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Abstract

Consider the deposition of a film of Newtonian liquid on a flat plate being withdrawn from a
liquid reservoir. The deposition only occurs above a critical velocity of the plate. This crit-
ical velocity solely depends on the contact angle and liquid parameters. When deposition is
unwanted, while moving below the critical velocity such as in immersion lithography, small
surface defects or heterogeneities can pin the contact line locally. The formation of residual
satellite droplets underneath these surface defects is then caused by the break up process as
well as the subsequent meniscus retraction. These satellite droplets can cause printing defects
in the photo-lithography process.

Therefore the formation of satellite droplets in dip-coating of well-defined heterogeneities (pat-
terns) on homogeneous substrates is studied using experimental work as well as numerical
modelling. It is shown that the geometrical parameters of the pattern are the dominant factor
in this process. The pinning feature of the contact line is influenced by the maximum slope of
the pattern while the size of the satellite droplets depends on the geometrical parameters of
the pattern, contact angle distribution and dip-coating velocity. The biggest satellite droplet
radius and distance from the pattern edge scales roughly linear with the pattern dimension
for pattern dimensions below the capillary length. For higher pattern dimensions a decrease
in dependence is observed for decreasing dip-coating velocities. The biggest satellite droplet
radius and distance from the pattern edge scales with the dip-coating velocity as a power law
for small dip-coating velocities and small pattern dimensions, i.e. pattern dimensions smaller
than capillary length. For increasing dip-coating velocities closer to the critical value expo-
nential increase is observed. Although the experiments and numerical simulations show many
similarities between the break up dynamics, the observed scaling is not reproduced. Possible
causes for this are the differences in pattern dimension, contact angle distribution and smaller
pattern slope and capillary numbers. The influence of pattern shape is studied experimentally
by comparing between equilateral triangles, squares and circles. Equilateral triangles and square
patterns leave bigger satellite droplets at a larger distance for the same dip-coating velocities
and pattern dimensions compared to circular patterns. Both experimentally and numerically
the trail of droplets decays in size following a power law with increasing scaling magnitude for
decreasing dip-coating velocities. The total waterloss, i.e. the total volume of satellite droplets,
scales similar with the dip-coating velocity compared to the the biggest satellite droplet.
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Chapter 1

Introduction

Gordon Moore predicted the exponential growth of the number of transistors on an integrated
circuit in 1965 [1]. The prediction, although only an extrapolation at that time, is well known
as Moore’s law today. So far this empirical prediction holds and is even used in the semicon-
ductor industry to guide long-term planning [2]. The technique used to produce state-of-the-art
integrated circuits, which are also known as microchips, is called photo-lithography.

A photo-lithography machine consists of three stages, as sketched in figure 1.1. First a
light source, i.e. laser, produces the light used in the machine. In the second stage the light
is transmitted through the reticle stage. In this stage the light is reflected from a plate, the
reticle, in a defined pattern. In the third stage this pattern is then projected onto the silicon
wafer stage where the actual microchips are produced.

Figure 1.1: Schematic image of photo-lithography machine with three main stages highlighted. Image
adjusted from Winkels [3].

Progress in the semiconductor industry is all about reducing the size of the components
inside a microchip. Smaller components result in faster microchips that consume less power
[4]. The smallest feature size a photo-lithography system can produce is set by the critical
dimension CD of the optical expose system:

CD = k1
λ

n1 sinφ
= k1

λ

NA
, (1.1)

with k1 a system dependent pre-factor, λ the wavelength of the light, φ the limiting angle of
the lens, n1 the index of refraction, and NA the numerical aperture of the imaging system. The
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latter is an optical property taking into account how well the light is projected onto the silicon
wafer. There are several ways to reduce the critical dimension CD . The first way is decrease
the wavelength of the light being used, such as done in the new generation of photo-lithography
machines where the wavelength decreased from deep ultraviolet (DUV) with λ = 193 nm to
extreme ultra violet (EUV) with λ = 13.5 nm [5], [6].

Second is immersion lithography, where the critical dimension CD is refined by inserting
a high index liquid n1 > 1 into the gap between the lens and wafer surface which increases
numerical aperture NA [7], [8]. Combined with multiple-patterning techniques the resolution
can improve to sub 10 nm [9], [10].

1.1 Challenges in Immersion lithography

In current immersion lithography machines a layer of water (n1 = 1.44) replaces the air (n1 = 1)
between the lens and wafer which increases the numerical aperture NA and enables to print
smaller features. The water is confined inbetween the immersion hood and the wafer, with a
distance of ∼ 100µm apart, as illustrated in figure 1.2. Although the layer of water increases
the resolution it also gives rise to several challenges. Due to the high throughput demanded
by the industry the wafer moves with speeds up to ∼ 1 m/s which induces large shear forces
while any non-uniformities in the water may result in printing defects. These non-uniformities
have a variety of causes such as imported particles [9], [11], chemical leaching of the photoresist
[12]–[15], bubbles [16], and inhomogeneous heating [17].

Another challenge in immersion lithography is film pulling, which is illustrated in figure 1.2.
Film pulling occurs either at the edge of the wafer or when contamination is present on the
wafer. Both times the contact line pins on macroscopic level and a film is pulled [figure 1.2(a-b)].
When this film breaks, it leaves small droplets on the wafer [figure 1.2(c)]. These small droplets,
depending on size and location, can cause printing defects [18], [19]. The residual droplets can
cause printing defects in three ways [20]:

(i) watermarks due to the interaction between local photoresist and residual droplets [21],
[22],

(ii) drying stains from materials dissolved in water while residual droplets evaporate [23],

(iii) bubbles from residual droplets impinging the advancing meniscus [16].

One way to reduce the number of defects in immersion lithography is to minimize the
waterloss, i.e. keep a stable meniscus throughout the scanning process. Several studies for
meniscus stability have been done. Investigation of the critical velocity, for which entrainment
occurs even without contamination or the edge of the wafer, shows that an increase in static
receding contact line increases the critical velocity [19], [24]. In current immersion hoods the
waterloss is minimized by the use of air jets [25] or optimizing the water flows [26], which will
both not be considered in this study. Other studies on meniscus stability focus on the formation
of a corner tip instability [27], surface roughness on the wafer to increase the critical velocity
[28] or study liquid entrainment for example by use of dip-coating [29]–[31].

In dip-coating a plate is vertically withdrawn from a liquid reservoir. In this study dip-
coating of partially-wetting substrates is used to investigate the influence of heterogeneities (or
defects) on the pinning of the contact line and the formation of residual (or satellite) droplets.
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Figure 1.2: Illustration of film pulling in immersion lithography. The immersion hood confines the water
between the immersion hood and the wafer. When the wafer moves with a velocity U the reservoir has
an advancing and receding meniscus (a). The contact line pins on the edge of the wafer and a thin film
is pulled (b). When the wafers moves further this thin film breaks up in tiny droplets (c).

1.2 Dimensional analysis

Dip-coating (DC) of partially wetting substrates from a viscous, non-volatile liquid (glycerol-
water solution) is used to investigate the influence of defects on film pulling and then compared
to immersion lithography where water is used. This liquid is chosen for practial reasons such
as slow evaporation rate and slower break-up, by which the dynamics can be captured by a
camera. A dimensional analysis according to Buckingham-π-theorem [32] gives the number of
dimensionless parameters by p′ = n′ − k′ with p′ the number of dimensionless parameters, n′

the number of physical variables and k′ the number of physical dimensions. Taking into account
the fluid density ρ, the surface tension γ, the dynamic viscosity µ, the relevant length scale L0,
substrate scan velocity U , and gravitational acceleration g gives n′ = 6 physical variables. The
experiment is conducted in k′ = 3 physical dimensions (length, mass and time) which leads to
p′ = 3 dimensionless parameters. The first dimensionless parameter is the Reynolds number:

Re =
ρUL0

µ
(1.2)
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which compares fluid inertia to viscous forces. The second dimensionless parameters is the Bond
number

Bo =
ρgL2

0

γ
(1.3)

which compares gravitational forces and surface tension forces. The third dimensionless param-
eter is the capillary number:

Ca =
µU

γ
(1.4)

which relates the viscous forces to the surface tension forces. Although there are several relevant
length scales L0, such as the initial film height, gap height of wafer-immersion hood, the defect
sizes and the capillary length, the latter is used in this dimensional analysis. The capillary
length lc relates the capillary pressure to the hydrostatic pressure and is defined by:

lc =

√
γ

ρg
. (1.5)

The physical variables and the resulting dimensionless parameters are given for both typical
industrial immersion (water) conditions and dip-coating (glycerol-water solution) in table 1.1.

Table 1.1: Parameters for film pulling under typical industrial immersion (water) conditions [9] and
dip-coating (glycerol-water solution). The physical parameters taken into account for the dimensionless
analysis according to Buckingham-π-theorem are shown.

parameter unit immersion (water) dip-coating (glycerol-water)

ρ liquid density [kg/m3] O(103) O(103)
γ surface tension [kg/m3] O(0.1) O(0.1)
µ dynamic viscosity [kg/ms] O(10−3) O(0.1)
L0 Relevant length scale [m] O(10−3) O(10−3)
U scan velocities [m/s] O(0.1→ 1) O(10−4 → 10−3)
g gravitational acceleration

[m/s2]
O(10) O(10)

Re Reynolds number O(102 → 103) O(10−3 → 10−2)
Bo Bond number O(0.1) O(0.1)
Ca Capillary number O(10−3 → 10−4) O(10−4 → 10−3)
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Chapter 2

Theory of film pulling

The moving meniscus can pin on the edge of the wafer or on possible contamination.
A film is pulled and eventually breaks up in droplets possibly causing the printing
defects in the photo-lithography process. In this chapter the theory needed to de-
scribe the film pulling and break up is discussed. First the conservation laws for
fluid dynamics are given in section 2.1. In section 2.2 surface tension is discussed.
Next in section 2.3 the solid-liquid interaction is discussed. When these two inter-
faces are separated by a distance h, an additional force per unit area arises. This
disjoining pressure is discussed in section 2.4. In section 2.5 the thin film equation
or lubrication approximation is derived from the Navier-Stokes equations. Next in
section 2.6 dip-coating of flat surfaces and its boundary conditions for the solid-
liquid-vapour system are implemented and derived scaling relations are discussed.
Dip-coating of defects on flat surfaces is discussed in section 2.7.

2.1 Conservation laws

A fluid consists of molecules in constant motion and interactions with each other, and is therefore
discrete at molecular scales. In many systems however macroscopic quantities are studied
by applying conservation laws assuming a continuum, where the discrete molecular motion is
assumed to behave as a continuous distribution. This assumption is valid for small Knudsen
numbers Kn = λ′/L0 � 1, with λ′ the mean free path and L0 the physical length scale. For
a Knudsen number approaching or greater than one, the continuum assumption is no longer a
good approximation and statistical methods should be used [32]. Taking the approximation for
the film thickness from figure 1.2 as the physical length scale L0 ≈ 5 µm and the intermolecular
spacing as an approximation for the mean free path λ′ ≈ 2.5 Å gives a Knudsen number
Kn ∼ 10−5 � 1. Thus the continuum approximation is valid and conservation laws can be used
without having to consider molecular motion. Three conservation laws can be used to solve
fluid dynamics problems, namely:

(i) conservation of mass, which in differential form is given by:

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

with ρ the density of the fluid, t the time and u the velocity vector. The liquids can be
assumed to be incompressible (constant density ρ) which simplifies equation (2.1):

∇ · u = 0. (2.2)
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(ii) conservation of momentum in three dimensions (3D):

∂ρu

∂t
+∇ · (ρuu) = ρf −∇p+∇ · ¯̄τ, (2.3)

with f the vector containing body forces such as gravity, p the pressure, and ¯̄τ the viscous
stress tensor. Filling in the assumption for an incompressible flow and assuming the con-
sidered fluids behave as Newtonian fluids, i.e. the viscous stresses scale linear proportional
to the local strain rate, results in:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + µ∇2u = ∇p+ ρg + µ∇2u, (2.4)

where P represents the total pressure including body-forces and µ the dynamic viscosity.

(iii) conservation of energy, which will not be taken into account in this study.

2.2 Surface Tension

A liquid is a condensed state in which molecules attract one another. Typically these microscopic
cohesion forces contributing to the surface tension are van der Waals forces and hydrogen bonds.
A molecule located in the bulk of the fluid feels these cohesive forces from neighbours in all
directions evenly. In contrast, a molecule at the surface loses half of its cohesive interactions
as illustrated in figure 2.1(a). This is the fundamental reason that a liquid minimizes its shape
as much as possible. Dry sand at the beach for example does not stick together, whereas the
moment it gets wet it does. The surface tension γ [N/m] is a macroscopic parameter related
to the molecular shortfall of cohesion forces at the surface. Macroscopically surface tension can
be seen as the energy needed to increase the surface area by one unit or as the force per unit
length.

Vapour

Liquid

Solid

Contact
line

a)

Liquid

Vapour

b)

c) d)

SV

LV

SL

A

R

V
U

Figure 2.1: (a) Schematic representation of the molecular origin of surface tension. (b) Droplet on a
solid illustrating the balance of cohesive versus adhesive forces results in the contact angle θ between the
liquid-vapour and solid-liquid interfaces. (c-d) Droplets with changing contact angles due to a change in
volume or a sliding droplet on a non-flat solid.

An important consequence of surface tension is the overpressure it creates in fluids trying to
minimize their surface. The increase in pressure ∆p when crossing the boundary between two
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fluids is given by [33]:

∆p = γ ·
(

1

R1
+

1

R2

)
, (2.5)

with C =
(

1
R1

+ 1
R2

)
the curvature, R1 and R2 the radii of curvature of the surface. The

increase in pressure ∆p is also known as the Laplace pressure, named after the physicist who
first described this phenomenon.

2.3 Wetting and hysteresis

After describing the molecular origin of why a fluid always wants to minimize its surface energy
now the physics of a droplet on a substrate, i.e. sessile droplet, is described. The three phases
liquid, vapour and solid meet at the contact line of the droplet, indicated in figure 2.1(b). The
shape of the droplet is determined by the balance between cohesive forces of the liquid itself
and the adhesive forces between the liquid-solid interface. Under ideal circumstances this leads
to single contact angle θ describing the angle between the solid and the liquid-vapour interface
at the contact line as described by Young’s law[34]:

γLV cos θ = γSV − γSL. (2.6)

Where the capillary forces γ of the solid-vapour (SV), liquid-vapour(LV) and solid-liquid(SL)
acting on the contact line are balanced. Throughout the thesis the liquid-vapour surface tension
will be denoted as γ. The balance describes how a liquid will spread when it is deposited on
a surface. Two regimes of spreading are observed, namely total wetting and partial wetting.
Where total wetting corresponds to a contact angle of θ = 0o and partial wetting to θ > 0o.
Partial wetting is subdivided in hydrophilic surfaces 0 < θ < 90o and hydrophobic surfaces
90 < θ < 180o.

In many non-ideal physical situations the contact angle θ can assume a range of values
due to heterogeneities in the surface on nanoscale O

(
10−9m

)
[35]. These heterogeneities can

have a chemical and physical component corresponding to inhomogeneities in contact angle θ or
substrate topography. The variation in contact angle θ is illustrated in two situations in figure
2.1(c). The volume of a droplet is changed by a hollow needle. This change in volume changes
the contact angle up to a critical value while the contact line is pinned. When increasing the
volume beyond this critical value the contact line starts to move and the observed contact angle
is called the advancing contact angle θA. In a similar way, decreasing the volume beyond the
critical value yields a receding contact angle θR. The contact angles at the critical value, i.e.
just before the contact line moves, are called the static advancing and receding contact angles.
The difference in contact angle is defined as contact angle hysteresis ∆θ:

∆θ = θR − θA. (2.7)

The same difference in contact angle is observed in 2.1(d), where a droplet sliding with
constant velocity U on a surface is illustrated. The dynamics of the contact angle θ is described
by Cox-Voinov law [36]:

θ3 = θ30 ± 9γCa lnx/l′, (2.8)

with θR ≤ θ ≤ θA the dynamic contact angle, θ0 the equilibrated contact angle and l′ the
molecular scale where the discrete character of the molecules becomes noticeable. The plus
corresponds to the advancing contact lines and the minus to the receding contact lines.

