
 Eindhoven University of Technology

MASTER

Fabrication of complex nanowire structures for topological quantum computing

Schellingerhout, A.G. (Sander)

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/6d64683c-ee2c-446f-b0eb-89cbd2ffde41

Department of Applied Physics

Advanced Nanomaterials and Devices

Fabrication of complex nanowire
structures for topological quantum

computing

Master Thesis

Sander Schellingerhout

Supervisors:
Main Supervisor Prof.Dr. Erik Bakkers
Daily Supervisor MSc. Saša Gazibegović
Daily Supervisor MSc. Roy op het Veld
Daily Supervisor MSc. Ghada Badawy

December 7, 2018

Abstract

Quantum computing is a promising development for many fields as it can expo-
nentially speed up certain calculations. In topological quantum computing a very
stable and scalable system is predicted, which relies on one-dimensional semicon-
ductor structures. This thesis outlines an effort to fabricate such semiconductor
structures suitable for a single qubit device. This is done on a platform that allows
single nanowires to merge into networks, with the goal of 3x3 or larger networks.
This is first attempted using pure InSb nanowires. This was unsuccessful, after
which the more conventional method of growing InSb nanowires on top of InP
nanowires is used successfully to fabricate nanowire networks suitable for a single
qubit device.

Contents

1 Introduction 4

2 Theory 5
2.1 Quantum computing . 5
2.2 Topological quantum computing 7

2.2.1 The basics . 7
2.2.2 First signatures of the Majorana Zero Mode 10
2.2.3 Braiding and coherent transport 12
2.2.4 The single qubit and beyond 14

2.3 Nanowires and structures . 15
2.3.1 Nanowires . 15
2.3.2 Vapour-Liquid-Solid growth 16
2.3.3 Crystal structure . 17
2.3.4 Nanowire networks . 18

3 Experimental methods 20
3.1 Fabrication tools . 20

3.1.1 Plasma Enhanced Chemical Vapor Deposition (PECVD) . . 21
3.1.2 Resist spinning, baking and developing 22
3.1.3 Electron beam lithography (EBL) 24
3.1.4 Reactive Ion Etching (RIE) 26
3.1.5 Electron beam physical vapor deposition 27
3.1.6 Metalorganic vapor phase epitaxy (MOVPE) 28
3.1.7 Scanning electron microscopy (SEM) 31

3.2 Sample preparation . 32
3.2.1 Design . 32
3.2.2 Phase one: Markers . 35
3.2.3 Phase two: Trenches . 36
3.2.4 Phase three: Dots . 38

2

CONTENTS

4 Results 39
4.1 Growth recipes . 40

4.1.1 InP nanowires . 40
4.1.2 InSb nanowires . 41

4.2 Stemless InSb nanowires . 42
4.3 InSb nanowires on InP stems . 45

4.3.1 InP stem length and encapsulation 45
4.3.2 Three step InSb growth . 53
4.3.3 Optimizing InSb length . 55
4.3.4 Merging behaviour . 58

5 Conclusion 61
5.0.1 Outlook . 62

A Growth experiments 66

B Design software code 67

3

Chapter 1

Introduction

Since the discovery of the transistor in 1947 the device revolutionized the field of
electronics. Companies manage to cram more and more transistors on a silicon
chip, leading to an exponential growth of computing power on a chip as described
by Moore’s law [1]. However, transistors cannot continue shrinking in size indef-
initely, as the physical limits are being approached. Obviously transistor gates
cannot become thinner than a single atom, and even for thicker layers electron
tunnelling through the gate can destroy the transistor performance [2]. More
and more elaborate fabrication methods and tools are needed to approach this
fundamental limit, increasing the cost and time needed for the fabrication of
higher density chips.
Fortunately a new star is rising in the world of computing. The quantum com-
puter, of which pioneering work originates in 1979 by Paul Benioff and in 1982
by Richard Feynmann [3, 4], has been attracting huge amounts of attention. Cor-
porations including Google, IBM and Microsoft are in a race to achieve quantum
supremacy, which is the potential of a quantum computer to solve problems that
a regular computer cannot feasibly do [5]. Currently the main challenges in quan-
tum computing is simply the question of how to build one. This thesis outlines an
effort to construct a fundamental building block for a specific type of quantum
computer, the topological quantum computer.

4

Chapter 2

Theory

2.1 Quantum computing

A conventional computer uses transistors which can be turned on or off, repre-
senting either |0〉 or |1〉. A quantum computer employs the principles of quantum
physics to create a system where |0〉 and |1〉 are represented by two states of a
quantum mechanical system. These two-level quantum states, often referred to as
quantum bits or qubits, can be put in what is called a superposition state. This
superposition can represent not only |0〉 or |1〉, but also anything in between. This
superposition state can be combined with another quantum mechanical effect,
entanglement, in which two entangled particles are affected by each others state
and operations on it, even if the particles are spatially separated. When employed
on qubits the amount of entangled space grows exponentially with the amount of
qubits, in turn exponentially growing the computational power of the system.

Figure 2.1: Representation of a regular bit on the left and a qubit (Bloch sphere) on the

right.

5

CHAPTER 2. THEORY

The quantum computer as a principle is of interest to many fields. A popular ex-
ample is the field of cryptography, in which a quantum computer could efficiently
perform integer factorization using Shor’s algorithm, which is impossible on a
classical computer. Efficient integer factorization would effectively break many
encryption schemes currently in use, which is likely the reason many governments
are interested in quantum computing.

The most useful application discovered so far is the ability to efficiently simulate
quantum mechanical systems. A many particle system is described by an expo-
nentially growing Hilbert space, which requires exponential time on a classical
computer. A quantum computer however could simulate a many particle system
with an amount of qubits similar to the number of particles in the system [6]. This
is of great interest to for example studying the folding of proteins, which are highly
complex molecules essential for a large range of processes in the human body.
A similar problem is the discovery of new drugs, where currently simulations
are limited to small molecules. The ability to simulate large molecules using a
quantum computer can help find new drugs, as well as save years of development
time.

Most current approaches to building a two-level system suitable as a qubit involve
either the spin-up and spin-down state of electrons or the quantized energy levels
of an atom. This approach has a major downside: Quantum decoherence, in which
the quantum state in the two-level system is collapsed by outside interference.
A limited coherence time might not be an issue for a few qubit system, but for a
quantum computer consisting of large amounts of qubits it can introduce a large
amount of errors. Fortunately another approach exists: The topological qubit.

6

2.2. TOPOLOGICAL QUANTUM COMPUTING

2.2 Topological quantum computing

2.2.1 The basics

A topological quantum computer is fundamentally different from conventional
quantum computers in the sense that it employs one-dimensional quasi-particles
instead of trapped quantum particles. The proposed particles to be used in a topo-
logical quantum computer are called Majorana fermions, first decribed by Ettore
Majorana as a solution to the Dirac equation in 1937 [7]. Majorana fermions have
been predicted to appear as quasiparticles in certain solid-state systems [8]. The
property that makes these Majorana fermions so interesting is their non-Abelian
exchange statistics. For regular bosons and fermions the following statistics apply:
The position of two indistinguishable particles can be exchanged without chang-
ing the ground state of the system. Non-Abelian anyons however act differently.
When the position of two Majorana particles is exchanged the system moves from
one degenerate ground state to another degenerate ground state. This system can
be used to create a quantum bit, which is predicted to be very stable due to the
information not being encoded in a single particle but in two spatially separated
quasiparticles [8].

The requirements for a system to make Majorana quasiparticles appear are far
from trivial. In 2001 Alexei Kitaev proposed that these quasiparticles can appear
at the edges of a spinless p-wave superconductor [9]. Unfortunately p-wave super-
conductors do not exist in nature, but a recipe to achieve Majoranas by inducing
p-wave superconductivity was reported in 2010 [10]. Four key ingredients were
identified: A one-dimensional semiconductor nanowire, induced p-wave super-
conductivity by deposition of an s-wave superconductor on top of the nanowire,
strong spin-orbit coupling and an induced magnetic field.

A device that combines all these ingredients can be seen in Figure 2.2. A p-wave-
like gap is induced in a 1D nanowire by putting a regular s-wave superconductor
(Aluminium) in contact with the nanowire. The system is made effectively spin-
less by applying a magnentic field along the nanowire, which induces Zeeman
splitting in the nanowire. Now by tuning the semiconductors chemical potential
in between the split bands and thus forcing all electrons into the same spin state,
the requirements for the appearance of Majorana quasiparticles are met.

7

CHAPTER 2. THEORY

Normal contact Superconducting contact

III-V nanowire

CB

VB

Semiconductor region Induced superconductivity

Gates

Figure 2.2: (Top) Schematic of a device which can be used to detect Majorana zero modes.

The green rectangle indicates the tunnel barrier seperating the semiconducting (normal)

part of the wire from the part with induced superconductivity. (Bottom) Schematic

illustrating the energy states along the nanowire. The green line indicates the valence

band (VB) and the blue line indicates the conduction band (CB). The red dot represents

the Majorana quasiparticles.

In Figure 2.3 the electron energy dispersion in a nanowire is shown. Figure 2.3a
shows the dispersion relation with no spin-orbit coupling and Zeeman splitting.
Figure 2.3b includes the effect of spin-orbit coupling, which splits the spin-up and
spin-down dispersion. Figure 2.3c includes both spin-orbit coupling and Zeeman
splitting, where the Zeeman splitting opens up a gap between the two bands. The
chemical potential in the nanowire device needs to be tuned inside this gap, which
means the Zeeman splitting should ideally be as large as possible. This has to
be done without destroying the superconductivity with a strong magnetic field,
so it is important to use a material with an as large as possible Landé g-factor.
Strong spin-orbit coupling is also desired, since stronger spin-orbit coupling
means the electrons align more strongly to the magnetic field, and since otherwise
the magnetic field suppresses the gap at finite momentum [11]. Materials that
posses a large Landé g-factor and strong spin-orbit coupling are, for example,
InSb and InAs.

8

2.2. TOPOLOGICAL QUANTUM COMPUTING

Figure 2.3: Electron energy as function of momentum for a 1D wire for (a) no spin-orbit

coupling and Zeeman splitting (b) non-zero spin-orbit coupling and no Zeeman splitting

(c) non-zero spin-orbit and Zeeman splitting [8].

9

CHAPTER 2. THEORY

2.2.2 First signatures of the Majorana Zero Mode

One of the first signatures of the existence of Majorana quasiparticles was re-
ported in 2012 [12]. An InSb nanowire device as illustrated in Figure 2.2 was
investigated. One superconducting contact and one normal contact are deposited
on the nanowire, with a back gate for the superconducting region to tune the
chemical potential and a back gate to create a tunnel barrier. A magnetic field
is applied parallel to the nanowire. The Majorana quasiparticles are expected to
appear at the edges of the superconducting contact, as illustrated by the red dots.
These particles live in a zero-energy (midgap) bound state, often referred to as a
Majorana zero mode (MZM), and should allow a tunneling current to flow at zero
applied bias, as illustrated in Figure 2.4.

∆

∆

Bias

Figure 2.4: Illustration of the energy states. Green indicates the tunnel barrier separating

the normal semiconducting nanowire part on the left and the nanowire part with the

induced superconducting gap ∆. Red indicates the Majorana particles. Adapted from [12].

In Figure 2.5 the measured differential conductance of this device is shown. With
no applied magnetic field no zero bias peak is observed, as expected from the
requirement of Zeeman splitting for the Majorana quasiparticles to appear. With
non-zero applied magnetic field a clear differential conductance peak at zero bias
is observed, which is suspected to be caused by the Majorana zero mode. The
theoretically predicted differential conduction of the MZM is 2e2/h, which can be
seen in the line cut. The observation of quantized conductance at zero bias in this
device strongly supports the existance of Majorana zero modes, which paves the
way for future braiding experiments [13].

10

2.2. TOPOLOGICAL QUANTUM COMPUTING

Figure 2.5: Differential conductance color plot showing the conductance peak at zero bias.

The line cut is taken at zero bias showing that the conductance reaches the universal value

of 2e2/h [13].

11

CHAPTER 2. THEORY

2.2.3 Braiding and coherent transport

With the appearance of a MZM in a single InSb nanowire, the next logical step is
the experiment of exchanging the position of the Majorana fermions as explained
in section 2.2.1. This process is often referred to as braiding, and in Figure 2.6 an
example of braiding MZMs at a T-junction is shown. The T-junction consists of a
superconducting nanowire structure, with a locally tunable chemical potential.
The solid lines indicate the topological regime, and by moving the domain walls
using the tunable chemical potential the MZMs can be exchanged.

Figure 2.6: Example of the braiding of Majorana fermions in a T-junction superconducting

nanowire. The chemical potential is locally tunable, allowing the domain walls of the

topological regime, indicated with the solid lines, to be moved. [14]

As Majorana fermions are their own antiparticle, exchanging or braiding two
particles cannot be done on a single nanowire as they will annihilate when brought
close together. Many proposals exist for suitable structures which all employ single
crystalline nanowire networks as key component for the braiding experiment.
Proposed structures include a T-shaped nanowire structure, illustrated in Figure
2.6 [15], and a square nanowire structure as illustrated in Figure 2.7. One of the
requirements for braiding experiments is long-distance coherence in the device.
A proposed way to probe long-distance coherence is to look for Aharanov-Bohm
oscillations in a device shown in Figure 2.7 [16].

12

2.2. TOPOLOGICAL QUANTUM COMPUTING

Figure 2.7: Experimental test for long-distance coherent transport through a 1D topologi-

cal superconductor. If single electron transport is coherent Aharanov-Bohm oscillations

should be seen when changing the enclosed flux φ. Orange indicates the semiconductor

NW, blue indicates the superconductor. The red dots indicate the expected location of the

MZM. Note that the Aharonov-Bohm measurement itself does not require superconduc-

tivity [16].

Such a device was fabricated and measured as shown in Figure 2.8 in collaboration
between this group in Eindhoven and the TU Delft [17]. The device consists of four
connected InSb nanowires with two normal contacts. Since the Aharonov-Bohm
measurements do not require superconductivity, no superconductor is deposited.
The Figure shows the nanowire device as well as the magnetoconductance showing
periodic Aharonov-Bohm oscillations. This is proof that the grown nanostructures
are of high crystalline quality with phase coherent transport, which brings us one
step closer to performing actual braiding experiments.

Figure 2.8: (a) Magnetoconductance measurement of the device shown in the top left

corner which shows periodic Aharonov-Bohm oscillations. (b) FFT spectrum of the

magnetoconductance indicating the Aharonov-Bohm oscillation frequency. The dashed

line shows the expected frequency based on calculations of the area inside the device

which match with the measurements [17].

