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Abstract

After decades of study, there still remain many open questions about cancer metas-
tasis. One of these involves the nature of tumor cells that give rise to the process. In
contrast with conventional models in which single tumor cells seed metastases, recent
experimental evidence points to tumor cell clusters migrating collectively as a significant
contribution to metastases.

Since very little is known about the manner in which these clusters migrate and why
they form a better seed for metastasis than single cells, our work attempts to further
rationalise the difference between collective and single cell motion. For this we have
modeled migration of single cells and small cell clusters using the cellular Potts model.

Our results demonstrate how cell-cell alignment can significantly improve migration
for increasing cluster sizes and that the obtained results are consistent with both the-
oretical predictions and reproduce experimental oberservations in cell layers. We also
show that an increased cluster size can result in enhanced durotaxis which is consistent
with experimental results on collective durotaxis of monolayers. Additionally, the model
indicates the importance of cell-cell adhesion when clusters experience steric hindrance.

Finally, to incorporate the effect of focal adhesions, we have implemented a binding
potential motivated via Langevin Dynamics simulations and show how binding slows
down cells but the effect on clusters or single cells is the same. We expect that a
feedback between focal adhesions and cell polarity or the addition of extracellular matrix
remodeling and degradation will further help elucidate collective cell migration.
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1. Introduction

Together with cardiovascular diseases, cancer still remains the leading cause of death in
the world by a significant margin [1]. It is troubling that the world health organisation
WHO has predicted that cancer-related deaths will steadily rise until at least 2030
and that their prevalence over most other deadly diseases increases as well [2]. This
emphasises the already pressing need for a better understanding of cancer.

Specifically, the vast majority of deaths due to cancer (approximately 90%) are
a consequence of metastasis [3–6]. This is the detachment of cells from the primary
tumor that traverse through the extracellular matrix (ECM), i.e. the 3D network which
provides structural support to tissues, towards blood vessels; there, they enter and travel
through the blood circulation system before eventually leaving it to proliferate in distant
organs [4,5,7] (see fig. 1.1 for a schematic representation). In other words, disseminated
tumor cells form a secondary tumor at a distant site in the body. The main problem for
patients is that after metastases have been established, current therapies are often not
effective in treating the metastatic disease and methods like chemotherapy or radiation
therapy can come at the cost of much collateral damage to the body [5,7]. Additionally,
malignant tumors start to metastasize early on in the development of the disease. This
means that cells from a primary tumor might have already infiltrated distant organs
before the primary tumor is even diagnosed or can do so quickly after the diagnosis [5].
Once a secondary tumor has formed at one these organs, it can also start to metastasise
and the situation can rapidly worsen for a patient [8]. Taking all of this into account,
it becomes evident why metastasis is the source of so many cancer-related deaths and
why a better understanding of the whole process is paramount to prevent cancer from
spreading and reaching a point where it becomes immediately life-threatening.

Unfortunately, after decades of research, tumor metastasis remains poorly under-
stood and we are still far from providing prevention and a cure [4]. It has long been
believed that only single tumor cells are able to reach distant organs and contribute to
metastasis for the simple reason that multicellular clusters are too large to pass through
narrow capillaries [8]. One of the most important conventional models of metastasis is
the epithelial-mesenchymal transition (EMT) [9]. This describes the process in which an
epithelial cell inside the tumor undergoes multiple biochemical changes in order to take
on a mesenchymal phenotype which includes invasiveness, enhanced migratory abilities,
loss of cell-cell adhesion structures and an elevated resistance to apoptosis (programmed
cell death) [9,10]. This allows the cell to disseminate from the primary tumor and travel
towards a distant organ. Once at the organ, the tumor cell can transform back via the
reverse mesenchymal-epithelial transition (MET) in order to stabilise itself and enable
it to grow into a secondary tumor. Since the first discovery of EMT with respect to
tumor progression in 1986 [11], much research has been dedicated to the process and its
involvement in metastasis [10,12,13].

However, recent experimental studies have highlighted significant contributions to
metastasis of so called circulating tumor cell (CTC) clusters, i.e. (mostly) heteroge-
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Figure 1.1: Schematic representation of the different steps involved in cancer metastasis. Image
shows the conventional model (EMT) in which only single cells cause metastasis and the recently
proposed idea that tumor cell clusters travelling as a whole from begin to end contribute the
most to metastasis.

neous cell clusters typically consisting of approximately 2 to 20 cells that have detached
from the primary tumor and are migrating towards a distant organ [3–5, 7, 8, 14–16].
Particularly, experiments studying spontaneous breast cancer in mice have for instance
indicated that over 97% of all observed metastases originated from clusters, while other
studies have suggested that CTC clusters may have at least a 50 times greater metastatic
potential than individual CTCs [3, 7, 14, 16]. Interestingly, it has also been shown that
a CTC cluster migrates as a single unit from the primary tumor to distant organs and
the idea of CTCs assembling at some point during metastasis is improbable [7]. It thus
seems that the original dismissal of cell clusters in metastasis proves to be too simplistic
and that clusters apparently find a way to bypass narrow capillaries and other forms of
steric hindrance. In fact, it is highly likely that cell clusters exhibit specfic advantages
over single cells during the entire process of metastasis which allow them to harbor an
increased metastatic potential, although it remains unclear what these precisely are.
Additionally, studies in breast and pancreatic cancer have indicated that EMT appears
not to be a necessary requirement for the establishment of metastasis, which implies
that the contribution of EMT to metastasis might be more nuanced than originally
thought [5]. In other words, it can motivate an even stronger shift in attention towards
cell clusters.

Overall, the experimental findings have opened up a complete new field of study
concerning relatively small cell clusters in relation to cancer metastasis and one that
looks very promising and is only just beginning to be further rationalised. In order to
explain the enhanced metastatic potential of CTC clusters a number hypotheses have
already been brought forward including for example the cooperation of heterogeneous
cell types within the CTC cluster, shielding from attacks by immune cells, and the
protection from pressures and shear forces in the bloodstream [3,8]. Still, much remains
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CHAPTER 1. INTRODUCTION

unknown about the genesis, transit and the settlement of CTC clusters during metastasis
[8].

It is clear that the whole process of metastatic colonization constitutes a number of
very different aspects (detachment, invasion, circulation and seeding) which by them-
selves already represent rich areas of research. In this work we will specifically focus on
the motion of cell clusters after they have detached from the primary tumor and seek
to migrate towards a blood vessel, i.e. the invasion of cells through the ECM. Addition-
ally, even if the crucial benefit of migrating as a cluster occurs in a different stage of
metastasis, an improved understanding of cluster motion immediately after detachment
can still contribute to the development of treatments that try to prevent cancer spread
directly at its source.

Thus, the aim of this thesis is to, from a physical point of view and using a com-
putational modeling approach, shed more light on the manner in which single cells and
cell clusters migrate through the ECM, thereby elucidating whether there is a possible
metastatic advantage for cell cluster migration. However, the ECM is a highly complex
environment and a complete representation is difficult within a model framework. We
will therefore use simplified representations of the ECM which seek to capture differ-
ent characteristics of the environment a cell (cluster) faces during invasion. These are
demonstrated in fig. 1.2. Initially, we represent the ECM as a homogeneous environ-
ment to exclusively study the effect of cell-cell alignment which has already implicated
a benefit of migrating as a cluster in other biological contexts involving larger cluster
sizes [17]. Next, we impose a gradient in stiffness to investigate durotaxis (transport
up such a gradient), which has also been shown to favor cluster over single cell migra-
tion [18, 19]. Since cell clusters often have to pass through small openings in the ECM
network, we also study the migration of clusters through a narrow pore, focusing on
experimentally relevant parameters such as adhesion of the cell with other cells or the
pore walls, and traction forces the cells generate when inside the pore [20, 21]. Cells
not only pass through the network, but continuously bind (and unbind) to the ECM as
well via so called focal adhesions (protein assemblies) [22, 23]. The final studied ECM
environment includes these focal adhesions explicitly. Moreover, we want to infer the
behavior of the focal adhesion by looking at it in more detail. Summarising, in this work
we want to compare single cell to cluster motion in four distinct biologically relevant
scenarios, which are shown in fig. 1.2, and observe when one is preferred over the other.

Specifically, we will use the cellular Potts model (CPM) to describe cell (cluster)
motion. Because cells are able to actively migrate, we extend the CPM with an active
matter theory; in particular, we describe the cells as (aligning) active Brownian particles
(ABPs). Within this description alignment is introduced via a Vicsek-like model. Since
stiffness has been experimentally linked to an increased cell speed and persistence, we
model durotaxis in the CPM via linear gradients in these cell properties [18, 19, 24–26].
Moreover, to improve the realism of the simulations we eventually include a narrow
pore and focal adhesions into the CPM via the inclusion of rigid obstacles and local
time-dependent energetic bonds respectively. By performing more detailed Langevin
Dynamics simulations of attachment of a cell membrane to the ECM, we can infer the
functional dependence of this energetic bond.

The report will be structured in the following manner. We start with discussing the
theory of active Brownian particles (ABPs), which will be extended by deriving the col-
lective motion of fast-aligning ABP clusters using a velocity alignment potential. Then,
we will introduce the cellular Potts model (CPM) and demonstrate how the theory of
ABPs and cell attachment via focal adhesions are implemented in the CPM. Next, we
discuss the implementation of the Langevin Dynamics simulations that have been per-
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Homogeneous Environment Durotaxis (stiffness gradient)

Narrow Passage Focal Adhesions

Cell 
Membrane

Figure 1.2: Schematic representation of the different ECM environments in which collective
cell motion has been investigated with the cellular Potts model (CPM). The inset shows a
visualisation of cell binding to a collagen fiber, which is examined with more detailed Langevin
Dynamics simulations.

formed to extract a potential describing cell binding via focal adhesions; particularly, a
description of the used cell membrane model and the interaction it has with a model
collagen fiber are mentioned. The trajectories of single cells and cell clusters have after-
wards been analysed and discussed for the four different considered biological scenarios.
Finally, we will summarise the main findings and provide an outlook how the research
can possibly be forwarded.
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2. Theory

In this chapter we introduce the theoretical models which have been used to describe cell
motion. Since biological cells are able to actively migrate, we will invoke so-called active
matter theory for this description. The main results, eqs. (2.10), (2.20) and (2.37), will
be confirmed with our cellular Potts model simulations.

2.1 Active Brownian Motion

Active particles are able to continuously consume energy and propel themselves with
directed motion. This renders them intrinsically far from thermodynamic equilibrium.
One of the most common models in the field of active matter is the so called active
Brownian particles (ABP). These particles undergo Brownian motion, while they si-
multaneously self-propel with an absolute speed v0 along their orientational axis, called
the director e(t). The director in turn also evolves in time t due to Brownian noise
and is parametrised by the polar angle φ(t) ∈ [0, 2π) in 2D and the spherical angles
φ(t) ∈ [0, 2π) and θ(t) ∈ [0, π) in 3D (see fig. 2.1 for a visualisation of the angles), such
that we have

e(t) =

(
cosφ
sinφ

)
, (2.1)

and

e(t) =

sin θ cosφ
sin θ sinφ

cos θ

 , (2.2)

respectively.

𝑦𝑦

𝑥𝑥

𝜑𝜑(𝑡𝑡)

𝒓𝒓(t)
𝑦𝑦

𝑧𝑧

𝑥𝑥

𝐞𝐞(t)

𝒓𝒓(t)

𝐞𝐞(t)

𝜑𝜑(𝑡𝑡)

𝜃𝜃(𝑡𝑡)

Figure 2.1: Visualisation in 2D and 3D of the position r(t) of an ABP and the director e(t)
that describes its direction of active motion. The latter has been described with the polar angle
φ(t) and the spherical angles φ(t) and θ(t) respectively.
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CHAPTER 2. THEORY

In the following subsections we will state the stochastic differential Langevin equa-
tions that describe active Brownian motion in both two and three dimensions for non-
interacting particles and derive the mean square displacement and velocity autocorrela-
tion function. These turn out to correspond to a persistent random walk. Afterwards,
we will also demonstrate that in two dimensions the center-of-mass motion of two rapidly
aligning identical active Brownian particles leads to similar results as the motion of a
single particle with twice as large a persistence time and generalise this idea to N rapidly
aligning particles. We finalise the section by discussing the case in which the aligning
particles are non-identical.

2.1.1 Non-Interacting Particles

Two Dimensions

The time evolution of the position r = (x, y) of a 2D active Brownian particle can be
captured by the following stochastic differential Langevin equation [27–29]

dr(t)

dt
= v(t) = v0e(t) +

√
2Dξ(t), (2.3)

while the dynamics of the angle φ (and thus e(t)) are described by [27,28]

dφ

dt
=

√
2

τ
ξφ(t). (2.4)

Here D denotes the diffusion coefficient that characterises translational Brownian mo-
tion, τ a rotational time scale, and ξ = [ξx, ξy] where ξα (α = x, y, φ) represents a
independent white noise stochastic process with zero mean, 〈ξα(t)〉 = 0, and delta cor-
relation, 〈ξα(t′)ξβ(t)〉 = δ(t′ − t)δαβ. Note that eq. (2.4) essentially describes a random
walk of the director e(t) on a unit circle.

Using techniques from stochastic calculus we can obtain the Fokker-Planck equation
corresponding to eq. (2.3) and eq. (2.4) for the probability density function P (r, φ, t) of
finding a particle at position r with orientation φ at time t [30]. The result is given by

∂P

∂t
=

1

τ

∂2P

∂φ2
+D∇2P − v0e ·∇P (2.5)

where e denotes the 2D director, eq. (2.1). Assuming the particle starts in the origin
with a random uniformly distributed orientation we can formulate the initial condi-
tion P (r, φ, 0) = δ(r)/2π. In order to find the mean square displacement (MSD) and
from that the velocity autocorrelation function (VAC) we can take the Fourier-Laplace
transform of eq. (2.5),

1

τ

∂2P̂

∂φ2
=
[
s+ iv0 (qx cos(φ) + qy sin(φ)) +D(q2

x + q2
y)
]
P̂ − 1

2π
(2.6)

where we adopted the notation P (qx, qy, φ, s) ≡ P̂ with qx, qy and s being the transfor-
mation variables of x, y and t respectively. The MSD is given by〈

r(t)2
〉

=

∫ ∫
r2P (r, φ, t)dφdr, (2.7)

where we have assumed that the particle starts in the origin r(0) = 0. Its Laplace
transform is〈

r2
〉

(s) = −
∫ [(

∂2P̂

∂q2
x

)
0

+

(
∂2P̂

∂q2
y

)
0

]
dφ, (2.8)
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CHAPTER 2. THEORY

with the subindex 0 denoting an evaluation of a function at qx = qy = 0, which will be
used throughout. If we then set qx = qy = 0 in eq. (2.6) we find an ordinary differential
equation which can be solved for P̂0. Furthermore, we can differentiate eq. (2.6) with
respect to qx or qy and use the result for P̂0 in order to find explicit expressions for

( ∂P̂∂qx )0 and ( ∂P̂∂qy )0. By repeating this process once more we can also determine (∂
2P̂
∂q2x

)0

and (∂
2P̂
∂q2y

)0 which can be inserted in eq. (2.8) to give

〈
r2
〉

(s) =
2v2

0τ

s2(1 + sτ)
+

4D

s2
. (2.9)

For an extended derivation of this result the reader is referred to appendix A.1. Taking
the inverse Laplace transform of eq. (2.9) we obtain〈

r(t)2
〉

= 2v2
0τ

2(e−t/τ + t/τ − 1) + 4Dt, (2.10)

which corresponds to a persistent random walk. In particular, the result shows that the
MSD consists of a normal diffusive part characterised by the diffusion coefficient D and
a persistent part which is characterised by a persistence time τ and an active diffusion
coefficient Dp ≡ v2

0τ/2. Specifically, the motion is diffusive (MSD ∝ t) with diffusion
coefficient D at very short time scales t� τ , ballistic (MSD ∝ t2) at intermediate time
scales t ≈ τ and again diffusive with an increased diffusion coefficient D + Dp at long
time scales t� τ .

Finally, we can retrieve the VAC which is given by [31]

〈v(t) · v(0)〉 =
1

2

∂2

∂t2
〈
r2
〉

(t) = v2
0e
−t/τ (2.11)

where v(t) denotes the velocity of the particle. Note that this relation assumes the VAC
to be both translationally invariant and symmetric in time.

Three Dimensions

In three dimensions the translational dynamics of an active Brownian particle are de-
scribed in a similar matter as in two dimensions (eq. (2.3)), with the modification that
we extend to three dimensions and therefore r = [x, y, z] and ξ = [ξx, ξy, ξz], while for
e(t) we need to insert eq. (2.2). The Langevin dynamics of the angles becomes less
trivial and is given by [32]

dθ

dt
=

√
1

τ
ξθ(t) +

1

2τ tan(θ)
, (2.12a)

dφ

dt
=

√
1

τ

1

sin(θ)
ξφ(t), (2.12b)

where we have introduced an additional independent stochastic process ξθ(t). This
describes a random walk of the director e(t) on the unit sphere characterised by a
rotational time scale τ .

Note that there is no spatial dependence in eq. (2.12), since we assume an isotropic
environment and no interaction between particles. This means that we can also focus
only on the probability density function of finding a particle with a specific orientation
at a time t, i.e. P (θ, φ, t). Applying techniques of stochastic calculus to eq. (2.12) we
find that the corresponding Fokker-Planck equation reads [32]

∂P (θ, φ, t)

∂t
= − ∂

∂θ

(
P

2τ tan(θ)

)
+

1

2τ

∂2P

∂θ2
+

1

2τ sin2(θ)

∂2P

∂φ2
. (2.13)
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It will become apparent that the so called marginal probability density P̃ (θ, t), i.e.
P (θ, φ, t) integrated over φ, already suffices to retrieve the MSD and VAC. We therefore
integrate eq. (2.13) over the polar angle φ to obtain its Fokker-Planck equation, which
reads [32]

∂P̃ (θ, t)

∂t
= − ∂

∂θ

(
P̃

2τ tan(θ)

)
+

1

2τ

∂2P̃

∂θ2
. (2.14)

Since the motion is isotropic we can assume that without loss of generality the initial
direction of motion is always in z-direction [32] and we therefore have as an initial
condition that P̃ (θ, 0) = δ(θ) with δ(θ) the Dirac delta function. Applying separation of
variables and using the initial condition allows us to solve the Fokker-Planck equation
to yield

P̃ (θ, t) =
sin(θ)

2

∞∑
l=0

(2l + 1)Pl(cos(θ)) exp(−l(l + 1)t/2τ), (2.15)

where Pl(x) are Legendre Polynomials [33]. For a more detailed derivation of this result
the reader is referred to appendix A.2. Since the initial direction is in the z-direction we
have e(0) = (0, 0, 1). The autocorrelation function of the director can then be calculated
as

〈e(t) · e(0)〉 =

∫ 2π

0

∫ π

0
cos(θ)P (θ, φ, t)dθdφ =

∫ π

0
cos(θ)P̃ (θ, t)dθ = exp(−t/τ), (2.16)

where only the l = 1 term contributes to the integral.
We can now integrate the Langevin equation (eq. (2.3)) that describes the particle

dynamics with respect to time t, i.e.

r(t)− r(0) =

∫ t

0

(
v0e(t′) +

√
2Dξ(t′)

)
dt′. (2.17)

Assuming that the particle starts in the origin, i.e. r(0) = 0, we can find an expression
for the MSD by taking the square and subsequently the ensemble average of eq. (2.17),

〈
r(t)2

〉
=

∫ t

0

∫ t

0

(
v2

0

〈
e(t′) · e(t′′)

〉
+ 2D

〈
ξ(t′) · ξ(t′′)

〉)
dt′dt′′, (2.18)

where we made use of the fact that the spatial stochastic processes are independent of
the angular ones so that 〈e(t) · ξ(t)〉 = 〈e(t)〉 · 〈ξ(t)〉 = 0.