2.4 Disjoining pressure

The disjoinining pressure Π(h) is an additional force per unit area, which refers to all contribu-
tions to the pressure between two interfaces separated by a distance h, other than the hydrostatic
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and capillary ones. These contributions can be divided in molecular, ionic-electrostatic, and
structural components. The disjoining pressure is related to the Gibbs free energy G, according
to the definition:

Π = −∂G
∂h

, (2.9)

and can be either attractive or repulsive depending on the film thickness h and material. In this
study a phenomenological model composed of a long-range attractive and short-range repulsive
potential is used [37]:

Π = γ (1− cos θ) · (n− 1)(m− 1)

n−m
1

h∗

[(
h∗

h

)n
−
(
h∗

h

)m]
, (2.10)

with n and m two constants and h∗ the precursorlayer thickness. The Navier-Stokes equations
do not allow liquid motion to or from perfectly dry regions of the substrate due to the stress
singularity associated with a moving contact line. This is caused by the incompatibility between
the usual no-slip condition, where the liquid meets the substrate, and the boundary condition
on the liquid-vapour interface. This leads to the stress singularity where these two interfaces
meet, i.e. the contact line. The wetting- or precursorlayer h∗ regularizes this stress singularity
associated with a moving contact line. An alternative model for the disjoining pressure is for
example the diffusive interface model by Thiele et al [38], [39]. which assumes that interfaces
have a non-zero thickness.

2.5 Theory of thin liquid films

In this section the theory to model the evolution of a thin liquid film on a solid substrate is
discussed. Starting point are the Navier-Stokes equations (2.4) for an incompressible, Newtonian
liquid and the continuity equation (2.2). Consider a thin film on a solid substrate with thickness
profile h(x, y, t) in the order of typical scale H, as illustrated in figure 2.2. The length scales L
over which the film is stretched in the x and are y direction are much larger than the typical
thickness H, i.e. the aspect ratio ε = H/L � 1. Consequently, the interface slopes are small,[
∂h
∂x

]
=
[
∂h
∂y

]
∼ H

L = ε� 1.

Solid

Vapour

Liquid
ey
ex

ez
h(x,y,t)

L

H

L

Figure 2.2: Illustration of a thin liquid film with thickness profile h(x, y, t) on a solid substrate.

The following non-dimensional variables are introduced:

(x̄, ȳ, z̄) =
(x
L
,
y

L
,
z

H

)
, (ū, v̄, w̄) =

( u
U
,
v

U
,
w

V

)
, t̄ =

U

L
t, and P̄ =

H2

µUL
P. (2.11)
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where U and V correspond to the velocity scales in and out of the xy-plane, respectively. The
velocity components in the x, y and z direction are represented by u, v and w, respectively.
Scaling the continuity equation with these non-dimensional variables gives:

U

L

∂ū

∂x̄
+
U

L

∂v̄

∂ȳ
+
V

H

∂w̄

∂z̄
= 0, (2.12)

where now each term must be of comparable magnitude. This implies that the out of xy-plane
velocity scale is related to the in xy-plane velocity scale as V ∼ εU . Thus the horizontal velocity
in the x and y directions is much higher than the typical vertical velocity in the z direction.
The non-dimensionalized Navier-Stokes equations become:

εReH

(
∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ w̄

∂ū

∂z̄

)
= −∂P̄

∂x̄
+
∂2ū

∂z̄2
+ ε2

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
, (2.13)

εReH

(
∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
+ w̄

∂v̄

∂z̄

)
= −∂P̄

∂ȳ
+
∂2v̄

∂z̄2
+ ε2

(
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2

)
, (2.14)

ε3ReH

(
∂w̄

∂t̄
+ ū

∂w̄

∂x̄
+ v̄

∂w̄

∂ȳ
+ w̄

∂w̄

∂z̄

)
= −∂P̄

∂z̄
+ ε2

∂2w̄

∂z̄2
+ ε4

(
∂2w̄

∂x̄2
+
∂2w̄

∂ȳ2

)
, (2.15)

for the x,y and z component, respectively. The Reynolds number ReH = ρUH/µ is based on
the film height and is assumed to be small (ReH � 1). Since the liquid films are characterized
by small ReH and aspect ratio ε the terms with ε2 and εReH can be neglected, which reduces
the Navier-Stokes equations to:

µ
∂2u

∂z2
=
∂P

∂x
, (2.16)

µ
∂2v

∂z2
=
∂P

∂y
, (2.17)

∂P

∂z
= 0, (2.18)

in the so-called lubrication approximation for the x,y and z component, respectively. Equation
(2.18) indicated the pressure P (x, y) is independent of z. The next step is the implementation of
the boundary conditions depending on what system is studied, for example a solid-liquid-solid
or solid-liquid-vapour system.

2.6 Dip-coating of flat surfaces

A sketch of the dip-coating system is given in figure 2.3(b) where the solid moves with constant
velocity U in the y-direction. Now first the boundary conditions and derivation of the lubrication
equation for this dip-coating system, i.e. solid-liquid-vapour system, are discussed.

S
o
lid

Liquid

ez

ey U > Uc

g g

U < Uc

ez

ey

a) b)

S
o
lid

Liquid

h

Vapour Vapour

Figure 2.3: Sketch of the dip-coating system for a partial wetting liquid θ > 0o. For small dip-coating
velocities (a) a stable meniscus is formed and there is no entrainment or film pulling. For large dip-coating
velocities (b) liquid entrains and a film is pulled.
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At the solid-liquid interface a no-slip and no-penetration boundary condition is assumed,
setting the velocity components:

u(z = 0) = (0, U, 0). (2.19)

At the liquid-vapour interface, z = h(x, y, t) the boundary conditions is set by the stress balance:

pvap − p− ni ·
(

¯̄Tliq − ¯̄Tvap

)
· ni + γni (∇ · ni) = 0, (2.20)

ti ·
(

¯̄Tliq − ¯̄Tvap

)
· ni + ti · ∇sγ = 0, (2.21)

normal and tangential to the interface, respectively. Furthermore ni and ti are the normal
and tangential unit vectors. The liquid and vapour stress tensors are represented by ¯̄Tliq and

¯̄Tvap, respectively. In both directions the stress in the vapour can be neglected due to the
viscosity contrast (µvap � µliq = µ) with the liquid. Filling in the liquid stress tensors and
again simplifying by sorting out the dominant terms with ε� 1 gives:

p = pvap + ρgy − γ
(
∂2h

∂x2
+
∂2h

∂y2

)
= 0, (2.22)

for the normal stress boundary condition on the liquid-vapour interface and

µ
∂u

∂z
(z = h) =

∂γ

∂x
and µ

∂v

∂z
(z = h) =

∂γ

∂y
, (2.23)

for the tangential stress boundary condition. The hydrostatic pressure is represented by ρgy.
Integrating the x and y component of the lubrication equations (2.16) and (2.17) gives:

u =
1

µ

∂P

∂x

z2

2
+ zf1(x, y, t) + g1(x, y, t), (2.24)

v =
1

µ

∂P

∂y

z2

2
+ zf2(x, y, t) + g2(x, y, t), (2.25)

for the x and y component of the velocity, respectively. The pressure is independent of z thus

equal to its value at the liquid-vapour interface, P = ρgy − γ
(
∂2h
∂x2

+ ∂2h
∂y2

)
. Now implementing

the derived boundary conditions to find the integration parameters f and g yields:

u =
1

µ

∂P

∂x

(
z2

2
− hz

)
+

1

µ

∂γ

∂x
z, (2.26)

v =
1

µ

∂P

∂y

(
z2

2
− hz

)
+

1

µ

∂γ

∂y
z + U. (2.27)

From these expressions for velocity components u and v the volume fluxes Qx and Qy can be
determined by integrating over the film height:

Qx =

∫ h

0
udz = − 1

3µ

∂P

∂x
h3 +

h2

2µ

∂γ

∂x
(2.28)

Qy =

∫ h

0
vdz = − 1

3µ

∂P

∂y
h3 +

h2

2µ

∂γ

∂y
+ Uh. (2.29)

The volume fluxes can be combined with the continuity equation (2.2) by integrating over the
local film thickness h: ∫ h

0

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz = 0. (2.30)
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Now using the integration rule of Leibniz yields:

∂Qx
∂x

+
∂Qy
∂y
− ∂h

∂x
u(h)− ∂h

∂y
v(h) + w(h)− w(0) = 0, (2.31)

where w(0) = 0 because of the boundary condition (2.19) and w(h) can be found by taking the
material derivative of the function f(x, y, z, t) = h(x, y, t)− z = 0:

Df

Dt
=
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
= −∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ w = 0. (2.32)

Now combining equations (2.31) and (2.32) gives the lubrication equation in terms of volume
fluxes:

∂h

∂t
+
∂Qx
∂x

+
∂Qy
∂y

= 0, (2.33)

or when the volume fluxes in equations (2.28) and (2.29) are filled in:

∂h

∂t
+

∂

∂x

[
h2

2µ

∂γ

∂x
− h3

3µ

∂P

∂x

]
+

∂

∂y

[
h2

2µ

∂γ

∂y
− h3

3µ

∂P

∂y
+ Uh

]
= 0. (2.34)

Where the pressure P is defined by:

P = ρgy − γ
(
∂2h

∂x2
+
∂2h

∂y2

)
−Π, (2.35)

which consists of the hydrostatic pressure, Laplace pressure and the disjoining pressure defined
by equation (2.10). The latter also regulates the stress singularity associated with a moving
contact line. Assuming no or negligible shear stress at the liquid-vapour interface, equation
(2.34) reduces to:

∂h

∂t
+

∂

∂x

[
h3

3µ

∂P

∂x

]
+

∂

∂y

[
h3

3µ

∂P

∂y
+ Uh

]
= 0. (2.36)

This lubrication equation for the dip-coating system describes the withdrawal with constant
velocity U of a solid plate immersed in a wetting liquid.

The steady state for low Reynolds numbers was first analysed by Landau, Levich and Der-
jaguin [40], [41]. For small Reynolds numbers the film thickness far away from the reservoir
h∞ depends on the balance between viscous and capillary forces, i.e. the capillary number
Ca = µU/γ. The force balance then simplifies from equation (2.17) to:

µ
∂2u

∂z2
= −γ ∂κ

∂x
, (2.37)

with κ the meniscus curvature. This scales as:

µU

h2∞
∼ γκ

l
(2.38)

with l the length scale of the dynamic meniscus. In this scaling there are two unknowns, l and

h∞. Introducing the capillary length lc =
√

γ
ρg as the radius of curvature of the static meniscus.

The small slope approximation of the meniscus curvature then gives a relation between l and
lc:

1

lc
= κ ≈ ∂2h

∂y2
∼ h∞

l2
, (2.39)

from which follows
l ∼

√
h∞lc. (2.40)
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Now combining equations (2.38) and (2.40) gives the scaling relation also known as Landau-
Levich-Derjaguin law [40], [41]:

h∞ ∼ lcCa2/3, (2.41)

which describes the film thickness h∞ for the viscous-capillary regime. The law is valid for small
capillary numbers Ca � 1 since for higher capillary numbers the static and dynamic menisci
do not match.

A similar argument can also be used for the high-speed regime when capillary forces no
longer play a role. The film regime is then characterized by the balance of viscous forces and
gravity:

µ
∂2u

∂z2
= ρg, (2.42)

which leads to the scaling law:
h∞ ∼ lcCa1/2, (2.43)

which is known as Derjaguin’s law [42], [43].
As discussed the lubrication equation and derived scaling laws are valid for small slopes[

∂h
∂x

]
=
[
∂h
∂y

]
∼ H

L = ε � 1 and small Reynolds numbers (inertial effects are neglected). For

partially wetting liquids, i.e. increasing contact angles θ, the lubrication approximation is not
valid.

2.7 Dip-coating of defects on flat surfaces

In the previous section the lubrication equation for dip-coating of a flat homogeneous substrate
is derived. In this section the model is adjusted to model the dip-coating of a defect. A defect
can have both a topographic and a chemical component.

To model the topographic component of the defect on the flat substrate the equation for
the location of the liquid air interface h′(x, y, t) is given by [44]:

h′(x, y, t) = h(x, y, t) + s(x, y, t), (2.44)

with h(x, y, t) the film thickness and s(x, y, t) the substrate height. The lubrication equation is
given by:

∂h

∂t
+

∂

∂x

[−h3
3µ

(
∂P

∂x

)]
+

∂

∂y

[−h3
3µ

(
∂P

∂y
+ Uh

)]
= 0, (2.45)

with P the pressure defined by:

P =

(
∂2

∂x2
+

∂2

∂y2

)(
−γh′

)
+ ρgy −Π. (2.46)

Where Π denotes the disjoining pressure (equation (2.10)), also discussed in section 2.4, which
is implemented to model the moving contact line. The contact angle distribution θ(x, y, t) is
used to model the chemical component of the defect.

The satellite droplets underneath the defects after dip-coating are a consequence of the
break up of the liquid bridge between the pattern and retracting meniscus. This break up is
governed by the Rayleigh-Plateau instability [43], [45]. The Rayleigh-Plateau instability of a
cylindrical free surface, i.e. ligament, states that the surface tension has a destabilizing effect on
the liquid-vapour interface. Due to the surface tension the liquid wants to minimize its surface
energy which causes small perturbations in the liquid-vapour interface, i.e. capillary waves,
to be amplified. These waves modulate the mean curvature of the liquid surface and generate
gradients of Laplace pressure, which further amplify the perturbation till break up into droplets.
The break up of liquid filaments (or rivulets) on a partially wetting solid substrate is studied
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numerically by Ghigliotti et al. [46]. They showed that the hydrophobicity of the substrate
promotes the break up of the rivulet and decreases the spacing of the formed droplets.

The influence of the geometrical parameters of a Gaussian surface defect on a droplet moving
down an inclined surface is studied by Park and Kumar [47]. Using the lubrication framework
and similar disjoining-pressure model as described in sections 2.5 and 2.4, respectively, they
showed that the critical sliding angle strongly relates to the maximum slope (height divided by
width s0/a) of the defect rather than its height or width individually. Also comparing a dent
(or groove, negative height) and bump (positive height) with similar slopes magnitude showed
that the dent has a smaller critical sliding angle compared to the bump. For a dent with too
small width, capillary action causes the dent to fill quickly at a small critical sliding angle.
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Chapter 3

Dip-coating setup

The purpose of this chapter is to describe the liquid entrainment by a single hetero-
geneity on a partially wetted substrate dip-coated from a liquid reservoir. First in
section 3.1 an overview of the dip-coating setup is given and the sample manufac-
turing procedure, which creates the well-defined heterogeneities on the substrate,
is discussed. Second in section 3.2 the results are presented and discussed. Finally
in section 3.3 conclusions are given regarding the results. The experimental results
and conclusions will be complemented by numerical simulations in chapter 4.

3.1 Experimental setup

In this section the dip-coating setup is discussed. First an overview is of the setup is given. Next
in paragraph 3.1.1 the sample manufacturing process is described. The measured parameters for
the materials used, are discussed in paragraph 3.1.2. Finally in paragraph 3.1.3 the experimental
procedure is given.

Figure 3.1(a) illustrates the dip-coating setup where a sample is pulled out of a liquid
reservoir with a constant velocity U . The sample surface is always oriented parallel to the
direction of withdrawal. The sample is attached into the sample holder which is mounted
onto a Newport XMS160 computer-controlled translation stage. The translation stage can
operate velocities within a range U = [0− 20] mm/s. The samples are manufactured from
silicon-oxide wafers (Si-Mat Prime, 〈1 0 0〉) using photo-lithography to define heterogeneities
(patterns). In paragraph 3.1.1 the manufacturing procedure is fully described. An illustration
of a manufactured sample, including the pattern, is given in figure 3.1(b-c). The pattern is both
a topographic and chemical heterogeneity with a certain shape, pattern dimension a, contact
angle θpr and thickness hpr. Figure 3.1(d) shows a photograph of the setup with the different
components. The camera (Basler acA1280-60gm, Mitutoyo M Plan APO 2x/0.055) is used to
capture the dynamics of the liquid entrainment. In all the experiments the reservoir liquid is a
glycerol-water solution, of which the relevant properties are the viscosity µ = 220± 20 mPa · s,
the surface tension γ = 60.9 ± 0.5 mN/m and the density ρ = 1.26 g/cm3 [48]. The main
benefits of using glycerol, are its non-volatility and and its relatively high viscosity, which
enables experiments corresponding to relatively high values of Ca at moderate speeds. Glycerol
is a hygroscopic liquid, which means it absorbs moist in the air. During the experiments the
reservoir liquid, i.e. glycerol is exposed to the air. To make sure the relevant properties do
not change over time during the experiments the supplied anhydrous glycerol (Fluka 49770)
is let to equilibrate with the air humidity before the glycerol is used in the experiments. The
relevant liquid properties of the equilibrated glycerol are measured in paragraph 3.1.2. In order
to minimize the influence of airborne particle contamination the setup is placed in a closed
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environment that is continuously provided with filtered air and the samples are always stored
in clean and closed sample-boxes.

