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Abstract
High densities in fusion plasmas are beneficial for increasing power production, but
are restricted by the Greenwald density limit. Exceeding the limit triggers a thermal
quench leading to disruptions. This empirical limit is found in all tokamak exper-
iments and shows only dependence on the total current and poloidal plasma area.
Scientific consensus has not been reached on the underlying physical mechanism nor
on the formulation.

In this thesis, the enhanced magnetic island growth due to net cooling by impurity
radiation is investigated as responsible mechanism of triggering density limit disrup-
tions. Using MHD simulations of the fully nonlinear, finite elements code JOREK,
the evolution of the tearing mode and island growth is studied for varying electron
densities, temperatures, impurity fractions and types.

A distinct transition is observed in the tearing mode evolution when the electron
density exceeds a critical value. The 2⁄1-islands grow to normalized widths of 0.2-0.5
within a few milliseconds when radiative cooling dominates the Ohmic heating inside.
Magnetic field lines show ergodic behavior as the temperature profile collapses. The
transition is found to be strongly dependent on electron temperature, impurity density
and impurity type and is thus incompatible with the Greenwald density limit.

An analytical stability boundary is derived from a local heat balance and shown
to predict the island cooling and enhanced nonlinear growth. For specific impurity
mixtures, the temperature dependence is absent for an order of magnitude. Moreover,
the dependence on the impurity fraction is weak for sufficiently large values. Under
these circumstances a direct formulation of the global limit is found in terms of local
electron and current densities. Localized heating around and inside the 2⁄1-islands
suppresses island growth, while for central heating this effect is less efficient.

Using the Furth-Rutherford-Selberg equilibria profiles, the radial locations where local
electron density and current density match their globally averaged values are calcu-
lated. Their distance to the q = 2 surface is smaller than a typical island width for a
range of profile shapes and different devices. In combination with the weak dependen-
cies in the local power balance, a full explanation of the formulation of the Greenwald
density limit is proposed.

Two possibilities for exceeding the limit are suggested: additional heating around the
q = 2 surface and the removal of specific impurity species, even at the cost of higher
fractions of other species. Recommendations for future studies include full disruption
simulations using increased toroidal resolution and verification of the proposed expla-
nation using experimental reviews of physics parameters around magnetic islands in
combination with present impurity fractions.
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1. Introduction

1.1 The need for fusion energy

Ever since the formation of the first stars, the nuclear fusion reaction has provided
them with the energy to let them burn fiercely. Our own sun forms no exception
and it is thanks its power that life could emerge and flourish on earth. The human
race is one of the flourishing species on the earth’s surface with a rapidly increasing
population during the last centuries. This growth will continue in the coming decades
with expected world populations of more than 10 billion people [1]. With the ongoing
population growth the demand for energy increases, as every individual person has
an energy footprint dependent on their standard of living. As developing countries
constantly get access to new (technological) advancements, the average energy usage
per person increases as it stimulates and is correlated with economic growth [2, 3].

At present, the majority of the consumed energy is still generated by fossil fuels, see
figure 1.1. At the predicted usage rate, estimates are that all of them will get sig-
nificantly depleted, while oil and gas may even run out completely before the turn
of the next century [4]. With the burning of fossil fuels, a tremendous amount of
greenhouse gasses is emitted, of which CO2 is the most prevailing and well-known [5].
These gasses are the most important contributors to global warming and the result-
ing increase in severity and frequency of climatological disasters such as increases of
droughts, floods, ocean acidification and tropical storms. The consequences form a di-
rect danger to both man and nature, and affect public health by negatively impacting
ecosystems and food supplies [6, 7].

In order to tackle these phenomena, the political leaders of 195 countries signed
an agreement in 2015 which is commonly known as the Paris agreement [9]. One
of its points sets an upper bound of 2 °C on the average global temperature rise.
Another point restricts the emission of greenhouse gasses with the goal of having
no net emissions in the second half of this century [10]. Global energy production
should be emission neutral by this time. The achievement of these goals proves to be
challenging: it requires a transformation in our energy consumption and production.
The energy mix will have to undergo a transition from fossil fuel to alternative sources,
preferably renewable. The list of sources that will be able to significantly contribute
in this century is limited to those that are currently already available. This is based
on historical data for energy sources, in which any new energy source will first have to
go through a development time, which typically last several decades before it can start
to built up a contributing capacity [11]. The eligible group includes (photo-voltaic)
solar, wind, hydropower, tidal and nuclear fission sources.

As can be seen form figure 1.1, solar and wind energy have started to make a signifi-
cant contribution to the global consumption only since the beginning of this decade.
While this is a positive development, these sources are most likely not sufficient to
replace all fossil sources. One reason is their relatively low power density, resulting in
large land or sea area usage. Besides this, their output is inherently fluctuating with
the day-night cycle, seasons and local weather conditions. The times at which the
most power is generated are generally not coinciding with the times of most consump-
tion. To remedy this issue, enormous storage capacities should be build alongside the
production units. Constructing such large batteries is costly, requires many resources
and the technology is not at this readiness level yet. It is in fact more beneficial to in-
clude a dense energy source in the mix, which can provide a steady baseline regardless
of external conditions [12].

Nonlinear JOREK simulations of the Greenwald density limit with a thermo-resistive
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Figure 1.1: The majority of the total energy consumption during the past 50 years
originates from a handful of energy sources, with the largest contribution coming
from fossil fuels. Renewable sources such as solar and wind are just starting to make
a significant contribution [8].

In the first decades of the energy transition, fossil fuel plants can be replaced by fission
plants to provide this base production level. However, nuclear fission has a bad public
image regarding reactor safety with several disasters in the past causing regions to
become inhabitable. Then there is the production of long-lived radioactive waste,
for which no definite processing method exists (yet). Lastly, the current generation
reactors rely on uranium as a fuel source. While there is still plenty of it, there is a
limited amount available on earth.

Now consider a power plant driven by nuclear fusion. Reactors powered by it would
be similar in size and power output to present-day coal or nuclear fission plants,
which is beneficial for the energy-mix. The fuel for the fusion reactor is available in
virtually limitless amounts, as it is partly retrieved from seawater (deuterium) and
partly created in the reactor itself (tritium). The reaction-products are not long-lived
radioactive species as in the case of fission, but is harmless helium gas. On the other
hand, the reactor vessel will become radioactive through neutron irradiation, but effort
is put into the development of materials that can tackle this, such as EUROFER [13].
Lastly, the fusion reactor has no risk to have a meltdown, as only limited amounts
of fuel will be inside the reactor at a time and requiring tight control to keep the
reaction going. The main issue for fusion reactors is that it is not available yet. The
first reactor with a net energy output is currently being built as an international
collaboration in France, under the name ITER. Its construction should be a proof of
concept as well as a way to detect and solve yet unencountered problems.

Now that the economical and environmental needs to switch to reliable energy sources
are discussed, the focus can be shifted to a different aspect. Creating a working fusion
reactor is one of the greatest technological challenges mankind has encountered, but
not yet overcome. It kindles mankind’s curiosity to what is technologically possible
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by trying to capture energy from one of nature’s most potent sources. The present-
day fusion reactors are regarded as some of the most complex devices in the world.
Similar to many other technological challenges in the past decades, the development
of a new technology boosts our scientific understanding and show what we as a species
are capable of.

1.2 Fusion, how does it work?

In principle, the term fusion reaction may refer to any reaction in which multiple
atomic nuclei are combined into larger, heavier ones. Differences in nuclear binding
energy result in energy getting released in the form of kinetic energy, for reaction
products with atomic number smaller or equal to iron. A fusion reaction can occur
when two nuclei can come sufficiently close together, after overcoming the Coulomb
barrier with which they repel each other. Once their spatial distance is sufficiently
small, the merging of the atomic cores occurs under influence of the strong interaction,
which is the dominant attractive force at sub-atomic length scales. In practice this
close proximity can be reached if the particles have a sufficiently high velocity relative
to each other. For a collection of particles a high velocity relates directly to the
temperature. So heating a gas will result in a higher average particle velocity, while
also causing ionization of the gas, such that a mixture of atomic nuclei and free
electrons is created: a plasma.

The probability that a reaction will occur is characterized by the reaction rate (or ve-
locity averaged cross section), derived from the cross section. It is highly temperature-
dependent function, as can be seen in figure 1.2. This figure provides information on
the most beneficial fusion reaction and its optimal temperature regime. For a fusion
reactor on earth, a reaction with the highest possible rate at the lowest temperature
is desirable. The reaction between the hydrogen isotopes deuterium and tritium sat-
isfies this requirement, so is considered as the primary option for generating fusion
energy on earth.

In the deuterium-tritium (D-T) reaction a helium nucleus and a neutron are formed,
according to

D+ + T+ −→ He+ + n + 17.6 MeV,

which is shown schematically in figure 1.3. Per fusion reaction an energy of Efusion =
17.6 MeV1 is released, which is distributed over the products according to their mass
ratio. If a plasma with equal amounts of deuterium and tritium is considered, charge
neutrality gives nD = nT = 1

2ne with ne the electron density. The total fusion power
density is then given by

Pfusion = Efusion 〈σv〉nDnT =
1

4
Efusion 〈σv〉n2

e ., (1.1)

in which 〈σv〉 is the velocity averaged cross section, as in figure 1.2 [16].

Now that the physics of fusion at the atomic scale are introduced, we can zoom out
to the macroscopic scale: the device or reactor in which the process can be realized
and energy harvested. Although there are many concepts and designs available, this
thesis focuses on one of the most conventional confinement methods and designs: the
tokamak, which uses magnetic fields in a torus-like configuration.

11eV ≈ 1.602 · 10−19J
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Figure 1.2: The reaction rate for different fusion reactions (right) can be derived
from the cross sections (left) as a velocity averaged cross section 〈σv〉, here given as
a function of temperature. At too low temperatures particles will not have sufficient
energy to overcome the Coulomb barrier, while at high temperatures the particles’
high velocities will decrease their interaction time and thereby the fusion rate. The
scattering cross section (collision angle = 5°) exceeds the fusion cross sections by
several order of magnitude. Data is obtained from [14] and [15].
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Figure 1.3: A schematic representation of the atomic nuclei (protons in red, neutrons
in blue) involved in the deuterium-tritium fusion reaction. When the two nuclei fuse,
a helium nucleus and a free neutron are formed.
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1.3 The tokamak

Looking back to figure 1.2, it can be seen that the D-T elastic scattering cross sec-
tion exceeds the fusion cross section for the whole temperature range. So for every
successful reaction, there are multiple failed (scattered) in which the energy would
be lost. Luckily this does not have to be a showstopper if there is a way to confine
the particles and their energy inside a closed system. In this way they can undergo
multiple elastic scattering events before fusion occurs. This is possible with mag-
netic confinement: large magnetic fields that trap the charged plasma particles in a
gyrating motion around its field lines.

Because the magnetic field is divergence free, written as∇·B = 0, no magnetic sources
or sinks can exist. As a consequence, magnetic field lines have no start or end points
[17]. One method of keeping both the magnetic field and the particles following its
lines contained in a reactor of finite size, is to loop the field back on itself. A toroidal
configuration allows for an infinite number of encirclements encirclement. This is the
principle idea behind the tokamak, schematically sketched in figure 1.4.

The toroidal magnetic field in the tokamak is created by placing (superconducting)
coils around the plasma vessel. Because these coils are closer together on the inner
side of the reactor, the magnetic field is higher here compared to the outer side.
Without going into much details, this causes charge separation of ions and electrons
and subsequently in particle drifts2 directed radially outwards. Without any correc-
tion, the charged species in the plasma would be lost effectively immediately. The
tokamak design solves this issue by addition of a poloidal component to the magnetic
field, generated by a current. This is inductively driven in the toroidal direction by
the transformer effect, with a central solenoid as the primary coil and the plasma itself
acting as the secondary. Besides providing a stability to the plasma, the current heats
the plasma as well through resistive or Ohmic heating, on which will be readdressed
later.

The resulting magnetic field in the tokamak has a helical shape, with the field lines
confined to nested surfaces in the shape of tori, called flux surfaces. This is illustrated
clearly in figure 1.5. If the field line is followed for many toroidal rotations, it would
generally densely cover such a surface. Because transport of heat and particles parallel
to the field lines is typically orders of magnitude faster than perpendicular, quantities
such as temperature and density are in good approximation constant on a flux surface
[16].

The poloidal component of the magnetic field on a flux surface is related to the total
enclosed current, which increases when moving radially outwards. With the toroidal
component roughly constant over a poloidal cross-section, the helical field on each
surface has a different pitch angle. Now a ratio is assigned to the number of toroidal
and poloidal rotations a field line makes, which is called the safety factor

q =
rBtor

RBpol
, (1.2)

with r the distance to the magnetic axis in the poloidal plane, R the major radius
and BX the magnetic field component in the indicated direction. The safety factor

2The charge separation causes a vertical electric field, which in combination with the toroidal
magnetic field causes an E×B-drift. See chapter 8.4 of [16] for a clear description.
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Figure 1.4: A schematic representation of the tokamak showing the plasma (white)
confined by the magnetic field created by the toroidal magnetic field coils (green).
A toroidal current is induced by the central solenoid (yellow), which in turn creates
the poloidal magnetic field (red). The vertical magnetic field coils (blue) are used for
plasma shaping and stability, but have no relevance in this thesis. With permission
adapted from [18].

Figure 1.5: The magnetic field in a tokamak consists of nested torus-shaped flux
surfaces. Quantities such as density or temperature are considered to be constant on
such a surface due to fast transport along field lines.
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Figure 1.6: Magnetic islands, such as the 2/1-island in this figure, are formed when
the original flux surface (dashed) tears apart into a volume (red) that is topologically
separated from the rest of the structure. The left half of the island connects to the
right half after one toroidal round and vice versa, such that it makes up a single
helical structure.

is a smooth function and thus has infinitely many rational and irrational values.
An irrational value means that a field line will densely cover its flux surface, never
returning to a position it has visited before. Flux surfaces with rational q-values
are written as m/n with the number of toroidal rotations m and number of poloidal
rotations n both integers. A magnetic field line starting on such a rational surface
bites itself in the tail after m toroidal and n poloidal rounds. On these rational
surfaces the magnetic field can reorganize itself through a process called magnetic
reconnection: The surface tears and forms a closed volume which reconnects back
on itself after m rounds. Such a volume is called a magnetic island, because it is a
topologically separated region. Islands are usually referred to by their ratio of indices
m/n. A visualization is shown in figure 1.6. More details on the behavior of islands
will be given further on.

In this section other magnetic confinement methods such as stellarators, magnetic
mirrors, field pinches and completely different concepts such as inertial and elec-
trostatic confinement have been completely disregarded. This is because the density
limit investigated in this thesis is initially reported as a limit for tokamak experiments
[19]. Even though other devices can show similar limits [20], in this thesis the limit
will only be investigated for the devices where it was first encountered. Moreover, a
restriction to (roughly) axisymmetric devices in our numerical methods is given later
on.

Nonlinear JOREK simulations of the Greenwald density limit with a thermo-resistive
radiation model
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1.4 Operational limits in fusion devices

Operation of tokamaks is bound by limits on the operating space of the fusion plasma
inside, or operational limits for short. Exceeding a limit generally triggers unwanted
behavior in the form of instabilities. If an instability is triggered and allowed to grow
it can affect the macroscopic plasma parameters, leading to termination of the fusion
plasma in a disruption, of which the temporal behavior is schematically given in figure
1.7. A disruption can manifest itself in different ways, but in all cases a significant
amount of energy is lost from the plasma. Depending on the specific situation, several
phenomena may occur: the energy confinement is decreased, causing the plasma
to cool and through a change of the temperature-dependent resistivity the current
profile is altered [21, 22]. Generally the current inside the plasma decreases, with
the possibility of runaway electrons entering the reactor’s vessel and damaging either
diagnostics or the reactor itself [23]. Other types of damage can be due to massive
heat loads on plasma facing components or high mechanical loads on the structure
as the currents induce forces on the magnetic coils [24]. To prevent damage on the
reactor, it is of importance to stay within the operational limits during operation.

The operating window for a fusion reactor can be derived from the global energy
balance. In the D-T reaction from (1.1), the neutrons carry 80% of the freed energy
per reactions and are used for power generation outside the plasma. The helium
carries the other 20% of which a part is deposited in the plasma, therefore heating
it. In a steady state burning plasma, the helium ions are used to sustain reaction
and carry 20% of the total fusion power, so PHe = 1

5Pfusion. This heat source is
balanced by two loss terms: radial heat transport Pκ (diffusion) due to gradients in
temperature and bremsstrahlung Pbrem from the acceleration of high energy particles.
With no external power applied to the plasma, the global heat balance becomes

PHe = Pκ + Pbrem, (1.3)

with corresponding formulas

PHe =
1

4
Eα 〈σv〉n2

e =
1

16
Eαp

2 〈σv〉
T 2

Pκ =
3

2

p

τE

Pbrem =
1

4
CBZeff

p2

T 3/2
.

(1.4)

adapted from [16]. Here the T is the temperature, the total pressure is p = 2neT ,
Eα = Efusion/5, CB is a constant, Zeff is the effective charge of the plasma (1 for
hydrogen isotopes, but higher if helium ash or impurities are present) and τE is the
energy confinement time. This time resembles the typical timescale on which energy
is conserved in the reactor and is defined by the ratio between the total energy in the
system and the input power required for steady state operation: τE = Estored/Pinput.

The result of the balance is a restriction on the triple product

neτET ≥
24T 2

Eα 〈σv〉 − 4CBT 1/2
, (1.5)

required to achieve ignition [16, 26]. This quantity is informative to determine the
required temperatures and densities for a net energy producing fusion plasma. Rewrit-
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Figure 1.7: A precursor in the form of growing plasma instabilities can trigger a dis-
ruption in which the energy is lost from the plasma in a thermal quench (TQ), within
typically a few milliseconds. The change in resistivity then causes the current profile
to decay in a current quench (CQ) which lasts typically a few tens of milliseconds
[25].

ing it to a restriction on the density as

ne ≥
12T

τE
(
Eα 〈σv〉 − 4CBT 1/2

) , (1.6)

gives additional insight and is shown in figure 1.8 for τE = 10 s. Besides the depen-
dency of fusion power on density squared from equation (1.1), a condition is obtained
for a minimum density below which fusion will not work. Moreover, this formula-
tion allows for comparison with two important operational limits. The total kinetic
pressure in a fusion reactor is limited to a fraction of the magnetic pressure 1

2B
2/µ0

imposed by the magnetic field coils. This is the β-limit or Troyon limit [27]. The
second is the Greenwald density limit, which limits the maximum allowable density,
independent of the temperature. Both are shown in figure 1.8, from which it becomes
clear that increasing the density for a higher fusion power output or to get into the
operating regime is not always possible.

