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Chapter 1

Introduction

While the exotic properties of graphene, a single atomic layer of graphite, were predicted
theoretically decades before, it was not until the discovery of the exfoliation technique
in 2004 [1] that these predictions could be confirmed experimentally [1, 2, 3]. These
discoveries have motivated great progress in the synthesis and investigation of graphene
and other two-dimensional materials. Nowadays, a wide variety of these extraordinary
2D materials have been synthesized, most notably the family of transition metal
dichalcogenide (TMD) compounds [4, 5, 6] and the graphene-like boron nitride [7, §]
and X-enes like phosphorene [9, 10], silicene [11, 12] and germanene [13, 12]. These
materials are receiving ever-increasing research interest [6] due to their potential usability
in such diverse applications as nano-electronics [14], catalysis [15], energy storage [16]
and sensing [17]. In this work, we focus on the transition metal dichalcogenides.

Transition metal dichalcogenides

Within the spectrum of 2D materials, transition metal dichalcogenides in particular have
emerged in recent years as promising materials for use in next-generation nano-electronic
devices. Like all 2D materials, they consist of atomically thin layers which are coupled
together through Van der Waals interactions and which may be exfoliated down to
monolayer thickness. Each monolayer consists of a layer of transition metal atoms (e.g.
Mo, W, Ti, Ta or Nb) which is sandwiched between two layers of chalcogen atoms (S,
Se or Te), as shown in figure 1.1. An important benefit of this layered structure is
that these materials maintain their useful material properties when exfoliated down to
atomic thicknesses. In contrast, bulk crystals like silicon suffer from finite-size effects
which are detrimental to their electronic performance at these scales. In addition to the
desirable properties which are exhibited by 2D crystals in general, TMDs exhibit some
unique properties that distinguish them from other 2D materials. To understand these,
we will mainly focus on two specific properties of these materials: their bandgap and
the effective mass of their charge carriers. These quantities are essential considerations
in many of the proposed applications of transition metal dichalcogenides. Here we will



CHAPTER 1. INTRODUCTION

Figure 1.1: Transition metal dichalcogenides (TMDs) form a crystal of atomically thin
chalcogen-metal-chalcogen layers, which are bound together through Van der Waals
forces.

highlight two examples: next-generation transistors and novel high-accuracy sensors. In
many TMDs, the confinement of the electrons to a 2D electron gas leads to the formation
of an electronic bandgap in the 1-2 eV range. These semiconducting TMDs neatly
complement the semi-metallic graphene and insulating boron nitride, and they may be
used in conjunction to produce fully two-dimensional transistors [18, 19]. Additionally,
Sylvia et al. [20] have shown that in next-generation low-voltage transistors, there will
be an optimum effective carrier mass such that both back-scattering in the channel and
tunneling-induced leakage currents are minimized. Control over the effective mass in
TMDs could contribute to performing such optimizations. The development of novel
sensors on the other hand may benefit from the fact that the bandgap in semiconducting
TMDs transitions from indirect to direct and changes its magnitude when the material
is scaled down from bulk to monolayer thickness [21], making it possible to tailor the
bandgap to specific sensing applications.

These examples illustrate that a precise control over the electronic properties like the
bandgap and effective mass in TMDs would give these materials a great advantage for
implementation in next-generation electronics and sensors. Of course, other challenges
like developing a cost-effective method to synthesize TMDs on wafer scale will also
have to be overcome. Ongoing research on this topic is mostly focussed on the chemical
vapor deposition (CVD), physical vapor deposition (PVD) and atomic layer deposition
(ALD) techniques. However, the present work will focus on the challenge of achieving
control over the electronic properties of TMDs and gaining insight into the mechanisms
through which this control can be achieved.
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Research questions

Various methods of achieving control over the electronic properties of TMDs are
already being explored in literature. In addition to the aforementioned controllable
bandgap transition in TMDs, tunability may also be achieved through strain engineering,
introducing crystal defects [22, 23|, doping [24, 25], or combining multiple TMDs into
alloys [26, 27]. In this work, we employ ab-initio electronic structure calculations in
order to provide insight into how two of these techniques achieve control over electronic
properties: point defects in TMDs and binary alloys of TMDs. To guide the investigation,
we have formulated three research questions which we aim to answer in this thesis:

1. Can density functional theory (DFT) be used to calculate structural and elec-
tronic properties like lattice parameters, bandgap, carrier mobility and phonon
frequencies of transition metal dichalcogenides with enough accuracy to compare
them to experimental results?

2. What role do crystal defects play in determining the electronic properties of
transition metal dichalcogenides?

3. How can the atomic ordering of binary TMD alloys be exploited to achieve control
over their electronic properties?

Below we describe in which parts of the thesis these individual questions are
addressed. An graphical outline of the thesis by topic is provided in figure 1.2

In order to answer the first question, we first summarize the essential theoretical
fundamentals of the electronic structure of crystals and calculation methods in chapter
2. We identify the important parameters that need to be carefully optimized to obtain
accurate results from density functional theory calculations. Subsequently, we perform
these optimizations and apply DFT calculations to the TMDs MoS, and WS, in chapter
3, demonstrating the accuracy of the DFT method in calculating both structural and
electronic properties of these materials.

The second research question is addressed in the latter half of chapter 3, where
we employ DFT calculations using a supercell method in order to model realistic
concentrations of typical point defects found in synthetically grown TMD crystals. We
discuss the effects these defects have on thestructural and electronic properties of the
material and compare these to the effects of other types of defects typically found in
synthesized TMDs, such as grain boundaries.

Chapter 5 addresses the third and final research question. We report results of
electrical and optical characterization of Mo, W; .S, alloys synthesized by atomic layer
deposition, demonstrating how the material properties change as a function of both
the alloy ratio and the atomic mixing of the alloy. Special attention is given both
experimentally and theoretically to Raman spectroscopy, a technique which is known
to be very sensitive to structural changes in TMDs. Comparison of experimental data
with results from DFT calculations gives insight into how the alloy ratio and the atomic
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Figure 1.2: Outline of this thesis. Chapter 2 summarizes the theory behind the electronic
structure of crystals and calculation methods thereof, with a focus on density functional
theory (DFT). In chapter 3, DFT is applied to pristine TMDs as well as TMDs with
point defects. In chapter 4, binary alloys of TMDs are investigated through both DFT
and experimental deposition and characterization of these materials.

mixing both uniquely impact the electronic and structural properties of the binary
TMD alloys.




Chapter 2

Theory: Electronic Structure &
Calculation Methods

We are interested in calculating the electronic properties of transition metal dichalco-
genides and investigating how they can be controlled. The central object of such an
investigation is the so-called electronic band structure. In this chapter, we explain
the origin and meaning of the electronic band structure and its derived quantities like
the bandgap, effective carrier mass and density of states. Subsequently, we disscuss
methods of calculating the electronic band structure. Special attention will be given to
Density Functional Theory (DFT), as this is the method that we will employ in later
chapters to calculate the electronic band structures of transition metal dichalcogenides.
We explain the key concepts necessary to understand these calculations, as well as
finally summarizing our computational approach.

2.1 Electronic structure

After the discovery of the electron by Thomson in 1897 [28] and the subsequent discovery
of the atomic nucleus [29], it became clear that the interplay between these contituent
parts are responsible for almost all of the properties of matter. Indeed, whether it is
the electrical (conductivity, permittivity), optical (absorption, emission), structural
(compressibility, rigidity) or thermodynamic (heat capacity, heat conductivity) properties
that we are interested in, at the most fundamental level they are all determined by
the complex joint behaviour of the electrons and atomic nuclei. Naturally then, the
main focus of the field of solid state physics is to describe the behavior of the electrons
and nuclei in a given material as accurately as possible. This is a formidable task:
any macroscopically-sized material consists of a number of nuclei and electrons on
the order of at least 10?®, whose mutual interactions are governed by the laws of
quantum mechanics. As a first line of attack, this quantum many-body problem is
usually simplified by decoupling the electron dynamics from the motion of the nuclei,
which is known as the Born-Oppenheimer approximation. This approach is justified on
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the grounds that the electrons - having a mass four orders of magnitude lower than
atomic nuclei - move on timescales much shorter than the nuclei do, such that from
the viewpoint of the electrons, the nuclei can be considered static. This method splits
the quantum many-body problem into two parts which may be solved consecutively:
the configuration of the electrons, known as the electronic structure, and the positions
of the atomic nuclei. In crystals, the problem can be simplified even further, as is
explained in the next section.

2.2 Crystals

Crystals have historically always been the biggest focus of the research on solid-state
physics due to the uniquely simple properties of their electronic structure. Crystals
are solids where the constituent atoms form a motif that is repeated periodically. The
motif, also called the unit cell, may be as simple as a single atom, as complex as a
globular protein molecule thousands of atoms in size, or anything in between. As a
simple example, table salt NaCl consists of a motif of one sodium atom and one chloride
atom, which is repeated in a cubic structure.

Since in a periodic crystal every unit cell is indistinguishable from any other,
the distribution of electrons should also be the same in every unit cell. Since the
electron density is equal to the squared amplitude of the electron wavefunction |w|2,
the magnitude of the wavefunction is constrained to having the same periodicity as the
crystal lattice. There is no such restriction on the phase of the wavefunction, and its
value may change upon translation along a lattice vector. Consequently, we can express
the wavefunction as

¥ (r+ R) =™ Ry (r), (2.1)

where R is any reciprocal lattice vector. The phase shift is written as the dot
product of the displacement vector with an arbitrary vector k, without loss of generality.
While this expression is valid for infinite crystals, a derivation for finite crystals using
periodic boundary conditions shows that in that case, the magnitude of k is restricted to
a discrete set of values [30]. For a crystal of infinite extent, the vector k may assume any
magnitude and thus there is no restriction on the phase shift. An equivalent statement
of Bloch’s theorem is the following [30]:

Uni(r) = un(r)e““'r, (2.2)

where the function w,(r) has the same periodicity as the crystal lattice. This
formulation highlights the fact that for each k, there exists an infinite discrete range of
choices for the function wu, (7).
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Figure 2.1: The crystal structures of (a) table salt (NaCl) and (b) two-dimensional
graphene, examples of crystals consisting of a simple atomic motif.

2.2.1 Electronic band diagrams

It is instructive to plot the energy of the wavefunctions in a crystal both as a function
of the k and n of equation 2.2. Since the wavevector k is allowed to vary continuously
while the variable n is a discrete index, so the energy varies smoothly as a function of k
but discretely as a function of n. Thus, these plots take the form of a series of continuous
bands, each band belonging to a single index n and containing contributions from all
values of k. A glance at equation 2.1 shows that wavefunctions with wavevectors k and
k+ %” are mathematically equivalent. Thus, band structure plots will be periodic in
k-space and all the information will be contained in the region 2 < k < 2% which
is known as the Brillouin zone. The Brillouin zone forms a unit cell of the crystal
is k-space, and just like the real-space unit cell it can be described with three unit
vectors in three dimensions. There is a one-to-one relation between the real-space and
reciprocal space unit cells: the unit vectors in both spaces are related through

where a; are the real-space unit vectors, b; are the k-space unit vectors, and the
Kronecker delta ¢;; equals 1 for ¢ = j, and 0 otherwise. From this relation, it is seen
that the unit vectors in both spaces are in fact inverses of each other.

To gain an intuitive understanding for the existence of Brillouin zones and periodicity
in k-space (or reciprocal space), it is instructive to consider lattice vibrations in crystals,
where a similar effect occurs. These lattice vibrations are periodic oscillations of the
atoms in a crystal lattice, which can be described as a displacement wave. However,
it is only the atoms themselves that are displaced, and it makes no sense to define a
displacement for the space between the atoms. Consequently, it is only the value of

9
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Figure 2.2: A waveform sampled at discrete positions (black dots) can be described by
infinitely many different wavelengths, but by only one wavelength larger than twice the
sampling spacing (green).

the displacement wave at the atomic positions which is relevant. Due to this discrete
sampling of the displacement wave, there exists an ambiguity in the wavelength of
the wave: the same pattern of atomic displacements can be described by different
wavelengths. In signal processing, this effect is known as aliasing: high-frequency
components that are sampled at a low frequency are ”aliased” to lower frequencies.
In the specific case of audio processing, this effects leads to components of the sound
being heard at different frequencies than intended, and in image processing it leads to
the emergence of Moiré patterns. In all of these cases, including lattice vibrations, a
discretely sampled signal can be represented by an infinite number of wavelengths, but
by only one unique wavelength larger than twice the sampling spacing (see figure 2.2.
It is exactly these wavelengths that form the Brillouin zone for phonons, as they (or
superpositions of them) are able to describe all sets of atomic displacements, including
those described by shorter wavelengths outside the Brillouin zone.

While the case for electronic wavefunctions is not exactly analogous - it is not only
their value at specific points that matters but rather their value at all points in space
- the illustration above still provides a way of intuitively coming to terms with the
periodicity of band structures in reciprocal space.

As a typical example of an electronic band structure plot, figure 2.3b shows the
band structure of silicon. As silicon is a three-dimensional material, the Brillouin zone
is also three-dimensional, which means that it is impossible to depict the energies of
the complete set of wavevectors of the Brillouin zone in one figure. To overcome this
problem, a specific path through the Brillouin zone is chosen, and only wavevectors
along this path are represented in the band diagram. This path is chosen along lines
connecting high-symmetry points in the Brillouin zone. These points are labeled by

10
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Figure 2.3: The Brillouin zone [31] (a) and the electronic band diagram [32] (b) of
silicon. For a three-dimensional crystal, the Brillouin zone is also three-dimensional, and
a path through this zone is chosen for which to plot the electronic energy bands. This
path is chosen along lines connecting high-symmetry points in the symmetry-irreducible
(unique) part of the Brillouin zone which is marked in red in (a). Conventionally internal
high-symmetry points are marked with Greek letters and those on the edge of the
Brillouin zone are marked with Latin letters.

unique letters, where Greek letters are used for points in the interior of the Brillouin
zone and Latin letters are used for points on the edge.

Quantities derived from band diagrams

Various useful quantities can be derived from the electronic band structure. The ones
which are important for this work are discussed below.

