 0.25 r0/τ0, Dr = 1.0 τ−1

0 and τV = 1.0 τ0).

J.2 Effect of the Vicsek radius on the structure

In the left top panel of Figure 116 the average perimeter as a function of the Vicsek radius is drawn for
p0 = 3.55 r0,v0 = 0.25 r0/τ0, which corresponds to a jammed state in the VRD-model. This average perimeter
has its minimal value around RV = 1.0 r0 and in Subsection 6.4.1 is shown that the dynamics is fastest around
this value of RV . This increase in structural order is also seen in the RDF (bottom left panel of Figure 116)
and the SSF (bottom right panel), where the peaks for RV = 1.0 r0 are highest. This increase in structure for
faster dynamics is completely opposite to what is observed in the VRD-model (see Subsection 4.3).
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Figure 116: The average perimeter (top left panel) for RV varying between 0.0 r0 and 3.0 r0, the RDF (left bottom
panel) and the SSF (right bottom panel) for RV = 0.0 r0 , RV = 1.0 r0 and RV = 3.0 r0 (p0 = 3.55 r0,v0 = 0.25 r0/τ0,
Dr = 1.0 τ−1

0 and τV = 1.0 τ0).

J.3 Jamming and alignment for extreme values of the Vicsek radius

Figure 117 is a zoomed-out version of Figure 79 and shows that the interesting regime regarding jamming and
dynamics is around RV = 1.0 r0 for all evaluated values of p0.

Figure 117: The relaxation time (left top panel) and the non-ergodicity parameter (right top panel) obtained from the
incoherent ISF and the alignment index (left bottom panel) for p0 varying from 3.0 r0 till 4.0 r0 and RV varying from
0.0 r0 till 5.0 r0 (v0 = 0.25 r0/τ0, Dr = 1.0 τ−1

0 and τV = 1.0 τ0).
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