13

CHAPTER 2. THEORY

2.2.4 The single qubit and beyond

With strong evidence for Majorana zero modes and coherent transport in 1D
nanowire devices the obvious next step is the realisation of a single qubit. A
design for a single and a two qubit device was reported by [18]. The qubit consists
of a semiconductor 1D structure, with induced superconductivity at the blue
areas and no superconductivity at the green areas. The orange area indicates a
superconducting bridge, and the red region indicates quantum dots. The Majorana
zero modes are indicated by the black cross.

(a)

(b)

Figure 2.9: (a) Single qubit device. (b) Two qubit device. The green area indicates the

semiconductor. The blue area indicates the semiconductor with induced superconduc-

tivity, with the black crosses indicating the location of the Majoranas. The orange area

indicates a superconducting bridge and the red region indicates quantum dots used for

controlling the device [18].

14

2.3. NANOWIRES AND STRUCTURES

2.3 Nanowires and structures

2.3.1 Nanowires

III-V semiconductor NWs are crystalline pillar shaped objects. They are charac-
terised by a large aspect ratio, with a diameter up to a few hundred nanometer
and a length up to a few micrometer. They consist of materials from group III (e.g.
Indium, Gallium) and V (e.g. Arsenic, Antimony) of the periodic table. They have
been investigated for a large range of applications, including transistors, LEDs
and solar cells [19–21].

Due to the sometimes large lattice mismatch in III-V semiconductors it is often
impossible to fabricate defect free interfaces in bulk. However, nanowires have the
remarkable ability to relieve strain induced by lattice mismatch due to their small
diameter. When sufficiently small the diameter also helps confine the electron
wave function, leading to a one-dimensional system. As explained before, the
ingredients required for the appearance of Majorana zero modes are a 1D system
(the nanowire), a large Landé g-factor, strong spin-orbit coupling and a long
coherence length. The last three requirements are featured in the InSb material
system, which is why this material is used in this work. InSb is often grown on
top of an InP stem to mediate the growth [17].

Figure 2.10: Lattice constant plotted against band gap for common semiconductor materi-

als. [22]

15

CHAPTER 2. THEORY

2.3.2 Vapour-Liquid-Solid growth

Epitaxial nanowire growth is achieved by means of gold assisted (VLS) growth in
an MOVPE reactor. The reactor itself will be explained more in section 3.1, here
the general growth mechanism will be explained.

Figure 2.11: Schematic of VLS growth. I. A gold catalyst particle is deposited on the

substrate. II. The particle is supersaturated in the reactor by constant supply of the gas

phase material. III. Material nucleates underneath the particle leading to epitaxial growth

of a crystalline nanowire.

The vapour-liquid-solid (VLS) growth technique was first reported by Wagner
and Ellis in 1964 [23]. The VLS growth mechanism is often used for nanowire
growth, as it is much faster and much more reliable than direct adsorption of
a gas phase material on a substrate. As the name suggests, the III-V particles
undergo three distinct phases as illustrated in Figure 2.11. First the gas phase
precursors decompose and are absorbed into the liquid gold catalyst particle.
After supersaturation in the gold catalyst is reached and nucleation starts the III-V
particles are moved into their final solid phase. The layer by layer epitaxial growth
occurs at the bottom of the catalyst droplet, lifting the droplet up and allowing
the nanowires to continue to grow. In practise many parameters affect the way the
nanowires grow. A sufficient temperature window, V/III ratio and total flow is
needed, as well as a properly prepared substrate.

16

2.3. NANOWIRES AND STRUCTURES

2.3.3 Crystal structure

The two most common crystal structures for III-V semiconductors are zinc-blende
and wurtzite, which are illustrated in Figure 2.12.

(a) Zincblende. (b) Wurtzite.

Figure 2.12: Stacking sequence of the crystal lattice for wurtzite and zincblende.

Both types of crystal have close packed layers, with the only difference the stacking
sequence. Zinc-blende is characterized by ABCABC... stacking which results in the
cubic close packed structures while wurtzite is characterized by ABAB... stacking
which results in hexagonal close packed structure. The crystal structure most III-V
semiconductor nanowires prefer, including InSb and InP, is zincblende. However,
where InSb is usually grown defect free, InP is defect rich, with mixing zinc-blende
and wurtzite parts, as well as stacking faults and rotational twins. This can have
consequences for the InSb nanowires that are grown epitaxially on top of the InP
stem, as there are two possible zinc-blende orientations which are rotated 180
degrees with respect to each other. The preferred growth direction for zinc-blende
nanowires is the <111> direction, while wurtzite nanowires prefer to grow in the
<0001> direction [24].

17

CHAPTER 2. THEORY

2.3.4 Nanowire networks

As explained in section 2.2.4 and 2.3.1, complex 1D networks are needed with
the prime candidate InSb nanowires. Nanowires grow bottom-up, so an intricate
growth scheme with crossing nanowires is required to make a device such as the
single or two-qubit devices in Figure 2.9a and 2.9b.

First the right substrate has to be selected. The difficulty here comes from the
fact that the nanowires need to cross each other. The nanowires prefer growth
in the (111) direction, which rules out (111)B substrates as the nanowires will
grow with a 90◦ angle towards the substrate. The easiest solution seems to be
using a (100) substrate, on which the nanowires will grow at a 35.3◦ angle to the
substrate [25]. The problem is that the nanowires can grow in two possible (111)B
directions, making it a game of chance to fabricate complex structures. This is not
a big issue for small networks such as nanocrosses (1x1 network), but the bigger
the network, the lower the chance to successfully fabricate it. The solution arises
in using a (100) substrate in which trenches are etched which have (111)B facets,
as sketched in Figure 2.13. Now the nanowires can grow under a 90◦ angle to the
(111)B facets, ensuring the nanowires will cross each other in the intended way.

54.7o

Pitch

∆y

dacb

(111)B

(100)

Figure 2.13: Schematic of trenches etched into a (100) substrate. Light blue represents

(100) facets and dark blue represents (111)B facets. The yellow dots indicate the gold

droplets used for VLS growth. a, b and c indicate the distance between the trenches,

which determine how far the merging points of the structures are apart. d indicates the

depth of the trenches. The pitch is the distance between two subsequent structures, and

∆y indicates the offset in the structure to achieve merging without the nanowires getting

fully blocked by one another.

18

2.3. NANOWIRES AND STRUCTURES

Using this scheme single and two qubit devices such as in Figure 2.9a and 2.9b
can be fabricated. In Figure 2.14 the equivalent bottom-up nanowire structures
are shown.

(a) (b)

Figure 2.14: (a) Nanowire structure suitable for a single qubit device. (b) Nanowire

structure suitable for a two qubit device.

Similar substrates are previously used to fabricate 1x1 nanocrosses and 2x2
nanohashtags [17], but larger structures were not achieved yet due to the evapo-
ration of the InP stems on which the InSb nanowires are grown. Then the main
research question of this thesis appears: How can nanowire structures suitable for
a single qubit device be fabricated in a controlled and reproducible way?

The remainder of this thesis is structured as follows:

• Chapter 3 explains the fabrication tools used for sample preparation as well as
the nanowire growth method, metal-organic vapour phase epitaxy (MOVPE).
Then the main analysis tool, scanning electron microscopy (SEM) is ex-
plained. The design software is explained and the fabrication process is
summarized.

• Chapter 4 describes and discusses the results obtained from growing both stem-
less InSb nanowires and InSb nanowires on InP stems in order to grow
nanowire networks.

• Chapter 5 presents the conclusion of the experiments as well as an outlook on
further experiments.

19

Chapter 3

Experimental methods

3.1 Fabrication tools

In this section the experimental techniques for fabrication and characterisation
are presented. First the sample preparation tools are briefly explained, after
which the technique and reactor for nanowire growth, Metal-organic Vapour
Phase Epitaxy (MOVPE), is explained. Finally the main characterisation tool, the
Scanning Electron Microscope (SEM) is explained.

20

3.1. FABRICATION TOOLS

3.1.1 Plasma Enhanced Chemical Vapor Deposition (PECVD)

PECVD is a technique in which uniform and high quality thin-films can be de-
posited. This can be done at lower temperatures than that of standard Chemical
Vapor Deposition (CVD), as the precursor decomposition is assisted by the gen-
erated RF plasma. In the process used for this thesis the substrate is heated to
300◦C, compared to the 600◦C to 800◦C required for CVD which would damage
the InP substrate.

RF

Heated lower electrode

Showerhead top electrode

Gas inlet

Vacuum

Sample

Plasma

Figure 3.1: Schematic of a PECVD reactor chamber.

The deposition chamber consists of a showerhead, which also serves as a top
electrode that is driven by an RF frequency of 13.56MHz, and a grounded bottom
electrode which can be heated. Both silicon dioxide (SiO2) and silicon nitride
(SiNx) can be deposited using the precursor silane (SiH4) and either ammonia
(NH3) for SiNx or nitrous oxide (N2O) for SiO2. The precursor gasses are intro-
duced into the chamber through the showerhead along with N2 as a carrier gas,
ensuring uniform deposition on the sample. Gas phase by-products are pumped
out of the deposition chamber along the bottom electrode.

The reactor used in this thesis is an Oxford Plasmalab System 100. The deposition
of SiNx is done at 300◦C at 650mTorr, using a SiH4:NH3:N2 ratio of 16:14:980
sccm with an RF power of 20W. SiO2 is deposited at 300◦C at 1000mTorr, using a
SiH4:N2:N2O ratio of 8.5:161.5:710 sccm with an RF power of 20W.

21

CHAPTER 3. EXPERIMENTAL METHODS

3.1.2 Resist spinning, baking and developing

A resist is a thin layer deposited upon the substrate that is sensitive to light or
electrons. Patterns are then written in the resist using lithography, either using a
mask when performing photo-lithography or by scanning an electron beam when
performing electron beam lithography (EBL). Many different resist compounds
exist, and the usage depends on the individual needs of the process. One can
generally divide resists in two categories: Positive resists which become soluble
when exposed and negative resists that become insoluble when exposed. The two
resists used for the process described in sections 3.2.2, 3.2.3 and 3.2.4 (ZEP520A
and CSAR62) are positive EBL resists and are based around polymer structures,
as shown in Figure 3.2. The high energy electrons break the polymer chain, in-
creasing the solubility in that area.

Cl

C

C

O

CH3

O

CH2 C CH2

CH3

n

(a) ZEP520A.

)0.33)0.67(C

CH3

CH2

CO

O

CH3

C

CH3

CH2

CO

O

H

(

n

(b) CSAR62.

Figure 3.2: Structural formula of the positive EBL resists ZEP520A and CSAR62.

Resist is deposited using a spinner, which holds the substrate using a vacuum
chuck which rotates to get a thin uniform layer. Depending on the rotational
speed the thickness of the resist layer can be tuned. Sometimes a compromise has
to be made here; For instance, a thick resist layer will withstand dry etching for
a longer time period, but will also decrease the accuracy of the written pattern.
After spinning the liquid resist, the substrate is heated to evaporate the solvent,
leaving a solid polymer layer.

Once a pattern is written, the resist is developed. This process is simply dissolving
the exposed resist in case of a positive resist, or dissolving the non-exposed resist
in case of a negative resist. The most common follow up step is etching the written
pattern into the layer below (Figure 3.3). Another useful feature is the ability for
the resist to be used to perform lift-off. In this application a thin layer of material,

22

3.1. FABRICATION TOOLS

for instance Au, is deposited on top of a developed resist layer. The resist layer is
then dissolved, taking with it all the material on top, but leaving Au in the opened
pattern (Figure 3.4).

Substrate

Intermediate layer
Resist

Resist

Substrate

Intermediate layer

Substrate

Intermediate layer

Substrate

Intermediate layer

Substrate Substrate

a

b

c

d

Positive resist Negative resist

Figure 3.3: (a) Substrate prepared for EBL. (b) Writing a pattern using EBL. (c) Result of

development on a positive (left) and negative (right) resist. (d) Result of pattern transfer

into an intermediate layer.

Substrate

Resist Resist

Substrate Substrate

Substrate Substrate

a b c

e d

Figure 3.4: (a) Substrate prepared for EBL. (b) Writing a pattern using EBL. (c) Result of

development on a positive resist. (d) Layer deposition (ex. Au). (e) Result of lift-off.

23

CHAPTER 3. EXPERIMENTAL METHODS

3.1.3 Electron beam lithography (EBL)

Electron beam lithography is one of the most crucial steps during sample process-
ing. It offers a much higher resolution than optical lithography at the cost of very
low throughput. It uses a beam of high energy electrons to write patterns into an
electron sensitive polymer layer, as explained in section 3.1.2. In Figure 3.5 an
EBL system is illustrated. Using electromagnetic lenses the electron beam spot
size and beam current is controlled, and beam deflector coils scan the electron
beam across the target. The beam blanker is used to deflect the electron beam
away from the target during stage movements.

Electron beam source

First condenser lens

Second condenser lens

Aperture

Beam de�ector

Final condenser lens

Beam blanker

Target

Figure 3.5: Schematic illustration of electron beam lithography. Adapted from [26].

Many effects can be detrimental to the resolution and alignment and need to be
considered when using EBL. Drift is important to control when writing a pattern
takes a long time. Stage movements can also cause a small misalignment, which
can be prevented by fitting a design in an area smaller than the electron beam
deflection area.

In the process in this thesis the most important thing is the alignment of sub-
sequent steps. This is done by first etching markers in the substrate which can
be found later in the RAITH EBPG 5150 EBL system to align the sample. An
example of these markers can be seen in Figure 3.6. The white markers are the
main markers which are used in the beginning to properly align and rotate the
sample. The secondary markers in yellow surround the actual area where the

24

3.1. FABRICATION TOOLS

pattern will be written. The EBL re-aligns to these markers before the pattern in
that area is written to remove any misalignment due to drift. All markers have
built in redundancy as each marker is implemented 9 times in a 3 by 3 array.
There are two reasons for this; Processing steps in between EBL exposures can
damage markers that have already been used, and sometimes some markers don’t
get properly etched.

Figure 3.6: EBL pattern with the main markers in white and the secondary markers in

yellow.

Figure 3.7: Zoom in on the EBL pattern for secondary markers.