Band gap: Band structures generally have ”"gaps” in them: intervals on the energy
scale where there are no electronic states. Rather confusingly, the regions in between
the gaps are also referred to as bands, due to their appearance in density of states plots
(see below). To distinguish them from the E(k) bands of band structure diagrams,
we will refer to them as ”allowed energy bands”. In metals, the Fermi level (the
level up to which the band structure is filled with electrons) is such that one of these
allowed energy bands is partially filled. This gives metals their excellent conductivity:
the highest-energy electrons have plenty of free and accessible states to transition to,
allowing them to respond to electric fields by changing their pseudomomentum k. In
semiconductors and insulators on the other hand, the Fermi level coincides with the

top of an allowed energy band. This means that their charge carriers are ”stuck”: in

11
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order to transition to other states, the carriers need to bridge the band gap from their
current allowed energy band (the valence band) to the next allowed energy band (the
conduction band). The classification of a material as either a semiconductor or an
insulator is based on the magnitude of their band gap. Materials with band gaps small
enough to enable promotion of electrons to the conduction band through means of
heat, electric fields or light are classified as semiconductors, which are the workhorse of
solid state electronics due to their controllable conductivity. Insulators on the other
hand have such large band gaps that their conductivity is negligible under normal
circumstances. For semiconductors, there is an important distinction between two kinds
of band gaps. When the electronic states at the conduction band minimum (CBM)
and the valence band maximum (VBM) belong to the same k-vector, the bandgap is
classified as direct. If instead the VBM and CBM have different k-vectors, the material
is classified as having an indirect bandgap. This distinction is important for example in
optical considerations: in direct bandgap materials, electron-hole pairs (excitons) may
recombine by emitting a photon of light with an energy equal to the bandgap magnitude.
For materials with an indirect bandgap, this radiative recombination is limited since the
emitted photon does carry enough momentum to satisfy the conservation of k-vector.
Radiative recombination can still occur when other actors like phonons or crystal defects
can absorb the excess momentum.

Effective carrier mass: Under the influence of the lattice potential, electrons and
holes in crystals respond to external forces as if they are free particles with an altered
mass. This is known as the effective mass m* of the carriers and is typically reported
in units of the rest mass of the electron m, = 9.109 - 1073! kg. The effective mass is an
intrinsically important quantity for next-generation field-effect transistors, where an
optimal effective mass is needed to balance channel backscattering and tunneling leakage
effects [20]. More generally, the effective mass is an important factor determining the
transport properties of charge carriers in crystals and is closely related to the carrier
mobility, which is one of the main figures of merit in the performance of field-effect
transistors. In this section, we summarize the theoretical foundations of the concept of
effective mass and its relation to other measurable electronic properties.

In order to derive the concept of effective mass of charge carriers in crystals, we
make an analogy between free particles and those in a crystal.[30]. For free particles,
their (non-relativistic, intertial) mass is defined by Newton’s second law

dp
dt
where p'is the momentum of the particle, @ its acceleration and F the sum of all
forces acting on the particle.
Since the charge carriers in crystals have Bloch wavefunctions which are not mo-
mentum eigenstates, we will look for a modified version of Newton’s second law of the
form

=ma=F, (2.4)

12
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dpcrystal dk
—_— —_— p— F 2-
I h o = ma exts (2.5)

where p.,,sq = Nk is the pseudomomentum of the carrier and F'e,; is the total
external force applied on the carrier, excluding forcing originating from the crystal
lattice. The acceleration can be found by taking the time derivative of the velocity,
which for a charge carrier in a crystal is defined by the group velocity of its Bloch
wavepacket:

_dv, 1ddE(k)
dt hdt dk (2:6)

Combining this with equation (2.5) yields a form of Newton’s second law applicable
to electrons and holes in crystals:

PE(k)\
F..,=h 2.
ext (dk’ldk’] ) a’7 ( 7)

From this result it can be seen that the effective mass of the charge carriers depends
both on their k-vector and the direction in which they are accelerated. The effective
mass at any point in k-space can be found by calculating the second derivative of
the electronic energy bands F(k) at that k-point in the desired direction. The two
most-used methods for this are parabolic fitting, where the quadratic coefficient equals
the local second derivative of band, and using a finite difference scheme to calculate the
second derivative.

Experimentally, direct measurements of the effective mass are not straight-forward,
as they can only be measured by complicated techniques like cyclotron resonance or
angular-resolved photo-emission spectroscopy. Instead, the effective mass is usually
measured indirectly by measuring the carrier mobility. This quantity is defined as

Variyt = W, (2.8)

where vg, 7, is the drift velocity of the carriers effectuated by an externally applied
electric field of strength |E|. From a derivation based on kinetic theory [30], the mobility
1 can be shown to depend on the effective mass of the carriers and the average time
between scattering events 7 as

€ _
where e is the charge of the electron. The mobility can be calculated by exploiting
its relation to the electrical conductivity ¢ and carrier concentration n:

o = nef. (2.10)

In thin crystals, the conductivity can be measured by the four-point-probe method
and the carrier concentration can be obtained through Hall voltage measurements, such

13
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that the mobility can be calculated. Note that this still leaves the scattering time 7
unknown, such that quantitative results for the effective mass cannot be obtained in
this way. Only under the assumption of a nearly constant scattering time can trends in
the mobility be expected to correspond to trends in the effective mass.

Density of states (DoS): The density of states is a way of visualizing the electronic
states in a crystal that is complementary to the band structure. In three-dimensional
crystals, the Brillouin zone is three-dimensional, and only a small subset of the k-
vectors within the Brillouin zone is represented. While this is sufficient for extracting
information about the bandgap and effective carrier mass, it yields an incomplete picture
about the total number of electronic states in the system. In a plot of the density of
states, the number of states within a small energy interval is drawn as a function of
their energy. At the expense of discarding any k-information about these states, DoS
plots give a good impression of the distribution of states on the energy scale throughout
the whole Brillouin zone.

2.3 Calculation methods

In order to calculate the electronic band structure, the quantum many-body problem
needs to be solved for the many-electron wavefunction. Concretely, the quantum many-
body problem of determining the state of N electrons in a static environment of atomic
nuclei is encompassed by the Schrodinger equation

ﬁ\I/(Tl,T’Q,...,T’N) :E\I’(T’l,T‘Q,...,T‘N), (211)

where U is the many-body wavefunction with a dependence on the positions of all
N electrons, F is the total energy of the system and H is the Hamiltonian operator

H=T,+V,+V., (2.12)

consisting of the electron kinetic energy T., electron-electron potential energy Vie
and electron-nucleus potential energy Ven operators. Only for N = 1 can equation 2.11
be solved exactly: like its classical counterpart, the quantum many-body problem allows
no analytic solutions. Numerical evaluations are possible for N > 1, but the complexity
of these calculations quickly rises as IV increases, making this approach viable only
for the smallest atoms or molecules. To proceed further, approximations have to be
made. The two most succesful branches of approximation methods are those based on
expansion of the wavefunction into independent single-electron wavefunctions and those
that evaluate the wavefunction using the electron density as an intermediary quantity.
Though the density functional theory framework employed in this work belongs to the
second branch, it is commonly used in conjunction with techniques of the other branch,
making it worthwhile to discuss both.

14
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Single-particle wavefunction approximations

One useful, though rather crude simplification of the quantum many-body problem is
to neglect electron-electron interaction altogether and approximate the full N-electron
wavefunction ¥ with a product of N single-electron wavefunctions :

\If(Tl,’I“Q, ...,’I“N) = ¢1(T1) . ’QUQ(TQ) et ’QZ)N(TN). (213)

Of course, we cannot expect accurate results if we pretend that each electron is
alone in the material. The least we can do is let each electron feel the average effect of
the presence of all the other electrons: this can be achieved by letting the single-electron
wavefunctions 1 be solutions to a single-particle Schrodinger equation with a modified
potential representing both the nuclei and all the other electrons in the material. In
this way, charge screening, an important effect which is responsible for the shielding of
the nuclear charge by electrons, can be described by this model. This model for the
electronic structure is known as the Hartree method.

One of the deficiencies of the Hartree model is that it does not handle so-called
exchange interactions. These stem from the Pauli exclusion principle, which states that
no two fermions (electrons) can occupy the same state. Mathematically, this is equivalent
to the multi-electron wavefunction flipping its sign upon exchange of two electrons,
hence the name ”exchange interaction”. The Hartree wavefunction (equation 2.13) does
not obey this rule: it is invariant under exchange of electron coordinates. The Hartree
method can be extended to incorporate Pauli exclusion effects by instead expressing
the N-electron wavefunction as a matrix determinant of single-particle wavefunctions

Yi(r)  alre) oo Ya(rw)
1 |Ya(r1)  wba(re) ... to(ry)

\IJ(rl,rg,...,rN):\/—N f f :
Un(r) ¥Un(r2) .. Yn(ry)

Since the determinant of a matrix flips its sign under exchange of two columns,
the resulting superposition of single-electron wavefunctions is indeed antisymmetric
under exchange of electron coordinates. This kind of determinant is known as a Slater
determinant, and the method of expressing the N-electron wavefunction as a single
Slater determinant is referred to as the Hartree-Fock method.

Though a great improvement over the Hartree model, in the Hartree-Fock model the
electrons still only experience an average effect of all other electrons, which means that
individual electron-electron interactions are not represented. Various methods exist for
accounting for this so-called correlation interaction. These methods, collectively known
as post-Hartree-Fock methods, generally either include additional Slater determinants
(configuration interaction [33]) or treat the interaction in a perturbative manner (e.g.
coupled-cluster [33] and Mgller-Plesset perturbation theory [34]).

A major benefit of the (post-)Hartree-Fock methods is that the exchange (Pauli
exclusion) energy is treated in an exact way, something that is still impossible for the

(2.14)
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electron density-based methods discussed next. It is for this reason that for many
high-accuracy density functional calculations, a hybrid approach is used where some of
the exact exchange energy is borrowed from a Hartree-Fock calculation.

Electron density-based approximations

While Hartree-Fock and post-Hartree-Fock calculations can yield very precise results,
their scalability is poor, as the computational complexity rises dramatically with
increasing system size. Thus, people have sought for alternative approximations for
electronic structure calculations. A very successful class of approximations is those based
on finding the electronic structure through the intermediary quantity of the electron
density. Before discussing density functional theory (DFT), the modern workhorse of
electronic structure and quantum chemistry calculations, it is instructive to discuss
its closely related but conceptually simpler predecessor, the Thomas-Fermi model [35].
This was the first attempt at expressing the total energy of an electronic system in
terms of the electronic density. In this model, the total energy is expressed as the
sum of the kinetic energy of the electrons, the potential energy of the electron-electron
interactions and the potential energy of the electron-nucleus interactions:

Erpln(r)] = Te + Vee + Ven. (2.15)

The kinetic energy is approximated using the analytic expression derived for the
case of a homogeneous electron gas [36]:

h2 2/3
T, = 4?)m (%) /n(r)5/3dr, (2.16)

while the potential energies are modeled through classical electrostatic Coulomb
interaction

V., — / qen(r)u(r)dr (2.17)

and

Vee = %qg//%drdr'. (2.18)

As the total energy thus depends on the energy density which is itself a function
of position, the energy is said to be a functional of the electron density. Though
conceptually transparent, this model does have some shortcomings. For one, the
analytic expression of the kinetic energy is valid only for a homogeneous electron gas.
While this might be a reasonable approximation for metals, it can not be expected to
be generally applicable to other materials. Additionally, the model accounts neither for
correlation (individual electron-electron interaction) nor for exchange (Pauli exlusion)
effects. The latter issue was alleviated somewhat by Dirac [37], who added to the energy
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sum in equation 2.15 an exchange contribution, which he derived for the case of the
homogeneous electron gas (HEG):

EHEG [ (p)] = —Z (g)l/ ’ / n(r) 3y (2.19)

However, mainly due to its crude approximation of the true kinetic energy in a non-
homogenous electronic structure, the Thomas-Fermi model only has limited applicability.
It was not until the 1960s that the full potential of density-based electronic structure
calculations was discovered.

2.4 Density Functional Theory

The rise of modern density-functional theory started with the publication of a ground-
breaking paper by Hohenberg and Kohn in 1964 [38]. In it, they proved that for any
electronic system 1) there is a one-to-one correspondence between the wavefunction (and
hence the energy) and the electronic density of the ground state ¥y(r1, 72, ...,7N) <>
no(r) and that 2) the energy of the system E = FE[n(r)] has the variational prop-
erty that its value is minimal (and equal to the exact ground-state energy) for the
ground-state electron density. Taken together, these theorems show that the complete
electronic structure of any system can be obtained by minimizing the energy functional
E = E[n(r)]. This proof of the existence of a universal density functional is remarkable,
but says nothing about the mathematical form of the functional: how exactly the energy
depends on the electron density was not addressed. However, in the next year, Kohn
and Sham [39] demonstrated a practical way of applying the Hohenberg-Kohn theorems
for actual calculations. First, they isolated the unknown part of the energy functional
by expanding the functional to

Eln(r)] = T"[n(r)] + VL In(r)] + Valn(r)] + Excln(r)], (2.20)

where T™[n(r)] is the kinetic energy of an equivalent system with non-interacting
electrons, V.¢[n(r)] and V.S [n(r)] are the classical electrostatic electron-electron and
electron-nucleus Coulomb interactions and Exc[n(r)] contains the unknown exchange
(Pauli exclusion) and correlation (individual electron-electron interaction) contributions
to the total energy.

Next, the nuclear potential is substituted for an effective single-particle Kohn-Sham
potential which includes a term for the average interaction with all other electrons and
a term representing the exchange and correlation interactions

VES(T) = Vnuat(T) + Vee (1) + vx0(T) (2.21)

where the average electron-electron interaction is again modeled by the Coulomb
interaction
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avee ,
Ve () = / o T/‘d (2.92)

and the exchange-correlation potentlal can be implicitly written as depending on
some exchange-correlation energy functional

vxe(r) = M%W. (2.23)

Finally, for a system of N electrons, solving a system of N one-electron Schrodinger
equations of the form

( o, V2 +ugs(r )) V() = ebi(T) (2.24)

yields an electron density 3, [1;(r)]* which is equal to the ground-state electron
density of the original system of interacting electrons. Solving the system of equations
requires an iterative approach since the effective potential itself depends on the electron
density. This involves first solving the equations using a trial wavefunction or charge
density as input, after which the output wavefunction or charge distribution is used
as input and the equations are solved again. This last step is repeated until the input
and output differ by less than a predetermined tolerance. At this point, the input and
output wavefunctions are said to be self-consistent and hence this approach to solving
the equations 2.24 is also known as the self-consistent field method.

The Kohn-Sham formalism to density functional theory described above has higher
accuracy than the Thomas-Fermi model mainly due to the different way in which
the kinetic energy is approximated. In the Thomas-Fermi model, the kinetic energy
is calculated under the assumption that the system is a homogeneous electron gas.
In Kohn-Sham DFT, this approximation is not necessary as the kinetic energy is
instead evaluated by applying the quantum-mechanical kinetic energy operator to the
non-interacting Kohn-Sham orbital wavefunctions.

However, one particular deficiency of the Thomas-Fermi model is still a persisting
problem in Kohn-Sham DFT: the lack of an exact description of exchange and correlation
interactions. Although the Hohenberg-Kohn paper proves that a universal functional
linking the total energy to the electron density exists, its exact formulation is still
an unsolved problem. Instead, density functional calculations rely on approximate
functionals describing the exchange and correlation contributions to the total energy.
Some of the most-used types of these approximate functionals are described in the next
section.