Substrate

pr12˚

hpr2.3m

Wafer

sub71˚

Ua)
b)

c)

d)

Translation stage

Sample holder

Sample

Reservoir

Camera

D
ip
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Figure 3.1: (a) Sketch of dip-coating process where a sample is pulled out of the liquid reservoir with
a velocity U . (b) Top-view of the sample, where the grey represents the wafer with a receding contact
angle θsub ≈ 71◦ and the red the pattern with a receding contact angle θpr ≈ 12◦, and pattern dimension
a. (c) Side-view of the sample to illustrate the height difference hpr ≈ 2.3± 0.1µm. (d) Photograph of
the dip-coating setup with an overview of the different components.

3.1.1 Sample procedure

Samples were manufactured from 5x5 cm silicon-oxide wafers using photo-lithography. The
sample fabrication procedure, involving four consecutive steps, is discussed below and depicted
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schematically in figure 3.2. A more detailed step-by-step recipe is added in the Appendix.

(a) The substrate is thoroughly cleaned with ultrapure water (Millipore Direct-Q3, 18.2MΩcm).
After the substrate is completely dry, positive photoresist (Allresist, AR-P 3510T) is spin-
coated onto the substrate using a Brewer Science 200X spin-coating machine [3.2(a)]. For
a smooth and homogeneous layer the spin coating process is divided in two steps. First
the substrate is rotated at 200 RPM for 10 s with a maximum acceleration of 100 RPM/s
to gradually thin the manually applied thick layer of photoresist. Second the substrate is
rotated at 4000 RPM for 60 s with a maximum acceleration of 200 RPM/s to thin the layer
to a thickness of hpr ≈ 2.3± 0.1µm. After the spin-coating process the substrate is baked
at a temperature of 110 oC for approximately 90 s to promote the adhesion.

(b) Next the photoresist layer is exposed by an UV lamp (Karl Suss MJB3UV 300-400) using a
custom printed plastic mask to define the pattern. As shown in figure 3.2(b) all photoresist
except the pattern itself is exposed by the UV light.

(c) After exposure the sample is developed using a 1:10 diluted with distilled water developer
solution (Allresist, AR300-26). As shown in figure 3.2(c) the exposed areas of the sample
are rinsed by the developer and only the pattern remains. To promote the adhesion of the
remaining photoresist (pattern) the sample is baked at a temperature of 115 oC for 90 s.

(d) In the last step of the sample preparation the sample is first put in a UV Ozone cleaner
(Jelight 42-220) for 15 minutes, where a photo-sensitized oxidation process removes contam-
inant molecules. Second the sample is put in a Tricholoro(1H,1H,2H,2H-perflorooctyl)silane
(PFOTS, Sigma Aldrich, 448931) diluted by anhydrous heptane (Sigma Aldrich, 226654)
bath for 2 hours, where a PFOTS monolayer is formed on the sample that renders the silicon
oxide surface regions (i.e. those not covered by photoresist) hydrophobic. After 2 hours the
sample is put in an anhydrous hexan (Sigma Aldrich, 227064) bath for 20 seconds to remove
the residual PFOTS solution. Finally the sample is baked at a temperature of 115oC for
30s to promote the formation of the monolayer and evaporate the remaining solution.

a)

b)

c)

d)

Figure 3.2: (a-d) Main steps of photo-lithography process (see text) to make samples with a well-defined
heterogeneity (pattern) on its surface.

The samples comprise thus both a topographic and chemical heterogeneity with a certain
shape (circle, square or equilateral triangle), pattern dimension a, and thickness hpr as illus-
trated in figure 3.1(b,c).

3.1.2 Material parameters

In this paragraph the measurements of the relevant liquid properties of glycerol, contact angles
of the liquid-PFOTS and liquid-photoresist and the thickness of the spin-coated photoresist are
discussed.
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Contact angle

The contact angles are measured of the liquid-PFOTS and liquid-photoresist interfaces. Both
the static advancing and receding contact angle are measured by the dynamic sessile droplet
method, which is discussed in section 2.3. In this method a droplet is put between the substrate
and a needle which controls the in- and outflow of the liquid. The needle is connected to a syringe
(BD Plastipak 3ml) via a tube. The in- and outflow are controlled by the syringe pump (Kd
Scientific Legato 180). For both the static advancing and receding contact angle measurements
the in- and outflow is set to 2µl/min. The droplet expands or contracts and the dynamics are
captured with the camera (Basler acA1280-60gm, Mitutoya M Plan APO 2x/0.055). A snapshot
is taken just before contact line moves due to the expanding or contracting droplet. The contact
angle is determined manually by placing two lines: one on the liquid-PFOTS interface and one
parallel to the liquid-air interface close to the contact line as depicted in figure 3.3. The results
are summarized in table 3.1.

a,sub100˚

Needle

Droplet

Substrate

Figure 3.3: Snapshot of static advancing contact angle measurement of the substrate (PFOTS) and
glycerol. The static advancing contact angle is given by θsa,sub = 100± 2 o

Table 3.1: Results of static advancing and receding contact angle measurements with glycerol on the
PFOTS and photoresist.

symbol description liquid-PFOTS liquid-photoresist

θsa Static advancing contact angle [o] 100± 2 88± 2
θsr Static receding contact angle [o] 71± 2 12± 2

Surface Tension

The surface tension of glycerol is measured via the Wilhelmy Plate method which requires a
wetting platinum plate to make contact with the liquid surface [49]. The surface tension γ is
given by:

γ =
m′g

2L′
, (3.1)

with m′ the mass pulled by the plate in contact with the liquid, g = 9.81 m/s2 gravity con-
stant and L′ = 1.047 cm the length of plate which comes in contact with the liquid. Before a
measurement the plate is cleaned with distilled water and held in a natural gas flame to clean
it from all possible contamination which could influence the wettability of the surface. The
results of three different liquids are given in table 3.2. The lower than expected value for the
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glycerol-water solution could be caused by surfactant contaminant due to the ozone-cleaning of
the photoresist.

Table 3.2: Results of Wilhelmy Plate surface tension measurements of ultra-pure water, anhydrous
glycerol and glycerol. The surface tension is calculated with equation (3.1) and the errorbars via error
propagation (Appendix A.1).

liquid mass
m′ [g]

surface tension [mN/m] surface tension literature [mN/m]

Ultrapure Water 0.155±
0.001

72.6± 0.5 72.75 [50]

Glycerol-water 0.130±
0.001

60.9± 0.5 -

Anhydrous glycerol 0.126±
0.001

59.0± 0.5 62.5 [50]

Viscosity

The viscosity µ is measured with a viscometer (BrookField DV-II+ Pro) which measures the
viscosity via a rotating sensing element in the fluid. The torque necessary to maintain a certain
angular velocity determines the viscosity. In table 3.3 the results are presented.

Table 3.3: Results of viscosity measurements of anhydrous glycerol and glycerol. In the last column the
literature value is given for the anhydrous glycerol at a temperature of T = 25o.

liquid temperature
T [oC]

viscosity measured [mPa · s] viscosity literature [mPa · s]

Anhydrous glycerol 27± 1 710± 10 934 [50]
Glycerol-water 28± 1 220± 20 -

Thickness photoresist

The thickness of the spin coated layer photoresist and thus the height of the printed patterns
hpr, as illustrated in 3.1(c) is determined by the material properties of the photoresist and the
spin-coating settings. The layer thickness is measured using Atomic Force Microscopy (AFM)
where for two different sample patterns edges the height h(x) was measured as a function of the
spatial coordinate x. The results of this measurements are depicted in figure 3.4, with a resulting
layer thickness of hpr ≈ 2.3 ± 0.1µm. Due to the limitations of the AFM the relatively steep
slope of the pattern edge might not be measured accurately. The slope is roughly estimated by
hpr/c ≈ 0.2± 0.1, with c the transition length. The resulting layer thickness hpr and transition
length c are the mean and standard deviation of the two measured sample patterns.
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Figure 3.4: Image of the height profile taken with an AFM at the edge of the pattern with pattern
dimensions a = 1 mm and a = 10 mm. The thickness of the photoresist after spin-coating is given by
hpr ≈ 2.3± 0.1µm. The slope is roughly estimated by hpr/c ≈ 0.2± 0.1, with c the transition length.

3.1.3 Experimental procedure

The dip-coating speed U , the pattern dimension a and pattern shape are systematically varied
to elucidate the liquid entrainment due to a single surface ‘defect’ or heterogeneity. Figure 3.5
shows a typical image of a series of ‘satellite droplets’ formed underneath a rectangle of width
a = 4 mm dip-coated at a speed of U = 6 mm/s as a result of the liquid entrainment process
taken by an upright optical microscope. The liquid entrainment is quantified by extracting both
the radius and the distance of the biggest satellite droplet under the defect using the images from
an upright microscope (Olympus BX51). The distance of the biggest satellite droplet is defined
as the distance from the pattern edge to the center of the droplet. The objectives used of the
microscope and corresponding calibration values are summarized in table 3.4. The calibration
values are determined by taking an image of a calibration target with known dimensions. The
error made during conversion from pixels to meters is less than 0.5% and therefore neglected in
the rest of this thesis.

Table 3.4: Objectives used in the upright optical microscope with corresponding calibration values. The
calibration values are determined by dividing a known calibration target by the manually determined
length in pixels. The error in the calibration values are determined from reproducibility to be less than
0.5% and therefore neglected in the rest of this thesis.

name magnification Numerical Aperature (NA) calibration [nm/pixel]

Mplan Apo 1.25x 0.04 3733
Mplan Apo 2.5x 0.08 1859
LMplan FL N 5x 0.13 927.9
Uplan FL 10x 0.3 465.2
Mpan FL 50x 0.8 93.0

The droplets in figure 3.5 are not perfectly circular but slightly elongated in the vertical
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(dip-coating) direction. This is due to contact angle hysteresis of the substrate. The Rayleigh-
Plateau instability breaks up the vertical orientated rivulet into a trail of droplets. The droplets
want to minimize its surface energy so in a perfectly flat homogeneous substrate this would lead
to a spherical (topview) droplet. Due to small heterogeneities (insignificant compared to the
well-defined patterns studied) the moving contact line can pin locally to the substrate resulting
in contact angle hysteresis. During the break up of the vertical orientated rivulet the bottom
and top contact lines of the droplets tends to move the most to minimize its surface energy
resulting in the observed elongated droplets. The dynamic break up process is captured with
the camera (Basler acA1280-60gm, Mitutoyo M Plan APO 2x/0.055) depicted in 3.1(d).

Figure 3.5: Typical image of a dip-coating experiment with residual droplets underneath the pattern
taken by the upright optical microscope. In this case the pattern was a square with pattern dimension
a = 4 mm and dip-coating velocity of U = 6 mm/s. The droplets are not perfectly spherical but at bit
elongated in the vertical (dip-coating) direction.

The images are analysed via a semi-automatic script (added in Appendix) where manually
an ellipse is placed over the boundary of the droplet and a line is drawn between the pattern
edge and the droplet boundary. Due to the slightly elongated droplets the radius is actually
the equivalent radius defined by:

r =
√
a′b′, (3.2)

with a′ and b′ the semi-major and semi-minor axis of the ellipse. Throughout the thesis the
equivalent radius will be denoted by the radius r. The script first expresses the radius and
distance of the biggest satellite droplet in pixels. With the calibration values depicted in table
3.4 these are converted to meters.
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The dip-coating setup has been described, and now a set of systematic experiments is done
where the pattern shape, pattern dimension a and dip-coating velocity U are varied and both
the break up and residual droplets are captured and analysed.

3.2 Results and discussion

In this section the dip-coating results are presented and discussed. First the quantitative results
of the analysed images for the dip-coating experiments are presented and discussed for each
shape in sections 3.2.1-3.2.3. Second the effect of the varied parameters; dip-coating velocity,
pattern dimension and pattern shape are discussed in sections 3.2.4, 3.2.5 and 3.2.6, respectively.
Finally in section 3.2.7 the satellite droplet decay in size is discussed.

The critical dip-coating velocity, which solely depends on the contact angle, is given by
Uc = 6.5± 0.5 mm/s. For the dip-coating velocities U > Uc a film will be pulled independent of
any heterogeneities on the sample. All experiments are repeated, with the same input param-
eters, for at least four times. Since experiments with lower dip-coating velocities U < 4 mm/s
showed higher reproducibility, these were repeated only three times. The errorbars in all the
experimental graphs are given by the standard deviation of these repeated experiments.

3.2.1 Squares

In figure 3.6 the radius of the biggest satellite droplet is given as a function of a square pattern
with pattern dimension a for different dip-coating velocities U . Both an increase in pattern
dimension a and dip-coating velocity U result in a bigger satellite droplet. For dip-coating
velocities U < Uc

6 a transition is observed for the pattern dimension approaching the capillary
length a = lc ≈ 2 mm. Both regimes (a < lc and a > lc) are fitted with a power law fit given
by:

r ∼ apr , (3.3)

with pr the exponent of the power law. Below the capillary length (a < lc) the radius of the
biggest satellite droplet scales linear with the pattern dimension a. Above the capillary length
a > lc for the largest dip-coating velocities the radius of the biggest satellite droplet still scales
linear with the pattern dimension a, while the lower velocities show significant decrease in scaling
from linear (pr = 1) to pr = 0.23 and 0.26 for U = 0.25 and 1 mm/s, respectively. The transition,
which occurs around the capillary length lc for lower dip-coating velocities (U < 1 mm/s) shifts
to larger pattern dimensions for larger dip-coating velocities (U > 3 mm/s).

In Figure 3.7 the distance of the biggest satellite droplet is given as a function of a square
pattern with pattern dimension a for different dip-coating velocities U . This distance is defined
by the pattern edge and center of the satellite droplet. An increase in pattern dimension a
and dip-coating velocity U result in a larger distance of the biggest satellite droplet. Again a
transition is observed for the pattern dimension approaching the capillary length a = lc ≈ 2 mm.
Both regimes (a < lc and a > lc) are fitted with a power law fit given by:

d ∼ apd , (3.4)

with pd the exponent of the power law. Below the capillary length (a < lc) the distance of
the biggest satellite droplet scales approximately linear pd = 0.98 with the pattern dimension
a. For pattern dimensions larger than the capillary length a > lc and for large DC velocities,
the distance of the biggest satellite droplet still scales approximately linear with the pattern
dimension a, while the lower velocities show significant decrease in scaling from approximately
linear (pd = 0.98) to pd = 0.32, 0.67 and 0.54 for U = 0.25, 1 and 3 mm/s, respectively. The
highest dip-coating velocities show relatively large standard deviations. Due to the high dip-
coating velocity the rivulet increases in length and the break-up is less reproducible compared
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to lower velocities. This has a larger effect on the distance compared to the radius of the biggest
satellite droplet. Although the fit exponent pd = 0.67 for U = 1 mm/s is larger than pd = 0.54
for U = 3 mm/s, this is not as expected. One explanation could be the few outliers causing a
less accurate fit.
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Figure 3.6: Radius of biggest satellite droplet versus the pattern dimension a for a square pattern shape
at different dip-coating velocities. The critical dip-coating velocity is given by Uc = 6.5± 0.5 mm/s. The
data is fitted with power laws above and below the capillary length lc. The exponent of the fit pr below
the capillary length (a < lc) is given by pr = 1. The exponents of the fits above capillary length (a > lc)
are given by pr = 0.23, 0.26, 0.9 and 1. The errorbars correspond to the standard deviation.
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Figure 3.7: Distance of biggest satellite droplet versus the pattern dimension a for a square pattern shape
at different dip-coating velocities. The critical dip-coating velocity is given by Uc = 6.5± 0.5 mm/s. The
data is fitted with power laws above and below the capillary length. The exponent of the fit below the
capillary length (a < lc) is given by pd = 0.98. The exponents of the fits above capillary length (a > lc)
are given by pd = 0.32, 0.67, 0.54, and 0.98. The errorbars correspond to the standard deviation.

