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Abstract

An air curtain is an aerodynamic seal between two environments in the form of a plane turbu-
lent impinging jet. It aims to separate two spaces while avoiding an obstructed passage, such
as a door. Air curtains are often used in public buildings where doors are frequently used, to
prevent heat loss. Aside from energy efficiency and air quality, air curtains are also used for
other purposes, such as thermal comfort, fire and chemical safety. In this study, the influence
of secondary jets on the separation efficiency of an air curtain is investigated by means of 2D
numerical simulations. The distance between the jets and the discharge velocities are varied to
find an optimal configuration. Steady RANS simulations are performed to gather information
about velocity and entrainment. Unsteady RANS simulations are conducted to measure species
transfer across the air curtains directly. It can be concluded that secondary jets significantly
reduce the species transfer across the jets compared to a single jet. The species transfer across
the jets is dependent on the entrainment velocity, which controls the amount of species entering
the jet, and the centreline velocity, which controls how fast the species are transported through
the jets. The entrainment velocity, and also the species transfer, is minimised when the sec-
ondary jets have approximately the same velocity as the main jet. However, an optimal distance
between the jets has not been found.
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Nomenclature

α Opening angle of a jet

ω Vorticity vector [s−1]

∆t Time step [s]

δ0.5 Jet half width [m]

ε Turbulence dissipation [m2/s3]

Fv Viscous forces vector [kg/ms2]

g Gravitational acceleration vector [m/s2]

n Normal (unit) vector

u Velocity vector [m/s]

µt Turbulent or eddy viscosity

ν Kinematic viscosity [m2/s]

ω Specific turbulence dissipation [s−1]

ωc Critical value of the vorticity [s−1]

ΦPjet Jet momentum flux [kg/s2]

ψ Stream function [m2/s]

ρ Fluid density [kg/m3]

σ Standard deviation

c Species concentration [kg/m3]

Cµ Model constant

ct Mass fraction of tracer air

Cr Courant number

D Diffusion coefficient [m2/s]

d Distance between the nozzles of the secondary jets and the main jet [m]

DH Hydraulic diameter [m]

Dt Turbulent diffusion coefficient [m2/s]

Fs Safety factor
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hjet Height of the computational domain [m]

houtlet Size of the pressure outlets [m]

hp Length of the jet potential core [m]

I Turbulence intensity [%]

k Turbulent kinetic energy [m2/s2]

L Characteristic length scale [m]

l Turbulence length scale [m]

P Pressure [Pa]

p Order of accuracy of the numerical scheme

Q Volume flux [m2/s]

R Velocity ratio: R = V ∗2 /V
∗

1

Rjet Jet radius [m]

Re Reynolds number

S Sources and sinks of species

Sct Turbulent Schmidt number

t Time [s]

Tc Circulation time [s]

u x-component of the velocity [m/s]

V Characteristic fluid velocity [m/s]

v y-component of the velocity [m/s]

V0 Jet discharge velocity [m/s]; V0 =
√
V 2
1 + V

2
2

V ∗0 Desired jet discharge velocity [m/s]

V1 Discharge velocity of the main jet [m/s]

V ∗1 Velocity imposed at the velocity inlet of the main jet [m/s]

V2 Discharge velocity of the secondary jets [m/s]

V ∗2 Velocity imposed at the velocity inlets of the secondary jets [m/s]

VE Entrainment velocity [m/s]

vE Theoretical entrainment velocity [m/s]

Vmax Maximum velocity [m/s]

vmax Theoretical centreline velocity [m/s]

Vx x-component of the velocity [m/s]

Vy y-component of the velocity [m/s]

w z-component of the velocity [m/s]
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w1 Nozzle width of the main jet [m]

w2 Nozzle width of the secondary jets [m]

wdomain Width of the computational domain [m]

wjet Nozzle width of a single jet [m]

x Cross-jet distance [m]

y Downstream distance [m]

2D Two-dimensional

BSL Baseline k − ω Model

CFD Computational Fluid Dynamics

FAC1.1 Factor of 1.1 of the observations

FAC1.5 Factor of 1.5 of the observations

GCI Grid-convergence index

LES Large Eddy Simulation

NMSE Normalised mean squared error

PIV Particle Image Velocimetry

PTIJ Plane turbulent impinging jet

r Linear grid refinement factor

Rp Correlation coefficient

RANS Reynolds-Averaged Navier-Stokes

RKE Realizable k − ε Model

RNG Re-Normalization Group k − ε Model

RSM Linear Pressure-Strain Reynolds Stress Model

SKE Standard k − ε Model

SOU Second-order upwind

SST Shear-Stress Transport k − ω Model

TKE Turbulent kinetic energy
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Chapter 1

Introduction

An air curtain is a plane turbulent impinging jet (PTIJ). A plane jet has a rectangular nozzle
with a large aspect ratio, contrary to a circular jet which has a round nozzle. An impinging jet
hits a wall somewhere downstream, opposed to a free jet that is not influenced by boundaries.
Free jets are a well studied phenomena, and many of their characteristics are discovered by means
of experiments (Pope, 2000). Impinging jets are often investigated in the interest of heat transfer
or surface cleaning (Shuja et al., 1999; Beitelmal et al., 2006). However, in these applications,
only small jet heights are used or solely the flow close to the impingement surface is studied.
An air curtain is a PTIJ that is located on any side of a door frame. By creating a pressure
drop, the air curtain forms an aerodynamic seal between the indoor and outdoor environments.
The jets are strategically engineered to strike the floor with a particular velocity and position
to reduce the heat and mass transfer through the doorway. The separation efficiency of an
air curtain depends on a wide range of parameters. Environmental parameters, such as air
temperature differences and pressure differences over the air curtain, as well as jet parameters,
such as the jet Reynolds number, are of influence on the sealing efficiency.

In buildings, air curtains are widely used in entrance doors to restrict air infiltration and/or
exfiltration. Cold air infiltration is one of the leading causes of energy loss in buildings and can
account for up to 25% of the total heat losses in commercial buildings (Emmerich and Persily,
1998). Heat loss due to air infiltration becomes especially significant in public buildings, such
as hospitals, supermarkets, offices, restaurants and stores, where the doors are frequently used.
Air curtains can also be used to stop smoke spreading in a building in case of a fire (Krajewski,
2013). Furthermore, air curtains are used to preserve low temperatures in cold storage rooms
and food display cabinets (Gonçalves et al., 2012a), to control dust in the mining industry
(Colinet et al., 2006), and to maintain the air quality in the chemical and electronic industry,
as well as in surgical units (Shih et al., 2011). In contrast to fast sliding doors, vestibules
or plastic strip curtains, air curtains prevent outdoor air infiltration while also permitting an
unobstructed entryway.

The optimisation of air-curtain devices is a relevant present-day topic. In a time where global
warming is imminent, energy losses should be minimised. Furthermore, global pollution has a
negative influence on air quality. Therefore, preserving and improving indoor air quality be-
comes more important. Air-curtain devices that make use of a single PTIJ are already in use for
a long time, and their optimisation has been investigated by many. Gonçalves et al. (2012b) and
Frank and Linden (2014) studied optimum discharge velocities. Costa et al. (2006), Shih et al.
(2011) and Qi et al. (2018) discovered that the separation efficiency is enhanced by placing the
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air curtain nozzle under an angle. They all found an optimum ejection angle of approximately
15°. Recirculating air curtains have also proven to optimise the separation efficiency (Hendrix
et al., 1989; Gonçalves et al., 2012a). However, the complexity of the recirculation system and
the installation and maintenance costs discourage its usage. Gonçalves et al. (2012a) com-
pared vertical and horizontal air-curtain devices, and found that downward blowing air curtains
present better sealing efficiency. Heated air curtains are studied by Frank and Linden (2015).
They found that the effectiveness of an air curtain starts to decrease when it is heated beyond
a critical temperature. Additionally, Qi et al. (2018) found that the presence of a person under
the air curtain has little effect on its performance. Optimisation by means of parallel jets is
not previously investigated. Double-stream twin-jet air curtains are used in the application of
smoke and heat confinement (Elicer-Cortés et al., 2009). However, these devices do not optimise
the separation efficiency, but operate as a confinement system.

Parallel jets start merging due to the intake of air across their boundaries, i.e. entrainment.
Many have studied the merging behaviour of multiple parallel jets, especially the interaction
of two parallel jets. Miller and Comings (1960) investigated the force-momentum fields of a
single dual-jet configuration. Tanaka (1970) and Tanaka (1974) varied the distance between
the nozzles and studied the effect on the resulting flow field, and compared their results with
results from a single jet. They found that the velocity profiles of the combined flow are similar
to those of the single jet, however, the turbulence intensities differ. Nasr and Lai (1997) were
the first to use laser Doppler anemometry instead of hot-wire measurements to investigate the
merging of two jets. They were able to give an elaborate analysis of the merging jets compared
with a single jet, addressing jet characteristics such as pressure, mean velocity distributions, jet
spreading, turbulence intensity distributions, and entrainment. Fujisawa et al. (2004) studied
two parallel jets with different initial velocities and found that the jets develop toward the high
velocity side. Although much is known about two parallel jets, three parallel jets, such as the
ones in this research, are not often investigated.

The current study aims to optimise an air-curtain device by means of secondary jets, i.e. two
jets with smaller nozzles that are placed at both sides of the main PTIJ. The secondary jets
are expected to reduce the turbulence in the main jet. Therefore, stabilising the centreline
velocity, and proving a better sealing. Two-dimensional (2D) Computational Fluid Dynamics
(CFD) simulations are performed to gather information about velocity, entrainment and species
transport across the jets. The distance between the jets and the discharge velocities are varied to
find an optimal configuration. The effects of environmental parameters (e.g. pressure gradients)
is beyond the scope of this study.

The report is organised as follows. Chapter 2 provides a theoretical background on the governing
equations of fluid flow and their numerical approximations. Also, turbulence and turbulence
modelling are discussed. Furthermore, the characteristics of a turbulent plane jet are illustrated,
and a theoretical model is formulated. Chapter 3 describes a 2D numerical model of a PTIJ.
A validation study is performed with the experimental data of Khayrullina et al. (2017), and
the results are presented. Chapter 4 describes a 2D numerical model of a PTIJ with secondary
jets. The simulation results of the numerical models from Chapter 3 and 4 are presented and
discussed in Chapter 5. Recommendations for future work are presented in Chapter 6. Finally,
the conclusions of this research are summarised in Chapter 7.
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Chapter 2

Theoretical background

This chapter provides a theoretical background on the governing equations that describe fluid
flow and species transport. A numerical approximation of these equations is given, which is
used in Computational Fluid Dynamics (CFD). Turbulence is briefly described, and turbulence
modelling in CFD is explained. Also, the characteristics of turbulent jets, such as entrainment,
are described, and a theoretical model is defined for a 2D free plane jet.

2.1 Governing equations

The governing principles in fluid mechanics are the conservation laws for mass and momentum.
The flow of an incompressible Newtonian fluid can be described by the continuity equation
(conservation of mass)

∇ ⋅ u = 0, (2.1)

and the Navier-Stokes equations (conservation of momentum)

ρ
∂u

∂t
+ ρ(u ⋅ ∇)u = −∇P + ρν∇2u + ρg. (2.2)

Here, ρ is the (constant) fluid density, t the time, u the velocity vector, P the pressure, ν the
kinematic viscosity of the fluid, and g the gravitational acceleration. Note, due to the constant
density, body forces corresponding to gravity can be neglected (Kundu et al., 2016). Equations
(2.1) and (2.2) are the differential forms of the conservation laws, and are often more appropriate
for detailed analysis when field information is needed. When averaged or integrated quantities
are sufficient, the integral forms can be used. Those are stated in terms of the evolution of a
control volume, and the fluxes of mass and momentum that cross its control surface (Kundu
et al., 2016). The integral form of the continuity equation (2.1) is given by

∬ (u ⋅ n)dA = 0, (2.3)

where n is the normal (unit) vector, and A a control surface. Note that for the continuity
equation (2.1) and (2.3), ρ is omitted because the flow is incompressible and isothermal, and
therefore it is a constant. This makes that the continuity equation expresses conservation of
volume rather than of mass. The integral form of the Navier-Stokes equation (2.2) is given
by
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∭ ρ
∂u

∂t
dV +∬ ρu(u ⋅ n)dA = −∬ PudA +∭ ρg dV +Fv. (2.4)

Here, V is a control volume, and Fv describes the viscous forces. In the case of steady state,
a uniform pressure field, and neglected viscous and gravitational effects, the Navier-Stokes
equations reduce to

∬ ρu(u ⋅ n)dA = 0. (2.5)

To visualise the trajectories of particles in a steady flow, the stream function for incompressible
flows in two dimensions can be used. The stream function ψ satisfies

u =
∂ψ

∂y
, v = −

∂ψ

∂x
, (2.6)

where u and v describe the x-component and the y-component of the velocity, respectively
(Kundu et al., 2016). Streamlines are represented by ψ = constant, and show the direction in
which a fluid element will travel. In the case of a steady state, the streamlines coincide with the
particle trajectories. By definition, there can be no flow normal to a streamline, meaning that
there is conservation of mass between two streamlines. This implies that a high concentration
of streamlines indicates a high velocity of the flow.