Since we have 〈ξ(t′) · ξ(t′′)〉 = 3δ(t′ − t′′) (with δ(t) the Dirac delta function), and
givien that the system is isotropic such that we have time translational invariance, we
can simplify eq. (2.18) to

〈
r(t)2

〉
= 2v2

0

∫ t

0

∫ t′

0

〈
e(t′ − t′′) · e(0)

〉
dt′′dt′ + 6Dt. (2.19)

By inserting eq. (2.16) and solving the integrals we arrive at〈
r(t)2

〉
= 2v2

0τ
2(e−t/τ + t/τ − 1) + 6Dt. (2.20)

This result is almost similar to the MSD for 2D active Brownian motion (and thus
also describes a persistent random walk), except for the fact that the extra dimension
adds a factor of two to the normal diffusive process (4D → 6D). Also, note that

8
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the v0-dependent contribution to the MSD from the active motion is independent of the
dimension; the active diffusion coefficient is therefore effectively smaller, i.e. Dp ≡ v2

0τ/3.
Finally, we can retrieve the VAC from the MSD as before via [31]

〈v(t) · v(0)〉 =
1

2

∂2

∂t2
〈
r(t)2

〉
= v2

0e
−t/τ (2.21)

which coincides with the 2D result [eq. (2.11)].

2.1.2 Alignment

Two Aligning Particles

We will now consider a 2D system of two identical active Brownian particles that try
to align the direction of their velocities with each other. The translational equation of
motion of both particles is still described in the same way as for a single non-interacting
particle,

dri(t)

dt
= vi(t) = v0ei(t) +

√
2Dξi(t), (2.22)

where i = 1, 2 labels each particle and ξi = [ξxi , ξyi ]. A velocity alignment mechanism
can then be included in the system via an angular dependent interaction potential
U(φ1, φ2), such that the rotational equation of motion becomes [34,35]

dφi
dt

= −η ∂U
∂φi

+

√
2

τ
ξφi(t), (2.23)

with η depicting a relaxation constant that controls how fast the alignment takes place.
Analogous to spin systems, we can introduce an alignment mechanism via a potential
defined by [34]

U(φ1, φ2) = −λ cos(φ1 − φ2), (2.24)

where λ denotes the coupling strength. This potential has a minimum when both parti-
cles point in the same direction (φ1 = φ2), while it exhibits a maximum when particles
are pointing in the opposite direction (φ1 = −φ2). It should also be mentioned that
in many descriptions of systems involving alignment, a cutoff radius is introduced such
that the alignment potential only applies to particles being within each other’s cut off
radii. [34, 35]. However, relating the particles to cells that stick together (due to adhe-
sion), we can assume that they always remain sufficiently close together to align with
one another and therefore neglect this cutoff effect, which would otherwise complicate
an analytical description dramatically. Inserting our alignment potential, eq. (2.24),
into eq. (2.23) we retrieve the following angular evolution equations for both particles

dφ1

dt
= −η sin(φ1 − φ2) +

√
2

τ
ξφ1(t), (2.25a)

dφ2

dt
= −η sin(φ2 − φ1) +

√
2

τ
ξφ2(t), (2.25b)

where we have absorbed the constant λ into η.

9



CHAPTER 2. THEORY

We can define the center of mass of both particles as R = (r1 + r2)/2, leading to the
following time evolution

dR(t)

dt
=

(
v0 cos

(
φ1 + φ2

2

)
cos

(
φ1 − φ2

2

)
+

√
D

2
(ξx1(t) + ξx2(t))

)
x̂

+

(
v0 sin

(
φ1 + φ2

2

)
cos

(
φ1 − φ2

2

)
+

√
D

2
(ξy1(t) + ξy2(t))

)
ŷ,

(2.26)

where we have written out the vectors e1,2 and ξ1,2 explicitly with x̂ and ŷ denoting
the unit vectors in the x- and y-direction respectively. Additionally, we have used the
trigonometric sum-to-product rule to rewrite the sums of sines and cosines as a product.
Let us now assume that alignment between the particles occurs very rapidly. This implies
that the difference between both angles will remain very small, i.e. |φ1 − φ2| � 1.
(Strictly speaking we assume that |(φ1 − φ2) mod 2π| � 1, but since we apply the
approximation only to a cosine function additional factors of 2π do not alter the results).
Retaining only terms up to first order in φ1− φ2 allows us to approximate the equation
of motion of the center of mass as

dR(t)

dt
≈

(
v0 cos(φcm) +

√
D

2
(ξx1(t) + ξx2(t))

)
x̂+

(
v0 sin(φcm) +

√
D

2
(ξy1(t) + ξy2(t))

)
ŷ.

(2.27)

Here we have introduced φcm ≡ (φ1 + φ2)/2 which describes the average direction of
both particles. Combining both equations of eq. (2.25) thus yields for the orientation in
the center-of-mass frame,

dφcm
dt
≈
√

1

2τ
(ξφ1(t) + ξφ2(t)) , (2.28)

where both sines have cancelled out.
Finally, since the zero mean stochastic processes ξα are independent and delta

correlated, we can effectively replace a sum of these variables by a single one via
(ξα(t) + ξβ(t)) →

√
2ξγ(t). The additional factor

√
2 ensures that the correlation will

remain the same. We can implement the replacement in eq. (2.27) and eq. (2.28) (in-
troducing new labels for ξα) which results in

dR(t)

dt
≈
(
v0 cos(φcm) +

√
D(ξxcm(t)

)
x̂ +

(
v0 sin(φcm) +

√
D(ξycm(t)

)
ŷ. (2.29)

and

dφcm
dt
≈
√

1

τ
ξφcm(t). (2.30)

Comparing these with eq. (2.3) and eq. (2.4) we can see that the equations of motion
governing the center-of-mass motion are almost identical to the ones describing a single
non-interacting active particle. The only required modification is that we replace τ → 2τ
and D → D/2. In other words, the motion is identical to a single non-interacting
active Brownian particle which has twice the persistence time but only half the diffusion
coefficient (assuming that the center of mass of the two particles starts in the origin,
i.e. R(0) = 0, and the average angle φcm is uniformly distributed). Furthermore,
motivated by biological cells sticking together, we have assumed the particles to remain
close together, which implies that the center-of-mass motion is approximately the same
as the motion of both individual particles.
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Generalisation to N Aligning Particles

Interestingly, the line of reasoning presented above can also be generalised to a system
of N aligning identical particles. Assuming that each particle aligns with all the other
particles via eq. (2.24), we can write the alignment potential for a set of N particles as

U({φi}) = −λ
∑
j,k

cos(φj − φk), (2.31)

where {φi} denotes the set of N angles that describe the direction of motion for all
particles i and the sum is taken over each possible particle combination j, k. This
consequently results in the following angular evolution equation for particle i (again
absorbing λ into η)

dφi
dt

= −η
N∑
j=1

sin(φi − φj) +

√
2

τ
ξφi(t). (2.32)

Based on eq. (2.3), the center of mass of all particles, i.e. R = 1
N

∑N
i=1 ri, obeys the

following stochastic differential equation

dR

dt
=

N∑
i=1

((
v0

N
cos(φi) +

√
2D

N
ξxi(t)

)
x̂ +

(
v0

N
sin(φi) +

√
2D

N
ξyi(t)

)
ŷ

)
. (2.33)

Again we can assume that all the particles will align very fast and hence the difference
between each pair of angles will remain very small, i.e. |φi − φj | � 1 for all i, j. (We
actually assume |(φi − φj) mod 2π| � 1, but factors 2π do not influence the proposed
approximation). However, instead of rewriting the sum of sine and cosine terms in
eq. (2.33) with several trigonometic identities and using the fast-aligning approximation,
we can also provide a more intuitive argument to simplify these sums. Since all involved
angles are almost equal, all the directors ei will point in almost the same direction. We
can therefore approximate the sum of the N directors by N vectors which all point in
the average direction of the directors. In other words we can replace

∑N
i=1 cos(φi) →

N cos(φcm) and
∑N

i=1 sin(φi) → N sin(φcm) in eq. (2.33) where φcm ≡ 1
N

∑N
i=1 φi. A

visualisation of this approximation for N = 2 is shown in fig. 2.2.
Furthermore, realising that the zero mean stochastic noise terms ξα are independent

and delta correlated, we can substitute a single stochastic variable instead of a sum of
N stochastic variables, provided we add a factor

√
N in front of it to have a consistent

correlation. In total this allows us to simplify eq. (2.33) as

dR

dt
=

(
v0 cos(φcm) +

√
2D

N
ξxcm(t)

)
x̂ +

(
v0 sin(φcm) +

√
2D

N
ξycm(t)

)
ŷ. (2.34)

Furthermore, the time evolution of φcm can be formulated using eq. (2.32) giving

dφcm
dt

=
1

N

√
2

τ

N∑
i=1

ξφi(t), (2.35)

where again all the alignment terms cancel against each other. As already mentioned,
we can replace the sum of the stochastic noise terms by a single one which yields

dφcm
dt

=

√
2

Nτ
ξφcm(t). (2.36)
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𝒆𝒆1

𝒆𝒆1
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𝑥𝑥

Figure 2.2: Visualisation of the approximation for N = 2 particles in which we replace the sum
of both particle’s directors e1,2 = (cos(φ1,2), sin(φ1,2)) by two times the director with the average
angle of both. This director is denoted ecm = (cos(φcm), sin(φcm)) with φcm = (φ1 + φ2)/2. We
have used φ2 − φ1 = π/9; it can be seen that the approximation is still reasonably accurate.

The resulting equations governing the motion of the center of mass (and thus of the
entire cluster of N particles), i.e. eq. (2.34) and eq. (2.36), are again similar to the
equations that describe a single active particle (eq. (2.3) and eq. (2.4)). The only
difference lies in the fact that the persistence time increases linearly with the number of
particles τ → Nτ , while the diffusion coefficient decreases with the number of particles
D → D/N . Summarising, we note that the center-of-mass motion of a cluster of N
fast-aligning ABPs is characterised by a cluster persistence time τcm, passive diffusion
coefficient Dcm, and active diffusion coefficient Dp,cm, which are given by

τcm = Nτ, Dcm = D/N, Dp,cm = v2
0Nτ/2. (2.37)

Based on the above discussion we conclude that fast alignment of more particles
will increase the persistence of the total cluster of particles, allowing it to move more
directionally, but at the cost of a decrease in the translational diffusion coefficient.
However, if the motion is mostly dominated by the active motion (Dp � D) the decrease
in the diffusion coefficient will hardly influence the overall motion. This implies that
aligned clusters can, on average, cover more distance than single particles within a given
timeframe, provided the particles are active enough, i.e. v0 is sufficiently large. Relating
the ABPs to CTC cells, we link this to an increase in metastatic success of the cluster.

It should also be stated that the argument presented above is not necessarily bound
to the potential given in eq. (2.31). Aside from the requirement that the particles must
align sufficiently quickly, we only need all alignment contributions to the time evolution
of φcm to cancel out. In other words we require

−η
N∑
i=1

∂U

∂φi
= 0. (2.38)

On a final note we should keep in mind that this process does eventually hit an upper
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limit with respect to the number of particles N . Since we neglect a cutoff radius in the
interaction potential, we assume all particles directly align with all other particles. This
assumption will eventually break down when too many particles are involved.

Non-Identical Particles

Up until this point we have assumed that all particles involved are identical. We can
extend the analysis to a set of N quickly aligning non-identical active particles in several
ways. For instance we can let all particles travel at different velocities v0 → v0,i or
make the degree of alignment explicitly particle-dependent. The latter implies that we
substitute η → ηi and λ→ λj,k (with λj,k = λk,j) in eq. (2.23) and eq. (2.31) respectively.
However, we will refrain from exploring these options in too much detail. Firstly, letting
the particles travel at different velocities will eventually lead to interparticle distances
that are larger than the interaction range of the particles which will make the alignment
between particles disappear. Since the proposed model neglects a cutoff radius, we
assume all particles will always align, which makes it insufficient to describe this type of
behavior. Secondly, introducing λj,k will not change the equations governing the center-
of-mass motion: all alignment terms are still canceling out, i.e. eq. (2.38) still applies.
This gives the same results as discussed before. By introducing a particle-dependent
relaxation constant ηi, however, eq. (2.38) will not be valid anymore. In particular
letting η → ηi in eq. (2.32), we find that the time evolution of φcm obeys

dφcm
dt

= − 1

2N

N∑
i=1

N∑
j=1

(ηi − ηj) sin(φi − φj) +

√
2

Nτ
ξφcm(t). (2.39)

Nonetheless, for sufficiently small (φi − φj) (or (φi − φj) mod 2π)), the sine term in
eq. (2.39) will become negligible and we recover the same results as for identical particles,
eq. (2.36)). Overall, a larger variety in relaxation constants thus also requires stronger
alignment for the assumptions to be valid and retrieve the previously discussed results
for identical particles.

The only unexplored option left is to have each particle move with different persis-
tence times, i.e. we replace τ → τi. This implies that instead of eq. (2.35) we now have

dφcm
dt

=

√
2

N

N∑
i=1

√
1

τi
ξφi(t). (2.40)

We can again replace the sum of stochastic variables by a single stochastic variable but
due to the factor 1/

√
τi inside the sum this becomes less straightforward. Let us define

β(t) ≡
∑N

i=1

√
1
τi
ξφi(t), for which it is clear that we have 〈β(t)〉 = 0. The correlation

function is given by

〈
β(t)β(t′)

〉
=

(
N∑
i=1

1

τi

)
δ(t− t′), (2.41)

where we have used the fact that all stochastic processes ξφi(t) are independent and
delta correlated. An inspection of eq. (2.41) shows that we can replace β(t) by a single

stochastic variable, provided we add the factor
(∑N

i=1
1
τi

)1/2
in front of it. This is done
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to keep the correlation the same as in eq. (2.41). Therefore, we can write

dφcm
dt

=

2
(∑N

i=1
1
τi

)
N2

1/2

ξφcm(t) ≡
√

2

τcm
ξφcm(t), (2.42)

where we have defined the persistence time of the center-of-mass motion via τcm ≡
N2
(∑N

i=1
1
τi

)−1
. Note that when all persistence times are equal (τi = τ), we recover

the linear increase of the persistence time with the number of particles (τcm = Nτ)
which makes it consistent with the previously found result.

It is now interesting to see how a variety in persistence times compares to the case
in which all particles are identical and share the same persistence time. In fact it can
be shown that for each set of N persistence times {τi > 0} we have (see appendix A.3)

N2

(
N∑
i=1

1

τi

)−1

≤ N 〈τ〉 , (2.43)

with 〈τ〉 = 1
N

∑N
i=1 τi the average persistence time of the set and the equal sign cor-

responding to a constant τi = τ . This result shows that spreading out the individ-
ual persistence times of particles (keeping a constant average) will always decrease the
center-of-mass persistence time τcm. In other words, alignment is less effective in terms
of increasing τcm when individual particles travel with a different persistence.

Finally, let us consider whether the inclusion of one less persistent particle among
the aligning particles can cancel the benefits of alignment of the total cluster. Suppose
we have N fast aligning particles, N − 1 of which have an individual persistence time
τl, and one particle has a smaller persistence time τs < τl. The persistence time of the
center-of-mass motion is then given by

τcm = N2

(
N∑
i=1

1

τi

)−1

=
N2τsτl

(N − 1)τs + τl
. (2.44)

The effect of collective alignment will be canceled when τcm = τl, in that case, we find

τs =
τl

N2 −N + 1
. (2.45)

The obtained value for τs thus presents a critical value above which the cluster has a
persistence time larger than τl, which means that the cluster moves more persistently
than individual cells. Below this value we have τcm < τl such that the cluster will
move with less persistence than the individual cells. Note that for large N we have
τs ∼ τl/N

2 → 0 and a single particle is not able to disturb the collective motion of a
large cluster. However, since N is typically not large for CTC clusters, this effect is not
negligible.
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3. Numerical methods

In this chapter we first introduce the Cellular Potts Model (CPM) which has been used
for numerical simulations of cell dynamics, and discuss the extensions to the originally
proposed model that we have made use of throughout this report. We will introduce a cell
membrane model which describes in more detail a part of the cell of approximately the
same size as the resolution of the CPM. This is followed by a description of the numerical
methods used to simulate the interaction between the introduced model membrane and
a collagen fiber which in total will serve as our model system for the formation of a
focal adhesion in time. The chapter is concluded by a discussion of several details of the
implementation of the numerical focal adhesion model. However, for a full description
the reader is referred to appendix B.

3.1 Cellular Potts Model

The cellular Potts model (CPM) has been introduced by Graner and Glazier in 1992
to model cell sorting and test the differential adhesion hypothesis [36–38]. Since then
it has been successfully applied to a wide variety of biological phenomena involving
for instance blood vessel network formation, cancer cell invasion, and collective cell
motion [39–41]. Before we proceed and walk through the original model and the used
extensions, we mention that in the descriptions of the CPM, we make use of several cell
related properties such as cell center of mass for instance. These properties are fairly
intuitive and in order to improve readability, formal definitions are not always provided
throughout. For a list with all formal definitions of the cell properties the reader is
referred to appendix C.

3.1.1 Original Model

The CPM is a variation on the classic Potts model [42] and consists of spins σ(x) ∈ Z+,0

on a discrete square or cubic lattice (2D or 3D) with a lattice constant a whose sites
are characterised by their position in space x. Other lattices (hexagonal, triangular)
are also possible, but in this thesis we will only focus on the square and cubic one due
to their relatively easy computational implementation. Biological cells are represented
as domains of identical spin σ(x) ∈ N on the lattice, where the value of the spin σ
effectively serves as a cell identity or label (see fig. 3.1 for a visualisation of the CPM
cells). The medium or extracellular matrix (ECM) in or on which the cell resides, is
normally denoted with σ = 0. Furthermore, the medium (or ECM) and each of the
cells are assigned a biological cell type via a label c(σ) ∈ Z+,0. Again the label c(0) = 0
is generally reserved for the medium or ECM. Note that the original model places the
cells in a homogeneous environment since all non-cellular spins are denoted by σ = 0
and c(0) = 0. However, in later simulations presented in this thesis the medium/ECM
will consist of multiple elements for which the labels σ, c ∈ Z≤0 are reserved. This will
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be discussed in more detail in section 3.1.4.