25

CHAPTER 3. EXPERIMENTAL METHODS

3.1.4 Reactive Ion Etching (RIE)

RIE is a technique in which etching can be done anisotropically and at room
temperature. A plasma is generated by either a capacitively coupled plasma (CCP)
or an inductively coupled plasma (ICP). Reactive species are created in the plasma
and are directed towards the sample. Two etching mechanisms play a role; Physi-
cal etching and chemical etching. Physical etching is caused by ion bombardment
from the accelerated ions, which is an anisotropic process. Chemical etching is
caused by desorption of weakly volatile species from the substrate and is thus
isotropic [27].

The key difference between a CCP and an ICP is the seperate ICP RF power
source connected to the lower electrode, which generates a DC bias that accel-
erates ions toward the electrode. This means an ICP-RIE can decouple the ion
current and energy directed towards the lower electrode.

Lower electrode

Gas inlet

Vacuum

Sample

Plasma
Showerhead top electrode

RF

(a) CCP-RIE.

Heated electrode

Gas inlet

Vacuum

Sample

Plasma
RF

RF

(b) ICP-RIE.

Figure 3.8

For the etching of SiNx and SiO2 an Oxford Plasmalab System 100 CCP-RIE
reactor is used, with CHF3 as etching precursor. Anisotropic etching is desired, so
physical etching should dominate. Physical etching is enhanced by a low pressure
and high density plasma, which in this case is done using a pressure of 56mT,
100W RF power and a 50:5 CHF3:O2 ratio.

26

3.1. FABRICATION TOOLS

3.1.5 Electron beam physical vapor deposition

Electron beam physical vapor deposition is a technique in which high energy
electrons are used to heat up and evaporate the target material. This is especially
useful for deposition of metals, as the very high melting temperature doesn’t allow
other kinds of evaporation schemes.

The chamber consists of a cathode with a tungsten filament on which a cur-
rent is applied, which heats up the filament and emits high energy electrons. An
aperture focuses the electron beam, and the beam is directed towards the target
using a magnetic field. Once the metal is heated sufficiently it vaporises and coats
the substrate in a thin uniform layer. The rate of deposition is measured using a
6MHz crystal of which the frequency decreases when a material is deposited on it.
A shutter is kept in front of the substrate until the deposition rate is constant and
at the set level, after which the shutter opens and a thin layer can be deposited
with high accuracy. The evaporation materials are stored in a water cooled copper
plate, which allows multiple metals to be evaporated subsequently without cross
contamination during deposition.

Cathode

Aperture Crucible

Sample

Figure 3.9: Schematic of an electron beam evaporator. The cathode emits electrons which

are focused by the aperture and directed towards the crucible by a magnetic field. The

metal in the crucible heats up and evaporates, leading to deposition on the sample.

27

CHAPTER 3. EXPERIMENTAL METHODS

3.1.6 Metalorganic vapor phase epitaxy (MOVPE)

Metalorganic vapor phase epitaxy (MOVPE) is a highly complex growth mecha-
nism capable of producing high quality crystalline layers or structures with abrupt
interfaces. It has major advantages compared to molecular beam epitaxy (MBE)
in the sense that growth is much faster, more and larger samples can typically be
loaded and it does not require ultra-high vacuum, reducing the cost and downtime
of the system.

Figure 3.10: Schematic of an MOVPE system [24].

MOVPE is performed in a reactor as show in Figure 3.10. Precursors are introduced
into the reactor chamber by a carrier gas, usually hydrogen. In the heated reactor
chamber the precursors undergo pyrolysis after which they react at the sample
surface. Generally two types of precursors are available; Metal-organic precursors
(e.g. tri-methyl In, Sb, Ga) which give the growth scheme its name, and hydride
compounds (e.g. PH3, AsH3). The hydride compounds are extremely toxic, and
are stored in high-pressure metal cylinders which are fed directly to the reactor.
The metal-organic precursors are typically volatile and are stored in steel bubblers,
either in solid or liquid form. The bubblers have two lines: A supply line that
blows the carrier gas through the precursor, creating metal-organic vapor in
the process, and an outlet line which transports the metal-organic vapor to the
reaction chamber. The amount of precursor introduced to the reaction chamber
is determined by the carrier gas flow (ftot), the bubbler pressure (Ptot) and the
temperature that determines the vapor pressure of the metal-organic source (PMO).
The total molecular flow in sccm is given by [28]

fm =
PMO

Ptot − PMO
· ftot (3.1)

28

3.1. FABRICATION TOOLS

Precursor Melting temp (◦C) a (Torr) b (Torr·K) Vapor pressure (Torr) / T (◦C)

TMSb -87.6 7.7068 1697 71.63 / 17

TMIn 88 10.52 3014 0.11 / -10

Table 3.1: Properties of TMSb and TMIn [29]. Vapor pressure is calculated using log(p)=a-

b/T and at the temperatures used.

In the reaction chamber, precursors can either fully decompose or decompose
stepwise, as given by

MR3→M + 3R (3.2)

MR3→MR2 +R→MR+ 2R→M + 3R (3.3)

with M a group III or V element and R either CH3 or H2. The general chemical
reaction that occurs during MOVPE growth of III/V materials can be written
as [29]

MR3 +ER′3→ME + 3RR′ (3.4)

with R and R’ either methyl (CH3) or hydrogen (H2), M a group III metal and E a
group V element. For example, the growth of InP from TMIn and PH3 precursors
can be described by

In(CH3)3 + PH3→ InP + 3CH4 (3.5)

The reactor chamber is an Aixtron 200 horizontal reactor chamber which consists
of a quartz liner which can be seen in Figure 3.11a, and a rotating susceptor which
can be seen in Figure 3.11b. The susceptor is suitable for sample sizes up to 2-inch,
and has a built in thermocouple to measure the temperature. The susceptor is
heated by 5 IR lamps with are located around the bottom half of the quartz.

29

CHAPTER 3. EXPERIMENTAL METHODS

(a) Aixtron 200 Horizontal reactor chamber. (b) The susceptor.

Figure 3.11: Images of the Aixtron 200 horizontal reactor. (a) The reactor chamber, which

consists of a quartz tube with the bottom half surrounded by 5 infrared (IR) lamps. The

gas inlets are located on the left and the outlet to the pump is located on the right. (b) The

graphite susceptor with 2-inch sample holder on a rotating disk.

30

3.1. FABRICATION TOOLS

3.1.7 Scanning electron microscopy (SEM)

A scanning electron microscope (SEM) is the most important characterisation
tool when growing nanowires. It is used to examine the yield, diameter, length
and surface morphology of the nanowires. Instead of photons, like a regular
light microscope, it uses a focused beam of accelerated electrons to scan a sample.
State-of-the-art SEMs feature a magnification from 10x up to 1000000x, allowing
users to image features as small as 0.8nm [30].

Figure 3.12: Schematic of the Zeiss Gemini objective lens [30].

Primary electrons are generated by a field effect gun which consists of a tungsten
filament which is subjected to a very strong electric field, which pulls electrons
from the filament. The main method used to create images is by using the sec-
ondary electrons, which are electrons ejected during an inelastic scattering event
by the primary electron beam from atoms up to 1µm deep in the sample. Another
popular method is by using backscattered electrons. Heavier elements elasti-
cally backscatter the primary electrons more than lighter elements, which in turn
generates a contrast to form an image.

31

CHAPTER 3. EXPERIMENTAL METHODS

3.2 Sample preparation

In this section the sample design is discussed as well as the software written
for this. Afterwards the sample fabrication process prior to nanowire growth is
presented. This process is rather complex and is divided into three distinct phases.
Phase one is etching markers in the InP substrate for the alignment of subsequent
steps in the EBL. The second phase is etching the trenches that expose the (111)B
facets, and the third phase consists of patterning dots with gold catalyst on the
trenches.

3.2.1 Design

As the goal of this project is not only to fabricate complex nanowires structures
but also to do it in a clever, controllable and reproducible way the first thing to
think about is the sample design. The design needs to be flexible, with the option
to have many slightly different structures on a sample, for instance different gold
droplet diameters, different length of the nanowires or certain distances between
merging points. This can be done by hand in software such as AutoCAD, but this
would be both tedious and hard to reproduce. So, at the beginning of this project
design software was written in the Python programming language, and the basic
features will be explained here.

In Figure 3.13 the main user interface of the software is shown and in Figure 3.14
a 3x3 design is shown with the most important parameters indicated. The main
design choice is what is called ’Hashtag size’, which allows the user to set if they
want for instance a nanocross (1x1), a nanohashtag (2x2) or larger structures. The
a and b parameters define the distance between the different merging points of
the nanowires and the d parameters indicates the depth of the trench, which is
directly related to the trench width. The pitch sets the distance between structures,
and the dot shift or ∆y indicate the offset between the left and the right side of the
structure. The c parameter is automatically calculated in the software based on
the nanowire length.

Less straight forward parameters are for instance the rectangle width. This pa-
rameter determines the width of the trench that gets written in the EBL, which
has to be smaller than the actual required width of the trench as the etching
process is isotropic. The single shadow and double shadow options can be used to
add nanowires slightly in front of the structure, which can cast a shadow on the
structure when depositing metal contacts allowing for instance a tunnel barrier as

32

3.2. SAMPLE PREPARATION

shown in Figure 2.2.

Behind the scenes a lot of automatic processes happen to make the life of the
user easier. As indicated before the structure is automatically optimized using
the nanowire length by optimizing the c parameter. The software also checks if
the design is larger than the maximum deflection of the EBL system in order to
prevent alignment error due to stage movements. It warns the users when the
nanowires are too short for the chosen design and when the trenches overlap due
to incorrectly chosen a and b parameters.

Figure 3.13: The design software main interface.

54.7o

Pitch

∆y

dacb

(111)B

(100)

Figure 3.14: Schematic of a 3x3 design. The parameters a and b are equivalent to the

parameters in the design software. The trench depth is indicated with d, and c is a

parameter automatically calculated in the software. The wire pitch is indicated with pitch

and the dot shift is indicated with ∆y.

33

CHAPTER 3. EXPERIMENTAL METHODS

A single sample can have a lot of different structure designs, as indicated in Figure
3.15. Depending on the users needs either identical structures or a range of
structures or can be created, with the ability to incrementally change parameters.
One thing to keep in mind is that the process requires at least two aligned electron
beam lithography (EBL) steps. One for patterning the trenches to expose the
(111)B facets and one for patterning the gold droplets on top of the trenches.
These steps need to be aligned, which adds another EBL step, patterning markers
on the sample for the EBL to align to. Unfortunately the EBL machine is not
perfect. Each patterning step can have a small alignment error, according to the
machine manufacturer up to 20nm, in practise sometimes even more. To prevent
entire samples from being useless due to too large misalignment between the gold
droplets and the trenches, a sine function is added to the gold droplets along
the trench. This should guarantee that at least a part of the sample has correctly
aligned nanowires.

1x1

2x2

3x3 4x4

Figure 3.15: Schematic of the EBL pattern used to write the trenches (Orange) and the

dots (Black). 4 distinct blocks are present which contain designs for 1x1, 2x2, 3x3 and 4x4

nanowire structures. The yellow squares indicate the local alignment markers.

34

3.2. SAMPLE PREPARATION

3.2.2 Phase one: Markers

ResistResist

InP(100) InP(100)

SiNx

InP(100)

SiNx
Resist

InP(100)

SiNx

InP(100)

SiNx

InP(100)

SiNx
Resist

InP(100)

SiNx
Resist

InP(100)

SiNx

InP(100) with markers

PECVD Spin & bake

EBL Develop RIE

ICP etch O2 plasma BHF

7 8 9

4 5 6

1 2 3

Figure 3.16: Step by step illustration of the process to create alignment markers in a

InP(100) wafer. (1) A 2 inch InP(100) wafer. (2) Using PECVD 100nm of SiNx is deposited

and the thickness is verified using ellipsometry. (3) ZEP520A is spun at 2700RPM for

60s. The resist is then baked on a hot plate starting at a temperature of 100◦C which is

increased to 200◦C in 15 minutes. (4) Using EBL markers are patterned. (5) The resist

is developed using n-amylacetate for 60s, then 45s of MIBK:IPA and 60s of IPA, then

blow-dried using N2. (6) Using RIE a 10:1 CHF3:O2 plasma is applied for 1:45min to

transfer the pattern into the SiNx layer. (7) An O2 plasma is used to strip away the resist

layer. (8) Using ICP the pattern is further transferred into the InP wafer. (9) The SiNx

layer is stripped by submerging the sample in a 7:1 BHF solution for 3 minutes, then

rinsed using UPW and blow-dried using N2.

Alignment markers such as illustrated in Figure 3.6 are etched into the substrate
using the process illustrated in Figure 3.16. The markers are defined in the resist
using electron beam lithography (EBL), followed by a reactive ion etch (RIE) which
transfers the pattern from the resist layer to the hard mask SiNx layer. Subsequent
ICP etching then transfers the pattern into the substrate.

35

CHAPTER 3. EXPERIMENTAL METHODS

3.2.3 Phase two: Trenches

ResistResist

InP(100) InP(100)

SiOx

InP(100)

SiNx
Resist

InP(100)

SiNx

InP(100)

SiNx

InP(100)

SiNx
Resist

InP(100)

SiNx

PECVD Spin & bake

EBL Develop RIE

O2 plasma

InP(100)

SiNx

HCl etch

InP(100)

BHF

7 8 9

4 5 6

1 2 3

Figure 3.17: Step by step illustration of the process to etch trenches in a InP(100) wafer

in order to expose (111)B facets. (1) The substrate is submerged in a 10:1 H3PO4:H2O

solution for 3 minutes to remove any oxides from the surface, then rinsed using UPW

and blow-dried using N2. (2) Using PECVD a 50nm layer of SiOx is deposited, and the

thickness checked using ellipsometry. (3) ZEP520A is spun at 5000RPM for 60s. The

resist is then baked on a hot plate starting at a temperature of 100◦C which is increased

to 200◦C in 15 minutes. (4) Using EBL the pattern for trenches is written. (5) The resist

is developed using n-amylacetate for 60s, then 45s of MIBK:IPA and 60s in IPA, then

blow-dried using N2. (6) RIE is used to transfer the pattern into the SiOx layer using a

CHF3:O2 plasma for 1:15min. (7) An O2 plasma is used to strip away the resist layer. (8)
The sample is submerged in a 10:1 diluted H3PO4 solution for 3 minutes and put in the

MOVPE glovebox under N2 atmosphere to prevent re-oxidation. (8) Trenches are etched

in the MOVPE using 1% HCl gas. (9) The SiOx layer is stripped using a 7:1 BHF solution

for 1 minute, then rinsed using UPW and blow-dried with N2.