2.1.1 Species transport

The transport of a species is governed by the convection-diffusion equation:

ρ
∂c

∂t
+ ρ∇ ⋅ (uc) = ρ∇ ⋅ (D∇c) + S, (2.7)

in which c is the species concentration, D the diffusivity coefficient, and S the sources and
sinks of the species (Welty et al., 2009). Species transport is the net movement of species from
one location to another, and is a result of convection and/or diffusion. Convection, also called
advection when talking about species transport, is the passive transport by the carrying fluid,
i.e. species are transported by the bulk motion of the fluid. Free convection occurs when there
are density or temperature differences present in the fluid. Heavier fluid will sink, and lighter
fluid will rise, causing a bulk fluid motion. Forced convection is the result of an external force
setting the fluid in motion, such as a jet entering a quiescent fluid. In the present study, density
differences are not considered (i.e. the flow is incompressible and isothermal), hence only forced
convection is present.

Diffusion is mass transfer due to random motions of the fluid. In turbulent diffusion, the
random motion of the fluid causes mixing, while in molecular diffusion it is the random motion
of the molecules what is important. Thus, the degree of turbulent diffusion depends on the
properties of the fluid flow, rather than on the properties of the molecules, as in molecular
diffusion. Turbulent diffusion occurs much more rapidly than molecular diffusion. It greatly
enhances mass transfer and is therefore extremely important for problems concerning mixing
and transport. In equation (2.7), the second term on the left-hand side describes the convection
of the species, the first term on the right-hand side describes diffusion of the species, and the
second term on the right-hand side describes the creation or destruction of the species.
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2.2 Turbulence

Turbulence is a fluid motion characterised by chaotic changes in pressure and flow velocity.
Chaotic eddies, vortices and other flow instabilities of different sizes define turbulent flow. The
onset of turbulence can be predicted by the dimensionless Reynolds number,

Re =
V L

ν
, (2.8)

where V is the velocity of the fluid, and L the characteristic length scale (Reynolds, 1895).
The Reynolds number describes the balance between inertial forces and viscous forces. Inertial
forces produce flow instabilities and viscous forces dampen them, so high values of Re indicate
turbulence. For the case of a developed pipe flow, Reynolds (1895) suggested Re ≈ 2300 for the
upper limit of laminar flow. As the Reynolds number is increased, the transition from laminar
to turbulent flow occurs over a range of Re depending on the details of the experiment (Pope,
2000). Although the Reynolds number gives an indication of the onset of turbulence, turbulence
has resisted detailed physical analysis and therefore a unifying theory of turbulence does not
yet exist (Cushman-Roisin, 2014).

2.3 Numerical approximation of the governing equations

The conservation principles for mass and momentum make it possible to predict fluid flow in
all circumstances. Unfortunately, the equations are so complex that only analytical solutions
for a few relatively simple cases can be found. Detailed solutions for complex flows were not
possible until the development of computers, and the emergence of CFD. CFD is a technique
that produces quantitative predictions of fluid-flow phenomena based on the conservation laws.
With the help of digital computers, it allows for the prediction of the flow field by solving these
equations numerically. In this study, the CFD solver ANSYS Fluent (ANSYS Inc., 2018) is
used.

Computers work with discrete numbers, hence the continuous flow field must be approximated
by discrete values and the partial differential equations must be replaced by discrete equations
that relate the discrete values to each other (Kundu et al., 2016). The discretisation of equations
can be done with different methods, such as the finite difference method, the finite volume
method, and the finite element method. ANSYS Fluent uses the finite volume method which
divides the continuum space in small control volumes. The integral forms of the conservation
equations (equations (2.3) and (2.5)) are then applied to each control volume to find the average
values of the ‘unknowns’, such as velocity and pressure. This automatically guarantees the
conservation of fluxes through a particular control volume. In order to apply the finite volume
method, the flow domain has to be discretised as well, which is done by means of a computational
grid, carefully constructed according to appropriate guidelines (e.g., Franke et al. (2007)).

The discretised equations for conservation of mass and momentum, and the transport of species
can be solved directly with CFD, which is called Direct Numerical Simulation (DNS). This
method requires a very fine grid and very small time steps in order to capture all the scales of
turbulence, and therefore, requires a long computational time. In many engineering applications,
a complete description of turbulence is not needed and fast computation times are desired.
Therefore, turbulence is often modelled instead of solved. Reynolds decomposition separates
the variables (the velocity vector, u, the pressure, P , and the concentration of species, c) into
mean and fluctuating components:
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u = ū + u′,

P = P̄ + P ′,

c = c̄ + c′,

(2.9)

with the bar and the prime symbol indicating the mean and the fluctuating component, re-
spectively. Substituting these decomposed variables into equations (2.1), (2.2) and (2.7), and
taking the ensemble average, results in the unsteady Reynolds-Averaged Navier-Stokes (RANS)
equations:

∂ūi
∂xi
= 0, (2.10)

ρ
∂ūi
∂t
+ ρūi

∂ūi
∂xi
= −∇P̄ + ρν

∂2ūi
∂x2j

− ρ
∂u′iu

′

j

∂xj
, (2.11)

ρ
∂c̄

∂t
+ ρ

∂c̄ūi
∂xi

= ρ
∂

∂xi
(Dc̄

∂c̄

∂xi
) − ρ

∂c′u′i
∂xi

+ Sc̄. (2.12)

For convenience, the Einstein notation is used, i.e. u = uie
i, with i, j = 1,2,3 in three dimensions,

and i, j = 1,2 in two dimensions. When the mean velocity field is not a function of time, the
partial time derivative in equations (2.11) and (2.12) can be neglected, and the equations are
referred to as the steady RANS equations. Equation (2.11) is similar to the Navier-Stokes
equation of the instantaneous velocity field (equation (2.2)), except for the term −ρ∂u′iu

′

j/∂xj .
This term describes the mean effect of the turbulent velocity fluctuations on the flow, and forms
six additional unknowns (or three in two dimensions, i.e. w′ = 0):

u′u′, v′v′, w′w′, u′v′, u′w′, v′w′, (2.13)

called the Reynolds or turbulent stresses. The same holds for equation (2.12) in which the term
−ρ∂c′u′i/∂xi describes the turbulent diffusion fluxes, leading to three additional unknowns:

c′u′, c′v′, c′w′. (2.14)

Turbulence models attempt to close the RANS equations by modelling the Reynolds stresses
and turbulent diffusion fluxes. First-order closure models make use of the Boussinesq eddy-
viscosity hypothesis. This hypothesis relates the Reynolds stresses to the velocity gradients in
the mean flow using a scalar called the turbulent or eddy viscosity, µt:

− ρu′iu
′

j = µt(
∂ui
∂xj
+
∂uj

∂xi
) −

2

3
kδij , (2.15)

with δij the Kronecker delta, and k the turbulent kinetic energy defined as

k =
1

2
u′iu
′

j . (2.16)

The turbulent diffusion fluxes are related to mean concentration gradients according to the
gradient-diffusion assumption (Pope, 2000):
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− ρc′u′i =Dt
∂c̄

∂xi
, (2.17)

with Dt the turbulent diffusion coefficient defined as Dt = µt/Sct, where Sct is the turbulent
Schmidt number. Sct provides the ratio between the turbulent viscosity and the turbulent
diffusion coefficient. In ANSYS Fluent, Sct has a default value of 0.7 (ANSYS Inc., 2018). A big
limitation of the Boussinesq hypothesis is the inability to accurately model turbulence anisotropy
(Wilcox, 2006). The scalar µt indicates isotropy which is mainly problematic in regions of high
shear, where turbulence tends to be strongly anisotropic, resulting in an overestimation of
turbulent production. This problem is solved when using second-order closure models, also
called Reynolds Stress Models, which establish and solve additional transport equations for the
Reynolds stresses and diffusion fluxes. However, these models comes with larger computational
times and often experiences difficulties with numerical convergence.

2.3.1 Turbulence models

To gain a better understanding of the way that different turbulence models work, a brief de-
scription is given of all turbulence models used in this study, including their advantages and
disadvantages. All models are RANS models. The k−ε and k−ω models are linear two-equation
models which attempt to close the RANS equations using the turbulent viscosity. The linear
pressure-strain Reynolds stress model is a Reynolds stress model, and thus solves additional
transport equations for each of the Reynolds stresses.

Standard k − ε model (SKE)

The standard k− ε model solves the transport equations for the turbulent kinetic energy, k, and
the turbulence dissipation, ε (Jones and Launder, 1972). The k−εmodel assumes that the flow is
fully turbulent, and the effects of molecular viscosity are negligible. Therefore, the standard k−ε
model is only valid for fully turbulent flows (ANSYS Inc., 2018). The eddy viscosity is computed
as µt = ρCµk

2/ε, with Cµ = 0.09. The values of the other constants in the transport equations
are determined from experiments for fundamental turbulent flows (ANSYS Inc., 2018). The
SKE model is the most widely-used turbulence model for industrial applications, because it is
robust, not memory-intensive, reasonably accurate and it offers good convergence. However, ε
is not solved in the near-wall region, and therefore wall functions must always be used. The
model also performs poorly for flows with strong separation, large streamline curvature and
large pressure gradients (Wilcox, 2006).

Re-normalization group k − ε model (RNG)

The re-normalization group k − ε model is a modification of the SKE model. It uses simi-
lar transport equations, however, an extra term is added to the ε-equation that accounts for
the mean flow distortion of turbulence dissipation, resulting in lower turbulence levels and a
probability of underestimating k. The eddy viscosity is estimated with a differential equation,
but in the high-Reynolds number limit it is given by µt = ρCµk

2/ε, with Cµ = 0.0845. Note
that Cµ has almost the same value as for the SKE model. However, it is derived analytically
by a statistical technique called renormalization group theory, just as the other constants in
the transport equations of the RNG model (ANSYS Inc., 2018). The model performs better
than the SKE model for more complex shear flows, and flows with high strain rates, swirl and
separation (Yakhot et al., 1992).
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Realizable k − ε model (RKE)

The realizable k − ε model is another modification of the SKE model. It adopts a new model
equation for ε and a new eddy-viscosity formula. Similar to the SKE model and RNG model, the
eddy viscosity is computed from µt = ρCµk

2/ε, however, Cµ is no longer a constant. The model
constants have been established to ensure that the model performs well for certain canonical
flows (ANSYS Inc., 2018). The RKE model provides improved predictions for the spreading
rate of both planar and round jets. The model also performs better for flows involving rotation,
recirculation and streamline curvature (Shih et al., 1994).

Baseline k − ω model (BSL)

The baseline k−ω model is a modification of the standard k−ω model (SKW), which solves the
transport equations for the turbulent kinetic energy, k, and the specific turbulence dissipation, ω
(Menter, 1994). The SKW model is neglected in this study due to known convergence problems
and issues with free stream flows. The most significant advantage of the k − ω models is that
the equations are valid throughout the whole boundary layer, i.e. wall functions are not needed.
The BSL model differs from the SKW model as it gradually changes from the SKW model in
the inner region of the boundary layer to the SKE model in the outer part of the boundary
layer, in order to take advantage out of the free-stream independence of the k − ε models.

Shear-stress transport k − ω model (SST)

The shear-stress transport k − ω model is a modification of the BSL model, and thus includes
all its advantages. In addition, it accounts for the transport of the turbulence shear stress
in the definition of the turbulent viscosity. As a result, the turbulent viscosity is no longer
overpredicted as it was in the BSL model and separation and reattachment are predicted better
(Menter, 1994).

Linear pressure-strain Reynolds stress model (RSM)

The Reynolds Stress Models give the most complete physical representation of turbulent flows.
The models solve the Reynolds stresses directly using the RANS equations, avoiding the eddy-
viscosity approximation that other models use (Launder, 1989). This means that three addi-
tional transport equations need to be solved in 2D. The linear pressure-strain Reynolds stress
model is an ε-based Reynolds stress model, and thus the ε-equation has to be solved as well.
Although the RSM model has greater potential to give accurate predictions for complex flows,
the modelling of the pressure-strain terms is particularly challenging, and is often considered to
be responsible for compromising the accuracy. Other disadvantages of the RSM model are the
high computational cost due to the many equations that need to be solved, and the requirement
of a high-quality mesh.

2.4 Turbulent plane jet

Experimental observations of turbulent jets have revealed many of their characteristics (Pope,
2000). In the axial direction of an impinging jet, such as an air curtain, the jet flow can be
divided in three regions. The first region, the flow development region, contains the potential
core, where the centreline mean velocity remains larger than or equal to 98% of the jet inlet
velocity, V0. In the second region, the fully developed flow region, turbulence has penetrated
into the centreline of the jet and the potential core has dissipated. The third region is the
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Figure 2.1: Schematic description of an impinging jet.

impingement region, in which the jet is influenced by the bottom wall. Figure 2.1 shows a
schematic description of an impinging jet.