1.4.1 The Greenwald density limit

In the analysis of experiments in multiple tokamak devices, several processes are
identified that limit the maximum attainable density. The most important ones are
radiation from light impurities at the edge, radiation in the plasma core, low particle
confinement in the core and insufficient fuelling [19]. In the more recent TEXTOR
device, there are actually two distinct types of density limits distinguished. The first
one occurs when there is a high concentration of impurities, the total radiated power
may exceed the total (auxiliary) input power and the plasma quickly loses its stored
energy [28, 29].

Nonlinear JOREK simulations of the Greenwald density limit with a thermo-resistive
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The second type is distinctly different as it is also encountered in relatively clean
plasmas with less radiation. As soon as a certain density is exceeded, a significant
part of the stored energy is lost in a thermal quench. The resistivity of the cooling
plasma increases and the current is transferred to the surrounding structures through
induction in a current quench [30]. The onset for such disruption happens at a strict
limit, which is effectively described by Greenwald et al. in 1988 in an attempt to
describe at which density such a disruption takes place [19]. This work resulted
in an empirical limit, which in its most well-known form states that the electron
density ne, averaged over a sight-line through the device, can not exceed the value of
the Greenwald density nG, which is clearly indicated in figure 1.9. In mathematical
terms this means

n̄e

[
1020m−3

]
≤ nG

[
1020m−3

]
=
Ip [MA]

πa2[m]
, (1.7)

in which Ip is the total current and a the plasma’s minor radius, i.e. the distance
from magnetic axis to the plasma edge. A careful reader will notice that the units
of the left- and right hand-sides do not match and that there are seemingly arbi-
trary magnitudes included along with the units in the square brackets. Furthermore,
the presented relation between electron density and average current density is de-
rived from empirical scaling studies such as in [19]. To present date, there is no fully
accepted explanation to why the relation has this form or why specifically these quan-
tities are in the scaling. Moreover, if the density limit would be related to a power
balance, a strong dependency on external heating would be expected, but is absent.
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Figure 1.9: The empirical Greenwald density scaling (dotted line) is used to quantify
the maximum attainable electron density before a disruption. Here it is shown that the
experimental electron density is always lower or approximately equal to the Greenwald
density at a disruption, for three tokamak devices (colored dots) over a wide range of
densities [20].

Moreover, any effect of impurity density or type is not present in equation (1.7).

While gaining insight in the mechanism that triggers the sudden disruptions at the
Greenwald density is interesting from a fundamental physical standpoint, the new
knowledge can be used for more than solely that. Disruptions at the density limit
are destructive and cause large forces on structural components and high currents
in the reactor vessel, possibly leading to damaged diagnostics or components crucial
to operation. These large disruptions get more intense for large devices and should
be avoided at all costs for ITER, which will be equipped with disruption mitigation
systems. [31, 32].

The density limit is in principle well described by the empirical scaling, but is unable
to describe all experimental results. Experiments in TEXTOR have been able to sur-
pass the limit by a factor 2 by controlling the impurity concentrations and providing
external heating [28]. In DIII-D, operation in the high confinement mode (H-mode)
reproducibly allows for densities 40% above nG [33]. These results lead to questions
about the completeness of the law in its current formulation and its validity regime.
Operating an experiment above the Greenwald density should presently still be done
with high uncertainty as there is no theory for the onset of the limiting factor present.
A theory on the underlying physics would give fusion experiments a more solid, hope-
fully measurable, figure of merit to characterize disruption-free regimes. Prevention
and prediction of the onset of the limit is only one side of the coin once the mechanism
would be understood. It will open possibilities to explore pathways, operation modes
or mechanisms to surpass the limit. This in turn may lead to a higher fusion power
production as discussed with relation to figure 1.8 and hence being one step closer to
net fusion energy production in a commercial reactor.
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1.5 Current state of research

As a long-standing problem in tokamak physics, the Greenwald density limit has
already been subject to multiple researches, trying to find its origin [30]. Multiple
plausible mechanisms are proposed as part of the explanation: radiation from the
edge, turbulence or radiation-driven (neoclassical) tearing modes [34, 30, 35]. The
explanation focused on in this thesis is presented in a series of papers by the Princeton
Plasma Physics Laboratories [35, 36, 37, 38, 39, 40]. The work consists mostly of a
theoretical framework accompanied by semi-analytical and numerical analyses on the
thermo-resistive tearing mode and radiation-driven islands. From here on the term
Gates-model will be used to describe their collective work.

The Gates-model uses the resistive hydrodynamic (MHD) framework to describe mag-
netic islands as an instability therein. The plasma is described as a continuous, con-
ducting fluid, so that equations for the flow as well as Maxwell’s equations for elec-
tromagnetism need to be solved. The resistivity allows for formation and evolution of
magnetic islands at rational flux surfaces, which evolve into topologically separated
regions with a finite width. The formation and growth of islands involves the so-called
tearing mode. The inner and outer boundary of a magnetic island, together called
the separatrix, are connected by the same magnetic field lines. Combined with the
transport along these lines that is typically many orders of magnitude faster than
across, the separatrix can be seen as a flux surface. The boundary of the island has
a uniform temperature and heat transport experiences a shortcut over the width of
the island. A larger island directly leads to worse energy confinement. If the island
grows substantially large this can possibly cause enough energy to be lost to trigger
a disruption.

The tearing mode evolution is dependent on the resistivity, which scales with the
temperature as ηSp ∼ T−3/2 according to Spitzer [41]. Net cooling or heating thus has
an effect on the growth of the islands. It is already shown that islands with a saturated
size can grow when cooled internally and shrink under influence of internal heating
[40]. Further in the model, the interior of the islands is approximated as a thermally
isolated region, with heat transport directed mainly around the island through its X-
points, especially when it has a substantial width. Any external heating mechanisms
(such as Neutral Beam Injection or Electron Cycloctron Resonance Heating) deposit
their energy mainly outside the islands, for instance in the core of the plasma during
normal operation, so that they do not affect the energy balance in the islands. The
two energy sources that do contribute to the local energy balance inside are the Ohmic
heating

PΩ = ηSpj
2, (1.8)

with j the current density and radiative cooling due to the presence of impurities

Prad = nenimpLrad (ne, Te) , (1.9)

with Lrad (ne, Te) the radiation power density. The energy balance between these
terms forms the core of the Gates-model, which is schematically represented in figure
1.10.

The presence of impurities with a high atomic number Z in a plasma is detrimental for
fusion performance due to this radiative cooling, even at high fusion temperatures of
several keV. The reason for this is that atomic species with a high Z value take more
energy than hydrogen isotopes or helium to become fully ionized, because they have
more bound electrons. As long as electrons are bound to the atom, there are discrete

14 Nonlinear JOREK simulations of the Greenwald density limit with a thermo-resistive
radiation model



PΩ = ηj2 PΩ = ηj2

Paux Paux

Prad

Figure 1.10: Schematic representation of the Gates model in which islands are
heated by Ohmic heating PΩ and cooled by radiation Prad (blue). The majority of
the heat from auxiliary sources Paux is transported around the magnetic islands (red),
so that in the internal power balance its contribution can be neglected.

energy levels for it to be in, hence it can transition between those under absorption
and emission of line radiation. For example, the foreseen plasma-facing material for
ITER is tungsten (Z = 74), which has around 20 bound electrons left around relevant
fusion temperatures. Besides radiation, large concentrations of impurities are to be
avoided because of their surplus of electrons, which cause the total electron density to
increase. With the maximum number of electrons limited by the Greenwald density
limit (1.7), this restricts the number of fusion fuel particles in a reactor.

The literature in which aspects of the Greenwald density limit are described us-
ing the Gates-model rely on analytical work in [35, 36]. After introduction of the
mechanisms (local energy balance, Ohmic heating, radiative losses), the width of the
magnetic islands in the poloidal plane is introduced as figure of merit [38]. The model
including island width is then tested against the empirical formulation (1.7) using
semi-analytical work in combination with nonlinear MHD simulations [39, 40].

1.6 Motivation for this research

The presented work on the Gates-model up until now is not complete yet. First and
foremost, the set of situations for which the Greenwald density limit is specific and re-
stricted to the Furth-Rutherford-Selberg equilibria, which act as model profiles when
the profile’s peakedness is a key parameter [42]. They are not necessarily representa-
tive for modern fusion reactors. Besides this, if radiation is such a crucial aspect for
the density limit explanation, then one would expect a strong dependence on impurity
density and temperature in the model and possibly in the empirical limit as well. A
strong dependence of the Greenwald limit on impurity density is actually found in
a parameter scan (figure 14 of [39]). This scaling is not consistent with the robust
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and universally encountered Greenwald limit. The authors of the paper solve this
inconsistency by fixing the resistivity, which is not physically realistic. This means
that the influence the different impurity concentrations have on the Ohmic heating is
negated. However, the radiated power is allowed to change freely, which would result
in an overestimation of the effectiveness of the mechanism. The presented work in this
thesis aims to tweak parameters as consistently and physically accurate as possible.
Another remark can be made about the cooling rate used in the literature. In reality
this would be heavily dependent on impurity type, concentration and temperature,
but strong dependencies are surprisingly absent. It is unlikely that this is the full
picture, so that is why in this thesis an attempt will be made to explore a larger
(impurity) density and temperature spectrum.

For this research the fully non-linear 3D MHD code JOREK will be used. This is a
state-of-the art code, based on the Finite Element Method (FEM). In recent versions
(model 501), it is able to solve for the main plasma parameters (introduced in 3) as well
as a second particle population: the impurity density including its effects on radiation,
the energy balance and flows. Also, the Ohmic heat source is implemented as a result,
which provides JOREK with the last ingredient to properly test the Gates-model. The
benefit of using JOREK is its non-linearity, making it possible to run deep into non-
linear regimes of for instance disruptions. Simulations are possible where localized
impurity radiation triggers a thermal quench and parts of the subsequent current
quench [43]. This opens the possibility to not only look for large magnetic islands
as a criterion, but also the subsequent phenomenology associated with density limit
disruptions. In other words, there is an opportunity to see how large magnetic islands
may cause loss of confinement and trigger a disruption. Moreover, JOREK is not limited
to checking one phenomena at a time, but can handle complex physical situations with
multiple mechanisms influencing each other. At last, at the boundary of this research,
it is possible to run JOREK simulations in realistic experimental conditions, with correct
geometry, X-point and plasma parameters. While only the physical mechanism for
the density limit will be looked at, it is in principle possible to see this mechanism in
future devices such as ITER and make predictions based upon that.

With this powerful computational tool in mind, the focus lies on the following aspects
in this research:

� the validation of the island width as figure of merit in the Greenwald density
limit problem,

� the mechanisms in the growth of radiating magnetic islands, which will be partly
a verification of the work done in [40] where the relation between heating, cooling
and island width is explained qualitatively,

� other equilibria than the self-consistent Furth-Rutherford-Selberg equilibria used
in the Gates-model,

� the influence of electron density, electron temperature, impurity density and
impurity type on the island growth with the aim to try to independently inves-
tigate the role of these quantities,

� the search for additional parameter dependencies in the Greenwald limit or
explanations for their absence.
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1.7 Research Question

Now that the problem statement, present state of research and new possibilities are
clear, the research question for this project can be stated:

How does the semi-analytical model of radiative growth of magnetic islands
relate to the empirical Greenwald density limit?

The following sub-questions will need to be answered in order to comment on the
global research question:

� Can the mechanism presented by the Gates-model be observed in JOREK sim-
ulations?

� For which conditions is there an agreement with theory and experiments, and
how accurate is it?

� Can the (lack of) dependencies in the empirical Greenwald limit be explained?

� What are the implications for future experiments?

The presented research in this thesis is the result of a combined graduation project at
the Eindhoven University of Technology (TU/e) in the groups Science & Technology
of Nuclear Fusion and Turbulence and Vortex Dynamics. This project has been super-
vised by Guido Huijsmans, Leon Kamp and Daan van Vugt. Under their supervision,
the use of the MHD code JOREK in combination with High Performance Computation
at MARCONI 3 has been possible. The recent addition impurities, Ohmic heating
and radiative cooling to JOREK allows this research to be possible and investigate if
new physics can be found with the added components.

1.8 Outline of this thesis

This thesis is structured in the following way. A theoretical overview of the relevant
MHD quantities, along with a better look at the tearing mode and impurity radiation
will be given in Chapter 2. The quantities and equations used by JOREK are shown
in the first half of Chapter 3. The second half entails the general approach to this
research, including which parameters to track, which knobs to turn and which addi-
tions or alterations to the code are done. Chapter 4 then shows the main results on
the various aspects of the simulations, including tearing modes, impurity radiation
and heat balances. These results are discussed and placed in context in Chapter 5.
In Chapter 6 conclusions are drawn based on the presented results and an outlook
is given for future experiments based on extrapolations of the current work. This
is paired with recommendations for future work on this subject. The appendices
present the convergence and validation studies of the simulations in Appendix A,
details on the magnetic island finding and tracing routines in Appendix B and the
JOREK normalization in Appendix C.

3ranked as 19th most powerful, commercially available HPC as per November 2019
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2. Theoretical Background
This chapter is meant to briefly introduce the theoretical background needed to un-
derstand the numerical methods and results in the next chapters. The focus lies
on the applicability and validity, hence no full derivations are given. A more thor-
ough description on magnetohydrodynamics (MHD) or tearing modes can be found
in [16, 44, 45].

2.1 Magnetohydrodynamics

The magnetohydrodynamic framework is used to describe a collection of many ionized
particles as a magnetized fluid using balances from hydrodynamic theory in combi-
nation with electromagnetic contributions. The set of equations that are used to
describe a plasma consists of a mass continuity equation, a momentum equation sim-
ilar to Navier-Stokes and an energy equation. Electric and magnetic components are
added by including Maxwell’s equations to the set. The explicit form of the equations
used in this research is given in Chapter 3.

Because the set of MHD equations uses only continuous descriptions, validity restric-
tions on time and length scales are inevitable. In figure 2.1 the MHD model is placed
in perspective along with approximate scales of typical quantities and phenomena.
An ideal description would solve the equations of motion for every individual parti-
cle, but this is simply not feasible for large systems with particle densities of the order
1020 m−3, because of the computational costs required. The Vlasov model reduces the
problem to distribution functions and the gyrokinetic model eliminates the gyration
of charged particles around magnetic field lines. Each step reduces the computational
cost of the system in exchange for not being able to resolve an increasing number of
physics phenomena. The MHD model is used for describing macroscopic processes on
relatively long timescales, such as edge localized modes (ELMs) and tearing modes in
tokamak plasmas.

Typical timescales

One of the typical timescales in resistive MHD is the resistive time

τR =
µ0a

2

η
, (2.1)

with µ0 the magnetic permeability, a a typical length scale (plasma minor radius)
and η the resistivity. It can be used to directly compare timescales of the growth of
resistive phenomena such as magnetic island growth, when resistivity or temperature
differ [40].

A typically much shorter timescale is the Alfvén time

τA =
a
√
µ0ρ0

B0
(2.2)

with ρ0 the equilibrium density and B0 the unperturbed magnetic field. The time
normalization used by JOREK, introduced in chapter 3, will show similarities to this
time scale.

The ratio between these times is the Lundquist number

S =
τR
τA

=
B0a

η

√
µ0

ρ0
, (2.3)
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Figure 2.1: A plasma is characterized by a cascade of length and time scales: from
experiment dimensions R, a via Larmor radii ρions/e to the Debye length λDe and
from plasma oscillations ωpe and cyclotron frequencies Ωions/e via Alfvén time τA to
typical time scales for the thermal quench (TQ) and current quench (CQ). Approxi-
mate regimes for phenomena and applicable models to describe them are indicated.
Adapted from [46].

which can be seen as a magnetic Reynolds number for the case that the Alfvén velocity
is used as the typical velocity. As the ratio between a resistive and a plasma timescale,
it is proportional to the typical time it takes for a tearing mode to grow and saturate,
discussed hereafter [40].

2.2 Tearing modes

The instability that lies at the core of the formation and growth of magnetic islands
is the tearing mode. In a plasma with a finite resistivity, magnetic field lines may
tear apart and reconnect, hence the name for this mode. This causes a change in
topology, and subsequent magnetic island may grow as illustrated in figure 2.2. It
can be shown that the resistivity is only important around rational q-surfaces [47].
So at these locations in tokamak plasmas the magnetic islands will form and grow,
conceptually shown in figure 1.6.

2.2.1 Linear perturbation theory

The aim of this section is not to give a full derivation of the growth of the tearing
mode, since that is already done excellently in [48]. Only the for this research relevant
time scales and general dependencies of the tearing mode are written here.

In a plasma the tearing mode may grow on interfaces where there is magnetic shear:
a change in parallel field strength across it. Then, from an equilibrium situation a
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Figure 2.2: Left: The magnetic field lines with a sudden jump in direction or
strength can be unstable for the tearing mode. Right: After reconnection the topology
is changed and magnetic islands can grow, seperated from the main magnetic field
by the separatrix (dashed). The X-points, where the separatrix legs meet, and the
O-points in the center of the islands are indicated with crosses and circles respectively.

slight perturbation of the form A (x, t) = A (x) eiky+γt is added to the magnetic field,
density and velocity. Linear stability analysis of the MHD equations results in an
instability growth rate for the magnetic perturbation of

γ ∼ (∆′)
4/5

τ
2/5
H τ

3/5
R

. (2.4)

Here, ∆′ is the tearing stability index, which determines if the tearing mode is stable
(∆′ < 0) or unstable (∆′ > 0) and is depending on plasma equilibrium and position
in the plasma [49, 38]. The hydromagnetic time-scale is defined by

τH ∼
τA
ka

(2.5)

and depends on the wave number k of the specific mode.