Exchange-correlation functionals

In the absence of an exact description of the exchange (Pauli exlusion) and correlation
(individual electron-electron interaction) contributions to the total energy of an electronic
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system, DFT calculations have to rely on approximations to these contributions. In
their 1964 paper [38], Hohenberg and Kohn proposed the first of these approximations,
building on the already available knowledge of the homogeneous electron gas (HEG).
The exchange energy for this system was already derived analytically by Dirac [37]
(equation 2.19), while for the correlation contribution Hohenberg and Kohn derived
analytic expressions in the limits of high and low electron density. Since in these
functionals the exchange-correlation energy density only depends on the local value
of the electron density, these HEG-derived functionals are referred to as the local
density approximation (LDA). This approximation works surprisingly well considering
its simplicity, and has been used extensively in solid state calculations for many years.
Its success can be attributed mostly to two factors. Firstly, although the shape and
position of the exchange-correlation-induced distortions in the electron density are
described poorly by the LDA approximation, the spherical averages of these distortions
are remarkably accurate [40], and it is this average that is the primary factor contributing
to the electron-electron interaction energy. Secondly, it has been shown that although
the individual exchange and correlation contributions to the energy calculated by the
LDA method are not very accurate, the errors in these two terms tend to cancel out in
important cases [41]. However, the LDA approach still has its shortcomings. Binding
energies are typically overestimated [40], leading to underestimated bond lengths and
lattice constants. Additionally, band gap energies of insulators and semiconductors are
often underestimated.

A more sophisticated exchange-correlation functional can be devised when not
only the local density, but also the local gradient in the density are considered. This
approach is known as the generalized gradient approximation (GGA). It is also classified
a semi-local functional, as the gradient at a point carries some information about the
immediate environment around that point. The functional of this kind that is most
widely used both due to its accuracy and mathematical simplicity is that of Perdew,
Burke and Ernzerhof (PBE) [42]. This functional is used for all DFT calculations in
the present work.

It is worth noting that there are other exchange-correlation functionals that further
improve on the GGA, at the price of a higher computational cost. Meta-generalized
gradient approximation (MGGA) functionals [43] include higher order density gradients
or a kinetic energy density depedence to improve their accuracy. Additionally, hybrid
functionals are a class of functionals that combine part of the exact Hartree-Fock
exchange energy with the conventional GGA functionals. For example, the PBEO
functional mixes three quarters of the PBE exchange energy with one quarter of the
Hartree-Fock energy [44]. At the far end of the spectrum are methods that model
the exchange-correlation energy in a fully non-local way, such as the weighted density
approximation (WDA) [45]. While these methods are the most physically accurate,
they evaluate the exchange-correlation energy through a nested integral of the electron
density, greatly increasing the computational cost.
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Van der Waals forces

As a special case of correlation effects, dispersion forces like the Van der Waals interaction
are generally poorly described by the approximate correlation functionals used in DFT
calculations. Since the inter-layer interactions in the 2D transition metal dichalcogenides
studied in this work are of a Van der Waals nature, a correction for dispersion effects is
needed in order to obtain an accurate description of these materials. To this end we
employ the DFT-D3 dispersion correction by Grimme [46] [47] [48].

Basis sets

In order to simplify the numerical evaluation of the hamiltonian, which typically has
to be performed tens of thousands of times during a DFT calculation, the electronic
wavefunctions are built up from elements which have a mathematically simple inner
product with the hamiltonian. The total hamiltonian is then evaluated by summing
the inner products with all of those partial elements of the wavefunction. The group of
these elements is called the basis set, and a good basis set should be able to closely
approximate the true wavefunction with only as few elements as possible. Two types of
basis sets are most commonly used. Firstly, basis sets of localized orbitals consist of
atomic-like orbitals which are centered on specific points in space. Hence, its use is also
referred to as the method of linear combination of atomic orbitals (LCAO). Though
the LCAO method is mostly used in the field of quantum chemistry, the closely related
method of tight-binding is often used outside the framework of DFT to calculate the
electronic structure of systems whose large size makes DFT calculations unpractical
[49].

Plane-waves

Since the factor u,(r) of the Bloch wavefunction has the same symmetries as the crystal
lattice, its Fourier decomposition consists only of plane-waves with wavevectors equal
to crystal lattice vectors

Un(r) = cnge®T, (2.25)

G

such that the complete wavefunction (equation 2.2) can be written as a superposition
of plane-waves

Uni(r) =Y cpae®TDT. (2.26)
G

Thus, plane-waves constitute a useful set of basis functions for use in DFT calcu-
lations. The exact solution requires the summation in equation 2.26 to run over the
infinitely many reciprocal lattice vectors. In practice the summation is truncated in
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in order to make it computationally feasible. In this way, only plane-waves below a
certain cutoff energy F.,; are included:

1

This approach provides a clean systematic way of improving the accuracy of the
calculation by increasing the cutoff energy, which is a benefit over localized basis sets.

Brillouin zone sampling

Many quantities of interest for an electronic system like the density or the total energy
are given by integrals over the Brillouin zone. Computationally, these integrals have to
be discretized, thus approximating them by a finite weighted sum over a set of points
within the Brillouin zone (k-points). A number of schemes for finding ”mean-value’
or "representative” k-points have been proposed in literature [50] [51] [52] [53]. In the
calculations performed in this work, we employ the method of Monkhorst and Pack [54],
in which a regular lattice-commensurate grid of k-points is evaluated. The accuracy
can be systematically improved by using a finer grid, facilitating convergence checks of
the system energy with respect to the k-point sampling. Careful optimization of the
amount of evaluated k-points is desirable since too coarse sampling will decrease the
accuracy of the calculation while an overly fine sampling will unnecessarily increase the
computational complexity.

9

Pseudopotentials and augmented plane-waves

Density functional calculations with plane-wave basis sets face a challenge in the core
regions of atoms. In these regions the electron density is high and many one-electron
wavefunctions overlap. As a result, the wavefunctions exhibit high-frequency spatial
oscillations in these core regions in order to maintain their required orthogonality.
This presents convergence issues for the plane-wave DFT as high-frequency plane-wave
components are needed to accurately model these regions. Several workarounds have
been developed to mitigate this issue and keep the required cutoff energy for plane-wave
DFT calculations low without sacrificing accuracy.

In the pseudopotential method, the core electrons are kept fixed and are represented
by an effective potential around the nuclei which is much smoother than the full
Kohn-Sham potential, but coincides with it beyond a certain convergence radius. The
Kohn-Sham equations are then solved only for the valence electrons, requiring less
high-frequency plane-wave components and thus simplifying the calculation. An added
benefit is that relativistic effects, which are only significant for core orbitals, do not need
to be included in the calculation as long as the pseudopotentials have been constructed
with regard for relativistic effects.

In the augmented plane-wave (APW) method [55], the plane-wave basis set is
augmented with superpositions of atomic orbitals centered at the nuclei. In this
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way, the electronic system is separated into two kinds of regions: around the nuclei,
where potentials and wavefunctions vary rapidly, the wavefunctions are described as
atomic orbitals, and in the interstitial regions between nuclei the wavefunctions are
expanded into plane-waves. At the boundary regions, continuity of the wavefunction is
enforced. In this method, the core electron wavefunctions are thus explicitly evaluated,
leading potentially to higher accuracy but also higher computational cost compared to
pseudopotential methods.

The projector-augmented wave method introduced by Bléchl [56] provides a theoret-
ical framework which connects the full all-electron wavefunction to a more manageable
smooth wavefunction through a transformation operator. This transformation makes
the auxiliary wavefunction much smoother in the core regions, much like the pseudopo-
tential method does. The difference is that in the PAW framework, these auxiliary
wavefunctions can be transformed back into the full all-electron wavefunction. In this
way, the computational efficiency of smoother wavefunctions (as in the pseudopotential
method) is combined with the accuracy of an all-electron calculation (as in the APW
method). The PAW method is used for all the DFT calculations in this work.

2.5 Summary

In the rest of this thesis, we will employ Kohn-Sham density functional calculations to
investigate the electronic structure of 2D transition metal dichalcogenides and their
alloys by means of their electronic band structure. The calculations are performed in
the projector-augmented wave formalism as implemented in the VASP software package.
Brillouin-zone integrals are evaluated by the k-space sampling method of Monkhorst and
Pack. The exchange and correlation contributions to the Hamiltonian are approximated
by the generalized gradient functional of Perdew, Burke and Ernzerhof (PBE) and the
van der Waals interactions between the TMD layers are corrected for by the DFT-D3
method of Grimme.
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Chapter 3

Pristine Transition Metal
Dichalcogenides and Point Defects

This chapter is aimed at gaining insight into the structural, vibrational and electronic
properties of the transition metal dichalcogenides MoS; and WS,. TMDs can take on
several different crystal phases, the most ubiquitous being the 2H (2 layers per unit
cell, hexagonal) and 1T (one layer per unit cell, tetragonal) phases. For MoSy and
WS,, the 2H phase is the most energetically favorable structure, hence the discussion
in this chapter will be based on this structural phase of TMDs. We will discuss the
crystal structure of the 2H phase of TMDs and list the experimentally known lattice
constants of MoS, and WS, which we will use as one of the benchmarks for our ab-initio
calculations. The vibrational modes of the crystal structure are discussed in the context
of Raman spectroscopy, a technique that is highly sensitive to structural changes in
TMDs. We demonstrate the possibility of calculating lattice vibration frequencies
in TMDs with DFT, which we will exploit in an extensive phonon analysis of TMD
alloys in the next chapter. The electronic structure of 2H-phase TMDs is explicated by
first discussing its general features which are dictated by the crystal structure. After
this introduction, we discuss the methods and results of our ab-initio calculations of
the structural and electronic properties of MoS, and WS, comparing them to our
benchmarks. Additionally, we extend our ab-initio calculations to the study of realistic
concentrations of point defects typically found in synthesized TMDs. This requires the
adoption of a supercell calculation method and unfolding of the resulting eigenstates in
order to obtain an effective band structure that can be interpreted and compared to
those of the pristine materials.

3.1 Crystal structure

Figure 3.1 shows the crystal structure of the 2H phase of TMDs. Each 2D atomic
layer consists of a layer of metal atoms sandwiched between chalcogen atoms, where
the chalcogen atoms form a trigonal prismatic shape around the metal atoms (figure
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Figure 3.1: The crystal structure of 2H-phase transition metal dichalcogenides such
as MoS; and WS,. Top: conventional unit cell highlighting the trigonal prismatic
symmetry of the atomic layers. Bottom-left: top view of a monolayer of MoSs with
overlay of a possible choice of unit cell emphasizing the hexagonal symmetry of the
crystal lattice. Bottom-right: side view of the same crystal, demonstrating the AB
stacking order of the atomic layers characteristic to the 2H crystal phase. The length of
the ¢ axis is twice the interlayer distance since the unit cell contains two atomic layers.

3.1a). The monolayers have hexagonal symmetry (figure 3.1b) and they are stacked in
an AB pattern in the bulk material. The in-plane and out-of-plane lattice constants of
MoS; and WS, are summarized in table 3.1. These numbers clearly demonstrate the
exceptional structural similarity between these two materials: their lattice parameters
differ by less than half a percent. This structural similarity is what allows MoS,
and WS, to be combined into alloys without distorting their crystal structure, which
is explored in the next chapter. The crystal structure of MoS, and WS, is closely
related to their vibrational modes, which are a valuable metrics in the experimental
characterization of these materials, as explained in the next section.
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Table 3.1: In-plane (a) and out-of-plane (c) lattice constants of the transition metal
dichalcogenides MoS; and WSs.

TMD a (nm) c¢ (nm)
MoS, 0.316 1.23
WS, 0.316 1.24

3.2 Vibrational structure

Since the unit cell of 2H-phase TMDs contains N = 6 atoms, it has 3N = 18 degrees
of freedom. This means that these crystals have 3N — 3 = 15 vibrational eigenmodes,
not counting the 3 modes that correspond to a homogeneous translation of the whole
crystal. These lattice oscillations are illustrated in figure 3.2. The oscillations may
have different wavelengths, such that a phononic band structure can be constructed
where the vibrational frequencies of the eigenmodes are graphed as a function of k-
vector within the Brillouin zone, fully analogous to the electronic band structure. For
experimental measurement of these vibrations, generally either infrared absorbance
spectroscopy or Raman scattering spectroscopy are used. These two techniques have
different selection rules for what vibrations they can measure: only vibrations where
the electric dipole moment changes can absorb IR light, while only vibrations where
the electric polarizability changes can scatter Raman light. In the next chapter we
will use Raman spectroscopy to study lattice vibrations in TMD alloys, motivated by
the technique’s quick, substrate-independent nature and its suitable frequency window
for studying the predominantly low-frequency lattice vibrations in TMDs. Raman
scattering is only efficient when the atoms in the lattice vibrate in phase such that, in
general, only phonons at the I point can be measured with this technique. Exceptions
arise when crystal symmetry is broken by the presence of defects or if absorption is
exceptionally strong, as is the case when the excitation laser frequency matches an
electronic transition in the material. In particular, both these effects are known to
cause the emergence of a longitudinal acoustic phonon originating from the M-point
of the Brillouin zone in the Raman spectra of WS, [57, 58, 59]. The Raman-active
vibration modes of 2H-phase TMDs are denoted by an R in figure 3.2. IR denotes active
infrared-absorbing modes, while IN denotes inactive modes. Of the Raman-active modes,
the very low-frequency Egg mode cannot be resolved by regular Raman spectroscopy,
leaving three modes to be measured: Ay, Ey, and E;,. Of these three, especially
the A, and E,, contain a lot of information about the structure of the TMD. Their
frequencies can serve as a measure of the number of layers [57] as well as a for strain in
the material [60]. Additionally, the peak ratio of these two vibrations from polarized
Raman measurements gives insight into the orientation distribution in nanocrystalline
TMDs. Evidently, the vibrational modes are important diagnostics in characterizing
TMDs, and their theoretical evaluation would be highly valuable. In section 3.4.3 we
discuss the calculation of the frequency of the A;; mode in MoSy and WS, by density
functional theory, which we extend to our study of TMD alloys in chapter 4.
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Figure 3.2: Vibrational eigenmodes of bulk 2H-phase transition metal
dichalcogenides[61]. Each E mode is doubly degenerate in the in-plane directions,
giving a total of 3N — 3 = 15 eigenmodes where N = 6 is the number of atoms per
unit cell. The modes are labeled as active in infrared absorption (IR), active in Raman
scattering (R) or inactive (IN) and their vibrational frequencies in MoS, are indicated
in cm ™!,

3.3 Electronic structure

Our goal is the calculation of electronic properties such as the bandgap and electron
effective mass from band structure diagrams which we calculate through ab-initio
techniques. In order to become familiar with the band structure of transition metal
dichalcogenides, we first derive the shape of the Brillouin zone of TMDs from their
crystal structure. Next, we demonstrate how the shape of the Brillouin zone determines
the general shape of the band structure of these materials by constructing a simplified
band structure through the empty lattice approximation. This exposition serves as a
preparation for the next section, where we present the results of the ab-initio calculations
of the electronic structure of MoS, and WS,.