2.4.1 Velocity

In the fully developed flow region, the velocity profiles of all cross-sections show a nearly Gaus-
sian shape (Pope, 2000; Turner, 1986). Therefore, the velocity profile in the y-direction can be
described as

v(x, y) = vmax exp( −
x2

2σ2
), (2.18)

where vmax is the centreline velocity, and σ(y) the standard deviation related to the spread of
the velocity profile, also called the jet half width, δ0.5. A jet develops a nearly triangular shape
(in the vertical plane) due to entrainment of fluid, caused by turbulence. The radius Rjet of the
jet is thus proportional to the distance y downstream,
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Rjet(y) = αy. (2.19)

The constant α depends on the opening angle of the jet. Experiments have shown that this
angle is always approximately the same, α ≈ 1/5, for circular jets as well as for plane jets (Pope,
2000; Kotsovinos, 1976). For a Gaussian distribution, a width of 4σ accounts for 95% of the
area under the Gaussian curve. Since 2Rjet is the diameter of the the jet, it can be stated that
4σ = 2Rjet, i.e. σ =

1
2αy. The velocity profile can then be rewritten as

v(x, y) = vmax exp( −
2x2

α2y2
). (2.20)

Note that the downstream distance y should be measured from the top of the triangle which is
positioned above the nozzle in the so-called ‘virtual origin’ (see figure 2.1). The nozzle is then
positioned at y = Rjet/2α. The equation for the conservation of momentum (equation (2.5)) can
be used to determine vmax(y). Since momentum is described by mass and velocity, the only
source of momentum is the jet itself. The surrounding fluid is initially at rest in the case of no
external forcing and thus has no momentum. As a result, the momentum flux of the jet must
remain constant downstream. By inserting equation (2.20) into the momentum balance, and
treating the plane jet as a 2D problem, vmax(y) is determined, with wjet the nozzle width:

∫

+∞

−∞

ρv2 dx = ρV 2
0 wjet,

vmax(y) = V0

√
2wjet
√
παy

. (2.21)

2.4.2 Entrainment

In contrast to the momentum, the volume flux of the jet does not remain constant downstream
due to entrainment of surrounding fluid. Entrainment can be described as the intake of fluid
by the jet across its boundary. Most free turbulent flows, such as jets, depend for their energy
supply on converting mean flow energy to turbulent energy by entrainment of non-turbulent
ambient fluid (Townsend, 1970). When a fluid with a high velocity enters a quiescent fluid, as
in the case of a jet, a shear flow is created at the boundaries due to the high velocity gradients.
These shear flows are usually very unstable at high values of Re, when the viscosity of the
fluid is not large enough to dampen out perturbations, resulting in vortices that transport fluid
across the boundary of the jet, i.e. entrainment. To determine the volume flux Q as a function
of the downstream distance y, the integral equation for conservation of mass (equation (2.3))
can be used, together with equations (2.20) and (2.21):

Q(y) = ∫
+∞

−∞

v dx, (2.22)

Q(y) = V0wjet

¿
Á
ÁÀ
√
παy

wjet
. (2.23)
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Figure 2.2: Schematic description of the volume flux, Q(y), and the entrainment velocity, vE.

The volume flux Q defines the total amount of fluid passing a cross-jet section at a certain y,
per unit of time. The entrainment velocity, vE , can then be defined by conservation of mass, as
visualised in figure 2.2:

dQ = vEdy, (2.24)

vE =
dQ

dy
, (2.25)

resulting in

vE =
1

2
V0

¿
Á
ÁÀ
√
παwjet

y
. (2.26)

2.4.3 Comparison with a circular jet

In sections 2.4.1 and 2.4.2, the expressions for the jet radius, Rjet, the centreline velocity, vmax,
the volume flux, Q, and the entrainment velocity, vE , are derived for a 2D plane jet. Cushman-
Roisin (2014) has derived these expressions for a three-dimensional circular jet, and they are
compared in table 2.1.

Table 2.1: Expressions for the jet radius, Rjet, the centreline velocity, vmax, the volume flux,
Q, and the entrainment velocity, vE, derived for a plane jet and a circular jet.

Plane jet Circular jet

Rjet αy [m] αy [m]

vmax V0

√
2wjet
√
παy

[m/s]
V0wjet

αy
[m/s]

Q V0
√√

πwjetαy [m2/s] 1
2V0wjetπαy [m3/s]

vE
1
2V0

√√
πwjetα

y
[m/s]

V0wjet

4y
[m/s]
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2.4.4 Multiple parallel jets

When two jets are placed next to each other, the fluid between the individual jets is rapidly
removed due to the entrainment, causing the jets to be drawn towards each other and merge
(Miller and Comings, 1960). As described earlier in this section, the flow field of a single jet can
be divided into three regions. For multiple parallel jets, the first region, the flow development
region, is divided into two additional regions; the converging region and the merging region
(Nasr and Lai, 1997). The converging region includes the potential cores of the individual jets
and recirculation zones, zones with sub-atmospheric static pressure, between the individual jets.
This region ends at the merging points and the individual jets continue to merge until at the
combined point where the horizontal velocity profile has only one maximum. Downstream from
the combined point, the individual jets will unify to eventually resemble a single jet (Nasr and
Lai, 1997). Figure 2.3 shows a schematic of the merging of three parallel jets, and indicates the
merging points and the combined point.

Converging region

Merging region

Combined region
Combined

point

Recirculation zones

Merging
points

Figure 2.3: Schematic description of three merging parallel jets.
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Chapter 3

Air curtain model with a single jet

2D CFD simulations are performed for an air curtain model with a single jet. The model
geometry and boundary conditions are based on experiments performed by Khayrullina et al.
(2017), and are described in section 3.1 and section 3.2, respectively. To ensure that the
simulations do not depend on the computational grid, a grid-sensitivity analysis is performed in
section 3.4, using four different grids and three different turbulence models. Finally, a validation
study is performed with six turbulence models using the experimental data from Khayrullina
et al. (2017). The results from the grid-sensitivity analysis and the validation study are used
for the air curtain model with secondary jets, described in Chapter 4.

3.1 Computational geometry and grid

The computational model is a 2D replica of the experimental setup used by Khayrullina et al.
(2017). In the experiments, a reduced-scale setup is used, which is filled with water. The
computational model is 6.25 times larger with the proportions kept the same and filled with
air, resembling a realistic environment for an air curtain. Figure 3.1 shows the geometry and its
dimensions: the height of the domain, hjet = 2.25 m, the width of the domain, wdomain = 12.5
m, the size of the pressure outlets, houtlet = 31.25 mm, the nozzle width, wjet = 50 mm, and
the width of the velocity inlet (top of the contraction) of 562.5 mm. Note that these values are
obtained by multiplying the dimensions of the experimental setup of Khayrullina et al. (2017)

velocity inlet

pressure outletpressure outlet
houtlet 

hjet  

   wjet 

wdomain

y
x

Figure 3.1: Geometry of the 2D computational domain with indication of the coordinate sys-
tem and the location of the pressure outlets and the velocity inlet. The dotted line indicates a
symmetry line.
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Figure 3.2: Computational grid (fine) of the whole domain. The red dotted line indicates the
region of interest.

(a) Coarse grid (23,300 cells). (b) Basic grid (48,188 cells).

(c) Fine grid (100,207 cells). (d) Finest grid (207,796 cells).

Figure 3.3: Grid refinement of the nozzle contraction and the upper part of the region of
interest.
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with a factor 6.25. In the remainder of this report the y-coordinate is normalised with the
domain height and will be referred to as y, i.e. y′ = y/hjet and y

′ → y. A fully structured grid
is created with only quadrilateral cells (figure 3.2). In the region of interest, as indicated in
figure 3.2, and in the nozzle contraction the resolution is increased. Four grids are constructed
using a linear refinement factor of 1.44 in each direction. The total number of cells for each
grid from coarse to finest is 23,300 cells (coarse), 48,188 cells (basic), 100,207 cells (fine), and
207,796 cells (finest), respectively. Franke et al. (2007) suggest to have at least 10 cells across
an area of interest or an area with large gradients, therefore, 12 cells (coarse), 17 cells (basic),
25 cells (fine), and 36 cells (finest) are used across the nozzle contraction. Figure 3.3 shows the
grid of the nozzle contraction and the upper part of the region of interest of the four grids.

3.2 Boundary conditions

The boundary conditions are chosen to replicate those of the experiments as closely as possible.
All the surfaces, besides the velocity inlet and the pressure outlets, are smooth non-slip walls. A
uniform velocity is imposed at the velocity inlet, see figure 3.1, which is based on the Reynolds
number at the jet nozzle during the experiments. The desired jet discharge velocity, V ∗0 is then
given by

V ∗0 =
Re ⋅ ν

wjet
, (3.1)

with Re = 7200, and ν the kinematic viscosity of air at 15 °C and 1 atm (ν = 1.461 ⋅ 10−5 m2/s
(Cohen et al., 2003)). This results in V ∗0 = 2.104 m/s at the jet nozzle. With mass conservation,
the velocity at the velocity inlet was determined to be 0.187 m/s. In the remainder of this
study, V0 is used to denote the actual discharge velocity measured at the jet nozzle because
it cannot be assumed that the turbulence models predict mass conservation in the exact same
manner, i.e. V ∗0 ≠ V0. For the velocity inlet, the turbulence parameters are specified based on
the turbulence intensity (I = 10%1) and the turbulence length scale

l =
0.07L

C
3/4
µ

, (3.2)

where L is the width of the gaps in the finest honeycomb in the contraction used in the PIV
experiments (L = 4.1 mm), and Cµ a model constant with the value 0.09, resulting in a tur-
bulence length scale of l = 0.00175 m. For the pressure outlets, the turbulence parameters are
specified based on the turbulence intensity (I = 10%) and the hydraulic diameter

DH =
2ab

a + b
≈ 2a when b≫ a, (3.3)

with a = houtlet, and b the depth of the domain, resulting in a hydraulic diameter of DH = 0.0625
m. Zero static gauge pressure is enforced at the outlets.

3.3 Solver settings

The 2D steady RANS equations are solved with ANSYS Fluent 17.2 (2016) and 19.0 (2018). To
provide closure, six different turbulence models are used, which are described in section 2.3.1:

1Guyonnaud et al. (2000) found that, in the range of 0− 20%, the turbulence intensity does not affect the air
curtain performances.
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1) SKE; 2) RNG; 3) RKE; 4) BSL; 5) SST; and 6) RSM. For the near-wall regions, scalable wall
functions (ANSYS Inc., 2018) are used to avoid the deterioration of standard wall functions
(Launder and Spalding, 1974) under grid refinement. Pressure-velocity coupling is performed
by the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm. Pressure
interpolation is second order for all turbulence models except RSM, where the pressure interpo-
lation is taken standard in order to get convergence. Second-order upwind (SOU) discretisation
schemes are used for both the convection terms and the viscous terms of the governing equations
for all models. Convergence is monitored through scaled residuals and through analysing the
velocity magnitude at reference points. It was made sure that all scaled residuals levelled out
below four orders of magnitude (Franke et al., 2007) or dropped below twelve orders of mag-
nitude (double-precision). At the same time, constant values of the velocity magnitude were
observed at six reference points in the region of interest.

3.4 Grid-sensitivity analysis

A grid-sensitivity analysis is conducted to obtain (nearly) grid-independent results. The four
grids described in section 3.1 are analysed. The grids are compared based on the dimensionless
mean velocity magnitude, ∣V ∣/V0, and the dimensionless turbulent kinetic energy (TKE), k/V 2

0 ,
along the jet centreline and three cross-jet lines located at y = 0.2, y = 0.5 and y = 0.8 in the
region of interest (see figure 3.2). Figure 3.4 shows the position of the four lines in the domain.
The grid-sensitivity analysis is done using the SKE model. Figure 3.5, 3.6 and 3.7 show the
dimensionless mean velocity magnitude and the dimensionless TKE along the four lines for the
different grids. The figures show that for all positions the results of the different grids are almost
identical, except for the centreline TKE (see figure 3.6b).

centreline

y
x

y = 0.2

y = 0.8

y = 0.5

Figure 3.4: Indication of the lines along which experimentally and numerically obtained values
for the velocity and TKE are compared: centreline, y = 0.2, y = 0.5 and y = 0.8.
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To quantify the grid-sensitivity results, the grid-convergence index (GCI) by Roache (1994) is
used. The GCI indicates how much the solution would change with a further refinement of the
grid. For the fine grid it is defined as

GCIfine = Fs∣
rp(ffine − ffinest)

1 − rp
∣, (3.4)

with Fs a safety factor, taken to be 1.25, the recommended value when three or more grids are
considered in the grid-sensitivity analysis (Roache, 1994), r the linear grid refinement factor
(r = 1.44), p the order of accuracy of the numerical scheme, and ffine and ffinest the solutions
obtained with the fine grid and the finest grid, respectively, which correspond to ∣V ∣/V0 or
k/V 2

0 . According to Celik et al. (2008), the observed order of accuracy, p, should be calculated
as follows to get a more accurate GCI:

p = ln(
fbasic − ffine

ffine − ffinest
)/ ln r. (3.5)

However, non-monotonic convergence is present, resulting in negative values for (fbasic −ffine)/
(ffine−ffinest), which restrict the calculation of p. Therefore, the formal order of accuracy, p = 2,
is used due to the second-order discretisation schemes that are used for the simulations.