Figure 3.1: Visualisation in 2D of CPM cells representing an experimentally observed circu-
lating tumor cell cluster (CTC cluster). Different colors represent different spins σ with the
medium (σ = 0) shown in white. Experimental figure is taken from [16].

Cell movement can then be imposed on the system via a modified Metropolis Monte
Carlo algorithm which operates with respect to a phenomenological Hamiltonian H;
the latter accounts for all physically relevant terms such as adhesion for instance. The
algorithm consists of the following steps [43]:

(i) Randomly choose a lattice site i. Call this site the candidate site and let σ(x) be
its spin value.

(ii) Randomly select one of the neighbors of site i. Call this site the target site and let
σ(x′) be its spin value. If σ(x) = σ(x′) proceed to step (v), otherwise proceed to
step (iii).

(iii) Calculate the change in Hamiltonian ∆H upon changing the candidate site value
from σ(x) to the target site value σ(x′).

(iv) Accept the spin-copy attempt with a probability p(σ(x)→ σ(x′)) = min(1, e−∆H/T ).

(v) Increment the number of copy attempts, update relevant parameters and go back
to step (i).

A visualisation of a spin-copy attempt is shown in fig. 3.2. The neighbors from
which can be chosen at step (ii) are the ones directly adjacent to the site i (see figs. 3.3a
and 3.3b). We employ an acceptance probability which follows a Boltzmann distribution
with a simulation temperature T . This choice ensures that the average time evolution
obeys an overdamped or Aristotelian force-velocity relation which we expect to be the
case for real-life biological cells moving through the ECM [43]. Moreover, we should
emphasise that the simulation temperature does not represent the actual temperature
since it is too low to induce significant fluctuations to a biological cell [43] [44]. Note
that this algorithm does not satisfy detailed balance and is not suited for systems in
thermodynamic equilibrium [43]. Since biological cells are active particles, the simulated
system is not expected to be in thermodynamic equilibrium and detailed balance is not a
necessary requirement, though it can be regained by modifying the algorithm (see [43]).
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Figure 3.2: Visualisation in 2D of the spin-copy attempt used in the modified Metropolis Monte
Carlo algorithm. If the proposed spin-copy lowers the Hamiltonian (∆H ≤ 0) we always change
the configuration, but for an increasing Hamiltonian (∆H > 0) the configuration can also stay
the same.

The originally proposed Hamiltonian is defined in terms of a volume constraint term
which ensures an approximate constant cell volume/area and a surface/line energy term
to account for cell-cell adhesion [36,37]:

H = Hvolume +Hadhesion = λv
∑
σ

(Vσ − Vσ,0)2 +
∑
x,x′

Jc(σx),c(σx′ )
(1− δσx,σx′ )

|x− x′|
, (3.1)

where Vσ and Vσ,0 are the volume/area (number of lattice sites with σ(x) = σ) and ideal
volume/area of cell σ respectively, λv represents the strength of the volume constraint
and the first sum is taken over all cell spins σ > 0. For the adhesion term the sum is
taken over all neighboring sites x, x′ with Ji,j(= Jj,i) denoting the adhesion coefficient
between cell types i and j, while δi,j corresponds to the Kronecker delta which ensures
that only lattice site pairs of different cells contribute to the surface energy.

In comparison to the original Hamiltonian we add a factor |x− x′| in the denominator
of Hadhesion to account for the fact that a larger distance between neighbors gives a
weaker contribution to the interface energy (Hadhesion). Moreover, we are free to choose
different neighborhoods around each lattice site which will contribute to the sum in
Hadhesion. In this thesis we have chosen the neighborhoods which are shown in figs. 3.3c
and 3.3d for the 2D and 3D case, respectively, which from now we will refer to as the
adhesion neighborhoods.

So far we have set up the manner in which a system is able to evolve within the CPM.
The only thing it lacks in order to actually quantify cell dynamics is a time measure
for the system. Normally, the Monte Carlo Step (MCS) is used to this end which is
defined as Nl elementary Monte Carlo steps or copy attempts, with Nl the total number
of sites in the lattice [36, 37, 44]. This method ensures that on average each lattice site
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Figure 3.3: Visualisation in 2D and 3D of the adjacent neighbors from which one is randomly
chosen in de modified Metropolis algorithm (a-b) and the neighbors that contribute to the
adhesion term of the Hamiltonian Hadhesion (c-d). Neighborhoods are shown in orange and
correspond to the lattice site i in the center of the grid (lattice site is not visible in 3D).

is updated once every MCS. The advantage of it is that we decouple the time step from
the actual system size [44].

To save computation time we have slightly deviated from this definition of the time
measure without changing the underlying principle. Since we seek to simulate small
groups of cells or even single cells, they will mostly take up only a small portion of the
entire lattice; that is, a large amount of the Nl copy attempts will involve medium/ECM
(σ = 0) surrounded on all adjacent sides by medium/ECM which will not change the
configuration of the system when attempting a spin-copy (σ(x) → σ(x′)). In order
to skip these attempts and thereby save computation time, we make a list of all the
(candidate) sites, which have at least one adjacent neighbor with a different spin (so
they are able to change the system configuration), and randomly select one of these sites
at step (i) in the modified Metropolis algorithm. Our time measure, the MCS, will then
be defined as the amount of copy-attempts equal to the number of sites in the list. This
ensures that on average each lattice site is updated once every MCS, which is consistent
with the original definition of the MCS. We therefore expect no substantial difference
in time evolution when using either definition of the MCS.

Note that this does require that we update the list of candidate sites after every
update (σ(x)→ σ(x′)) which implies that the amount of copy attempts a MCS consists
of also changes after each time step. One must therefore keep in mind that when the
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candidate list becomes too large relative to the lattice size (the system becomes too full),
the computational gain of attempting fewer moves can be undone by the computational
loss of updating the list at each attempt. For the simulations presented in this thesis,
however, the newly proposed time measure has sped up simulation time significantly.

Finally, as mentioned earlier, the CPM in its original formulation has only been
applied to model cell sorting. In order to adapt it to a broader variety of different
biological systems and specify cell characteristics, the CPM has been extended over
recent decades. The use of the Hamiltonian H allows for large flexibility since we can
implement additional effects via extra energy terms including e.g. preferred anisotropic
cell shapes. In the following subsections we will introduce the extensions to the CPM
that have been used throughout this research.

3.1.2 Activity and Persistence

Cell dynamics in the CPM are controlled by the Hamiltonian H. In its standard form
presented in eq. (3.1) the dynamics will only arise from fluctuations in the cell volume
and interfacial surface. As a result the cells do not experience any directional bias. In
real life however, cells are able to actively move and experience biased motion. This
can be an intrinsic characteristic of the cell (active cell motion) or guided via external
signals in its environment. An example of the latter is the tendency for cells to bias
their motion towards a concentration gradient often referred to as chemotaxis. It can
be included in the CPM by incorporating an additional energy bias ∆Hc in the change
of the Hamiltonian ∆H (calculated at step (iii) in the Metropolis algorithm) [46–48]:

∆Hc = −λc
(
C(x)− C(x′)

)
, (3.2)

where C(x) is the local concentration of the chemicals that drive chemotaxis at position
x and λc > 0 denotes the relative strength of the chemotactic motion. Since the direction
of motion during a copy attempt is x−x′, we can see that moving up the gradient leads
to a negative energy bias (making the move more favorable) and vice versa.

Similarly, one can also incorporate an additional energy bias ∆Hp to model active
motion of cells, which makes copy attempts that move the cell in its preferred internal
direction more likely. We can implement the bias as [41,45,49]

∆Hp = −
∑

i=σ(x),σ(x′)

κi
(
∆Ri(σ(x)→ σ(x′)) · pi

)
. (3.3)

Here pi denotes the polarity (unit) vector of cell i, i.e. the direction in which the cell
wants to move, ∆Ri(σ(x) → σ(x′)) is the center-of-mass displacement of cell i as a
consequence of the proposed copy attempt and κi > 0 is the relative strength of active
motion which effectively controls the speed of cell i. Note that κi can be chosen to
depend on the local position of the attempt x. This will be important when simulating
durotaxis, where we let this value increase linearly in space to impose a cell speed
gradient. Thus, when ∆Ri(σ(x)→ σ(x′)) is parallel to its preferred direction, we have
∆Hp < 0 which makes the move more likely. In other words, there is bias along pi. We
also mention that only cells are allowed to perform active motion and therefore the sum
in eq. (3.3) only applies to σ(x), σ(x′) > 0, i.e. we assume the ECM to be inactive.

Implementing cell activity via eq. (3.3) does not differentiate between the ways cells
are able to actively move when surrounded by other cells or when they are surrounded
by the medium or ECM. In general cells are able to actively move by pulling on their
surroundings via extending and retracting structures like filopodia, lamellipodia or pseu-
dopodia (actin filled protrusions of the cell membrane) [50,51]. In the case of a cell-cell
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contact these protrusions have been shown to be inhibited, hence the ability to pull is
decreased [52–54]. Furthermore, we can imagine that when both cells mostly pull on
each other (instead of a substrate in 2D for instance), they will move very little since
their applied forces will balance (provided the cells are able to roughly generate the
same amount of force which we can expect for cells of the same type). This notion is
supported by recent experiments on cell monolayers and small cell clusters which seem
to suggest that the traction forces the cells apply to move around are for the most part
located at the cell cluster edges and less traction is visible between cells [18,19,55,56] (see
fig. 3.4 for more details). We can therefore also assume that active motion will be more
apparent and easier when cells are in contact with the medium or ECM, rather than
places where they border on other cells. Taking this into account we can reformulate
the activity energy bias as follows

∆Hp =


−κσ(x)∆Rσ(x)(σ(x)→ σ(x′)) · pσ(x), if σ(x) > 0 ∧ σ(x′) ≤ 0

−κσ(x′)∆Rσ(x′)(σ(x)→ σ(x′)) · pσ(x′), if σ(x′) > 0 ∧ σ(x) ≤ 0

0, otherwise

, (3.4)

where we neglect the active energy bias for moves that involve two cells (σ(x), σ(x′) > 0).
This implies that cells are only able to actively move at places where they are in contact
with the medium/ECM; cells within the bulk (completely surrounded by other cells) do
not perform active motion.

Defining ∆Hp by eqs. (3.3) and (3.4) thus allows us to study two extremes in the
manner in which cells can travel collectively: one where active forces are completely fo-
cused at cell cluster edges, and one where they are focused on every cell edge. Moreover,
note that when simulating a single cell there is no distinction between both formulations
of the active energy bias.

Tractions 𝑇𝑇𝑥𝑥

(a) (b)

Figure 3.4: Heat maps of experimentally measured traction forces the cells exert on the under-
lying collagen coated substrate gel. Results correspond to a monolayer of cells (a) and a small
cluster of three cells (b). Both images show that traction forces are more concentrated at cluster
edges. Results are taken from [18,55].

So far we can impose a direction of motion and velocity on the cells via pi and
κi respectively. Instead of travelling in a constant direction, however, isolated cells in
the absence of signals often exhibit persistent motion in experiments. This means that
the direction of motion remains roughly constant over a time scale characterised by the
persistence time τp, but eventually reorientates into a different (random) direction. It
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has been shown that single cell motility in 2D can be accurately described by a persis-
tent random walk (PRW), i.e. eq. (2.10), which originates from self-propelled (active)
persistent motion [57, 58]. Although this description is not valid anymore for 3D single
cell motion, we note that the correct description in 3D involves an anisotropic persistent
random walk model where two persistent random walks for a primary and nonprimary
direction of motion of the environment are combined [58].

Overall it seems to be a logical starting point to implement the description of a
persistent random walk into the CPM. Since we have determined that active Brownian
motion leads to persistent random walks in both 2D and 3D and originates from self-
propelled persistent motion (see section 2.1), we can draw a parallel between the cell
polarity vector pi which controls the direction of the cell velocity and the director e(t)
describing the direction of particles performing active Brownian motion. Similar as
before, we describe each polarity vector in terms of a polar angle φi in 2D using

pi(t) =

(
cosφi
sinφi

)
, (3.5)

and in terms of the spherical angles φi and θi in 3D using

pi(t) =

sin θi cosφi
sin θi sinφi

cos θi

 . (3.6)

Discretising the Langevin dynamics of the relevant angles used for active Brownian
motion, i.e. eqs. (2.4) and (2.12), we can find updating rules for the angles describing
pi. In 2D this leads to

φi(t+ ∆t) = φi(t) + ∆t

(√
1

2τ
Γ(∆t)

)
, (3.7)

and in 3D to

θi(t+ ∆t) = θi(t) + ∆t

(√
1

τ
Γ(∆t) +

1

2τ tan(θi(t))

)
, (3.8a)

φi(t+ ∆t) = φi(t) + ∆t

(√
1

τ

1

sin(θi(t))
Γ(∆t)

)
. (3.8b)

Here ∆t describes the timestep of the update which we set to 1 MCS. This means that
after every MCS we update the involved angles using the above updating rules. The
persistence time is again denoted with τ (given in units of MCS) and Γ(∆t) is a random
number drawn from a Gaussian distribution with zero mean and a variance equal to ∆t,
which represents a discretised version of the stochastic noise variable ξα. Note that the
persistence time can also be made cell and position dependent: τ = τ(σ,x). This will be
required when simulating durotaxis, where we let this value increase linearly in space.

3.1.3 Vicsek Alignment

We have seen that with the update scheme given by eqs. (3.7) and (3.8), we can incor-
porate a model description of a persistent random walk into the CPM via reorientations
of the polarity vectors pi. A physical interpretation of this vector can be sought in how
the cytoskeleton is organised. It has for instance been suggested that polarity of a cell
can be given by the vector connecting the cell nucleus to the centrosome [59]. More
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generally, there at least seems to exist some intrinsically chiral structure in the cell that
is responsible for the polarity [59]. The reorientation of the cell polarity over time can
then for example be directly linked to a continuous reorganisation of this chiral structure
which is known to occur for the cytoskeleton.

Although we will not go into further detail about the actual molecular details re-
sponsible for the reorientation of this chiral structure, it is reasonable to assume that
when cells are in contact with each other they are able to influence the chiral structure
(and thus the polarity vector pi) of the other cells. A manifestation of this interaction
between cells is that when cells are in contact with each other they tend to align their
respective polarities towards each other. We model this numerically with an adaptation
of the well known Vicsek model [60, 61]. The implementation is done by extending the
updating rules presented in eqs. (3.7) and (3.8) to

φi(t+ ∆t) = atan2
(
P iy(t), P

i
x(t)

)
+ ∆t

(√
1

2τ
Γ(∆t)

)
, (3.9)

in 2D and

θi(t+ ∆t) = arccos

(
P iz(t)

|Pi(t)|

)
+ ∆t

(√
1

τ
Γ(∆t) +

1

2τ tan(θi(t))

)
, (3.10a)

φi(t+ ∆t) = atan2
(
P iy(t), P

i
x(t)

)
+ ∆t

(√
1

τ

1

sin(θi(t))
Γ(∆t)

)
, (3.10b)

in 3D. Here we have defined

Pi(t) ≡ γpi(t) +
∑
j(i)

pj(t), (3.11)

(and its cartesian components P iα(t), α = x, y, z) where the sum is taken over all cells j
that are in direct contact with cell i (cell neighbors); with direct contact we mean that
there is at least one site with spin i which has an adjacent neighbor (figs. 3.3a and 3.3b)
with spin j. The trigonometric functions atan2 and arccos simply give the polar and
spherical angles corresponding to the vector Pi(t) and effectively replace the variables
φi(t) and θi(t) which are the polar and spherical angles corresponding to pi(t). Note
that using the cell neighbors slightly deviates from the original formulation of the Vicsek
model which aligns all particles within an interaction radius.

In our model the polarity vector pi thus takes the direction of Pi(t) after each time
step and the weight factor γ controls the relative contribution of pi to Pi(t) and is
therefore a measure for the degree of alignment. In particular, we can notice that when
γ →∞ only pi(t) contributes to Pi(t) which implies that the alignment disappears and
we regain eqs. (3.7) and (3.8). Also, when γ = 1 the polarity vector pi takes the average
direction of itself and its neighbors after each update and we have perfect alignment.
This is how the alignment in the original Vicsek model is defined [60,61].

Interestingly, it has been demonstrated that in the limit of fast angular relaxation,
the 2D Vicsek model, i.e. eq. (3.9), is equivalent to the continuum description of angular
alignment given by eq. (2.25) [34, 35]. This means that by implementing the Vicsek
model we can draw a comparison between the numerical simulations and the theoretical
results given in section 2.1.2.
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3.1.4 Heterogeneous Environment

In its original formulation, the cells in the CPM are placed within or on a uniform
medium (or ECM) which is labeled with a spin σ = 0 and a cell type c(0) = 0. Motivated
by experimental cell trajectories, we have then introduced an active energy bias and
random reorientations of the polarity vector pσ to represent a total average effect that
the ECM has on cell migration. In reality, however, the ECM in or on which cells reside is
a highly complex environment consisting primarily of a network of macromolecules such
as collagen. When migrating through the ECM, cells might have to squeeze through rigid
and narrow parts of the network or have to degrade or remodel part of it. Additionally,
cells are able to bind to the network by forming focal adhesions. In order to capture
part of this complexity and study cell (cluster) motion in more detail, we seek to extend
the description of the CPM environment in two ways.

Firstly, we include unmovable obstacles to represent rigid parts of the ECM which
cells cannot overtake (degrade) and which are too stiff for them to remodel. These will be
used to model narrow pores that cells have to squeeze through. In particular, we define
the immutable CPM site to represent rigid materials which the cell cannot pass through.
It is labeled with a spin σ = −1 and is assigned the cell type c(−1) = −1. The distinction
between σ = 0,−1 rests in the fact that we immediately reject an attempt where the
candidate site is an immutable site (σ(x) = −1) such that it cannot be replaced and stays
intact during the simulation. In comparison, we do proceed with moves where the target
site is an immutable site (σ(x′) = −1). The immutable obstacle is, however, not allowed
to grow and therefore we always propose to change the candidate site value (σ(x)) to
zero when the target site value is σ(x′) = −1, corresponding to a local retraction of the
cell. Furthermore, we neglect adhesion between both non-cellular elements (σ = 0,−1)
so that we have J−1,0 = 0, but do allow for different adhesion coefficients between a
cell and both non-cellular elements so that cells for instance adhere more easily to the
immutable sites.