Trench structures that expose the (111)B facets are etched in the substrate using
the process illustrated in Figure 3.17. The structures are defined using electron
beam lithography (EBL), then transferred into the SiOx layer using a reactive ion
etch (RIE) and etched using an in-situ gaseous HCl etch to expose (111)B facets on

36

3.2. SAMPLE PREPARATION

an InP(100) crystal surface.

In Figure 3.18 the recipe for the HCl etching in the MOVPE system is illustrated.
The substrate is heated up to 635◦C under 1.83E-02 molar flow of PH3 to prevent
P from evaporating from the substrate, which damages the substrate and allows In
droplets to form. A molar flow of 3.33E-04 of vapor phase HCl is then introduced
into the reactor which selectively etches the exposed (100) substrate, leaving
(111)B faced trenches in the substrate. The substrate is then cooled down under
PH3 flow to prevent any evaporation.

he
at

in
g

up

HCl
 e

tc
h

HCl

PH3

Temperature

635oC

Time

co
ol

do
w

n

Figure 3.18: Schematic of the etching of V grooves in InP(100) using HCl.

37

CHAPTER 3. EXPERIMENTAL METHODS

3.2.4 Phase three: Dots

PECVD

InP(100) InP(100)
SiNx

Spin & bake

InP(100)
SiNx

Resist

EBL

InP(100)
SiNx

Resist

Develop

InP(100)
SiNx

Resist

BHF

InP(100)
SiNx

Resist

Deposit Au

InP(100)
SiNx

Resist

Lifto�

InP(100)
SiNx

7 8 9

4 5 6

1 2 3

Figure 3.19: Step by step illustration of the process to deposit Au droplets inside specific

locations in a SiNx mask. (1) The sample is submerged in a 10:1 diluted H3PO4 solution

to remove any oxides from the surface, then rinsed with UPW and blow-dried with N2.

(2) Using PECVD a 20nm layer of SiNx is deposited. (3) EBL resist CSAR62 is applied,

by first spinning CSAR primer at 4000RPM for 60s and baking it at 180◦C for 2 minutes.

CSAR62 resist is spun at 4000RPM for 60s and baked at 150◦C for 3 minutes. (4) With

EBL the dot pattern is written. (5) The resist is developed using CSAR developer for 60s,

CSAR stopper for 30s followed by 60s of IPA and blow-drying with N2. (6) Using 7:1 BHF

for 14s the pattern is transferred to the SiNx. (7) 8nm of Au is deposited. (8) Lift-off is

performed by submerging the sample in PRS-3000 for at least 30 minutes, then put in

acetone and vibrated using ultrasound for 10 minutes. The sample is rinsed using IPA

and blow-dried with N2.

Gold particles with a diameter of 40-50nm, crucial for an optimized nanowire
merging process, are positioned on the exposed (111)B facets using the process
illustrated in Figure 3.19. The gold droplets act to catalyse nanowire growth via
the vapour-liquid-solid (VLS) mechanism as illustrated in Figure 2.11.

38

Chapter 4

Results

In this chapter the results of stemless InSb nanowire growth as well as InSb
nanowire on InP stem growth is presented. First the developed MOVPE growth
recipes are explained as a background for all the performed experiments. Then the
experiments done in order to grow InSb nanowires without using InP stems at all
are discussed. Then the growth of InSb nanowires on InP stems is presented. First
the influence of the InP stem length is investigated, after which encapsulation
of the InP stem with InSb is optimized. Then a three step InSb growth recipe is
developed, which is used to increase the InSb nanowire length while suppressing
radial growth. Finally the merging behaviour of the nanowires is discussed.

39

CHAPTER 4. RESULTS

4.1 Growth recipes

4.1.1 InP nanowires

In Figure 4.1 the general growth recipe for InP nanowires is shown. First the
sample is heated up to 510◦C and annealed for 5 minutes to remove any remaining
oxides. This is done under PH3 flow, to prevent P evaporation and subsequently
the formation of In droplets on the substrate. The temperature is then reduced to
the growth temperature of 450◦C and the PH3 flow is stopped for the filling step,
which allows the gold catalyst droplet to be saturated with In. Then the PH3 is
opened again after which epitaxial InP nanowire growth starts. Once the growth
is done the In flow is stopped, and the sample is cooled down under a PH3 flow to
prevent evaporation. Different lengths of InP nanowires are grown, which will be
discussed in section 4.3.

he
at

in
g

up

an
ne

al
in

g

na
no

w
ire

 g
ro

w
th

TMIn

PH3

Temperature

450oC

Time

co
ol

do
w

n

�l
lin

g

Figure 4.1: Schematic of the growth of InP nanowires.

40

4.1. GROWTH RECIPES

4.1.2 InSb nanowires

In Figure 4.2 the general growth recipe for InSb nanowires is shown. First the
sample is heated to the growth temperature. The heating is done under AsH3 flow
to prevent P evaporating from the substrate from entering the catalyst droplet.
The AsH3 is then flushed away. The gold catalyst droplet is then filled with In,
after which the Sb flow is opened and nanowire growth starts. For stemless InSb
a single growth step is used, which is also used in the beginning for InSb on InP
stems. Later a two-step process is used, and finally a three-step growth process is
developed which is explained in section 4.3. After growth the In flow is stopped
and the sample is cooled down under Sb flow to prevent any evaporation.

he
at

in
g

up
�l

lin
g

dr
op

le
t

na
no

w
ire

 g
ro

w
th

 1

TMIn

TMSb

Temperature
480oC

Time

na
no

w
ire

 g
ro

w
th

 2

na
no

w
ire

 g
ro

w
th

 3

co
ol

do
w

n

�u
sh

in
g

As
H3

AsH3

Figure 4.2: Schematic of the growth of InSb nanowires. For stemless InSb nanowires one

growth step is used, while for InSb on InP stems a single step, a two-step and a three-step

process is used.

41

CHAPTER 4. RESULTS

4.2 Stemless InSb nanowires

The first thing to investigate for nanowire growth is the growth temperature. The
temperature must be sufficiently high to heat the gold catalyst particle above
its eutectic point of 337◦C to allow a liquefied Au-InSb alloy [31], as well as to
efficiently crack the precursors. However, too high a temperature can damage the
sample or change the growth regime. To find the optimum temperature a series is
performed, with a constant TMIn and TMSb flows for one hour and a temperature
ranging from 435◦C up to 495◦C. In Figure 4.3 SEM images of the resulting growth
are shown. At 435◦C, 475◦C and 495◦C the yield and length of the nanowires is
very low, with almost all nanowires growing in-plane in the trench. At 455◦C the
yield is slightly improved, with occasional nanowires growing in the intended
direction.

(a) 435◦C (b) 455◦C

(c) 475◦C (d) 495◦C

Figure 4.3: SEM images of 4 growth recipes with the only difference the growth tempera-

ture. A molar fraction of 1.95E-07 of TMIn and 1.23E-04 of TMSb is used.

42

4.2. STEMLESS INSB NANOWIRES

It is observed that 455◦C gives the highest yield, so the rest of the experiments on
stemless InSb are preformed at this temperature. In table A.1 and A.2 a list of all
the stemless InSb growth experiments is shown.

Despite the large range of TMIn and TMSb flows as well as wildly different V/III
ratios no conditions are found for proper nanowire growth. However, two effects
are consistently observed, which can be seen in Figure 4.4 and 4.5. In Figure 4.4
the nanowires are seen growing in-plane on the inclined facets. Once the (100)
crystal plane is reached the growth continues bottom-up, but in the other (111)B
direction. This behaviour is seen on almost all samples, being more common on
samples where lower flows are used. This ’crawling’ behaviour might be caused by
the InP substrate, which can supply P to the gold catalyst droplet. The P is known
to prevent Si absorption in the catalyst particle [32], which might also be the case
for Sb. This can allow the In filled Au droplet to ’walk’ along the trench. In theory
this effect can be used to form nanowire structures by placing the gold droplets on
the opposite side of the trench. However, the merging quality of these nanowires
is not clear yet, which will be investigated in the future using cross-sectional TEM.

(a) (b)

Figure 4.4: SEM images after stemless InSb growth showing nanowires growing in-plane

on the inclined (111)B facets. Once the (100) crystal plane is reached the nanowires

continue growing bottom up in the other (111)B direction.

In Figure 4.5 flake forming can be seen. These kind of flakes are seen on all
samples with high flow, getting progressively larger and more abundant. Due to
the high supersaturation induced by the high flow, the gold droplet is enlarged
which allows the formation of high energy nucleation points, on which catalyst
free growth can occur. This catalyst free growth happens in the (110) direction,
and combined with the VLS growth in the (111)B direction a flake forms [33]. An

43

CHAPTER 4. RESULTS

interesting observation is that some of the nanowires/flakes grow in the intended
(111)B direction. A possible explanation is that the high flow forces quick epitaxial
growth which prevents the gold catalyst from crawling along the trench.

(a) (b)

Figure 4.5: SEM images showing flake growth due to high precursor flows. VLS growth

occurs in the (111)B direction and VS growth in the (110) direction.

44

4.3. INSB NANOWIRES ON INP STEMS

4.3 InSb nanowires on InP stems

4.3.1 InP stem length and encapsulation

As shown in the previous section, the growth of stemless InSb nanowire networks
is challenging. This is because of the crawling effect of the nanowires, in which
the nanowires grow in-plane on the inclined facets. To overcome this challenge
the following experiment is designed. The idea is to use as short as possible InP
stems, on which InSb is grown epitaxially. The aim is then to encapsulate the InP
stems with InSb to prevent the InP from evaporating. It is important to do this
while getting a high yield as well as a large aspect ratio in order to get suitable
nanowire networks. The intended encapsulation process is illustrated in Figure
4.6.

Time

Figure 4.6: Schematic of the intended encapsulation of the InP stem. The blue represents

the InP stem, orange represents the InSb. Yellow represents the gold droplet.

The first thing to investigate is the effect of the InP stem length on the InSb
nanowire growth. In Figure 4.7 InP stems can be seen which are grown for (a) 2
minutes and (b) 3 minutes. The stems have a high (estimated >80%) yield, with
the stem length directly proportional to the growth time with (a) 200nm and (b)
300nm length.

45

CHAPTER 4. RESULTS

(a) (b)

Figure 4.7: SEM images of (a) InP stems grown for 2 minutes resulting in 200nm long

stems. (b) InP stems grown for 3 minutes resulting in 300nm long stems.

In Figure 4.8 InSb is grown on top of the InP stems. InSb growth is done for 1
hour at 495◦C on top of (a) 200nm InP stems and (b) 300nm InP stems.

(a) (b)

Figure 4.8: SEM images of (a) InSb grown on top of 200nm long stems and (b) InSb grown

on top of 300nm long stems. Growth is done with molar fractions of 4.18E-07 of TMIn

and 3.10E-04 of TMSb and a temperature of 495◦C.

The stems are fully encapsulated for both the stem lengths, and the nanowires in
(b) are overall slightly longer and thinner than in (a). The yield of properly grown
nanowires on both samples is low (estimated <10%), which is caused by most
of the InP stems getting encapsulated or overgrown too quickly which prevents
proper InSb nanowire growth. This is illustrated in Figure 4.9 with properly
grown and encapsulated nanowires on the right and overgrown stems on the left.

46

4.3. INSB NANOWIRES ON INP STEMS

Figure 4.9: SEM image with properly grown and encapsulated nanowires on the right and

overgrown stems on the left.

To investigate the InP stem encapsulation in more detail the same growth recipe is
repeated with 200nm long InP stems, now with a short growth time of 15 minutes.
In Figure 4.10 the resulting nanowires can be seen. It is observed that most of the
InP stems already get overgrown in the first 15 minutes of growth, which prevents
proper InSb growth. The nanowires that do grow have no encapsulation on the
stem at all, which indicates that the InSb did not have enough time to nucleate on
the stem.

(a) (b)

Figure 4.10: SEM images of InSb grown on 200nm InP stems for 15 minutes. Growth is

done with molar fractions of 4.18E-07 TMIn and 3.10E-04 TMSb and a temperature of

495◦C.

Two possible solutions come to mind to prevent InP stem overgrowth that occurs
in the first 15 minutes of growth. Either the encapsulation rate needs to be de-
creased to allow the InSb nanowire to grow longer before they are encapsulated,
or longer stems need to be used.

47

CHAPTER 4. RESULTS

First an attempt is made to decrease the encapsulation rate. In Figure 4.11 the
TMIn and TMSb molar fractions are lowered by a factor of 2 in comparison to the
previous experiment, and again the InSb growth is done on InP stems of 200nm.
This gives a similar result as before, with most of the InP stems getting overgrown.
The nanowires that do grow properly have fully encapsulated stems. A possible
explanation is that the nanowires that grow properly have relatively late InSb
nucleation on the stem, allowing the InSb nanowire to grow before encapsulation.

(a) (b)

Figure 4.11: SEM images of InSb grown on 200nm InP stems for (a) 1 hour and (b) 3

hours. Growth is done with molar fractions of 2.09E-07 TMIn and 1.57E-04 TMSb and a

temperature of 495◦C.

In Figure 4.12 the molar fraction is lowered by a factor 2 again. It is observed that
still a lot of stems are overgrown, and that the nanowires with late nucleation on
the stem now show full evaporation of the stem. This causes either nanowires
standing up without a stem as in Figure 4.12a or fallen over nanowires as in Figure
4.12b.

48

4.3. INSB NANOWIRES ON INP STEMS

(a) (b)

Figure 4.12: SEM images of InSb grown on 200nm InP stems for 3 hours. Growth is done

with molar fractions of 1.12E-07 TMIn and 7.85E-05 TMSb and a temperature of 495◦C.

Lowering the flow did not have the intended effect. The stems are too short and
have an unreliable nucleation rate of InSb on the InP stem. This leads mostly
to overgrown stems, even at very low precursor flow rates. The nanowires that
do grow have either no or late InSb nucleation on the stem, which prevents
overgrowth but allows the stem to fully evaporate. An explanation for the high
overgrowth of the stems even at low flow is that diffusion on the substrate in-
creases at low flow. This leads to an increased effective flow at the InP stem, which
in turn can promote the overgrowth.

The next step then is to investigate the use of longer InP stems in order to prevent
the overgrowth. In Figure 4.14 InP stems are grown with a length of 500nm. The
InP yield is high (estimated >90%), and the length is similar all over the sample
and for the different structures sizes, as can be seen in Figure 4.13. This length
should allow the InSb nanowire enough time to grow before the InP stem is fully
encapsulated.

49

CHAPTER 4. RESULTS

1 2 3 40

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

Le
ng

th
(nm

)

S t r u c t u r e s i z e (x b y x)

Figure 4.13: Graph showing the InP stem length for different structure sizes.