For the calculation of the GCI, the coarse grid is neglected due to the deviations of the results
from the results of the finest grid, visible in figure 3.6. The average and maximum values of the
GCI for the fine grid and the basic grid, respectively, are presented in table 3.1 and 3.2. To get a
better impression of these values, the GCI calculated for the fine grid is plotted in figure 3.8 and
3.9. To see the influence of the used turbulence model on the grid-sensitivity, a grid-sensitivity
analysis is performed with the RNG model and the BSL model as well for the basic, fine and
finest grid. The results are plotted in figure 3.10, 3.11, 3.12 and 3.13. Additionally, the average
and maximum values are presented in table 3.1 and 3.2.
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(c) y = 0.8.

Figure 3.5: Comparison of dimensionless mean velocity magnitude, ∣V ∣/V0 along three cross-jet
lines at y = 0.2, y = 0.5 and y = 0.8, obtained with steady RANS CFD on four different grids.
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(a) Dimensionless mean velocity magnitude.
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(b) Dimensionless TKE.

Figure 3.6: Comparison of dimensionless mean velocity magnitude, ∣V ∣/V0, and dimensionless
TKE, k/V 2

0 , along the centreline obtained with steady RANS CFD on four different grids.
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Figure 3.7: Comparison of dimensionless TKE, k/V 2
0 along three cross-jet lines at y = 0.2,

y = 0.5 and y = 0.8, obtained with steady RANS CFD on four different grids.
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(a) Dimensionless mean velocity magnitude.

0 0.5 1 1.5 2 2.5

⋅10−2

0

0.2

0.4

0.6

0.8

1

k/V 2
0 [-]

y
[-
]

(b) Dimensionless TKE.

Figure 3.8: Band of GCIfine for ∣V ∣/V0 and k/V 2
0 along the centreline, obtained with the SKE

model.
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Figure 3.9: Band of GCIfine for ∣V ∣/V0 and k/V 2
0 along a cross-jet line at y = 0.5, obtained

with the SKE model.
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Figure 3.10: Band of GCIfine for ∣V ∣/V0 and k/V 2
0 along the centreline, obtained with the

RNG model.
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Figure 3.11: Band of GCIfine for ∣V ∣/V0 and k/V 2
0 along a cross-jet line at y = 0.5, obtained

with the RNG model.
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Figure 3.12: Band of GCIfine for ∣V ∣/V0 and k/V 2
0 along the centreline, obtained with the

BSL model.
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Figure 3.13: Band of GCIfine for ∣V ∣/V0 and k/V 2
0 along a cross-jet line at y = 0.5, obtained

with the BSL model.
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Table 3.1: Maximum and average GCI values for ∣V ∣/V0 and k/V 2
0 for the fine grid along the

centreline and along a cross-jet line at y = 0.5.

GCI [%]
SKE RNG BSL

max. avg. max. avg. max. avg.

centreline velocity 6.8% 1.0% 15.4% 1.4% 23.4% 0.6%
velocity at y = 0.5 2.4% 1.4% 8.0% 3.1% 13.3% 3.8%
centreline TKE 28.3% 4.7% 112.0% 5.9% 197.3% 10.6%
TKE at y = 0.5 4.5% 2.4% 16.0% 3.9% 28.9% 4.8%

Table 3.2: Maximum and average GCI values for ∣V ∣/V0 and k/V 2
0 for the basic grid along the

centreline and along a cross-jet line at y = 0.5.

GCI [%]
SKE RNG BSL

max. avg. max. avg. max. avg.

centreline velocity 8.6% 0.7% 6.4% 1.1% 11.7% 0.4%
velocity at y = 0.5 6.7% 1.9% 1.3% 0.9% 1.6% 0.6%
centreline TKE 34.3% 4.3% 90.2% 5.5% 197.8% 15.3%
TKE at y = 0.5 10.2% 2.4% 2.0% 1.1% 3.5% 0.8%

The GCI values for the fine grid are presented in table 3.1. For all models, the centreline TKE is
most influenced by the grid refinement, which is also visible in figure 3.6b. The large maximum
values are due to the large gradients around y = 0.2 and close to y = 1. The SKE model only
shows large GCI values near y = 1, and similar values have been found near y = 1 for the RNG
model and the BSL model. However, the extremely high maximum values, 112% and 197%, for
the RNG model and the BSL model, respectively, have been found around y = 0.2 (see figure
3.10b and 3.12b). Between y = 0 and y = 0.1, the average GCI values for the TKE for the
RNG model and the BSL model are extremely small (∼ 1%), in contrast to the SKE model
(∼ 15%).

The GCI values for the basic grid are displayed in table 3.2. Similar trends can be observed for
basic grid compared to the fine grid. Again, the centreline TKE gives the largest GCI values,
and the maximum values are found at similar y positions. Comparing table 3.1 and 3.2, not
many differences can be found, and the fine grid does not seem to perform better than the basic
grid. Nevertheless, it is decided to use the fine grid in the remainder of this study in order
to get the best possible results. Note that the results from the SKE model seem to be least
influenced by the grid-refinement compared to the results from the RNG model and the BSL
model, which can be deduced from the lower GCI values for the SKE model.

3.5 Validation

To determine which turbulence model is most suitable for this study, a validation study is
carried out. The outcome of six turbulence models, described in section 2.3.1, is compared
with the results of PIV experiments conducted by Khayrullina et al. (2017). From the grid-
sensitivity analysis in section 3.4 it is concluded that the fine grid gives the best results. Thus,
the validation study is done with the fine grid. Again, the velocity magnitude and TKE are
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compared along the four lines depicted in figure 3.4. Figure 3.15, 3.14 and 3.16 show the
PIV data compared to the results from the CFD simulations with the six different turbulence
models. To quantify the performance of the different turbulence models, the outcomes are
compared to the experimentally obtained values of ∣V ∣/V0 or k/V 2

0 . Four validation metrics
are used; the factor of 1.1 of the observations (FAC1.1), the factor of 1.5 of the observations
(FAC1.5), the normalised mean squared error (NMSE), and the correlation coefficient (Rp),
which are calculated using equation (3.6), equation (3.7), equation (3.8) and equation (3.9),
respectively:

FAC1.1 =
1

N

N

∑
i=1

ni with ni =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 for 0.91 ≤
Pi

Oi
≤ 1.1

0 else

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, (3.6)

FAC1.5 =
1

N

N

∑
i=1

ni with ni =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 for 0.67 ≤
Pi

Oi
≤ 1.5

0 else

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, (3.7)

NMSE =
[(Oi − Pi)

2]

[OiPi]
, (3.8)

Rp =
[(Oi − [O])(Pi − [P ])]

σOσP
, (3.9)

with Pi and Oi the time-averaged values obtained from CFD simulations and PIV experiments,
respectively, N the number of data points, and σP and σO the standard deviations of Pi and Oi,
respectively. The square brackets indicate averaging over all data points. The optimal score for
FAC1.1, FAC1.5 and Rp is 1 and the optimal score for NMSE is 0. The four validation metrics
are calculated along four lines (centreline, y = 0.2, y = 0.5, y = 0.8) for both the velocity and
the TKE. The average values for the velocity and the TKE are stated in table 3.3 and table
3.4, respectively. Table 3.5 and 3.6 show the values along the centreline for the velocity and the
TKE, respectively. In Appendix A, the complete tables can be found.

For the velocity (see table 3.3), the BSL and RKE models perform best and the RSM model
performs worst. Especially FAC1.1 and NMSE reflect this. However, the other models, SKE,
RNG and SST, perform very good as well. Based on Rp, all models perform equally good.
For the turbulent kinetic energy, the SKE and RNG models perform significantly better than
the other models. According to Rp, the SKE model performs best, but based on FAC1.1
and NMSE, the RNG model performs just slightly better. Along the centreline, the SKE model
clearly performs best for the velocity (see table 3.5) as well as for the TKE (see table 3.6).

Table 3.3: Values of the validation metrics defined for the dimensionless mean velocity mag-
nitude averaged over the centreline and three cross-jet lines at y = 0.2, y = 0.5 and y = 0.8.

∣V ∣/V0 SKE RNG RKE BSL SST RSM

FAC1.1 0.673 0.460 0.734 0.775 0.617 0.208
NMSE 0.007 0.009 0.004 0.004 0.005 0.021
Rp 0.990 0.990 0.989 0.989 0.988 0.988
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Table 3.4: Values of the validation metrics defined for the dimensionless TKE averaged over
the centreline and three cross-jet lines at y = 0.2, y = 0.5 and y = 0.8.

k/V 2
0 SKE RNG RKE BSL SST RSM

FAC1.5 0.853 0.886 0.807 0.839 0.766 0.739
NMSE 0.087 0.075 0.146 0.105 0.143 0.095
Rp 0.952 0.936 0.894 0.915 0.931 0.917

Table 3.5: Validation metrics defined for the dimensionless mean velocity magnitude along the
centreline.

∣V ∣/V0 (centreline) SKE RNG RKE BSL SST RSM

FAC1.1 0.922 0.722 0.756 0.861 0.800 0.278
NMSE 0.006 0.008 0.008 0.007 0.007 0.016
Rp 0.980 0.979 0.981 0.979 0.978 0.973

Table 3.6: Validation metrics defined for the dimensionless TKE along the centreline.

k/V 2
0 (centreline) SKE RNG RKE BSL SST RSM

FAC1.5 0.929 0.880 0.782 0.880 0.803 0.820
NMSE 0.056 0.045 0.180 0.045 0.164 0.097
Rp 0.849 0.810 0.633 0.713 0.786 0.750

Besides the validation metrics that are used to quantify the performance of the turbulence
models, also the jet potential core, hp, and the jet half width, δ0.5, obtained from the CFD
simulations, are compared with the results from the PIV measurements to quantify the perfor-
mance. The jet potential core is defined as the distance from the jet nozzle where the centreline
mean velocity remains more than or equal to 98% of the inlet mean jet velocity, i.e. ∣V ∣/V0 ≥ 0.98.
Table 3.7 shows the dimensionless jet potential core length, hp/wjet, and the difference relative
to the PIV data. The jet half width is defined as the horizontal distance between the jet cen-
treline and the point, where the mean velocity is equal to half the mean centreline velocity at
a certain downstream position. Table 3.8 shows the dimensionless jet half width, δ0.5/wjet, and
the difference relative to the PIV data, at three different downstream positions (y = 0.2, y = 0.5,
y = 0.8). The SKE model is the only model that underpredicts the length of the potential
core, but does predict the length of the potential core best. The RNG model gives the smallest
overprediction. The SKE model and the RNG model significantly overpredict the jet half width
at y = 0.2, but this overprediction decreases when moving downstream, especially for the SKE
model. Considering the jet half width, the BSL model and the SST model perform best.
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Table 3.7: Dimensionless length of the jet potential core, hp/wjet, obtained with six different
turbulence models, compared to the PIV result.

hp/wjet % difference

PIV 5.96
SKE 5.49 −7.8%
RNG 6.82 +14.3%
RKE 7.84 +31.5%
BSL 7.54 +26.4%
SST 7.60 +27.4%
RSM 7.27 +21.9%

Table 3.8: Dimensionless jet half width, δ0.5/wjet, obtained with six different turbulence models,
compared to the PIV results.

y = 0.2 y = 0.5 y = 0.8
δ0.5/wjet % difference δ0.5/wjet % difference δ0.5/wjet % difference

PIV 0.65 2.12 3.91
SKE 0.84 +28.2% 2.25 +6.2% 3.89 −0.7%
RNG 0.79 +21.1% 2.33 +9.8% 4.34 +10.9%
RKE 0.70 +7.9% 2.03 −4.1% 3.57 −8.8%
BSL 0.70 +7.9% 2.10 −0.8% 3.67 −6.1%
SST 0.70 +7.9% 2.18 +2.7% 3.67 −6.1%
RSM 0.70 +7.9% 2.33 +9.8% 4.46 +14.0%
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Figure 3.14: Comparison of PIV results with results of steady RANS CFD simulations of the
dimensionless mean velocity magnitude obtained along three cross-jet lines at y = 0.2, y = 0.5
and y = 0.8.
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Figure 3.15: Comparison of PIV results with results of steady RANS CFD simulations of the
dimensionless mean velocity magnitude and the dimensionless TKE obtained along the centre-
line.
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Figure 3.16: Comparison of PIV results with results of steady RANS CFD simulations of the
dimensionless TKE obtained along three cross-jet lines at y = 0.2, y = 0.5 and y = 0.8. Note the
different range of the vertical axis in subfigure (a).
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3.6 Conclusion

From the grid-sensitivity study in section 3.4, it is concluded that the fine grid gives nearly
grid-independent results, and is therefore used in the remainder of this study. The fine grid has
100,207 cells and 25 cells everywhere across the nozzle contraction. The complete fine grid is
shown in figure 3.2. In section 3.5, a validation study is performed. From the validation metrics
for the velocity, a clear conclusion could not be drawn, except that the RSM model does not
perform well and thus should not be used. For the TKE it can be concluded that the SKE
model and the RNG model perform best. Along the centreline, the SKE model performs best.
The length of the potential core is best predicted by the SKE model and the RNG model. The
jet half width is best predicted by the BSL model and SST model.