For the second extension we introduce focal adhesions into the CPM where the
model cells bind to the environment (ECM) via a local energetic bond. For this we do
not define an additional spin, but instead assign an adhesion label to each site on the
lattice which is depicted as χ(x) and can take a value of either zero or one. The adhesion
label then determines whether or not an energetic bond (focal adhesion) is formed when
a cell takes over a site: if χ(x) = 1 a new bond is formed, otherwise no bond is formed.
Therefore, we will refer to the sites for which χ(x) = 1 as binding sites.

To implement this behavior in the CPM, we include an additional term to the Hamil-
tonian, eq. (3.1), via

H = Hvolume +Hadhesion +Hbinding, (3.12)

where we have introduced the total binding energy as Hbinding =
∑

xE(tx) with the sum
taken over all binding sites x which have a cellular spin σ(x) > 0 so an actual bond has
formed at these sites. The binding energy of each individual site is given by E(tx) ≤ 0.
This individual binding energy has a time dependence tx which takes into account that
a focal adhesion can develop over time due to receptors (integrins) in the cell membrane
that assemble at the location of the bond thereby strengthening the bond. The variable
tx measures the time (in units of MCS) since the bond has first formed at site x keeping
track of how old each bond is and how much the bond has matured. Also, note that the
individual binding energy E(tx) is only a function of time which implies that we assume
that the bond energy is independent of the location on the lattice and the same for each
cell.
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The added effect of Hbinding to the simulation then comes from the fact that each
time we propose a move where a cellular spin is copied to a binding site or is being
replaced at it, we add or remove the relevant individual binding energies E(tx) which
leads to shifts in H. In other words detaching the cell from the binding site costs
energy and can become more difficult over time, while attaching to the binding leads
to an energy gain. Moreover, we want to highlight the three scenarios in which these
processes can take place. At first, suppose we have an accepted spin-copy attempt that
involves a binding site x with a cellular spin value of σ(x) > 0 that is replaced by a
target site (adjacent neighbor) which has a spin σ(x′). If the target site is non-cellular
(σ(x′) ≤ 0) the cell at site x retracts and the bond is broken. This means that the
relevant E(tx) is removed from the total binding energy Hbinding. However, when the
target site represents a different cell σ(x′) > 0, the bond is broken but immediately
replaced by a new one with the other cell. As a consquence we substitute E(tx) by
E(tx = 0), i.e. tx is reset to zero and the bond has to mature again. Finally, a cellular
target site can also copy its spin to a binding site x with non-cellular spin and create
a new bond at this site without removing a previous one. As a result we add a new
binding energy E(tx = 0) to Hbinding.

Thus, we can interpret the proposed implementation as cells sliding over the binding
sites, while they are able to continuously attach to and detach from them. This means
that the implementation can only be applied to 2D CPM simulations for which it makes
sense that cells are able to pass over or along a binding site which it occupies. Naturally,
we can link it to cells that move on a substrate where they can attach to the subtrate
at specific locations. However, it may also serve as a simplification of 3D cell motion
inside a network of (mostly) collagen fibers, i.e. the actual ECM. The simulation then
represents a plane section through a 3D structure where the binding sites represent
adhesion sites of the network (fibers) on either side of the cells where they can form a
focal adhesion.

On a final note, we mention that we refrain from providing an actual form of the
individual binding energy as function of time E(tx) at this point. Instead we seek to
find the functional form of this function via less coarse grained Langevin Dynamics
simulations. This is discussed in more detail in section 3.2.

3.1.5 Connectivity

In the original CPM the possibility exists that one cell or the medium to fragment
another cell into multiple pieces. A simple example of such a fragmentation is depicted
in fig. 3.5a. When simulating for long times and at high enough temperature this can
eventually lead to a large and unphysical amount of small fragments. Since we neglect
cell division in our simulations, which circulating tumor cells are not expected to undergo
when travelling to a secondary site [7,14–16], we adopt the algorithm presented in [43].
This forbids cell fragmentation entirely via a local connectivity test. Additionally, the
algorithm also ensures that the cells remain simply connected which is also more realistic
for cells in non-pathological situations [43]. Moves in which cells will become multiply
connected are therefore forbidden as well (see fig. 3.5b for such a move). The connectivity
algorithm consists of the following two steps:

(1) Check the local connectivity of the candidate cell at site i (candidate site). If it is
locally connected or σ(x) ≤ 0, proceed to the following step. If not, go to the final
step of the algorithm.

(2) Check the local connectivity of the target cell at site i (target site). If it is locally
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connected or σ(x′) ≤ 0, proceed to the following step. If not, go to the final step of
the algorithm.

Note that the candidate cell is the domain on the lattice with σ = σ(x) and the target
cell the domain on the lattice with σ = σ(x′). Moreover, the connectivity algorithm
only needs to be applied to cells and therefore if either the candidate or target site has
non-cellular spin value (σ ≤ 0) we always proceed. The connectivity constraint can then
be implemented by inserting these two steps in between steps (ii) and (iii) of the original
algorithm (see section 3.1.1).

𝑖𝑖 𝑖𝑖

(a)

𝑖𝑖 𝑖𝑖

(b)

Figure 3.5: Schematic representation in 2D of (a) fragmentation of a cell and (b) simply
connected cell becoming multiply connected by changing the spin at site i. The cell is shown
in orange and the medium in white. Both moves are forbidden due to the imposed connectivity
constraints. Note that if the white sites denote another cell, the second process also leads to
fragmentation of this cell.

For the local connectivity test we will make use of the domains around the relevant
candidate site i depicted in fig. 3.3. The test comes down to checking if all adjacent
neighbors of site i (figs. 3.3a and 3.3b) with the same spin value as the tested cell
(candidate or target) are connected to each other via paths in the adhesion neighborhood
(figs. 3.3c and 3.3d) [43]. If this is the case, then the local connectivity is positively
checked. The test effectively checks whether or not site i connects at least two local
separate domains of the tested cell or not. With this information we can thus find out
whether the candidate cell is locally cut in multiple pieces or if locally separate target
cell domains are attached to each other by the attempt. Finally, the use of a local
connectivity check saves much computing time in comparison to a global one in which
we go over the entire cell and test whether it remains connected.

3.1.6 Shape Constraints

As shown in the Hamiltonian H, we seek to model cell-cell attachment via the adhesion
coefficient Ji,j . In particular, by setting the adhesion coefficient between cells (J1,1)
[letting all cells have the same type c(σ > 0) = 1] to a small enough value relative to
the one between cells and the medium (J0,1), it becomes energetically more favorable
for cells to form a surface with other cells instead of with the medium. However, when
this difference becomes too large or the cell-cell adhesion J1,1 becomes negative, the
cells will be able to easily create interfacial area with the other cells which can lead to
a disintegration of the cell shape (see fig. 3.6a). This is clearly unphysical behavior. To
prevent it from happening, we impose a shape constraint on the cells that forces the

25



CHAPTER 3. NUMERICAL METHODS

cells to have a circular or spherical shape. We can interpret the constraint as a bending
rigidity of the cells and formulate it in the form of an energy bias given by [62]

∆Hr =


λr
(
rσ(x) −

∣∣x−Rσ(x)

∣∣) , if σ(x) > 0 ∧ σ(x′) ≤ 0

−λr
(
rσ(x′) −

∣∣x−Rσ(x′)

∣∣) , if σ(x) ≤ 0 ∧ σ(x′) > 0

−λr
((
rσ(x′) −

∣∣x−Rσ(x′)

∣∣)− (rσ(x) −
∣∣x−Rσ(x)

∣∣)) , if σ(x) > 0 ∧ σ(x′) > 0
.

(3.13)

Here λr denotes the relative strength of the constraint and rσ is the preferred radius of
cell σ so that its area or volume fits precisely in a circle or sphere respectively. |x−Rσ|
denotes the length of the vector that points from the center of mass of cell σ, i.e. Rσ,
to the location of the candidate site x and can be seen as a local cell radius at the site
x. Note that the function only applies to cells (σ > 0). The added effect of eq. (3.13) is
shown in fig. 3.6.

We can explain the form of the energy bias by noting that during each attempt we
want to replace the candidate site value σ(x) by the value of the target site σ(x′). This
means that the candidate cell locally retracts at its location x, while the target cell
locally extends towards x. The bias checks whether or not the extension or retraction
moves the local cell radius (|x−Rσ|) towards or from the preferred radius of the cell
rσ. It then gives a negative energy bias for moves towards the preferred radius making
them more favorable. The strength of the energy bias scales with the difference between
the local and preferred cell radius; that is, when this difference is large, the cell is more
deformed and is therefore more likely to move towards the preferred radius.

(a) (b)

Figure 3.6: Visualisation in 2D of the final cell configurations of a 2 cell cluster after 500 MCS.
Simulations are performed for a standard set of parameters except for a zero adhesion coefficient
between cells (J1,1 = 0). (a) Only the original Hamiltonian, eq. (3.1), and connectivity constraint
have been used. (b) Same settings as (a) but including the circular shape constraint, eq. (3.13).

Finally, we mention that this constraint is not necessarily limited to a circular or
spherical shape. By introducing an angular dependence in the preferred radius, other
shapes can be obtained as well. Note that the input angles for the preferred radius are
the ones that correspond to the vector x−Rσ. Moreover, the angles can even be taken
relative to each cell’s polarity vector pi, which can make it more consistent with the
notion of an intrinsic chiral structure of the cell. For convenience, however, we will only
impose a circular or spherical shape on the cells.

26



CHAPTER 3. NUMERICAL METHODS

3.1.7 Initialization and Equilibration

Before each simulation we will also have to define a starting configuration for the cells.
Because of computational convenience, we have begun each simulation by defining equal
square or cubic domains (2D/3D) of unique spins σ > 0 representing the cells. The
size of these domains, i.e. number of lattice sites they consist of, will define the ideal
area/volume of the cells (Vσ,0), implying that we let each cell have the same size. These
square/cubic domains are then placed next to each other in a predetermined configura-
tion. This means that the cells will always start being attached to at least one other
cell with one side of the square/cube and form only one cluster. A visualisation of such
a starting configuration for both a single cell and a cluster of nine cells are shown in
figs. 3.7a and 3.7b. Furthermore, placing the cells like this allows us to easily control
the starting position of the center of mass of each cell Rσ and by extension the center
of mass of the entire cluster Rc.

(a) (b) (c) (d)

Figure 3.7: Visualisation in 2D of the start configuration of a single cell and a small cluster of
9 identical cells before (a,b) and after (c,d) equilibration. Standard set of values have been used
for the relevant parameters.

The system is then equilibrated by running a simulation for 500 MCS in which we
only include the original Hamiltonian eq. (3.1) and the shape constraint eq. (3.13), while
neglecting all other energy biases and interactions with binding sites. This is done to
allow the cells to develop a more round and natural shape. After this time we redefine
Rc = 0 (which sets the coordinate system), assign (unless otherwise stated) polarity
vectors drawn from a uniform distribution to each cell and let the actual simulation
start from which the results can be analysed. An example in 2D of a single cell and a
cluster of nine cells after equilibration are shown in figs. 3.7c and 3.7d.
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3.2 Focal Adhesion

Focal adhesions are the machinery which cells employ to attach themselves to their
surroundings. Specifically, they are supramolecular complexes made of integrin receptors
which link the extracellular matrix (ECM) to the actin cytoskeleton of the cell [22, 23].
These complexes have assembled over time and typically have a size of the order 0.25−10
µm2 [63,64]. Since in our simulations the resolution of the CPM will fall within the same
order of magnitude as the size of a focal adhesion, we cannot describe the interaction of
cells with a substrate or with the ECM explicitly. This means that we have to replace
the actual interaction with an effective potential as mentioned in section 3.1.4. Instead
of making a(n) (educated) guess about the precise form of this potential we seek to
inform the potential from a less coarse grained and therefore more detailed simulation
using Langevin Dynamics. In this simulation we will look at a model cell membrane
consisting of both receptors and non-receptors which in time will attach to a cylinder
fixed in space and floating above the membrane. This cylinder will represent the collagen
fiber (binding site). Assuming the bond strength increases linearly with the amount of
receptors attached to the cylinder (collagen fiber), the form of the potential can then be
retrieved by tracking the amount of attached receptors in time.

3.2.1 Cell Membrane Model

The cell membrane is a two dimensional fluid which host a variety of lipid molecules
and proteins. Since these lipids are amphylic particles, they self-assemble into mono-
or bi-layer membranes when emersed in an aqueous solution [65]. This gives rise to the
two-dimensional nature of the membrane that due to its fluid state has a continuously
changing geometry. The most detailed approach of modelling a biological membrane is
by performing an atomistic simulation where each individual atom or molecule in the
system is taken into account [66]. However, in order to access larger length and time
scales, which allows for better averaging, a coarse-grained model is preferred. In this
case course-graining refers to the process in which a number of lipids is represented
by a single bead, thereby decreasing the number of degrees of freedom and reducing
computational costs. It remains, however, crucial that general membrane properties
keep intact after course-graining. Additionally, to decrease computational costs even
more, solvent molecules are treated only implicitly.

In this thesis we have used the coarse-grained, solvent-free and fluid-like membrane
model based on the work in [65] and [67] in order to describe the cell membrane which
attaches to a collagen fiber. The model describes the membrane as a one-particle-
thick fluid layer of spherical and axisymmetric particles. The axis of symmetry of each
particle corresponds to the lateral direction of the lipid molecules of which it consists.
This implies that the particles only carry five degrees of freedom, i.e. three translational
and two rotational. The particles interact with each other via a pairwise interparticle
potential given by

Uij(rij ,ni,nj) =

{
u(rij) + ε[1− φ(r̂ij ,ni,nj)], rij < rmin
u(rij)φ((rij ,ni,nj), rmin < rij < rc

. (3.14)

Here rij = ri − rj (with definitions rij = |rij | and r̂ij = rij/rij) denotes the distance
vector between the center positions of particle i (ri) and j (rj), while the unit vectors
ni and ni represent the axes of symmetry of particle i and j respectively (see fig. 3.8 for
more details). We define rmin = 21/6σ as the distance at the minimum of the potential,
which is based on the minimum of a 12-6 Lennard-Jones (LJ) potential, and rc = 2.6σ
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is the cut-off radius whose length is set to include up to second-neighbor interactions.
Both distances are defined in terms of the length unit of the system σ, i.e. the diameter
of the particles, and similarly the potential depth ε is described in terms of the energy
unit of the system kBT with kB the Boltzmann constant and T the temperature.

The total potential is separated in a distance dependent part u(rij) that forces parti-
cles to stick together and an orientation dependent part φ(r̂ij ,ni,nj) which substitutes
the hydrophobic effects of the lipids. The former of these is described by a two-branch
function given by

u(rij) =

{
ε[
(
rmin
r

)4 − 2
(
rmin
r

)2
], rij < rmin

−ε cos2ζ [ π(r−rmin)
2(rc−rmin) ], rmin < rij < rc

, (3.15)

where ε gives the depth of the potential. Furthermore, we can recognise that the repulsive
branch (rij < rmin) is given by a 4-2 LJ type potential. The classical 12-6 LJ potential
was found to not allow a fluid phase due to the steepness of the potential and therefore
the less steep 4-2 LJ potential is preferred. The attractive branch (rmin < rij < rc)
is a cosine function that decays to zero at the cutoff radius rc and whose exponent ζ
determines how rapidly the function tends to zero (fig. 3.9). It is therefore a measure of
the diffusivity of the particles.

Figure 3.8: Schematic representation of two coarse-grained beads with all relevant vectors and
angles displayed. θi,j denotes the angle that the the axes of symmetry ni,j make with the line
perpendicular to the connection vector rij , whereas θ0 depicts the spontaneous curvature angle
with respect to the same line. Figure taken from [67].

The orientation dependent function is given by

φ(r̂ij ,ni,nj) = 1 + µ[b(r̂ij ,ni,nj)− 1], (3.16)

where

b = (ni × r̂ij) · (nj × r̂ij) + sin(θ0)(ni − nj) · r̂ij − sin2(θ0). (3.17)

Here θ0 depicts the favorable interparticle orientations which determines the spontaneous
curvature of the model. The function b reaches its maximum of 1, when θi = θj = θ0

(see fig. 3.8 for θ0, θi and θj and fig. 3.9 for a plot of b). Maximizing b implies that
the total potential U is minimized and therefore the relative orientation θi = θj = θ0 is
most energetically favorable (fig. 3.9). This also allows us to interpet the parameter µ
as a weight of the energy penalty when the particles are disoriented from θ0 (see fig. 3.9)
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relating it to bending rigidity of the model membrane. Finally, to clarify the functional
dependence of b on its variables it is useful to confine all relevant vectors to a 2D plane
(fig. 3.8). In this case b reduces to

b = cos(θi) cos(θj) + sin(θ0)[sin(θi) + sin(θj)]− sin2(θ0). (3.18)

Thus, in total the model is described by a coarse-grained inter-particle interaction poten-
tial U(rij ,ni,nj) in which the three potential parameters ζ, θ0 and µ separately describe
three key characteristics of the membrane; namely diffusivity, membrane curvature, and
bending rigidity respectively.
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Figure 3.9: (a) Plot of the distance dependent function u as function for r/σ for different
values of ζ. (b) 3D plot of orientation function b as a function of θi and θj with θ0 = 0. It
shows the peak at θi = θj = θ0 = 0 and due to symmetry one at an equivalent configuration
with θi = θj = 180o. (c-d) Plots of the total interaction potential U with θ0 = 0 and ζ = 2 as a
function of r for different values of θi,j , keeping µ = 2 (c) and for different values of µ, keeping
θi = θj = 20o.

3.2.2 Fiber-Membrane Interaction

The introduced model above shows how the particles interact with each other to form a
cell membrane. However, it still lacks a description of how the membrane particles will
interact with the collagen fiber to form a focal adhesion. For simplicity, we model the
collagen fiber as a rigid cylinder that floats above the membrane and remains fixed in
space. To account for the excluded volume of the cylinder, we implement a repulsive,
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truncated and shifted Lennard Jones (12− 6) potential which is given by [68]

ULJ(r) = 4U0

[(
σ

r + ∆

)12

−
(

σ

r + ∆

)6

+
1

4

]
, r < 21/6σ −∆. (3.19)

Here r is the distance between the edge of the cylinder and the center of a membrane
bead, U0 is a measure for the interaction strength and σ the length scale of the system
(membrane particle diameter). Note that the factor ∆ = 0.5σ is added to ensure that
the potential already steeply rises (indicating a repulsive reaction) when the edge of a
bead approaches the edge of the cylinder. The constant in ULJ shifts the total potential
so that it becomes zero at r = 21/6σ + ∆. This has again been done to prevent jumps
in potential energy when r passes the value of r = 21/6σ+ ∆ which will otherwise cause
numerical problems with energy conservation.