The tearing mode then grows on a hybrid timescale

τTM ∼
1

γ
∼ τ2/5

H τ
3/5
R ∼

(
µ4

0ρ0a
6

k2η3

)1/5

∼ η−3/5, (2.6)

as is consistent with findings of Wesson [50] and Rutherford [49]. This also implies

that the typical growth rate of the tearing mode scales as γ ∼ η
3/5 ∼ T

−9/10
e if the

Spitzer scaling is assumed for the resistivity [41].

2.2.2 Nonlinear phenomena

The linear perturbation theory can only be used as an accurate description during
the first moments of the growing instability, when the perturbations do not affect
the equilibrium quantities. As soon as the tearing mode grows substantially and the
formed magnetic islands have a non-negligible width, nonlinear theory is necessary
for an accurate description.

During the nonlinear phase the islands grow until a saturated, steady state is reached.
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Heat transport

Magnetic field lines on the edge of magnetic islands, the separatrix, travel helically
around the island itself, similar to the magnetic island itself winding around the torus.
This means that such a field line creates a connection between different radii in the
poloidal plane, which acts like a shortcut for energy transfer as the heat conductivity
along field lines is typically much larger than across: χ‖/χ⊥ ≈ 108. Here χ is the
heat transfer coefficient which appears in the calculation of heat flux: q = nχ∇T ,
with n the particle density and T the temperature. However, as field lines near the
X-point of the separatrix, stagnation occurs by which the number of toroidal windings
to cross the X-point increases drastically and thereby reducing the efficiency of the
parallel heat transport [45]. In regions where this parallel transport dominates, the
temperature profile is flattened, which is seen first around the O-point of islands.
Fitzpartrick found that this flattening occurs when the island’s width is approximately
larger or equal than a critical width given by

wc =

(
χ‖

χ⊥

)−1/4
(

8Rq

n∂q∂r

)1/2

, (2.7)

[51].

For sufficiently large islands at different radial locations, interaction will produce
stochastic regions in the magnetic field around them. In comparison to a non-ergodic
situation, radial transport is enhanced by the magnetic field lines connecting the
islands [45, 52].

Neoclassical tearing modes

The presented theory on tearing modes in this section should not be confused with
the neoclassical tearing mode (NTM), which is the result of nonlinear excitation of
the regular tearing mode. In this scenario, the flattened pressure inside an already
existing seed island lowers the bootstrap current and drives the island more unstable,
if the seed islands have an initial minimum critical width [53]. NTMs are outside the
scope of this research and will not be included in the numerical methods.
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3. Numerical Methods

3.1 Nonlinear MHD code JOREK

JOREK is a fully non-linear MHD code capable of calculating the temporal evolution
of a fusion plasma in realistic configurations including the plasma core, X-point and
scrape-off layer until the divertor. The code is initially developed for stability studies
on Edge Localized Modes (ELMs) [54], but has since been used to simulate various
onsets of disruptions including tearing mode growth [55] and rapid cooling due to
impurity injections [43].

JOREK internally consists of a collection of different models, each solving a set of
equations for the same quantities, but also introducing different specialized additions
to the code. In this project model 501 is used, which adds a continuity equation for the
impurity density, compared to the core set of equations [43]. Additional alterations are
realistic Ohmic heating based on Spitzer resistivity and impurity radiation assuming
Coronal equilibrium. When covering the quantities and their equations in this chapter,
extra attention will be given to aspects unique to model 501.

3.1.1 Coordinate systems

The coordinate system in JOREK is left-handed and cylindrical, defined by (R,Z, φ)
according to figure 1.5. In a poloidal plane it is possible to additionally use a polar
coordinate system with (r, θ).

In tokamaks the magnetic field is nearly uniform in the toroidal direction, or almost
potential, which allows us to use reduced MHD in JOREK [56]. This allows the full set
of MHD equations to be reduced by 1 parameter and 1 equation, thereby making it
more computational friendly. In reduced MHD a divergence-free magnetic field can
be written as

B = ∇ψ ×∇φ+ F∇φ (3.1)

in which ψ is the poloidal magnetic flux, labeling the flux surfaces in a tokamak, and
F = F (R,Z, t) a general function independent of toroidal angle φ. In JOREK, the
factor scaling the toroidal magnetic field is F = F0 = constant, such that Bφ scales
with 1

R . This means that the toroidal magnetic field is axisymmetric and effects as
magnetic ripples due to a finite number of coils are discarded. This is acceptable for
(theoretical) studies in which the poloidal plane is mostly looked at. In this coordinate
system, The total velocity vector is written as

v = v‖B−R2∇u×∇φ, (3.2)

with u as a flow function and v‖ the component parallel to the magnetic field.

3.1.2 Discretization

Full information on the JOREK discretization is given in [57], of which a brief overview is
given here. The poloidal plane is discretized in both the radial and poloidal direction,
as shown in figure 3.2. Each of the resulting elements has local coordinates (s, t)
which range between 0 and 1. Inside an element, a quantity Y can continuously be
expressed with

Y (s, t) =

3∑
i=0

3∑
j=0

Pi,jB
3
i (s)B3

j (t), (3.3)
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Figure 3.1: JOREK uses a left-handed cylindrical coordinate system to specify spatial
positions in the plasma. R is the radial distance measured from the symmetry axis, Z
the vertical displacement relative to the midplane and φ the toroidal angle in counter-
clockwise direction when looked at from above.

Table 3.1: Fourier series for the toroidal discretization in JOREK for a device with
periodicity of 2π.

JOREK harmonics Basis function
1 1
2 cos (φ)
3 sin (φ)
4 cos (2φ)
5 sin (2φ)
... ...
n tor-1 cos ((n tor− 1)φ/2)
n tor sin ((n tor− 1)φ/2)

i.e. a linear combination of functions in which information about the quantity is
stored in Pi,j . B

3
i (s) are a third-order Bernstein polynomials defined by

B3
i (s) =

3!

i! (3− i)!s
i (1− s)3−i

(3.4)

and shown in figure 3.3. The requirement that the function values and first-order
derivatives are continuous on the intersection between elements, only specific com-
binations of Pi,j are valid, leaving four free parameters for each combination in
(i, j) = (0, 0), (0, 3), (3, 0), (3, 3) per quantity. The function for Y is then projected on
the elements where it is used on the Gaussian points.

For the toroidal direction, the real part of a Fourier series is used: sines and cosines.
For set of 2 JOREK harmonics added to the simulation, an additional sine and cosine
are included, as can be seen in table 3.1.
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Figure 3.2: A quarter of the poloidal grid used in the JOREK simulations is shown
with 126 and 76 elements in radial and poloidal directions respectively. Each element
has local coordinates (s, t). The radial size of the elements is varied to increase the
resolution around the q = 2 and q = 3 surfaces.
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Figure 3.3: The 3rd order Bernstein polynomials as defined by 3.4 are shown. The
set is a normalized one, as the sum of the four curves is equal to one.

3.1.3 Normalization

Quantities in JOREK are not calculated in SI units, but rather in their own self-
consistent system. While they are transformed into a dimensionless description, there
is some normalization based on a group of parameters which will be discussed here,
such that the equations in the next section can be shown in their implemented form.

Two parameters that define the majority of the normalization routine are

n0

[
m−3

]
= central density · 1020

ρ0

[
kg m−3

]
= central mass · n0 ·mproton

(3.5)

which can be seen as scalings for the number density and mass density profiles, re-
spectively. The main plasma species, which is reflected by the constants mproton =
1.673 · 10−27kg and central mass = 2. The term central density will be varied
to allow parameter scans in which multiple quantities are scaled consistently. The
normalizations of time, density and temperature are

tSI [s] = tJOREK ·
√
µ0ρ0

TSI [eV] = TJOREK/ (eµ0n0)

nSI

[
m−3

]
= ρJOREKn0

(3.6)

with µ0 = 4π · 10−7 Vs/ (Am), e = 1.602 · 10−19 C and in which the temperature is
that of the total plasma: T = Telectrons + Tions. A more extensive list of normalized
quantities can be found in C. By the definitions above, the total plasma pressure is

pSI

[
N/m2

]
= nSIeTSI

= ρJOREKn0eTJOREK/ (eµ0n0)

= ρJOREKTJOREK/µ0

(3.7)
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Table 3.2: Mathematical definitions

Symbol Definition Description

{f, g} R (∇f ×∇g) · ∇φ Poisson brackets

∆∗f R
∂

∂R

(
1

R

∂

∂R
f

)
+

∂2

∂Z2
f Laplacian-like operator with components in

the poloidal plane

∇polf
∂f

∂R
∇R+

∂f

∂Z
∇Z Components of the gradient in the poloidal

plane

and thus independent of the choice of normalization. In other words, when doing
a parameter scan by variation of central density, the density and temperature
profiles scale such that the pressure is unaffected.

From here on all expressions and equations are given in JOREK units, unless stated
otherwise or units are explicitly written. Furthermore, the main plasma component
will be deuterium, indicated with subscript D.

3.1.4 Quantities and their equations

JOREK model 501 solves a set of equations for the following 8 quantities: the poloidal
magnetic flux ψ, the flow function u, the toroidal current density j, the toroidal
vorticity ω, the total mass density ρ, the temperature T , the parallel velocity v‖ (in
toroidal direction) and the impurity mass density ρimp.

Model 501 has some definitions of quantities that are distinctly different than other
version of the code. Neglecting the electron masses, the densities are related by
ρ = ρD + ρimp. For the temperature it is assumed that all species have the same
temperature T/2, such that T = Te +TD. The total pressure is defined by the product
of the total particle density and temperature: P = ntotT/2. Using charge neutrality,
ne = nD + 〈Z〉imp nimp, the total density is rewritten as ntot = nD + ne + nimp =

2nD +
(
〈Z〉imp + 1

)
nimp. With the additional relations between particle and mass

density ρX = nXmX, the final form is

ntot =
2

mD

ρ+


(
〈Z〉imp + 1

)
mD

2mimp
− 1

 ρimp

 =
2

mD
(ρ+ αρimp) . (3.8)

Finally, the total pressure in JOREK units is

P = ntotT/2 = (ρ+ αρimp)T. (3.9)

The terms that are unique to model 501 (including P ) will be written in red in the
equations below and explained if necessary. Non-trivial mathematical operations are
written in table 3.2.

The poloidal flux is solved with the induction equation

∂ψ

∂t
= η (j − j0)−R {u, ψ} − F0

∂u

∂φ
, (3.10)

where η is the resistivity which is scaled with temperature like the Spitzer resistivity

(∼ T−3/2
e ) [41], with respect to a user defined input value. The first term on the right

26 Nonlinear JOREK simulations of the Greenwald density limit with a thermo-resistive
radiation model



hand side contains a combination of the local current density j and a source current
density j0 which can be customized.

The current density is calculated with Ampère’s law:

j = ∆∗ψ. (3.11)

This quantity is not a real current density, because it is multiplied by the local coor-
dinate R. The real toroidal current density is jφ = −j/R.

The equations for vorticity and parallel momentum are both derived from a global
momentum equation:

∂ρv

∂t
= J×B−∇P + ν∇2

polv −∇ · (ρv) v − ρv · ∇v (3.12)

and obtained by specific vector operations which filter out the required components.

The vorticity equation is obtained by applying the operation ∇φ · ∇×
(
R2...

)
on the

momentum equation, as the rotation of a velocity field is the vorticity. This results
in

R∇ ·
[
R2

(
ρ∇pol

∂u

∂t
+∇polu

∂ρ

∂t

)]
=

1

2

{
R2 ‖∇polu‖2 , R2ρ

}
+
{
R4ρω, u

}
−R∇ ·

[
R2∇polu∇ · (ρv)

]
+ {ψ, j}

−F0

R

∂j

∂φ
+
{
P ,R2

}
+Rµ∇2

polω,

(3.13)

in which µ is the user specified viscosity scaled with T
−3/2
e .

The total continuity/density equation is

∂ρ

∂t
= −∇ · (ρv) +∇ · [DD∇ (ρ− ρimp)] +∇ · (Dimp∇ρimp) + SD + Simp, (3.14)

in which DD and Dimp represent the diffusion coefficients for the deuterium and
impurity ions respectively, and SD and Simp are source terms for the two species.

The pressure equation is

∂P

∂t
=− v · ∇P − γP∇ · v +

2

3R2
ηSpj

2 +∇ ·
(
κ⊥∇⊥T + κ‖∇‖T

)
−nenimpLrad − f (Eion),

(3.15)

which includes the adiabatic index γ = 5/3, and in which κ⊥ and κ‖ are the heat
conductivities perpendicular and parallel to the magnetic field respectively, Lrad is
the radiation density function and f (Eion) is a function containing all contributions
of the ionization potential of the impurities:

f (Eion) =− 2

3
nimp

∂Eion

∂Te

∂Te

∂t
− 2

3
Eion

∂nimp

∂t

− 2

3
Eionnimp∇ · v −

2

3

[
nimp

∂Eion

∂Te
v · ∇Te + Eionv · ∇nimp

] (3.16)
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The parallel velocity is obtained by applying the operation B · ... on the momentum
equation, such that only the terms parallel to the magnetic field are left:

B2 ∂ρv‖

∂t
=− 1

2
ρ
F0

R2

∂
(
v‖B

)2
∂φ

− ρ

2R

{
B2v2

‖, ψ
}
− F0

R2

∂P

∂φ
+

1

R
{ψ, P}

−B2∇ · (ρv) v‖ +B2µ‖∇2
polv‖,

(3.17)

in which µ‖ is the parallel viscosity which can be defined by the user.

Lastly, the continuity equation for the impurity population is

∂ρimp

∂t
= −∇ · (ρimp · v) +∇ · (Dimp∇ρimp) + Simp, (3.18)

which has the exact form of the regular JOREK continuity equation without impurities,
after dropping the subscripts.

3.1.5 Heat sources and sinks

The addition of the impurity density is specifically useful for studies in which the heat
balance is a key element, as is reflected in the multiple red terms in the pressure equa-
tion (3.15). To accurately describe the physics the impurities add, some additional
quantities are introduced here.

The effective charge state

Zeff =

∑
i niZ

2
i∑

i niZi
(3.19)

is defined such that it has the dimension of a charge. The summation includes different
charge states and species i in the plasma, so that both deuterium (fully ionized with
Z = 1) and impurities (charge states between Z = 0 and Z = Zimp) are represented.
Note that the effective charge weighs large impurities more heavily and it is therefore
not the same as the average charge state.

The Spitzer resistivity is given by

ηSp =

√
2meZeffe

2 ln Λ

12π3/2ε0T
3/2
e

F (Zeff) , (3.20)

with

F (Z) =
1 + 1.198Z + 0.222Z2

1 + 2.966Z + 0.753Z2
(3.21)

as an empirical fitting function to add the effect of the changing effective charge
state in the plasma [41]. Further variables in this expression are the electron mass
me, electron charge e, Coulomb logarithm ln Λ and vacuum permittivity ε0. With
ηSp the physical Ohmic heating is included in equation (3.15) as replacement for an
arbitrary heat source. The physical consequence is that cold fusion plasmas are more
strongly heated than hot ones, for a given current profile. Without auxiliary heat
sources, the plasma will not reach temperatures of several keV, which is in line with
experiments that almost always have additional neutral beam injection (NBI), electron
or ion cyclotron heating (ECRH/ICRH) [58, 59]. Model 501 is able to simulate the
prominent role of Ohmic heating in the Gates-model and allows for extension of this
model by adding additional customized sources.
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Figure 3.4: The heat source profile is made up of a hyperbolic tangent combined
with a localized Gaussian function based on equation (3.22). Both can be scaled in
strength, location and typical width.

The spatially localized heat source in JOREK is split up in two parts, consisting of a
hyperbolic tangent in combination with a Gaussian function, both as function of the
normalized flux ψN . In equation form this is given by

SH = S0

(
1

2
− 1

2
tanh

[
ψn − ψH1

σH1

])
+ SGauss exp

[
−
(
ψn − ψH2

σH2

)2
]
, (3.22)

with S0 and SGauss indicating the strength of the sources, ψH1 and ψH2 their locations,
and σH1 and σH2 the typical width of the source. The construction of the heat source
profile is given schematically in figure 3.4. The coefficients can be tuned such that
the effects of central heating with a large radial profile centered around the magnetic
axis or localized heating around a specific flux surface can be mimicked.

Besides sources, an additional energy sink is present in model 501 in the form of
radiative cooling, represented by nenimpLrad in the pressure equation. The depen-
dence on impurity type X, electron density and electron temperature is stored in
the radiation power density Lrad = f (X,ne, Te). This quantity is obtained by in-
terpolation of data retrieved from the free version of the Atomic Data and Analysis
Structure (OPEN-ADAS). The data set provides coefficients for recombination, ion-
ization, charge exchange, line radiation and continuum radiation like bremsstrahlung.
Combination of these coefficients gives an effective radiation function which will be
used as Lrad in this research. For a fixed electron density, the radiation curves of
several species is given as a function of electron temperature in figure 3.5.

The radiation functions from ADAS are computed for systems in coronal equilibrium.
In such system the charged state distribution of an atomic species is in equilibrium
and constant in time for a given electron density and temperature. On one hand there
is ionization through collisions with free electrons and auto-ionization, on the other
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Figure 3.5: The radiation rate in a coronal equilibrium is heavily dependent on
temperature and impurity species. The radiation data is obtained via OPEN-ADAS
[60].

there is recombination through emission of photons [61, 62]. Systems can be assumed
to be in coronal equilibrium as long as the changes in temperature and density are
slow enough such that the charge state distribution can evolve with them. This can
not happen instantaneously because the distribution is the result of the collisional
processes. It typically takes a time of the order of a millisecond for the charge state
distribution to equilibrate to local conditions [63, 64]. Since ADAS is used for all
impurity radiation, the impurity population is assumed to be in coronal equilibrium.
The validity of this assumption will be addressed in section 4.