(a) (b)

(c) (d)

Figure 4.14: SEM images of 500nm long InP stems for (a) 1x1 nanocrosses, (b) 2x2

hashtags, (c) 3x3 and (d) 4x4 structures.

50

4.3. INSB NANOWIRES ON INP STEMS

To have more control over the encapsulation of the 500nm long stems a two-step
growth process of InSb is introduced. First a medium flow is used in order to grow
the InSb nanowires in both length and to start encapsulation. The molar fraction
is then increased to a high flow in order to promote even more encapsulation.
At the same time the growth temperature is decreased slightly from 495◦C to
480◦C to decrease the InP evaporation rate. It is known that there is a possible
difference in precursor decomposition when the temperature is lowered, so these
experiments cannot be directly compared to the growth experiments discussed
before. In table 4.1 a list of growth experiments is shown. The total InSb growth
time is 40 minutes, with varying times for the medium and high flow steps in
order to find the right balance. The resulting nanowire length and diameter are
indicated.

Run Medium flow time High flow time Diameter Length

RB2929 20min 20min 80 - 100 nm 3 - 3.5 µm

RB2930 30min 10min 70 - 100 nm 3 - 3.5 µm

RB2931 40min 80 - 120 nm 2.5 - 3 µm

RB2933 30min 10min 70 - 100 nm 3 - 3.5 µm

Table 4.1: List of growth runs performed at 480◦C. The medium flow uses a molar flow

of 4.18E-07 TMIn and 3.10E-04 TMSb. The high flow uses 5.58E-07 TMIn and 4.11E-04

TMSb. The growth time for each step is indicated as well as the resulting nanowire length

and diameter.

In Figure 4.15 SEM images can be seen of the four growth runs from table 4.1.
RB2929 has the lowest yield of all the experiments in the series, with a lot of
overgrown stems. This indicates that the high flow step with high encapsulation
starts too early, after 20 minutes of medium flow. RB2930 has a higher yield, which
is expected as the medium flow step is longer than before, reducing the amount of
overgrown wires. However, not all the nanowires are fully encapsulated. RB2931
has a slightly lower yield with more overgrowth, but the nanowires that do grow
have fully encapsulated stems. This is unexpected, as only the medium flow is
used which should result in higher yield and less encapsulation than previously.
A possible explanation is that the InP stems on this sample were slightly shorter
resulting in quicker overgrowth. RB2933 is done to reproduce the high yield of
RB2930, which is indeed observed.

51

CHAPTER 4. RESULTS

(a) RB2929. (b) RB2930.

(c) RB2931. (d) RB2933.

Figure 4.15: SEM images of 3x3 trenches with InSb grown on InP stems.

52

4.3. INSB NANOWIRES ON INP STEMS

4.3.2 Three step InSb growth

With a high yield, (nearly) encapsulated InP stems and thin (70-100nm) InSb
nanowires the basis for the nanowire networks is achieved. However, the nanowires
need to be longer (up to 6µm) to get completed 3x3 and larger nanowire networks.
To investigate the best way to increase the InSb nanowire length without increas-
ing the diameter a flow series is done. First the nanowires are grown as in the
optimized two step recipe of RB2930 (table 4.1), after which the flow is lowered
for a third growth step in order to suppress radial growth. In table 4.2 the molar
fractions and growth time for the third growth step is shown for the different
growth runs. The resulting nanowire diameter and length is indicated as well.

Run TMIn flow TMSb flow Time (min) Diameter Length

RB2932 5.58E-07 4.11E-04 20 120 - 150 nm 3.5 - 3.8 µm

RB2934 4.18E-07 3.10E-04 20 120 - 150 nm 3.5 - 3.8 µm

RB2936 2.09E-07 1.55E-04 20 90 - 120 nm 3.5 - 3.8 µm

RB2937 1.12E-07 7.85E-05 20 70 - 100 nm 3.5 - 3.8 µm

Table 4.2: List of the third growth step of runs performed at 480◦C. The first growth step

consists of 30 minutes of 4.18E-07 TMIn and 3.10E-04 TMSb. The second growth step

consists of 10 minutes of 5.58E-07 TMIn and 4.11E-04 TMSb. The TMIn and TMSb molar

fractions and growth time for the third growth step are indicated as well as the resulting

nanowire diameter and length.

In Figure 4.16 the four growth runs from table 4.2 are shown. The yield is similar
for all four, which is expected as the first 40 minutes of growth that determine
whether a nanowire grows or the stem is overgrown are identical. Not only the
yield, but also the nanowire length is similar with nanowires around 3.5 to 3.8µm
length. The nanowire diameter follows a clear trend. The higher the flow in the
third step, the more radial growth which results in a larger diameter. With the
lowest flow the radial growth is strongly reduced, which is expected as the gold
assisted VLS growth is less affected by the precursor flow than direct adsorption
(VS).

53

CHAPTER 4. RESULTS

(a) RB2932. (b) RB2934.

(c) RB2936. (d) RB2937.

Figure 4.16: SEM images of 3x3 trenches with InSb grown on InP stems.

54

4.3. INSB NANOWIRES ON INP STEMS

4.3.3 Optimizing InSb length

Now with suitable conditions found in the previous section to grow the InSb
nanowires in length while largely suppressing radial growth, the next step is at-
tempting to grow longer nanowires using longer growth times, which should lead
to completed nanowire networks. The growth recipe used for these experiments is
shown in table 4.3.

Precursor Step 1 Step 2 Step 3

TMIn 4.18E-07 5.58E-07 1.12E-07

TMSb 3.10E-04 4.11E-04 7.85E-05

Time 30min 10min variable

Table 4.3: List of the TMIn and TMSb molar fractions and growth time for each growth

step. The growth temperature is 480◦C.

In Figure 4.17 the third growth step is done for 50 minutes. The nanowires have a
length of approximately 4µm, with a diameter of 100 to 120nm. In Figure 4.17a
a nanocross (1x1 structure) is shown and in Figure 4.17b a nanohashtag (2x2
structure) is shown. The nanowires resulting from this experiment are too short
for complete larger structures.

The main observation from this experiment is that although the yield of the
nanowires is high, the yield of the structures is quite low. This is caused by a
design flaw which can be seen in Figure 4.17c. The gold droplets are placed too
close to the center of trench, which causes the nanowires to grown on only one side
of the trenches. The sine function added to the droplets as explained in section
3.2.1 slightly alleviates the problem. On the majority of the sample the nanowires
only grow on one of the sides of the trenches, switching periodically from side to
side. However, there is a small transition region where on both sides of the trench
nanowires grow, resulting in 1x1 and 2x2 nanowire networks.

55

CHAPTER 4. RESULTS

(a) (b)

(c)

Figure 4.17: SEM images of (a) an InSb nanocross (1x1 structure) and (b) an InSb nanohash-

tag (2x2 structure). In (c) two nanocross designs are shown. The nanowires only grow on

one side.

To get a higher yield of structures samples are fabricated with an updated design,
and 500nm long InP stems are grown. Then the same growth recipe as in the
previous experiment is done, with the third growth step increased to 1 hour and
50 minutes. The yield is very high, with nanowires around 5µm long, which is
enough to get 3x3 structures.

56

4.3. INSB NANOWIRES ON INP STEMS

In Figure 4.18 a few of the resulting structures are shown. Figure 4.18a shows a
3x2 structure on top and a 3x3 structure on the bottom. Figure 4.18b shows an
unfinished 4x3 structure.

(a) (b)

Figure 4.18: SEM images of (a) 3x3 and 3x2 InSb nanostructures and (b) 4x3 InSb nanos-

tructures.

In Figure 4.19 the importance of ∆y in the design can be seen. In Figure 4.19a ∆y
is too small, which causes the nanowires to hit each other which prevents proper
junctions and can cause flake forming where the nanowires hit. Figure 4.19b
shows an area where ∆y is large enough to allow for proper merging behaviour.
In the next section the merging behaviour is analysed more in depth.

(a) (b)

Figure 4.19: SEM images of (a) 3x3 and 3x2 InSb nanostructures and (b) 4x3 InSb nanos-

tructures.

57

CHAPTER 4. RESULTS

4.3.4 Merging behaviour

Besides the nanowire growth itself, another important thing is the way in which
the nanowires merge. A good epitaxial connection is needed, preferably leading
to a mono-crystalline structure. During the experiments two different ways of
merging are observed, which can be seen in Figure 4.20. In (a) the nanowires
merge properly, with a clear epitaxial connection of the nanowires. In (b) the
nanowires merge as well, but there is a large amount of radial growth observed.
Another observation is that the stems on merging nanowires without radial growth
are fully encapsulated, but the stems of the nanowires exhibiting strong radial
growth after merging are almost fully evaporated, with most structures only held
up by 1 or 2 remaining stems.

Figure 4.20: SEM image of (a) a properly merging nanowire network and (b) a merging

nanowire network with strong radial growth.

A possible explanation for the merging behaviour is the very high defect rate in
InP nanowires. Depending on the amount of defects the merging nanowires can
have a single crystalline or no single crystalline junction. An example of this is
illustrated in Figure 4.21, where a wurtzite segment is present in the InP nanowire.
If the wurtzite segment has an uneven amount of layers the zinc-blende continues
in the same zinc-blende orientation as before the wurtzite segment. However, if
the wurtzite segment has an even amount of layers the zinc-blende continues in a
180◦ rotated orientation, causing a mismatch where no single crystalline junction
is possible. Not only wurtzite segments, but also twinning in the InP stems can
cause this mismatch. Now due to the mismatch high energy nucleation points can

58

4.3. INSB NANOWIRES ON INP STEMS

appear at the merging point, allowing radial growth over the junction. This radial
growth is in a competitive regime with the stem encapsulation, which slows the
encapsulation process and causes evaporated InP stems.

A second effect that can contribute to radial growth around the junctions is the
nanowire offset (∆y in Figure 2.13). If the nanowires merge too close to each other,
the gold droplet can be distorted, partially merging with the gold droplet of the
other nanowire. In contrast, if the nanowire offset ∆y is large enough, the gold
droplets cannot merge and the nanowires can continue growing like normal after
merging.

59

CHAPTER 4. RESULTS

Wurtzite

(a)

Wurtzite

(b)

Figure 4.21: Schematic illustration of two possible ways of merging nanowires.

60

Chapter 5

Conclusion

The main goal of this thesis is to investigate whether it is possible to fabricate
InSb nanowire networks suitable for Majorana physics and building a topological
qubit. A platform is used in which (111)B facets are etched into an InP(100)
substrate, after which gold catalysed VLS nanowires are grown on the (111)B
facets. Previously this platform was limited by InP stem evaporation, and only
allowed for nanohashtags (2x2) to be grown. However, to realise a single qubit
device larger nanowire networks are required.

First an attempt is made to fully eliminate the InP stems by growing stemless InSb
nanowires. The optimum growth temperature is investigated, and a large range of
precursor flows and V/III ratios are used. At low precursor flows the nanowires
crawl up the trenches and grow in the ’wrong’ (111)B direction, which prevents
the formation of nanowire networks. This might be caused by P evaporating from
the substrate, which can prevent Sb from entering the gold catalyst. This can allow
the gold to crawl along the trenches. At high precursor flows flakes are formed
instead of nanowires. The high supersaturation in the gold catalyst enlarges the
catalyst droplet, which allows the formation of high energy nucleation points.
Catalyst free growth occurs in the (110) direction on these nucleation points,
which facilitates the formation of flakes.

Then a growth scheme is developed which uses short InP stems on which InSb
nanowires are grown. The goal is to encapsulate the InP stem with InSb, which
prevents further evaporation. The InP stem length is observed to be critical for
the subsequent InSb growth, as too short stems are encapsulated too quickly
(overgrown) and prevent further InSb growth. With InP stems of 500nm initial
overgrowth is strongly reduced compared to the 200 and 300nm long stems. A
three step process is then developed to allow long and thin InSb nanowires to

61

CHAPTER 5. CONCLUSION

grow while simultaneously encapsulating the InP stems. The process consists
of a medium flow step to allow both InSb nanowire growth and relatively slow
encapsulation. The second step uses a higher flow which encapsulates the stem
faster. Once the stems are (almost) fully encapsulated the third step is started,
which uses a low flow to reduce further radial growth of the InSb nanowires.

It is then demonstrated that nanowire networks up to 3x3 nanowires can be
consistently fabricated, which are the required structures for a single qubit device.
However, the merging points are not always perfect. Often radial growth is
observed around the junctions, which might be caused by mismatch in the zinc-
blende crystal orientation of the nanowires. This causes high energy defects which
allow radial growth around the junction. A second contributing factor for the
radial growth is that the nanowire offset ∆y can be too small. In that case the gold
droplets can make contact and partially merge, which can promote radial growth.

5.0.1 Outlook

Now that it is established that the semiconductor nanowire networks required
for a single qubit device can be reliably grown, the first step is to demonstrate
braiding. Then the next step is to fabricate and investigate a single qubit device
using the 3x3 nanowire networks.

For the nanowire networks based on the InSb on InP stem growth scheme, future
improvements should focus on decreasing the nanowire diameter. It will be very
hard to increase the size of the structures beyond 3x3, mainly due to the radial
growth on the junctions induced by mismatch of the nanowire zinc-blende struc-
ture. However, further attempts can be made to grow stemless InSb nanowires,
which should suffer no such problem. One could even attempt to use the crawling
nanowires to grow nanowire networks.

62

Bibliography

[1] R. R. Schaller, “Moore’s law: past, present and future,” IEEE Spectrum, vol. 34,
pp. 52–59, June 1997.

[2] I. L. Markov, “Limits on fundamental limits to computation,” Nature, vol. 512,
pp. 147–154, Aug. 2014.

[3] P. Benioff, “The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing ma-
chines,” Journal of Statistical Physics, vol. 22, pp. 563–591, May 1980.

[4] R. P. Feynman, “Simulating physics with computers,” International Journal of
Theoretical Physics, vol. 21, pp. 467–488, June 1982.

[5] J. Preskill, “Quantum computing and the entanglement frontier,”
arXiv:1203.5813 [cond-mat, physics:quant-ph], Mar. 2012. arXiv: 1203.5813.

[6] K. L. Brown, W. J. Munro, and V. M. Kendon, “Using quantum computers for
quantum simulation,” Entropy, vol. 12, no. 11, pp. 2268–2307, 2010.

[7] E. Majorana, “Theory of the Symmetry of Electrons and Positrons,” Nuovo
Cim, vol. 14, no. 171, p. 50, 1937.