Figures 3.8 and 3.9 show the radius and distance of the biggest satellite droplet as a function
of the dip-coating velocity U for different pattern dimensions a. This is the same data as depicted
in figures 3.6 and 3.7, but with the dip-coating velocity U and pattern dimension a switching
places between legend and x-axis. Both figures still show an increase in dip-coating velocity U
or pattern dimension a results in a larger and further displaced satellite droplet, however gives
more detail in the influence of the dip-coating velocity U . Dip-coating velocities U < 2 mm/s
are fitted with power laws given by:

r ∼ U qr (3.5)

d ∼ U qd (3.6)

with qr and qd the exponents of the power law fits. For small pattern dimensions (a < lc) the
radius and distance of the biggest satellite droplet scales with qr = 0.21 and qd = 0.20, respec-
tively, with small dip-coating velocities (U < 2 mm/s). For dip-coating velocities approaching
the critical dip-coating velocity U → Uc = 6.5 ± 0.5 mm/s however, exponential behaviour is
observed. This exponential behaviour is characterized by an exponential fit given by:

r ∼ ekrU (3.7)

d ∼ ekdU (3.8)

with kr and kd the exponential fit parameters. For square patterns with pattern dimensions
a < 6 mm and DC velocities close to the critical value 2 < U < Uc mm/s the exponential
fit parameters are given by kr ≈ 0.15 ± 0.01 and kd ≈ 0.17 ± 0.02. Both kr and kd are the
mean of the individual parameters which are given in the caption. The error corresponds to
the standard deviation of this mean. Figures 3.8 and 3.9 show the observed scaling transition
(power to exponential law) moves to lower DC velocities U for higher pattern dimensions a > lc.
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Figure 3.8: Radius of biggest satellite droplet versus the dip-coating velocity U for a square pattern
shape at different pattern dimensions a. The critical dip-coating velocity is given by Uc = 6.5±0.5 mm/s
illustrated by the dashed red line. The data is fitted with power laws for small DC velocities U < 2 mm/s
and small pattern dimensions a < 6 mm. The exponent of this fit is given by qr = 0.21. The data for big
DC velocities 2 < U < Uc mm/s and small pattern dimensions a < 6 mm is fitted with an exponential fit
which yields kr = 0.16, 0.14, 0.14, 0.16 from a = 0.2 mm to a = 3 mm. The errorbars correspond to the
standard deviation.
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Figure 3.9: Distance of biggest satellite droplet versus the dip-coating velocities U for a square pattern
shape at different pattern dimensions a. The critical dip-coating velocity is given by Uc = 6.5±0.5 mm/s
illustrated by the dashed red line. The data is fitted with power laws for small dip-coating velocities
U < 2 mm/s and small pattern dimensions a < 6 mm. The exponent of this fit is given by qd = 0.20.
The data for big DC velocities 2 < U < Uc mm/s and small pattern dimensions a < 6 mm is fitted with
an exponential fit which yields kd = 0.18, 0.15, 0.19, 0.17 from a = 0.2 mm to a = 3 mm. The errorbars
correspond to the standard deviation.

3.2.2 Triangles

In figures 3.10 and 3.11 the radius and distance of the biggest satellite droplet is given as a
function of a triangle pattern with pattern dimension a for different dip-coating velocities U .
Both an increase in pattern dimension a and dip-coating velocity U result in a bigger and further
displaced satellite droplet. For dip-coating velocities U < Uc

6 a transition is observed for the
pattern dimension approaching the capillary length a = lc ≈ 2 mm. Below the capillary length
(a < lc) the radius and distance of the biggest satellite droplet scales approximately linear pr =
0.89 and pd = 0.90, respectively, with the pattern dimension a. For pattern dimensions larger
than the capillary length (a > lc) the pattern dimension scales with pr = 0.33, 0.56, 0.94 and 1.16
corresponding to the dip-coating velocities U = 0.25, 1, 3 and 6 mm/s to the radius of the biggest
satellite droplet, respectively.

For pattern dimensions larger than the capillary length (a > lc) again the smallest dip-
coating velocities show a significant decrease in scaling from approximately linear (pr = 0.89)
to pr = 0.33 and pr = 0.56 for U = 0.25 and U = 1 mm/s for the radius of the biggest satellite
droplet. Also the distance of the biggest satellite droplet shows a similar decrease in scaling
from approximately linear (pd = 0.90) to pd = 0.24 and pd = 0.55 for dip-coating velocities
U = 0.25 and U = 1 mm/s for pattern dimensions larger than the capillary length a > lc. The
larger velocities U = 3 and U = 6 mm/s show a slight increase in scaling with pr = 0.94 and
pr = 1.16 for the radius of the biggest satellite droplet as a function of larger pattern dimensions
a > lc. However the relatively large offset of both fits for a < lc with a > lc is not physical.
The transition will occur smoothly and not abruptly as suggested by this offset. It appears
the transition, which occurs around the capillary length lc for lower (U < 1 mm/s) dip-coating
velocities shifts to larger pattern dimensions for larger (U > 3 mm/s) dip-coating velocities.
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Figure 3.10: Radius of biggest satellite droplet versus the pattern dimension a for a triangle pattern shape
at different dip-coating velocities U . The critical dip-coating velocity is given by Uc = 6.5 ± 0.5 mm/s.
The data is fitted with power laws for the pattern dimension above and below the capillary length. The
exponent of the fit below the capillary length (a < lc) is given by pr = 0.89. The exponents of the fits
above capillary length (a > lc) are given by p = 0.33, 0.56, 0.94 and 1.16. The errorbars correspond to
the standard deviation.
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Figure 3.11: Distance of biggest satellite droplet versus the pattern dimension a for a triangle pattern
shape at different dip-coating velocities U . The critical dip-coating velocity is given by Uc = 6.5 ±
0.5 mm/s. The data is fitted with power laws for the pattern dimension above and below the capillary
length. The exponent of the fit below the capillary length (a < lc) is given by pd = 0.9. The exponents
of the fits above capillary length (a > lc) are given by q = 0.24, 0.55, 0.90 and 1.22. The errorbars
correspond to the standard deviation.

Figures 3.12 and 3.13 show the radius and distance of the biggest satellite droplet as a
function of the dip-coating velocity U for different pattern dimensions a. This is the same data
as depicted in figures 3.10 and 3.11, but with the dip-coating velocity U and pattern dimension
a switching places between legend and x-axis. Both figures still show an increase in dip-coating
velocity U or pattern dimension a results in a larger and further displaced satellite droplet,
however gives more detail in the influence of the dip-coating velocity U . For small pattern
dimensions (a < 6 mm) the radius and distance of the biggest satellite droplet scale both with
qr = qd = 0.18, with small dip-coating velocities (U < 2 mm/s). For dip-coating velocities
approaching the critical dip-coating velocity U → Uc = 6.5 ± 0.5 mm/s exponential behaviour
is observed. The exponential behaviour is quantified by fitting with equation (3.8) which yields
kr ≈ 0.09 ± 0.04 and kd ≈ 0.16 ± 0.02. Both kr and kd are the mean of the individual fit
parameters which are given in the caption. The error corresponds to the standard deviation of
this mean. As also observed in figures 3.10 and 3.11 for higher pattern dimensions a > lc the
observed scaling transition moves to lower dip-coating velocities U .
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Figure 3.12: Radius of biggest satellite droplet versus the dip-coating velocity U for a triangle pattern
shape at different pattern dimensions a. The critical dip-coating velocity is given by Uc = 6.5±0.5 mm/s
illustrated by the dashed red line. The data is fitted with power laws for small dip-coating velocities
U < 2 mm/s and small pattern dimensions a < 6 mm. The exponent of these fits is given by qr = 0.18.
The data for big DC velocities 2 < U < Uc mm/s and small pattern dimensions a < 6 mm is fitted with
an exponential fit which yields kr = 0.06, 0.06, 0.1, 0.15 from a = 0.2 mm to a = 3 mm. The errorbars
correspond to the standard deviation.
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Figure 3.13: Distance of biggest satellite droplet versus the dip-coating velocities U for a triangle pattern
shape at different pattern dimensions a. The critical dip-coating velocity is given by Uc = 6.5±0.5 mm/s
illustrated by the dashed red line. The data is fitted with power laws for small dip-coating velocities
U < 2 mm/s and small pattern dimensions a < 6 mm. The exponent of these fits is given by qd = 0.18.
The data for big DC velocities 2 < U < Uc mm/s and small pattern dimensions a < 6 mm is fitted with
an exponential fit which yields kd = 0.17, 0.14, 0.15, 0.17 from a = 0.2 mm to a = 3 mm. The errorbars
correspond to the standard deviation.

3.2.3 Circles

In figures 3.14 and 3.15 the radius and distance of the biggest satellite droplet is given as a
function of the pattern dimension (or diameter) a for circular patterns for different dip-coating
velocities U . Both an increase in pattern dimension a and dip-coating velocity U result in a
bigger and further displaced satellite droplet. For dip-coating velocities U < Uc

6 a transition
is observed for the pattern dimension approaching the capillary length a = lc ≈ 2 mm. Below
the capillary length (a < lc) the radius and distance of the biggest satellite droplet scales
with pattern dimension a to the power pr = 0.82 and pd = 0.50, respectively. For pattern
dimensions larger than the capillary length (a > lc) the pattern dimension scales with pr =
0.32, 0.38, 0.64 and 0.82 corresponding to the dip-coating velocities U = 0.25, 1, 3 and 6 mm/s
to the radius of the biggest satellite droplet, respectively. For the distance of the biggest satellite
droplet the pattern dimension a scale with pd = 0.37, 0.53, 0.83 and 0.78 corresponding to the
dip-coating velocities U = 0.25, 1, 3 and 6 mm/s.

For pattern dimensions larger than the capillary length (a > lc) again the smallest dip-
coating velocities show a significant decrease in scaling from approximately linear (pr = 0.82)
to pr = 0.32 and pr = 0.38 for U = 0.25 and U = 1 mm/s for the radius of the biggest satellite
droplet. Also the distance of the biggest satellite droplet shows a similar decrease in scaling from
an exponent pd = 0.50 to pd = 0.37 for dip-coating velocity U = 0.25 for pattern dimensions
larger than the capillary length a > lc. The transition, which occurs around the capillary length
a ≈ lc for lower (U < 1 mm/s)) dip-coating velocities shifts to larger pattern dimensions for
larger (U > 3 mm/s)) dip-coating velocities.
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Figure 3.14: Radius of biggest satellite droplet versus the pattern dimension a for a circle pattern shape
at different dip-coating velocities. The critical dip-coating velocity is given by Uc = 6.5± 0.5 mm/s. The
data is fitted with power laws for the pattern dimension a above and below the capillary length lc. The
exponent of the fit below the capillary length (a < lc) is given by pr = 0.82. The exponents of the fits
above capillary length (a > lc) are given by pr = 0.32, 0.38, 0.64 and 0.82. The errorbars correspond to
the standard deviation.
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Figure 3.15: Distance of biggest satellite droplet versus the pattern dimension a for circle pattern shape
at different dip-coating velocities. The critical dip-coating velocity is given by Uc = 6.5± 0.5 mm/s. The
data is fitted with power laws for the pattern dimension a above and below the capillary length lc. The
exponent of the fit below the capillary length (a < lc) is given by pd = 0.50. The exponents of the fits
above capillary length (a > lc) are given by pd = 0.37, 0.53, 0.83 and 0.78. The errorbars correspond to
the standard deviation.

Figures 3.16 and 3.17 show the radius and distance of the biggest satellite droplet as a
function of the dip-coating velocity U for different pattern dimensions a. This is the same
data as depicted in figures 3.14 and 3.15, but with the dip-coating velocity U and pattern
dimension a switching places between legend and x-axis. Both figures still show an increase in
dip-coating velocity U or pattern dimension a results in a larger and further displaced satellite
droplet, however gives more detail in the influence of the dip-coating velocity U . For small
pattern dimensions (a < 6 mm) the radius and distance of the biggest satellite droplet scale
with qr = 0.28 and qd = 0.18, with small dip-coating velocities (U < 2 mm/s). For dip-coating
velocities approaching the critical dip-coating velocity U → Uc = 6.5 ± 0.5 mm/s exponential
behaviour is observed. The exponential behaviour is quantified by fitting with equation (3.8)
which yields kr ≈ 0.12±0.02 and kd ≈ 0.14±0.07. Both kr and kd are the mean of the individual
parameters which are given in the caption. The error corresponds to the standard deviation of
this mean. As also observed in figures 3.14 and 3.15 for higher pattern dimensions a > lc the
observed scaling transition moves to lower dip-coating velocities U .
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Figure 3.16: Radius of biggest satellite droplet versus the dip-coating velocity U for a circle pattern
shape at different pattern dimensions a. The critical dip-coating velocity is given by Uc = 6.5±0.5 mm/s
illustrated by the dashed red line. The data is fitted with power laws for small dip-coating velocities
U < 2 mm/s and small pattern dimensions a < 6 mm. The exponent of these fits is given by qr = 0.28.
The data for big DC velocities 2 < U < Uc mm/s and small pattern dimensions a < 6 mm is fitted with
an exponential fit which yields kr = 0.11, 0.13, 0.11, 0.14 from a = 0.2 mm to a = 3 mm. The errorbars
correspond to the standard deviation.
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Figure 3.17: Distance of biggest satellite droplet versus the dip-coating velocities U for a circle pattern
shape at different pattern dimensions a. The critical dip-coating velocity is given by Uc = 6.5±0.5 mm/s
illustrated by the dashed red line. The data is fitted with power laws for small dip-coating velocities
U < 2 mm/s and small pattern dimensions a < 6 mm. The exponent of these fits is given by qd = 0.18.
The data for big DC velocities 2 < U < Uc mm/s and small pattern dimensions a < 6 mm is fitted with
an exponential fit which yields kd = 0.07, 0.12, 0.13, 0.24 from a = 0.2 mm to a = 3 mm. The errorbars
correspond to the standard deviation.

3.2.4 Effect of dip-coating velocity

The graphs in previous paragraphs all show an increase in droplet radius and distance for
increasing dip-coating velocities. For small dip-coating velocities U < 2 mm/s and small pattern
dimensions a < lc power laws predicts the scaling behaviour between the dip-coating velocity
U and the radius and distance of the biggest satellite droplet given by r ∼ U qr and d ∼ U qd .
These scaling parameters qr and qd are summarized in table 3.5. For all shapes the radius
and distance of the biggest satellite droplet scale with the small pattern dimension a < lc to
the power qr = qd ≈ 0.2 for small dip-coating velocities U < 3 mm/s. For higher dip-coating
velocities 2 < U < Uc mm/s exponential behaviour is observed, given by r ∼ ekrU and d ∼ ekdU ,
of which the fit parameters are summarized in table 3.5.
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Table 3.5: Summary of the scaling parameters derived from power law and exponential fits to the
experimental dip-coating data in previous paragraphs 3.2.1, 3.2.2 and 3.2.3 for small pattern dimensions
a < 6 mm. The values of qr and qd correspond to the power law scaling for small DC velocities 0.25 <
U < 2 mm/s, while the values of kr and kd correspond to the exponential fit parameters for higher DC
velocities 2 < U < Uc mm/s. The latter is defined by the mean over the different pattern dimensions
including standard deviation.

Shape Radius biggest satellite droplet r Distance biggest satellite droplet d

Square qr = 0.21 qd = 0.20
Triangle qr = 0.18 qd = 0.18
Circle qr = 0.28 qd = 0.18

Square kr ≈ 0.15± 0.01 kd ≈ 0.17± 0.02
Triangle kr ≈ 0.09± 0.04 kd ≈ 0.16± 0.02
Circle kr ≈ 0.12± 0.02 kd ≈ 0.14± 0.07

With the graphs from previous paragraph in mind figure 3.18 shows snapshots of a square
pattern with pattern dimension a = 1 mm and two different dip-coating velocities U = 1 and
U = 6 mm/s moving through the meniscus. In both cases first the meniscus pins to the pattern
as shown in figure 3.18(a) and (e). A liquid (or capillary) bridge is formed between the pattern
and the liquid reservoir. While the sample moves further up the liquid bridge becomes more
elongated and narrower due to the dewetting. At some point a thin rivulet remains, as depicted
in figure 3.18(b) and (f). This thin rivulet breaks up in droplets due to Rayleigh-Plateau
instabilities, as shown in figure 3.18(c) and (g). After the break-up of the rivulet the meniscus
retracts to its original position and the droplets are left under the pattern as shown in figure
3.18(d) and (h).