The Brillouin zone

As discussed in chapter 2, the wavefunctions describing electronic energy eigenstates
in crystals are Bloch functions which are characterized by a discrete index n and a
continuous wavevector k. These wavefunctions, and thus all their derived properties,
are periodic in k-space, such that we may define a unit cell in k-space which is called the
Brillouin zone. The shape of the Brillouin zone of any material is uniquely determined
by the crystal structure of the material, and is an important factor in determining what
the electronic band structure of the material looks like. The geometry of the Brillouin
zone of 2H-phase TMDs can be derived by using the definitions of the reciprocal unit
vectors as given in section 2.2.1. When applying these relations, we find that the
Brillouin zone of 2H-phase TMDs has a hexagonal prismatic shape like the real-space
unit cell, though it differs from the real-space unit cell in its shape and orientation.
More specifically, it is rotated by 30 degrees with respect to the real-space unit cell
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Figure 3.3: The three-dimensional unit cell of 2H phase TMDs and their Brillouin zone.
The Brillouin zone is rotated along the vertical axis by 30 degrees with respect to the
real-space unit cell, and its height over width ratio is the inverse of the real-space unit
cell. Since the real-space unit cell contains two atomic layers, it is rather tall, leading
to a relatively flat Brillouin zone.

and its height over width ratio is the inverse of that of real-space unit cell. Since the
real-space unit cell is rather tall, the resulting Brillouin zone is relatively flat (figure
3.3). In order understand how these geometrical considerations influence the band
structure of 2H-phase TMDs, we derive a simplified band structure based on only these
geometrical properties in the next section.

Empty-lattice band structure

The empty-lattice approximation is a method to derive a simplified band structure of a
material based only on the geometry of the crystal lattice and the energy-momentum
relationship of free electrons. It does not provide a physically accurate description of
the band structure as it completely ignores the influence of the atomic potential on
the electrons in the crystal, but the empty lattice approximation is a useful tool in
understanding the general features of the band structure which we will calculate more
accurately using density functional theory in section 3.4.

An empty-lattice band structure is constructed by centering a parabolic free-electron
energy-momentum curve at every lattice point in k-space. The pattern of overlapping
parabolas within the first Brillouin zone then represents the band structure. In figure
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3.4, this is demonstrated for a one-dimensional crystal, resulting in a simple band
structure. For the real, three-dimensional crystals we are interested in, there are two
main sources of additional complexity in their empty-lattice band structures. Firstly,
for all Brillouin zone shapes except cubical ones, the spacing between Brillouin zones
is different in different k-directions. For the case of 2H-phase TMDs, the Brillouin
zone is a very flat hexagonal prism (figure 3.3), such that they are packed more closely
together in the k, direction than in the k, and k, directions. This leads to more complex
overlap patterns in the empty-lattice band structure. Additionally, band structures
of three-dimensional crystals have to be represented by choosing a path through the
Brillouin zone and graphing the electronic energy for wavevectors on this path only.
Both of these effects can be seen in the empty-latttice band structure of a 2H-phase
TMD in figure 3.5, in which only bands originating from nearest-neighbouring Brillouin
zones were included. As expected and as also seen in the one-dimensional case, we note a
parabolically increasing electron energy as the magnitude of the k-vector increases from
the I' point to the K point, as well as from I' to M. The path along the perimeter of
the Brillouin zone from M to K is accompanied by only a slight variation in wavevector
magnitude, which is reflected by the relatively flat energy bands in this part of the
diagram. Additionally, many bands are degenerate, which is indicated by the opacity
of the lines in the diagram. These duplicate bands originate from the symmetry of the
Brillouin zone. For example, since the spacing to the next Brillouin zone in the +k, and
—Fk, directions is the same, both these cells contribute an identical band to the diagram.
In a full calculation of the band structure of TMDs, these degeneracies will be lifted by
the influence of the potential that the electrons experience in the crystal, leading to
the splitting of degenerate bands and the formation of bandgaps [30]. Another feature
that will also be present in the full band diagram and has an intuitive explanation
in the case of the empty-lattice band diagram is the observed ”doubling” of bands:
every band is accompanied by another band at a slightly higher energy. This is again a
consequence of the geometry of the Brillouin zone: the small spacing between unit cells
in the k, direction results in a pattern of overlapping parabolas which are only very
slightly displaced from each other in the k, direction.

Now that the general shape of the electronic band structure of 2H-phase TMDs has
been introduced through the simplistic but insightful empty-lattice approximation, we
will calculate the physically accurate band structure by means of density functional
theory in the next section.
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Figure 3.4: In one dimension, the empty lattice approximation leads to simple band
structure inside the first Brillouin zone consisting of overlapping parabolas centered on
neighbouring Brillouin zones.
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Figure 3.5: Brillouin zone with labeled high-symmetry points (right) and the empty-
lattice band structure of a 2H-phase TMD (left). In three dimensions, the empty-lattice
band structure gains significant complexity, exhibiting several of the same qualitative
properties of the full electronic band structure.
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3.4 Results: ab-initio calculations on pristine TMDs

In this section we report the results of our DFT electronic structure calculations of
pristine MoSy and WS, and point defects therein. We first discuss the convergence
of the calculated structural and electronic properties with respect to the Brillouin
zone sampling and plane-wave energy cutoff, after which we compare the calculated
properties of the pristine materials to literature. Next, we employ a supercell method
to DF'T in order to study the influence of point defects in these materials.

3.4.1 Convergence with respect to calculation parameters

In order to obtain accurate results from density functional theory calculations, the
parameters of the calculation have to be chosen carefully. The most important pa-
rameters in determining the accuracy of a plane-wave DFT calculation are the energy
cutoff value for the plane waves and the number of points used to sample the Brillouin
zone [62]. In this section, we check the convergence of our DFT results with respect
to these two parameters. As metrics, we track the changes in the calculated energy
per atom and lattice parameters from a structural relaxation as the energy cutoff and
number of k-points are increased. It is reasonable to track these metrics only during
the relaxation step, as the relaxation is more sensitive to the calculation parameters
than the subsequent static electronic structure calculation. Our criteria for convergence
are that the changes in the energy per atom and the Mo-S bond length are smaller
than 1 meV and 1072 A as the cutoff energy or k-mesh density are increased. These
differences are smaller than chemically relevant energies, such that after reaching these
criteria we may expect consistent results from our calculations, up to the accuracy of
the PBE exchange-correlation functional we use.

Brillouin zone sampling Figure 3.6 shows the convergence of the energy per atom
and the molybdenum-sulfur bond length as a function of the number of irreducible
k-points used to sample the Brillouin zone. The amounts of irreducible k-points used
were 6, 15, 32, 60, 96, 147, 216, 297, 400, 845 and 1536, corresponding to Gamma-
centered Monkhorst-Pack grids commensurate to the Brillouin zone, consisting of
NxNxN symmetry-reducible k-points with N = 3, 5, 7, 9, 11, 13, 15, 17, 19, 25 and 31.
In order to visualize the convergence, we subtracted the values of the metrics from the
calculations with grid size N from their values obtained in the calculation with grid size
N-1. We note that our convergence criteria for both the energy per atom and the bond
length is reached for a k-mesh of 7x7x7 k-points, corresponding to 32 points within the
irreducible Brillouin zone. To be on the safe side, we will use a mesh of 11x11x11, or 96
irreducible k-points, for our electronic structure calculations.

Planewave cutoff energy In planewave DFT, the wavefunctions are built up from
superpositions of planewaves. In order to keep the calculation manageable, this summa-
tion is limited to planewaves with an energy below a certain cutoff energy. Figure 3.7
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Figure 3.6: Convergence with respect to the Brillouin zone sampling of the energy per
atom and Mo-S bond length in MoS, calculated with DFT.

shows the convergence of the energy per atom, Mo-S bond length and the electronic
band gap as a function of the cutoff energy. The cutoff energy was increased from 200
eV to 400 eV in steps of 10 eV, and the values of the metrics calculated at cutoff energy
E were subtracted from their values calculated at cutoff energy E - 10 eV to show their
convergence. We note that our convergence criteria are satisfied at a cutoff energy of
320 eV. To be on the safe side, we will use a cutoff energy of 400 eV in our electronic
structure calculations.

3.4.2 Structural properties from DFT

Using the optimized calculation parameters whose convergence was demonstrated in
the last section, we performed DFT structural relaxations of bulk MoSs and WS,. The
resulting lattice parameters are compared to their experimentally measured values
in table 3.2. It can be seen that all calculated lattice parameters agree with their
experimental values to within half a percent. Evidently, both the strong in-plane
interactions and the weak Van der Waals inter-layer interactions are modeled accurately
in our calculations.
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Figure 3.7: Convergence with respect to the planewave cutoff energy of the energy per
atom, Mo-S bond length and bandgap energy in MoS, calculated with DFT.

Table 3.2: Comparison of the lattice parameters of MoS; and WS, obtained from our
DFT structure relaxation to the experimentally measured values.

Experimental [63] | Calculated

TMD | a(A) c(A) |a(A) c(A)
MoS, 3.16 12.29 3.161  12.32
WS, 3.16 12.38 3.166  12.41

3.4.3 Vibrational properties from DFT

Now that we have obtained the relaxed structures of MoS; and WS, we will apply
perturbations to them with the goal of deriving phonon frequencies from them. We note
that there exists software to automate these types of calculations [64]. However, we have
chosen for a manual approach which enables us apply the same technique to supercell
calculations in our study of TMD alloys in chapter 4. We focus on the A,, vibration
as both its modeling and interpretation of results are relatively straight-forward: the
vibration consists of the chalcogen atoms oscillating in the out-of-plane direction while
the metal atoms are at rest (see figure 3.2), resulting in a purely out-of-plane oriented
restoring force on the chalcogen atoms. Displacing the sulfur atoms of the relaxed MoS,
and WS, cells in the out-of-plane direction and performing a static DFT calculation
allows us to calculate this restoring force. In figure 3.8 we show the restoring force
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Figure 3.8: Restoring force on sulfur atoms in the A;, vibration of MoS; as a function
of their out-of-plane displacement. The slope of the linear fit is used to calculate the
phonon frequency.

on the sulfur atom in the A;, vibration of MoS, as a function of its displacement.
The onset of anharmonicity can clearly be observed as the curve diverges away from a
straight line for larger displacements. As a realistic vibrational amplitude, we enforce a
sulfur displacement corresponding to a single vibrational quantum (phonon) occupying
the A;; mode. In the harmonic approximation and taking the phonon energy as hiw
where w is the experimental radial frequency of the A;, vibration, this amplitude is
found to be 0.07 A. Using this displacement to calculate the Ayy frequency in MoS,
gives a value of 394 cm™1, which is within 4% of the experimental value of 410 cm™1.

3.4.4 Electronic properties from DFT

Band structure Using the obtained relaxed structures of MoSs and WS,, we proceed
to calculate their electronic structure. In these calculations, the electronic energy bands
are calculated along the path K - I' - M - K in the Brillouin zone, sampling 20
points between each pair of high-symmetry points. Figure 3.9 shows the calculated
band structure of MoS,, with the upper valence band and the lower conduction band
highlighted. Qualitatively, we note the indirect bandgap from the I'-point in the valence
band to the halfway point between I' and K in the conduction band. Figure 3.10
shows the band structure around the bandgap for both MoS; and WSy, such that
their bandgaps can be seen more clearly. The calculated magnitudes of the bandgap
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are compared to their experimental values in table 3.3. The band gap magnitudes
for monolayers of MoS, and WSs, where the bandgap transitions to a direct gap at
the K point in the Brillouin zone, were also calculated and can be found in the same
table. From the comparison in table 3.3 it can be seen that the bandgap is consistently
underestimated by our DFT calculations, which is a known issue with DF'T calculations
using local exchange-correlation functionals [65]. More accurate values can be obtained
from quasiparticle calculations based on, for example, Green’s functions [66]. On the
other hand, the comparison of the DFT bandgaps with the experimental data is also
hindered by the significant exciton binding energies in these materials which shifts the
measured photoluminescence energy away from the true electronic bandgap. Despite
these complications, the difference between our calculated bandgaps of monolayers
MoS; and WS, is in good agreement with the experimental values. In fact, the bandgap
underestimation of DF'T comprises a rigid shift of either the valence or the conduction
band, such that the derived quantities like the effective mass are unaffected by the poor
bandgap prediction [65].

Table 3.3: Comparison of the DFT-calculated bandgaps of MoSs and WS, to the
experimentally measured values.

Experimental bandgap Calculated bandgap
TMD Bulk Monolayer Bulk Monolayer
MoS, | 1.23 eV [67] 1.89 eV [68] | 0.890 eV ~ 1.74 eV
WS, | 1.35eV [67] 2.01 eV [69] | 1.025 eV 1.88 eV

In order to gain insight into the character of the valence band maxima and conduc-
tion band minima, the orbital decompositions of the wavefunctions at these points were
calculated. This was done by means of the overlap integrals between the Bloch wave-
functions and the atomic orbital wavefunctions, the calculation of which is automated
in the VASP software package. The orbital decompositions of the global extrema as
well as the second local extrema of the valence and conduction bands are shown in
figure 3.11. The valence band maximum at the I' point is seen to consist mostly of
contributions from the molybdenum d? and sulfur p, orbitals. The character of the
conduction band minimum is even more dominated by the molybdenum d? orbitals,
showing negligible contributions from other orbitals. This analysis sheds light on the
bandgap transition between bulk and monolayer TMDs, where the valence band states
at th I' point drop down in energy such that a direct bandgap emerges at the K point.
Since both the VBM and the CBM consist largely of Mo d? character but only the
energy of the VBM changes during the bandgap transition, this energy drop can be
attributed to the S p, contribution to the valence band maximum. From the viewpoint
of crystal field theory such behavior would be expected since the stacking of monolayers
would introduce an overlap between S p, orbitals from different layers, increasing their
energy. A similar conclusion was reached by Splendiani et al. [21].
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Figure 3.9: Electronic band structure of bulk MoS, calculated with DFT. The uppermost
valence band and lowermost conduction bands are highlighted.
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Figure 3.10: Band structure around the bandgap of both MoS, and WS, as calculated
with DFT. The indirect bandgap transitions between the I' point and the I'-K middle
point are indicated along with their energies.