3.1.6 Limitations of model 501

The main limitations of model 501 for this research are related to the way the im-
purities are treated. In a real fusion experiment, various impurity types are present
in different concentrations, each with its own spatial and temporal evolution. The
current model is only capable of handling a single impurity species, which is reflected
in the single continuity equation (3.18). This is not necessarily detrimental for this
research, because the aim for this work is not to realistically represent a real experi-
ment. Simulations and reality can still be compared as long as the orders of magnitude
of the radiation power densities are in line. For a qualitative look at the shape of
the radiation curves it is irrelevant whether it is of a single species or a combined
curve of multiple. A second simplification is the inclusion of only drift and diffusion
in the continuity equations. This means that neo-classical transport and turbulence
are inherently not accounted for in the model, while they can be important for the
description of particle transport [65, 66]. On the other hand, as soon as anomalous
transport gets important, the validity of an MHD description of the plasma ends. Gy-
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rokinetics or full-kinetic codes are then better suited for numerical (transport) studies.
Since the Gates-model is described in terms present in MHD, JOREK is suitable for
testing it. In particular the (local) energy balance is expected to be valid, while some
care should be taken with conclusions in which impurity transport plays a role.

3.2 General approach

The first part of this section is aimed to make clear what is changed to JOREK to
make it suitable for testing the Gates-model. Then some information and motivation
is given on which settings are used for the already present and newly implemented
parts in the simulations.

3.2.1 Code additions and modifications

An island finding routine is designed, implemented in FORTRAN and tested for
use as a post-processing tool. In short, it finds the location of the x-point of the
user-specified magnetic islands, after which it starts tracing a magnetic field line and
creates a Poincaré plot, with which the islands can be visualized. From this data, the
width of the magnetic islands can be obtained and used as a quantity for comparing
between simulations. A more thorough description of the methods in this tool can be
found in Chapter B.

An impurity addition routine is implemented in Python to change the impurity
concentration in the JOREK restart files. In a simulation, this translates to the instan-
taneous appearance of an impurity type, which is assumed to be instantaneously in
coronal equilibrium. Because only ρimp is changed, the conservation of the total mass
density ρ then tells that deuterium ions are exchanged for impurities. The imple-
mentation leaves it for the user to decide whether the impurities are added spatially
uniform or at a fraction relative to the local total density.

Three new impurity types are implemented in the JOREK source code: carbon,
iron and tungsten. They can be added through a particle source or with the imple-
mentation mentioned above. The radiation functions are obtained from interpolation
of ADAS data, see figure 3.5.

The induction equation (3.10) is modified to have a more physically accurate
current source during fast temperature changes. The term η (j − j0) is replaced by
ηj−η0j0. The profile of the newly introduced resistivity η0 can either be temperature
(and thus time) dependent or constant, depending on the user’s preference. The
need for this change can be seen as follows: a rapid decrease in temperature due to
radiation would let the local η grow, which increases the effective current source ηj0
and with it the Ohmic heating. This would suppress the effect of the cooling, but
is not physical. One workaround is to fix the current source at zero (j0 = 0) from
the moment impurities are added to the plasma. This is a valid approach for fast
processes, but for times on the scale of magnetic island growth (typically > 100ms)
causes decay of the current profile. By fixing the total term η0j0 to a profile defined
before the cooling, both the decay and the drive of extra (nonphysical) current are
countered.
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Table 3.3: Profile coefficients

Temperature Density FF ′

Center value Varied 0.1 5.0
Edge value 0.01 · Tcenter 0.1 0.0
C −0.8 0.1 −1.0

3.2.2 Construction of equilibria

Initial profiles are chosen for the density, temperature and FF ′ (= F dF
dψ , which will

appear in the Grad-Shafranov equation (3.24)). In principle these can have any shape,
but in this work the three profiles are all described with

y (ψN ) = ycenter + (ycenter − yedge)CψN . (3.23)

The center, edge and coefficient (C) values for the three profiles are given in table 3.3.
With this choice of parameters the profiles are plotted in figure 3.6. The density profile
is uniform, which is convenient because the local density will equal the line-averaged
density, regardless of integration path. The temperature profile is roughly parabolic
in r. With the choice of FF ′, the toroidal magnetic field is fixed. The combination
of the three profiles allows for consistent calculation of the current density profile
according to the Grad-Shafranov equation [67]

j = ∆∗ψ = −µ0R
2 dp

dψ
− F dF

dψ
. (3.24)

In order to change the macroscopic equilibrium of the plasma, the profiles have to
be adjusted. The value of the density will be adjusted by tuning central density.
Because this is a parameter used in the normalization, this causes most other pa-
rameters to change consistently with it as well, see Appendix C. The temperature of
the plasma is scaled by manual adjustment of the central value Tcenter. Whenever
the initial temperature profile is adjusted, the resistivity η (not Spitzer) should be
scaled with it for consistency. Moreover, the perpendicular heat diffusivity should be
changed along T as well, because the Ohmic heating is strongly temperature depen-
dent. This would let the temperature quickly evolve to a different state than desired,
if there is no equally large energy sink in the form of transport losses to counter it.

In addition to the initial profiles, the values for several parameters need to be given,
most of which remain constant for all simulations. Those are given in table 3.4. The
values regarding the grid size and time steps are chosen based on convergence studies,
which are shown in Appendix A.

3.2.3 Simulations

Now that the initial conditions and constants are clear, the settings that do vary dur-
ing the simulations need to be defined. To make this more clear, figure 3.7 schemat-
ically sketches the different expected phases of a simulation by showing the different
types of energies for different harmonics. Initially an axisymmetric system is solved
in which the initial profiles are allowed to become self-consistent and flows can evolve.
This is the equilibration phase, during which no impurities are present and the cur-
rent source is free to evolve. This phase ends once the axisymmetric kinetic energy
is constant in time. Then an impurity population is added as a fraction relative to
the total mass density, the current source profile is fixed in time and more toroidal
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Figure 3.6: The profiles for temperature, density, FF ′ and current density as a
function of the normalized flux ψN .

Table 3.4: Simulation settings and parameters

Geometrical parameters
Poloidal plasma shape Circular
Major radius Raxis 3 m
Minor radius a 1 m
Physics parameters
Toroidal magnetic field Bφ 3.67 T
Viscosity µ 10−7JOREK units
Parallel particle diffusivity D‖ 0.0
Perpendicular particle diffusivity D⊥ 10−7JOREK units
Heat conductivity ratio χ‖/χ⊥ 108

Simulation parameters
Number of radial grid elements 126
Number of poloidal grid elements 76
Typical timestep equilibrium and linear phase 100 JOREK units
Typical timestep non-linear phase 0.1− 10 JOREK units
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Figure 3.7: A schematic representation of the relative energies (on logscale) during
the tearing mode evolution. A simulation run typically consists of an equilibration
phase, followed by the linear growth phase and the non-linear phase.

harmonics are included, allowing the tearing mode to grow. The linear growth phase
is characterized by the straight slope on the logscale, and can be described using per-
turbation theory. The amplitude of the mode grows exponentially until it is roughly
at the same order of magnitude as the axisymmetric modes. Then, these modes be-
come affected, causing nonlinear effects to emerge and the mode to saturate, possibly
after an overshoot. Typically the nonlinear phase is most difficult to solve and will
need smaller time steps for convergence.

3.2.4 Data analysis and post processing

After the simulation, the raw data is converted into several quantities which can give
insight in the comparison with the Gates-model and the empirical Greenwald limit.
Radial temperature and current density profiles can help identify the island growth
and events related to disruptions, as in 1.7. On top of this, the Ohmic heating and
radiative cooling terms give information on the local power balance, providing an
explanation on changes in the profiles. Spatial integration of velocities or magnetic
field components gives the kinetic or magnetic energies respectively. Decomposed
into their harmonic components, these will give information about the evolution of
the tearing mode, as in 3.7. Finally, Poincaré plots of the magnetic islands and
their width are calculated to visualize and quantify the coupling between tearing
mode growth, local heating/cooling and disruption characteristics. The details on
this routine are found in Appendix B.
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4. Results
In this chapter the presented results are divided in different sections, each building
forth on the previous results. For aspects specifically relevant to the interpretation of
the results, a short discussion is given alongside. At the end of this chapter, a more
general discussion regarding overarching aspects and an extrapolation are given.

4.1 The tearing mode

For the simulations presented in this section a uniform, flat density (ρ) profile is chosen
to remove ambiguity in the value of the line-averaged electron density. Electron
densities of 0.5, 0.6, 0.7 and 1.0 × 1020m−3 have been used. The simulations have
been initially run for electron temperatures Te = 50, 100, 250, 500 and 1000 eV. Only
results of the first four are used, as for the latter the tearing mode has not been found
to be unstable in the used equilibria. For high temperatures this behavior can be
explained by the JOREK resistivity being adapted such as to follow the −3/2-scaling
with temperature. The temperatures at the q = 2 surfaces are approximately 40-50%
of the central temperature values.

4.1.1 Energies and growth rates

Figure 4.1 shows the decomposition of energies for a simulation in which the tearing
mode is found to be unstable. It agrees with the conceptual picture of the different
phases of the evolution of a mode. After the axisymmetric quantities and thus energies
(subscript 0) are in steady state, the components with a dependency on toroidal
angle are initialized at an arbitrary low noise level and included in the calculations.
An unstable mode should be able to emerge from this state, as is seen here when
it grows in the linear phase. Only the lowest two toroidal harmonics of a Fourier
decomposition are included for the toroidal dependency. This means that the energies
with subscript 1 may contain all modes with periodicity m⁄1, so only m⁄1-islands can
exist in the simulations. A convergence scan over the toroidal harmonics included in
the simulations is given in Appendix A.

During the linear growth phase, ranging from approximately t = 0.85 s to t = 0.94 s,
the effects on any axisymmetric component are negligibly small. Once this coupling
becomes significant, the equilibria profiles will be affected by the growing mode and
the nonlinear phase starts. This is typically the point at which JOREK gets more
computationally costly and smaller timesteps up to a factor 100 are needed. After
an overshoot of the energies the mode settles to an approximately constant value at
times t > 0.99 s. In this quasi-saturated state the magnetic energy slowly increases,
this time over vastly larger timescales. In the remaining part of this report the focus
will be on the initial overshoot because it contains the nonlinear growth of magnetic
islands and all important aspect of the Gates-model, as will be shown later on.

A verification that the tearing modes agree with the theoretical description is shown
in figure 4.2, where the −9/10-scaling of the growth rate with electron temperature
is found. The data for this plot is obtained by fitting a straight line to the Emag,1

curve during the linear growth phase in figure 4.1. Since magnetic energy scales with
the strength of the magnetic field squared, the square root of the growth rate from
the fit is taken. This is then repeated for the whole set of simulations, including the
scan over impurity concentrations. The impurity concentrations in the plot have no
relevance in this part yet, but help to give order to the figure. The outliers in the
plots can be related to cases in which high radiation causes the macroscopic profiles
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Figure 4.1: For a simulation with ne = 0.7× 1020 m−3 ≈ 1.14 nG and Te = 100 eV
the different phases of the tearing mode evolution are distinctly visible and show
similarity with the expected behavior. The black dashed lines correspond to the
times at which the profiles are examined in figures 4.3 and 4.4.

Table 4.1: Coefficient of determination values for the fits in figure 4.2 indicating the
’goodness’ of the fits.

Impurity concentration R2

0.0 % 0.96
0.1 % 0.96
0.5 % 0.87
1.0 % 0.38

to be altered such as to influence the tearing mode growth. Specifically the drop in
temperature causes the resistivity to rise, thereby enlarging the effect of island growth
during the linear phase.

The agreement between the data and theoretical scalings is quantified by calculating
the coefficient of determination R2 for each impurity concentration. The values are
shown in table 4.1 and show that especially for low impurity concentrations there is
good agreement indicated by a value of R close to 1. The two highest values found with
1.0% neon, the outliers from before, are not included in the fit. This result indicates
that the JOREK resistivity is scaled sufficiently well with respect to the temperatures
over multiple simulations. This gives confidence that the simulations are consistent
with respect to each other and that they can be directly compared in further sections.
The impurity concentrations have a far lesser impact on the linear phase of the growth
rate than the temperature does. This is explained by the fact that the resistivities
are manually chosen at the start of the simulation, before impurities are added. No
information about nimp is thus taken into account in the scaling.
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Figure 4.2: For different temperatures Te, densities ne and impurity densities nimp,
the growth rate during the linear phase is calculated using a least squares fitting
method. Each marker represents a simulation. Despite the range in densities, the
data has a similar trend to the theoretical temperature scaling of −9/10. Outliers
can be related to cases in which high radiation causes the initial profiles to be altered
so much as to significantly alter the tearing mode growth. The effect of impurity
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4.1.2 Magnetic islands

In this section the focus will shift to the evolution of the macroscopic profiles in
the nonlinear phase and the relation of magnetic island to them. Specifically the
temperature profile is of interest because changes in energy confinement should be
visible in it and islands with a significant size should cause temperature flattening
as explained in the theory. The current density is looked at for its clear showing
of a perturbation and its link to Ohmic heating. For three times indicating start of
mode growth, maximum of nonlinear growth and saturated state, the poloidal cross
sections for both quantities are given in figure 4.3. During the linear growth phase no
changes in macroscopic profiles are seen, which is conform expectations. At the end
of the nonlinear phase the perturbations in the profiles become visible, which evolve
to their final state. On top of the temperature are Poincaré plots of the 2⁄1-islands,
which are made using the methods described in Appendix B. Not the full islands are
shown as can be inferred from the lack of an X-point. Rather the flux surfaces close
to (but inside) the separatrix are found. Still these give a good indication of the size
and location of the full structure.

In the current density the changes between phases are distinct and the footprint of a
2⁄1-island can be seen in the local minima that emerge. The value of j in the center of
the plasma increases as the perturbation rises, this is called ’current peaking’. This
causes the Ohmic heating and therefore the temperature in the center to increase. As
time progresses, the perturbation is seen to be shifting radially outwards, which is
the direct effect of the larger current in the center altering the q-profile and thus the
location of the q = 2 surface.

In the temperature plots the perturbations are less apparent, because the flattening
is a relatively small effect compared to the current perturbation. Additional insight
can be found when looking at the profiles along the black lines that intersect the
projection of the islands at their widest points. This is visualized in figure 4.4. Here
the temperature shows an evolution that results in full flattening in the saturated
case, which means that the width of the island satisfies the Fitzpatrick width wC .
This in turn means that for the choice made for χ‖/χ⊥ the center of the islands
at these widths can be approximated as thermally isolated regions. Moreover, the
width of the magnetic islands is then approximately equal to the width over which
the temperature is flattened. Looking closely at the outer side of the flattened region,
a small increase is seen as result of the increased Ohmic heating at the outside of the
magnetic islands.

Now the width of the magnetic islands obtained from the Poincaré plots is considered,
resulting in a maximum width as function of time in figure 4.5. This plot shows
the width in terms of normalized poloidal flux ψN and normalized spatial distance,
transformed as if the widest part would lie on the midplane, so that flux surface
geometry and island rotation in the poloidal plane does not play a role in comparisons.
Details are again found in Appendix B.

The temporal behavior of the maximum width agrees with figure 4.1 when comparing
the nonlinear phases during which the islands have a finite width that the tracer can
detect. At identical times the overshoot and start of saturation are found. Together
with the visual observations in the poloidal cross sections and profiles, it can thus be
concluded that the energies of the non-axisymmetric modes are due to the formation
and growth of the 2⁄1-islands. In general, the q-profile during the simulations will
range between 1.4 on the axis to 3.7 at the plasma edge. This means that modes
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with a 3⁄1 periodicity can be present as well in the simulations, as will be seen later
on. However, the islands found here are generally largest, dominant in perturbing
the equilibria and will be used in the further analysis. The maximum island width
during the overshoot in the nonlinear phase will be regarded as figure of merit in the
comparison of different cases.

The fluctuation in the found width, especially clear during the saturated phase, is
an artifact of the island finding routine. It originates from the difficulty to exactly
locate the spatial position of the X-point. As a consequence, flux surfaces that are
inside the island’s separatrix are traced. This is also apparent in the varying distance
between the ’end-points’ of the islands in figure 4.3. In Appendix B a scan over this
separation shows that the island width is underestimated typically by a few percent,
which is sufficiently small for the qualitative comparisons in this thesis.
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Figure 4.3: The electron temperature Te and toroidal current density j at different
times (top t = 0.86 s, center t = 0.95 s, bottom t = 1.13 s) corresponding to the
plasma before the tearing mode, at the start of the nonlinear phase and during the
saturated state. Superimposed on the temperature profile are a Poincaré plots of the
2⁄1 magnetic islands (white) and the line over which the profiles are plotted in figure
4.4 (black).
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Figure 4.4: The current density (top) and electron temperature (bottom) profiles
are obtained over a line in the poloidal plane (see figure 4.3) that intersects the islands
approximately at their largest width. At approximately 0.35 and 1.7 on the horizontal
axis, the perturbations in the current density are visible, where the location of the
local minimum corresponds to the center of the island. Over the island width the
temperature profile is flattened, indicating that parallel heat transport dominates. In
the center of the plasma, the current peaks as the tearing mode grows.
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Figure 4.5: The maximum width of the magnetic islands is calculated using the
island finding routine described in Appendix B. It is converted to the midplane width
and given in units of normalized poloidal flux ψN and normalized real width r/a to
allow for direct comparisons between different cases.

4.2 Testing the Gates-model

Now that the islands are observed along with the perturbations in the macroscopic
temperature and current density profiles, the mechanism of enhanced island growth
under radiative cooling from the Gates-model will be tested.

4.2.1 Impurity addition, transport and radiation

For the previously mentioned temperatures and electron densities, the impurities are
added in concentrations of 0.1, 0.5, 0.75 and 1.0%. This is done relative to the electron
(number) density by scaling JOREK variable ρimp at a fraction of ρ, leaving the latter
unaltered. This addition is not comparable to any physical process, but ensures the
desired concentrations around the q = 2 surface. If other methods of addition such as
Shattered Pellet Injection (SPI) or Massive Gas Injection (MGI) were used, particle
transport would need to be included in the analysis. The choice is made to keep this
out of the scope of this research.

Because of the uniformity in both the ρ and ρimp profile, particle transport is low.
Combination with the addition method leads to the assumption that impurities hap-
pen to be present around the q = 2 surface at the time of the tearing mode growth.