[8] S. D. Sarma, M. Freedman, and C. Nayak, “Majorana zero modes and topo-
logical quantum computation,” npj Quantum Information, vol. 1, p. 15001,
Oct. 2015.

[9] A. Kitaev, “Unpaired Majorana fermions in quantum wires,” Physics-Uspekhi,
vol. 44, pp. 131–136, Oct. 2001. arXiv: cond-mat/0010440.

[10] Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and Majorana bound
states in quantum wires,” Physical review letters, vol. 105, no. 17, p. 177002,
2010.

[11] M. Leijnse and K. Flensberg, “Introduction to topological superconductivity
and Majorana fermions,” Semiconductor Science and Technology, vol. 27, no. 12,
p. 124003, 2012.

63

BIBLIOGRAPHY

[12] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. a. M. Bakkers, and L. P.
Kouwenhoven, “Signatures of Majorana Fermions in Hybrid Superconductor-
Semiconductor Nanowire Devices,” Science, vol. 336, pp. 1003–1007, May
2012.

[13] H. Zhang, C.-X. Liu, S. Gazibegovic, D. Xu, J. A. Logan, G. Wang, N. Van Loo,
J. D. Bommer, M. W. De Moor, and D. Car, “Quantized Majorana conduc-
tance,” Nature, vol. 556, no. 7699, p. 74, 2018.

[14] V. Lahtinen and J. K. Pachos, “A Short Introduction to Topological Quantum
Computation,” SciPost Physics, vol. 3, Sept. 2017. arXiv: 1705.04103.

[15] J. Alicea, Y. Oreg, G. Refael, F. v. Oppen, and M. P. A. Fisher, “Non-Abelian
statistics and topological quantum information processing in 1d wire net-
works,” Nature Physics, vol. 7, pp. 412–417, May 2011.

[16] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B. Hastings, C. Nayak,
J. Alicea, K. Flensberg, S. Plugge, and Y. Oreg, “Scalable designs for
quasiparticle-poisoning-protected topological quantum computation with
Majorana zero modes,” Physical Review B, vol. 95, no. 23, p. 235305, 2017.

[17] S. Gazibegovic, D. Car, H. Zhang, S. C. Balk, J. A. Logan, M. W. de Moor, M. C.
Cassidy, R. Schmits, D. Xu, and G. Wang, “Epitaxy of advanced nanowire
quantum devices,” Nature, vol. 548, no. 7668, p. 434, 2017.

[18] S. Plugge, A. Rasmussen, R. Egger, and K. Flensberg, “Majorana box qubits,”
New Journal of Physics, vol. 19, p. 012001, Jan. 2017.

[19] K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa, “High-efficiency InAs/-
GaAs quantum dot solar cells by metalorganic chemical vapor deposition,”
Applied Physics Letters, vol. 100, p. 193905, May 2012.

[20] V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V.
Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev,
Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot
structures on GaAs substrates emitting at 1.3 µm,” Applied Physics Letters,
vol. 74, pp. 2815–2817, May 1999.

[21] N. Panev, A. I. Persson, N. Sköld, and L. Samuelson, “Sharp exciton emission
from single InAs quantum dots in GaAs nanowires,” Applied Physics Letters,
vol. 83, pp. 2238–2240, Sept. 2003.

[22] C. Downs and T. Vandervelde, “Progress in Infrared Photodetectors Since
2000,” Sensors (Basel, Switzerland), vol. 13, pp. 5054–5098, Apr. 2013.

64

BIBLIOGRAPHY

[23] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal
growth,” Applied Physics Letters, vol. 4, no. 5, pp. 89–90, 1964.

[24] J. Wang, Controlling nanowire growth direction. PhD Thesis, Eindhoven Uni-
versity of Technology, 2014.

[25] D. Car, J. Wang, M. A. Verheijen, E. P. A. M. Bakkers, and S. R. Plissard, “Ratio-
nally Designed Single-Crystalline Nanowire Networks,” Advanced Materials,
vol. 26, pp. 4875–4879, July 2014.

[26] A. Pimpin and W. Srituravanich, “Review on micro-and nanolithography
techniques and their applications,” Engineering Journal, vol. 16, no. 1, pp. 37–
56, 2012.

[27] C. Cardinaud, M.-C. Peignon, and P.-Y. Tessier, “Plasma etching: principles,
mechanisms, application to micro- and nano-technologies,” Applied Surface
Science, vol. 164, pp. 72–83, Sept. 2000.

[28] D. Bour, Z. Yang, and C. Chua, “Simple technique for measuring the filled
volume of liquid or solid CVD precursor chemicals in bubblers,” Journal of
Crystal Growth, vol. 310, pp. 2673–2677, May 2008.

[29] J. L. Zilko, “Metal organic chemical vapor deposition: technology and equip-
ment,” in Handbook of Thin Film Deposition Processes and Techniques (Second
Edition), pp. 151–203, Elsevier, 2001.

[30] Carl Zeiss Microscopy GmbH, “Zeiss sigma family product information.”
https://www.zeiss.com/microscopy. Accessed: 2018-06-27.

[31] M. Shafa, S. Akbar, L. Gao, M. Fakhar-e Alam, and Z. M. Wang, “Indium
Antimonide Nanowires: Synthesis and Properties,” Nanoscale Research Letters,
vol. 11, Dec. 2016.

[32] M. Hocevar, G. Immink, M. Verheijen, N. Akopian, V. Zwiller, L. Kouwen-
hoven, and E. Bakkers, “Growth and optical properties of axial hybrid
III–V/silicon nanowires,” Nature Communications, vol. 3, p. 1266, Dec. 2012.

[33] S. Gazibegovic and G. Badawy, “Bottom-up grown two-dimensional InSb
nanostructures,” Manuscript in Preparation.

65

https://www.zeiss.com/microscopy

Appendix A

Growth experiments

Run TMIn flow TMSb flow V/III ratio

RB2768 1.95E-07 1.23E-04 6.31E+02

RB2787 1.95E-07 3.10E-04 1.59E+03

RB2788 1.95E-07 5.23E-04 2.68E+03

RB2789 1.95E-07 1.12E-03 5.74E+03

RB2792 1.95E-07 2.24E-03 1.15E+04

RB2793 4.18E-07 1.12E-03 2.68E+03

RB2794 1.12E-07 1.12E-03 1.00E+04

RB2795 4.18E-08 1.12E-03 2.68E+04

Table A.1: List of growth runs performed for one hour at 455◦C with the TMIn and TMSb

molar fraction and V/III ratio indicated.

Run TMIn flow TMSb flow V/III ratio

RB2796 1.95E-07 1.12E-03 5.74E+03

RB2797 1.95E-07 5.23E-04 2.68E+03

RB2798 1.95E-07 2.24E-03 1.15E+04

RB2799 1.12E-07 2.99E-04 2.67E+03

RB2800 1.12E-07 6.35E-04 5.67E+03

RB2801 1.12E-07 1.27E-03 1.13E+04

Table A.2: List of growth runs performed for 3 hours at 455◦C with the TMIn and TMSb

molar fraction and V/III ratio indicated.

66

Appendix B

Design software code

Listing B.1: GUI.py
import wx

import Functions

import math

from dxfwrite import DXFEngine as dxf

import os

import Globals

import configparser

import matplotlib.pyplot as plt

class helpDialog(wx.Frame):

def __init__(self,parent,title):

super(helpDialog, self).__init__(parent, title=title, size=(508, 454))

self.InitUI()

def InitUI(self):

panelhelp = wx.Panel(self,-1)

png = wx.Image('images\HelpFigure.png', wx.BITMAP_TYPE_ANY).ConvertToBitmap()

wx.StaticBitmap(self, -1, png, (0, 0), (png.GetWidth(), png.GetHeight()))

helplabel1 = wx.StaticText(self,-1,pos=(20,300),size=(450,200),style=wx.TE_MULTILINE)

helplabel1.SetLabel("a and b parameters are indicated here. To make a new drawing restart the program."

"\n Once you save a .txt file with all your settings is saved in the same folder"

"\n with the same name. Some more tweakable parameters can be found in config.ini"

"\n More help may or may not (most probably not"

") be added in the future. ")

class EBLWriter(wx.Frame):

def __init__(self,parent,title):

super(EBLWriter,self).__init__(parent,title=title, size=(700,440))

self.InitUI()

self.Centre()

self.Show()

67

APPENDIX B. DESIGN SOFTWARE CODE

self.startDrawing()

Functions.Configparser()

self.defaultValues()

icon = wx.Icon('images\Icon1.ico', wx.BITMAP_TYPE_ICO)

self.SetIcon(icon)

def InitUI(self):

panel = wx.Panel(self,-1)

menubar = wx.MenuBar()

Make menu 1

FirstMenu = wx.Menu()

fitem1 = FirstMenu.Append(wx.ID_ABOUT,'About')

fitem3 = FirstMenu.Append(wx.ID_HELP,'Help')

fitem2 = FirstMenu.Append(wx.ID_EXIT, 'Quit', 'Quit application')

self.Bind(wx.EVT_MENU, self.OnAbout,fitem1)

self.Bind(wx.EVT_MENU, self.OnHelp,fitem3)

self.Bind(wx.EVT_MENU, self.OnQuit,fitem2)

Make menu 2

SecondMenu = wx.Menu()

sitem3 = SecondMenu.Append(wx.ID_NEW,'New drawing')

sitem1 = SecondMenu.Append(wx.ID_SAVE,'Save')

sitem2 = SecondMenu.Append(wx.ID_SAVEAS,'Save as')

self.Bind(wx.EVT_MENU, self.SaveButtonFunc,sitem1)

self.Bind(wx.EVT_MENU, self.saveAsFunc,sitem2)

self.Bind(wx.EVT_MENU, self.newDrawing,sitem3)

Add all menus to menubar

menubar.Append(FirstMenu, '&Menu')

menubar.Append(SecondMenu, '&File')

self.SetMenuBar(menubar)

#Make all buttons here

hashtag1lbl = wx.StaticText(panel,-1,pos=(10,0),style=wx.ALIGN_LEFT)

hashtag1lbl.SetLabel("Hashtag size (ex. a x b)")

without the self the OKButtonFunc cannot read it

self.dlghashtag1size = wx.TextCtrl(panel, pos=(200,0), size=(40,20),value="3")

without the self the OKButtonFunc cannot read it

self.dlghashtag2size = wx.TextCtrl(panel, pos=(250,0), size=(40,20),value="3")

aparamlbl = wx.StaticText(panel,-1,pos=(10,20),style=wx.ALIGN_LEFT)

aparamlbl.SetLabel("a parameter [nm]")

self.dlgaparam = wx.TextCtrl(panel, pos=(200,20), size=(40,20),value="800")

bparamlbl = wx.StaticText(panel,-1,pos=(10,40),style=wx.ALIGN_LEFT)

68

bparamlbl.SetLabel("b parameter [nm]")

self.dlgbparam = wx.TextCtrl(panel, pos=(200,40), size=(40,20),value="800")

stemlengthlbl = wx.StaticText(panel,-1,pos=(10,60),style=wx.ALIGN_LEFT)

stemlengthlbl.SetLabel("Stem length [nm]")

self.dlgstemlength = wx.TextCtrl(panel, pos=(200,60), size=(40,20),value="500")

wirelengthlbl = wx.StaticText(panel,-1,pos=(10,80),style=wx.ALIGN_LEFT)

wirelengthlbl.SetLabel("wire length [nm]")

self.dlgwirelength = wx.TextCtrl(panel, pos=(200,80), size=(40,20),value="6000")

wirediameterlbl = wx.StaticText(panel,-1,pos=(10,100),style=wx.ALIGN_LEFT)

wirediameterlbl.SetLabel("wire diameter [nm]")

wirediameterlblmin = wx.StaticText(panel,-1,pos=(170,100),style=wx.ALIGN_LEFT)

wirediameterlblmin.SetLabel("Min")

self.dlgwirediametermin = wx.TextCtrl(panel, pos=(200,100), size=(40,20),value="20")

wirediameterlblmax = wx.StaticText(panel,-1,pos=(270,100),style=wx.ALIGN_LEFT)

wirediameterlblmax.SetLabel("Max")

self.dlgwirediametermax = wx.TextCtrl(panel, pos=(300,100), size=(40,20),value="50")

wirediameterlblstep = wx.StaticText(panel,-1,pos=(370,100),style=wx.ALIGN_LEFT)

wirediameterlblstep.SetLabel("Step")

self.dlgwirediameterstep = wx.TextCtrl(panel, pos=(400,100), size=(40,20),value="10")

wirepitchlbl = wx.StaticText(panel,-1,pos=(10,120),style=wx.ALIGN_LEFT)

wirepitchlbl.SetLabel("wire pitch [nm]")

self.dlgwirepitch = wx.TextCtrl(panel, pos=(200,120), size=(40,20),value="2000")

trenchlengthlbl = wx.StaticText(panel,-1,pos=(10,140),style=wx.ALIGN_LEFT)

trenchlengthlbl.SetLabel("trench length [um]")

self.dlgtrenchlength = wx.TextCtrl(panel, pos=(200,140), size=(40,20),value="200")

dotshiftlbl = wx.StaticText(panel,-1,pos=(10,160),style=wx.ALIGN_LEFT)

dotshiftlbl.SetLabel("Dot shift [nm]")

dotshiftlblmin = wx.StaticText(panel,-1,pos=(170,160),style=wx.ALIGN_LEFT)

dotshiftlblmin.SetLabel("Min")

self.dlgdotshiftmin = wx.TextCtrl(panel, pos=(200,160), size=(40,20),value="0")

dotshiftlblmax = wx.StaticText(panel,-1,pos=(270,160),style=wx.ALIGN_LEFT)

dotshiftlblmax.SetLabel("Max")

self.dlgdotshiftmax = wx.TextCtrl(panel, pos=(300,160), size=(40,20),value="150")

rectanglewidthlbl = wx.StaticText(panel,-1,pos=(10,180),style=wx.ALIGN_LEFT)

rectanglewidthlbl.SetLabel("rectangle width [nm]")

self.dlgrectanglewidth = wx.TextCtrl(panel, pos=(250,180), size=(40,20),value="180")

trenchdepthlbl = wx.StaticText(panel,-1,pos=(10,200),style=wx.ALIGN_LEFT)

trenchdepthlbl.SetLabel("trench depth [nm]")

self.dlgtrenchdepth = wx.TextCtrl(panel, pos=(250,200), size=(40,20),value="500")

trenchseparationlbl = wx.StaticText(panel,-1,pos=(10,220),style=wx.ALIGN_LEFT)

trenchseparationlbl.SetLabel("trench seperation in x direction [um]")

self.dlgtrenchseparation = wx.TextCtrl(panel, pos=(250,220), size=(40,20),value="5")

self.trenchCounter = wx.StaticText(panel,-1,pos=(10,320))

self.lineCounter = wx.StaticText(panel,-1,pos=(10,340))

self.blocksCounter = wx.StaticText(panel,-1,pos=(10,360))