35



CHAPTER 3. PRISTINE TRANSITION METAL DICHALCOGENIDES AND
POINT DEFECTS

CBMK CBMA

Mo d.:
Mo d,:
Mo d,,
‘ Mo s
\ N 7
S Px S p:

Spy S px

Mo d.:

other S p,

other

VBM K MoS2 VBMT

Mo d,:

S

S p:

S py

Figure 3.11: Orbital decompositions of the electronic wavefunctions at the valence band
maxima at the K and I' points and the conduction band minima at K and halfway the
A line in bulk 2H-phase MoS; as calculated with DFT. The S p, contribution of the
valence band maximum at I' causes this state to increase its energy upon stacking of
monolayers, resulting in the direct-indirect bandgap transition.
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Effective carrier mass As explained in chapter 2, the effective carrier masses can be
derived from the band structure through the curvature of the valence band maximum
for holes and the conduction band minimum for electrons:

. PE\ !

We do this by locally fitting a parabola to these bands of the form

E=a(k—k)*+c, (3.2)

where k is the wavevector magnitude, and kg is the wavevector magnitude at the
point where we want to find the curvature. The coefficient a is then the second derivative
at the extremum which we use to calculate the effective carrier mass through equation
(3.1). However, we found the results obtained using this method to be inconsistent with
literature data. The fact that the calculated band diagrams are discontinuous at the
high-symmetry points as well as the obfuscated representation of reciprocal space units
in the VASP software make the parabola method difficult to use in practice. Instead, we
used a related finite-difference method to calculate the effective masses. In this method,
a new electronic structure calculation is performed for a selection of points in reciprocal
space closely spaced around the valence band maximum / conduction band minimum.
A finite-difference stencil is used to calculate the local curvature of the bands from the
calculated electron energies at these points. For these calculations, the effective mass
calculator of Fonari and Sutton was used [70]. Table 3.4 shows the effective carrier
masses in the in-plane direction calculated in this way and compares them to values
from DF'T literature. The calculated values show excellent agreement with the literature
values. One exception is the electron mass at the K point, for which we have found
inconsistent results caused by the close proximity of the lowest conduction band to the
next conduction band, such that errors occurred in the finite-difference calculations.
From the wide spread in the literature values of this parameter, it appears that other
authors also run into this problem. We note that in principle the issue may be alleviated
by using the orbital decomposition of the bands in order to uniquely identify the lowest
conduction band and calculate its curvature. However, since the conduction states at
the K point are at an energy of 0.2 eV higher than the CBM at the A point which is a
difference of about 7 kg1 at room temperature and thus irrelevant for regular electron
transport, we shall just focus on the electron mass at the absolute CBM at the A point
instead.
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Figure 3.12: The DFT-calculated band structures of bulk MoSy and WS, shifted such
that parabolas can be fitted to the K points as well as the I' point and the conduction
band minimum halfway between them. From the curvature of the fitted parabolas, the
effective carrier masses can be extracted.

Table 3.4: Comparison of the calculated effective carrier masses in MoSy and WS, from
DFT to values from literature.

DFT literature Calculated
TMD | mlK miA my K mpl' | miK miA mij K mpl
0.45 [71] 0.53 [71] 0.43 [71] 0.62 [71]
MoS2 082 [72] 0.55 [72] 0.63 [72] 0.71 [12] 0.57 0.8 0.69
WS, | 038 [73] 057 [73] 037 [73] 0.83[73] | 036 061 043 0.65

3.5 Imperfections in synthesized TMDs

All crystals contain imperfections to some degree. Generally, the concentration of
these imperfections depends on the synthesis method used to obtain the crystals. Slow,
delicate synthesis methods such as the solvent flux method [74] can be used to synthesize
very pure single crystals on timescales of several weeks. For large-scale industrial use of
crystals, however, this is not practical. Hence, vapor-phase methods such as chemical
vapor deposition (CVD) or atomic layer deposition are used, which permit much higher
growth rates. However, these synthesis methods also produce higher concentrations
of defects in the deposited crystals. One example is the emergence of nano-sized
crystal grains or domains which have different orientations and are separated by grain
boundaries. These domains emerge when multiple nucleation sites are formed at the
beginning of the deposition and differently-oriented crystals start growing on these sites.
While each domain is itself crystalline, the grain boundaries may have a significant
impact on the macroscopic electrical and chemical properties of the polycrystalline
material. Other types of imperfections include missing, misplaced or swapped atoms
within the crystal lattice. Since these defects are localized to a single point in the
crystal, they are known as point defects. Missing atoms or vacancies may arise for
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example with the use of plasma during deposition, where atoms may be ejected from the
surface, or when the deposited crystal is understochiometric. Substitutional atoms may
originate from impurities which are intentionally or unintentionally introduced into the
deposition process. For example, in the case of doping, the substitutional defects are
deliberately introduced in order to enhance the electronic properties of the crystal. For
transition metal dichalcogenides in particular, it is known that defects are important
in determining their chemical and electronic properties [22, 23, 24, 25]. While grain
boundaries are relevant in determining electronic properties, these types of defects
are difficult to simulate with ab-initio methods since they require large simulation
domains. Therefore, we focus on studying the effect of point defects on the structural
and electronic properties of TMDs by density functional theory calculations in the next
section.

3.6 Results: ab-initio calculations on point defects
in TMDs

In order to gain insight into the impact of point defects on the structural and electronic
properties of TMDs, we study a selection of 6 point defects in MoSs crystals in this
section: vacancies of S, So, MoS3 and MoSg as well as Mo-W and S-O substitutions. The
choice of the vacancy defects was based on experimental observations of these defects
in plasma-exposed MoS, layers [75]. Additionally, quantum chemistry calculations of
the formation energies of various point defects indicate that the single sulfur vacancy
is the most common type of point defect in MoS, [76, 77]. The Mo-W substitutional
defect was included as a stepping stone towards the treatment of Mo, W;_,Ss alloys in
the next chapter. The S-O substitutional defect was included since these defects are
expected to occur when the MoS, films are exposed to air. Interstitial S atoms are also
classified as point defects and are known to have relatively low formation energies [76],
but these defects were not included in our study.

Point defects are the simplest defects to model since they are intrinsically localized
in the crystal structure. Nevertheless, the simulation of realistic concentrations of point
defects requires significant changes to the computational methodology compared to
pristine crystal calculations, as we will explain next.

3.6.1 Computational approach

In synthesized 2D-TMDs, typical point defect concentrations are on the order of 0.01
to 0.1 per crystallographic unit cell [78]. Evidently, a calculation based on the periodic
repetition of the primitive unit cell cannot accurately model these defect concentrations:
the closest options are 0 or 1 defects per primitive cell. As such, we need to switch to
a supercell-based calculation. In these calculations, we choose a supercell consisting
of multiple primitive unit cells as our periodically repeated unit cell. For example,
a single point defect introduced into a supercell consisting of 5x5x2 unit cells would
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represent a defect concentration of 0.02 defects per primitive cell, which is comparable
to experimentally observed defect concentrations.

A complication that arises in the use of supercells in planewave DFT calculations is
that the resulting band structure does no longer correspond to the primitive unit cell.
As the supercell is larger than the primitive cell, its Brillouin zone becomes smaller.
This small Brillouin zone becomes overcrowded with energy bands, resulting in an
obfuscated band diagram. In order to still interpret the results and compare them
to pristine materials, a so-called "unfolding” of the supercell band structure may be
performed to obtain an effective primitive-cell band structure. We use the software
vasp_unfold [79] to automate this procedure.

The calculation of effective carrier masses also requires some additional thought when
switching to a supercell-based calculation method. For the primitive-cell calculations,
we were able to find the valence and conduction bands and fit parabolas to them.
For a supercell calculation this is unfeasible as the valence and conduction bands are
continuously crossed by other electronic bands in the supercell Brillouin zone, and it is a
priori unclear which band corresponds to the actual primitive-cell valence or conduction
band. As a workaround, we first calculate the energies of the 40 bands closest to the
bandgap in a small region around the valence band maxima and conduction band
minima. Next, we identify which of these energy values belong to the effective valence
and conduction band by comparing the orbital decomposition of the wavefunctions
to those of the valence band maxima and conduction band minima of the primitive
cell calculation. Having thus reconstructed the valence and conduction bands around
these points, we may calculate the effective carrier mass by the usual parabolic fitting
method or finite-difference calculation of the band curvature.

3.6.2 Effects on crystal structure

Relaxation of the point defects was performed with DF'T. For these calculations the
Brillouin zone sampling in the k,-k, plane was reduced to 3 by 3 k-points. This is
justified on the grounds that the Brillouin zone of the 5x5 supercell is a factor 5 smaller
than for a primitive cell calculation. Figure 3.14 shows heatmaps of the structural
relaxation, highlighting the structural changes caused by the point defects in MoS,.
The substitutional Mo-W and S-O defects are seen to cause the least distortion, with
especially the tungsten substitution causing virtually no structural deformation of the
MoSs. The single sulfur vacancy produces distortions of a similar magnitude as the S-O
substitution, and the larger vacancy structures cause significantly larger distortions to
the crystal lattice. From these images, it can be seen that the structural distortions
are highly localized around the defect centers. Additionally, a comparison of the scale
bar to our previous calculation of typical phonon displacements reveals that only the
largest vacancy defect, a missing MoSg unit, produces distortions larger than the typical
phonon amplitude of 0.07 A. For all the other studied point defects, the maximum
atomic displacement stays below half of this value. This indicates that the structural
rearrangements around point defect sites are negligible compared to phonon-induced
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distortions. Of course, the defects themselves may still have significant influence on the
electronic structure, which is investigated in the next section.

3.6.3 Effects on electronic structure

Band structure Using the relaxed structures of the 5x5 supercells of MoS, with
point defects, band structure calculations were performed. Since the Brillouin zone
corresponding to the supercell is smaller than the one corresponding to the primitive cell,
the energy bands need to be "unfolded” in order to obtain an effective band structure
for the Brillouin zone of the primitive cell. This unfolding was automated using the
software vasp_unfold [79]. The resulting effective band structures around the bandgap
for the point defects are shown in figure 3.15. The substitutional defects have band
structures which are very similar to the band structure of the pristine material, with
barely any spectral noise visible. For the S and Sy vacancies, we observe higher levels of
spectral noise, accompanied by the emergence of new, dispersionless states within the
bandgap. In the case of the MoS3 vacancy, these gap states are even more abundant
and are seen to originate from the unpaired S atoms, since they are not visible in the
band structure of the MoSg vacancy. Additionally, the band structures of the MoS;
and MoSg vacancies show significant levels of spectral noise, which is indicative of the
breaking of the translational symmetry in the crystal on the primitive-cell level.

Effective carrier mass In order to obtain effective carrier masses from these unfolded
band structures, identification of the valence and conduction bands is needed. This is
non-trivial because these bands are crossed many times by bands (both spectral noise
and defect states) which do not belong to the primitive cell band structure. This makes
it hard to identify the same band at several points in k-space, which is necessary in order
to calculate its curvature for use in the calculation of the effective carrier mass. The
identification of the bands corresponding to the primitive-cell valence and conduction
band was performed by comparing their orbital decompositions to those found for the
primitive cell calculations on MoS, (see figure 3.11). The automated finite difference
script by Fonari and Sutton [70] was used to calculate the lateral effective carrier masses
of the defect structures, which are tabulated in table 3.5. We note that the effective
carrier masses calculated from simulations with realistic concentrations of point defects
do not differ by more than a factor of 2 from their values in defect-free MoS,. As
such, we do not expect these defects to be limiting the carrier mobility in synthesized
2H-phase TMDs through their impact on the effective mass. Other effects, most notably
the presence of grain boundaries and, to a lesser degree, electron-phonon scattering are
more likely to be limiting the carrier mobility in these materials. Additionally, changes
in carrier concentration effectuated by point defects may play a role in determining the
mobility. For example, both sulfur vacancies[77] and lead impurities [?] are known to
act as p-type doping in MoS,.
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Table 3.5: Electronic and structural properties of MoS, with various point defects in a
concentration of 0.04 per unit cell.

| Structure m;  m a c/a |

| Pristine 0.57 0.69 3.162 3.941 |
S vac. 0.65 0.75 3.155 3.950
S, vac. 0.67 0.81 3.149 3.955

MoS; vac.  0.78 0.85 3.159 3.933
MoSg vac.  0.85 1.38 3.140 3.950
Mo-W sub. 0.59 0.77 3.161 3.944
S-O sub. 0.60 0.77 3.157 3.950
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Figure 3.13: Overview of the supercell structures used to study point defects in MoS,.
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Figure 3.14: Relaxation heatmaps of the studied point defects in MoS,. The colors
indicate atomic displacements with respect to their position in the pristine material.
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Figure 3.15: Effective band structures around the bandgap for concentrations of 0.04
per unitcell of six common point defects in MoS,
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Chapter 4

Two-dimensional Alloys: Case
Study of Mo, W1_,592

Abstract

A requirement for the usability of 2D transition metal dichalcogenides (TMDs) for a
wide range of applications like nano-scale transistors and sensors is the tunability of
their material properties. Numerous pathways to achieving tunability have already
been explored, such as inducing doping or crystal defects in the material or combining
multiple TMDs into alloys. The method of alloying is especially promising as several
pairs of TMDs exist with nearly identical crystal structures, such that their alloys have
minimal structural distortion. Accordingly, these alloys may achieve a large degree
of tunability by controlling their composition without significantly deteriorating the
desirable intrinsic material properties of the TMDs. Previous work on these types
of alloys has shown that relevant properties like the band gap can indeed be tuned
by controlling the alloy ratio. However, not much is known about the effect that
the atomic-scale ordering of the alloy has on its material properties. Many crystal
growth techniques are unable to achieve the atomic-level growth control necessary to
systematically study the effects of atomic ordering. As such, the focus of most TMD
alloy studies has been on the effect that the alloy ratio has on the material’s properties,
and the effects of atomic ordering are largely unknown.

In this work, we investigate the influence of both the alloy ratio and the atomic-scale
ordering of Mo, W; .S, on the material properties of these alloys. We employ the
synthesis technique of atomic layer deposition (ALD) to achieve the required atomic-level
growth control. We show that alloys of molybdenum disulfide and tungsten disulfide
Mo, W;_ .Sy are influenced by the atomic mixing in a distinct way, as we observe a
systematic variation in the spectral position of the dominant A;, and E,, vibrations in
the Raman response when altering the ALD cycle ordering. This effect is distinct from
alloy ratio-dependent effects and is furthermore unexpected from a classical analysis
of the vibrational frequencies. An ab-initio analysis of the vibrational frequencies of
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the alloys suggests that this effect is related to the atomic-scale ordering and clustering
of the molybdenum and tungsten atoms in the alloy. Additionally, experiments where
the alloy composition was varied from pure WS, through the Mo, W; .S, alloys to
pure MoS, allowed us to demonstrate the tunability of the electrical resistivity and the
control over the band gap offered by ALD. Through ab-initio modeling of the alloys
we elucidate the underlying origin of these trends. Comparing the experimental and
ab-initio results suggests that grain size is the dominant effect dominating the resistivity
for ALD-synthesized alloys, whereas the band gap is mainly determined by the alloy
fraction.