From these observations it can be concluded that the SKE model and the RNG model perform
best. The models perform equally well and can both be used to predict the behaviour of a 2D
planar jet with Re ≈ 7200. Since the SKE model is least influenced by changes in the grid,
it is considered to be a more robust turbulence model than the RNG model with respect to
grid resolution and convergence. Therefore, the SKE model is chosen as the most appropriate
turbulence model and will be used in the remainder of this study.
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Chapter 4

Air curtain model with
secondary jets

To investigate the influence of secondary jets on the separation efficiency of an air curtain, 2D
CFD simulations are performed for an air curtain model with secondary jets. The model is
based on the air curtain model with a single jet, described in Chapter 3. A brief grid-sensitivity
analysis is performed in section 4.4. Since no experimental data was available, the turbulence
model is chosen based on the validation study of the model with the single jet.

4.1 Computational geometry and grid

The model developed for the air curtain with secondary jets is based on the model used in
chapter 3. The computational domain has similar dimensions, only the contraction is removed
and two secondary jets are placed at a distance d from the main jet. The distance d is measured
from the centre of the main jet to the centre of the secondary jets. The widths of the jets, w1

(main jet) and w2 (secondary jets), are kept constant and w2 =
1
2wjet =

1
2w1 = 25 mm. Instead

of the contraction, three vertical pipes with a length of 1 m are placed above the jet nozzles to
generate an appropriate velocity profile. In figure 4.1, the geometry of the model is shown. In
this study, three different values for d are considered: d = 4

5w1, d = 2w1 and d = 4w1.

velocity inlets

pressure outletpressure outlet
houtlet 

hjet  

   w2 

wdomain

y
x

   w2 

   w1 

   d    d 

Figure 4.1: Geometry of the 2D computational domain for d = 4w1 with an indication of the
coordinate system and the location of the pressure outlets and the velocity inlets. The dotted
line indicates a symmetry line.
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(a) d = 4
5
w1. (b) d = 2w1. (c) d = 4w1.

Figure 4.2: Grid in the region of interest and the lower part of the nozzle pipes for different
spacings, d, between the jets.

Fully structured grids with only quadrilateral cells are created based on the fine grid described
in the previous chapter, which consisted of 100,207 cells. In the main nozzle pipe, 25 cells are
used across the pipe. In the secondary nozzle pipes, 15 cells (d = 2w1 and d = 4w1) or 12 cells
(d = 4

5w1) are used across the pipes. The region of interest is meshed accordingly, taking into
account the guidelines from Franke et al. (2007). The total number of cells for each grid is
111,430 cells (d = 4

5w1), 125,242 cells (d = 2w1) and 143,482 cells (d = 4w1). Figure 4.2 shows
the region of interest and the lower part of the nozzle pipes for each of the three grids.

4.2 Boundary conditions

The boundary conditions are chosen similarly to those of the model with the single jet described
in the previous chapter. All the surfaces, besides from the velocity inlets and the pressure
outlets, are smooth non-slip walls. For the pressure outlets, the turbulence parameters are
specified based on the turbulence intensity (I = 10%) and the hydraulic diameter (DH = 0.0625
m). Zero static gauge pressure is enforced at the outlets. For the velocity inlets, the turbulence
parameters are specified based on the turbulence intensity (I = 10%) and the turbulence length
scale (l = 0.00175 m). At the velocity inlets, uniform velocities are imposed. To make a fair
comparison between the results from the model with a single jet and the results from the model
with secondary jets, the total jet momentum flux is kept constant at the velocity inlets for all
configurations. The jet momentum flux is given by

ΦPjet = ρ(V
∗

0 )
2wjet, (4.1)
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where ρ is the density of air (ρ = 1.225 kg/m3). Using the parameter values of the single jet,
this results in ΦPjet = 0.27 kg/s2. For the multiple jets, equation (4.1) transforms into

ΦPjet = ρ(V
∗

1 )
2w1 + 2ρ(V

∗

2 )
2w2, (4.2)

where V ∗1 and V ∗2 are the desired discharge velocities at the main jet nozzle and at the nozzles
of the secondary jets, respectively. To examine the influence of the velocity, three combinations
of V ∗1 and V ∗2 are used: V ∗2 =

1
2V
∗

1 , V
∗

2 = V
∗

1 and V ∗2 = 2V ∗1 . For simplicity, the parameter
R = V ∗2 /V

∗

1 is introduced and is used in the remainder of this study to denote the velocity
combinations. The resulting values of V ∗1 and V ∗2 are listed in table 4.1. Since the nozzle pipes
do not contain any contractions, V ∗1 and V ∗2 are the velocities imposed at the velocity inlets.
However, the velocities at the nozzle exits can differ from those at the inlets, so in the remainder
of this study, V1 and V2 are used to denote the actual discharge velocities measured at the main
jet nozzle and the nozzles of the secondary jets, respectively. Regarding the species transport
described in the following section, the mass fraction of tracer air is zero at all inlets.

Table 4.1: Values of the velocity combinations imposed at the velocity inlets, and the associated
velocity ratios, R.

R V ∗1 [m/s] V ∗2 [m/s]

1/2 1.878 0.939
1 1.485 1.485
2 0.939 1.878

4.3 Computational configuration

4.3.1 Solver settings for steady RANS simulations

The 2D steady RANS equations are solved with the CFD solver ANSYS 19.0 (2018). Based on
the validation study presented in section 3.5 of the previous chapter, the SKE turbulence model
is used in combination with scalable wall functions. Pressure-velocity coupling is performed
by the coupled algorithm. Pressure interpolation is set to second order and SOU discretisation
schemes are used for both the convection terms and the viscous terms of the governing equations.
Convergence is monitored through scaled residuals; it is made sure that all scaled residuals
level out below four orders of magnitude or drop below twelve orders of magnitude (double-
precision).

4.3.2 Modelling of species transport

To measure the transport properties of the air curtain, a second type of air is introduced into
the gas mixture with the exact same properties of the air present originally in the model. As a
consequence, this ‘tracer air’ will not influence the flow properties of the air curtain, thus will act
solely as a passive scalar. In the unsteady RANS simulations, the advection-diffusion equation is
solved to determine the transport of the tracer air. The density of the gas mixture is computed
based on the volume-weighted mixing law, as recommended for non-ideal gas mixtures (ANSYS
Inc., 2018). For the specification of the mass diffusivity of the species in the gas mixture,
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mass fraction
of tracer air

1

0.5

0

Figure 4.3: Initial distribution of tracer air. The initial mass fraction of the tracer air is 1 in
the left side of the domain, and 0 in the rest of the domain.

the kinetic theory is used, hence solving the energy equation is not necessary. The tracer air
is introduced to the left of the region of interest, the portion of the computational domain
indicated in figure 4.3. The tracer air is introduced as a uniform distribution (i.e., not as a mass
source), consequently there is a finite amount of tracer air present in the domain.

4.3.3 Solver settings for unsteady RANS simulations

The 2D unsteady RANS (URANS) simulations are solved with equivalent solver settings as the
steady RANS simulations. Concerning the transient formulation, the Bounded Second Order
Implicit formulation is used for optimal stability. For a stable, efficient calculation, the Courant
number should not exceed a value of 20−40 in the most sensitive transient regions of the domain
(ANSYS Inc., 2018). The Courant number is defined as

Cr =
Vmax∆t

∆y
, (4.3)

where Vmax is the maximum velocity, ∆t the time step and ∆y the minimum cell size in the flow
direction (Franke et al., 2007). For all configurations, ∆y is the same and has a value of 4 mm.
A constant time step of ∆t = 0.01 s is chosen for all configurations. The resulting values of the
Courant number are indicated in table 4.2. The values are well below the recommended values
to increase stability. For the initialization, the solutions from the steady RANS simulations
were used. To allow the full development of the flow before introducing the tracer air, 5 s of
flow time are imposed. After those 5 s, the tracer air is introduced as described in section 4.3.2.
Subsequently, all simulations are run for 150 s flow time to allow the transport and measurement
of the tracer air across the air curtain and throughout the domain. Convergence was monitored
through scaled residuals; it was made sure that all scaled residuals levelled out below four orders
of magnitude or dropped below ten orders of magnitude per time step.

Table 4.2: Values of the Courant number for different R.

R Vmax [m/s] Cr

0 2.27 5.7
1/2 2.15 5.4
1 1.68 4.2
2 2.09 5.2
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4.4 Grid-sensitivity analysis

To make sure grid-independent results are truly obtained with the grids described in section
4.1, a brief grid-sensitivity analysis is conducted for d = 4w1 with R = 1. Two grids are used;
the basic grid described in section 4.1 (figure 4.2c) and a fine grid constructed using a linear
refinement factor of 1.44 in each direction, resulting in a grid with 297,171 cells. The fine
grid has 35 cells across the main nozzle pipe and 21 cells across the secondary nozzle pipes.
The grids are compared based on the dimensionless mean velocity magnitude, ∣V ∣/V0, and the
dimensionless TKE, k/V 2

0 , along the main jet centreline and a cross-jet line at y = 0.5 in the
region of interest. In the remainder of this study, these flow variables are made dimensionless

with V0, which is defined as V0 =
√
V 2
1 + 2

w2

w1
V 2
2 =
√
V 2
1 + V

2
2 .

To quantify the grid-sensitivity results, the GCI (equation (3.4)) is used for the basic grid.
Since only two grids are analysed, the recommended safety factor is Fs = 3 (Roache, 1994).
However, the grids are based on the results of a similar grid-sensitivity study (section 3.4), and
are therefore expected to be more reliable, so the safety factor of 1.25 is kept. The results of the
grid-sensitivity analysis including the band of the GCI for the basic grid are plotted in figure
4.4 and 4.5. The average and maximum values of the GCI are presented in table 4.3. The high
maximum value of the GCI of the centreline velocity is found near the bottom (y = 1). This
value occurs only once and might be a post-processing error since the second maximum value
is only 4.6%. The centreline TKE shows large values of the GCI at y = 0.2 and y = 1, this is
due to the large gradients in those areas. Even though some large maximum values of the GCI
occur, the average values are small. Thus, from this grid-sensitivity analysis it can be concluded
that the results from the basic grid and from the fine grid are sufficiently similar and therefore
the basic grid solution shows an adequate degree of independence on the implemented spatial
discretisation of the mesh.

Table 4.3: Maximum and average GCI values of ∣V ∣/V0 and k/V 2
0 for the basic grid along the

centreline and a cross-jet line at y = 0.5.

GCI [%] max. avg.

centreline velocity 24.0% 1.3%
velocity at y = 0.5 1.3% 0.5%
centreline TKE 26.4% 3.6%
TKE at y = 0.5 3.2% 2.2%

4.5 Conclusion

From the grid-sensitivity study in section 4.4, it is concluded that the results from the basic grid
show a sufficient degree of independence on the mesh. Therefore the basic grid is used in the
remainder of this study to investigate secondary jets. The basic grid has 111,430 cells (d = 4

5w1),
125,242 cells (d = 2w1) and 143,482 cells (d = 4w1), and 25 cells across the main nozzle pipe and
15 cells (d = 2w1 and d = 4w1) and 12 cells (d = 4

5w1) across the secondary nozzle pipes. The
grids are partially shown in figure 4.2. Based on the validation study of the model of a single
jet in section 3.5, the SKE turbulence model was chosen as the most appropriate turbulence
model and is therefore also used in the model of the secondary jets. Furthermore, the boundary
conditions as described in section 4.2, and the solver settings as described in section 4.3 are
used in the remainder of this research for the model configurations with secondary jets.
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Figure 4.4: Band of GCIbasic for ∣V ∣/V0 and k/V 2
0 along the centreline.
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Figure 4.5: Band of GCIbasic for ∣V ∣/V0 and k/V 2
0 along a cross-jet line at y = 0.5.
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Chapter 5

Results

This chapter presents the results from the simulations described in Chapter 3 and 4. Steady
RANS simulations are performed to gather information about velocity and entrainment. Ve-
locity profiles from the CFD model of the single jet are compared with the theoretical model
described in section 2.4. The centreline velocity and cross-jet velocity profiles from the CFD
model configurations with secondary jets are compared with each other and with those of the
single jet in section 5.1. Next, the volume flux and entrainment velocity are investigated for all
configurations in section 5.2. Species transport across the jets and the circulation of species in
the bounded domain is studied by means of URANS simulations in section 5.3.

5.1 Velocity

The velocity profiles of the single jet model are compared with the theory of a single jet described
in Chapter 2. Equations (2.20) and (2.21) are used to describe the theoretical centreline y-
velocity and cross-jet y-velocity profiles, respectively. In figures 5.1, 5.2 and 5.3, the label
Theory refers to these equations with two different theoretical opening angles, α = 1/5 and
α = 1/6, and the label CFD refers to the results from the CFD model with a single jet. The
theoretical model only applies to the fully developed flow region of a free jet, and thus does not
suffice in the flow development region and the impingement region.