Physically, a focal adhesion is formed via integrins in the cell membrane that are
able to bind to the collagen fiber and eventually cluster around it. Of course the cell
membrane consists of a large variety of components, but we will only distinguish be-
tween integrin and non-integrin particles. These will be indicated as receptors and non-
receptors respectively. Non-receptors will only repel the collagen fiber when it comes too
close (volume exclusion) and their interaction is solely described by eq. (3.19). On the
other hand, receptors (integrin particles) will also try to bind to the collagen fiber which
is described by a truncated and shifted Morse potential (see fig. 3.10 for a schematic
representation)

Umorse(r) = D0(e−2α(r−r0) − 2e−α(r−r0) − C0), r ≤ rc. (3.20)

Here r is again the distance between the edge of the cylinder and the center of a mem-
brane bead, D0 indicates the attractive strength, α the width of the potential and
r0 = 21/6σ − ∆ the point where the potential reaches its minimum. The value for r0

has been chosen such the minima of both potentials coincide and the interaction due
to the Morse potential becomes repulsive for r < 21/6σ − ∆ as well. The constant
C0 = e−2α(rc−r0) − 2e−α(rc−r0) shifts the potential to zero at the cut-off radius rc.

Finally, it should be stated that describing the attraction with a Morse potential is
preferred over a non-truncated Lennard-Jones potential since the width of the potential
can also be varied via the parameter α. This allows for more control over the range on
which receptor binding can take place, which is assumed to be an important aspect of
the physical biological system.

3.2.3 Langevin Dynamics

The movement of a cell membrane attaching to a collagen fiber has been studied by
means of Langevin dynamics simulations, which is a widespread approach to simulate
particle dynamics in complex (biological) systems [69] [70]. Langevin dynamics effec-
tively replaces solvent interactions by a friction force which slows down the particles
and a stochastic force due to random collisions with the surrounding solvent particles.
These effects keep the total temperature of the system constant and lead to the so called
Langevin equation of motion for the position ri of a particle i (membrane beads) [71]

mi
d2ri
dt2

= −∇iV (r1, ..., rN , t)− λ
dri
dt

+ ηi(t) (3.21)

where mi is the mass of the particle, ∇i the gradient operator working on coordinates
ri, λ the friction coefficient, V the total potential of the system (sum of the interaction
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Figure 3.10: 2D (yz-plane) schematic representation of the interaction between the membrane
and the collagen fiber. The mentioned potentials have been discussed in text.

potentials between all N particles) and ηi(t) a stochastic force. This force is a Gaussian-
distributed random vector with zero mean and correlation given by 〈ηαi (t)ηαi (t′)〉 =
2mikBTλδ(t− t′) for each of its cartesian components α = x, y, z [71].

By numerically solving the Langevin equations of motion for consecutive timesteps
∆t, we obtain the trajectory for each membrane particle i. Generating multiple runs
and using the retrieved trajectories, we are then able to determine the average number
of receptors that have bound to the cylinder (collagen fiber) Nbound(t), i.e. the receptors
that are within one particle diameter σ of the cylinder surface, as a function of time
t. As mentioned, we assume that the energy E(tx) of a binding (focal adhesion) site
in the CPM (see section 3.1.4) is expected to scale linearly with the amount of bound
receptors such that we have

E(tx) = βNbound(tx), (3.22)

with β a proportionality constant. This result states how the results we obtain from
the Langevin Dynamics simulations are inserted into the CPM in order to improve the
realism of the CPM environment and allow for more detailed simulations. Finally, we
highlight that the time origin t = 0 for each Langevin simulation is defined at the
timestep before the first receptor binds to the cylinder. This has been done because it
can take different amounts of time before the first receptors binds to the cylinder and
we are mainly interested in how the assembly of receptors at the cylinder takes place
(maturation of the focal adhesion) and not how long it takes before it is initiated.

3.2.4 Numerical Details

After introducing the relevant potentials and equation of motion of the membrane par-
ticles, we will now provide some numerical details with respect to the precise imple-
mentation of the simulations. At the start of each simulation, we place a total of 7020
membrane particles on a hexagonal lattice in the xy-plane at z = 0 and randomly label a
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chosen percentage of the membrane particles as receptors. The cylinder is placed above
the membrane such that its center is placed along the x-axis from [−35, 35] (slightly
smaller than the simulation box domain) at y = 0 and z = rcyl + rc with rcyl the radius
of the cylinder and rc the cut-off radius of the attractive Morse potential (eq. (3.20))
such that the membrane lies just within the attractive range of the cylinder.

Numerical time integration is performed in the isoenthalpic-isobaric (NPH) ensem-
ble for a total of 2 ∗ 106 timesteps which have been chosen at ∆t = 0.02τLJ with
τLJ = (mσ2/kBT )1/2 the time unit of the system (m denotes the mass of a membrane
particle). Within this ensemble the pressure is kept fixed by means of a Nose-Hoover
barostat [73] [74], while the volume (box size) fluctuates in time. This has been done
to incorporate the fact that the cell membrane is continuously bending and stretching
and thus a segment of the membrane, which has been modelled, is expected to change
in size over time, but tension in the membrane is assumed to be constant leading to a
constant pressure. Note that by performing a Langevin simulation we have also kept
the temperature fixed.

Furthermore, we repeat that membrane interactions with the solvent above or cy-
toplasm below it is only modeled implicitly via a stochastic force. This replacement
does, however, not take in to account that the fluids will exert a pressure on both sides
of the membrane which we assume to be in equilibrium and therefore tries to keep the
membrane at a fixed height. To account for this we have also applied a tethering force
to all the particles in the membrane during the simulation that ensures that the center
of mass of the entire membrane remains at z = 0. Additionally, rotational degrees of
freedom have been included for the membrane particles, because the potential between
them also depends on the orientation of the particles as well (see eq. (3.16)). Since the
particles are axisymmetric only two rotational degrees of freedom need to be added.

Finally, we indicate that the Langevin simulations have been carried out using
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [72]. This pro-
gram is able to numerically solve the Langevin equation for consecutive timesteps ∆t by
using the method described in [71]. For more details about the precise implementation
the reader is referred to the used LAMMPS script, which has been added in appendix B.
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The results of the CPM to describe and quantify collective cell migration will (mostly)
come in the form of the center-of-mass trajectories of the individual cells Rσ(t) and the
cell cluster Rc(t) as function of time, while the Langevin Dynamics simulations give the
trajectories of all particles in the membrane ri(t). In this chapter we briefly discuss how
we extract several important variables and functions from the trajectories which have
been used for the discussions in the next chapter.

4.1 Mean (Square) Displacement

The first quantitive analysis of stochastic processes in either experiments or simulations
is often carried out by calculating the mean square displacement (MSD),

〈
r(t)2

〉
, or

simply the average position, 〈r(t)〉. We can calculate both variables in several ways.
The first method is by taking an ensemble average over all performed trajectories which
translates to [75]

〈r(tn)m〉ens =
1

NT

NT∑
j=1

(r(j)
n − r

(j)
0 )m. (4.1)

Here tn = n∆t gives the time, which is specified via an integer n and the timestep

used in the simulation ∆t, r
(j)
n denotes the center-of-mass position of a particle or cell

at time n∆t corresponding to trajectory j, NT the number of trajectories and the
variable m = 1, 2 specifies whether we calculate the average position or MSD. Note
that each CPM simulation run leads to one trajectory for the cell cluster and hence
ensemble averaging of the cell cluster comes down to averaging over each separate run.
In comparison, for the Langevin Dynamics simulations mimicking focal adhesions, every
run creates a large amount of trajectories for the membrane particles; one for every
particle in the membrane. Thus, the averaging of membrane particles is done over all
particles and runs.

In order to perform proper statistical averaging a large number of trajectories is
required. Since we can only generate one trajectory per run for most CPM simulations,
this can lead to high computational costs. To circumvent this problem one usually
takes the temporal average over all possible discrete time intervals of particle trajectory
assuming that the system is time-translational invariant. The advantage of this method
is that a large number of points can be used for averaging. This results in [75]

〈r(tn)m〉time =
1

(N − n)

N−n∑
i=0

(ri+n − ri)
m, (4.2)

with N is the total number of timesteps taken in the trajectory. We denote both types
of averages differently and highlight that the theoretical average is always an ensemble
average.
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Furthermore, after temporal averaging an additional ensemble average can also be
performed over allNT trajectories in order to further improve the averaging and filter out
the possible influence of the fluctuations in the starting configuration of the simulation.
In total this combines eq. (4.1) and eq. (4.2) to give the time-ensemble-averaged mean
(square) displacement [75]

〈〈r(tn)m〉time〉ens =
1

NT (N − n)

NT∑
j=1

N−n∑
i=0

(r
(j)
i+n − r

(j)
i )m, (4.3)

with all variables specified earlier. It should, however, be stressed that temporal averages
only coincide with the ensemble average when the system is ergodic so that the temporal
average converges towards the ensemble average when N −→ ∞. This is not necessarily
true for all systems.

After retrieving the MSD it is also convenient to calculate the so called instant
diffusion coefficient. This is the diffusion coefficient that follows from assuming normal
diffusion and can therefore be calculated via [76]

Din(tn) =
〈
r(tn)2

〉
/2dtn, (4.4)

where d denotes the spatial dimension. The instant diffusion coefficient proves to be
a convenient tool to distinguish between anomalous (MSD ∝ tα, α 6= 1) and normal
diffusive motion (MSD ∝ t). In the case of anomalous diffusion it will either increase
(superdiffusion/ballistic motion) or decrease (subdiffusion) over time, whereas the dif-
fusion constant remains constant for normal diffusion. Additionally, it can demonstrate
transitions between types of diffusion over the course of time.

The average displacement is normally used to show if a particle experiences drift
over time. In order to quantify drift it is instructive to introduce the durotactic vector
index [24,77]

DI(tn) = 〈r(tn)〉 /v0tn, (4.5)

where v0 represents a reference speed against which the drift is compared, for example
the speed of the particle. The index thus provides the fraction of the drift velocity of
the particle relative to the chosen reference speed. Moreover, note that when we set
v0 = 1, eq. (4.5) simply gives the average drift velocity of the particle over time, which
means that it is proportional to this velocity.

4.2 Velocity Autocorrelation Function

The retrieved trajectories also allow us to determine the particle velocity at time t which
is calculated over a time period δ using [75,78]

v(t) =
1

δ
(r(t+ δ)− r(t)) . (4.6)

To be able to further study underlying mechanisms of the particle’s motion, one can
calculate the normalised velocity autocorrelation function which is defined as [75,78]

Cδv(t) =
〈v(t) · v(0)〉
〈v(0) · v(0)〉

. (4.7)

The involved averages can be taken in the same manner as described for the mean
(square) displacement in section 4.1. However, for time averaging we have to take into
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account that the velocity is defined over a time period δ which slightly limits the range
over which can be time averaged. In particular, the time average is given by

〈v(tn) · v(0)〉time =
1

(N − n− k)

N−n−k∑
i=0

v(ti+n) · v(ti), (4.8)

where we introduced the integer k which specifies the the time period δk = k∆t that is
used in the definition of the velocity, i.e. eq. (4.6).

The time average can also be used to find the average absolute velocity 〈v〉 during a
trajectory. Using the same adaptation as for eq. (4.8) we find

〈v〉time =
1

(N − k)

N−k∑
i=0

√
v(ti) · v(ti), (4.9)

which, similar to the MSD, can be further ensemble averaged over multiple trajectories as
well. Finally, in the case of more complex ECM-like environments, i.e. migration through
pores, we will also consider mean passage times through the pore and fragmentation
dynamics of the cell cluster.

Summarising, we have introduced several important statistical variables and how
they can be obtained from cell (or particle) trajectories. In the following chapter these
variables will be used to characterise and quantify (collective) cell motion, which allow
us to investigate the difference between single cell and cluster migration and indicate
when one is preferred over the other.
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5. Results and Discussion

After setting up the simulation details and the different variables that can be obtained
from them, this chapter will focus on analysing and discussing the results. We start
by performing single cell CPM simulations to see how the numerical results compare
to experimental single cell trajectories and ABP theory, and to establish which system
parameters govern the observed dynamics. Next, we will compare single cell motion to
the motion of small cell clusters, focusing on cell-cell alignment, durotaxis, and transport
through a narrow channel. We then present the results of the Langevin Dynamics
simulations in order to find the binding potential corresponding to the model focal
adhesion. The chapter is finalised by comparing single cell motion to collective motion
with explicit treatment of focal adhesions.

5.1 Single Cell Motion

Throughout this section we will discuss the results of both 2D and 3D CPM simula-
tions of single cells that travel through a uniform medium without binding sites and
analyse the cell center-of-mass trajectories Rσ(t) that follow from them. We are mainly
interested in controlling the active (persistent) motion of the cells and comparing it to
experimental cell motion in the absence of external signals. Therefore we have only
varied the implemented persistence time τ and the strength of the active energy bias
κ1 (which we denote κp for convenience) in our simulations. Other parameters have
been kept fixed. Specifically, for the 2D simulations we have set the simulation tem-
perature T = 1, the ideal area of the cell V1,0 = 64, the volume and shape constraint
strengths λv = λr = 1, and the cell-medium adhesion coefficient J1,0 = J0,1 = 1. In
comparison, for the 3D simulations we have set T = 1, V1,0 = 216, λv = 1, λr = 0.5 and
J1,0 = J0,1 = 0.4. We highlight that all the values of CPM parameters throughout the
chapter have been chosen such that, consistent with experiments, cells have a typical size
of ∼ 10µm, speed of ∼ 50µm/h and persistence time of ∼ 1h [18, 24, 79]. Additionally,
note that since each simulation involves only one cell, we have either spin σ = 0, 1 and
cell type c(σ) = 0, 1 in the relevant subscripts of the parameters. Finally, we mention
that all averages in this section have been retrieved via time-ensemble averaging over
multiple trajectories and that we neglect external signals, which implies that chemotaxis
has not been taken into account (λc = 0).

5.1.1 Two Dimensions

Let us first demonstrate how the strength of the active energy bias relates to the speed
of an individual cell. To study this we have run 20 single cell simulations of 20000 MCS
for different values of κp where we kept a constant cell polarity vector in the x-direction,
p1 = (1, 0). For clarity, we have visualised a part of one of the trajectories in fig. 5.1a. It
shows that, as expected, the cell moves in the x-direction but does so slightly erratically
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due to the fluctuations in cell shape and size. From the obtained trajectories we can
find the average absolute velocity 〈v〉 by time and ensemble averaging. Since we seek to
find the cell velocity due to the polarity, we choose a large value of δ = 1000 MCS in
the definition of the velocity (see eq. (4.6)). This is done to cancel out contributions of
’thermal’ fluctuations in the cell shape that we expect to influence results on short time
scales. It thus allows us to interpret the retrieved average absolute velocity 〈v〉 as the
intrinsic speed of the cell that results solely from the active energy bias.

The resulting velocities as a function of κp have been plotted in fig. 5.1b. It can
be seen that the average absolute velocity 〈v〉, i.e. the active cell speed, scales (almost)
linearly with κp. This makes sense because in the overdamped limit the velocity should
be proportional to the force or the gradient in the Hamiltonian and κp effectively controls
the absolute value of the polarity contribution to this gradient. Thus, we can control
cell speed relatively easily via κp.
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Figure 5.1: (a) Visualisation of a CPM cell and its trajectory where the cell experiences a
constant polarity along the x-axis with a strength κp = 5. (b) Plot of the average cell velocity
〈v〉 as a function of the strength of the active energy bias κp. Linear fit to the CPM simulation
results is shown as well.

Having established the relation between cell speed and the active energy bias, we
now want to investigate how the theory of active Brownian motion maps onto the CPM.
We therefore also allow the polarity vector to reorientate in time according to eq. (3.7)
and have run 50 single cell simulations of 50000 MCS for different values of both κp
and the persistence time τ . The resulting trajectories are similar to the one shown in
fig. 5.1b except for the fact that the cell starts wiggle around more due to the changing
polarity (see fig. D.2 for 2D persistent cell trajectories). We can then calculate the
MSD for different values of τ and κp. To characterise the diffusive process we have
plotted the instant diffusion coefficients Din that follow from the calculated MSDs and
fitted the results with a PRW. This is demonstrated in fig. 5.2. It can be seen that the
results look well averaged and can be accurately fitted confirming that the MSD follows
a PRW. By plotting the instant diffusion coefficient we can clearly notice the transition
from an initial ’slow’ diffusive process (constant Din) via an intermediate ballistic regime
(increasing Din) to again a diffusive process with an increased diffusion coefficient in the
long time limit. This behavior is fully consistent with the theoretical description of
active Brownian motion.

Furthermore, each fit gives a persistence time τp (we add the subscript to distinguish
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the fitted persistence time from the implemented one which is done throughout this
chapter) and an active diffusion coefficient Dp (or active speed v0) that characterise the
motion of the cell. The resulting values of these parameters are plotted as a function of
both τ and κp in fig. 5.3. The first notable result is that the persistence time τ which we
implement in the CPM is (approximately) reproduced by the simulation data, i.e. by τp.
Additionally, the value of the persistence time is independent of the polarity strength
κp. Both results show that we can directly control the persistence time of an individual
cell within a CPM simulation by changing τ .
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Figure 5.2: Plots of the calculated instant diffusion coefficients Din = MSD/4t (markers) which
have been fitted using eq. (2.10) (lines). Results are obtained for (a) different implemented
persistence times τ with a fixed value of κp = 5 and (b) different polarity strengths κp with a
fixed value of τ = 500 MCS.

Regarding the active diffusion coefficient Dp, we can see that it scales linearly with τ
which is consistent with the definition of the active diffusion coefficient as introduced in
section 2.1.1. Besides depending on the persistence time, the active diffusion coefficient
should also scale quadratically with the speed of the relevant particle Dp ∝ v2

0. We
have already demonstrated that the active cell speed 〈v〉 scales linearly with κp so we
expect, linking 〈v〉 to the speed of an active Brownian particle v0, that Dp needs to scale
quadratically with κp as well. This notion is confirmed in fig. 5.3d. In particular by
replacing v0 with 〈v〉, the active diffusion coefficient is assumed to obey Dp = 〈v〉2 τ/2.
An inspection of figs. 5.1, 5.3c and 5.3d shows that the obtained values for Dp agree
with this definition making all individual results consistent with each other as well.

The resulting fits also provide a value for the spatial diffusion coefficient D that
describes the passive Brownian motion. The retrieved values for D remain, however,
approximately the same upon changing both τ and κp. This makes sense since the
passive motion is expected to originate from ’thermal’ fluctuations in the cell volume
and shape, which are not influenced by these parameters.

Finally, it has been experimentally shown and theoretically predicted that the per-
sistent motion of cells (in the absence of signals) originates from self-propelled move-
ment [57, 81]. An important hallmark of self-propelled movement on the underlying
statistics of the trajectories is represented by the fact that the distribution of velocities,
defined over a time period δ (see eq. (4.6)) of the same order as the persistence time,
should show gaps in the center of the distribution [57,81].