4.1 Introduction

Due to their graphene-like layered structure, the family of two-dimensional transi-
tion metal dichalcogenides (2D TMDs) exhibit fascinating and useful electro-optical
properties, making them promising materials for integration in novel transistors and
sensors. For the application of TMDs to these devices, the ability to control their
material properties is highly desirable. Various pathways exist to this kind of control
in TMDs. Doping, defects, morphological differences and alloying can all serve to this
goal. In this work we focus on alloying of MoSy and WS,. Since these materials are
structurally closely related, the Mo, W; .S, alloys may achieve properties intermediate
between the constituent materials without significantly degrading the quality of the
crystal. In section 4.2.1, we introduce a direct atomic layer deposition (ALD) method
of synthesizing the Mo, W;_,Ss alloys. In section 4.2.2 we investigate the growth and
composition of the films deposited with our ALD recipe. In section 4.3.2 we study the
control over the electronic properties of the deposited films that can be achieved by
controlling the alloy ratio, while in section 4.3.3 we study the effects of the atomic-scale
mixing of the alloy on its electronic properties.

4.2 Methods

This section contains a description of our methods of synthesizing the Mo, W; .S,
alloys and the experimental characterization thereof, as well as a discussion of the
computational details of our theoretical investigation of these materials.

4.2.1 Atomic Layer Deposition of Mo, W;_,S, alloys

For the synthesis of the Mo, W; .Sy alloys we use the plasma-enhanced atomic layer
deposition (PE-ALD) technique. The ALD technique is capable of producing highly
uniform films with sub-nanometer thickness control by employing self-limiting surface
reactions between a substrate and vapor-phase precursors. We performed the depositions
in an Oxford Instruments FlexAL2D reactor equipped with an inductively coupled
plasma (ICP) source which allows for substrate-independent control over the plasma.
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For the deposition of the Mo, W; .S, alloys, a supercycle approach was used where each
supercycle consists of five ALD cycles of either MoS; or WS,, as illustrated in figure
4.1. Each of those five ALD cycles consists of two half-cycles with argon purge steps
in between. In each first half-cycle, the metal-organic precursor ((‘BuN)y(MeyN)sMo
(98%, Strem Chemicals) for molybdenum or (‘BuN)y(Me;N)oW (99%, Sigma Aldrich)
for tungsten) is bubbled into the reactor chamber. These two precursors have the same
structure apart from their central metal atom (molybdenum or tungsten), and their
structure is illustrated in figure 4.2. After the precusor has adsorbed onto the surface
in a self-limiting manner, the reactor chamber is purged with an argon flow. In the
second half-cycle, the inductively-coupled plasma source is ignited with a gas mixture
of hydrogen disulfide and argon. The plasma species serve to remove remaining organic
precursor ligands and deposit sulfur onto the surface, thus preparing the surface for the
next ALD cycle. Each supercycle consists of five such ALD cycles, allowing control over
the composition of the Mo, W; .S, alloy by varying the relative amount of molybdenum
and tungsten cycles in each supercycle. Depositions were performed on silicon (100)
wafers with 450 nm thermally grown silicon oxide. The experimental parameters of the
deposition process are summarized in table 4.1.

Molybdenum Tungsten H,S + Ar Ar Purge
precursor dose precursor dose plasma exposure

Figure 4.1: The supercycle approach used to deposit the Mo, W; .S, alloys. With a
supercycle consisting of five molybdenum and/or tungsten cycles, the alloy fraction can
be varied between zero and one in steps of 0.2. After every half-cycle, a purge step (not
illustrated) ensures there is no direct contact between the precursor and co-reactant.
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Figure 4.2: Structure of the molybdenum and tungsten precursors
("BuN)y(MeyN)o(Mo/W) employed for atomic layer deposition of the Mo, W; .S,
alloys in this work.

Table 4.1: Summary of the deposition parameters of the Mo, W; .Sy alloy supercycle
ALD process

Process parameter Value | Process parameter Value
Heater temperature 450 °C Purge duration 10 s
Substrate temperature 350 °C Purge argon flow 200 scem
Reactor wall temperature 120 °C Plasma duration 30 s
Precursor dose duration 10 s Plasma power 500 W
Bubbler argon flow 50 scem | Plasma pressure 15 mTorr
Chamber pressure during 30 mTorr | Plasma mixture 40 scem Ar
precursor dose 10 scem HoS

4.2.2 Characterization of synthesized alloys

The growth of the alloys was monitored during deposition by in-situ spectroscopic
ellipsometry (SE) (J.A. Woollam M2000F, 1.25 ¢V - 5 e¢V). The film thickness was
extracted by parametrizing the dielectric function with a series of B-splines, in which
the Kramers-Kronig relations linking the real and imaginary parts of the dielectric
function, were conserved. Resistivity measurements on the deposited films were per-
formed using the four-point probe method (Signatone S-301-6). Raman spectroscopy
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and photoluminescence (PL) spectroscopy were performed using a Renishaw Raman
microscope equipped with a 514.5 nm laser. X-ray photoelectron spectroscopy mea-
surements were performed using a Thermo Scientific K-Alpha KA 1066 X-ray photon
spectroscope employing 1486.6 eV aluminum K-alpha radiation. The measurement
depth is determined by the escape depth of the electrons which is limited by inelastic
scattering, and is in the order of 10 nanometers for the materials in this study.

4.2.3 Density functional theory calculations

For the ab-initio study of the electronic structure of the Mo, W; .S, alloys, density
functional theory was employed in the projector-augmented wave framework [56, 80] as
implemented in the VASP software package [81, 82, 83, 84]. The exchange-correlation
functionals from Perdew, Burke and Ernzerhof (PBE) [42] were used, and inter-layer
dispersion forces were accounted for by the zero-damping DFT-D3 method of Grimme
[48]. In order to realistically model different alloy ratios, supercells were used of
5x5x1 primitive cells. Different alloy fractions were simulated by changing the relative
amount of molybdenum and tungsten atoms constituting the total of 50 metal atoms
in the supercell. Per alloy fraction, five different random configurations were generated
(as exemplified in figure 4.3). These structures were relaxed until the total energy
differential was smaller than 10~* eV (for band structure calculations) or until all forces
were smaller than 10~ eV /A (for phonon calculations). Structural relaxations were
performed with a converged cutoff energy of 400 eV and by sampling the Brillouin
zone with a I'-centered Monkhorst-Pack grid [54] of 3x3x1 points. For electronic band
structure calculations, 20 points along each high-symmetry line were sampled. The
usage of a supercell impedes the direct interpretation of the obtained band structures as
in a primitive cell calculation. This was mitigated by a so-called "unfolding” scheme [79]
that recovers an effective band structure from the supercell calculation. The parabolic
fitting method was used to obtain effective carrier masses from the obtained band
structures.
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Figure 4.3: Three examples of supercells representing the same alloy ratio of 6:4 with
different random configurations. In our calculations of alloy ratio-dependent effective
masses, five random configurations were calculated for every alloy fraction such that
the calculated effective carrier masses could be averaged over the configurations.
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4.3 Results and discussion

In this section, we first study the deposition process and the crystallinity of the resulting
show results of in-situ thickness monitoring by spectroscopic ellipsometry, composi-
tion measurements by x-ray photoemission spectroscopy and on the ALD-deposited
Mo, W; .S, alloys in order to get insight into the deposition process. Next, we study
the effects of the alloy composition on their resistivity, effective mass, photoluminescence
and Raman scattering. This analysis is split into two complementary parts: effects of
the alloy ratio are treated in section 4.3.2 and effects of the alloy mixing are treated in
section 4.3.3.

4.3.1 Film growth and composition

A series of samples was deposited using ALD supercycles with Mo:W cycle ratios of 5:0
(pure MoSs), 4:1, 3:2, 2:3, 1:4 and 0:5 (pure WSy). For each sample, a total of 50 ALD
cycles (= 10 supercycles) were performed.

Thickness The apparent thickness of the films after deposition was determined by
in-situ spectroscopic ellipsometry. From this data, the growth per supercycle (GPsC) of
the alloys was calculated, as shown in figure 4.4. The GPsC is seen to decrease linearly
as the relative number of tungsten cycles in the supercycle increases, with the GPsC of
the pure MoS, deposition being 60% higher than that of pure WS,. The growth per
cycle (GPC) of the pure MoS, and WS, depostions are 1.28 A and 0.83 A respectively.
These values are comparable to the values of 1.4 A and 0.65 A which were observed in
the MoS, [85] and WS, (unpublished) processes on which our process is based.

Composition The alloy ratio of the ALD-deposited Mo, W; .S, films was studied
by x-ray photoelectron spectroscopy (XPS). XPS is a method of studying the atomic
composition of a sample by irradiating it with x-ray radiation and recording the energy
spectrum of the valence and core electrons that are expelled from the sample. XPS does
not yield absolute atomic concentrations (in absence of a reference sample), but is able
to give accurate abundance ratios of different types of atoms within the sample. The
molybdenum to tungsten abundance ratio in the ALD-deposited Mo, W1-xS, alloys
was extracted from XPS spectra, and are plotted as a function of the Mo:W cycle
ratio in figure 4.5. The data coincides with a curve of the form y = WiR), where R
is the Mo:W cycle ratio and c¢ is the ratio in growth rate (atoms per cycle) between
molybdenum and tungsten. The best fit to the data was obtained with ¢ = 1.5. This
is the same factor that was found in the SE thickness monitoring, indicating that the
thickness difference between Mo-rich films and W-rich films seen from ellipsometry
measurements (figure 4.4) can be fully explained by a difference in the amount of metal
atoms deposited during the Mo and W half-cycles. This excludes any differences of
morphology or density among the series of alloys deposited with different Mo:W cycle
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Figure 4.4: Growth per supercycle (GPsC) of ALD-deposited Mo, W; .S, alloys as a
function of the Mo:W cycle ratio in the five-step supercycle. Data was obtained from
in-situ spectroscopic ellipsometry measurements.

ratios. The reason for the difference in amount of metal atoms deposited in the Mo
and W cycles may be attributable to the difference in size of the molybdenum and
tungsten precursors. The tungsten precursor may block more reactive sites on the
surface than the molybdenum precursor due to its larger size, leading to a smaller
number of deposited atoms when saturation is reached.

Lattice vibrations The vibrational modes of the deposited films were studied by
Raman spectroscopy, which is a quick, non-intrusive and substrate-independent charac-
terization method. In this method, the samples are irradiated with laser light, some
of which is absorbed by lattice vibrations (phonons) in the sample, producing peaks
in the back-scattered light spectrum which are shifted away from the laser frequency.
These peaks carry information about the normal vibrations of the sample, and thus
about the crystal structure. The Raman spectra of the ALD-deposited samples with
Mo:W cycle ratios of 5:0, 4:1, 3:2, 2:3, 1:4 and 0:5 are shown in figure 4.6. In the
spectrum of the pure MoS; sample, the Ey; and Ay, peaks can be seen at frequencies
384 cm™! and 410 cm™! respectively. In the spectrum of the pure WS,, the same
peaks are seen at 356 cm™! and 420 cm™!. Here it should be pointed out that the Es,
peak of WS, coincides with the second harmonic of the defect-enabled LA(M) mode,
which is difficult to deconvolute from the E,, peak. The differences in Ey, and A,
frequency between MoS, and WS, can be understood by considering the motion of
these vibrations. In the Es, vibration, the metal and sulfur atoms both oscillate in the
in-plane direction. The heavier tungsten atoms have more inertia than the molybdenum
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Figure 4.5: Relative abundance of molybdenum and tungsten atoms in the ALD-
deposited alloys. The diagonal line shows the expected behavior when growth rates
(atoms per cycle) of the molybdenum and tungsten would be equal. The curve through
the data is of the form f = ﬁ where R is the Mo:W cycle ratio and c is the ratio
in growth rate (atoms per cycle) between molybdenum and tungsten. The best fit to
the data was obtained with ¢ = 1.5.

atoms, resulting in an Fy, frequency which is 28 cm™! lower in WS, than in MoS,. On
the other hand, the A,, vibration consists of out-of-plane movement of the sulfur atoms
while the metal atoms remain stationary. While in this case the oscillating mass is equal
for both MoS; and WS,, there is a difference in metal-sulfur bond strength between
these materials, causing a frequency difference of the A;, vibration of 10 cm™! between
them. The spectra of the intermediate Mo, W; ,Ss alloys display a superposition of
both the MoS,-related Es, and A;, peaks as well as the WSy-related Eo,+2LA(M) and
Ay, peaks. The relative intensity of the MoSs-related and WS,-related peaks in these
spectra is seen to correspond to the Mo:W ALD cycle ratio used in the deposition of
the samples. The overall intensity of the spectra is highest for the pure MoS; and WS,
samples. For WS,, this is partially due to the choice of laser frequency, as the 514 nm
light is resonant with the B-exciton of this material. The reduced Raman intensity from
the intermediate alloys may indicate a reduced crystallinity of these films compared to
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the pure MoS, and WS, films.
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Figure 4.6: Normalized Raman spectra of the Mo, W; .S, alloys grown by ALD with
Mo:W cycle ratios of 5:0, 4:1, 3:2, 2:3, 1:4 and 0:5. The peaks corresponding to the
Ey, and A, vibrations of MoS; and WS, can be identified in the pure MoSs and WS,

spectra as well as in the spectra of the alloys.

Morphology Transmission electron microscopy images were made of the pure MoS,
and WS, samples as well as the alloy with Mo:W cycle ratio of 2:3 (atomic ratio 50/50)
in order to study their morphology. Figure 4.7 shows images of these samples at made
at magnifications of 50.000x and 250.000x. On all three samples, fringes can be seen
whose frequency corresponds to the interlayer spacing of crystallites which are oriented
in the out-of-plane direction. The emergence of these fin-like structures is known to
be a common occurence in the PE-ALD synthesis of MoS; and WS, and is due to the
fact that the precursor adsorbs preferentially on the edges of the crystal grains and
not on the basal planes. No significant difference in the concentration of out-of-plane
structures was observed between the pure MoSs /WS, samples and the alloy. In order
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to investigate the crystallinity of the deposited TMD alloy, a Fourier transform of
the TEM images was made such that the crystal lattice spacings could be measured
conveniently. Figure 4.8 shows a typical Fourier transform of a TEM image from the
Mo, W;_,Sssample with = 0.5. Three features can be identified: two concentric rings
and a series of dots spaced around the center. The two concentric rings represent two
spatial frequencies which can be deduced to originate from the in-plane spacing of the
hexagonal crystal, see figure 4.8. The outer ring corresponds to the second harmonic of
the in-plane nearest-neighbour spacing, allowing us to measure the value of this lattice
constant as a = 0.30 & 0.01 nm. The inner ring corresponds to the second harmonic
of the second-nearest neighbour spacing v/3a. The central bright dot does not carry
any crystal information, instead it represents the infinite-wavelength component of the
original TEM image, i.e. its intensity offset. The bright dots around the center are all
at a radius of 0.62 nm which corresponds to the inter-layer spacing of the TMD crystal.
The continuity of the rings indicates that there is no dominant crystal orientation and
that the material is instead polycrystalline, consisting of randomly oriented crystallites
or grains, separated by grain boundaries.
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Figure 4.7: Transmission electron microscopy images of the ALD-deposited MoSs, WS,
and Mo, W, ,Scalloy with Mo W cycle ratio of 2:3. The visible fringes are out-of-plane

oriented crystals whose interlayer spacing of 0.62 nm can be identified from the Fourier
transform in figure 4.8.