The effect of the dip-coating velocity is best described by figure 3.18(b),(c),(f) and (g). The
length and width of the rivulet, just before break up, increases for higher dip-coating velocities
U . Due to the longer and thicker rivulet the break-up will also result in larger satellite droplets
at a bigger distance from the pattern. This is also confirmed by the quantitative data.
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Figure 3.18: Snapshots of the captured break up process under the (black) square pattern with pattern
dimension a = 1 mm at two different dip-coating velocities U = 1 mm/s (top) and U = 6 mm/s (bottom).
In all snapshots the dip-coating direction is from bottom to top and the liquid reservoir is located in the
bottom. In both videos t = 0 is arbitrarily set for the first frames (a) and (e).
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3.2.5 Effect of pattern dimension

The graphs in previous paragraphs all show an increase in droplet radius and distance for
increasing pattern dimension a. For small pattern dimensions a < lc power laws predicts
the scaling behaviour between the pattern dimension a and the radius and distance of the
biggest satellite droplet, namely r ∼ apr and d ∼ apd . These scaling parameters pr and pd are
summarized in table 3.6. For all shapes the radius and distance of the biggest satellite droplet
scaling dependence decreases from pr = pd ≈ 0.9 to pr = pd ≈ 0.2 for the big pattern dimension
a > lc and for small dip-coating velocities U < 3 mm/s. One possible causes for this is the more
dominant role of gravitational forces for pattern dimensions a > lc which results in less liquid
on the pattern for smaller DC velocities. Another possible cause is the retraction of liquid back
onto the pattern which is illustrated in figure 3.19. In this figure the break up process under a
square pattern with pattern dimension a = 12 mm and DC velocity U = 1 mm/s is visualized.
The point where the liquid bridge breaks is now further displaced from the pattern edge [figure
3.19(a-b)]. The retraction of liquid in the liquid bridge onto the pattern is indicated by the
arrows [figure 3.19(b-c)]. The retraction also pulls the liquid bridge slightly back to the pattern.
This results in a smaller satellite droplet at a smaller distance from the pattern edge.

Table 3.6: Summary of the scaling parameters derived from power law fits to the experimental dip-
coating data in previous paragraphs 3.2.1, 3.2.2 and 3.2.3 for dip-coating velocities U and small pattern
dimensions a < lc. The numbers correspond to the scaling parameter pr and pd in the radius and distance
of the biggest satellite droplet r ∼ apr and d ∼ apd, respectively.

Shape pr Radius biggest satellite droplet pd Distance biggest satellite droplet

Square 1.0 0.98
Triangle 0.89 0.90
Circle 0.82 0.50

U= 1 mm/s

500 m

b) c) d)t = 0 ms ∆t = 145 ms ∆t = 232 ms ∆t = 362 ms

f) g) h)t = 0 ms ∆t= 51 ms ∆t = 90 ms ∆t = 190 ms

a)

Figure 3.19: Snapshots of the captured break up process under the (black) square pattern with pattern
dimension a = 12 mm at dip-coating velocity U = 1 mm/s. The meniscus in all snapshots is located in
the bottom. The time t = 0 is arbitrarily set for the first frame (a).

To visualize the break up in more detail snapshots are shown of a square pattern with
pattern dimension a = 7 mm and two different dip-coating velocities in figure 3.20. Comparing
this to figure 3.18 shows that a larger pattern dimension results in a bigger liquid bridge, i.e. an
longer and thicker rivulet just before break-up. The size of the rivulet just before break up is
determined by the geometrical parameters of the pattern and the DC velocity. This would also
explain the different scaling parameter for the distance as a function of the pattern dimension.
The influence of shaped is discussed in more detail in the next paragraph 3.2.6.
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Figure 3.20: Snapshots of the captured break up process under the (black) square pattern with pattern
dimension a = 7 mm at two different dip-coating velocities U = 1 mm/s (top) and U = 6 mm/s (bottom).
The meniscus in all snapshots is located in the bottom. In both videos t = 0 is arbitrarily set for the
first frames (a) and (e).

3.2.6 Effect of shape

In this paragraph the effect of the pattern shape is discussed. In figure 3.21 the radius of the
biggest satellite droplet is plotted versus the pattern dimension a (a) and pattern area A (b)
for the lowest and highest DC velocity and all shapes. The circular patterns show a significant
decrease in radius for the same pattern dimension a and area A for both DC velocities compared
to the squares and triangles. The data for the triangle and square shaped patterns overlap when
plotted versus the pattern area A. A possible explanation for this is the similar shape of the
bottom edge of the pattern, i.e. horizontal with sharp corners. Thus the pattern area A relates
directly to the volume of liquid left on the pattern while the shape of the bottom edge determines
the break-up of the liquid bridge. The smooth shape of the bottom edge for circular patterns
could then be the cause for a relatively longer stable liquid bridge before break-up, while more
liquid retracts back to the liquid reservoir and subsequently leaving a smaller satellite droplet.
This is argument is in line when compared with the dynamics of the break-up process, of which
snapshots are shown of a circle and square shaped pattern with pattern dimension a = 4 mm
and DC velocity U = 6 mm/s in figure 3.23. The break-up from the circle shaped pattern results
in a smaller liquid-bridge compared to the square shaped pattern.
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Figure 3.21: Radius of the biggest satellite droplet versus the pattern dimension a (a) and pattern area
A (b) for square, circle and triangle shaped patterns at dip-coating velocities U = 0.25 and 6 mm/s. The
critical dip-coating velocity is given by Uc = 6.5± 0.5 mm/s.

In figure 3.22 the distance of the biggest satellite droplet is plotted versus pattern dimension
a (a) and pattern area A (b) for the lowest and highest DC velocity and all shapes. The
circular patterns show a significant decrease in distance of the largest satellite droplet for pattern
dimensions roughly smaller than the capillary length a < lc and area A for both DC velocities
compared to the squares and triangles. This observation is in line with the hypothesis of different
effects of the pattern area A and bottom edge. The different shape of bottom edge for circular
patterns would then also explain the difference in the scaling behaviour for distance versus
pattern dimensions.
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Figure 3.22: Distance of the biggest satellite droplet versus the pattern dimension a (a) and pattern area
A (b) for square, circle and triangle shaped patterns at dip-coating velocities U = 0.25 and 6 mm/s. The
critical dip-coating velocity is given by Uc = 6.5± 0.5 mm/s.

ey

ex

2 R 0

U= 6 mm/s

z

ex

t = 0 ms

500 m

U= 6 mm/s

∆t= 145 ms ∆t = 159 ms ∆t = 246 ms

a) b) c) d)

t = 0 ms ∆t = 101 ms ∆t = 116 ms ∆t = 145 ms

e) f) g) h)

Figure 3.23: Snapshots of the captured break up process under a circle (top) and square (bottom) pattern
with pattern dimension a = 4 mm at dip-coating velocity U = 6 mm/s. The meniscus in all snapshots is
located in the bottom and the pattern is moving up. In both videos t = 0 is arbitrarily set for the first
frames (a) and (e).

3.2.7 Decay of satellite droplets

Figure 3.24 shows the decay in radius of satellite droplets as a function of the droplet index N
for different relative DC velocities U/Uc for pattern dimensions a = 12 mm (a) and a = 0.8 mm
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(b). The fits resemble a power law given by:

r ∼ N−p′ , (3.9)

with p′ the fit parameter. The power law fit parameters are given by p′ = 1.81, 1.69, 1.78
and 1.94 from closest to the critical DC velocity U/Uc = 0.92 to U/Uc = 0.077 for pattern
dimension a = 12 mm. For pattern dimension a = 0.8 mm the fit parameters are given by
p′ = 1.61, 1.79, 2.13 and 2.39. Thus a slight increase in scaling magnitude is observed for
decreasing dip-coating velocities. The only exception is U/Uc = 0.92 for a = 12 mm, which
could be due to the uncertainties. The increase in scaling magnitude is more distinct for the
smaller pattern dimension a = 0.8 mm.
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Figure 3.24: Radius of satellite droplet r as a function of the droplet index N for pattern dimensions a =
12 mm (a) and a = 0.8 mm (b). The power law fit parameters are given by p′ = 1.81, 1.69, 1.78 and 1.94
from closest to the critical DC velocity U/Uc = 0.92 to U/Uc = 0.077 for pattern dimension a = 12 mm.
For pattern dimension a = 0.8 mm the fit parameters are given by p′ = 1.61, 1.79, 2.13 and 2.39. Each
point resembles an average of at least two measurements, where the errorbars denote the corresponding
standard deviation plus droplet fit error. The critical DC velocity is given by Uc = 6.5 mm/s.

3.3 Summary and conclusions

In this chapter the liquid entrainment process by a single heterogeneity on partially wettable
substrates dip-coated from a liquid reservoir has been discussed. The heterogeneities consist of
photo-lithography defined defects with a certain shape, and pattern dimension a. The meniscus
pins onto the defect and liquid entrains. When the defects moves further up the entrained liquid
forms a liquid bridge between the pattern which breaks due to the Rayleigh-Plateau instability
leaving a trail of satellite droplets. Systematic experiments are done by varying the pattern
shape (circles, squares and equilateral triangles), pattern dimensions a and dip-coating velocity
U . The liquid entrainment process is studied by both quantifying the radius and distance of the
biggest satellite droplet and capturing the dynamics of the break-up process with the camera.
Also the decay in size of the trail of droplets is analysed.
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For all shapes an increase dip-coating (DC) velocity or pattern dimensions results in a larger
radius and distance of the satellite droplet. A transition occurs when the pattern dimension
a approximately equals the capillary length lc. For all shapes the radius and distance scale
roughly linear (≈ a0.9) with the pattern dimension for pattern dimensions smaller than the
capillary length a < lc. The only exception is the circular patterns where the distance scales
with d ∼ a0.5. A possible cause for this is the different bottom shape for the circular patterns
For pattern dimensions larger than the capillary length a > lc a decrease in dependence ap is
observed from roughly linear p ≈ 0.9 to p ≈ 0.2. The decrease in dependence is less distinct
for larger dip-coating velocities U/Uc → 1, i.e. closer to the critical DC velocity. Two possible
causes are the retraction of liquid back onto the pattern after the liquid bridge breaks up, which
is less distinct for larger DC velocities, and the bigger influence of gravity on the smaller DC
velocities.

For all shapes the radius and distance scale roughly with ∼ U0.2 for smaller pattern dimen-
sions a ≤ 3 mm and small DC velocities U/Uc < 0.4. For larger DC velocities 0.4 < U/Uc < 1
(and same small pattern dimensions) exponential behaviour is observed, where the radius and
distance roughly scale with ∼ e0.14U . The decrease in scaling for pattern dimensions at low DC
velocities U/Uc < 0.4 and large pattern dimensions a > lc is represented by the collapse of the
distance and radius data for all patterns.

Comparing between shapes concludes that equilateral triangle and square defects leave big-
ger satellite droplets at a larger distance for same DC velocities and pattern dimensions than
circular defects. The main cause is the gradual slope of the pattern edge versus the abrupt cor-
ner of the square and triangle patterns. The hypothesis is that the pattern area influences the
volume of liquid while the shape of the bottom edge of the pattern determines the duration of
the liquid bridge break-up. This would explain the data overlap for square and triangle shaped
patterns when the radius and distance are plotted versus the pattern area. The lower values
of radius and distances for same pattern areas or dimensions is then explained by the smooth
bottom edge of the pattern which leads to a relatively longer stable liquid bridge compared
to the other shapes with similar pattern dimensions or areas. Thus more entrained liquid is
retracted back into the liquid reservoir before the break up of the liquid bridge. Since only three
shapes are compared with the triangle and square having a similar bottom edge of the pattern,
i.e. horizontal with sharp corners, more research is necessary to conclude the individual effects
of the pattern area or dimensions versus the bottom edge of the pattern.

The decay of droplet radius in the trail below a circular pattern follows a power law given
by r ∼ N−p

′
with N the droplet index. The scaling magnitude p′ increases for decreasing DC

velocities.
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Chapter 4

Numerical model for dip-coating

The goal of this chapter is to complement the dip-coating results with numerical
simulations. First in section 4.1 an overview of the governing equations, the corre-
sponding numerical setup is given and the validation of the model is discussed. In
section 4.2 the influence of the geometrical parameters of the defect on the pinning
and film pulling is studied by 1D models. In section 4.3 the numerical results of
2D dip-coating simulations are presented and discussed. Finally in section 4.4 a
summary and conclusions are given.

4.1 Numerical setup

The dip-coating experiments are complemented by a numerical model based on the lubrica-
tion approximation (equation (2.45)) which yields the film thickness h(x, y, t). Although the
lubrication approximation is limited to small slopes of the liquid-air interface it can be used
to study the break-up process caused by a surface heterogeneity on the dip-coated surface. A
major advantage of using the lubrication approximation is that the model directly solves for the
film thickness h, thus 3D information is given while two dimensions are solved. An illustration
of the numerical domain is depicted in figure 4.1 with substrate (gray), meniscus (blue) and
surface heterogeneity (red). The initial and boundary conditions will be discussed in the next
paragraph 4.1.1. To model the topographic defect on the flat substrate the equation for the
location of the liquid air interface h′(x, y, t) is given by (equation (2.44)):

h′(x, y, t) = h(x, y, t) + s(x, y, t), (4.1)

with h(x, y, t) the film thickness and s(x, y, t) the substrate height. The governing equation, i.e.
the lubrication equation, is given by (equation (2.45)):

∂h

∂t
+

∂

∂x

[−h3
3µ

(
∂P

∂x

)]
+

∂

∂y

[−h3
3µ

(
∂P

∂y
+ Uh

)]
= 0, (4.2)

with µ the dynamic viscosity, U the dip-coating velocity and P the pressure defined by:

P =

(
∂2

∂x2
+

∂2

∂y2

)(
−γh′

)
+ ρgy −Π. (4.3)

Where γ denotes the surface tension, ρ the density, g the gravitational acceleration and Π the
disjoining pressure. The relevant liquid parameters are set to µ = 1 Pa · s, γ = 64 mN/m and
ρ = 1.2 g/cm3. The disjoining pressure, discussed in (section 2.4) is implemented to model the
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moving contact line. An empirical model composed of a long-range attractive and a short-range
repulsive potential is used (equation (2.10)):

Π = γ (1− cos θ)
(n− 1)(m− 1)

n−m
1

h∗

[(
h∗

h

)n
−
(
h∗

h

)m]
(4.4)

with n and m two constants and θ(x, y, t) the contact angle. The precursorlayer thickness
h∗ should be chosen much smaller than the thickness of the pulled film in the models. This
precursorlayer h∗ regularizes the stress singularity associated with a moving contact line. Which
parameters are chosen for the disjoining pressure model will be discussed in the validation
paragraph 4.1.2.

These governing equations are solved via a finite element discretization method (FEM) using
COMSOL Multiphysics (version 3.5a). This means the computational domain is subdivided into
finite elements of geometrically simple shapes (lines in 1D and triangles in 2D). The collection
of these finite elements filling the computational domain is called the mesh, which will be
further discussed in paragraph 4.1.2. The partial differential equations (PDEs) that describe
the physics are then approximated for each element by polynomials. Due to the non-linearity
of the governing equations it is important to find the right balance between computational time
and model accuracy.

Two main models are used for the results in this thesis. The 1D model where the com-
putational domain consists of a line in the y-direction (see figure 4.1) with length L = 3 mm.
In equations (4.2) and (4.3) all the terms involving the spatial coordinate x naturally are left
out of this model. The 2D model consists of half the computational domain depicted in figure
4.1 by using the symmetry of the defect. Due to the symmetry boundaries in theory an array
of defects is simulated with an center-to-center spacing b = D. To make sure the simulations
of a single defect are not influenced by this the width of the computational domain D/2 has
to chosen be sufficiently large. In this study the width of the computational domain is set to
D/2 = 4a.
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Figure 4.1: Illustration of the numerical domain for a typical 2D simulation showing the meniscus hi(y) in
the bottom (blue), substrate (gray) and pattern (red). The substrate has a fixed contact angle of θ0. The
pattern can have a topographic s(x, y) and a chemical θ(x, y) ≤ θ0 component with a pattern dimension
of a. The boundaries and initial conditions are stated in equations (4.5a) - (4.9). For dip-coating gravity
is directed in the negative y direction as indicated by the arrow.

4.1.1 Boundary & initial conditions

Now the physics for the model is set by equations (4.2) - (4.4) the boundary and initial conditions
for the computational domain have to be implemented.