To test if the implementation of active Brownian motion in the CPM also captures
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Figure 5.3: Persistence time (a-b) and active diffusion coefficient Dp (c-d) obtained from fitting
the calculated MSDs with eq. (2.10). Values are retrieved for different implemented persistence
times τ and strengths κp, while fixing κp = 5 and τ = 500 MCS respectively. Moreover, the
results are compared to or fitted with the theoretical results of active Brownian motion.

the correct underlying statistics, we have plotted the distribution of velocity compo-
nents vx and vy for different time periods δ in fig. 5.4. The results correspond to the 50
trajectories that have been obtained for κp = 5 and τ = 500 MCS. These results demon-
strate that for short time periods we obtain a Gaussian velocity distribution which can
be explained from the fact that at short time intervals the cell jiggles around a little
due to shape fluctuations but is not greatly influenced by the active energy bias. When
increasing the time period δ to the same value as the persistence time, we can see the
expected gap in the center of the velocity distribution appear. Specifically, at these time
intervals the cells have mostly moved actively without changing direction yet, which im-
plies that they have not been able to (possibly) reverse back to their original location.
Thus, velocities relatively close to zero become less likely and we observe a gap in the
distribution around the origin. For larger time periods δ beyond the persistence time,
cells have been able fully reorientate their polarity direction several times. Therefore we
expect that the cell displacements and therefore the velocity distribution becomes ran-
dom again. This is confirmed by the Gaussian velocity distribution for δ = 3000 MCS.
On a final note, we highlight that the velocity distribution effectively represents the dis-
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tribution of cell displacements at a time δ, which is due to the definition of the velocity
in eq. (4.6); hence this distribution could have been equivalently used for the analysis
of the displacements.

In total, the presented results confirm that 2D active Brownian motion can effectively
be mapped onto the CPM and we can easily control the speed and persistence time of
individual cells with κp and τ respectively. Additionally, the underlying distribution of
velocities (or displacements) is consistent with experimental observations of persistent
motion originating from self-propelled motion.
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Figure 5.4: Plots of the distribution of the calculated cell velocities (vx vs vy) and histograms of
the distribution of the vx values that lie in between vy values depicted by the red lines for different
time periods δ. Results are obtained from trajectories for which we have used τ = 500 MCS
and κp = 5. To improve visibility we have only included a subset of the velocities in the upper
panels.

5.1.2 Three Dimensions

Based on the effective implementation of 2D active Brownian motion into the CPM,
we expect that extending the implementation to three dimensions will lead to similar
results. To be able to confirm this, we have run 20 single cell simulations of 50000
MCS for different values of both κp and the implemented persistence time τ . Using the
resulting trajectories we can again calculate the MSD for different values of τ and κp
and by extension the corresponding instant diffusion coefficients Din, which have been
plotted and fitted with a PRW. This is shown in fig. 5.5. The plots are similar to the
ones obtained in 2D (fig. 5.2) and we can clearly recognise the signature of a persistent
random walk, i.e. the transition from a ’slow’ diffusive process via an intermediate
ballistic regime to a diffusive process with an increased diffusion coefficient at the long
time limit. Moreover, the results are well averaged and can all be accurately fitted using
eq. (2.20).

41



100 101 102 103 104 105

Time (MCS)

10-3

10-2

10-1

100

D
in

=
M

S
D
/
6t

(a
2
/M

C
S
)

τ = 200

τ = 500

τ = 1000

τ = 2000

(a)

100 101 102 103 104 105

Time (MCS)

10-3

10-2

10-1

100

D
in

=
M

S
D
/
6t

(a
2
/M

C
S
)

p = 10

p = 20

p = 30

p = 40

(b)

Figure 5.5: Plots of the calculated instant diffusion coefficients Din = MSD/6t (markers) which
have been fitted using eq. (2.20) (lines). Results are obtained for (a) different implemented
persistence times τ with a fixed value of κp = 30 and (b) different polarity strengths κp with a
fixed value of τ = 1000 MCS.

From the fits shown in fig. 5.5, we can retrieve the persistence time τp and the active
and passive diffusion coefficients (Dp, D). Again, we will not go into much detail about
the spatial diffusion coefficient D, which, as expected, remains (approximately) constant
upon changing τ and κp. We attribute this to the fact that the values only influence the
active motion of the cell. More interesting are the τp and Dp which have been plotted as
a function of τ and κp in fig. 5.6. It can be seen that also in 3D the fitted persistence time
τp is (almost) equal to the implemented one τ and that it is not influenced by variations
in κp. Next we can notice the linear dependence Dp ∝ τ , which is consistent with the
theoretical definition of the active diffusion coefficient and a quadratic dependence of Dp

on the polarity strength κp. From similar simulations as in 2D we have determined that
the average absolute cell velocity 〈v〉 scales approximately linearly with κp in 3D as well
(see fig. D.1). Linking 〈v〉 to the speed of an active Brownian particle v0 and realising
that by definition Dp ∝ v2

0, the quadratic dependence is as expected. This implies that,
in a similar way as for 2D, we can effectively implement active Brownian motion in 3D
where the cell velocity and persistence time are controlled by κp and τ respectively.

Moreover, the velocity (or displacement) distribution is expected to behave similarly
in 3D as in 2D, since it originates from the same type of motion, and is therefore
not included. We mention that in experiments it has been shown that the velocity
distribution is in fact different in 3D, which has been explained by using two persistence
modes with distinct velocities and persistence times [58]. A proposed reason for this has
been attributed to local digestion of the extracellular matrix which creates pathways
where the cell can move easier and more persistently. This will, however, not be further
pursued within the present work.

Summarising, we have demonstrated the succesful implementation of active (Brown-
ian) motion into the CPM in both 2D and 3D. We will take this as the starting point for
most further investigations that will seek to compare single cell motion to the motion
of small cell clusters, since it allows for accurate control of individual cell properties.
Finally, we want to highlight that this implementation could also provide a good model
system for the study of a broader range of active (soft) materials and is not necessarily
bound to a description of biological cells.
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Figure 5.6: Persistence time (a-b) and active diffusion coefficient Dp (c-d) obtained from fitting
the calculated MSDs with eq. (2.20). Values are retrieved for different implemented persistence
times τ and strengths κp, while fixing κp = 30 and τ = 1000 MCS respectively. Moreover, the
results are compared to or fitted with the theoretical results of active Brownian motion.
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5.2 Alignment

Having introduced an effective implementation for the active and persistent motion
of individual cells, we now test how it translates to the motion of small cell clusters.
Initially, we will refrain from modeling the ECM explicitly, i.e. we have no spins σ < 0
and neglect a binding potential Hbinding, and we assume that the interaction with the
ECM only results in the cell’s velocity and the reorientation of the polarity vector pσ
over time. This simplified model allows us to focus exclusively on cell-cell alignment,
which we believe to be an important mechanism in order to have all circulating tumor
cells (CTCs) within the cluster travel in the same direction. The alignment of cells with
other cells in their vicinity has been pointed out in the context of wound healing where
it has been shown that migrating cells in a confluent cell layer are influenced by the
velocities of their neighbors [17]. As a result it is suggested that cells have a capacity
for neighbor-induced migration alignment which has been demonstrated to increase the
persistence of their motion [17].

However, the influence of cell-cell alignment on the migration of small CTC clusters
has so far not been studied, let alone rationalised. Therefore we seek to study this
influence within the CPM. In order to do so, we assume that in the context of CTC
clusters neighbor-induced migration alignment is also present. Since in our case cell
migration is primarily determined by the cell polarity pσ, we have modeled it using
the adaptation on the Vicsek model introduced in section 3.1.3, which tends to align
the polarity vectors of neighboring cells. As a consequence a parameter γ is added to
the model which denotes the degree of alignment between cells, i.e. γ = 1 gives perfect
alignment and γ →∞ results in no alignment [see eq. (3.11)].

In this section we will discuss the results of both 2D and 3D CPM simulations
involving cell clusters consisting of variable number of cells that tend to align with each
other by analysing the center-of-mass trajectories of the clusters Rc(t). For convenience
and because we are mainly interested in the effects of alignment, we have taken all
cells to be the same and thus of the same type, i.e. c(σ > 0) = 1. Our main control
parameters are the number of cells in a cluster Ncells and the degree of alignment via
γ; unless otherwise stated, we have kept the remaining parameters fixed. In particular
we have (in the case of two values for a given parameter the first corresponds to 2D
and second to 3D simulations): T = 1, λv = 1, λc = 0 (no chemotaxis), Vσ,0 = 64,
216, λr = 1, 0.5, J0,1 = 1.0, 0.4, J1,1 = 0.5, 0.2 (strong cell-cell adhesion), κσ = 5, 30
(depicting it κp again) and τ = 500 MCS. All retrieved averages are obtained via time-
ensemble averaging and that all results are obtained for clusters have remained intact
during the entire trajectory such that Rc(t) represents the translational time evolution
of the entire cluster (and thus also of every individual cell).

5.2.1 Individual Cell Activity

As discussed in section 3.1.2 we can allow for active motion to arise at the edge of each
individual cell or only at the edge of the cell cluster. We will start by considering the
former, i.e. we use eq. (3.3) in the CPM. With this setting we have run sets of 30 (2D)
and 20 (3D) simulations of 50000 MCS for cell clusters consisting of different amounts of
cells (Ncells) which align with γ = 1 (perfect alignment). From the resulting trajectories
we have calculated the MSD and the instant diffusion coefficient Din for different Ncells.
The latter has been plotted, including a fit with a PRW, in fig. 5.7. It can be seen that
the MSDs look well averaged and can still be accurately fitted by a PRW. At first glance
we can immediately notice that the effect of alignment looks to be similar for 2D and
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3D cluster motion; the fact that on small time scales Din decreases with Ncells can be
attributed to the increased size of the cluster that results in weaker relative fluctuations
in shape and size. We quantify this by plotting the fitted values of the passive diffusion
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Figure 5.7: Plots of the calculated (a) 2D and (b) 3D instant diffusion coefficients Din =
MSD/2dt for cell clusters consisting of a variable amount of Ncells cells (markers) which have
been fitted with a PRW using eq. (2.10) and eq. (2.20) respectively (lines). Results correspond
to γ = 1.

coefficient D in fig. 5.8. A power law fit of these results yields D ∝ N−0.8
cells and D ∝ N−0.9

cells

for 2D and 3D motion respectively. These results are almost consistent with theory of
2D fast-aligning ABPs, which predicts a power of −1 [see eq. (2.37)]. The deviations
are likely a result of the increased complexity of passive motion exhibited by the CPM
cell. It remains, however, interesting that a single passive diffusive process in the theory
almost captures this added complexity.
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Figure 5.8: Passive diffusion coefficient D for (a) 2D and (b) 3D motion obtained from fitting
the calculated MSDs with eq. (2.10) and eq. (2.20) respectively. Values are retrieved for clusters
consisting of a variable number of Ncells cells and correspond to γ = 1. Additionally, results are
fitted with a simple power law.

To further analyse the results, we have plotted the fitted cluster persistence time τp
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and active diffusion coefficient Dp for both 2D and 3D cluster motion in fig. 5.9. It can
be noted that both τp and Dp seem to increase approximately linearly with the number
of cells in the cluster Ncells (deviations are most likely the result of insufficient averaging
or small changes in the speed). Particularly, we can see that, in 2D, the obtained cluster
persistence times are (almost) consistent with the theoretical results of active Brownian
motion for N identical fast-aligning particles as discussed in section 2.1.2. The theory
predicts a linear increase with the number of particles N (cells) and therefore we expect
to find τp = Ncellsτ , which is confirmed in fig. 5.9a. Interestingly, the same behavior
is shown in 3D as well (see fig. 5.9c). This suggests that an extension of the theory of
fast aligning active Brownian particles to 3D is likely to give similar results as the 2D
model. Overall, it shows that within a more extended and detailed model setup the
effect of alignment still results in a linear increasing persistence time with the amount
of particles or in this case cells.
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Figure 5.9: Persistence time and active diffusion coefficient Dp for (a-b) 2D and (c-d) 3D
motion obtained from fitting the calculated MSDs with eq. (2.10) and eq. (2.20) respectively.
Values are retrieved for clusters consisting of a variable number of Ncells cells and correspond to
γ = 1. Moreover, the results are compared to or fitted with the theoretical results of 2D active
Brownian motion for fast-aligning particles, i.e. eq. (2.37).
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The linear increase in Dp with Ncells can also be explained by the theoretical results,
which state that for fast alignment Dp should scale linearly with the cluster persistence
time and thus by extension also with Ncells. This does assume that all cells (particles)
travel with equal speed so that the cluster speed is approximately the same as that of
a single cell independent of the cluster size. Cell clusters actually have a slightly larger
active speed than single cells. This is demonstrated in fig. 5.10, which shows the average
absolute velocity 〈v〉 as function of Ncells [calculated in a similar way as for a single cells
(see section 5.1)]. However, the a power law fit yields 〈v〉 ∝ N0.1

cells; hence there is only
a weak dependence that does not influence the persistent motion of the cluster much.
Moreover, we note that the results for Dp in 3D follow the behavior predicted for a 2D
system again.

Up until now we have imposed very fast alignment on the cells by setting γ = 1. In
order to test whether the degree of alignment significantly alters the results, we have
run similar sets of simulations as mentioned earlier but instead weakened the alignment
between cells by using γ = 50. The resulting trajectories allow us to calculate the MSD,
Din and the relevant fit parameters.
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Figure 5.10: Plot of the average cell velocity 〈v〉 as a function of the number of cells in a cluster
Ncells. Power law fit to the CPM simulation results is shown as well. Results correspond to an
active energy strength κp = 5.

Surprisingly, the variables appear not to have changed noticeably upon this decrease
in alignment and we find roughly the same results as for γ = 1 (see figs. D.3 and D.4).
This demonstrates that the alignment still seems to be rapid enough to find the theo-
retically predicted results. However, if we keep on increasing γ the alignment will not
be strong enough anymore. Inspecting several simulation visualisations has shown that
when γ passes a critical value, the cluster of cells quickly falls apart into single cells and
an analysis of the center-of-mass trajectory becomes meaningless. We can understand
this by realising that in the case of no or weak alignment cells often want to travel in
different directions (opposite polarity vectors) for long times and can then actively pull
themselves loose from the other adjacent cells. Furthermore, the disintegration suggests
that there exists a critical degree of alignment (γ value) beyond which alignment is
not sufficiently strong to keep the cluster together. This idea is further pursued in the
coming section 5.2.2 where we observe a sharp transition from an aligned towards a
non-aligned cluster state at a critical value of γ.

Thus, within the proposed model a CPM cluster can greatly benefit from alignment
by increasing the total persistence time. This means that a cluster has the ability to
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travel more directionally towards targets like blood vessels. It can also suggest that
when a cluster experiences an externally imposed polarity (through tracks in the ECM
for instance), it might be harder to let the cluster deviate from such a track.

Finally, we want to test what the effect of fast alignment is for a heteregeneous
cluster. Specifically, we want to know how one less persistent cell influences the motion
of the total cluster. This can be interesting since individual cells show a variety of
persistence times in experiments [58] and thus CTC clusters will likely consist of a
hetergeneous mixture of cells as well. As before, we have run sets of 30 CPM simulations
of 50000 MCS with γ = 1 (in 2D to be able to compare to theoretical results). However,
instead of changing the cluster size, we have kept it fixed by setting Ncells = 4 and
varied the implemented ’small’ persistence time (denoted τs) of one of the cells, while
the ’large’ persistence time of the remaining 3 cells (denoted τl) has been set at 1300
MCS.

From the simulation results we have calculated the MSDs for different τs which in
turn have been fitted with a PRW. The fitted cluster persistence times have been plotted
as a function of τs in fig. 5.11. We can see that the simulation data agrees well with
the theoretically predicted persistence time of a fast-aligned cluster of N = 4 particles
with one particle having a deviating persistence time, i.e. eq. (2.44). It shows that
the benefits of alignment can become much smaller or even non-existent by for instance
adding a cell with a small persistence to an existing cell cluster. We can understand
this by realising that a small persistence time corresponds to a rapid reorientation of
the cell’s polarity. If the reorientation becomes to fast, the cell will drag along other
cells towards this polarity as well, which results in a decrease of the cluster persistence.

0 200 400 600 800 1000 1200 1400
τs (MCS)

0

1000

2000

3000

4000

5000

6000

τ p
(M

C
S
)

Theory

Simulation

Figure 5.11: Plot of the fitted cluster persistence time τp, obtained from fitting calculated
MSDs with eq. (2.10), as a function of the implemented small persistence time τs. Red dotted
line denotes the theoretical prediction of fast-aligning active Brownian particles, i.e. eq. (2.44).

5.2.2 Collective Cell Activity

We will now seek to model the effects of cell-cell alignment in the other regime in which
active forces only occur at the edge of the cell cluster, i.e. we implement eq. (3.4). As
will become apparent, this formulation allows us to study cell-cell alignment over the
entire range of γ values, since cells seem to stick together more easily when we evaluate
an active energy bias only at the cluster edge. Based on the observed similarity between
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2D and 3D aligned motion in the previous section, which is expected not to change
upon changing the active energy bias, most presented results in this section correspond
to 2D cell motion for which it is less computationally expensive to acquire data. For
completeness, we do present some 3D results at the end of the section.

Two Dimensions

In order to study the influence of letting active forces only occur at the cluster edge,
we have run sets of 30 simulations of 50000 MCS for cell clusters consisting of different
amounts of cells (Ncells) which align with γ = 1 (perfect alignment) [see eq. (3.11)].
From the resulting trajectories we have calculated the MSD for different Ncells. The
corresponding instant diffusion coefficient Din has been plotted in fig. 5.12. The resulting
curves can still be accurately fitted with a PRW and are well averaged, but are noticeably
different from the ones obtained by implementing active motion at each cell edge (see
fig. 5.7a). The only feature that remains approximately the same between both plots, is
the value of Din on very short time scales. This makes sense because on that scale the
motion is not yet influenced by the active energy bias and the motion is purely a result
of the shape and size fluctuations.
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Figure 5.12: Plots of the calculated instant diffusion coefficients Din = MSD/2dt for cell
clusters consisting of a variable amount of Ncells cells (markers) which have been fitted with a
PRW using eq. (2.10) (lines). Results correspond to γ = 1.