Figure 5.1 shows the dimensionless centreline velocity of the single jet model compared with the
theoretical model. As expected, the theoretical model only corresponds well with the results
of the CFD model in the region y ∼ 0.15 − 0.75, which coincides with the fully developed flow
region. In this region, the theoretical model with α = 1/5 (as suggested in section 2.4) slightly
underpredicts the centreline velocity. This difference almost disappears when considering a
smaller opening angle, such as α = 1/6, instead of α = 1/5, as shown in figure 5.1. The flow
development region, containing the potential core, ends at y ∼ 0.1 − 0.15. This is in accordance
with previous studies on plane jets by Khayrullina et al. (2017) and Maurel and Solliec (2001),
who found potential core lengths of 4wjet − 7wjet, corresponding to y ∼ 0.09− 0.16. As visible in
figure 5.1, the results of the CFD model start deviating from the theoretical model at y ∼ 0.75,
implying the start of the impingement zone, which is in line with the findings from Gutmark
et al. (1978). However, Maurel and Solliec (2001) claim that the height of the impingement
region only constitutes 12 − 13% of the total jet height, regardless of Reynolds number, nozzle
width or jet height. They defined a velocity law for the impingement zone and interpreted
the end of that region as the height where that velocity law intersects with the velocity law
of the fully developed flow region. Nevertheless, this definition does not take into account the
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Figure 5.1: Dimensionless y-velocity, Vy/V0, of a single jet along the centreline, obtained with
a CFD model and a theoretical model. The theoretical centreline velocity is described by equation
(2.21) with α = 1/5 and α = 1/6.

transition from the fully developed region to the impingement zone, resulting in the impingement
zone starting further downstream.

Figures 5.2 and 5.3 compare dimensionless cross-jet y-velocity profiles of the theoretical model
and the CFD model along cross-jet lines at y = 0.2, y = 0.5 and y = 0.7. For α = 1/5, the
maximum velocities are underestimated by the theoretical model, which is expected from figure
5.1. In addition, the spreading is slightly overestimated. For α = 1/6, the maximum velocities
and the spreading from the theoretical model have a better agreement with the results from
the CFD model, which is expected when considering a smaller opening angle. When non-
dimensionalising the results with the maximum velocity, Vmax, and the jet half width, δ0.5 (figure
5.3), the theoretical models completely overlap, as expected, since the Gaussians describing
the theoretical velocity profiles are self-similar. The results from the theoretical model are in
agreement with the results from the CFD model within the region ∣x/δ0.5∣ < 1. For ∣x/δ0.5∣ > 1,
the theoretical results shows a faster decrease in y-velocity than the CFD results, leading to
Vy = 0 in ∣x/δ0.5∣ > 3. In the CFD results, Vy never becomes zero due to the circulating flows
in the bounded domain. The theoretical model assumes an infinite unbounded domain, and
therefore the results do not correspond to the results of the CFD model at the boundaries of
the jet and outside of the jet.
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(c) y = 0.7.

Figure 5.2: Dimensionless y-velocity, Vy/V0, of a single jet along cross-jet lines at y = 0.2,
y = 0.5 and y = 0.7, obtained with a CFD model and a theoretical model. The theoretical velocity
is described by equation (2.20) with α = 1/5 and α = 1/6.
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(a) y = 0.2.
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(c) y = 0.7.

Figure 5.3: Dimensionless y-velocity, Vy/Vmax, of a single jet along cross-jet lines at y = 0.2,
y = 0.5 and y = 0.7, obtained with a CFD model and a theoretical model. The theoretical velocity
is described by equation (2.20) with α = 1/5 and α = 1/6. Note the different non-dimensional
horizontal axis, x/δ0.5.
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The velocity profiles of the model configurations with secondary jets are compared with each
other and with those of the single jet model in figures 5.4 and 5.6. Figure 5.4 shows the
mean centreline velocity magnitude for all configurations. The gray lines indicate the centreline
velocities above the combined point, as described in section 2.4.4. The positions of the combined
points are similar for equal R. However, it can be observed that for larger d, the merging happens
slightly further downstream. The configuration with d = 4w1 and R = 2 is an exception; due
to the asymmetry in the flow, the merging starts further downstream. The behaviour of the
centreline velocity above the combined point can best be described by looking at the velocity
fields of the different configurations in figure 5.5. For R = 2, the main jet gets entrained by
the secondary jets, and therefore, loses most of its velocity, causing a large drop in centreline
velocity around y = 0.1. This is not the case for d = 4

5w1 (figure 5.5c), where the jets are placed
so close to each other that there is low shear between the jets, and therefore, the main jet
does not get entrained that much by the secondary jets. For d = 4w1 (figure 5.5i), the main
jet behaves asymmetrically, and therefore the centreline velocity drops substantially, since the
velocity in the stagnation zone is measured instead of in the main jet. After the decrease in
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Figure 5.4: Dimensionless centreline velocity magnitude for different d and R. The transition
from gray to color indicates the combined point of multiple jets.
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Figure 5.5: Contour plots of the dimensionless mean velocity magnitude, ∣V ∣/V0, for different
d and R.
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centreline velocity, the jets start to combine and the centreline velocity increases again until
the combined point for all d with R = 2. The configurations with R = 1/2 and R = 1 do not
experience this behaviour, since V2 ≤ V1, hence the resulting centreline velocity will not increase
with respect to V1. For d =

4
5w1 (figures 5.5a and 5.5b), the centreline velocity slowly decreases

until the combined point. For d = 2w1 (figures 5.5d and 5.5e), the centreline velocity rapidly
decreases until the jets start to combine. When combining, the centreline velocity remains
constant for a small distance downstream and then starts decaying again until the combined
point. The configurations with d = 4w1 (figures 5.5g and 5.5h) have a small potential core,
but downstream of the potential core the centreline velocity starts decreasing rapidly until the
combined point. Downstream of the combined point all configurations behave like a single jet.
The centreline velocity decreases with increasing R, which is expected since V1 decreases with
increasing R. The configurations with d = 4

5w1 have almost the same centreline velocity as the
single jet. The configurations with d = 2w1 have a smaller centreline velocity, and those with
d = 4w1 have an even smaller centreline velocity. For d = 4

5w1, there is less shear between the
jets, thus less turbulence, hence the centreline velocity does not dissipate as rapidly as for the
other configurations, resulting in a higher centreline velocity. For d = 2w1 and d = 4w1, there
is a larger shear between the jets, resulting in a faster dissipation of the centreline velocity.
For the configuration with d = 4w1 and R = 1/2, the secondary jets are fully entrained by the
main jet, having almost no effect on the flow of the main jet. Therefore, the configuration with
d = 4w1 and R = 1/2 approximately resembles a single jet. The configuration with d = 4w1 and
R = 2 approximately resembles two merging jets, since the main jet is fully entrained by the
secondary jets.

Figure 5.6 shows the cross-jet velocity profiles of all the configurations along y = 0.7. At
this downstream distance, the jets of all configurations have combined, but the jets are not
yet influenced by the bottom wall. Therefore, the profiles should resemble cross-jet profiles
of single jets in the fully developed flow region and thus be self-similar. Figure 5.6b displays
the dimensionless cross-jet velocity ∣V ∣/Vmax versus x/δ0.5, which clearly indicates this self-
similarity. Figure 5.6a shows the dimensionless cross-jet velocity ∣V ∣/V0 versus x/w1. The
maximum velocities behave as expected from the analysis of the centreline velocity (figure 5.4);
the maximum velocity decreases with increasing d and with increasing R. The dimensionless
maximum velocities, ∣Vmax∣/V0, and the jet half widths, δ0.5, are presented in table 5.1 and
5.2, respectively. The values are normalised with ∣Vmax∣/V0 and δ0.5 of the single jet. The jet
half widths are directly related to the maximum velocities; a large jet half width corresponds
to a low maximum velocity. This is expected from the self-similarity property of the cross-jet
velocity profile.

Table 5.1: Normalised dimensionless maximum velocity, ∣Vmax∣/V0, based on the cross-jet
velocity at y = 0.7 for different d and R. All values are normalised with ∣Vmax∣/V0 of the single
jet.

∣Vmax∣/V0 R = 1/2 R = 1 R = 2

d = 4
5w1 1.00 1.01 0.98

d = 2w1 0.90 0.86 0.83
d = 4w1 0.86 0.77 0.72
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(a) Dimensionless cross-jet velocity, ∣V ∣/V0.
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(b) Dimensionless cross-jet velocity, ∣V ∣/Vmax. Note the different non-dimensional horizontal axis,
x/δ0.5.

Figure 5.6: Dimensionless mean velocity magnitude along a cross-jet line at y = 0.7 for different
d and R.
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Table 5.2: Normalised jet half width, δ0.5, based on the cross-jet velocity at y = 0.7 for different
d and R. All values are normalised with δ0.5 of the single jet.

δ0.5/w1 R = 1/2 R = 1 R = 2

d = 4
5w1 0.90 0.87 0.95

d = 2w1 0.97 0.97 1.04
d = 4w1 1.00 1.08 1.23

5.2 Entrainment

Entrainment is described in section 2.4.2 as the intake of fluid by the jet across its boundary.
To quantify the entrainment, the dimensionless volume flux, Q/V0w1, and the dimensionless
entrainment velocity, VE/V0, are determined for all configurations. The volume flux, Q, is
calculated for different values of y, according to equation (2.22), which takes the integral of the
y-velocity over an infinite horizontal (cross-jet) distance. Since the theoretical model assumes
that the y-velocity equals zero outside the jet, the volume flux will be zero outside the jet as
well. However, due to the bounded domain of the CFD model, the y-velocity outside the jet is
nonzero. Therefore, the integration should only take place inside the jet, and thus the boundaries
of the jet need to be determined. For a single jet, the jet boundary can be approximated by
Rjet = 2δ0.5, or by Rjet = αy with α = 1/6, as shown in figures 5.1 and 5.2. However, these
relations do not apply for multiple jets, and therefore another definition needs to be found. The
dynamics of jets are entirely controlled by the velocity gradients at the jet boundaries. These
velocity gradients induce a shear flow which generates vorticity. The vorticity, ω, is defined
as

ω = ∇ × u. (5.1)

At the boundaries of the jet, a shear flow is generated, which gives rise to instabilities. These
instabilities lead to the formation of vortices which entrain air, giving a jet its defining triangular
shape. In theory, the velocity field outside the jet equals zero, hence there is no vorticity outside
the jet. In practise, this is not the case due to the bounded the domain. However, the vorticity
is very small outside the jet, so the boundary of the jet can be defined by the position where
∣ω∣ = ωc, in which ωc is some small critical value of the vorticity, i.e. the jet is defined by ∣ω∣ > ωc.
The theoretical definitions, Rjet = 2δ0.5 and Rjet =

1
6y, assume to capture 95% of the jet, while it

is desired to capture the whole jet, including the shear layer. Because it is unclear when the jet
is fully captured, two values of ωc are taken which both indicate a wider jet. Figure 5.7 pictures
the boundaries of the single jet by making use of of ωc = 0.5 and ωc = 0.25, and the theoretical
definitions, Rjet = 2δ0.5 and Rjet =

1
6y.

1 Hereinafter, the jet boundaries of all configurations are
determined by ωc = 0.5 and ωc = 0.25.

Figure 5.8 compares the dimensionless volume flux, Q/V0w1, at certain y downstream for a single
jet, obtained with the CFD model and the theoretical model (equation (2.23)). The volume
fluxes obtained with the CFD model are determined with ωc = 0.5 and ωc = 0.25. The results of
the CFD model are in good agreement with the results from the theoretical model in the fully
developed flow region. When taking ωc = 0.25 instead of ωc = 0.5, the boundaries of the jet lay
further apart and a larger volume is captured, as visible in figure 5.7. This has a perceivable
effect on the volume flux further downstream (y > 0.25), where the difference between ωc = 0.25

1Note that the boundaries of the jet are not exactly linear, as implied by most literature. However, Kotsovinos
(1976) found that on a large scale the half width of a plane turbulent jet is a ‘weak’ nonlinear function of y,
following a similar trend as Rjet = 2δ0.5 in figure 5.7.
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Figure 5.7: Description of the jet boundary by means of the vorticity, ω, the jet half width,
δ0.5, and the theoretical definition, Rjet =

1
6y.
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Figure 5.8: Dimensionless volume flux, Q/V0w1, of a single jet, obtained with a CFD model
and a theoretical model. The theoretical volume flux is described by equation (2.23).

and ωc = 0.5 becomes more prominent. The volume flux determined by ωc = 0.25 downstream of
y = 0.25 is thus higher than the volume flux determined by ωc = 0.5. The volume flux obtained
with ωc = 0.5 results in a better agreement with theory, and therefore this is considered a better
approximation of the jet boundary than ωc = 0.25.

Figure 5.9 shows the dimensionless volume flux, Q/V0w1, at certain y downstream for a single jet
and for all configurations with secondary jets. At y = 0, the air curtains with secondary jets have
a larger Q than the single jet. This is expected since the total jet momentum flux (equation
(4.2)) is kept constant at the inlets, resulting in larger Q at the nozzles for the secondary
jet configurations. The configurations with secondary jets entrain less air than the single jet,
because of the higher velocity of the single jet, resulting in smaller volume flux gradients (i.e.
smaller Q downstream). The difference between the results obtained with ωc = 0.5 and ωc = 0.25
can almost be neglected.