69

APPENDIX B. DESIGN SOFTWARE CODE

#Checkbox for shadowing wires

self.cb1 = wx.CheckBox(panel,label = 'Single shadow',pos=(300,1))

self.cb2 = wx.CheckBox(panel, label='Double shadow', pos=(300, 21))

self.Bind(wx.EVT_CHECKBOX, self.singleshadowFunc,self.cb1)

self.Bind(wx.EVT_CHECKBOX, self.doubleshadowFunc,self.cb2)

OKbutton = wx.Button(panel, label='Save drawing', size = (200,60), pos=(430,250))

self.Bind(wx.EVT_BUTTON, self.SaveButtonFunc, OKbutton)

Plotbutton = wx.Button(panel, label='Plot 2D wires', size = (200,30), pos=(10,250))

self.Bind(wx.EVT_BUTTON, self.PlotbuttonFunc, Plotbutton)

DXFWritebutton = wx.Button(panel, label='Write block with current settings', size = (200,30), pos=(220,250))

self.Bind(wx.EVT_BUTTON, self.DXFWritebuttonFunc, DXFWritebutton)

NewLinebutton = wx.Button(panel, label='Start on new line', size = (200,30), pos=(220,280))

self.Bind(wx.EVT_BUTTON, self.NewLinebuttonFunc, NewLinebutton)

NewBlockbutton = wx.Button(panel, label='Start new block', size = (200,30), pos=(220,310))

self.Bind(wx.EVT_BUTTON, self.NewBlockbuttonFunc, NewBlockbutton)

EstimatexSize = wx.Button(panel, label='Estimate # of blocks per line', size = (200,30), pos=(10,280))

self.Bind(wx.EVT_BUTTON, self.EstimatexSizeFunc, EstimatexSize)

multipleTrenchbutton = wx.Button(panel, label='Write range of trenches', size = (200,30), pos=(300,50))

self.Bind(wx.EVT_BUTTON, self.multipleTrenchFunc, multipleTrenchbutton)

#Menu functions

def OnQuit(self,event):

self.Close()

def OnAbout(self,event):

msg = 'Made for TU/e by Sander Schellingerhout'

dlg = wx.MessageDialog(parent=None,message=msg,caption='About')

dlg.ShowModal()

dlg.Destroy()

def OnHelp(self,event):

secondWindow = helpDialog(None, title='Help')

secondWindow.Show()

def singleshadowFunc(self,event):

if self.cb1.GetValue() == 1 and self.cb2.GetValue() == 1:

self.cb2.SetValue(0)

def doubleshadowFunc(self,event):

if self.cb1.GetValue() == 1 and self.cb2.GetValue() == 1:

self.cb1.SetValue(0)

#functions

def startDrawing(self):

self.drawing = dxf.drawing()

self.drawing.add_layer('Rectangles', color=2)

self.drawing.add_layer('Dots', color=4)

self.drawing.add_layer('TrenchSize', color=5)

self.drawing.add_layer('TextMarkers', color=6)

70

self.drawing.header['$INSUNITS'] = 12 # set scale to nanometers

self.SaveLocation = ""

self.writeButtonClicks = 0

self.x=0

self.y=0

self.lineNumber = 1

Globals.xBlockNr = 0

Globals.blockfullwarning = 0

Globals.linefullwarning = 0

self.trenchCounter.SetLabel('Number of trenches written: %s' % self.writeButtonClicks)

self.lineCounter.SetLabel('Current line: %s' % self.lineNumber)

self.blocksCounter.SetLabel('Current block: %s' % int(Globals.xBlockNr+1))

def newDrawing(self,event):

newDrawingmsg = 'Everything that is not saved will be gone. Continue?'

newDrawingprompt = wx.MessageBox(newDrawingmsg,'New drawing',wx.YES_NO)

if newDrawingprompt == wx.YES:

self.startDrawing()

Globals.dataLogFile = ""

else:

return()

def saveLocationFunc(self):

SaveDir = wx.FileDialog(self, "Select file location", wildcard="dxf files (*.dxf)|*.dxf",

style=wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT)

if SaveDir.ShowModal() == wx.ID_OK:

self.SaveLocation = SaveDir.GetPath()

else:

return()

SaveDir.Destroy()

def saveAsFunc(self,event):

self.saveLocationFunc()

self.SaveButtonFunc(wx.EVT_BUTTON)

#button functions

def OKButtonFunc(self,event):

singleShadow = self.cb1.GetValue()

doubleShadow = self.cb2.GetValue()

if doubleShadow == True:

Globals.shadowing = 2

elif singleShadow == True:

Globals.shadowing = 1

else:

Globals.shadowing = 0

hashtagSize = [int(self.dlghashtag1size.GetValue()),int(self.dlghashtag2size.GetValue())] #hashtag size

aParam = float(self.dlgaparam.GetValue()) #a parameter

bParam = float(self.dlgbparam.GetValue()) # b paramter

stemLength = float(self.dlgstemlength.GetValue()) # stem length

wireLength = float(self.dlgwirelength.GetValue()) #wire length

wireDiameter = [float(self.dlgwirediametermin.GetValue()),float(self.dlgwirediametermax.GetValue()),

float(self.dlgwirediameterstep.GetValue())] #wire diamter

wirePitch = float(self.dlgwirepitch.GetValue()) #wire pitch

71

APPENDIX B. DESIGN SOFTWARE CODE

trenchLength = 1000*float(self.dlgtrenchlength.GetValue()) #trench length

dotShift = [float(self.dlgdotshiftmin.GetValue()),float(self.dlgdotshiftmax.GetValue())] #dot shift

rectangleWidth = float(self.dlgrectanglewidth.GetValue()) #rectangle width

trenchDepth = float(self.dlgtrenchdepth.GetValue()) # trench depth

trenchSeperation = 1000*float(self.dlgtrenchseparation.GetValue()) # seperation between trenches

numIdenticalTrenches = int(self.dlgIdenticalTrenches.GetValue()) # number of identical trenches

numIdenticalTrenches = 0

angle = math.radians(35.3) # in degrees; math class uses radians

trenchWidth = 2 * trenchDepth *math.tan(angle)

cParam = (2 * stemLength + wireLength - (hashtagSize[0] - 1) * aParam - (hashtagSize[1] - 1) * bParam) * \

math.cos(angle) - 2 * trenchWidth / 4

s1 = (aParam + wireDiameter[1]) / math.sin(angle)

s2 = (bParam + wireDiameter[1]) / math.sin(angle)

#set wirelength to add the stem for future calculations

wireLength += stemLength

return(hashtagSize,aParam,bParam,cParam,s1,s2,wireLength,wireDiameter,wirePitch,trenchLength,

dotShift,rectangleWidth,trenchDepth,angle,trenchWidth,trenchSeperation,numIdenticalTrenches,

↪→ stemLength,

trenchSeperation)

def PlotbuttonFunc(self,event):

hashtagSize, aParam, bParam, cParam, s1, s2, wireLength, wireDiameter, wirePitch, trenchLength,\

dotShift, rectangleWidth, trenchDepth, angle, trenchWidth, trenchSeperation, numIdenticalTrenches, \

stemLength,trenchSeperation = \

self.OKButtonFunc(wx.EVT_BUTTON) #press OKButton to retrieve data

Functions.plot_2D(hashtagSize,cParam,s1,s2,angle,wireLength)

def DXFWritebuttonFunc(self,event):

hashtagSize, aParam, bParam, cParam, s1, s2, wireLength, wireDiameter, wirePitch, trenchLength,\

dotShift, rectangleWidth, trenchDepth, angle, trenchWidth, trenchSeperation, numIdenticalTrenches, \

stemLength,trenchSeperation = \

self.OKButtonFunc(wx.EVT_BUTTON) #press OKButton to retrieve data

if cParam < trenchWidth:

newDrawingprompt = wx.MessageBox('WARNING: The seperation between the inner most trenches is too

↪→ small, '

'overlap or other issues might occur. a: %s, b: %s. Continue?'

%(aParam,bParam), 'WARNING',wx.YES_NO|wx.ICON_EXCLAMATION)

if newDrawingprompt != wx.YES:

Globals.linefullwarning = 1

return()

xBlockSize = Functions.DrawMultipleDiameterTrench(self.x,self.y,self.drawing,hashtagSize,aParam,bParam,

↪→ cParam,

s1,s2,wireLength,

wireDiameter,wirePitch,trenchLength,dotShift,rectangleWidth,

angle,trenchWidth,stemLength,trenchSeperation,self.writeButtonClicks)

72

self.writeButtonClicks += 1

self.x += xBlockSize + trenchSeperation*2

trenchCountermsg = 'Number of trenches written: %s' % int(self.writeButtonClicks)

self.trenchCounter.SetLabel(trenchCountermsg)

if self.y+2*trenchLength+Globals.y_seperation> Globals.block_size and self.x +xBlockSize \

> (Globals.xBlockNr+1)*Globals.block_size and Globals.blockfullwarning == 0:

wx.MessageBox('The next line will most likely not fit in the 500x500um square, '

'it is recommended to start in a new block.','Box full',wx.OK

| wx.ICON_INFORMATION)

Globals.blockfullwarning = 1

if self.x +xBlockSize > (Globals.xBlockNr+1)*Globals.block_size:

newLineQuestion = wx.MessageBox('This line is full, continue on next? If you dont the EBL will have to '

'move the stage. If you press yes while writing a range the writing will'

' continue.','Row full',wx.YES_NO

| wx.ICON_INFORMATION)

if newLineQuestion == wx.YES:

self.x = 0 + Globals.xBlockNr * Globals.block_distance

self.y+= trenchLength+Globals.y_seperation

self.lineNumber += 1

self.lineCounter.SetLabel('Current line: %s' % self.lineNumber)

else:

Globals.linefullwarning = 1

return()

def multipleTrenchFunc(self,event):

Globals.linefullwarning = 0

dlgChoice = wx.SingleChoiceDialog(

self, "Which variable to vary?", 'The Caption',["a range", "b range","symmetrical a and b"],

wx.CHOICEDLG_STYLE)

if dlgChoice.ShowModal() == wx.ID_OK:

multipleSelect = dlgChoice.GetStringSelection()

else:

return()

dlgChoice.Destroy()

dlgChoice2 = wx.TextEntryDialog(self, 'Enter min,max,step. Put max to 0 if you want to fill the line.',

'Range writer', '')

if dlgChoice2.ShowModal() == wx.ID_OK:

multipleChoice = dlgChoice2.GetValue()

else:

return()

dlgChoice2.Destroy()

multipleValues = map(int,multipleChoice.split(","))

multipleValues = multipleChoice.split(",")

multipleMin = int(multipleValues[0])

multipleMax = int(multipleValues[1])

multipleStep = int(multipleValues[2])

73

APPENDIX B. DESIGN SOFTWARE CODE

if multipleMax == 0:

#max value is large to keep running until line is full

for i in range(multipleMin,1000000000,multipleStep):

if Globals.linefullwarning == 1:

break

else:

print(i)

if multipleSelect == 'a range':

self.dlgaparam.SetValue('%s' % i)

elif multipleSelect == 'b range':

self.dlgbparam.SetValue('%s' % i)

elif multipleSelect == 'symmetrical a and b':

self.dlgaparam.SetValue('%s' % i)

self.dlgbparam.SetValue('%s' % i)

self.DXFWritebuttonFunc(wx.EVT_BUTTON)

+1 is to fix it stopping too early

else:

for i in range(multipleMin, multipleMax + 1, multipleStep):

print(i)

if multipleSelect == 'a range':

self.dlgaparam.SetValue('%s' % i)

elif multipleSelect == 'b range':

self.dlgbparam.SetValue('%s' % i)

elif multipleSelect == 'symmetrical a and b':

self.dlgaparam.SetValue('%s' % i)

self.dlgbparam.SetValue('%s' % i)

self.DXFWritebuttonFunc(wx.EVT_BUTTON)

def NewLinebuttonFunc(self,event):

hashtagSize, aParam, bParam, cParam, s1, s2, wireLength, wireDiameter, wirePitch, trenchLength, \

dotShift, rectangleWidth, trenchDepth, angle, trenchWidth, trenchSeperation, numIdenticalTrenches, \

stemLength, trenchSeperation = \

self.OKButtonFunc(wx.EVT_BUTTON) # press OKButton to retrieve data

Globals.linefullwarning = 0

self.x = 0 + Globals.xBlockNr * Globals.block_distance

self.y+= trenchLength+Globals.y_seperation

self.lineNumber += 1

self.lineCounter.SetLabel('Current line: %s' % self.lineNumber)

def NewBlockbuttonFunc(self,event):

Globals.xBlockNr += 1

self.x = Globals.xBlockNr*Globals.block_distance

self.y = 0

self.blocksCounter.SetLabel('Current block: %s' % int(Globals.xBlockNr + 1))

self.lineNumber = 1

self.lineCounter.SetLabel('Current line: %s' % self.lineNumber)

Globals.blockfullwarning = 0

Globals.linefullwarning = 0

def EstimatexSizeFunc(self,event):

74

hashtagSize, aParam, bParam, cParam, s1, s2, wireLength, wireDiameter, wirePitch, trenchLength, \

dotShift, rectangleWidth, trenchDepth, angle, trenchWidth, trenchSeperation, numIdenticalTrenches, \

stemLength, trenchSeperation = \

self.OKButtonFunc(wx.EVT_BUTTON) # press OKButton to retrieve data

xSizeEstimate = (wireDiameter[1]-wireDiameter[0])/wireDiameter[2]*\
(trenchSeperation+(cParam + s1 * hashtagSize[0] + s2 * hashtagSize[1] + trenchWidth)

+ trenchSeperation)

numxSizeEstimate = int(Globals.block_size/xSizeEstimate)

messagexSize = 'The estimated amount of trenches in one line: %s' % numxSizeEstimate

wx.MessageBox(messagexSize + ' This number might not be fully accurate.', 'Estimate', wx.OK

| wx.ICON_INFORMATION)

def SaveButtonFunc(self,event):

#If save location is not defined ask for location

if not self.SaveLocation:

self.saveLocationFunc()