The boundary conditions are given per boundary as depicted in figure 4.1. The left and
right ones are symmetry boundaries:

∂h

∂x
(x = 0) =

∂h

∂x
(x = D/2) = 0, (4.5a)

∂P

∂x
(x = 0) =

∂P

∂x
(x = D/2) = 0. (4.5b)

The top boundary represents a flat film leaving the numerical domain with a uniform speed
along its film thickness direction:

Qy(y = L) = −Uh, ∂h

∂y
(y = L) = 0, (4.6)

where the vertical influx is defined as Qy = −h3

3µ
∂P
∂y −Uh. The bottom boundary conditions set

the local film thickness and local pressure, respectively:
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h(y = 0) = h0 = 100µm, P (y = 0) = p0. (4.7)

The local pressure P = p0 is given by the analytic result for a static meniscus adhering to a
partially wetting wall inclined at an angle α = 90o with respect to the horizontal:

p0 = −
√

2γρg [1− cos (α− θ0)]. (4.8)

From the edge of the bottom boundary the film thickness decays from the local film thickness h0
to the precursorlayer thickness h∗ as described by the stationary meniscus hi(y). The stationary
meniscus hi(y) is initially determined, without influence of a defect, by the substrate velocity
U , contact angle θ0 and liquid parameters. For 1D simulations the initial meniscus profile is
first given by a straight line, which estimates the meniscus in equilibrium:

hi(y) = h0 −
(

h0 − h∗
6 · 10−4 · y

)
·H(6 · 10−4 − y) + h∗, (4.9)

with h0 = 100µm and H(y) a smooth step function which arranges for a smooth transition
between the contact line and substrate. The equilibrated state is reached in a few time steps
maximum without much loss in computational time for the 1D models. To minimize computa-
tional time for the 2D models the equilibrated initial meniscus in a 1D models is imported. Since
the equilibrated initial meniscus depends on the substrate velocity U several menisci shapes are
extracted from 1D models as input for the 2D models, when the DC velocity U is varied.

The motion of the defect is represented by a time-dependent contact angle distribution
θ(x, y − Ut) and time-dependent substrate height s(x, y − Ut). Thus in each simulation the
chemical θ(x, y − Ut) and topographic s(x, y − Ut) component can individually be set. In this
study two different defects are considered, namely the flat and Gaussian shaped defect. For the
time-dependent substrate height s(x, y − Ut) this is:

s(x, y − Ut) = s0 exp

[
−x

2 + (y − Ut)2
a2

]
, (4.10a)

s(x, y − Ut) =
s0
2

+
s0
2

tanh

[
1

c

(
a−

√
(x− x0)2 + (y − y0 − Ut)2

)]
, (4.10b)

set for the Gaussian and flat bump, respectively. With the defect height s0, defect width a and
transition length c as defined in figure 4.2(a-b). For a flat substrate, i.e. no defect, the substrate
height is set to s = s0 = 0.

In the numerical work both topographic and topographic plus chemical defects are consid-
ered. For the Gaussian and flat defect the time-dependent contact angle distribution θ(x, y−Ut)
is respectively set:

θ(x, y − Ut) = θ0 −
θ0
2

exp

[
−x

2 + (y − Ut)2
a2

]
, (4.11a)

θ(x, y − Ut) = θ0 −
(
θ0
4

+
θ0
4

)
tanh

[
1

c

(
a−

√
(x− x0)2 + (y − y0 − Ut)2

)]
, (4.11b)

with θ0 substrate-liquid contact angle. The rest of the parameters such as the width a and
transition length c correspond to the topographic substrate height distributions in equations
and figure 4.2(c-d). When no defect is present or only a topographic defect is simulated the
time-dependent contact angle distribution reduces to θ = θ0.
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Figure 4.2: Cross sections of the substrate height distribution for a Gaussian (a) and flat (b) defect.
The corresponding contact angle distributions are given by (c) and (d) for the Gaussian and flat defect,
respectively. These are cross section plots from equations (4.10a) - (4.11b).

4.1.2 Validation

As with any numerical model its validity must be checked. The first question is if the physics is
incorporated correctly in the model. The second if the model incorporates the physics correctly
the discretization parameters must be set where a trade off between computational time and
accuracy must be found. One can choose a very fine discretization, i.e. element size but this
would lead to big computational times but very accurate results. As opposed to a coarse
discretization which would lead to small computational times but less accurate results. So first
the physics is validated by comparing the model to known laws and physics. Second the element
size is varied and its influence on the results is tested.

To get an idea of the importance of the phenomenological disjoining pressure model the
critical dip-coating velocity Uc is plotted non-dimensionalized by the critical capillary number
Cac = µUc/γ versus the contact angle θ for different model parameters n, m and h∗ in figure 4.3.
The critical capillary number or critical dip-coating velocity is found by gradually increasing the
dip-coating velocity till liquid is entrained by the moving substrate. Theoretically the critical
capillary number Cac scales with (equation (2.8)):

Cac ∼ θ3 (4.12)

as predicted by Cox-Voinov law. The data is fitted with a similar power law, Cac ∼ θq
′
, with

fit parameters q′ in the legend. Although the differences between fit parameters q′ is relatively
small the choice of input parameters for the disjoining pressure model has an influence on the
necessary minimum element size and computational time. A higher order polynomial will cost
more computational time due higher non-linearity. A smaller precursorlayer h∗ also results in
an increase in computational time due to the smaller necessary discretization. Therefore the
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model with the lowest order of polynomials is chosen (n = 3 and m = 2) with a precursorlayer
of h∗ = 10 nm.
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Figure 4.3: Logarithmic plot of the critical capillary number Cac versus contact angle θ for different
disjoining pressure model parameters. The fits all resemble equation (4.12) with a mean q′ = 2.8 ± 0.1
for the lower order polynomials n = 3 and m = 2. For the higher order polynomials, n = 3 and m = 2,
the mean is given by q′ = 2.9± 0.1. The error is the standard deviation.

Now that the model parameters for the disjoining pressure model are set, the mesh pa-
rameters are optimized. In figures 4.4 and 4.5 the film break up position and dewetting speed
are plotted versus element size, respectively. In both figures all the data points represent a
1D dip-coating model of a topographic defect defined by equation (4.10a) with s0 = 1µm and
a = 10µm moving through the meniscus with super-critical velocity U > Uc, i.e. a film is
pulled. For this model the element size is varied and the pulled film break up position and
dewetting speed are analysed. The film break up position increases for smaller element sizes
and converges for decreasing element sizes. The dewetting speed shows independence of element
size, except for coarse discretization where film breaks up immediately after the defects moved
through the meniscus. At this point it is hard to determine the dewetting speed since there is
no film retracting, but a meniscus equilibrating after the defect moved through.
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Figure 4.4: Plot of the film break up position of a pulled film for a super-critical (U > Uc) simulation,
with a Gaussian shaped topographic defect moving through the meniscus, as a function of element size.
The topographic defect is defined by equation (4.10a) with s0 = 1µm and a = 10µm. The contact angle
is given by θ = θ0 = 5o. The red line serves as a guide to the eye.
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Figure 4.5: Dewetting speed after break up of the pulled film after the Gaussian shaped topographic
defect moved through the meniscus, as a function of element size. The dewetting speed is analysed
by extracting two coordinates of the film front at two different times during the retraction of the film.
Dividing the displacement by the time difference gives the dewetting speed. The contact angle is given
by θ = θ0 = 5o.

For the 1D simulations optimum element sizes ES < 1µm can be chosen without losing
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much computational time. Having an element size of ES < 1µm for 2D simulations is not
feasible, since this fine discretization together with the non-linearity of the governing equations
results in huge computational times (months, years). Therefore the computational domain is
divided in smaller areas where in each of these areas a mesh size is set. Around the regions of
interest, i.e. the defect, the contact line and break up regions, a smaller element size is chosen as
depicted in figure 4.6, where the different mesh domains are shown with corresponding element
sizes. With a domain length L = 900µm and width W/2 = 400µm this results in a roughly in
a number of 82000 elements and DOF = 330000 degrees of freedom.
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Figure 4.6: Overview of different mesh domains for the 2D dip-coating model with corresponding element
sizes given in the table. The predefined meniscus decays from the bottom, where h = h0, of the domain
till h = h∗ in mesh domains III and IV. The defect moves through domains V, III and I, respectively
with width a/2. In domain I the liquid bridge breaks up and the formation of the satellite droplet is
simulated.

4.2 Effect of geometrical parameters defect

In this section the influence of the defect shape is studied by letting 1D Gaussian shaped
topographic defects move through the meniscus. The 1D defects are varied in height s0, width
a and orientation (bump s0 > 0 or groove s0 < 0). The maximum slope for the defect is
then proportional to s0/a. The effect of the (maximum) defect slope on the decrease in critical
capillary number Cac and on the film thickness h for super-critical dip-coating velocities is
studied.

First the effect on the decrease in critical capillary number Cac where for each variation in
defect the critical dip-coating velocity Uc is found by iterating for different dip-coating velocities.
Figure 4.7 illustrates the sub-critical U < Uc and film pulling (super-critical) regimes U > Uc.
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In all simulations the contact angle is set to θ = θ0 = 5o. For a flat surface the critical dip-
coating velocity is found to be Uc = 0.90µm/s, which yields a critical capillary number of
Cac = 1.41 · 10−5 (red line).
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Figure 4.7: Illustration on sub-critical (a) and film pulling regimes (b) for dip-coating velocities U below
and above the critical dip-coating velocity Uc. The blue lines corresponds to the film thickness h(y) and
red lines to the substrate height s(y).

The critical dip-coating velocity Uc, for which pinning occurs and liquid entrains, is extracted
and plotted non-dimensionalized by the capillary number Cac as a function of maximum slope
s0/a in figures 4.8 and 4.9, for the bump and groove, respectively. The blue squares and orange
triangles correspond with Gaussian defects with constant height s0 = 1µm and constant width
a = 10µm, respectively. The errorbars correspond to the iterating step size with which Uc is
identified. The extracted critical dip-coating velocities Uc are compared with the critical dip-
coating velocity (red line) for which entrainment occurs even without a defect present on the
substrate, i.e. flat surface.

For the Gaussian bump a decrease in critical capillary number Cac is observed between
maximum slopes 0.06 < s0

a < 0.15. For maximum slopes s0
a > 0.15 no further decrease in

critical capillary number is observed. The slope of the peak influences the pinning feature since
keeping the slope constant and varying the width and height gives similar critical capillary
numbers Cac.

For the Gaussian groove also a decrease in critical capillary number Cac is observed however
less distinct compared to the Gaussian bump, which is comparable with the smaller critical
sliding angle of sliding droplets moving down an inclined surface with a Gaussian surface defect
(theory section 2.7). The data does not show similar critical capillary numbers Cac for similar
slopes magnitude but varying the width and height of the defect which might be caused by
groove filling up quickly for small widths by the capillary action.
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Figure 4.8: Critical Capillary number Cac as a function of the height over width of the positive Gaussian
topographic defect (bump) s0/w for which the height is held constant s0 = 1µm (blue circles) and width
w = 10µm is held constant (orange triangles). The topographic defect s(y − Ut) is defined by equation
(4.10a) with x = 0. The contact angle is given by θ = θ0 = 5o. The red horizontal line illustrated the
critical capillary number for which entrainment occurs on a flat surface, i.e. without defect. The black
line serves as a guide to the eye.
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Figure 4.9: Critical Capillary number Cac as a function of the height over width of the negative Gaussian
topographic defect (groove) s0/w for which the height is held constant s0 = 1µm (blue circles) and width
w = 10µm is held constant (orange triangles). The topographic defect s(y − Ut) is defined by equation
(4.10a) with x = 0. The contact angle is given by θ = θ0 = 5o. The red horizontal line illustrated the
critical capillary number for which entrainment occurs on a flat surface, i.e. without defect.

In figure 4.10 the film thickness is plotted versus the capillary number Ca for supercritical
substrate velocities U > Uc, i.e. liquid entrains. The different data points represent simulations
with a flat substrate or with a Gaussian peak with a certain slope. For supercritical substrate
velocities the Gaussian peak does not have an influence on the thickness of the entrained film.
Thus in this case, small contact angles θ and small capillary numbers Ca� 1, the film thickness
h depends solely on the dip-coating velocity U and liquid properties. This relation is predicted
by Landau Levich Derjaguin (equation (2.40)), given by:

h = 0.946 ·
√
γ/ (ρg) · Ca2/3, (4.13)

which is plotted in black in figure 4.10.
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Figure 4.10: Entrained film thickness h as a function of capillary number Ca for supercritical substrate
velocities U > Uc. The different marks correspond to a flat (blue circle) and Gaussian 1D defect
with maximum slopes s0/a = 0.5, 0.14 and 0.4 (orange triangle, yellow diamond and purple square,
respectively). The contact angle is given by θ = θ0 = 5o. The black line is given by Landau-Levich
Derjaguin (section 2.6), equation (4.13).

4.3 Dip coating of 2D flat defects

In this section the influence of a 2D flat circular defect dip-coated with constant velocity U is
studied numerically. Again the effect of the dip-coating velocity U on the break up process and
formation of satellite droplets is studied and compared to the experiments. Both topographic
only and combined topographic plus chemical defects are considered. In all simulations the
substrate contact angle is θ0 = 5o. The topographic component, i.e. substrate height distri-
bution, is described by equation (4.10b). The possible chemical component, i.e. contact angle
distribution, is described by equation (4.11b). For topographic only defects the contact angle
distribution reduces to θ(x, y, t) = θ0 = 5o. The defect parameters are for all 2D simulations
given by the defect height s0 = 2µm, width a = 100µm and transition length c = 20µm.

In figure 4.11 (a-f) snapshots are shown of a typical dip-coating simulation with a relative
DC velocity U/Uc = 0.74. The defect has both a topographic plus chemical component. While
the defect moves through the meniscus liquid places itself in the corners and on top of the
defect [figure 4.11(b)]. This way the liquid minimizes its surface energy. The elongated liquid
threads, i.e. rivulets, in the corners of the defects eventually breaks up as predicted due to the
Rayleigh-Plateau instability [figure 4.11(b-c)]. A liquid bridge is formed, which narrows and
elongates in the y-direction as the defect moves further [figure 4.11(c-d)]. When this thinned
and elongated liquid bridge or rivulet breaks up the meniscus contact line resembles a sawtooth
shape with an unstable rivulet attached [figure 4.11(e)]. A series of satellite droplets is formed
at the tip of the unstable rivulet in a sequential, i.e. not simultaneously but one-by-one, fashion
[figure 4.11(e-f)]. Finally the sawtooth shape becomes stable again and the meniscus contact
line retracts without shedding more satellite droplets. Figure 4.11(g) shows a microscope image
of a dip-coating experiment with a pattern dimension a = 200µm and relative DC velocity
U/Uc = 0.77. Although the simulations are done with for low contact angles, smaller pattern
dimension and small slopes many similarities between experimental and numerical satellite
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droplets are observed in figures 4.11(f-g).
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d) e) f)
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Figure 4.11: (a-f) Numerical simulation illustrating the dip-coating process of a topographic plus chemical
defect for defect height s0 = 2µm, width a = 100µm and transition length c = 20µm. The contact angle
is given by θ0 = 5o. The relative DC velocity is given by U/Uc = 0.74. The defect is illustrated by the
contour plot and the film thickness h in color ranging from 100 nm(blue) to 6µm (red). Time t = 0 does
not correspond to the beginning of the simulation. (g) Microscope image of satellite droplets formed
during dip-coating underneath a topographic and chemical circle defect of pattern dimension a = 100µm
at relative DC velocity U/Uc = 0.77.