The difference in volume flux, dQ, gives the entrainment flux through the boundaries of the
jet. According to conservation of mass, the entrainment velocity is then defined as VE = dQ/dy
(equation (2.25)). Since VE is computed from the volume flux, and not directly measured, it
is desired to know if it represents the actual entrainment velocity at the boundaries of the jet.
Therefore, the entrainment velocity is compared with the x-velocity at the boundary of the jet,
Vx.

2 Figure 5.10 compares the dimensionless entrainment velocity, VE/V0, and the dimensionless
x-velocity, Vx/V0, at certain y downstream for a single jet, obtained with the CFD model and
the theoretical model (equation (2.26)). The entrainment velocity and the x-velocity from the

2VE describes the total velocity magnitude at both boundaries, therefore, Vx is also defined as the total
(absolute) x-velocity at both boundaries.
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(a) Q/V0w1 determined by ωc = 0.5.

0 0.5 1 1.5 2 2.5 3 3.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q/V0w1 [-]

y
[-
]

(b) Q/V0w1 determined by ωc = 0.25.

Figure 5.9: Dimensionless volume flux, Q/V0w1, for different d and R.

51



CFD model and the theoretical model have approximately the same magnitude. The x-velocity
at the jet boundaries is expected to be smaller than the entrainment velocity, since Vx is not the
velocity component perpendicular to the jet boundary. Hence, the y-component of the velocity
at the jet boundaries has a contribution to the entrainment velocity as well. Figure 5.11 shows
the streamlines through the boundary of the single jet. The streamlines show the direction
of the velocity vector. The contribution of the y-velocity increases when moving downstream.
Taking this into account, the velocity at the jet boundary perpendicular to the jet boundary will
resemble the theoretical model and the entrainment velocity, VE , more closely. The difference
between ωc = 0.5 and ωc = 0.25 is almost negligible for the x-velocities, while the entrainment
velocity obtained with ωc = 0.5 clearly provides a better approximation to the theory. Therefore,
ωc = 0.5 is still considered a better definition of the jet boundary than ωc = 0.25.

Figure 5.12 shows the dimensionless entrainment velocity, VE/V0, for all configurations. The
entrainment velocities follow similar trends for different velocity ratios R. Since the jets enter a
(nearly) quiescent fluid, the higher the velocity of the jets, the higher the velocity gradients at
the jet boundaries, resulting in more entrainment. Above the merging points (y ∼ 0 − 0.1), air
is only entrained by the secondary jets, hence the velocity of the secondary jets, V2, determines
the amount of entrainment. Thus, for higher V2 (i.e. larger R), the entrainment velocities above
the merging points is also higher. Downstream of the merging points, the jets start to combine,
which results in a different downstream velocity. For R = 1/2, the downstream velocity increases
compared to V2, whereas for R = 1, the downstream velocity stays similar to V2, and for R = 2,
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Figure 5.10: Dimensionless entrainment velocity, VE/V0, and the dimensionless x-velocity,
Vx/V0, of a single jet, obtained with a CFD model and a theoretical model. The theoretical
entrainment velocity is described by equation (2.26).
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ωc = 0.5 ωc = 0.25

Figure 5.11: Streamlines in the region of interest of the single jet model, with an indication
of the jet boundaries obtained with ωc = 0.5 and ωc = 0.25.

the downstream velocity decreases compared to V2. Consequently, the entrainment velocity
increases for R = 1/2, stays nearly constant for R = 1, and decreases for R = 2, as visualised in
figure 5.12. For increasing d, the entrainment velocities decrease. Since the centreline velocities
also decrease with increasing d, the velocity gradients at the jet boundaries are smaller, resulting
in less entrainment. Figure 5.12 does not clearly show which configurations entrain less than
others, therefore the average entrainment velocities for all configurations are given in table 5.3
and 5.4. The single jet entrains significantly more air (≈ 140%) than the configurations with
secondary jets. The entrainment decreases with increasing distance between the jets, d, which
is also visible in figure 5.12. Also, the velocity ratio R = 1 results in the lowest entrainment.
R = 1/2 and R = 2 give similar results, however, R = 1/2 results in low entrainment close to the
nozzle (y ≈ 0 − 0.25), and high entrainment further downstream (y > 0.25), which is oppositely
for R = 2.

Figure 5.13 shows the dimensionless x-velocity at the jet boundaries, Vx/V0, for all configura-
tions. The x-velocities follow similar trends to the entrainment velocities. This can also be
seen from the average values of Vx/V0 in table 5.5 and 5.6. Since VE/V0 and Vx/V0 show similar
trends and magnitudes for ωc = 0.5, it can be concluded that the x-velocity at the jet boundaries
gives a good representation of the entrainment velocity.
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Table 5.3: Average dimensionless entrainment velocity, ⟨VE/V0⟩, for all d and R, determined
by ωc = 0.5. All values are normalised with ⟨VE/V0⟩ of the single jet configuration.

⟨VE/V0⟩ R = 1/2 R = 1 R = 2

d = 4
5w1 0.76 0.74 0.82

d = 2w1 0.71 0.64 0.72
d = 4w1 0.70 0.63 0.70

Table 5.4: Average dimensionless entrainment rate, ⟨VE/V0⟩, for all d and R, determined by
ωc = 0.25. All values are normalised with ⟨Vx/V0⟩ of the single jet configuration.

⟨VE/V0⟩ R = 1/2 R = 1 R = 2

d = 4
5w1 0.73 0.73 0.82

d = 2w1 0.68 0.64 0.72
d = 4w1 0.68 0.64 0.71

Table 5.5: Average dimensionless x-velocity on the jet boundaries, ⟨Vx/V0⟩, for all d and R,
determined by ωc = 0.5. All values are normalised with ⟨Vx/V0⟩ of the single jet configuration.

⟨Vx/V0⟩ R = 1/2 R = 1 R = 2

d = 4
5w1 0.76 0.72 0.79

d = 2w1 0.70 0.61 0.68
d = 4w1 0.72 0.61 0.68

Table 5.6: Average dimensionless x-velocity on the jet boundaries, ⟨Vx/V0⟩, for all d and R,
determined by ωc = 0.25. All values are normalised with ⟨Vx/V0⟩ of the single jet configuration.

⟨Vx/V0⟩ R = 1/2 R = 1 R = 2

d = 4
5w1 0.73 0.72 0.80

d = 2w1 0.69 0.62 0.71
d = 4w1 0.71 0.63 0.71
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(a) VE/V0 determined with ωc = 0.5.
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(b) VE/V0 determined with ωc = 0.25.

Figure 5.12: Dimensionless entrainment velocity, VE/V0, for different d and R.
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(a) Vx/V0 determined with ωc = 0.5.
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Figure 5.13: Dimensionless entrainment velocity, Vx/V0, for different d and R.
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5.3 Species transport

To directly measure the separation efficiency of the air curtain models, species transport is
investigated using URANS simulations for the configurations with d = 4

5w1 and d = 4w1.
3 A

passive scalar called ‘tracer air’ is introduced as described in section 4.3.2. The mass fraction
of tracer air, ct, is measured during 150 s in the area at the right-hand side of the jet(s), and in
nine points inside that area, as visualised in figure 5.14. The mass fraction always has a value
between 0 and 1, corresponding to 0−100% of the concentration of tracer air in the measurement
area or points. The size of the area in which the tracer air is measured has the same size as the
area in which the tracer air is introduced at the left-hand side of the jet(s). Since that area is
filled with 100% tracer air, the mass fraction of tracer air measured in the right area indicates
the percentage of tracer air that passed across the jet(s).

Figure 5.15 shows the concentration of tracer air in the whole domain from the single jet model
at different times t. At t = 2 s, it is clearly visible that tracer air is entrained by the jet at
y ∼ 0.2 − 0.75. The entrained tracer air is then transported downstream inside the jet. In the
impingement zone, the mixture of normal air and tracer air is transported in horizontal direction
to both sides of the domain due to advection, visible at t > 10 s. The tracer air then circulates
through the domain due to advection, and spreads equally over the domain due to (turbulent)
diffusion (t > 25 s).

5.3.1 Species transport across the air curtain

Figure 5.16 shows the mass fraction of tracer air from all configurations, measured for 150 s in
the area indicated in figure 5.14. All configurations follow a similar trend; the gradient of ct
decreases gradually with time. This is because tracer air leaves the domain through the outlets
and only normal air enters the domain through the inlets, so the available tracer air that can

point 1

point 2

point 3

point 4

point 5

point 6

point 7

point 8

point 9

Figure 5.14: Schematic of the right half of the domain. The yellow area indicates the area
where the mass fraction of tracer air is measured. The points indicate the nine positions at
which the mass fraction is measured.

3The configurations with d = 2w1 are omitted, since the results of velocity and entrainment do not differ
much from the results with d = 4w1. Therefore, the results of species transport are expected to not differ much
either.
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Figure 5.15: Concentration of tracer air, ct, in the whole domain of the single jet model at
different time t.
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Figure 5.16: Mass fraction of tracer air for different d and R measured in the area indicated
in figure 5.14 for 150 s.

transfer across the jet(s) reduces in time. Eventually (t≫ 150 s), this will lead to a decrease in
tracer air in the right side of the domain until all tracer air has left through the outlets and is
replaced by normal air. The single jet lets through approximately twice as much tracer air as the
configurations with secondary jets. The difference between the configurations with secondary
jets is also quite significant, leading up to a difference in ct of approximately 50%. The species
transport across the jets is smaller for larger d. However, larger spacings than d = 4w1 are not
investigated4, hence an optimal separation distance has not been found. R = 1 and R = 2 give
similar results, however, R = 1/2 results in more species transport across the jets. Since R = 2
results in slightly more species transport across the jets than R = 1, R > 2 is expected to result
in a lower separation efficiency as well, therefore, it seems that R ∼ 1 is the optimal velocity
ratio.

As visible in figure 5.15, species first get entrained and then get transported downstream in
the jet. Thus, the species transport seems to be dependent on the entrainment velocity as well
as the (centreline) velocity of the jet. Consequently, a higher entrainment velocity causes a
faster take-in of tracer air by the jet, and a higher centreline velocity causes a faster transport
across the jet, resulting in more transport of species across the jet in time. From the analysis
of the velocity and entrainment in sections 5.1 and 5.2, the single jet transports the largest
amount of tracer air, since the entrainment velocity and the centreline velocity of the single jet

4Larger d have not been investigated due to model convergence problems. Steady RANS simulations could
not be performed, and therefore, URANS simulations could not be initialised.
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are significantly higher than those of the other configurations. Also, the centreline velocities
decrease with increasing R and increasing d. The average entrainment velocities decrease with
increasing d, but are the smallest for R = 1, and similar for R = 1/2 and R = 2. Therefore,
the species transfer should decrease with increasing d, which can be observed in figure 5.16.
The configurations with R = 1/2 have the highest centreline velocity, and therefore transport
species quickly downstream through the jet. The configurations with R = 2 have low centreline
velocities, but higher entrainment velocities, and the configurations with R = 1 have moderate
centreline velocities, but the lowest entrainment velocities. As visualised in figure 5.16, the
configurations with R = 1 transport slightly less species than the configurations with R = 2, and
therefore it is assumed that the entrainment velocity has a larger effect on the species transport
than the centreline velocity.

All configurations shown in figure 5.16 follow the same trend, except for the configuration with
d = 4w1 and R = 1. From t ∼ 80 s, the concentration starts deviating from the results of the
other configurations and a sudden increase in species transport is observed. The flow field of
all configurations remained steady during the URANS simulations, except for the configuration
with d = 4w1 and R = 1. At t ∼ 80 s the jets start experiencing a swaying motion called ‘jet
flapping’. This behaviour is visualised in figure 5.17. The jet flapping is also observed by
Khayrullina et al. (2017), and reported and analysed in earlier studies, such as Goldschmidt
and Bradshaw (1973) and Cervantes de Gortari and Goldschmidt (1981). The flapping motion
may be a result of a small asymmetry or perturbation close to the nozzle.

The effect of jet flapping on the transport of species is visualised in figure 5.18. At t = 60 s,
the jets are still steady and form a clear seal between both sides of the domain. Tracer air is
only transported to the right side of the domain in the impingement zone, where the jets hit
the bottom wall. At t = 100 s, the jets have started flapping and more tracer air gets entrained
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Figure 5.17: Mean velocity magnitude, ∣V ∣/V0, in the region of interest of the model configu-
ration with d = 4w1 and R = 1 at different time t.
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Figure 5.18: Concentration of tracer air, ct, in the region of interest of the model configuration
with d = 4w1 and R = 1 at t = 60 s and t = 100 s.

due to the large turbulent motions. The jets do not form a clear seal any more, and tracer air
is also leaving the jets at the sides instead of only at the bottom. Consequently, more tracer air
is transported across the jets.