For the majority of simulations neon will be used as impurity species, of which the
coronal radiation curve is already given in figure 3.5. In principle results similar to
the ones in this thesis are expected to be found for any impurity type, if only scaled
with a different fraction. This is because the product fimpLrad is the contributing
factor in the energy balance. For example, the radiation due to 1% neon or 0.01%
iron is approximately equal at 100 eV. The derivatives of the radiation with respect
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to temperature do vary between species and can be important for nonlinear effects.

4.2.2 Demonstration of the mechanism

The purpose of this section is to demonstrate the enhanced growth of the magnetic
islands at densities above the Greenwald density. The parameter scans go over the
three variables Te, ne and nimp, where the latter signifies the importance of the
radiative cooling. The maximum island width as a function of time is shown in figure
4.6 for a central electron temperature of 100 eV. The maximum island width increases
significantly if both densities are increased. This effect becomes significant around the
Greenwald limit as islands start to grow significantly faster and to larger widths for
increased impurity contents. This behavior is similar to the electron density scan in
[40], but here the dependence on nimp is made explicitly clear. Increasing the density
even further to values 21% and 72% above nG leads to explosive island growth to
widths in the range of 20%-50% relative to the minor radius. The growth typically
takes place within 10 ms. As a reference, analysis of JET, ASDEX-Upgrade and
COMPASS shows a critical island width for triggering a thermal quench around 30%
[68]. Early termination of some curves is caused by presumably numerical instabilities
during the simulations, where growing oscillations in the current density around the
magnetic axis are found. A possible cause may be the fixed current source term
in the induction equation 3.10. In the discussion a recommendation will be given
for improvement of JOREK and hopefully prevention of these issues. At the time of
termination, the found width is already well above the maximum widths for lower
impurity concentrations, with a positive derivative indicating further growth.

The fluctuations in the curves can again be explained by the tracer failing to precisely
determine whether the approximate location of the x-point is within or outside of the
islands. On the other hand, this effect shows that the approximate error in the width
is always found to be smaller than the enhanced growth effect.

The large jumps in vertical width, especially found for fractions of 0.75% and 1.0%, are
related to the transition to a stochastic regime and the tracer sometimes finding both
the 3⁄1 and 2⁄1-islands. This is better visualized in the Poincaré plots of the magnetic
islands from which the width is initially derived. Figure 4.7 shows the different stages
of the enhanced island growth for parameter settings of ne = 0.7 × 1020 m−3 ≈
1.14 nG, nNe/ne = 0.01 and Te = 100 eV. The first two times are selected to
represent the linear growth phase where there is no observable island width and the
nonlinear growth phase in which the islands have a finite width and are well defined.
Further into the nonlinear regime first signs of stochastisation occur in which the
separatrix is not found to be smooth and small radial excursions are made. This
leads to the x-points being not as sharply defined in the Poincaré representation.
At the final stages, full stochastisation is seen where a coupling is created between
magnetic islands. Whenever this happens the radial excursion of a magnetic field line
is larger than when only the stochastic region around the initial islands are found,
which explains the variation in found widths.

Besides these jumps, the stochastisation and coupling explain the flattening of the
temperature profile over a large radial distance, which will be discussed in section
4.3.1. Given that the energy transport along magnetic field lines is much faster than
across, the radial excursions of the field line flatten the temperature profile and provide
a shortcut for the energy transport.

To allow the comparison of the island growth at different temperatures, the tempo-
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ral information needs to be removed by regarding only the maximum island widths
found during the nonlinear growth of the tearing modes. This then allows for direct
comparison of all three parameter scans, shown in figure 4.8.

The main result from these plots is that the rapid growth of islands only occurs for
specific temperatures and densities, with the case at Te = 100 eV being the most
apparent. In contrast to earlier work on the Gates-model, a large dependency on
density, temperature and impurity type is found.

When closely comparing the data there is consistency to be found between the different
impurity concentrations. The island widths grows substantially larger at the high
densities at 100 and 250 eV. For these cases the enhanced growth is indeed observed.
The color scaling is chosen to saturate at a value of 0.3, since island widths above this
value show large variations due to stochastic behavior, which are irrelevant for this
figure. Besides that, the presented scale shows a more subtle effect for temperatures
of 50 and 500 eV. Here, the maximum found width is actually smaller than for the
case with little or no impurities. According to the Gates-model this may happen
when heating inside the islands is enhanced. A comparison run with iron as impurity
species shows the mechanism to be present at central temperatures of at least 250 eV.

In the simulations related to the data points with crosses through them, termination
happened before the maximum island width is reached, such for the case with 0.75%
neon at ne = 0.7 × 1020 m−3 in figure 4.6. If assumed that these would have grown
to a substantial width, then a structure emerges for the runs with 0.5%, 0.75% and
1.0%.

Before looking more specifically at the effect on the temperature profile, an attempt
is made to couple the observed behavior to the explanation and mechanisms given
in the Gates-model in the following section. The difference in qualitative behavior
between the impurity types will be addressed there as well.
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(a) ne = 0.5 × 1020 m−3 ≈ 0.86 nG
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(b) ne = 0.6 × 1020 m−3 ≈ 1.04 nG
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(c) ne = 0.7 × 1020 m−3 ≈ 1.21 nG
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(d) ne = 1.0 × 1020 m−3 ≈ 1.72 nG

Figure 4.6: For five neon fractions and four different electron densities, both below
and above the Greenwald density nG, the maximum widths of the 2⁄1-islands are
given as a function of time. Islands with a sufficient impurity and electron density
concentration grow drastically faster and to larger sizes. Especially for the two largest
electron densities a threshold behavior is observed where the islands stay bounded for
low impurity concentrations or grow to sizes of 20% to 50% of the minor radius.
The sudden termination of the curves for impurity fractions larger than 0.75% in the
bottom two plots is caused by numerical instabilities in the JOREK simulations due to
large temperature changes in the plasma.
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Figure 4.7: Magnetic islands grow drastically in size leading to the termination of
the simulation with ne = 0.7×1020 m−3 ≈ 1.14 nG, nNe/ne = 0.01 and Te = 100 eV.
Poincaré plots close to the q = 2 surface shows four distinct phases in the evolution.
During the nonlinear growth phase the islands get a finite width and can be detected.
At later times the field line starts to show stochastisation, which is seen mainly near
the X-points. Coupling between 2⁄1 and 3⁄1-islands is observed at the end of the
simulation.
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Figure 4.8: The maximum island width is given for all simulations, covering the
scans over electron temperature, electron density and impurity fraction. The color
scale is chosen such that the transition from net cooled to net heated islands is dis-
tinctly visible. Simulations that were terminated early while the island had not yet
reached a maximum width are indicated with a cross.
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4.2.3 A new look at the F -function

This section is aimed to relate the local conditions that allow for the growth of radia-
tive islands according to the Gates-model to a formulation of the Greenwald density
limit with local quantities. For this a formulation will be used, from here on called the
F -function, which is introduced in [69], but also used in analysis of the Gates-model
in [37], [39] and [35]. In these works its relative independence on temperature and
impurity density is used as argument for the robustness of the Greenwald density
limit and its lack of dependence on these parameters. In this thesis, F will be used
in an opposing way to explain the dependencies found in the previous section.

The F -function is obtained by assuming the island to be thermally insulated by its
separatrix. Now only two terms are important in the local power balance: the Ohmic
heating

PΩ = ηSpj
2 =

√
2meZeffe

2 ln Λ

12π3/2ε20T
3/2
e

· 1 + 1.198Zeff + 0.222Z2
eff

1 + 2.966Zeff + 0.753Z2
eff

j2, (4.1)

[41] and the radiative cooling

Prad = nenimpLimp = n2
efimpLimp. (4.2)

Equating these two terms, an expression for the local quantities inside the magnetic
island is obtained:

ne

[
1020m−3

]
= Fj

[
MA m−2

]
, (4.3)

where

F = 10−14
√
η/(fimpLimp)

= 10−14

√√
2meZeffe2 ln Λ

12π3/2ε20T
3/2
e

· 1 + 1.198Zeff + 0.222Z2
eff

1 + 2.966Zeff + 0.753Z2
eff

· 1

fimpLimp

(4.4)

is the function of interest in this section.

External heat sources Pext can be included in this derivation, for which the balance
can be rewritten as

ne =

√
1

fimpLimp
(ηSpj2 + Pext). (4.5)

If the external source is scaled with the Ohmic heating as Pext = αPΩ, an expression
similar to (4.3) comes out:

ne

[
1020m−3

]
= F ∗j

[
MA m−2

]
, (4.6)

with F ∗ =
√

1 + αF .

The formulation of (4.3) is similar to the global formulation of the Greenwald density
limit (1.7). For a value of F = 1 the local electron density and current density satisfy
an identical expression as the averaged quantities of the global limit do. In formulation
(4.4) there is an explicit temperature dependence through the Spitzer resistivity and
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an implicit one through the radiation rate Lrad, see figure 3.5. The impurity density is
directly present through the impurity fraction fimp and indirectly through the effective
charge state of the plasma Zeff . For different impurity concentrations and types, F
is given as a function of Te in figure 4.9. A significant dependency on temperature,
impurity type and fraction are seen, as is expected from equation 4.4, but again
in contrast with literature. There are regions of a few hundred eV for which the
curve shows plateauing, especially for iron, but show large variance on the range of
reactor-relevant temperatures: typically on the order of 0.1 to 1 keV, and even higher
(>10 keV) for future devices such as ITER.

In order to further investigate the effect of impurity fraction on the density limit,
the values of F at Te = 1 keV is plot in figure 4.10. On the horizontal axis is the
multiplication factor of the impurity fractions used in figure 4.11. As a reference, the
values at which the global density limit is found in the Gates model are shown [39],

together with a scaling that goes with f
−1/2
imp that would be expected if Zeff would

be fixed in equation 4.4. For sufficient high impurity fractions the value of F falls
of slower than the given scaling and becomes insensitive to impurity concentration.
This is observed in both the data from the Gates-model and all presented impurity
species except tungsten. At higher concentrations (> 0.005%) this curve saturates to
a fixed level as well.

Figure 4.11 shows the result of having more than one impurity species on the local heat
balance. At each temperature the value of the function is determined mostly by the
lowest, and thus strictest, impurity species. For specific combinations such as the one
given here, the individual F -curves can complement each other, creating temperature
regimes spanning an order of magnitude where plateauing happens around F ≈ 1.
For such a regime in which F is close to unity, it can be left out of equation (4.3), in
which it becomes a direct reflection of the empirical Greenwald limit (1.7), but with
averaged coordinates replaced by local ones. Besides the local variations and local

extrema, the underlying T
−3/4
e scaling of equation (4.4) emerges on the large scales,

which is a direct effec of the Ohmic heating being more effective at low temperatures.

Apart from looking for similarities in local and global conditions, i.e. where F = 1, the
plots can also be interpreted as a boundary between net cooled and net heated parts
of the plasma, under the assumption that PΩ and Prad dominate the heat balance.
For values of ne/j < F , these parts are net heated and temperature will typically
increase. Values above F are net cooled and will have a drop in local temperature.
In this way the ratio ne/j can be seen as the relative importance of radiation with
respect to the Ohmic heating.

The assumption that energy transport is negligible should hold best at the O-points of
the magnetic islands. At these locations data in the form of (Te, ne/j) is retrieved from
JOREK for the runs with 1% neon and 0.1% iron. With this data at multiple consecutive
times in the nonlinear regime, a trajectory is obtained and plotted alongside the F -
functions in figure 4.12. Of special interest are the curves that intersect with the
F -function, transitioning from a heated to a cooled regime. After crossing the curve,
a runaway effect happens as current is expelled and temperature is rapidly lost from
the island. This behavior is absent for curves corresponding to lower densities that
do not cross the F -function. The cases that show the runaway effect correspond to
the ones for which in figure 4.8 the largest widths are found.

The trajectories of figure 4.12 show an interplay of radiative cooling, heat transport
and growth of the tearing mode. Firstly, all trajectories evolve toward lower tem-

Nonlinear JOREK simulations of the Greenwald density limit with a thermo-resistive
radiation model

49



101 102 103 104

Te [eV]

0

2

4

6

8

10

F

0.1%

1.0%

5.0%

Greenwald limit

(a) Neon

101 102 103 104

Te [eV]

0

2

4

6

8

10

F

0.01%

0.1%

1.0%

Greenwald limit

(b) Iron

101 102 103 104

Te [eV]

0

2

4

6

8

10

F

0.001%

0.01%

0.1%

Greenwald limit

(c) Tungsten

101 102 103 104

Te [eV]

0

2

4

6

8

10

F

1.0%

5.0%

10.0%

Greenwald limit

(d) Carbon

Figure 4.9: The F -function separates isolated regions that are net heated (ne/j < F )
and net cooled (ne/j > F ). It is plotted here for different species over a range
of fractions. The function has a strong dependence on impurity type, fraction and
electron temperature.
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Figure 4.10: The dependency of the F -curve to impurity fraction relative to the
values in 4.11 is given for Te = 1 keV and ne = 5×1019 m−3, along with data obtained
from the Gates-model by Teng [39]. The height of the curve is arbitrary and can be
changed by sampling F at a different temperature or reference impurity fraction. At
sufficiently high impurity fractions the value of F falls of slower than the −1/2-scaling
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Nonlinear JOREK simulations of the Greenwald density limit with a thermo-resistive
radiation model

51



101 102 103 104

Te [eV]

0

2

4

6

8

10

F

5.0% Carbon

1.0% Neon

0.1% Iron

0.0005% Tungsten

Total

Greenwald limit

Figure 4.11: In order to describe more realistic situations with the F -function, a
mixture of impurities is included in the analysis. The function with the lowest value
at a certain temperature dominates the behavior of F . For temperatures ranging from
∼ 40 eV to ∼ 300 eV, plateauing around F ≈ 1 is seen. By combining the individual
curves, the large temperature dependencies in the curve fall out as the function have
local minima at different values of Te.
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peratures despite the fact that Ohmic heating should be dominant under the curve.
This means that transport can not be disregarded entirely due to small islands with
temperature profiles that are not entirely flattened (yet) during the start of the non-
linear phase. Additionally the global cooling of the plasma due to the presence of
impurities, with relatively large edge cooling, enhances the temperature transport to
the edge, lowering the temperature at the O-points. The motion towards higher ne/j
values is expected from the perturbation in the current density profile as the tearing
mode evolves. As current is expelled from the island, local minima in j arise near
the O-points, as seen in figure 4.4. The sudden vertical motions are due to the radial
shift of the islands, causing not the O-point, but different parts of the island with
higher j to be used in the calculation. Due to the profile uniformity and temperature
flattening, n and T stay approximately constant. A future attempt at such a figure
should include the calculation of the O-point at each timestep, instead of the manual
selection for multiple steps at a time, which is used here.

Furthermore, the red curve at 250−300 eV for 1% neon is of special interest as it shows
a stabilizing effect of the F -curve. Even though the trajectory crosses the F -curve
it is deflected back towards a balance between heating and cooling. The decrease in
j is not sufficient to carry it over the peak, corresponding to a dip in the radiation
curve. This example shows that both the value of the radiation curve as well as the
derivative are of importance for the (de)stabilization of radiative islands.

For the case with 0.1% iron, the trajectories are bound for temperatures between
30-60 eV and the islands are stable. For temperatures around 100 eV, the enhanced
growth is seen as trajectories cross the blue solid line. The cooling effect is limited
however due to the strong gradient in F , acting as a stability boundary for further
thermal runaway. At the highest temperatures all four cases show enhanced growth,
even when under the F -function. This can be explained by radiation cooling the edge
of the plasma, thereby enhancing radial transport, lowering the temperature around
the q = 2 surface and enlarging the growth of the tearing mode.
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Figure 4.12: The electron temperature, density and current density are measured
in the O-point of the magnetic islands during their nonlinear growth and given here
in relation to the F -function. All trajectories have squares as starting points, with
each consecutive time step represented by a dot and different colors corresponding to
different electron densities. Trajectories that cross the curve experience a runaway
effect as the island gets cooled. The curve can act as a stability barrier as well,
preventing an island from further cooling, as shown for the rightmost red trajectory
for 1% neon. In the bottom plot, with 0.1% iron, large excursions are seen for island
temperatures of approximately 100 eV and larger. The large excursions at the highest
temperatures, especially those under F , are due to a more heavily radiating edge,
increasing the radial transport and net cooling.
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4.3 Localized heating and cooling

This section is meant to give an explicit look at the influence of (localized) heating
and cooling terms on the island growth.

4.3.1 Localized impurities

For the presented simulations the temperatures at the edge of the plasma correspond
to high values on the radiation density curve of neon. This causes a relatively large
temperature drop at the outer regions, increasing the radiation density even further.
Due to the fixed boundary conditions at the edge of the plasma, the global minima
of the profile shifts inwards from the edge, up to 10% towards the axis. This ’hollow-
ing’ of the outer region of the temperature profile is not physical. Besides this, the
increased radiation and increased gradients could cause a radiative edge propagating
inwards. This could be an alternative mechanism for triggering the enhanced growth
of magnetic islands. To rule out a major influence of any of these two phenomena in
the previously presented data, the simulation with parameters ne = 0.7× 1020 m−3,
nNe/ne = 0.01 and Te = 100 eV is repeated with localized radiation and a lowered
edge temperature. Impurities are added in the region satisfying −0.5 < ψ < −0.2,
(0.418 < ψN < 0.767), corresponding to a circular band around the q = 2 surface in
the poloidal plane. This setup is similar to the simulations done in [40]. The evolution
of the island widths and temperature profile are shown in figure 4.13. At the various
time indicated in this figure, the Ohmic heating and radiative cooling terms are given
in figure 4.14, along the same poloidal line as the temperature profile is given.

Overall, a similar island width evolution is found as for the uniform impurity distribu-
tion, with traced magnetic field lines making radial excursions of over half the size of
the minor radius. In the temperature profile the effect of such a shortcut in the heat
transport is evident. From a nearly unperturbed profile at t = 0.0013 s, flattening
occurs once the island get a finite width. The central peak then fully collapses in
approximately 8 ms during the stochastic regime. Moreover, the islands seem to be
cooled sufficiently to create a local minimum around their O-points due to enhanced
cooling inside. At the later times additional perturbations of the 3⁄1-islands are seen
near the edge. No signs of nonphysical hollowing close to the edge are present.