In figure 4.12 the volume of the biggest satellite droplet V is given as a function of dip-
coating velocity U non-dimensionalized by the critical DC velocity U . This relative DC velocity
U/Uc describes how close to the critical velocity the DC velocity is. The red data corresponds
to a topographic plus chemical defect and the blue data to a topographic defect. The data is
fitted with a similar power law function as given in the experimental part:

V ∼
(
U

Uc

)3pr

, (4.14)

with U/Uc the relative DC velocity and pr the fit parameter. The factor three is added to be
able to directly compare between the experimental and numerical fit parameters (V ∼ r3). For
a flat surface the critical dip-coating velocity is found to be Uc = 0.90µm/s, which yields a
critical capillary number of Cac = 1.41 · 10−5. For the topographic defect pr = 4.6 and for the
topographic plus chemical defect pr = 1.89. For the fit through the topographic plus chemical
data the first data point is not taken into account. The scaling behaviour does not directly match
when compared to the experimental data. Experimentally for such small pattern dimensions
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or defect widths a < lc power law behaviour (r ∼ U0.28) was observed for small DC velocities
U/Uc < 0.5 while for high DC velocities 0.6 < U/Uc < 1 exponential increase was observed.
The differences between experiments and simulations can be attributed to the differences in
contact angle, pattern dimension and smaller slopes and capillary number. The simulations
are restricted to small slopes and thus small contact angles θ0 = 5o, which reduces to θ0/2 for
the chemical component of the defect. The experimental receding contact angles are given by
θsr,sub = 71o which reduces to θsr,res = 12o for the resist (defect). The maximum defect slopes in
simulations s0/c = 0.1 is slightly smaller compared to the experimental defects s0/c ≈ 0.2±0.1,
which can also contribute to the observed differences. This however is hard to draw conclusions
from since the experimental defects maximum slopes are possibly determined inaccurately.
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Figure 4.12: Volume of the biggest satellite droplet V versus the relative capillary number U/Uc for
a topographic and topographic plus chemical defect. The inset shows a typical simulation where film
thickness h is represented in color. The flat defect is illustrated in the top of the inset by the contour
plot which moved through the now retracting meniscus (bottom). The flat shaped defects have a width
of a = 100µm, transition length of c = 20µm and height of s0 = 2µm. The contact angle is given by
θ0 = 5o. The analysed droplet is marked by the arrow.

Figure 4.13 the total volume of the biggest satellite droplets TV is given as a function of
the relative DC velocity U/Uc. In all simulations the droplets that contribute less than 1% to
the total volume of water-loss TV are neglected. The red data corresponds to a topographic
plus chemical defect and the blue data to a topographic defect. The data is again fitted with
the power law given by equation (4.14). For the topographic defect pr = 4.73 and for the
topographic plus chemical defect pr = 2.23. For the topographic plus chemical the first data
point is not taken into account. The fit parameters are roughly equal to the fit parameters for
the volume of the biggest satellite droplet data. This means that the volume of the biggest
satellite droplet is a reliable estimate of the total volume of water-loss.
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Figure 4.13: Total volume of water-loss TV versus the relative DC velocity U/Uc for a topographic and
topographic plus chemical defect. The inset shows a typical simulation where film thickness is represented
in color. The flat defect is illustrated in the top of the inset by the contrast plot which moved through
the now retracting meniscus (bottom). The flat shaped defects have a width of a = 100µm, transition
length of c = 20µm and height of s0 = 2µm. The contact angle is given by θ0 = 5o. The analysed
droplets are marked by the arrow. In all simulations the droplets that contribute less than 1% to the
total volume of water-loss TV are neglected. Only satellite droplets not attached to the defect itself are
analysed.

Figure 4.14 shows the decay in droplet volume as a function of the droplet index N for
different relative DC velocities U/Uc for both a topographic plus chemical defect (a) and to-
pographic defect (b). In figure 4.13 the sum of these droplets for each relative DC velocity is
added and plotted as the total volume of water-loss. Only the satellite droplets not attached to
the defect itself are analysed. The fits resemble a power law given by:

V ∼ N−3p′ , (4.15)

with p′ the fit parameter. The power law fit parameters are given by p′ = 0.64, 0.96, 1.11 and
1.16 from closest to the critical DC velocity U/Uc = 0.95 to U/Uc = 0.63 for the topographic
plus chemical defect. For the topographic defect the fit parameter is given by p′ = 0.85 for
the highest DC velocity U/Uc = 0.95. Thus an increase in scaling magnitude is observed for
decreasing dip-coating velocities. Also the topographic defect satellite droplets have a higher
scaling magnitude, i.e. faster decay, compared to the topographic plus chemical defect satellite
droplets. For the topographic defect simulation with relative DC velocity U/Uc = 0.53 no
satellite droplet was observed.
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Figure 4.14: Volume of satellite droplet V as a function of the droplet index N for both topographic
plus chemical defects (a) and topographic only defects (b). The flat dip-coated defects have a width
of a = 100µm, transition length c = 20µm and height of s0 = 2µm. The contact angle is given by
θ0 = 5o. In all simulations the droplets that contribute less than 1% to the total volume of water-loss
TV are neglected. Only satellite droplets not attached to the defect itself are analysed. The power
law fit parameters are given by p′ = 0.64, 0.96, 1.11 and 1.16 from closest to the critical DC velocity
U/Uc = 0.95 to U/Uc = 0.63 for the topographic plus chemical defect. For the topographic defect the
fit parameter is given by p′ = 0.85 for the highest DC velocity U/Uc = 0.95.

In figure 4.15 the distance of the biggest satellite droplet d is given as a function of relative
DC velocity U/Uc. This distance is defined by the center-to-center distance of the satellite
droplet and defect. The red data corresponds to a topographic plus chemical defect and the
blue data to a topographic defect. The data is fitted with a similar power law function given
in the experimental part:

d ∼
(
U

Uc

)pd
, (4.16)

with q the fit parameter. For the topographic defect pd = 0.75 and for the topographic plus
chemical defect pd = 1.22. For the fit through the topographic plus chemical data the first data
point is not taken into account. Also different behaviour is observed when compared to the
experimental data. Experimentally for such small pattern dimensions or defect widths a < lc
power law behaviour d ∼ U0.18 was observed for small DC velocities U/Uc < 0.5 while for
high DC velocities 0.5 < U/Uc < 1 exponential increase is observed. The differences between
experiments and simulations can be attributed to the differences in pattern dimensions and
contact angles. The simulations are restricted to small slopes and thus small contact angles
θ0 = 5o, which reduces to θ0/2 for the chemical component of the defect. The experimental
receding contact angles are given by θsr,sub = 71o which reduces to θsr,res = 12o for the resist
(defect). The maximum defect slopes in simulations s0/c = 0.1 is slightly smaller compared to
the experimental defects s0/c ≈ 0.2±0.1, which can also contribute to the observed differences.
This however is hard to draw conclusions from since the experimental defects maximum slopes
might be determined inaccurately.
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Figure 4.15: Distance of the biggest satellite droplet d versus the relative DC velocity U/Uc for a
topographic (blue) and topographic plus chemical (red) defect. The inset shows a typical simulation
where film thickness h is represented in color. The flat defect is illustrated in the top of the inset by
the contrast plot which moved through the now retracting meniscus (bottom). The flat shaped defects
have a width of a = 100µm, transition length of c = 20µm and height of s0 = 2µm. The contact angle
is given by θ0 = 5o. The analysed droplet is marked by the arrow. The distance d is defined by the
center-to-center distance of satellite droplet and defect.

4.4 Summary and conclusions

In this chapter the dip-coating of defects and formation of satellite droplets is studied numeri-
cally.

First the model is validated by showing its results are predicted by the Cox-Voinov and
Landau-Levich laws. The influence of the geometrical properties of the defect is studied in a
1D model by varying the width a and height s0 of a Gaussian shaped defect and identifying
the critical velocity. For a Gaussian bump the critical velocity decreases abruptly for a slope
around s0/a ≈ 0.1. Only the slope of the defect influenced the pinning feature since keeping the
slope constant and varying the width and height gives similar critical velocities. The decrease
in critical velocities is less distinct for the groove. For the groove the critical velocity does not
solely depend on the slope but varies for different widths and slopes. This might be caused by
the groove filling up quickly for small widths by the capillary action. These findings are in line
with the influence of the geometrical parameters of Gaussian surface defect on a droplet moving
down an inclined surface. The slope of the defect only lowers the critical velocities but does not
increase the entrained film thickness.

In the 2D dip-coating models simulate the actual dip-coating experiment, i.e. with a 2D
heterogeneity on the substrate. Qualitatively for small contact angles the formation and trail
of satellite droplets show many similarities with the experiments. However the fitted scaling
relations when varying the DC velocity U while analysing the radius and distance of the biggest
satellite droplets do not resemble the experimental data. The experiments yield that the radius
of the biggest satellite droplet scales with r ∼ U0.28 for the small pattern dimensions a ≤ 3 mm,
circular patterns and small DC velocities 0.04 < U/Uc < 0.31. The simulations yield that

58



the volume of the biggest satellite droplet scales with V ∼ U3·1.89 for a pattern dimension
a = 100µm and DC velocities 0.6 < U/Uc < 1. In a similar fashion scales the distance of
the biggest satellite droplet experimentally with d ∼ U0.18 for the small pattern dimensions
a ≤ 3 mm, circular patterns and small DC velocities 0.04 < U/Uc < 0.31. The simulations yield
that the distance of the biggest satellite droplet scales with d ∼ U1.22 for a pattern dimension
a = 100µm and DC velocities 0.6 < U/Uc < 1. The difference in scaling could be due to
the contact angle difference, the smaller pattern dimensions or slopes in the simulations. For
a topographic only defect the volume of the biggest satellite droplet increases in scaling with
DC velocity while the distance decreases. The total volume of waterloss shows the same scaling
behaviour as the biggest satellite droplet. The volume of the trail of droplets decays via a power
law with the exponent increasing in magnitude for decreasing DC velocities.
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Chapter 5

Conclusions

Experiments and numerical simulations have been performed to study the formation of satel-
lite droplets under a single heterogeneity or defect on a partially wettable substrate dip-coated
from a liquid reservoir. In this chapter the overall conclusions are given and the results of both
experiments and numerical work are compared. In section 5.1 an outlook is given.

For all shapes of defects the radius and distance of the biggest satellite droplet roughly scale
with the pattern dimension a0.9 for pattern dimensions smaller than the capillary length a < lc.
For pattern dimensions bigger than the capillary length a > lc the dependence decreases for
smaller DC velocities from roughly a0.9 to a0.2. Possible causes are the more dominant role of
gravitational forces due to which more liquid flows back into the liquid meniscus or the observed
retraction back onto the pattern for smaller DC velocities. The effect of pattern dimension is
studied only experimentally.

Experimentally for all shapes the radius and distance scale roughly with U0.2 for smaller pat-
tern dimensions 0.2 < a < 6 mm and small DC velocities U/Uc < 0.4. Closer to the critical
DC velocity 0.4 < U/Uc < 1 the radius and distance roughly scale with e0.14U . Numerically a
2D model based on the lubrication equation with a disjoining pressure component to regulate
the moving contact line is used to simulate the dip-coating of circular defects with pattern di-
mension a = 0.1 mm. The simulations and experimental dynamics of the break-up show many
similarities. The volume of the biggest satellite droplet scales with U3·1.89 for a topographic
plus chemical and with U3·4.6 for a topographic only defect close to the critical DC velocity
0.6 < U/Uc < 1. The difference in scaling could be caused by the difference in pattern di-
mension, contact angle and smaller slopes and capillary number. In the simulation the contact
angle of the substrate θ0 = 5o reduces to θ0/2 = 2.5o on the defect while in the experiments the
(static receding) contact angle of the substrate θsr,sub = 71o reduces to θsr,pr = 12o. Comparing
the effect of the pattern dimension and DC velocity on the formation of the satellite droplets
yields that the pattern dimension is the dominant factor.

The influence of the shape of the defect is studied experimentally by comparing between equilat-
eral triangles, squares and circles. Equilateral triangles and square defects leave bigger satellite
droplets at a larger distance for the same DC velocities and pattern dimensions than circular
defects. Data for triangles and square patterns overlap when plotted versus pattern area A as
opposed to the pattern dimension a. Although more research is necessary to conclude on the
effect of the shape, the hypothesis is that the pattern area influences the volume of liquid while
the shape of the bottom edge of the pattern determines the duration of the liquid bridge break
up.
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In the experiments the decay of satellite droplet radius in the trail below a circular pattern scales
with r ∼ N−p

′
with N the droplet index. The scaling magnitude p′ increases from p′ = 1.81

to 1.94 for a = 12 mm, and from p′ = 1.61 to 2.39 for a = 0.8 mm for decreasing DC velocities
U/Uc = [0.92→ 0.077]. Numerically the volume of the satellite droplet decays via V ∼ N−3p

′

where the scaling magnitude p′ increases from p′ = 0.64 to 1.16 for decreasing DC velocities
U/Uc = [0.95→ 0.5]. The size of the biggest satellite droplet scales similar with the DC velocity
when compared to the total waterloss of the trail of droplets. This means that the analysis of
the biggest satellite droplet is a good indication of the total waterloss.

Numerically a 1D dip-coating model is used to study the influence of the geometrical properties
of a Gaussian defect with height s0, width a and slope s0/a on the contact line pinning. For a
bump the critical velocity decreases abruptly for a slope around s0/a ≈ 0.1. Only the slope of
the defect influenced the pinning feature since keeping the slope constant and varying the width
and height gave similar critical velocities. For the Gaussian groove also a decrease in critical
velocity is observed but less distinct compared to the Gaussian bump. The Gaussian defect has
no influence on the thickness of the pulled film.

5.1 Outlook

There are many opportunities for future research. For instance in immersion lithography water
is used and besides high velocities also high accelerations of the wafer have an effect on the
meniscus stability. In both cases the inertial effects play a more dominant role which is not
taken into account in this study. To incorporate higher Reynolds numbers in the numerical
model, it is possible to implement an extra term for the inertial effects in the lubrication equa-
tion. Experimentally this is more difficult since either a change of liquid or a translation stage
which accurately operates at higher velocities and accelerations is necessary. Another feature
in immersion lithography is the use of airflow to thin the pulled film and improve meniscus
stability. This effect could be studied both experimentally and numerically. Experimentally
by including an array of gas jets perpendicular to the sample surface. And numerically by
decoupling the air jets and dip-coating. The pressure and shear stress distribution could then
be implemented on the liquid-air interface.

Another promising non-intrusive technique to measure the film thickness in real time is by
use of fluorescence. A light source illuminates a liquid with a fluorescent dye as solute. The
captured intensity of the light then gives the local film thickness.

So far the influence of a single defect has been studied but also the influence of multiple
defects is interesting, as illustrated in figure 5.1(a). What is the minimum spacing b between
defects to have an effect on the critical velocity? Figures 5.1(b-e) show snapshots of a dip-
coating simulation with pattern dimension a = 100µm and spacing b = 150µm where film
pulling or entrainment occurs for a sub-critical dip-coating velocity due to the array of defects.

To elucidate the formation of the satellite droplets is most dominantly influenced by the
pattern dimension, also the viscosity of the liquid can be varied.

An interesting phenomenon was observed during the dip-coating experiments, which is il-
lustrated by the snapshots in figure 5.2. Just before the square pattern of pattern dimension
a = 2 mm moves through the meniscus with DC velocity U/Uc = 0.95 the contact line retracts
locally. No clear explanation is yet available for this phenomenon.
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Figure 5.1: (a) Illustration on array of defects on a substrate with pattern dimension a and spacing b.
(b-e) Snapshots of dip-coating simulation with pattern dimension a = 100µm and b = 150µm showing
film pulling or entrainment for a sub-critical dip-coating velocity due to the array of defects. The defects
have both a topographic and chemical component. The other relevant parameters are the transition
length c = 20µ, contact angle θ0 = 5o and defect height s0 = 2µm.
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Figure 5.2: Snapshots of contact line retraction observed in experiments.
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Appendix A

Error analysis

In this appendix the relevant error analyses are presented where the error propagation, errors
in average measurements and fitting procedures are described [51].

A.1 Error propagation

When calculating physical quantity (for example the surface tension γ) through a measured
physical quantity the measurement error needs to be included in the result. Consider a func-
tion f = f(x, y, ...) which includes the variables x, y, ... with measured errors ∆x,∆y, .... The
standard deviation in f is then given by:

∆f =

√(
∂f

∂x
∆x

)2

+

(
∂f

∂y
∆y

)2

+ ..., (A.1)

with ∆f the standard deviation in f .

A.2 Errors in average measurements

Experimental results such as the radius and distance of the biggest satellite droplet, are pre-
sented as a mean value x̄ of a N observations given by:

x̄ =
1

N

N∑
i=1

xi. (A.2)

The error in this mean is given by the standard deviation σ defined by:

σ =

√√√√ 1

N − 1

N∑
i=1

|xi − x̄|2. (A.3)

A.3 Least-squares fitting procedure

Experimental measurements are sometimes analysed by a fit function to quantitatively describe
the relation between independent xi and dependent,i.e. measured, variables yi. Consider the
function f(xi, zi) describing a set of n data points, where zi correspond to the m unknown
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parameters. To find the set of unknown parameters zi, for which f best describes or fits the
given data points, the sum of squared residuals has to be minimized:

SS =

n∑
i=1

R2
i , (A.4)

with Ri = yi− f(xi, zi) the residuals. Finding the best fit requires an iterative procedure where
the initial parameters zi are guessed and improved while keeping track of the residuals. All
fitting procedures are done with MATLAB.
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Appendix B

Sample manufacturing recipe

B.1 General information

� Always wear (clean) gloves and keep sample in the sample-box as much as possible to
protect the sample from contamination.