5.3.2 Species transport in the bounded domain

Figure 5.19 shows the concentration of tracer air, ct, in nine points (figure 5.14), and reflects
how the tracer air moves through the domain. In every point, ct follows similar trends for every
configuration, except for the configuration with d = 4w1 and R = 1, due to the jet flapping. In
contrast to the concentration measured in the volume, the concentration in the points does not
increase gradually in time. Especially for points 3, 6, 7, 8 and 9, whose large gradients in the
concentration are visible at certain t. For the single jet, ct increases abruptly at t ∼ 10 s in
point 3, at t ∼ 15 s in point 6, at t ∼ 23 s in point 9, at t ∼ 26 s in point 8, and at t ∼ 30 s
in point 7. This indicates a circular motion through the domain, as also visible in figure 5.15.
Tracer air enters the domain around point 3 and circulates across points 6, 9, 8, 7, 4, 1, 2,
respectively, to eventually return to point 3. Due to diffusion, the increase in concentration is
more dominant for points 3, 6, 9, 8 and 7, and gradually decreasing in significance for points
4, 1 and 2. The jump in concentration is almost neglectable for point 5, since it is positioned
in the middle of the domain and the tracer air is advected around it. The still present gradual
increase in concentration at point 5 is almost solely due to diffusion. A second abrupt increase
in concentration is visible at t ∼ 65 s in point 3, at t ∼ 70 s in point 6, at t ∼ 80 s in point 9, at
t ∼ 85 s in point 8, and at t ∼ 90 s in point 7. This implies that for the single jet configuration
tracer air circulates through the domain in approximately 60 s.

To verify this, the circulation time is approximated by means of the stream function. For the
configuration of the single jet, the stream function, ψ, in the right side of the domain is plotted
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Table 5.7: Circulation time, Tc, and value of the dimensionless streamfunction, ψ/V0w1, in
nine points in the right side of the domain.

ψ/V0w1[-] Tc [s]

Point 1 4.33 53.4
Point 2 5.17 64.3
Point 3 5.11 67.6
Point 4 4.77 64.4
Point 5 5.73 83.4
Point 6 4.91 60.2
Point 7 3.71 56.0
Point 8 3.90 50.4
Point 9 3.47 60.9

Average Tc [s] 62.3

in figure 5.20. The circular streamlines confirm the presence of a circulating motion. Since the
flow of the single jet behaves steady, it is assumed that the streamlines represent the particle
trajectories, i.e. the tracer air follows the streamlines. The streamlines through all nine points
are determined, and by means of the velocity field, the time it takes for a particle to travel
along each streamline is calculated. For the single jet, these circulation times, Tc, are presented
in table 5.7 for each point. The average circulation time is approximately 60 s, which supports
the observations in figure 5.19.

For the configurations with secondary jets, the abrupt increases in concentration of tracer
air happen at later times, as visible in figure 5.19. Due to the smaller velocities of these
configurations, it is expected that the velocities in the domain are also smaller, resulting in
longer circulation times. For the configurations with d = 4

5w1, the abrupt increases in ct happen
at similar t as for the single jet configuration, which is expected since their centreline velocities
are almost similar. The centreline velocities of the configurations with d = 4w1 are smaller, and
therefore the abrupt increases in ct happen at later t.
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Figure 5.20: Dimensionless streamfunction, ψ/V0w1, in the right side of the domain. The
black lines indicate streamlines.
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Chapter 6

Future work

The analysis on species transport in section 5.3 implies that a low centreline velocity is needed
to decrease the species transfer across the air curtain. However, this only holds when there
are no density differences present. In reality, density differences are often present as a result
of temperature differences. Density differences induce free convection, and a flow is generated
across the air curtain. Consequently, the air curtain bends to the low density side and does no
longer form an optimal seal (Frank and Linden, 2014; Qi et al., 2018). Increasing the centreline
velocity suppresses the bending (Gonçalves et al., 2012b), and therefore reduces the species
transfer. However, increasing the centreline velocity also enhances the entrainment. Thus, an
optimal velocity should be found to optimise the separation efficiency of an air curtain subjected
to density differences. Costa et al. (2006) and Frank and Linden (2014) have found that such
an optimal velocity exists for a single jet air curtain. Implementation of density differences in
the CFD models is recommended, since it should give more insight in the optimal distance d
between the jets. It is expected that a further increase of d will not reduce species transfer due
to the decrease in centreline velocity. Further research should also point out whether R ∼ 1 is
still the optimal velocity ratio, since R < 1 result in higher centreline velocities, creating a more
stable air curtain.

Furthermore, it is shown in section 5.3.1 that jet flapping enhances species transport across
the jets. Jet flapping is caused by a small asymmetry or perturbation close to the nozzle
(Goldschmidt and Bradshaw, 1973; Cervantes de Gortari and Goldschmidt, 1981). In reality,
it can be expected that a jet is exposed to a lot of perturbations, and that small asymmetries
in the nozzles are imminent. Therefore, it is expected that the jet flapping is more realistic
than the steady behaviour. To gain a better understanding of the effect of jet flapping on
the species transport, the unsteady RANS simulations should be performed for longer flow
times. Also, Large Eddy Simulations (LES) could be performed to gain more insight in the
flapping behaviour. LES solves all the large-scale motions and only models the small eddies.
Therefore, it will always have superior performance compared to RANS and URANS (Wilcox,
2006). In addition, instantaneous values of the velocity field and the turbulence levels can
be obtained with LES, in contrast to the RANS equations where only mean quantities are
calculated. However, the use of LES comes with a strong increase in computational demand.
Nevertheless, the differences between the steady configurations and the flapping configuration
will then be more clear, and more accurate conclusions can be drawn. Furthermore, the results
of other configurations that exhibit jet flapping should be compared.
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Chapter 7

Conclusions

In this study, the influence of secondary jets on the separation efficiency of a PTIJ is investigated
by means of 2D numerical (CFD) models. The distance d between the jets and the ratio of
discharge velocities, R = V2/V1, are varied to find an optimal configuration. Steady and unsteady
RANS simulations are performed to gather information about velocity, entrainment and species
transport across the jets.

First, a theoretical model of a 2D plane jet is formulated. It is assumed that the cross-jet velocity
profiles of the jet resemble Gaussians. By means of conservation of mass and momentum,
expressions of the centreline velocity, cross-jet velocity, volume flux and entrainment velocity
are formulated. The results from the theoretical model are in good agreement with the results
of the CFD model of a 2D plane jet, especially when an opening angle of α = 1/6 is considered,
instead of the opening angle of α = 1/5 as suggested in previous research. Nonetheless, the
theoretical model only applies in the fully developed flow region, and thus does not apply to
the full flow of the PTIJ. Additionally, the theoretical model assumes an unbounded domain,
while the CFD model has a bounded domain, and therefore the flow at the boundaries of the
jet exhibits different behaviour as well.

Furthermore, the centreline velocity and cross-jet velocity profiles, the volume flux and the
entrainment velocity obtained with the CFD model configurations with secondary jets are com-
pared with those obtained with the CFD model of a single jet. The centreline velocity is highest
for the single jet, and decreases with increasing R and increasing d for the configurations with
secondary jets. The dependence on d arises from the difference in shear between the jets. The
smaller the distance between the jets, the less shear is present between them, reducing turbu-
lence and preserving the centreline velocity. The dependence on R arises from the difference
in shear at the outer boundaries of the secondary jets. The higher V2, and thus R, the more
shear at the outer boundaries, resulting in faster dissipation of the centreline velocity. The
entrainment velocity of the single jet is significantly higher than that of the multiple jets. For
the configurations with secondary jets, the entrainment velocity decreases with increasing d, as
a result of the lower centreline velocities for larger d. The velocity ratio R = 1 results in a lower
entrainment velocity than R = 1/2 and R = 2. For R = 2, higher entrainment velocities are due
to higher shear at the outer boundaries. For R = 1/2, the higher centreline velocities result in
higher entrainment velocities.

Lastly, the separation efficiency of the air curtain models is investigated by means of species
transfer across the jets. The species transfer across the jets is dependent on the entrainment
velocity, which controls the amount of species coming into the jet, and the centreline velocity,
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which controls how fast the species are transported through the jets. The transfer of species
across the jets decreases for increasing d. This is expected since large d results in low centreline
velocities and low entrainment velocities. The transfer of species is highest for R = 1/2, since
those configurations have the highest centreline velocity and a high entrainment velocity. The
amounts of species transfer observed for the configurations with R = 1 and R = 2 are in the
same order of magnitude. However, the species transfer is slightly less for R = 1, implying
that the entrainment velocity plays a larger role than the centreline velocity on the species
transfer through the jets. It can be concluded that an air curtain with secondary jets transfers
significantly less species than a single jet air curtain. The results show that the secondary
jets should have approximately the same velocity as the main jet (R ∼ 1) to minimise the
entrainment velocity. However, an optimal distance d between the jet has not been found. It
is expected that when d is increased, the centreline velocity will decrease until the jets are too
far apart to merge. Nevertheless, further research is needed to confirm this hypothesis.

Additional conclusions can be drawn on the effect of transient flow features on the results of
species transport. First of all, an increase in species transport across the jets is shown as a result
of jet flapping. The flapping behaviour generates more turbulence and increases the horizontal
velocities, resulting in more transport of species across the jets. Secondly, circulating motions
are observed in the bounded domain. By means of the stream function, the circulation time is
determined for the single jet configuration. It is found that this circulation time can also be
determined on the basis of the concentration gradient of species at certain points in the domain.
Furthermore, it is shown that the circulation time decreases when the centreline velocity of the
jet configurations decreases.

Overall, this numerical study shows that a more optimal separation efficiency of an air curtain
is obtained by implementing secondary jets. The separation efficiency depends on the centreline
velocity and the entrainment velocity of the air-curtain jets. This study shows that decreasing
both velocities reduces the species transport across the jets. However, environmental parame-
ters, such as density differences, are not taken into account, and should be investigated in future
research.
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Appendix A

Validation metrics

Table A.1: The factor of 1.1 of the observations, FAC1.1, defined for the dimensionless mean
velocity magnitude along four lines in the region of interest, obtained with six different turbulence
models.

FAC1.1 SKE RNG RKE BSL SST RSM

centreline 0.922 0.722 0.756 0.861 0.800 0.278
y = 0.8 0.722 0.204 0.830 0.793 0.747 0.102
y = 0.5 0.565 0.338 0.791 0.792 0.699 0.236
y = 0.2 0.482 0.574 0.560 0.653 0.222 0.218
Average 0.673 0.460 0.734 0.775 0.617 0.208

Table A.2: The normalised mean squared error, NMSE, defined for the dimensionless mean
velocity magnitude along four lines in the region of interest, obtained with six different turbulence
models.

NMSE SKE RNG RKE BSL SST RSM

centreline 0.0061 0.0082 0.0075 0.0066 0.0068 0.0158
y = 0.8 0.0043 0.0140 0.0006 0.0012 0.0009 0.0345
y = 0.5 0.0077 0.0092 0.0009 0.0046 0.0051 0.0252
y = 0.2 0.0084 0.0055 0.0058 0.0045 0.0056 0.0069
Average 0.0066 0.0092 0.0037 0.0042 0.0046 0.0206

Table A.3: The correlation coefficient, Rp, defined for the dimensionless mean velocity mag-
nitude along four lines in the region of interest, obtained with six different turbulence models.

Rp SKE RNG RKE BSL SST RSM

centreline 0.980 0.979 0.981 0.979 0.978 0.973
y = 0.8 0.995 0.995 0.988 0.989 0.990 0.995
y = 0.5 0.995 0.995 0.995 0.995 0.994 0.995
y = 0.2 0.992 0.992 0.991 0.992 0.992 0.990
Average 0.990 0.990 0.989 0.989 0.988 0.988
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Table A.4: The factor of 1.5 of the observations, FAC1.5, defined for the dimensionless TKE
along four lines in the region of interest, obtained with six different turbulence models.

FAC1.5 SKE RNG RKE BSL SST RSM

centreline 0.929 0.880 0.782 0.880 0.803 0.820
y = 0.8 1 1 1 1 0.903 1
y = 0.5 1 1 0.772 0.753 0.634 1
y = 0.2 0.482 0.663 0.674 0.724 0.724 0.138
Average 0.853 0.886 0.807 0.839 0.766 0.739

Table A.5: The normalised mean squared error, NMSE, defined for the dimensionless TKE
along four lines in the region of interest, obtained with six different turbulence models.

NMSE SKE RNG RKE BSL SST RSM

centreline 0.056 0.045 0.180 0.045 0.164 0.097
y = 0.8 0.036 0.005 0.049 0.051 0.080 0.031
y = 0.5 0.024 0.004 0.020 0.038 0.071 0.010
y = 0.2 0.233 0.248 0.335 0.285 0.258 0.243
Average 0.087 0.075 0.146 0.105 0.143 0.095

Table A.6: The correlation coefficient, Rp, defined for the dimensionless TKE along four lines
in the region of interest, obtained with six different turbulence models.

Rp SKE RNG RKE BSL SST RSM

centreline 0.849 0.810 0.633 0.713 0.786 0.750
y = 0.8 0.989 0.973 0.990 0.991 0.989 0.986
y = 0.5 0.993 0.991 0.993 0.993 0.987 0.993
y = 0.2 0.976 0.968 0.962 0.962 0.963 0.940
Average 0.952 0.936 0.894 0.915 0.931 0.917
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