In the comparison of the heating and cooling, the islands can be identified by the
minima in PΩ, corresponding to minima in j. Inside the islands the radiation is
strongest and causes the enhanced growing of the islands, here seen as an increase in
amplitude and width of the perturbation in PΩ. An additional nonlinear effect is seen
in the radiation: the local cooling leads to an increase in radiation, which enhances
the cooling again. This accelerates the growth process of the islands.

4.3.2 Additional Heating

The empirical Greenwald limit is reported to be both robust against auxiliary heating
[19], but is sometimes overcome in scenarios with external heating [28]. In the Gates-
model this could be explained by the (radial) location of the power deposition. The
effects of centralized heating through Neutral Beam Injection (NBI) and localized
heating around the q = 2 surface through Electron Cyclotron Resonance Heating
(ECRH) are simulated using the heat source introduced in equation (3.22). Spatial
parameter settings σH1 = 0.1, σH2 = 0.1, ψH1 = 0.25 and ψH2 = 0.45 are kept
fixed, while the magnitude is varied for a total of eight scenarios, shown in table 4.2.
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Figure 4.13: The evolution of the island width and temperature profile are given for
a simulation with 1% neon impurities localized around the q = 2 surface and a lower
edge temperature. During the stochastic phase the island width grows substantially
and the temperature profile collapses, reducing the central value by a factor 2. This
effect is absent during the regular tearing mode growth shown figure 4.4.
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Figure 4.14: The Ohmic heating and radiative cooling along poloidal lines that
intersect the islands at their largest width are plot at several times during the non-
linear growth phase. The localized cooling enhances the growth of magnetic islands.
Nonlinear effects show through the increase in radiation as the temperature decreases
due to net cooling.
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Table 4.2: The magnitude of the heating profile is changed to simulate different
heating scenarios. Due to changes in the ψ profile during the simulations, the total
deposited power varies in time and is given at the start and end of the simulations.

Central heating
Case S0 [JOREK units] Heating power [MW] (start-end)
Low 1× 10−6 7.2 - 5.2
Medium 3× 10−6 22 - 16
High 5× 10−6 36 - 34
Extreme 1× 10−5 72 - 72

Local heating
Case SGauss [JOREK units] Heating power [MW] (start-end)
Low 1× 10−6 6.2 - 6.2
Medium 3× 10−6 18 - 20
High 5× 10−6 31 - 33
Extreme 1× 10−5 62 - 65

Radial profiles of these scenarios are plotted in figure 4.15. Even though the localized
heating has a much narrower profile, the total input power between the centralized
and localized cases is similar, due to the fact that the latter are located more radially
outwards.

The simulation with parameters ne = 0.7×1020 m−3, nNe/ne = 0.01 and Te = 100 eV
is run from the start of the nonlinear phase for these scenarios. The island widths
are calculated over time and compared in figure 4.16. Centralized heating has the
effect of limiting the severance of the island growth, but does not seem to prevent
the enhanced growth. With localized heating, the maximum widths are suppressed
to remain within 15% or the minor radius for at least 2 cases. The lowest heating
magnitude for which this is found corresponds to ’Medium heating’. Additionally,
this is the case where the total heating and cooling are approximately equal at the
q = 2 surface, according to figure 4.15.

Especially for the cases with low heating, the total input power is found to have a
relatively large variation. This is due to the larger perturbation in the ψN profile,
which is coordinate for which the heating power profile is defined. The simulation in
which the ’extreme heating’ settings are used are terminated early due to numerical
instabilities created by large gradients in temperature and current.
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Figure 4.15: The radial profiles of the radiative cooling and Ohmic + auxiliary
heating are plot at the start of the different scenarios. The locations of the q = 2
surfaces are indicated by the black dotted lines.
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Figure 4.16: The evolution of the island width shows that for similar total deposited
heat the localized scenarios are capable of limiting the maximum island growth to
within 15% for at least 2 cases. For the central heating no such scenario is conclusively
found. The cases labeled as ’Extreme heating’ suffered from numerical instabilities
and are terminated relatively early in the nonlinear phase.
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4.4 From a local balance to a global limit

Now that an attempt has been made to characterize the Greenwald density limit
using the F -function and local parameters, this section presents an attempt to make
a robust coupling between the local parameters and the global form of the limit as
in equation (1.7). In order to match the local power balance to a global one, the set
of self-consistent Furth-Rutherford-Selberg (FRS) equilibria will be used, which first
appears in [42] and later in the Gates-model.

In the latter, the FRS equilibria play a significant role as they serve both as initial
conditions in simulations [40] and as an effort to explain the switch from net heated
to cooled magnetic islands [39]. This is based around the argument that a higher
plasma density causes the current profile to be more peaked, thereby altering the
Ohmic heating term at the q = 2 surface. Note that this effect is not explicitly looked
at in this thesis. In this work, the profiles of the FRS equilibria are not used and
the most influential aspect is found to be the impurity radiation. However, the FRS
profiles will be used in this section as a tool to couple the local and global limit for
multiple experimental devices and models.

In the FRS equilibrium the toroidal current density is given by

j(r) = j0

[
1 +

(
r

r0

)2ν
]−(1+1/ν)

(4.7)

with j0 the central current density, r the spatial distance along the minor radius and
r0 the typical width of the current channel which is related to the peakedness ν of
the profiles. Imposing the requirement that the current distribution is smooth and
poloidally symmetric leads to the restriction that the derivative on the magnetic axis
should be equal to zero. This derivative is

∂j

∂r
= −j0

2ν

r0

(
1 +

1

ν

) (
r
r0

)2ν−1

(
1 +

(
r
r0

)2ν
)2+1/ν

, (4.8)

and the requirement

lim
r↓0

∂j

∂r
=

{
0, if ν > 1

2

undetermined, if ν ≤ 1
2 ,

(4.9)

puts a lower bound on the peakedness of the profiles in the FRS equilibria.

Again assuming symmetry in the poloidal plane, the safety factor profile is obtained
by using equation (1.2) in combination with Ampère’s law, resulting in

q(r) = q0

[
1 +

(
r

r0

)2ν
]1/ν

. (4.10)

The central value q0 is related to the central current density by

q0 = 2Btor/(µ0R0j0) ⇐⇒ j0 = 2Btor/(µ0R0q0), (4.11)
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with R0 the (constant) major radius of the plasma. The width of the current channel
is expressed in the values of the q-profile on the axis, on the edge qedge and the minor
radius a:

r0 = a

[(
qedge

q0

)ν
− 1

]−1/2ν

. (4.12)

The safety factor and current density profiles are plotted for different values of ν in
figure 4.17, corresponding to a peaked, rounded and flattened shape according to [42].

Based on these profiles the radial locations of the q = 2 surface and volume averaged
density j = Ip/

(
πa2
)

are calculated and compared. First, the total current Ip is
obtained by integration over the poloidal plane, again assuming a circular, poloidal
symmetric plasma:

Ip =

∫ a

0

j0

[
1 +

(
r

r0

)2ν
]−(1+1/ν)

2πrdr

= πa2j0

[
1 +

(
a

r0

)2ν
]−1/ν

= πa2j0

(
q0

qedge

)
= πa2 2Btor

µ0R0qedge
.

(4.13)

The total current is thus independent of ν. Now solving j(r) = Ip/πa
2 = j for r gives

rj=j = r0

[1 +

(
a

r0

)2ν
]1/(1+ν)

− 1

1/2ν

= a


(
qedge
q0

)ν/(1+ν)

− 1(
qedge
q0

)ν
− 1


1/2ν

.

(4.14)

So the location where the local and volume averaged current densities match, does
depend on the shape of the profile, which is not surprising. However, this dependence
is typically weak, of the order of a few percent, as can be seen by the marked locations
in figure 4.17 or the continuous line in figure 4.18.

In a similar calculation as above, the location of the q = 2 rational surface is found
by solving q(r) = 2 for r:

rq=2 = r0

[(
2

q0

)ν
− 1

]1/2ν

= a


(

2
q0

)ν
− 1(

qedge
q0

)ν
− 1

1/2ν

.

(4.15)

This expression has roughly the same structure as (4.14). The radial locations, nor-
malized as r/a, are now obtained as a function of 3 parameters: q0, qedge and ν. For
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most devices or experiments, the center and edge value of the q-profile is fixed and
known, while information about the shapes of these profiles is not necessarily avail-
able. This is why the presented results in the next figures are given as a function of
ν.

The electron density profile does not appear in the FRS equilibria. However, using
a simple parabolic function as a typical profile, the density can be included in the
analysis. The radial dependency is equal to the initial profiles in simulations on the
Gates-model [40]:

ne(r) = ne,0

(
1− r

a

)2

, (4.16)

with ne,0 the central density. From this an approximation of the line-averaged density
can be calculated, which in this case is purely done in the poloidal plane. In real ex-
periments, the line-averaged density may be obtained from a sight-line with a toroidal
directional component. Due to the variation in geometrical placement of diagnostics
in fusion devices, the toroidal component of such a sight-line will not be included. If
only the poloidal plane is considered and a line going from the magnetic axis to the
edge of the plasma is traced, implicitly the assumption is made that each flux surface
contributes an equal amount to the density. This gives the following integral:

ne =
1

a

∫ a

0

ne,0

(
1− r

a

)2

dr =
2

3
ne,0. (4.17)

Now solving ne(r) = 2
3ne,0 for r gives

rn=n =
1

3
a
√

3. (4.18)

The three obtained radial distances are directly compared as a function of ν in figure
4.18, with typical values for the safety profile between 1.4 and 3.7, consistent with the
profiles from the simulations presented in earlier parts of this thesis. From this plot
can be seen that the locations where average and local density and current density
match are within a few percent of each other, for any peakedness. Furthermore, an
island width of 15% is assumed and drawn symmetrically around the q = 2 rational
surface. This value is based on typical maximum island widths found in figure 4.6,
but remains arbitrary in some sense. The grey band indicates the radial extent that
a magnetic island spans. The rational surface lies in vicinity to the other curves for
most of the peakedness range, roughly between 1 and 3. The local values of ne and
j at a magnetic island, with such width and in a plasma with the presented profiles,
translate directly to the global, averaged values. In other words, the measured values
ne and j can then directly be used as local values at the 2⁄1-islands. This effectively
couples the local mechanism of the Gates-model to the global Greenwald density limit
criterion.

A similar analysis is done for experiments in which the density limit is encountered,
using the values listed in table 4.3. The range of possible overlap of the magnetic
islands with the radial distances for density and current are given in figure 4.19.
Here the dark and light bars give the overlap with the current and density curve
respectively. Per device the two bars transpose and change length in similar consistent
fashion, which is due to the associated radial locations rne=ne and rj=j vary little in
the FRS equilibria. It is thus the intersection with the q = 2 surface that determines
the range in ν for which the global and local limits match.
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Figure 4.17: The radial profiles of the normalized current density (solid) and safety
factor (dashed) are calculated according to the Furth-Rutherford-Selberg (FRS) equi-
librium [42]. Variation of the peakedness parameter ν from peaked (1) to rounded (2)
and flattened (4) results in variation in the shape of the profiles. The radial location
of j stays approximately at the same place, while there is a variation of about 0.15 in
the location of the q = 2 surface.

The significant ranges in ν for which this matching holds, is a possible explanation
for why the density limit is widely encountered across multiple experiments. The
appearance that the radial location of the q = 2 surface is the dominant factor, is
in agreement with the conceptual description of the local heat balance: shifting an
island to a region with a higher j (and thus higher PΩ) or a lower ne (and thus a
lower Prad) can prevent net cooling in its interior and thereby make operation above
the Greenwald density limit possible.

Table 4.3: The device and operation parameters used to calculate the peakedness
regime of figure 4.19, with data adapted from density limit simulations in the Gates-
model [40], and experiments (or general operational parameters) in several devices:
TEXTOR [28], ITER [70], ASDEX [71] and JET [72, 22].

Device/model R0 [m] a [m] Btor [T] q0 qedge

This thesis (JOREK) 3.0 1.0 3.67 1.4 3.7
Gates-model 3.0 1.0 1.0 1.01 3.7
TEXTOR-94 1.75 0.46 2.0 1.1 4.4
ASDEX-Upgrade 1.65 0.5 1.75 1.1 4.0
ITER 6.2 2.0 5.3 1.2 3.0
JET 2.96 1.25 3.45 1.1 2.9
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Figure 4.19: The FRS equilibria are imposed on the simulations in this thesis, as
well as earlier simulations on the Gates-model and operational conditions of several
devises. The overlap is shown between a magnetic island with a width of 15% and
the radial locations (4.14) for averaged current density (dark) and (4.18) for electron
density (light) are equal. The black shaded region indicates the range of current
profiles used in the JOREK simulations.
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5. Discussion
In summary, the results presented in the previous chapter are split between different
aspects: the mechanism, the coupling of local and global scales and heating effects.
Each provides a different perspective to the relation between the Gates-model and
the Greenwald density limit. The tearing mode is found in JOREK simulations for
electron densities between 0.5 and 1.0× 1020 m−3 and central electron temperatures
between 50 and 500 eV, with growth rates in the linear phase matching the theo-

retical T
−9/10
e scaling. During the nonlinear phase full temperature flattening inside

the growing island is found. Without impurities and radiation, maximum normalized
island widths of 0.15 are found during the overshoot in the nonlinear phase. For
increasing neon impurity concentrations, the timescale on which the islands grow de-
creases from tens of milliseconds to a few milliseconds. Normalized widths increase
to values significantly larger than 0.15, with values between 0.2-0.5 being the result
of stochastisation. The maximum observed widths in these cases exceed the reported
critical width of 30% required to trigger a thermal quench [68]. A sharp transition
between these island growth regimes is found for net heated or cooled islands for
densities 20% above the empirical Greenwald limit. Numerical results show the de-
pendency of this transition on temperature, electron density, impurity density and
impurity type. Semi-analytic results explain these dependencies with the F -function.
Plateauing around F = 1 is observed for specific impurity mixtures, together with a
vanishing dependency on fimp. Cooling only the region around the 2⁄1-islands is found
to be sufficient in triggering the enhanced growth of magnetic islands. Subsequently,
part of a temperature quench is observed. Localized heating at the islands is able to
suppress island growth to normalized widths of 0.15, while central heating is found to
be less efficient, suppressing the width to 0.17 at higher heating power. Finally, using
the Furth-Rutherford-Selberg equilibria, expressions are found for the radial locations
where local and averaged quantities match in combination with the radial location of
the q = 2 surface. Assuming a width of 0.15 for the 2⁄1-island, a range of profiles is
found for different models and devices, where the averaged quantities in the global
Greenwald density limit can be replaced by local quantities.

These results will first be discussed with respect to earlier work done on the Gates-
model, before comparing them to experiments, as far as applicable. After that, new
insights are presented along with unaddressed issues and concrete recommendations
for follow-up studies.

5.1 Relation to the Gates-model

Most comparisons in this section come from the two most recent papers in which
the Gates-model is formulated in similar terms as in this thesis [39] and results of
nonlinear simulations on radiative island growth are presented [40].

The evolution of the island width in figure 8 of Teng [40] occurs on a typical timescale
of 0.04 − 0.05τR. This is compared to the evolution presented in figure 4.6. The
temperature inside the island is approximately 70 eV, according to figure 4.12, such
that the resistive time is τR = 0.83 s. In real time the timescales from Teng are then
0.03-0.04 s, which is similar to the 0.03 s found in JOREK between the start of the
nonlinear phase and the maximum island width. This is for cases where the island
width is enhanced, but not growing into a stochastic regime, since ergodic behavior
is not observed in earlier work on the Gates-model.

While timescales of the island growth match, discrepancy is found in the maximum is-
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land widths reached. In this thesis normalized widths range from 0.15 in the impurity-
free scenario, to 0.17 under enhanced growth and 0.2-0.5 in stochastic regimes. In
earlier numerical work, islands are always found to be smaller than 10% of the minor
radius [40], while semi-analytically a range between 25% - 35% is found at the density
limit. The numerical values in this thesis thus follow the latter predictions in earlier
literature better than previous simulations, despite similarities in geometrical and
physics parameters. However, values above 0.2 in this report should not be regarded
as real island widths, but rather as radial excursions of stochastic magnetic field line.
The analytical models do not account for this.

A possible explanation for the discrepancy in found widths with other numerical work
can be due to the omission of higher order harmonics in the JOREK simulations. This
choice enables only the growth of modes at flux surfaces with integer q values. 2⁄1-
islands are expected to saturate at smaller widths when additional modes are able
to grow at intermediate rational surfaces. Indications for this are present in earlier
JOREK simulations [43, 73, 74]. On the other hand, with more modes being present,
overlapping and the transition to stochastic regimes may happen at smaller widths
already, but then again covering smaller radial extends.

As for the scan over electron densities, the island width is found to show a drastic
increase by a factor of 3 [40] or even more than 10 [39] when these densities are
increased from 0.8nG to values 1−1.05nG. In this thesis, the sharp transition is found
at densities well above the Greenwald density, when going from 0.6× 1020 m−3 ≈
1.04nG to 0.7× 1020 m−3 ≈ 1.21nG. However, with the use of figure 4.12 it is identified
that nG is not a good measure for the local description of the limit. The actual figure
of merit is the local value of F , which determines the boundary between net heated
and cooled islands. From this in combination with the definition of F in 4.4, it can be
concluded that the local limit is dependent on the local electron temperature, electron
density, impurity density, impurity type and current density. The repeated finding of
the island growth at nG in literature may thus either be a coincidence or the result
of deliberate tuning of parameters. For example, the use of iron as main or only
impurity species between 100-300 eV explains the lack of temperature dependence.

In the Gates-model, the peakedness of the profiles is a key parameter in determining
the transition from heated to cooled islands. For this net cooling, at the q = 2 surface
the inequality ne/j > F (ne, Te, fimp) is needed. With an additional ad-hoc model
for the internal inductance, at higher densities more peaked profiles are obtained,
which increase ne/j at q = 2. In this thesis however, the peakedness and internal
inductance are not explicitly used anywhere with regard to the simulations. The
initial current density is consistently calculated from the pressure profile according
to the Grad-Shafranov equation 3.24. An increase of the flat density profile leads to
steeper pressure gradients under the same temperature, which then does steepen the
current density profile. The total current is not fixed, in contrast to earlier work. The
increase of the electron density and subsequent changes to j calculated by the Grad-
Shafranov equation 3.24 are equally sufficient to trigger islands into enhanced growth.
In JOREK simulations there is no explicit need for internal inductance, peakedness or
FRS equilibria to reproduce the mechanism of the Greenwald density limit and observe
the threshold behavior.