56



CHAPTER 4. TWO-DIMENSIONAL ALLOYS: CASE STUDY OF Mo, W;_,S

Figure 4.8: Fourier transform of a TEM image of the MogsWj 55, alloy. The two
concentric circles correspond to the second harmonics of in-plane lattice spacings, as
indicated. From the radii of these circles, the crystal structure of the deposited films
can be verified. The bright dots around the center correspond to the inter-layer spacing
and originate from out-of-plane oriented crystallites.
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4.3.2 Alloy ratio effects

In the last section we have studied the growth and crystallinity of the ALD-deposited
Mo, W;_ .Sy films and have demonstrated the composition control achieved by this
synthesis method. We now turn our attention to the effects on the electronic properties
of the 2D alloys that are enabled by this control.

Bandgap and photoluminescence Bulk MoS; and WSy have indirect electronic
bandgaps, which transition to direct bandgaps at monolayer thickness. Direct bandgaps
have the nice property that they can be measured directly by means of photoluminescence
measurements. In these measurements, excitons are created by excitation with a laser.
In their subsequent recombination, these excitons emit light whose frequency is a
measure of the bandgap magnitude. In order to measure photoluminescence from the
Mo, W, .S, films, a new series of samples was deposited with the same Mo:W cycle
ratios of 5:0, 4:1, 3:2, 2:3, 1:4 and 0:5 but with a reduced number of ALD cycles in
order to achieve monolayer thickness. A number of 15 cycles was found to be optimal
as samples deposited with 10 or 20 cycles showed no significant photoluminescence.
Figure 4.9 shows the photoluminescence spectra recorded from the Mo, W; .S, films
deposited using 15 cycles. The pure MoS; and WS, films show dominant peaks at
1.88 eV and 2.02 eV respectively, which correspond to the direct bandgaps of these
materials [86]. All of the intermediate alloys, including the most tungsten-rich, produce
a photoluminescence spectrum dominated by a MoSs-like peak centered at 1.86-1.88
eV. To gain more insight into this effect, the direct bandgaps of the monolayer alloys
were calculated with DFT as a function of the atomic Mo:W ratio. Since the planewave
DFT method relies on periodic boundary conditions, the monolayers were separated by
1.5 nanometers of vacuum in order to mitigate interactions between the periodic images.
The calculated bandgaps are shown in figure 4.10. As also noted in the last chapter,
the bandgaps calculated with the PBE exchange-correlation functional consistently
underestimate the experimental values. On the other hand, the difference between the
MoS; and WS, bandgaps is predicted to be 0.137 eV, which is in line with the difference
of 1.4 eV measured by photoluminescence. However, a quantitative interpretation of
these data should take into account the significant exciton binding energy in these
materials which shifts the optical bandgap measured by photoluminescence away from
the true electronic bandgap. In monolayers of MoS, and WS,, these binding energies
are 1.02 eV and 1.05 eV respectively, yielding an electronic bandgap difference between
MoS, and WS, of 1.7 eV.

The trend in bandgap magnitude as a function of the alloy ratio is seen to be
parabolic from the DFT data. This is in contrast with the photoluminescence data,
where a constant MoSs-like bandgap is observed for all intermediate alloys. This may
be explained by preferential migration of excitons to local clusters of MoS, within the
alloy, which would be energetically favorable due to the lower bandgap in these regions.
The subsequent recombination of the excitons at these positions would result in the
MoS,-like photoluminescence spectrum that is observed.
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Figure 4.9: Photoluminescence spectra of Mo, W .S, films grown by 15 cycles of ALD.
The A-excitons of MoS, and WS, can be observed in the 5:0 and 0:5 spectra, with
energies of 1.88 eV and 2.02 eV respectively. All intermediate alloys are dominated by
an MoS,-like photoluminescence peak which we attribute to the energetically favorable
exciton migration to MoS, clusters within the alloys.
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Figure 4.10: Electronic bandgap magnitudes for monolayers of MoSs, WSy and inter-
mediate alloys calculated with DFT at the PBE level compared to values obtained
from photoluminescence measurements. DFT error bars of one standard deviation are
0.005 eV in magnitude, which coincides with the size of the markers. The atomic Mo:W
ratios of the PL samples were calculated from their Mo:W ALD cycle ratio using the
calibration in figure 4.5.
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Electronic transport The electrical resistivity of the ALD-deposited MoSs, WS,
and Mo, W;_,S, alloys was measured using the four-point-probe technique: results are
shown in figure 4.11a. The measured resistivities are on the order of 10* Qcm. This is
high compared to WS, films grown by others in our group, which may be attributed to
the strong dependence of the resistivity of these materials on the thickness of the films
in the few-nanometer regime. The intermediate alloys were found to be less resistive
than the pure MoS; and WS, by a factor of 2. In order to gain an understanding of
this effect, we employed density functional theory to perform effective mass calculations
on these alloys. Resistivity is proportional to the effective mass through its dependence
on the carrier mobility:

1
- = nep, (4.1)
p

with the mobility p a function of the effective carrier mass m* and the mean
scattering time of the carriers 7:
77_
p=e—. (4.2)

*

The calculated effective carrier masses are shown in figure 4.11b. The electron
effective masses depend quadratically on the atomic Mo:W ratio of the alloy, reaching
a maximum value 20% higher than pure MoS,; and WS, at a 50/50 alloy ratio. On the
other hand, the effective hole mass decreases linearly from pure MoS, through the alloys
to WS,. Synthesized MoS, and WS, are known to usually be n-type semiconductors, so
the electron effective mass is the most relevant quantity. Based on the higher effective
electron mass of the alloys, their resistivity would be expected to be higher than the
pure TMDs. However, this is contradicted by the four-point-probe measurements.
Additionally, the 20% difference in effective mass cannot account for the factor 2 change
which is observed in the resistivity. Evidently, either the carrier concentration (equation
(4.1)) or the scattering time (equation (4.2)) are more important than the effective
mass in determining the resistivity of the Mo, W; .S, alloys. A likely explanation of
the observed low resistivity is a decrease in scattering time due to reduced crystallinity
of the alloys compared to the pure MoSy and WS,. This effect was also suggested by
the lower Raman intensity from the alloy samples as shown in figure 4.6.

4.3.3 Alloy mixing effects

Due to its atomic-scale growth control, the synthesis technique of atomic layer deposition
offers unparalleled control over the degree of mixing of the deposited 2D alloys. To
investigate the effect of atomic-scale mixing, three samples were made with Mo:W cycle
alternations of 1:1, 3:3 and 5:5 as illustrated in figure 4.12. Another three samples were
deposited with the same alternation but with the order reversed, starting with tungsten
cycles instead of molybdenum cycles. All six of these samples were made using the
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Figure 4.11: Four-point probe resistivity and density functional theory calculated
effective carrier masses.

same total number of ALD cycles such that all samples have the same alloy fraction
and only differ in the degree of mixing of molybdenum and tungsten within the alloy.

Lattice vibrations Raman spectroscopy was performed on the six samples with
different molybdenum-tungsten mixing and the spectra are shown in figure 4.13. Quali-
tatively, the spectra are similar to those from the alloys with intermediate alloy ratio in
figure 4.6, which is as expected based on their alloy ratio. Between the Raman spectra
of differently-mixed alloys, there is a distinct change in the separation of the two A,
peaks. While peaks are visibly separated for the sample with 5:5 cycle alternation, they
are closer together in the 3:3 sample, merging into one for the 1:1 sample. The fact that
the total width of the combined A;, peaks decreases as the same time shows that this
merging is not merely a broadening effect and a frequency shift must be involved. In
order to quantify these frequency shifts, the Raman spectra were deconvoluted to obtain
the peak positions of both the Ey; and A;, peaks. As an example, the deconvolution
of the Raman spectra of the sample with 3:3 cycle mixing, W-first is shown in figure
4.14. Deconvolution is more straightforward for the A;, peaks than for the Eq, peaks
since the Ey, peak of WS, overlaps with contributions from other phonons. These
additional peaks which were not fully modeled in the deconvolution procedure since our
focus is on the A;, phonons. The deconvoluted peak positions in figure 4.15 confirm
the convergence of the two A;, peaks as the alloys are better mixed, showing shifts
in the range of 1 to 2 wavenumbers. Evidently, the molybdenum-tungsten mixing in
the ALD-deposited Mo, W; .S, alloys has some impact on their structure, causing
the frequencies of their characteristic out-of-plane A;, vibration to shift. In the next
section, we attempt to gain insight into this mechanism by theoretical modeling of the
A, vibration in these alloys.
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Figure 4.12: Method of controlling the mixing of the ALD-deposited Mo, W; .S, by
changing the alternation of the Mo and W cycles. The total number of cycles was
chosen such that the alloy ratio could be kept constant in order to isolate the effects of
atomic-scale ordering.

63



CHAPTER 4. TWO-DIMENSIONAL ALLOYS: CASE STUDY OF Mo, W;_,S

—— Mo first | §: =
. l Sl 1S
V.VﬂrSt : <'t_': :<'E_|
I I
= I I
e 9 l ‘
l; m
£
9
v)
>
€]
3
(@]
=

|
[
I
[
[
[

| | :
330 350 370 390 410 430
Raman shift (cm™1)

1.1+ I I

\

Figure 4.13: Raman spectra of ALD-deposited alloys with constant alloy fraction
Mog.sWo.4S2 and different degrees of mixing, effectuated by alternating the molybdenum
and tungsten ALD cycles as illustrated in figure 4.12. The characteristic A, and Ej,
modes of MoS, and WS, are labeled. The colors indicate whether Mo or W was dosed
first in the deposition process.
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Figure 4.14: Deconvolution of the Raman spectrum of the Mo, W;_,S, sample deposited
with Mo:W cycle alternation of 3:3. Deconvolution of the E,, peaks (left) is made
difficult by the overlapping Es, and defect-enabled LA(M) peaks of WS,, which we
have not treated separately. The positions of the A;, peaks (right) can be resolved
much more accurately.
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Figure 4.15: Frequencies of the characteristic Raman peaks of the Mog W 45, alloys as
a function of the cycle mixing ratio. Data is shown for the three samples of which the
supercycle started with molybdenum ALD cycles; results were similar for the samples
whose supercycles started with tungsten cycles. A clear divergence between the two
A, peaks is seen as the mixing of molybdenum and tungsten becomes coarser.
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Theoretical modeling of the A, vibration in Mo, W;_,S, alloys

As a first approximation we can model effect of atomic mixing on the A;, vibrational
frequency by treating the primitive cells of MoS; and WS, as harmonic oscillators.
When independent, each oscillator will have an oscillation frequency porportional to the
square root of the ratio of its elastic constant and its mass. Since in the A, vibration
the metal atom is stationary while sulfur atoms oscillate in the out-of-plane direction,
the masses of the two oscillators are equal. The Raman spectra show that the frequency
of the Ay, vibration is higher in WS, than in MoS,, indicating that the WS, oscillator
has a larger elastic constant. When these two oscillators are coupled together, as they
would be in a well-mixed alloy, their common oscillation frequencies are given by

(M+w2)(m+w2) _ ’i_w (4.3)
ms ms mg

where k is the coupling strength between the oscillators, ks, and kws, are the
elastic constants and mg is the atomic sulfur mass. Based on this equation, the expected
behaviour is that both oscillation frequencies shift towards higher frequencies, which is
contradictory to the bidirectional shifts of the A;, frequencies we observe in the Raman
spectra. Evidently, such a simplified picture of the situation is not sufficient to explain
the observed phenomenon.

In order to gain more insight into the mechanism causing the mixing-dependent
shift of the A, vibrational frequency, we employ density functional theory calculations
to calculate the A;, frequency in Mo, W; ,S, alloys. As a first approximation, we
study clusters of WSy embedded in a MoS, supercell in order to investigate the effect of
domain size on the A;, frequency. These clusters are taken to be symmetric around a
central sulfur atom such that vibrational mode mixing is mitigated and the out-of-plane
perturbation of the sulfur atoms results in a pure vibration in the A;, mode, with
no other modes activated. In total, 7 different shapes and sizes of WS, clusters were
investigated. In their definitions we refer to the nearest, second-nearest and third-nearest
unit cells of the central sulfur atom as defined in figure 4.16. The 7 clusters are labeled
as follows:

e 100: only the nearest neighbouring unit cells of the central sulfur atom are
WS, cells, the rest of the 5x5 supercell consists of MoS, cells

e 010: only the second-nearest neighbouring unit cells of the central sulfur
atom are WSy cells, the rest of the 5x5 supercell consists of MoS, cells

e 001: only the third-nearest neighbouring unit cells of the central sulfur atom
are WS, cells, the rest of the 5x5 supercell consists of MoS, cells

e 101, 110, 011, 111: all possible combinations of the configurations above. For
example, 101: the nearest neighbouring and third-nearest neighbouring unit cells
of the central sulfur atom are WS, cells, the rest of the 5x5 supercell (including
the second-nearest neighbours of the central sulfur atom) are MoS, cells.
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Figure 4.16: Definition of nearest (1), second-nearest (2) and third-nearest (3) neigh-
bouring metal atoms of the central sulfur atom (S). The shown structure corresponds
to the 111 cluster where the nearest, second-nearest and third-nearest neighbouring

cells of the central sulfur atom are WS, cells, and the rest of the 5x5 supercell consists
of MoS, cells.

Structural relaxations were performed on the 7 cluster-containing supercells, after which
all sulfur atoms were displaced in the out-of-plane direction by 0.01 angstrom. From
the calculation of the resulting restoring force, the local frequency of the A;, vibration
at the center of each cluster was derived. The results in figure 4.17 indicate that the
nearest-neighbouring metal atoms have the biggest influence on the local A;, frequency.
The frequency of the A,, frequency in the 1xx clusters is on average 15 wavenumbers
higher than in the Oxx clusters. It is notable, however, that even the second-nearest and
third-nearest neighbours have a significant impact on the local A,, frequency, shifting
its value by about 5 wavenumbers. These findings suggest that the extended atomic
environment beyond the nearest neighbours are significant in determining the Raman
response of Mo, W;_,S, alloys.