To test how the results are affected by the redefinition of the active energy bias,
we have plotted the fitted values for τp and Dp that follow from the calculated MSDs.
This is shown in fig. 5.13. It can be seen that the persistence time of the cluster still
scales linearly with the number of cells in the cluster and thus gives the same behavior
as 2D active Brownian motion for fast-aligning particles. On the other hand we can
notice that Dp shows a much weaker increase with the number of cells in the cluster.
To illustrate this we have fitted the active diffusion coefficient which yields Dp ∝ N0.2

cells.
In the theoretical description of active Brownian motion we have seen that Dp ∝ v2

0τcm
with v0 the particle speed and τcm the persistence time of the cluster [see eq. (2.37)].
Since the fitted cluster persistence time increases linearly with Ncells, we can conclude
that the active speed of the cells (and thus of the entire cluster) decreases with Ncells. We
can understand this by imagining a cluster in which a cell in the center is completely
surrounded by other cells. Because we do not allow for active motion along cell-cell
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contacts, this cell is not able to perform active motion by itself and its velocity is purely
a result of being dragged along by the other cells. This will slow down the cluster and
leads to a smaller speed. In other words the more a cell is in contact with other cells,
the less it can actively move by itself and the more it needs to be dragged along by the
other cells. Since the amount of cell-cell contact relative to cell-medium contact increases
with cluster size, this effect becomes more dominant for larger cell clusters and therefore
we expect the decrease in the speed with Ncells. In comparison, we mention that even
though enclosed cells do not perform active motion, they still align their polarity vector
with their neighboring cells, which explains why the behavior of the cluster persistence
time remains the same, i.e. it grows linearly with Ncells.
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Figure 5.13: Persistence time and active diffusion coefficient Dp obtained from fitting the
calculated MSDs with eq. (2.10). Values are retrieved for clusters consisting of a variable number
of Ncells cells and correspond to γ = 1. Moreover, the results are (a) compared to theoretical
results of 2D active Brownian motion for fast-aligning particles, i.e. eq. (2.37), and (b) fitted
with a simple power-law function.

Interestingly, the decrease in velocity is not so strong that the active diffusion coeffi-
cient of the cluster decreases with Ncells as well. It seems that the linear increase of the
cluster persistence time dominates over the decrease in cell speed, which is somewhat
surprising because according to theory the velocity scales quadratically with the active
diffusion coefficient and the persistence time only linearly. Thus, even in the limit where
cells can only pull themselves forward where they are not in contact with other cells,
fast alignment appears to improve the total diffusive ability of the cluster (larger Dp),
but it does come with a tradeoff between increased persistence and slower cluster speed.

Besides leading to a smaller cell cluster speed, the fact that cells are not able to
actively move where they are in contact with other cells also makes the cells less prone
to detach from one another. It becomes harder to overcome the adhesion energy between
cells if there is no active energy contribution. In fact, within the investigated parameter
space and simulation time, the cluster still sticks together even without implementing
any alignment. This allows us to study cluster motion over the entire range of γ values.

To quantify the effect of γ on the MSD, we have run sets of 30 simulations of 50000
MCS for a cell cluster consisting of Ncells = 4 cells with different γ values for each set.
Moreover, we have obtained these results for two single cell persistence times, i.e. τ = 500
MCS and τ = 1100 MCS to test whether alignment is influenced by the persistence of
an individual cell. Figure 5.14 shows the resulting instant diffusion coefficients Din for a
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subset of γ values. It can be seen that in all cases and thus also for very weak alignment
the result can be accurately fitted with a PRW and all results are well averaged. We can
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Figure 5.14: Plots of the calculated instant diffusion coefficients Din = MSD/4t for different
values of γ (markers) which have been fitted with a PRW using eq. (2.10) (lines). Results
correspond to (a) τ = 500 MCS and (b) τ = 1100 MCS.
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Figure 5.15: Snapshots of a CPM cluster consisting of Ncells = 4 cells halfway during a
simulation. Arrows denote the polarity vector pσ of each cell. Results correspond to τ = 500
MCS, (a) γ = 1 and (b) γ = 10000.

also observe a transition in long time diffusive behavior upon weakening the alignment
(increasing γ), which we can explore further by plotting the fitted values of the cluster
persistence time and instant diffusion coefficient [fig. 5.16]. These plots demonstrate
that the cluster persistence time drops fairly abruptly when passing a specific value of
γ. Hence, there appears to exist a transition from a cooperative cluster state for which
τp = Ncellsτ (cluster moves more persistently) and a non-cooperative cluster state where
τp = τ (no distinction between cluster persistence and the single cell one). These states
are visualised in fig. 5.15. Furthermore, the transition point seems to depend on the
individual persistence time of the cells, since the drop occurs for larger values of γ when
we set the persistence time of an individual cell to a larger value. In other words, when
the cell’s polarity reorientates more slowly (larger τ) it requires less alignment effort
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(larger critical γ value) for cells in the cluster to remain aligned. The assumption of fast
alignment, which predicts a linear increase of cluster persistence time with the number
of particles, thus seems to hold as long as the alignment effect is stronger than the
individual cell reorientations so that all cells will always have their respective polarities
in roughly the same direction.
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Figure 5.16: Cluster persistence time and active diffusion coefficient Dp obtained from fitting
the calculated MSDs with eq. (2.10). Values correspond to (a-b) τ = 500 MCS and (c-d) τ = 1100
MCS. Red dotted lines in (a) and (c) serve as visual aide and denote the values Ncellsτ (top line)
and τ (bottom line).

The active diffusion coefficient Dp follows the same trend as the persistence time, i.e.
a sudden drop from a cooperative cluster state to a non-cooperative state upon increasing
γ past some critical value. Interestingly, the difference in Dp between both states (factor
of ∼ 10) is larger than the factor 4 (Ncells) observed for the persistence time. Realising
that in the non-cooperative state individual cell polarities are not pointing in the same
direction most of the time, we expect the speed of the cluster to be smaller in this state.
This can explain why the diffusion coefficient decreases more dramatically, since it scales
with both the persistence time and the speed. Thus, the degree of alignment can greatly
influence the motion of a small cell cluster. Additionally, we mention that the observed
transition occurs in an almost identical manner (including the critical γ value) for a
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cluster consisting of Ncells = 9 cells (see fig. D.5) and is therefore not necessarily unique
for different sized clusters.

Finally, we seek to explore the relationship between the transition point (critical γ
value) and the individual persistence time of the cells in more detail. Instead of analysing
cluster motion for different values of γ, we will now fix the degree of alignment (constant
γ) and vary the individual persistence time τ of the cells that comprise the cluster. This
means that we generate similar sets of simulations as discussed before, but for different
values of τ , while keeping γ = 500 or γ = 1500. The resulting MSD and Din are similar
to the ones shown in fig. 5.14 (see fig. D.6) and have been fitted with a PRW. Since
we are particularly interested in observing when a cluster is in a cooperative state or
not, we have plotted the cluster persistence time divided over the single cell persistence
time τ as a function of τ in fig. 5.17. This allows us to easily discriminate between both
states, i.e. a value of 4 (Ncells) corresponds to a cooperative state and 1 corresponds
to a non-cooperative state. Figure 5.17 reveals that the transition is also induced by
increasing τ , which shows that the effect of alignment and single cell persistence appear
to be linked. Moreover, for weaker alignment (larger γ) we can notice that the transition
occurs for larger values of τ , which is consistent with the idea that weaker reorientations
of the polarity vector require weaker alignment to keep the cluster in a cooperative state.
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Figure 5.17: Plots of the cluster persistence time divided over the single cell persistence time
τ as a function of τ for γ = 500 and 1500. Values are obtained from MSD fits with eq. (2.10).
Red dotted lines serve as visual aide and denote the expected values for the cooperative (top)
and non-cooperative state (bottom)

Interestingly, an increase in single cell persistence time has been experimentally asso-
ciated with an increase in substrate stiffness [25,26]. The obtained results can therefore
suggest a link between the effectiveness of cell cluster migration and the stiffness of the
environment that the cluster experiences.

Three Dimensions

As mentioned, we expect, based on earlier findings, that the effect of alignment will
lead to similar behavior in 3D as in 2D. This has been confirmed by running sets of 3D
simulations for different γ keeping a fixed single cell persistence τ and vice versa. These
simulations have provided comparable results to the ones obtained in 2D.

However, we do want to highlight the effect of redefining the active energy bias,
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i.e. no energy bias along cell-cell contacts, in 3D. We have argued how the velocity of
a cell cluster in 2D decreases for larger cluster sizes due to an increase in the relative
fraction of cell-cell contacts. Since this fraction does not necessarily have to be the same
for a 3D cell cluster consisting of an equal amount of cells, we have performed sets of
3D simulations for cell clusters consisting of different amounts of cells (Ncells) which
align with γ = 1 (perfect alignment). Using the simulation data, we calculate the MSD
and the corresponding instant diffusion coefficient Din. The latter has been plotted in
fig. 5.18a and already reveals an increase in long term diffusive behavior for increasing
Ncells. To inspect the precise details, we have fitted the MSD with a PRW. As expected
the cluster persistence time increases linearly with Ncells (see fig. D.7). Moreover, we
have plotted the fitted active diffusion coefficient Dp as function of Ncells in fig. 5.18b.
It can be seen that Dp increases with Ncells, which implies that the effect of a linearly
increasing persistence time dominates over the decrease in cluster speed in 3D as well.
Moreover, we have fitted the active diffusion coefficient to a simple power law function,
giving Dp ∝ N0.5

cells. Remembering that in 2D the exponent equals 0.2, we can conclude
that the decrease in speed with Ncells is less significant in 3D as it is for 2D cluster
motion. We can understand this by realising that in 3D the relative fraction of cell-cell
contacts grows more slowly with the number of cells Ncells.
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Figure 5.18: (a) plot of the calculated instant diffusion coefficients Din = MSD/4t for different
values of Ncells (markers) which have been fitted with a PRW using eq. (2.10) (lines). (b) plot
of the active diffusion coefficient Dp obtained from the fits shown in (a), which has been fitted
with a simple power law. Results correspond to γ = 1.
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5.3 Durotaxis

Up until this point we have taken the persistence time and active speed of single cells
to remain constant over the entire domain, which implies that the stiffness of the ECM
has been kept constant in the model. Now we extend the analysis to include durotaxis
(migration up a stiffness gradient). Experiments have indicated that a multicellular
cluster (cell monolayer) can exhibit much stronger durotaxis in comparison to its iso-
lated constituents in the same circumstances, since a cluster experiences a much larger
gradient in stiffness between its leading and trailing edge [18, 19]. This raises the ques-
tion whether a circulating tumor cell (CTC) cluster also experiences stronger durotaxis
than a single cell, possibly improving their metastatic potential. Experiments almost
unanimously point out that an increased stiffness corresponds to an increased single cell
persistence [25,26] and simulations involving point particles have shown how a gradient
in persistence time in itself is enough to generate durotactic motion [24]. Moreover,
stiffer environments have also been linked to faster cell motion. When exposed to a
stiffness gradient, cells on the stiffer edge of the cluster will thus move faster and more
persistently in comparison to the cells on the softer edge and it is has been suggested
that because this difference increases for larger clusters, durotaxis is enhanced for larger
cell clusters [18,19].

Motivated by these experiments, we now seek to model the motion of small cell
clusters that experience a stiffness gradient in the CPM. Following the approach in [24],
we model this by implementing a position dependent single cell persistence time τ(x) and
cell speed, i.e. active energy bias κσ(x) (denoted κp(x) again), which, for convenience,
are the same for all simulated cells and only depend on the position along the x-axis.
It should be stressed that in the case of τ(x) x represents the x-component of the cell’s
center of mass Rσ, while for κp(x) it is the x-component of the position of the candidate
site σ(x). We then let τ(x) and κp(x) increase linearly from a minimum value τmin

and κp,min to a maximum value τmax and κp,max, respectively, over a region x ∈ [−w,w]
around the origin (note that the origin is set by the cell cluster center of mass Rc so that
the cluster always starts in the middle of the gradient). Beyond the gradient region the
respective values remain constant such that τ(x) = τmin and κp(x) = κp,min for x ≤ w
and τ(x) = τmax and κp(x) = κp,max for x ≥ w. This means that the width w effectively
controls the steepness of the gradient and that conform experimental setups the gradient
only occupies part of the system [24].

In the remainder of this section we will discuss the results of 2D CPM simulations of
single cells and clusters that experience the described gradient in τ and κp by analysing
their center-of-mass trajectories Rc(t). Again all cells are of the same type c(σ > 0) =
1 and we keep (unless otherwise stated) most parameters fixed at: T = 1, λv = 1,
λc = 0 (no chemotaxis), Vσ,0 = 64, λr = 1, J0,1 = 1.0, J1,1 = 0.5 (strong cell-cell
adhesion) and γ = 1 (cluster alignment is included). Finally, we note that averages have
been obtained via ensemble averaging over approximately 104 trajectories to compute
accurate averages, and in all cases cell clusters have remained intact.

5.3.1 Persistence Time Gradient

At first we have focused on a gradient in the persistence time so that κp = 5 remains
constant over the simulation domain (constant cell speed). Based on a mapping of
simulation parameters and units to typical experimental values we choose to vary the
persistence time between τmin = 200 MCS (∼ 0.2h) and τmax = 2000 MCS (∼ 2.0h),
which also implies that the gradient is in the positive x-direction. We have then run
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single cell CPM simulations for different gradients dτ/dx to test whether the implemen-
tation of durotactic motion is consistent with earlier simulation work on point particles
in [24]. Figure 5.19 shows the measured x-components of both the average displacement
and the durotactic vector index, i.e. 〈x(t)〉 and DIx(t) (see eqs. (4.1) and (4.5)), as a
function of time. We mention that the single cell speed 〈v〉 (see fig. 5.1) has been used
as reference speed for DIx(t) and that the y-components have not been reported, since
there is no gradient along this axis leading to their respective values being 0.

The results are consistent with the fact that a gradient in persistence time is enough
to produce a single cell flux towards the stiff region of the domain (positive 〈x〉), thus
causing durotaxis. Realising that DIx represents the fraction of drift velocity relative to
the active cell speed, we also observe an increase (on the investigated time scale) of the
drift velocity for increasing gradients (larger values of DIx). Additionally, note that DIx
peaks and afterwards seems to decrease in the long time limit, which is a result of cells
leaving the gradient region. A mapping of the retrieved results to the ones obtained
for point particles presented in [24] shows that they are also quantitatively the same,
making our work fully consistent with literature.
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Figure 5.19: Plots of (a) the average displacement in the x-direction and (b) the x-component
of the durotactic index as a function of time for a single cell experiencing a linear gradient in
persistence time from τmin = 200 MCS to τmax = 2000 MCS. Results correspond to different
gradients controlled by the width w of the gradient region.

We now seek to extend the durotaxis analysis to a setup involving a cell cluster.
In the previous section we have shown that the persistence time of an aligned cluster
scales linearly with the number of cells in the cluster Ncells and that when we allow
an active energy bias at the cell edges [eq. (3.3)] the speed of the cell cluster remains
approximately the same as for a single cell, i.e. the cluster moves in the same way as a
single cell with an increased persistence time. We can place such a cluster in the same
gradient region and not surprising this leads to stronger durotaxis (although DIx takes
longer to peak) for larger clusters (see fig. D.8), which can be explained by the fact that
the gradient and absolute values of the cluster persistence time are effectively a factor
Ncells larger.

In order to unambiguously test whether an improved durotaxis effect arises from the
fact that cells on the softer side of the cluster move less persistently than on the stiff
side, we have run simulations of a cell cluster (with active motion at all cell edges) placed
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in a gradient between τmin = 200/Ncells MCS and τmax = 2000/Ncells MCS (keeping a
constant width w). As a result the cluster as a whole experiences the same persistence
time gradient in all cases, but the relative difference in single cell persistence on either
side of the cluster increases. The resulting 〈x(t)〉 shown in fig. 5.20a indicate enhanced
durotaxis for larger clusters. However, we have determined that cell clusters actually
have a slightly larger active speed than single cells [see fig. 5.10]. Using these slightly
increased speeds, we have then calculated and plotted DIx in fig. 5.20b. It can be seen
that in this case the results are not significantly different anymore, suggesting that,
at least for small cell clusters, the actual size of a cluster in which all cells are fully
aligned does not influence or enhance durotactic motion when it originates from only a
persistence time gradient. Only the persistence time and the speed of the entire cluster
appear to be a dominant factor.

0 5000 10000
Time (MCS)

0

20

40

60

<
x
>

(a
)

Ncells = 1

Ncells = 4

Ncells = 9

(a)

0 5000 10000
Time (MCS)

0.0

0.1

0.2

0.3

D
I x

Ncells = 1

Ncells = 4

Ncells = 9

(b)

Figure 5.20: Plots of (a) the average displacement in the x-direction and (b) the x-component
of the durotactic index as a function of time for aligned (γ = 1) cell clusters experiencing a linear
gradient of dτ/dx = 20/Ncells MCS/a in single cell persistence time from τmin = 200/Ncells MCS
to τmax = 2000/Ncells MCS. Different lines correspond to different number of cells within a
cluster.

5.3.2 Cell Speed Gradient

Next we have implemented a gradient in cell speed, while keeping the persistence time
of each cell fixed at τ = 1100 MCS. In order to check whether this can also result
in durotactic motion, we have run single cell CPM simulations for different gradients
dκp/dx that change from κp,min = 2.0 towards κp,max = 8.0. Using the single cell speed
corresponding to κp = 5.0, i.e. in the middle of the gradient, as reference speed (see
fig. 5.1), we have plotted both 〈x(t)〉 and DIx in fig. 5.21. It can be noted that on
average the cells also drift towards the stiff region (assuming that higher stiffness relates
to a larger cell speed). Additionally, we observe an increase in drift velocity on the
investigated timescale for increasing gradients in the cell speed. Exposing a cell to a
persistence time gradient or cell speed gradient thus appears to give similar results,
which suggests that the persistence length, i.e. the product of cell speed and persistence
time, is a suitable parameter to determine the degree of single cell durotaxis.

As mentioned, a larger cluster size has been brought forward to explain collective
durotaxis since it causes cells on the soft and stiff edge of the cluster to experience a big-
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Figure 5.21: Plots of (a) the average displacement in the x-direction and (b) the x-component
of the durotactic index as a function of time for a single cell experiencing a linear gradient in
κp from κp,min = 2.0 towards κp,max = 8.0. Different lines correspond to different gradients
controlled by the width w of the gradient region.

ger difference in cell speed. Because we model cell speed locally (using the x-coordinate
of the candidate site σ(x) for κp(x)) such a difference in cell speed between both edges is
already used within our single cell model description. To test if increasing the distance
between the edges improves durotaxis we will therefore simply increase the size of a
single cell. In particular, we have run simulations where cells with different preferred
cell areas V0,σ are placed in a fixed gradient between κp,min = 2.0

√
Vσ,0/Vσ,ref towards

κp,max = 8.0
√
Vσ,0/Vσ,ref (keeping the width w constant) with Vσ,ref = 64 denoting the

reference preferred cell area which has been used behorehand. Note that the values of
κp have thus been rescaled with the cell area so that all cells experience (approximately)
the same cell speed gradient. This is a result of the active energy bias scaling with the
center-of-mass displacement [see eq. (3.3)].