As a final remark, the dependency on impurity density is considered. The scaling
of the F -function with f−0.5

imp for low concentrations and the flattening at relatively
high concentrations is universally found for the different impurity species and con-
centrations, see figure 4.10. Consistently with these results, this effect is found in

Nonlinear JOREK simulations of the Greenwald density limit with a thermo-resistive
radiation model

67



Gates-model, for which the following explanation is given:

”The weak impact of impurity densities on the limit is because when impurity densities
are increased, Zeff increases and Te increases as η is fixed (...). The cooling rate
LZ then decreases (...). This effect is canceling the impact of impurity densities on
radiation power. Thus the dependence of the density limit on impurity densities is
weaker than n−0.5

Z as one would expect[.]” [39],

in which nZ is used as impurity density. In this thesis the requirement that η is fixed
and the direct consequences that has on temperature and cooling rate are not used.
Neither are they necessary in reproducing the weak dependence on fimp found in [39].
On top of that, if any additional effect should be taken into account, then that would
be a temperature decrease due to the presence of higher concentrations of impurities.
This would lead to an increase in ηSp and thus in Ohmic heating. The effect of the
cooling on the radiation is determined by the local temperature derivative, but for
most cases will stay similar or increase, especially for mixtures. Accompanying the
previous quote is an additional reasoning towards the global density limit:

”[T]he density limit varies by no more than 2.5 times. This implies that the den-
sity limit can’t be improved much by reducing the impurity densities considering the
difficulty of removing the impurities in experiments.” [39]

In contrast to this, the plateauing of F , as shown in figure 4.10, occurs only for
sufficiently high impurity densities. For lower concentrations there is a strong n−0.5

Z

dependence. Conceptually this means that for each decrease in impurity fraction
the density limit becomes less strict. Any achieved stable operation with a density
above the Greenwald limit is beneficial for the fusion reaction efficiency. Exceeding
the limit by 40% in TEXTOR has been reported as a large success, indicating the
relative importance of high density operation [28]. For future experiments much
smaller factors than 2.5, even just above unity, above the limit can make the difference
between net fusion energy and a show stopper.

5.2 Relation to experiments

Direct comparisons of the simulations with experiments for which the Greenwald
density limit is found are difficult due to the limited data1 on impurity profiles and
concentrations. First, comparisons are made with experiments in TEXTOR-94, in
which both disruptions due to a symmetric radiative collapse and due to high electron
density at the Greenwald limit are observed [29, 28]. For high impurity concentrations,
nNe10+ ≈ 1− 4% and nC6+ ≈ 1% a symmetrical radiative collapse is found where the
radiated power exceeds the input power at the edge. The temperature decreases
at the edge and causes a radiation front to propagate inwards. This description
matches observations found in this work where for high impurity concentrations and
electron densities the radiation at the edge is higher than around the islands. This is
specifically seen for the cases with fNe = 1%, ne = 10×1020m−3 and with fFe = 0.1%
at 500 eV, see figure 4.8. Specifically for the neon case, the transition is seen in which
for relatively low densities, the islands are net cooled and become unstable, even when
the global radiated power is smaller than the heating power. At either higher electron
or impurity densities the radiative disruption is seen with enhanced island growth due

1An effort is made to obtain experimental data on disruptions from a selection of experimental
devices. Especially time traces of ne, Te, Prad, and their peaking factors as shown in [75] are of
interest. Unfortunately access to this data is not obtained during this thesis.
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to rapid cooling on a faster timescale than the indepedent growth of the tearing mode,
as identified in figure 4.2.

In either disruption case, 2⁄1-oscillations are experimentally observed due to the rapid
growth of the magnetic islands [19, 29]. These islands can be detected in external
coils due to the plasma rotation and the islands moving with the plasma. Despite
its importance in effects associated with disruptions, such as mode-locking [22, 21],
rotation is not included in this thesis. For the heat balance this rotation is expected to
be of little importance, but to eventually be able to simulate the full current quench,
it should be included. Specifically for Greenwald density limit disruptions, the 2⁄1-
oscillations are seen up to 40 ms prior to the macroscopic temperature loss and the
disruption in TEXTOR shot #59297 [29]. This supports the Gates-model in which
the islands grow due to a local power imbalance, before the macroscopic profile is
affected and lost. In figure 4.13, this is visible from the small perturbation in the
temperature profile during the island growth. As soon as the stochastic region is
reached, the temperature profile collapses rapidly.

The experimentally observed local radiative precursors observed prior to disruptions
at the Greenwald limit, MARFEs, are neither expected nor observed in the JOREK

simulations. A plasma geometry with an X-point is a prerequisite for MARFEs to
appear, as they are found outside the closed flux surfaces [76, 19, 28]. The fact that
this is a radiative event points in the direction of relatively large impurity concentra-
tions at the edge, but does not necessarily lead to radiative islands. In the current
state the observation of MARFEs neither proves nor disproves the Gates-model.

Besides these comparisons with specific phenomena, the general empirical scaling of
the Greenwald density limit should be addressed. The absent dependence on impurity
density and temperature can only be united with the Gates-model if the F -function
is independent on these parameters. Two plausible explanations are the weak depen-
dence on fimp at sufficiently high values (figure 4.10) and having specific mixtures to
cancel out the Te-dependence (figure 4.11). These effects are shown in figures 4.10 and
4.11 respectively. To make a conclusive comparison, in future studies the impurity
types and fractions from specific experiments need to be obtained. Then it can be
validated whether F is indeed independent of Te and nimp in the operational regime
of that specific reactor.

In this thesis, the simulations on the effects of different heating scenarios should be
seen as a study on the mechanism, not as an attempt to realistically mimic exist-
ing heating methods. more a study on the principle. Heating outside the island’s
separatrix is investigated first in this thesis. The lower efficiency compared to local
heating is a first indication of the absence of auxiliary heating power in the empirical
limit. Besides this, the scan over heating scenarios does not mimic experiments. To
simulate modern devices and how the Greenwald limit is overcome through auxiliary
power input, realistic heating scenarios are needed.

The island growth and changes in the Te-profile both happen on a timescale on the
order of 10 ms, according to figures 4.6 and 4.13. The typical time it takes for the
charge state distribution to equilibrate and thus for the coronal approximation to be
valid, is on the order of milliseconds [63, 64]. In the case that the coronal model
would not be valid on the timescales of the mechanism, the islands in experiments
will experience radiation deviating from the radiation rates given by OPEN-ADAS.
The simulations and semi-analytical work in this thesis are mutually consistent. It is
expected that for a different radiation model the qualitative results on the mechanism
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will remain similar. The analysis of the F -function could then be off in predicting
for which temperatures or fractions the radiative cooling will happen. Because the
resistive timescale and thus tearing mode evolution becomes longer for higher tem-
peratures, it is expected that the coronal assumption will generally hold better for
future studies where experiments are replicated at higher temperatures, increasing
the resistive time scale.

Finally, the applicability of the FRS equilibria used in chapter 4.4 is considered.
Because the argument in this section is meant mainly as qualitative one, the chosen
profiles in this model do not exactly have to match the profiles in the simulations or
experiments. Least square fits of the FRS current profile over several JOREK current
distributions show that the peakedness of the numerical profiles is centered in the
region for which overlap between the radial positions is found. For the argument that
the radial positions are separated less than a typical island width, this is sufficient.

5.3 New insights and extrapolations

Despite the differences and uncertainties presented above, the mechanism in the
Gates-model is consistently observed in JOREK simulations and matches several ex-
perimental observations. Now the added benefit of a semi-analytical model shows,
because it can be used to generalize the specific simulations and extrapolate. Based
on new work done in this thesis, new predictions can be done, which are presented
here.

The F -function is shown as a stability boundary between net heated and cooled
magnetic islands in figure 4.12, with trajectories of (Te, ne/j) obtained at the O-points
indicating the effect of the tearing mode and cooling. In this report the transition
from separate temperature-dependent curves from single species towards the total F -
curve for multiple species and the plateauing effect around F = 1 is visualized. Using
the knowledge of F for a specific experiment, the local quantities at the q = 2 surface
can be used to predict a disruption instead of averaged ones, if they are available from
diagnostics. Even more important, is that the new knowledge about F can be used
in finding pathways to exceed the limit. As shown in figure 4.12, peaks in F act as
nonlinear stability barriers against the thermal runaway. As a result, operation with
1% neon at 500 eV is stable and allows for densities much higher than the theoretical
limit, while at 100 eV a series of disruptions is observed. For impurity mixtures this
tells which impurities are most harmful in triggering the radiative growth and should
be avoided most. By customization of the impurity content (in combination with
the temperature profile at the islands), disruptions can be prevented. As an example
based on figure 4.11, with temperatures between 50 eV and 400 eV around the q = 2
surface, removing iron from the machine is beneficial, even if it comes at the cost of
higher concentrations of the other species. As far as the Gates-model is concerned, it
will allow for densities a factor 2 above nG. Even an increased edge radiation is an
acceptable trade-off, as this is commonly countered by additional edge heating [28].

To improve the reliability of such predictions, the (Te, ne/j)-trajectories as shown in
figure 4.12 should be quantified either empirically or analytically. To increase accuracy
with respect to the manual method used in this thesis, the island finding routine of
Appendix B should be extended to allow for finding of O-points. Using reference
trajectories due to regular tearing modes, one should be able to predict whether a
thermal runaway may happen and which shape of F is needed to prevent this.
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An additional way of altering F is by extra heating. Especially for high temperatures
above 1 keV, radiation will overcome the Ohmic heating at low densities, according
to figure 4.9. This is mainly due to the T−3/2 scaling of the Ohmic heating. For
future devices such as ITER, operating at 10-15 keV, heating directed specifically
at the islands is necessary to prevent them from growing under the mechanisms of
the Gates-model. This suppresses the island growth as shown in figure 4.13 and
thereby increases the stable region under the F -function as shown in equation (4.5).
Future and current devices such as TEXTOR and ASDEX-Upgrade use auxiliary
heating anyway, because Ohmic heating alone is not sufficient to carry them to their
operating temperatures.

5.4 Concrete suggestions for improvements

The numerical work presented in this thesis consists mainly of parameter scans and
finding the threshold behavior. Increasing the accuracy by which the island growth
and temperature quench resemble real experiments, higher toroidal harmonics should
be included during the simulations. Qualitatively similar observations are expected
in the enhanced island growth and threshold behavior. However, quantitatively it
is expected that the magnetic islands will be narrower, because additional ones will
be present at intermediate rational surfaces. Furthermore, the convergence scan in
appendix A indicates that numerical instabilities can be avoided by increasing the
number of harmonics. This requires more computational time in possible successive
research projects. The set of simulation settings and results that are obtained in
JOREK provide a starting point.

Better comparisons with experiments will be possible by inclusion of multiple impurity
species. For mixtures the effect of flat regimes in the F -function should be investigated
to see if at similar temperatures and densities observed disruptions can be explained
with the Gates-model. In JOREK this would ideally be done by adding more density
variables, each corresponding to a single species, to accurately include transport and
interactions between species as well. Increasing the number of equations to solve for
lets the problem become computationally expensive very fast. An easier to implement
alternative is to include an option in which a generic impurity species is used with
an artificial radiation curve constructed by an array of user defined impurity species
and concentrations. The resulting curve would be a linear combination of the OPEN-
ADAS radiation curves. Transport can not be accurately taken into account in such
simulations, but solely for radiation purposes this would suffice.

To quantitatively distinguish between the density limit due to the edge radiation and
the Greenwald limit, a diagnostic to measure the total radiative cooling and Ohmic
heating within the separatrices of the islands should be added to the island finding
routine in JOREK. Comparisons between the total power balance and power balance
inside the islands should give a transition as a function of temperature and density.
This then likely gives the mechanism that triggers the island growth and can be used
to better explain the parameter space plots of figure 4.8. Furthermore, the time-
evolution of the radiated power can help quantify nonlinear effects in the thermal
runaway due to the temperature dependency of the radiation rate.
In the same diagnostic, the temperature gradients and heat flux through the separatrix
can be calculated during the tracing of the magnetic field line close to the separatrix.
At different times this tells at which times and to which degree the separatrix acts as
an isolator and the heat balance from the Gates-model holds.
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The way current drive is implemented in JOREK should eventually be altered if one
wants to investigate the tearing mode with added impurities at reactor relevant tem-
peratures (Te > 500 eV) and thus at longer timescales. In the present state, the
current source j0 should be either disabled or have a fixed temperature dependence,
which are both inaccurate on large timescales. A proposed way is replace the current
source profile by a fully consistent inductive drive. The current is then driven at the
edge of the plasma, based on the internal inductance li and distribution characterized
by the resistivity. This method gives an additional numerical value (li) that can be
used in comparisons with experiments, for which this value is often reported.

Additional unaddressed matters

Profiles in JOREK simulations are never exactly comparable due to the fact that the
initial profiles for n, T and j are coupled by the Grad-Shafranov equation (3.24).
No fully independent tuning of a single parameter is possible without it affecting
the others. The q-profile is affected as well, as the enclosed current is used for its
calculation.

Impurity transport effects are intentionally neglected by choosing a uniform spatial
distribution. Moreover, the sudden appearance of impurities at the start of the tearing
mode growth is in no way physical. The questions on why and how the impurities
should have sufficient concentrations around the q = 2 surfaces can not be answered
in this thesis, but are crucial in linking the Gates-model to real experiments.

Besides particle transport, the radial heat transport does not necessarily reflect ex-
perimental situations. Values of the corresponding coefficient are chosen solely as
to keep the temperature profile stable at a desirable value. The ratio between heat
conductivities is chosen in agreement with literature.

Finally, no questions are addressed or answered about the situations in which the
tearing mode grows. This work only shows simulations for cases for which is known
that the tearing mode is unstable, even without impurities. Starting from saturated
cases or with seed islands are two different scenarios which should be done in future
studies.

Gradually increasing the density during runs

The cases investigated in this thesis all start at the beginning of the tearing mode
growth, with a constant density. However, in experiments there may be already small
seed islands presents in a saturated state. Increasing the density during a simulation is
of interest because during experiments the plasma density is often increased until the
disruption at the Greenwald density limit is found. Besides this, it will be interesting
to investigate whether nonlinear growth occurs similar to that in [40] for saturated
islands. Additionally, the existence of an overshoot and transition to a stochastic
regime needs to be studied for these scenarios. In order to simulate these, control
over both plasma and impurity density is needed. Initially simulations in which the
plasma density is increased uniformly at a fixed impurity fraction are of interest, to
see whether similar sharp transitions as in figure 4.6 are found. Such simulations
require additions to JOREK, which are not implemented during this research due to
time constraints. However, a global description of the necessary dual source is given
here.

Using the existing density source, ρ can be increased at a fixed ρimp, meaning that

72 Nonlinear JOREK simulations of the Greenwald density limit with a thermo-resistive
radiation model



the impurity fraction decreases as the total mass density goes up. This can be used
to study the effect of fueling with a 100% deuterium. For the proposed additional
density source, the impurity to electron fraction fimp should remain constant:

nimp

ne
=

nimp

nD + 〈Z〉imp nimp
= fimp = constant

=
2nimp

ntot +
(
〈Z〉imp − 1

)
nimp

=
2ρimpn0

mD

mimp

2mD

(ρ+αρimp) +
(
〈Z〉imp − 1

)
ρimpn0

mD

mimp

=
2ρimp (ρ+ αρimp)n0

2mimp +
(
〈Z〉imp − 1

)
ρimp (ρ+ αρimp)n0

.

(5.1)

This is a more difficult expression than expected, nevertheless a simple quadratic
equation can be obtained from this relating ρimp directly to ρ:

αρ2
imp + ρρimp −

2mimp

n0

fimp

2− fimp

(
〈Z〉imp − 1

) = 0. (5.2)
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6. Conclusion
The main purpose of this research has been to validate and expand on a proposed
explanation of the empirical Greenwald density limit: A semi-analytical model in
which magnetic island growth is enhanced by net radiative cooling, triggering the
disruption of the fusion plasma.

In nonlinear JOREK simulations, a clear transition is observed in the island evolution
when the electron density is increased to values 20% above the empirical Greenwald
density. In these cases, the radiation due to impurities inside the island separatrix is
found to overcome the local Ohmic heating. This leads to enhanced growth of the
islands, stochastisation of the magnetic field and quenching of the temperature profile.
With only a single impurity type included, both numerically and semi-analytically a
transition is found that is highly dependent on electron temperature, impurity density
and type. In these cases, the Gates-model is suitable to predict plasma stability but
not unifiable with the Greenwald density limit.

From a local heat balance inside the islands an expression is found that is able to
predict the cooling and enhanced nonlinear growth of the islands. The inclusion of
multiple impurity species eradicates the temperature dependence and diminishes the
impurity dependence for sufficiently high fractions. With F ≈ 1 for these cases, a
direct reflection of the global limit is found in terms of local electron and current
densities.

Using profiles corresponding to Furth-Rutherford-Selberg equilibria, the radial loca-
tions of where the local electron and current densities are equal to their globally
averaged values are calculated. Both locations are found to match the position of
the magnetic islands for a wide range of profile shapes and different devices. Under
this condition, combined with F close to unity, the local power balance ne = Fj can
be rewritten as ne = j and the full formulation of the Greenwald density limit is
consistently explained.

The suppression of island growth is shown to be more effective for localized heating,
which is consistent with the conceptual picture of thermally isolated islands. For cur-
rent and future experiments a pathway is presented to exceed the Greenwald density
limit by creating stable regimes by control of impurity species and fractions, or by
specifically heating of the 2⁄1-islands.