The simulations described above are insightful, but they do not permit a direct
comparison to the Raman spectra of figure 4.13 as the alloy ratio is not kept constant in
these simulations. As such, it could be argued that the effects seen in these simulations
are merely an effect of the alloy ratio, and not of the degree of mixing. Hence, we
performed additional DFT calculations on 5x5 supercells of Moy W45 alloys with
constant alloy ratio and different degrees of mixing, effectuated by controlling the
configuration of Mo and W atoms in the supercell. The number M of heterometallic
Mo-W nearest neighbours will be used as measure of the mixing of the supercell. Lower
M corresponds to more clustering and worse mixing, while higher M corresponds to
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Figure 4.17: The local shift in the A;, vibrational frequency in symmetric clusters
of WS, embedded in MoS,. Labeling: the first digit indicates whether the nearest
neighbouring metal atoms are tungsten (1) or molybdenum (0). The second and third
digit determine the second-nearest and third-nearest neighbours in the same way. The
definition of nearest, second-nearest and third-nearest neighbours is given in figure 4.16.
Frequencies of the A;, vibrations in pure MoS; and WS, calculated with the same
parameters are included as reference.

more uniform distribution and better mixing of the Mo and W atoms in the alloy. We
may calculate the expectation value of M for an optimally mixed alloy, which depends
only on its alloy ratio in the limit of an infinitely large supercell. Considering a supercell
with atomic Mo:W ratio of 6:4, the six neighbouring metal atoms of any metal atom
will on average be 0.6 -6 = 3.6 Mo atoms and 0.4 -6 = 2.4 W atoms. In a 5x5 supercell,
this results in an expectation value of M = §-25-(0.6-3.6 + 0.4 - 2.4) = 39, where
division by 2 avoids double-counting the pairs. More generally, for a supercell consisting
of N cells, the expectation value of M can be expressed as

M 1 9 9
Fzg.ﬁ.(x + (1 —z)?), (4.4)

where x is the alloy fraction. Thus, an optimally-mixed Moy gWg.4S2 alloy will have
% = 1.56. The range of % that can be simulated depends on the size of the supercell.
To illustrate this, figure 4.18 shows the minimum (0.8) and maximum (2.0) values that
can be achieved with a 5x5 supercell. The practically useful range is smaller still, since
these extreme values can only be achieved by highly ordered, low-entropy configurations
as shown in figure 4.18. Since the value for an optimally mixed alloy is 1.56, the
maximum value is not a practical restriction. However, the minimum value inhibits
investigation of alloys with low degrees of mixing. In other words, effects of clustering

on scales larger than the supercell cannot be examined. Extending the least-mixed

68



CHAPTER 4. TWO-DIMENSIONAL ALLOYS: CASE STUDY OF Mo, W;_,S

configuration of figure 4.18 to larger supercells of size N = n x n, the lowest achievable
value of % can be expressed as

M 4n 1 1

For our present calculations, however, we stick to a supercell size of 5 x 5. We
study three structures with mixing degrees % of 1.20, 1.52 and 1.76, as shown in figure
4.19. Structural relaxation on these supercells was performed and the sulfur atoms
were subsequently displaced in the out-of-plane direction by 0.01 angstrom. Unlike
in our calculations on symmetric clusters before, in these calculations we record the
oscillation frequencies of all sulfur atoms in the 5x5 supercell. In order to plot how the
A, frequencies depend on the atomic environment, we introduce a metric such that
the environment can be classified by a single number. This number is obtained in the
following way: for each sulfur atom, a circular region of radius R is defined concentrically
around the atom. For each tungsten atom within this circle, add 1/d to the number,
where d is the distance from the tungsten atom to the sulfur atom. For each molybdenum
atom, subtract 1/d. The resulting number will thus be more positive for a tungsten-rich
environment and more negative for a molybdenum-rich environment, and metal atoms
further away contribute less than those closer to the sulfur atom. In figure 4.20 we plot
the calculated A;, frequencies of all sulfur atoms in the supercells shown in figure 4.19
as a function of their local atomic environment as defined above. Two main clusters
can be observed in the data: one of lower frequency in molybdenum-rich environments,
and one of higher frequency in tungsten-rich environments. These resemble the two A,
peaks which are seen in the Raman spectra of the ALD-synthesized alloys in figure 4.13.
This is illustrated in figure 4.21, where we have reconstructed a Raman spectrum from
the DFT data for the configurations with mixing degrees % of 1.2 and 1.52. This was
done by summing over the frequency data points of figure 4.20 and applying a Gaussian
broadening of ¢ = 3 cm~!. Additionally, the frequency axis was shifted by 20 cm™! in
order to match the experimental data taken from figure 4.13, which is shown by the
dotted and dashed lines. We see that the shape of the Raman reponse of the sample
with low mixing (5:5 cycle alternation) is closely approximated by the DFT-generated
Raman spectrum with mixing degree % = 1.2, demonstrating that the used approach
works. On the other hand, the peak shifts observed in Raman spectrum of the the
well-mixed (1:1 cycle alternation) sample are not seen in the DFT-generated Raman
spectrum of mixing degree % = 1.52. Instead, in both DFT-generated Raman spectra,
the peak positions remain nearly constant. Simulations of higher degrees of mixing are
not expected to be relevant, as the currently-used value of % = 1.52 is already close to
the value of 1.56 of an optimally-mixed alloys. The observed discrepancy between the
experimentally measured Raman spectra and the DFT-reconstructed Raman spectra
suggests that the experimentally observed shifts in the A;, frequencies as a function
of alloy mixing may instead be the result of larger-scale collective effects than were
probed by our calculations using a 5x5 supercell.
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Figure 4.18: The lowest and highest degrees of mixing that can be simulated in a 5x5
supercell correspond to % values of 0.8 and 2.0 respectively. However, these degrees of
mixing can only be achieved with a single highly ordered configuration, making these
cases physically irrelevant due to their low entropy.

M/N =1.20 M/N =1.52 M/N =1.76

Figure 4.19: Three supercells with realistic degrees of mixing, intermediate to the
minimum and maximum attainable values in a 5x5 supercell. These structures were
used to study the mixing-dependent A,, frequency in Mo, W;_,S, alloys.
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Figure 4.20: DFT-calculated A;, vibrational frequencies as a function of the local atomic
environment in Mo, W;_,S, alloys with different degrees of mixing. The numerical
definitions of the local environment and the degree of mixing are given in the text.
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Figure 4.21: Reconstructed Raman spectra from the DFT datasets from figure 4.20 for
mixing degrees of % = 1.2 and 1.52. Gaussian broadening of 3 cm™! was used, and the
frequency axis is shifted by 20 cm™! in order to match the experimental data shown by
the dashed and dotted lines.
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4.4 Conclusions

We have elucidated the trends in bandgap, effective mass, resistivity and A;, phonon
frequency in ALD-synthesized Mo, W, ,Ss alloys by performing DFT calculations on
these materials. The synthesis of the alloys was done using a novel direct atomic layer
deposition process based on supercycles of MoS, and WS,. Accurate control over the
alloy fraction was achieved, as evidenced by x-ray photoelectron spectroscopy. Electrical
resistivities of the alloys were lower than of pure MoS; and WS, deposited using the
same process. From a comparison to calculations of the effective carrier masses, the
reason for the lower resistivity appears to be a reduced crystallinity of the alloys, of
which their reduced Raman intensity is an indication. The photoluminescence spectra
of monolayers of Mo, W; .S, alloys are MoSs-like, independent of their alloy ratio.
Since the calculated bandgaps of these materials instead show a parabolic dependence
on the alloy ratio, we explain the measured PL spectra by migration of excitons to
local clusters of MoS, within the alloy, driven by a smaller bandgap in these regions.
Additionally, the effect of the degree of mixing of the alloys was investigated. The
sub-monolayer growth control inherent to ALD was exploited to deposit films with
a constant alloy ratio but a different degree of mixing. A non-trivial consequence of
the mixing was observed in the vibrational spectra of the alloys as measured with
Raman spectroscopy. The separation between the out-of-plane A, vibrational peaks
of MoS; and WS, decreases as the alloy mixing becomes more homogeneous, with
both peaks shifting towards each other. Advanced DFT calculations were employed
to explain the observed A;, frequency shifts in these alloys. By simulating clusters
of WS, embedded in a supercell of MoSs,, the extended atomic environment beyond
the nearest neighbours was found to be significant in determining the local frequency
of the Ay, vibration. Additional simulations on supercells with constant alloy ratio
and different degrees of mixing were successfully used to reconstruct experimentally
measured Raman spectra. The experimentally observed shifts in A;, frequency were not
observed in these simulations, indicating that these shifts may be caused by collective
interactions on length scales larger than can be investigated by use of a 5x5 supercell.
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Conclusions

The goal of this work was to achieve insight into how the electronic properties of
transition metal dichalcogenides can be controlled. To this end, Density Functional
Theory was used to perform ab-initio electronic structure calculations of pristine TMDs
and subsequently extend these to a supercell approach to model realistic concentrations
of typical point defects in TMDs. Finally, we employed the supercell calculation
approach to the binary TMD alloys Mo, W; ,S,. The calculated bandgaps, effective
carrier masses and phonon frequencies were compared to measurements on thin films
of these alloys, synthesized using a newly developed atomic layer deposition process
based on supercycles of MoS; and WSs. In the introduction to this thesis we posed
three research questions, which we are now in a position to address:

1. Can density functional theory (DFT) be used to calculate structural and electronic
properties like lattice parameters, bandgap, carrier mobility and phonon frequencies
of transition metal dichalcogenides with enough accuracy to compare them to
experimental results?

In order to obtain the highest possible accuracy in our calculations, we have
systematically optimized our DFT calculation parameters, most importantly the
planewave cutoff energy and the Brillouin zone sampling density. With these
converged calculation parameters, the lattice constants of MoSy and WS, are
predicted very accurately, differing less than half a percent from their experimental
values. The electronic bandgaps of both bulk crystals and monolayers of MoS
and WS, were shown to be more challenging to calculate accurately with DFT:
their magnitudes are consistently underestimated by about 0.2-0.3 eV. This is a
known shortcoming of the PBE exchange-correlation functional we used, and more
advanced DFT approaches such as the use of hybrid functionals or Green’s function
based methods can be used to calculate these bandgaps more accurately, at a
higher computational cost. However, the inaccuracy in the bandgap magnitude
does not carry over to the effective carrier masses, which is calculated from the
curvature of the valence and conduction bands. In fact, the values of the effective
carrier masses are in good agreement with literature values, indicating that the
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inaccuracy of the bandgap as calculated using the PBE functional corresponds to
a rigid shift of the energy bands which does not significantly affect their curvature.
The vibrational structure of MoSs and WS, was probed with DFT by calculating
the restoring force acting on the sulfur atoms as a function of their displacement
in the A;, vibration of these materials. In the harmonic approximation, the
frequency of this oscillation could be calculated with an accuracy of 4%. For large
displacements, anharmonicity is observed in the force-displacement curve, which
is also in line with expectations.

In conclusion, it can be said that the crystal structure of TMDs can be calculated
up to experimental accuracy using DFT. While the PBE exchange-correlation
functional underestimates the bandgaps of these materials, the effective carrier
masses derived from the curvature of the valence and conduction bands are in
line with calculations using more sophisticated exchange-correlation functionals.
Additionally, phonon frequencies can be calculated with sufficient accuracy to
identify them with peaks observed in Raman spectra.

. What role do crystal defects play in determining the electronic properties of
transition metal dichalcogenides?

We employed a supercell method to DF'T in order to model realistic concentrations
of typical point defects found in synthesized TMDs. From relaxation heatmaps
of the defect sites, the structural impact of the defects on the crystal lattice
was shown to be highly localized around the defect sites. In order to obtain the
electronic properties of MoS, with point defects, unfolding of the energy bands
was performed, yielding an effective band structure from which the effective carrier
masses were extracted. The resulting effective masses differ from their values in
the pristine material by no more than a factor of two, indicating that changes in
the effective mass are not limiting the mobility in TMDs with point defects. It
should be noted, however, that these types of defects may still have a significant
impact on the carrier mobility by acting as dopants, that is, by changing the
carrier concentration in the material. Additionally, other factors such as the
presence of grain boundaries or electron-phonon scattering are expected to have a
larger impact than point defects on the electronic properties.

. How can the atomic ordering of binary TMD alloys be exploited to achieve control
over their electronic properties?

We conducted a combined theoretical and experimental investigation into the
binary TMD alloys of Mo, W;_,S,. We identified two parameters that could
be manipulated to control the properties of the alloys: their alloy ratio and
their degree of atomic mixing. Changing the alloy ratio allowed control over the
resistivity, which were shown by DFT calculations to not be caused by changes in
the effective mass. Instead, this change in resistivity may be caused by a reduced
crystallinity, which was also suggested by the measured Raman spectra. This
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indicates that the effective mass is not limiting the resistivity in these materials.
On the other hand, the atomic-scale mixing of the alloys was investigated by
exploiting the atomic-scale growth control of the atomic layer deposition technique.
The mixing was shown to have a distinct effect on the Raman spectra of the alloys,
shifting and merging the two A;, vibrational peaks together when the degree
of mixing was increased. These shifts were investigated by calculating the A,
vibrational frequencies with DFT for clusters of WSy embedded in MoS,. The
results indicate that while the nearest-neighbouring unit cells are most important
in determining the local A;, frequency, the extended environment of second-
nearest and third-nearest neighbours also have non-negligible influence, shifting
the local A;, frequency by up to 5 wavenumbers. Additional calculations were
devised where the effect of differently-mixed supercells on the local A;, frequency
was investigated. While these calculations enabled a qualitative reconstruction of
the observed Raman spectra, the mixing-dependent shifts in the A, frequency
were not observed. As such, these shifts are suggested to be caused by collective
effects on length scales longer than was investigated using a 5x5 supercell.

Recommendations

In order to further elucidate the observed mixing-dependent shifts in the Raman
frequencies of the A, vibrations of the Mo, W;_,S, alloys, it would be insightful to
attempt DFT phonon calculations using larger supercells than 5x5. While the physically
relevant optimum mixing can already be probed with the 5x5 cell, the larger number of
oscillators that are present in larger supercells would allow for more in-depth statistics on
the calculated oscillation frequencies. Additionally, there may be large-scale correlations
that only emerge for larger supercells and that cause the experimentally observed
frequency shifts. Deeper investigations of the low-mixing regime would also be enabled
by the adoption of larger supercells, which may provide additional ways of controlling
the material properties of the TMDs, analogously to 2D heterostructures but in the
in-plane dimension. Experimentally, it would be interesting to combine different alloy
ratios with different degrees of mixing. Enormous freedom is provided by these two
parameters, which could even be changed during the deposition, for example by changing
the degree of mixing halfway through the deposition. Finally, it would be helpful to
have a way of estimating the value of the mixing parameter % for ALD-deposited alloy
samples in order to facilitate a more accurate comparison between the experimental
and theoretical data.
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