If still no location is defined cancel saving

if not self.SaveLocation:

return()

try:

waitDlg = wx.BusyInfo('Saving...')

self.drawing.saveas(self.SaveLocation)

del waitDlg

except:

del waitDlg

wx.MessageBox('Something went wrong. Maybe the file is still open in autoCAD?','Save error',wx.OK

| wx.ICON_INFORMATION)

self.RealtxtSave = self.SaveLocation[:-3]

self.RealtxtSave += 'txt'

if os.path.exists(self.RealtxtSave):

try:

os.remove(self.RealtxtSave)

except:

msgPath1 = 'A txt file with the same name is open in another program. Close the other program and ' \

'restart this one. If you do not, no marker information can be written.'

dlgPath1 = wx.MessageDialog(parent=None, message=msgPath1, caption='Error')

dataLogFileReal = open(self.RealtxtSave,'w')

dataLogFileReal.write(Globals.dataLogFile)

dataLogFileReal.close()

def ActualSave(self):

self.drawing.saveas(self.SaveLocation)

def defaultValues(self):

config = configparser.ConfigParser()

config.read('config.ini')

self.dlghashtag1size.SetValue('%d' % Functions.ConfigExistChecker('defaults','hashtag1size',config,2))

75

APPENDIX B. DESIGN SOFTWARE CODE

self.dlghashtag2size.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'hashtag2size', config, 2))

self.dlgaparam.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'a_param', config, 800))

self.dlgbparam.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'b_param', config, 800))

self.dlgstemlength.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'stem_length', config, 500))

self.dlgwirelength.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'wire_length', config, 6000))

self.dlgwirediametermin.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'wire_min_diameter', config,

↪→ 20))

self.dlgwirediametermax.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'wire_max_diameter', config,

↪→ 50))

self.dlgwirediameterstep.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'wire_step_diameter', config,

↪→ 10))

self.dlgwirepitch.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'wire_pitch', config, 2000))

self.dlgtrenchlength.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'trench_length', config, 200))

self.dlgdotshiftmin.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'dotshift_min', config, 0))

self.dlgdotshiftmax.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'dotshift_max', config, 150))

self.dlgrectanglewidth.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'rectangle_width', config, 200))

self.dlgtrenchdepth.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'trench_depth', config, 580))

self.dlgtrenchseparation.SetValue('%d' % Functions.ConfigExistChecker('defaults', 'trench_separation', config,

↪→ 5))

with open('config.ini', 'w') as configfile:

config.write(configfile)

if __name__ == '__main__':

app = wx.App()

EBLWriter(None, title='EBL DXF writer')

app.MainLoop()

Listing B.2: Functions.py
import math

import matplotlib.pyplot as plt

from dxfwrite import DXFEngine as dxf

import wx

import Globals

import configparser

def plot_point(point, angle, length):

x, y = point

endy = y + length *math.sin(angle)

endx = x + length *math.cos(angle)

lines=plt.plot([x,endx], [y,endy])

plt.setp(lines,'color','r')

plt.axis('scaled')

#2D plot function to see wire arrangement

def plot_2D(hashtagSize,cParam,s1,s2,angle,wireLength):

if plt.fignum_exists(1):

wx.MessageBox('Close the previous plot first.', 'Close previous plot', wx.OK

| wx.ICON_INFORMATION)

return()

76

plotfig = plt.figure(1)

plotfig.canvas.set_window_title('2D NW visualization')

plotfig.clear()

plt.xlabel('[nm]')

plt.ylabel('[nm]')

for i in range(0, hashtagSize[0]):

plot_point([-cParam / 2 - s1 * i, 0], angle, wireLength)

for i in range(0,hashtagSize[1]):

plot_point([cParam / 2 + s2 * i, 0], math.radians(180.0) - angle, wireLength)

plt.show()

def DrawSingleTrench(x,y,drawing,hashtagSize,aParam,bParam,cParam,s1,s2,wireLength,wireDiameter,wirePitch,

trenchLength,dotShift,rectangleWidth,angle,trenchWidth,stemLength,trenchSeperation,

↪→ writeButtonClicks):

Calculate useful stuff
dotsPerTrench = int(trenchLength / wirePitch)

dotShiftDelta = (dotShift[1]-dotShift[0])/(dotsPerTrench)

draw rectangles including compensation for the wire not growing out of rectangle center.

for i in range(0, hashtagSize[0]):

drawing.add(dxf.rectangle((x -cParam / 2 - s1 * i

+ (trenchWidth - rectangleWidth) * (0.25-0.25*Globals.dots_centering), y),

rectangleWidth, trenchLength,layer='Rectangles'))

for i in range(0, hashtagSize[1]):

drawing.add(dxf.rectangle((x +cParam / 2 + s2 * i - rectangleWidth*1
- (trenchWidth - rectangleWidth) * (0.25-0.25*Globals.dots_centering), y),

rectangleWidth, trenchLength,layer='Rectangles'))

draw realistic trench size calculated from depth

for i in range(0, hashtagSize[0]):

drawing.add(dxf.rectangle((x -cParam/2-s1*i+(trenchWidth - rectangleWidth) * (0.25-0.25*Globals.

↪→ dots_centering)

-(trenchWidth-rectangleWidth)/2,y),trenchWidth,

trenchLength,layer='TrenchSize'))

for i in range(0, hashtagSize[1]):

drawing.add(dxf.rectangle((x +cParam/2+s2*i-rectangleWidth*1
- (trenchWidth - rectangleWidth) * (0.25-0.25*Globals.dots_centering)

-(trenchWidth-rectangleWidth)/2,y),trenchWidth,

trenchLength,layer='TrenchSize'))

#draw dots. The added sine function is to compensate for the EBL inaccuracy, amplitude determines max offset

for i in range(0, hashtagSize[0]):

for j in range(0, dotsPerTrench + 1):

drawing.add(dxf.rectangle((x-cParam / 2 -wireDiameter/2 - s1 * i+

Globals.sin_amplitude*math.sin(Globals.sin_periods*2*j*math.pi/(

↪→ dotsPerTrench+1)),

y -wireDiameter/2+ j * wirePitch + dotShift[0] + dotShiftDelta*j),wireDiameter,

wireDiameter,layer='Dots'))

77

APPENDIX B. DESIGN SOFTWARE CODE

for i in range(0, hashtagSize[1]):

for j in range(0, dotsPerTrench + 1):

drawing.add(dxf.rectangle((x+cParam / 2 -wireDiameter/2 + s2 * i+

Globals.sin_amplitude*math.sin(Globals.sin_periods*2*j*math.pi/(

↪→ dotsPerTrench+1)),

y -wireDiameter/2+ j * wirePitch),wireDiameter,

wireDiameter,layer='Dots'))

#Shadowing wires

if Globals.shadowing == 1:

for i in range(0,hashtagSize[0]):

for j in range(0, dotsPerTrench + 1):

drawing.add(dxf.rectangle(

(x - cParam / 2 - wireDiameter / 2 - s1 * i +

Globals.sin_amplitude *math.sin(Globals.sin_periods*2 * j *math.pi / (dotsPerTrench + 1))-

Globals.shadowing_xoffset,

y - wireDiameter / 2 + j * wirePitch + dotShift[0] + dotShiftDelta * j+Globals.shadowing_yoffset),

wireDiameter*Globals.shadowing_diameter_factor,

wireDiameter*Globals.shadowing_diameter_factor, layer='Dots'))

elif Globals.shadowing == 2:

for i in range(0,hashtagSize[0]):

for j in range(0, dotsPerTrench + 1):

drawing.add(dxf.rectangle(

(x - cParam / 2 - wireDiameter / 2 - s1 * i +

Globals.sin_amplitude *math.sin(Globals.sin_periods*2 * j *math.pi / (dotsPerTrench + 1)) -

Globals.shadowing_xoffset,

y - wireDiameter / 2 + j * wirePitch + dotShift[0] + dotShiftDelta * j + Globals.shadowing_yoffset),

wireDiameter*Globals.shadowing_diameter_factor,

wireDiameter*Globals.shadowing_diameter_factor, layer='Dots'))

drawing.add(dxf.rectangle(

(x - cParam / 2 - wireDiameter / 2 - s1 * i +

Globals.sin_amplitude *math.sin(Globals.sin_periods*2 * j *math.pi / (dotsPerTrench + 1))-

Globals.shadowing_xoffset,

y - wireDiameter / 2 + j * wirePitch + dotShift[0] + dotShiftDelta * j-Globals.shadowing_yoffset),

wireDiameter*Globals.shadowing_diameter_factor,

wireDiameter*Globals.shadowing_diameter_factor, layer='Dots'))

#Calculate total size, 1.2 factor for spacing

xSize = (cParam + s1*hashtagSize[0] + s2*hashtagSize[1] + trenchWidth) + trenchSeperation

return drawing,xSize

def DrawMultipleDiameterTrench(xBlock,yBlock,drawing,hashtagSize,aParam,bParam,cParam,s1,s2,wireLength,

↪→ wireDiameter,

wirePitch,trenchLength,dotShift,rectangleWidth,angle,trenchWidth,stemLength,

trenchSeperation,writeButtonClicks):

waitDlg = wx.BusyInfo('Drawing...')

wireDiameterDelta = wireDiameter[1] - wireDiameter[0]

numDiameterValues = int(wireDiameterDelta/wireDiameter[2])

x = xBlock

78

y = yBlock

#Add identifiers

if writeButtonClicks < 9:

markerString = '00'+str(writeButtonClicks+1)

elif writeButtonClicks < 99:

markerString = '0'+str(writeButtonClicks+1)

else:

markerString = str(writeButtonClicks+1)

drawing.add(dxf.text(markerString,(xBlock-Globals.marker_xoffset,y-Globals.marker_yoffset),

height = Globals.marker_height, layer='TextMarkers'))

write trenches

for i in range(0,numDiameterValues+1):

drawing,xSize = DrawSingleTrench(x,y,drawing,hashtagSize,aParam,bParam,cParam,s1,s2,wireLength,

wireDiameter[0]+wireDiameter[2]*i,
wirePitch,trenchLength,dotShift,rectangleWidth,angle,trenchWidth,stemLength,

trenchSeperation,writeButtonClicks)

x += xSize

#Write log file

Globals.dataLogFile+=markerString+"\n"

Globals.dataLogFile+="Hashtag size "+ str(hashtagSize[0]) +"x" + str(hashtagSize[1])+"\n"

Globals.dataLogFile+="a parameter "+str(aParam)+"\n"

Globals.dataLogFile+="b parameter " + str(bParam) + "\n"

Globals.dataLogFile+="wirelength " + str(wireLength) + "\n"

Globals.dataLogFile+="wire diameter " + str(wireDiameter[0])+"; "+str(wireDiameter[1])+"; "+str(wireDiameter[2]) + "

↪→ \n"

Globals.dataLogFile+="pitch "+str(wirePitch)+ "\n"

Globals.dataLogFile+="trench length " + str(trenchLength)+ "\n"

Globals.dataLogFile+="dot shift " + str(dotShift[0])+"; "+str(dotShift[1])+ "\n"

Globals.dataLogFile+="rectangle width " + str(rectangleWidth)+ "\n"

Globals.dataLogFile+="stem length " + str(stemLength)+ "\n"

Globals.dataLogFile+="trench seperation " + str(trenchSeperation)+ "\n"

del waitDlg

return x-xBlock #Return size of the total block

def Configparser():

config = configparser.ConfigParser()

config.read('config.ini')

Globals.block_size = ConfigExistChecker('block_params','block_size',config,500000)

Globals.block_distance = ConfigExistChecker('block_params','block_distance',config,540000)

Globals.y_seperation = ConfigExistChecker('trench_params','y_seperation',config,20000)

Globals.marker_height = ConfigExistChecker('marker_params','marker_height',config,2000)

Globals.marker_xoffset = ConfigExistChecker('marker_params','marker_xoffset',config,5000)

Globals.marker_yoffset = ConfigExistChecker('marker_params','marker_yoffset',config,7000)

Globals.sin_amplitude = ConfigExistChecker('trench_params','sin_amplitude',config,50)

Globals.sin_periods = ConfigExistChecker('trench_params','sin_periods',config,5)

Globals.shadowing_xoffset = ConfigExistChecker('trench_params','shadowing_xoffset',config,180)

Globals.shadowing_yoffset = ConfigExistChecker('trench_params','shadowing_yoffset',config,400)

79

APPENDIX B. DESIGN SOFTWARE CODE

Globals.shadowing_diameter_factor = ConfigExistChecker('trench_params','shadowing_diameter_factor',config,1.5)

↪→
Globals.dots_centering = ConfigExistChecker('trench_params','dots_centering',config,0.2)

with open('config.ini', 'w') as configfile:

config.write(configfile)

#Check whether config section and option exist, if not create and attach default value

def ConfigExistChecker(section,option,config,defaultvalue):

while True:

try:

globalparam = float(config.get(section,option))

return globalparam

break

except configparser.NoSectionError:

config.add_section(section)

except configparser.NoOptionError:

config.set(section, option, '%g' % defaultvalue)

Listing B.3: Globals.py
dataLogFile = ""

xBlockNr = 0

shadowing = 0

blockfullwarning = 0

linefullwarning = 0

ini constants

block_size = 0

block_distance = 0

y_seperation = 0

marker_height = 0

marker_xoffset = 0

marker_yoffset = 0

sin_amplitude = 0

sin_periods = 0

shadowing_xoffset = 0

shadowing_yoffset = 0

shadowing_diameter_factor = 0

dots_centering = 0

80

	Introduction
	Theory
	Quantum computing
	Topological quantum computing
	The basics
	First signatures of the Majorana Zero Mode
	Braiding and coherent transport
	The single qubit and beyond

	Nanowires and structures
	Nanowires
	Vapour-Liquid-Solid growth
	Crystal structure
	Nanowire networks

	Experimental methods
	Fabrication tools
	Plasma Enhanced Chemical Vapor Deposition (PECVD)
	Resist spinning, baking and developing
	Electron beam lithography (EBL)
	Reactive Ion Etching (RIE)
	Electron beam physical vapor deposition
	Metalorganic vapor phase epitaxy (MOVPE)
	Scanning electron microscopy (SEM)

	Sample preparation
	Design
	Phase one: Markers
	Phase two: Trenches
	Phase three: Dots

	Results
	Growth recipes
	InP nanowires
	InSb nanowires

	Stemless InSb nanowires
	InSb nanowires on InP stems
	InP stem length and encapsulation
	Three step InSb growth
	Optimizing InSb length
	Merging behaviour

	Conclusion
	Outlook

	Growth experiments
	Design software code