Higher toroidal resolution will increase the physical accuracy of perturbations that
describe the islands and allow for simulation of full disruptions. It is identified that
modifications in the impurity description and current drive are needed in JOREK to
allow direct comparison with real experiments.
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A. Convergence of simulations

A.1 Number of harmonic modes convergence

For the case with ne = 0.7 × 1020 m−3, nNe/ne = 0.01 and Te = 100 eV, different
amounts of harmonics are included in the Fourier decomposition for the toroidal
dependencies of the quantities. The magnetic energy in the first harmonics Emag,1

is given in figure A.1 for the transition from the linear to nonlinear phase. Each
increase of n tor by 2 corresponds to an extra pair of sines and cosines added to the
decomposition: n tor = 3 has a single sine and cosine, n tor = 5 has a an additional
sine and cosine squared, etc. The simulations seem to be converged when at least
n tor = 5 is used. The temperature and current density profiles at the midplane
for the time indicated by the black dotted line, shown in figure A.2, confirm this.
Here it seems that numerical oscillations around the axis can be prevented using
higher order modes, while increasing the details around the magnetic island where
the profile flattening shows. It is however unknown whether the extra features between
0.4 < ψN < 0.6 have a physical or numerical origin.

Despite these results, the runs with n tor = 3 are used for the research done in this
thesis, since this allows for the use of a direct matrix solver. For more harmonics,
preconditioning of the system using an iterative generalized minimal residual method
(gmres) is needed. To satisfy similar convergence criteria as during the linear phase,
the typical time step needs to be decreased by up to a factor 100. Overall this increases
the time to simulate the nonlinear evolution of the tearing mode from the order of
days to multiple weeks/months.
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Figure A.1: The magnetic energy in the first harmonics Emag,1 is plotted for the
end of the linear and part of the nonlinear phase. Convergence is reached when at
least n tor = 5 is used.
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Figure A.2: The midplane temperature and current density profiles in JOREK units
are plotted for different number of toroidal harmonics included in the simulations. For
the current density two curves show for the two midplane sections on the inner and
outer side with respect to the magnetic axis, due to the 1/R-dependency. Oscillations
around the axis can be suppressed while the additional features emerge around the
magnetic islands when using at least n tor = 5, at the cost of increasing the simulation
duration significantly.
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A.2 Poloidal grid size convergence

The number of elements in the poloidal grid is varied by scans over the number of
elements in the radial direction n flux and in the poloidal direction n theta. This is
done for parameter settings ne = 0.5 × 1020 m−3, nNe/ne = 0.0 and Te = 50 eV.
With either n flux ≤ 76 or n theta ≤ 51, sudden jumps in various components are
observed. For the simulations in which these jumps are absent, the magnetic energy
Emag,1 is plot in figure A.3. Here, no significant dependence is found on the number
of grid cells during either linear or nonlinear phase. For the simulations in this thesis,
a grid is used with n flux = 126 and n theta ≤ 76.
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Figure A.3: The magnetic and kinetic energies in the first harmonics Emag,1 and
Ekin,1 are plotted for the end of the linear and part of the nonlinear phase, for different
number of radial and poloidal elements n flux and n theta. The insert shows a closeup
of the nonlinear phase of the kinetic energy. The curves show no significant variation
during either phase. To improve readability of the figure, each line is shifted 20 ms in
time with respect to its neighbor.
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A.3 Time step convergence

For parameter settings ne = 0.5× 1020 m−3, nNe/ne = 0.0 and Te = 50 eV, the time
step in JOREK units is varied. The magnetic energy Emag,1 is plot in figure A.4. For the
tearing mode growth typical time steps of 50−500 are chosen for central temperatures
of 50 ev or 500 eV respectively. This is justifiable, because with an increase of T by
a factor 10, the resistive timescale increases with a factor 103/2 ≈ 30. For runs with
high impurity concentrations and rapidly evolving temperature profiles, the timestep
is typically decreased by a factor 10 again.
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Figure A.4: The magnetic and kinetic energies in the first harmonics Emag,1 and
Ekin,1 is plotted for varying JOREK time step sizes. The insert shows a closeup of the
nonlinear phase of the kinetic energy. The curves show no significant variation during
either phase, with the exception of the largest of 200 showing oscillatory behavior.
To improve readability of the figure, each line is shifted 1.0 ms in time with respect
to its neighbor.
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A.4 Comparison with axisymmetric case

The case with localized impurities and lowered boundary temperature from section
4.3.1 is compared with an identical, but axisymmetric setup, i.e. n tor = 1. Further
settings are ne = 0.7 × 1020 m−3, nNe/ne = 0.01 and Te = 100 eV. The magnetic
energy Emag,1 is plot in figure A.5. Up to the start of the nonlinear growth phase of the
tearing mode, the axisymmetric components of both cases are nearly identical. At the
onset of the nonlinear phase, the axisymmetric components (with n tor = 3) begin
to deviate as they are affected by the tearing mode, while the other axisymmetric
energies (with n tor = 1) continue the trend. The sudden jump in kinetic energy at
0.576 s is due to the addition of impurities. Here the total plasma mass instantaneously
increases as ρimp is made non-zero, while parallel flows are unaltered.
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Figure A.5: The energies of simulations with and without included nonlinear compo-
nents are compared. Until the start of the nonlinear phase, the axisymmetric energies
are nearly identical.
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B. Island finding routine
This appendix describes the methods used to get from a JOREK restart file to (nor-
malized) island width that is used in the results section of this thesis.

B.1 Tracing magnetic fieldlines

First a method is needed to accurately trace magnetic field lines and store their
trajectories from the JOREK restart file. The majority of this method is written by
Daan van Vugt [63]. Closed expressions for the magnetic field B are not available,
only local information at a coordinate can be obtained by interpolation of ψ and its
spatial averages. The magnetic field at location x = (R,Z, φ) is then obtained from
equation (3.1) as

B = (BR, BZ , Bφ) =

(
1

R

∂ψ

∂Z
,− 1

R

∂ψ

∂R
,
F0

R

)
. (B.1)

This expression is normalized to retain only information on directional components
like

B̂ =
B

‖B‖ =

(
BR
‖B‖ ,

BZ
‖B‖ ,

Bφ
‖B‖

)
=
(
B̂R, B̂Z , B̂φ

)
. (B.2)

Based on the single starting point, the tracing routine is set-up using the explicit
first-order Euler stepping method, which relates the new location to the old as

xnew = xold + B̂ (xold) ∆x, (B.3)

with ∆x as step size. For the position in cylindrical coordinates in JOREK is imple-
mented as

R1 =

√(
R0 + B̂R,0∆x

)2

+
(
B̂φ,0∆x

)2

Z1 = Z0 + B̂Z,0∆x

φ1 = φ0 + arcsin

(
B̂R,0∆x

R1

)
.

(B.4)

With the first two values known, the explicit second-order convergent Adams-Bashforth
method will be used for all subsequent steps:

xn+2 = xn+1 +

(
3

2
B̂ (xn+1)− 1

2
B̂ (xn)

)
∆x. (B.5)

Again for this system, this translates to

Rn+2 = Rn+1 +

(
3

2
B̂R,n+1 −

1

2
B̂R,n

)
∆x

Zn+2 = Zn+1 +

(
3

2
B̂Z,n+1 −

1

2
B̂Z,n

)
∆x

φn+2 = φn+1 +

(
3

2
B̂φ,n+1 −

1

2
B̂φ,n

)
∆x

Rn+1
.

(B.6)

Whenever the position of intersection at a certain poloidal plane with angle φplane

needs to be known, linear interpolation is used between the steps with angles φn+1 and
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φn which relate to the position of the plane as φn+1 > φplane > φn. The coordinates
on this plane are calculated by:

xplane = xn + (φplane − φn)
xn+1 − xn
φn+1 − φn

. (B.7)

B.1.1 Convergence of fieldline tracer

For an unperturbed magnetic field, the tracer is used around the q = 2 surface for 10
toroidal rotations for various step sizes ∆x. For a single field line trace, the value of ψN
is expected to remain constant. The maximum relative difference in the normalized
poloidal flux

(∆ψN )max = max

[
ψN − ψN

ψN

]
(B.8)

found during such a trace is shown in figure B.1. For values between 1 cm and 10 cm
agreement is found with the expected second order scaling. Step sizes of 1 cm are
used in this thesis as they show a good trade-off between accuracy and number of
steps and thus run time. The plateauing effect can be attributed to the error in other
factors such as grid size becoming more important than the error due to the tracer.
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Figure B.1: The maximum relative difference in the normalized poloidal flux, defined
in (B.8), shows the expected quadratic scaling, followed by a plateauing effect. There
is no need for decreasing the step size beyond 1 cm.

B.2 Locating static points in a poloidal mapping

In an unperturbed ψ-profile a magnetic field line at rational q-surfaces loops back on
itself after m toroidal rounds. Magnetic island as a whole share this property, but
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the field lines on and inside the separatrix do not. Only the X-point and O-point of
the islands have the same behavior as the single unperturbed field lines. Moreover,
around the X-points of the magnetic islands, the distance between field line crossings
in the poloidal plane decreases. This field line stagnation is shown in figure B.2, where
the ratio between the magnetic field line components perpendicular and parallel to
the poloidal plane are shown around the X-point [45]. The figure shows the existence
of a minimum at the X-point, while simultaneously showing the difficulty to exactly
locate it, due to the fact that field lines intersect the poloidal plane nearly at a right
angle close to the X-point. These observations provided the inspiration to construct
a function that gives the distance between the start and ending coordinates of a field
line after an integer number of toroidal rotations. Mathematically this is given by

F (R,Z) =

√
(Rφ −Rφ+2πm)

2
+ (Zφ − Zφ+2πm)

2
, (B.9)

for m rotations. The function is shown in figure B.3 in combination with a Poincaré
plot of the island at the corresponding time. The function F is smooth over the
poloidal plane and has a circular valley in which the X-points and O-points are located.
The location of an X-point is estimated using the gradient descent method, extended
with a momentum term [77]. This method is not chosen for its efficiency, but rather
for its robustness in finding a minimum. Using r as coordinate in the poloidal plane,
new coordinates is found using the iterative scheme

zn+1 = βzn +∇F (rn)

rn+1 = rn − γzn+1,
(B.10)

in which β indicates the strength of the momentum and γ is a scaling for the step
size, which typical value is highly dependent on the function to find a minimum
of. For functions that exhibit behavior with a large range of gradients, a single
valued γ will either cause overshoots or unreasonably small steps. The addition of
momentum allows the solver to retain information of earlier steps and applying it to
the current. If similar gradients (mainly directions) are subsequently found, then their
effect is enhanced, causing the method to take increasingly large steps downhill. The
coordinates visited during a gradient descent run are shown in the bottom of figure
B.3. Here can be seen that the number of function evaluations to find the global
minimum is over an order of magnitude higher than for finding the circular ring. This
is due to the large variation in gradients in and outside the ring. Faster convergence
is obtained by increasing β, which causes the radial overshoot, and performing several
sequential runs, between which γ is varied.
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Figure B.2: The difficulty in finding the island X-point shows as the field line
components in the poloidal plane Lperp decrease rapidly compared to the component
in the toroidal direction Lpar. Adapted from [45].

The function F shows striking resemblance with a classical problem in optimization
theory: the Rosenbrock function. This function has a global minimum in a valley that
is roughly parabolic, which is generally easy to find. The difficulty lies in finding the
global minimum inside this region with small gradients [78]. The Nelder-Mead method
is proposed as a better method to be used on problems similar to the Rosenbrock
function [79]. For future work it might be beneficial to implement this method as an
extra option in the island finding routine as well.
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Figure B.3: The function defined in (B.9) is shown for a case with large magnetic
islands (Poincaré plots in black and white) on both a logarithmic and linear scale. The
top plot is similar to figure B.2. The minima at X- and O-points lie within a circular
region that is relatively easy to find. The difficulty lies in finding a global minimum
inside this ring, which is apparent from the large number of visited coordinates in the
gradient descent method, shown as orange dots.
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B.3 Verification of endpoint location

After the gradient descent method has found a minimum within the set tolerance, a
confirmation is needed to make sure that the found point is within the separatrix.
Only traces of magnetic field lines just within or on the separatrix result in the island
structure to become visible in a Poincaré plot. The check makes use of the stagnation
around the X-point. An example of the intersections of two series of intersection points
is given in figure B.4. Suppose that the red location is found, then the field line will be
traced in the forward and backward direction, until the distance between intersections
in the poloidal plane is found to increase. These endpoints are shown as white dots.
Then the angular distance (in the poloidal plane) of the last two intersection points
is determined. If for both the forwards and backwards trace, the angular directions
for which stagnation occurs have the same sign, the magnetic field line is inside the
separatrix. Oppositely, if the blue location is initially found, stagnation is found once
in positive and once in the negative θ direction. This magnetic field line thus lies
outside the separatrix of the island.

Figure B.4: The separatrix (black line) can be approximately located by the gra-
dient descent method (red and blue dots). Once the distance between intersections
(black dots) is found to increase (white dots), the directions in which they move
are compared. For the red case, both lines are directed left, while for the blue case
two opposing directions are found. In the real island finding routine, the direction
(left/right) is replaced by the poloidal angle.

A small step in poloidal direction can be sufficient to cross the separatrix and find
coordinates inside the island. This prevents an additional, time-consuming run of
the gradient descent. However, the traced magnetic field line will be further away
from the separatrix with each poloidal step, as shown in figure B.5. This decreases
the maximum island width that can be found. The maximum found island width
has a parabolic dependency for small angle sizes, shown in figure B.6. Therefore, the
relative error falls to around 0.1% for small step sizes. For total steps of 0.01− 0.5 rad
occuring in this thesis, the relative error never exceeds 10%. It will typically remain
on the order of a few percent.
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Figure B.5: For both 2⁄1- and 3⁄1-islands, taking large poloidal steps away from the
X-points still allows for tracing an internal flux structure. The width of these flux
structures can still be used to estimate the actual island width, as shown in figure
B.6.

92 Nonlinear JOREK simulations of the Greenwald density limit with a thermo-resistive
radiation model



0.00 0.25 0.50 0.75 1.00

Poloidal step θ [rad]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
el

at
iv

e
Is

la
n
d

w
id

th
w

fo
u
n
d
/w

re
a
l

(a) Width of 2/1 islands
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(b) Width of 3/1 islands
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(c) Relative error of 2/1 islands
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(d) Relative error of 3/1 islands

Figure B.6: The relative island width (top) and relative errors in these widths
(bottom) are plot for the 2⁄1- and 3⁄1-islands. The error decreases to the percent range
as poloidal steps smaller than 0.5 rad are taken.
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B.4 Obtaining the width from the Poincaré plot

To fairly compare the found widths of the magnetic islands when they are found
with different orientations in the poloidal plane, an additional mapping is necessary.
Instead of locating the spatial width, the maximum and minimum encountered values
of ψN are stored. From JOREK the relation between ψN and r/a at the midplane
is obtained, by which the island width can be projected on this plane. The added
benefit is that this will work regardless of the shape of the poloidal plane. The spatial
width of islands in devices with elongated poloidal planes changes with respect to the
poloidal angle. The conversion to the midplane width removes this effect.

B.5 Overview of options

Table B.1: User defined settings in the island finding routine

Option Typical value Description
m 2 Number of toroidal rotations island
n 1 Number of poloidal rotations island
Rstart 3.5 Start coordinate of gradient descent
Zstart 0.5 Start coordinate of gradient descent
stepsize 1× 10−2 Stepsize for field line tracing
gamma(1) 1× 10−3 γ for R-coordinate
gamma(2) 5× 10−2 γ for Z-coordinate
momentum 0.85 Strength of momentum term β
tolerance 1× 10−4 Tolerance for termination gradient descent method
max iters 100 Number of iterations in gradient descent method
repetitions 4 Number of times gradient descent method is repeated
gd stepfactor 20 Multiplication factor for γ between repetitions
thetastep [10−2 − 10−1] Stepsize if endpoint is outside separatrix
datapoints 1000 Number of datapoints in Poincaré plot
filemin 1000 First JOREK file to find islands for
filemax 2000 Last JOREK file to find islands for
increment 10 Increment in loop over JOREK files
heatmap .true./.false. Option to generate heatmap like B.3
hmr 200 Number of points in radial direction of heatmap
hmth 200 Number of points in poloidal direction of heatmap
hmrmin 0.0 Minimum radial bound for heatmap
hmrmax 1.0 Maximum radial bound for heatmap
hmthmin 0 Minimum angular bound for heatmap
hmthmax 0 Maximum angular bound for heatmap
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C. JOREK Normalization

Quantity name SI units expressed in JOREK quantities
Major radius R [m] R
Vertical coordinate Z [m] Z
Toroidal angle φ [rad] φ
Time t [s] t
Magnetic field vector B [T] B
Electric field vector E [Vm−1] E/

√
µ0ρ0

Poloidal magnetic flux Ψ [Tm−2] Ψ
Velocity vector v [ms−1] v/

√
µ0ρ0

Parallel velocity component v‖ [ms−1] v ·B/√µ0ρ0

Toroidal vorticity ωφ [m−1s−1] ω/
√
µ0ρ0

Toroidal current density jφ [Am−2] −j/(Rµ0)
Particle number density n [m−3] ρn0

Particle mass density ρ [kgm−3] ρρ0

Impurity number density nimp [m−3] ρimpn0
mD/mimp

Impurity mass density ρimp [kgm−3] ρimpρ0

Total temperature (electron + ion) T [eV] T/ (eµ0n0)
Plasma pressure p [Nm−2] ρT/mu0

Resistivity η [Ωm] η
√
µ0/ρ0

Dynamic viscosity µ [ρ0/µ0] µ
√
ρ0/µ0

Particle diffusivity (‖ and ⊥) D [m2s−1] D/
√
µ0ρ0

Thermal conductivity (‖ and ⊥) K [kgm−1s−1] K
√
ρ0µ0

Heat source SH [Wm−3] 3
2SH/

√
µ3

0/ρ0

Ionisation energy Eion [J] Eion/ (2/3µ0n0)
Radiation rate Lrad [Wm3] Lrad/

(
2/3µ0

√
µ0ρ0n

2
0
mD/mimp

)
Radiation power density Prad [Wm−3] Prad/

(
2/3µ0

√
µ0ρ0

)
With definitions

n0 [m−3] central density · 1020

ρ0 [kgm−3] central mass · n0mproton
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