� Preferred way of moving sample from the sample-box to setup is with gloves touching
the side of the sample (preferred over a tweezer which touches the clean surface of the
sample).

� Preferred way of cleaning sample is with clean water to rinse first. Then keep it wet and
lie the sample down on a clean paper towel. Blow the water from the middle of the sample
top down with the nitrogen jet.

B.2 Spin coating

(i) Turn on vacuum pump (green knob on the ground), spin coating machine (I 0 knob),
heat supplier and wait till ready (Spin coating machine takes 1 minute, heat supply 10
minutes).

(ii) Prepare sample for spin coating

(a) First rinse the sample with the ultra-clean water to remove a possible coating from
the manufacturer.

(b) Blow the water off with some compressed air (do not hold sample too close to the
blower because the air is dirty), and to get rid of the last small droplets bake (on
heat element of 110oC) the sample (90s should be enough to evaporate).

(c) Let the sample cool down to room temperature before putting it in the spin coating
machine. Possibly by blowing air on the bottom side.

(iii) Spin coating machine

(a) Turn on machine → Run spin process

(b) Load recipe (best to take 2 steps with first one with small angular acceleration),
possibly check with edit details of recipe the steps, (4000 RPM 60s).

(c) Center the sample; ’vacuum hold’ → ’start center’ → ’release’ → displace sample in
spin coating machine → repeat till sample is centred.

(d) Carefully put photoresist with pipette on the sample.
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(e) If lid is closed and substrate is present (indicated by the signs) press ’Start process’.

(iv) Bake sample for 90s at 110oC and check for comets or inhomogeneities in reflections by
light

(v) Shut spin coating machine off by turning off spin-coating machine (keep lid open), heating
element for baking and vacuum.

B.3 Exposure

(i) Turn on machine (green button on panel), 2 levers for nitrogen (above panel) and check
if machine beneath table is also on. Let machine (lamp) warm up for 30m or so.

(ii) Put sample + mask + glass plate (in that order) onto the red drawer to the right.

(iii) Use the lever on the left side to lift the sample (check if it shows contact, otherwise move
horizontal lever).

(iv) Push vacuum mask button on the panel.

(v) Push discharge on the machine on the bottom (top right corner).

(vi) Check the time on the bottom right corner (38 seconds) and press exposure.

(vii) When finished turn off machine and 2 levers for nitrogen (possibly after 10-20m or so).

B.4 Development

(i) Put on heater at 115 oC.

(ii) Make sure there are 3 reservoirs filled with 1. Pure developer 2. 1:10 diluted with distilled
water developer 3. Big one with distilled water. Developer solution can be found in yellow
drawer beneath ventilation shaft on other side of the room (AR300-26).

(iii) Put sample in diluted developer solution until you see the exposed photoresist rinsed off.
Then wait for 5-10s more and pull it out.

(iv) Clean sample in big distilled water reservoir.

(v) After this blow the residual liquid off and bake the sample in 115oC for ∼90s. This is to
make sure the photoresist adheres to the substrate again.

B.5 UV Cleaner

(i) Open drawer, turn on machine and put sample in

(ii) Enter time (15m).

(iii) Press start; will actually start by lifting drawer up until sign (white led) switches on.
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B.6 PFOTS layer

To make the sample hydrophobic again.

(i) This step is done inside the nitrogen glass box because otherwise the PFOTS will poly-
merize due to reactions with water damp. Put heater on (115 oC).

(ii) Put left glove on and give sample with right hand inside the box. Let sample in sample-box
acclimate for 15 minutes (remove sample-box lid).

(iii) Open the PFOTS (make sure no metal touches PFOTS), put sample in and close lid.

(iv) After 120 min open again and get sample out.

(v) Briefly (10s or so) put sample in Hexon to remove all the residual PFOTS not attached
to the surface. Again use plastic tweezers and close lid on PFOTS.

(vi) Check if sample shows polymerization (white stuff on sample).

(vii) Let sample rest in nitrogen environment for 15m.

(viii) Bake in ventilation shaft heater (115oC for 30s) to get rid of the rest of PFOTS and Hexon.

(ix) Blow nitrogen to clean sample and afterwards put sample in big distilled water (make sure
it is fresh since any trace amounts of developer destroys PFOTS layer) and clean again.
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Appendix C

Image analysis scripts

First the to be analysed images are loaded in MATLAB where ellipses and lines are drawn to
measure the droplet radius and distance from the pattern edge to the middle of the droplet,
respectively.

%% First load the images in matlab
myfo = 'C:\Users\s106601\Documents\MATLAB\Codes\Testing\Data\

↪→ UUID018 21Sep DC Circles 4\'; % foldername
myfn = ''; % Startfilename
sampleshape = 'Cir';

↪→ % Shape of
↪→ sample

samplesize= {'0.6','0.8'}; %,'5','6','7'}; %
↪→ size of sample

samplespeed = {'0.25','0.5','1','2','3','4','5','6'}; %
↪→ % dip coating speed

zoom = {'1.25','2.5','5','10','20','50','100'};
↪→ % magnification
↪→ microscope

repeat = 4;
↪→ %
↪→ repetitions of experiment

con = 1;
↪→
↪→ % Number of maximum consectutive images

n= 1;
for i = 1:length(samplesize)
for j = 1:length(samplespeed)
for k = 1:length(zoom)
for l = 1:repeat
for m = 1:con % ONly for the extra images

fullfn = sprintf('%s%s%s %smm %smms Dipcoat %sx %d %d.BMP', myfo, myfn,
↪→ sampleshape, samplesize{i}, samplespeed{j}, zoom{k}, l, (-m+(con+1)))
↪→ ;
if exist(fullfn, 'file')

if m==1
imagedata.image{n} = imread(fullfn);
imagedata.path{n} = sprintf('%s%s %smm %smmsDipcoat %sx %d.%

↪→ d.BMP', myfn, sampleshape, samplesize{i}, samplespeed{j},
↪→ zoom{k}, l, (-m+(con+1)));

imshow(imagedata.image{n})
elseif m==2

imagedata.image2{n} = imread(fullfn);
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imagedata.path2{n} = sprintf('%s%s %smm %smmsDipcoat %sx %d.%
↪→ d.BMP', myfn, sampleshape, samplesize{i}, samplespeed{j},
↪→ zoom{k}, l, (-m+(con+1)));

imshow(imagedata.image2{n})
end

%frame h = gcf;
%frame h.Position = [-1600 0 1600 1000]; % Left extra screen
%frame h.Position = [0 0 1600 1000]; % main laptop screen
imagedata.shape{n} = sampleshape;
imagedata.size{n} = str2num(samplesize{i});
imagedata.speed{n} = str2num(samplespeed{j});
imagedata.zoom{n} = zoom{k};
imagedata.rep{n} = l;

d = imline;
wait1=wait(d);

if m==1
imagedata.line{n}=getPosition(d);

elseif m==2
imagedata.line2{n}=getPosition(d);

end

s = imellipse;
wait2 = wait(s);

if m==1
imagedata.pos{n} = getPosition(s); % xtopleft ytopleft

↪→ diamhorizontal diavertical
elseif m==2

imagedata.pos2{n} = getPosition(s);
end

if m==1 % After all images of one experiment are quantified
↪→ move to the next experiment (index)
n = n+1

end

end

end
end
end
end
end

Second the analysed images are checked, equivalent radius, distance are computed and these
values are converted from pixels to meters via the calibration values.

for i = 1:length(imagedata.image)
if 0 %~isempty(imagedata.image2{i})

% Check image 2
imshow(imagedata.image2{i})
d = imline(gca,imagedata.line2{i});
wait1=wait(d);
imagedata.line2{i}=getPosition(d);

s=imellipse(gca, imagedata.pos2{i});
wait2=wait(s);
imagedata.pos2{i}=getPosition(s);
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% Check image 1
imshow(imagedata.image{i})
d = imline(gca,imagedata.line{i});
wait1=wait(d);
imagedata.line{i}=getPosition(d);

s = imellipse(gca, imagedata.pos{i});
wait2 =wait(s);
imagedata.pos{i}=getPosition(s);

else
% Check image 1 when there is no image 2
imshow(imagedata.image{i})
d = imline(gca,imagedata.line{i});
wait1=wait(d);
imagedata.line{i}=getPosition(d);

s = imellipse(gca, imagedata.pos{i});
wait2 =wait(s);
imagedata.pos{i}=getPosition(s);

end

end

%% Calculate the equivalent radius, area and distances and save these in the
↪→ imagedata structure.
for n=1:length(imagedata.image)

if 0 %~isempty(imagedata.line2{n})
%Compute both distances and add them together in structure entry
dis(1)=sqrt((imagedata.line{n}(2)-imagedata.line{n}(1))ˆ2+(

↪→ imagedata.line{n}(4)-imagedata.line{n}(3))ˆ2);
dis(2)=sqrt((imagedata.line2{n}(2)-imagedata.line2{n}(1))ˆ2+(

↪→ imagedata.line2{n}(4)-imagedata.line2{n}(3))ˆ2);
imagedata.dis{n}=dis(1)+dis(2);

%Compute both areas and add the maximum in the structure array
AR(1)= pi*imagedata.pos{n}(3)/2 * imagedata.pos{n}(4)/2;
AR(2)= pi*imagedata.pos2{n}(3)/2 * imagedata.pos2{n}(4)/2;
imagedata.area{n}=max(AR);
imagedata.radius{n}=sqrt(max(AR)/pi);

else
imagedata.dis{n}=sqrt((imagedata.line{n}(2)-imagedata.line{n}(1))ˆ2+(

↪→ imagedata.line{n}(4)-imagedata.line{n}(3))ˆ2);
imagedata.area{n}= pi*imagedata.pos{n}(3)/2 * imagedata.pos{n}(4)/2;
imagedata.radius{n}=sqrt(imagedata.area{n}/pi);

end
end

%% Convert all the quantities from pixels to meters by using the calibration of
↪→ the microscope

%meter per pixels for microscope by calibration + errors
% var m/pixels magnification
cali(1)=3.733e-6; % 1.25
cali(2)=0.003e-6; % 1.25 error
cali(3)=1.859e-6; % 2.5
cali(4)=0.002e-6; % 2.5 error
cali(5)=9.279e-7; % 5
cali(6)=0.001e-6; % 5 error
cali(7)=4.652e-7; % 10
cali(8)=0.003e-7; % 10 error
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cali(9)=2.330e-7; % 20
cali(10)=0.002e-7; % 20 error
cali(11)=9.30e-8; % 50
cali(12)=0.03e-8; % 50 error
cali(13)=4.65e-8; % 100
cali(14)=0.02e-8; % 100 error

% Loop over all experiments to change all data
for i=1:length(imagedata.image)

if str2num(imagedata.zoom{i})==1.25
imagedata.fdis{i}(1)=imagedata.dis{i}*cali(1); % distance in meters
imagedata.fdis{i}(2)=imagedata.dis{i}*cali(2); % distance error
imagedata.farea{i}(1)=imagedata.area{1}*cali(1)ˆ2; % area in metersˆ2
imagedata.farea{i}(2)=imagedata.area{1}*cali(2)ˆ2; % area error
imagedata.fradius{i}(1)=imagedata.radius{i}*cali(1); % radius in meters
imagedata.fradius{i}(2)=imagedata.radius{i}*cali(2); % radius error

elseif str2num(imagedata.zoom{i})==2.5
imagedata.fdis{i}(1)=imagedata.dis{i}*cali(3); % distance in meters
imagedata.fdis{i}(2)=imagedata.dis{i}*cali(4); % distance error
imagedata.farea{i}(1)=imagedata.area{1}*cali(3)ˆ2; % area in metersˆ2
imagedata.farea{i}(2)=imagedata.area{1}*cali(4)ˆ2; % area error
imagedata.fradius{i}(1)=imagedata.radius{i}*cali(3); % radius in meters
imagedata.fradius{i}(2)=imagedata.radius{i}*cali(4); % radius error

elseif str2num(imagedata.zoom{i})==5
imagedata.fdis{i}(1)=imagedata.dis{i}*cali(5); % distance in meters
imagedata.fdis{i}(2)=imagedata.dis{i}*cali(6); % distance error
imagedata.farea{i}(1)=imagedata.area{1}*cali(5)ˆ2; % area in metersˆ2
imagedata.farea{i}(2)=imagedata.area{1}*cali(6)ˆ2; % area error
imagedata.fradius{i}(1)=imagedata.radius{i}*cali(5); % radius in meters
imagedata.fradius{i}(2)=imagedata.radius{i}*cali(6); % radius error

elseif str2num(imagedata.zoom{i})==10
imagedata.fdis{i}(1)=imagedata.dis{i}*cali(7); % distance in meters
imagedata.fdis{i}(2)=imagedata.dis{i}*cali(8); % distance error
imagedata.farea{i}(1)=imagedata.area{1}*cali(7)ˆ2; % area in metersˆ2
imagedata.farea{i}(2)=imagedata.area{1}*cali(8)ˆ2; % area error
imagedata.fradius{i}(1)=imagedata.radius{i}*cali(7); % radius in meters
imagedata.fradius{i}(2)=imagedata.radius{i}*cali(8); % radius error

elseif str2num(imagedata.zoom{i})==20
imagedata.fdis{i}(1)=imagedata.dis{i}*cali(9); % distance in meters
imagedata.fdis{i}(2)=imagedata.dis{i}*cali(10); % distance error
imagedata.farea{i}(1)=imagedata.area{1}*cali(9)ˆ2; % area in metersˆ2
imagedata.farea{i}(2)=imagedata.area{1}*cali(10)ˆ2; % area error
imagedata.fradius{i}(1)=imagedata.radius{i}*cali(9); % radius in meters
imagedata.fradius{i}(2)=imagedata.radius{i}*cali(10); % radius error

elseif str2num(imagedata.zoom{i})==50
imagedata.fdis{i}(1)=imagedata.dis{i}*cali(11); % distance in meters
imagedata.fdis{i}(2)=imagedata.dis{i}*cali(12); % distance error
imagedata.farea{i}(1)=imagedata.area{1}*cali(11)ˆ2; % area in metersˆ2
imagedata.farea{i}(2)=imagedata.area{1}*cali(12)ˆ2; % area error
imagedata.fradius{i}(1)=imagedata.radius{i}*cali(11); % radius in meters
imagedata.fradius{i}(2)=imagedata.radius{i}*cali(12); % radius error

elseif str2num(imagedata.zoom{i})==100
imagedata.fdis{i}(1)=imagedata.dis{i}*cali(13); % distance in meters
imagedata.fdis{i}(2)=imagedata.dis{i}*cali(14); % distance error
imagedata.farea{i}(1)=imagedata.area{1}*cali(13)ˆ2; % area in metersˆ2
imagedata.farea{i}(2)=imagedata.area{1}*cali(14)ˆ2; % area error
imagedata.fradius{i}(1)=imagedata.radius{i}*cali(13); % radius in meters
imagedata.fradius{i}(2)=imagedata.radius{i}*cali(14); % radius error

end
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end

After this the data is exported and saved in a file. For each plot this file is opened, the data
is sorted and then plotted.
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Appendix D

Die-coating of Gaussian bumps

In the 2D COMSOL models the experiments are complemented by moving an axisymmetric
Gaussian defect through the predefined meniscus. The Gaussian peak is both an topographic
and chemical defect since also the contact angle θ(x, y − Ut) decreases to θ = 2.5◦ to simulate
the experiments.

In figure D.1 the radius of the biggest satellite drop R is plotted versus the substrate velocity
U .
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Figure D.1: Radius of the biggest satellite droplet d versus the substrate velocity U . The inset shows
a typical simulation where film thickness is represented in color. The top shows the Gaussian shaped
defect which moved through the now retracting meniscus (bottom). The Gaussian shaped defect has a
width of w = 10 µm and height of s0 = 1 µm. The analysed droplet is marked by the arrow.

In figure D.2 the distance of the biggest satellite droplet d is plotted versus the substrate
velocity U .
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Figure D.2: Distance of the biggest satellite droplet d versus the substrate velocity U . The inset shows a
typical simulation where film thickness is represented color. The top shows the Gaussian shaped defect
which moved through the now retracting meniscus (bottom). The Gaussian shaped defect has a width
of w = 10 µm and height of s0 = 1 µm. The analysed droplet is marked by the arrow.
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