Interestingly, the average displacement in the x-direction 〈x(t)〉 resulting from the
simulations (see fig. 5.22) shows that increasing the size has no influence on the durotaxis.
We try to explain this by pointing out that in the model the entire cell at all times wants
to move in a single direction (one polarity vector). Moreover, when we increase the size
of a cell, it will experience a stronger energy bias on one side but simultaneously a weaker
one on the other side. Combining these notions, we suggest that since extensions and
retractions of the cell on both sides all seek to drive the cell in the direction of its
polarity vector with approximately equal contributions (circular cell shape), the net
cell motion is expected to be unaffected by changes in size. One contribution simply
becomes stronger, while the other one becomes weaker. In other words, only the average
κp value the cell experiences seems to contribute to the durotactic motion. Note that
for cells with a more asymmetric shape, increasing the cell size might be able to enhance
durotaxis.

In order to clarify the experimentally observed durotaxis for large cell clusters we
have taken a closer look at the cell trajectories involved in durotaxis of a monolayer,
which have revealed that on a substrate with uniform stiffness cells on the edge of the
cluster on average tend to move outwards of the cluster [18]. This can be a consequence
of cells not being able to actively move when is in contact with other cells, i.e. motion
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Figure 5.22: Plot of the average displacement in the x-direction as a function of time for single
cells experiencing a linear gradient in κp between κp,min = 2.0

√
Vσ,0/Vσ,ref towards κp,max =

8.0
√
Vσ,0/Vσ,ref using a fixed width w = 45a. Results correspond to different preferred areas of

the cell Vσ,0.

into the cluster is restricted due to there not being enough space. It is possible that in
the case of durotaxis cells on the soft edge intrinsically still want to move outwards of
the cluster but are dragged along by the faster cells on the stiff side of the membrane. In
this scenario a larger difference in cell speed between both cells on the stiff and soft edge
results in a stronger effect. This idea is also consistent with the experimentally observed
requirement of cell-cell adhesions to induce collective durotaxis, since cells need to be
dragged along [18].
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Figure 5.23: (a) Visualisation of a two cell cluster with opposite polarity vectors after equili-
bration inside a cell speed gradient. (b) Plot of the average displacement in the x-direction as a
function of time for such a two cell cluster placed at the center of a linear gradient in κp between

κp,min = 2.0
√
Vσ,0/Vσ,ref towards κp,max = 6.0

√
Vσ,0/Vσ,ref using a fixed width w = 20a. Results

are obtained for different preferred areas of the cell Vσ,0.
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To model this effect, we have placed a cluster consisting of two cells that have a fixed
polarity vector pointing in opposite directions along the x-axis, i.e. pσ = (±1, 0), in a
gradient between κp,min = 2.0

√
Vσ,0/Vσ,ref towards κp,max = 6.0

√
Vσ,0/Vσ,ref (keeping the

width w constant). A visualisation of the starting configuration (after equilibration) for
Vσ,0 = 64 is shown in fig. 5.23a. We mention that in order to have the cells stick together
during the entire simulation we impose very strong adhesion by setting J1,1 = −0.5.
Additionally, we only evaluate an active energy bias at the cluster edge (use eq. (3.4)).

The average displacement in the x-direction for different preferred cell areas Vσ,0
is plotted in fig. 5.23b. Interestingly, we can see that for this configuration increasing
the individual cell size increases the strength of the observed durotaxis. Compared to
the single cell case, it can be noted that there are now two competing effects, i.e. one
cell wanting to migrate down the gradient and the other up the gradient. Due to the
increasing size, the cell migrating up the gradient experiences a stronger active energy
bias, while the cell migrating down the gradient experiences a weaker one. This means
that the overall durotactic motion (migration up the gradient) is enhanced. This result
can therefore suggest that when a CTC cluster is confined to a 1D domain or path,
increasing the size of the cluster can improve its ability to follow a stiffness gradient.
Note that this assumes that cells generally not tend to travel into the cluster, i.e. only the
cells on opposite edges of the cluster actively migrate, and force transmission through
such a cluster is sufficiently efficient. In the case of 2D (or 3D) motion this might be
less evident, because cells have the ability to reorientate their polarity and reposition
themselves relative to other cells.
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5.4 Migration Through a Narrow Passage

We now seek to model the extracellular matrix (ECM) more explicitly. In cancer metas-
tasis, cells typically have to pass through a large number of pores which are smaller than
the cells [20]. Recent experimental work has highlighted the contribution of several pa-
rameters including cell-pore adhesion, nuclear volume and cell stiffness to the manner in
which cells can pass through a pore which is smaller than its own size [20]. Furthermore,
it has been suggested that cells need to generate large enough traction forces within the
channel in order to pass through it [20]. These results have all been obtained for single
cells passing through a narrow passage. Our aim, however, is to investigate how a cir-
culating tumor cell (CTC) cluster passes through the pore relative to a single cell. It is
therefore insightful to test whether several of the mentioned single cell parameters and
the added cell-cell parameters have an influence on the cluster migrating through the
narrow passage. Moreover, we are mainly interested in CTC clusters travelling through
the 3D ECM, i.e. a network. Hence, all local passages within the ECM are expected to
have a small length (approximately the size of a cell).

To study this, we have set up a simple simulation ’experiment’ which is visualised in
fig. 5.24. It involves starting with a cluster of N cells located to the left of a pore which
is formed by two Gaussian-like shaped domains of immutable sites with spin σ = −1
and cell type c(−1) = −1. This implies that we take the pore to be immutable which is
similar to experimental settings used in [20,21], but does not necessarily have to be true
when cells travel through a relative soft matrix. The width of the pore equals 6 lattice
sites such that it is smaller than a single cell diameter (approx. 9 lattice sites) but not
so small that the influence of the cell nucleus becomes dominant; the latter effect is
not addressed in our CPM. The length of the pore is set at 10 lattice sites so it is of
the same size as a single cell. All cells then actively move at every cell edge [eq. (3.3)]
with a constant polarity vector along the x-axis, i.e. pσ = (1, 0). This drives the cluster
towards the pore and biases their motion to migrate through it. The moment the first
cell enters the pore we start timing the passage of the cluster by setting the time to
t = 0. We then time both the time it takes before the first and the last cell of the cluster
have passed through the pore which we denote tfirst and tlast respectively (see fig. 5.24).
Additionally, we keep track of the number of fragments Nfragments in which the cluster
comes out on the other side of the pore. By averaging over many of these ’experiments’
we can get a sense of the average time it takes to pass and to what degree a cluster is
able to remain intact.

Before specifying the used parameters, we mention that the resulting simulations
have been performed in 2D, whereas it is meant to provide insight about a 3D system, i.e.
migration of cell clusters through a network with a small pore size. This has been done
for computational convenience and mostly because we believe that similar simulations
in 3D where a cell has to move through a circular or square opening for instance will
provide comparable results. In other words, the general idea is that cells have to change
their reference shape to pass through and we are mostly interested what the implications
of that remodeling of the cell shape is on the way cell clusters move past the pore.

For convenience we choose all cells in the cluster to be equal. This means that all cells
have the same cell type c(σ > 0) = 1 and experience (unless otherwise mentioned) the
same strength of the active energy bias κσ = 5 which we denote as κp again. Specifically,
we have fixed T = 1, Vσ,0 = 64, λv = 1, λr = 1 and the cell-medium adhesion coefficient
J1,0 = J0,1 = 1. The parameters that are left to specify are the ones we will vary. These
are the adhesion coefficient between cells, J1,1, and between a cell and the immutable
obstacle, J1,−1, which we call Jcell−cell and Jcell−pore throughout this section respectively.
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t = 0 t = tfirst

t = tlast t = tlast

Figure 5.24: Visualisation of a cell cluster of N = 9 cells passing through narrow pore with a
width w = 6a (smaller than the single cell diameter) and a length l = 10a. The pore is formed
by two domains of immutable lattice sites with σ = −1 shown in green. In the simulation the
passage time for the first cell tfirst and the last cell tlast are tracked. Furthermore, the cluster
can pass as a whole or fragment in mutliple smaller clusters.

5.4.1 Cell-Cell Adhesion

We first consider the case of cluster migration without adhesion to the pore walls,
Jcell−pore = 1. To this end, we have run a set of 200 simulation for a cluster of N = 9
cells where we have recorded tfirst, tlast and the amount of fragments in which the
cluster has fallen apart for different cell-cell adhesions Jcell−cell. The resulting times and
fragment distributions have been plotted in fig. 5.25. We highlight that the smaller the
value of Jcell−cell the stronger the cells adhere to each other, since it requires less energy
to form a cell-cell surface. Moreover, when Jcell−cell = 2 it is not energetically favorable
anymore to form a cell-cell surface in comparison to both cells forming a surface with
the medium (σ = 0) since we have set J1,0 = 1 [45]. This means that Jcell−cell = 2
denotes the threshold value below which cells adhere to each other.

It can be seen that the time it takes for the first cell to pass through does not alter
much by changing the cell-cell adhesion. This makes sense since we expect that cell-
cell adhesion will mostly play an important role in the ability of cells that just passed
through the pore to drag along the cell behind them through it as well. We therefore
predict more variety in the time it will take for the entire cluster to move past the
pore. This is demonstrated in fig. 5.25a which shows that upon weakening the cell-cell
adhesion the value of 〈tlast〉 rises significantly. Particularly, we can link this behavior
to the degree of fragmentation of the cluster shown in fig. 5.25b. Notice that when
Jcell−cell = 0.0 and the adhesion between cells is the strongest, the cluster always comes
out as a single fragment, i.e. as a whole. This implies that all cells except for the first one
are dragged along through the channel by another cell, making the passage of the entire
cluster relatively fast. Additionally, for Jcell−cell = 0.5 most of the clusters (∼ 90%) still
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pass through as a whole and as a result the increase in 〈tlast〉 is relatively small. Upon
further increase of Jcell−cell we can see that the peak in the distribution shifts towards
a larger amount fragments and eventually no clusters pass as a whole anymore. This
translates itself to a strong increase in the average cluster passage time 〈tlast〉, especially
in the region between 0.5 − 1.5 as can be observed in fig. 5.25b. Note that the spread
in the values of 〈tlast〉 also increases heavily which can be linked to the observed spread
shown in the distribution of the number of fragments.
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Figure 5.25: (a) Plot of the average time it takes for the first cell 〈tfirst〉 and the last cell 〈tlast〉
of a N = 9 cell cluster to pass through a narrow passage as a function of the cell-cell adhesion
coefficient Jcell−cell. (b) Plot of the distribution of fragments in which the cluster has split after
passing through the pore for different Jcell,cell. Averages and distribution are obtained from 200
runs.

Furthermore, we can see that the time it takes before the cluster passes through
the pore seems to flatten out a little when approaching Jcell−cell = 2.0. This can be
understood from the fact that when cells do not adhere anymore, every cell will not
experience the benefit of travelling as a cluster and essentially pass through like it would
when migrating individually. The corresponding value for the passage time would then
be given by 〈tlast〉 ≈ N 〈tfirst〉 which is roughly consistent with the found results. Also,
since the cluster completely splits up most of the times for Jcell−cell = 2.0 and the spread
in the distribution of fragments decreases with respect to Jcell−cell = 1.5 for instance,
the spread in the values of 〈tlast〉 is expected to decrease as well. This is confirmed in
fig. 5.25.

Thus, within a simple model setup we have demonstrated the important that role
cell-cell adhesion can play for the ability of a ’small’ cell cluster to pass through a narrow
pore. Strong adhesions can greatly improve the cluster’s ability to pass through since
cells can drag other cells along with them. An important factor therefore seems to be
whether or not the adhesion is strong enough to allow the cluster to pass the pore in one
piece so that cells can take advantage of this process. We can even imagine the extreme
situation in which it is difficult to pass a really narrow pore, but due to strong adhesion
cells can quickly move after the first one has passed so the effect of the hindrance is not
so different for single cells in comparison to clusters.
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5.4.2 Cell-Pore Adhesion

To mimick the effect of interactions with the ECM, we now seek to investigate the role of
the cell adhesion to the pore walls. This means that we fix Jcell−cell = 1 such that in the
case of no adhesion or repulsion to the pore, i.e. Jcell−pore = J0,1 = 1, the cluster mostly
fragments in two pieces (see fig. 5.25b) and we can test whether changing Jcell−pore keeps
the cluster more intact or fragments it even more. Therefore, we have performed sets
of 200 simulations for different Jcell−pore values in which we let a cluster of N = 9 cells
pass through the pore. The resulting average values of tfirst and tlast and the distribution
Nfragments have been plotted in fig. 5.26.

It can be noted that 〈tfirst〉 increases with Jcell−pore. Having the cells adhere less
strongly to, or even repel from, the immutable obstacle makes it harder for cells to
move through the pore. Since cells are almost completely in contact with the pore walls
when they pass through, this configuration becomes energetically harder to reach when
Jcell−pore increases.
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Figure 5.26: (a) Plot of the average time it takes for the first cell 〈tfirst〉 and the last cell 〈tlast〉
of a N = 9 cell cluster to pass through a narrow passage as a function of the cell-pore adhesion
coefficient Jcell−pore. (b) Plot of the distribution of fragments in which the cluster has split after
passing through the pore for different Jcell,pore. Averages and distribution are obtained from 200
runs.

By contrast, the average time it takes before the entire cluster has passed through,
〈tlast〉, shows a less trivial dependence on Jcell−pore. There seems to exist an optimum
amount of adhesion around a value of Jcell−pore = 0.5 for which the cluster passes
through the pore the fastest. We cannot link this optimum directly to the distribution
of fragments, which states that the cluster always passes through as a whole only for
Jcell−pore = −0.5 even though this setting does not lead to the fastest passage of the
cluster. The reason that the cluster appears to pass more slowly when adhesion becomes
extremely strong can possibly be sought in the fact that cells remain attached to the
obstacle after passing the site. This is shown in fig. 5.27a. By being forced to follow
the Gaussian geometry of the pore, the velocity of the cells will slow down since the cell
polarity is along the x-axis. Therefore we expect that it will become more difficult for
the cells to drag along the cells behind them through the pore, resulting in the cluster
passing more slowly even though the cluster remains intact.

The tendency of cells to move along the geometry of the obstacle for strong enough
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adhesion can also explain why we observe a larger chance of cluster fragmentation for
Jcell−pore = 0.0 in comparison to Jcell−pore = 0.5 (see fig. 5.26b). By visualising several
simulations we find that for Jcell−pore = 0.0 cells are trying to follow the obstacle but
that the adhesion to the pore is not sufficiently strong for all cells to do so. As a
result, some fragments detach and move further into the medium whereas others remain
attached to the pore wall, which is demonstrated in fig. 5.27b. For Jcell−pore = 0.5 we
have observed that the adhesion is too weak to have the cells follow the pore geometry.
Instead they always remain moving into the medium along the x-direction (see fig. 5.24),
which prevents this source of fragmentation and as a result the probability of the cluster
to pass as a whole is larger. Thus, it seems that the cluster passes the pore the fastest
when adhesion helps single cells travel through more easily, but it is not strong enough
to force the cells to follow the pore’s geometry.

On the other hand, when cells are repelled by the obstacle, i.e. Jcell−pore > J1,0 = 1,
we observe an especially sharp increase in the average time it takes the cluster to pass.
This can be directly linked to the observed increase in 〈tfirst〉 and the fact that the
distribution of Nfragments shifts to larger values and spreads out more. In other words,
cells have more problems passing through and also more often need to do so without
the help of the cell in front of them.

Summarising, we have demonstrated how cell adhesion to the channel it needs to
pass through in our model system can lead to cells passing more easily while remaining
more intact as well. Interestingly, when adhesion becomes too strong, cells are forced
to follow the direction of the structure they adhere to which, within the investigated
setup, limits the ability of a cluster to pass the pore.

(a) (b)

Figure 5.27: Visualisation of the final configuration resulting from a single simulation in which
we let a N = 9 cell cluster pass a pore. Results correspond to (a) Jcell−pore = −0.5 and (b)
Jcell−pore = 0.0. Other used parameters are discussed in text.

5.4.3 Traction Force

We now turn our attention to the influence of cell traction forces, i.e. the strength by
which cells pull on the surrounding material that encloses it when inside the pore, on
the total cluster passage. This has been suggested to play an important role on the
manner in which single cells pass a narrow pore, since these forces are used to elevate
the cell through the pore and into the medium again. In fact it appears that traction
forces are part of an interplay of (cell) parameters that determine the velocity at which
cells pass through the pore [20]. Furthermore, it has been shown that the confinement
of the pore leads to cells moving in a highly persistent manner and with an increased
velocity (factor ∼ 2, 3) when passing through it [20,21]. It is reasonable to assume that
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the amount of traction force the cell can generate relates to the increased velocity of the
cell within the pore. Specifically, we assume that the cells exert stronger traction forces
when inside the pore; while other factors such as the size of the nucleus have also been
pointed out to influence the amount of increased velocity [20, 21], we will not consider
these in the present work.

In order to model the traction forces we add a value of ∆κp to the existing polarity
strength of each cell κp when the cell’s center of mass Rσ resides within the pore. Note
that in the proposed model we thus seek to describe stronger traction forces within the
pore by increasing the polarity force acting on the cell. We have then performed 200
simulation ’experiments’ for a cluster of N = 9 cells corresponding to different values
of ∆κp keeping Jcell−pore = 1.0 and Jcell−cell = 0.5. The obtained average values of tfirst

and tlast and the distribution Nfragments are plotted in fig. 5.28.
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Figure 5.28: (a) Plot of the average time it takes for the first cell 〈tfirst〉 and the last cell 〈tlast〉
of a N = 9 cell cluster to pass through a narrow passage as a function of additional polarity
strength the cell retrieves within the pore ∆κp. (b) Plots of the distribution of fragments in which
the cluster has split after passing through the pore for different ∆κp. Averages and distribution
are obtained from 200 runs.

We can see that increasing the polarity strength within the pore results in the first
cell passing through more quickly (〈tfirst〉 decreases), which seems logical since the cells
can pull themselves forward with more force. Initially, the value of 〈tlast〉 follows the
same trend, but upon further increasing ∆κp we can see that it eventually starts to rise
significantly and as a result there appears to be an optimum value for 〈tlast〉 around
∆κp ∼ 5−10. This behavior can be connected to the fragmentation of the cell cluster.
Specifically, we can notice that the optimum range of ∆κp also denotes the point at
which the cell cluster is beginning to fragment. Further fragmentation seems to slow
down the average passage of the cluster even more, which has already been linked to
the fact that fewer cells are being dragged along by the cell in front of them. Moreover,
we observe a larger spread in 〈tlast〉 when the spread in Nfragments increases as well.

We can rationalise these results by realising that when the cells are able to pull
themselves through the pore very strongly, it will happen so fast that cells are more
likely to detach from the cells behind them; the latter do not experience the added force
yet, leading to the formation of more fragments. In turn the leading cell will no longer
facilitate the movement of the following cells, which slows down the average passage of
the cluster. Interestingly, at least within the investigated range of ∆κp, the added effect
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of individual cells being able to pass through more rapidly as result of increased polarity
force is thus overshadowed by the added fragmentation effect cells experience when a
cell in front can drag them along.

Thus, we have demonstrated that although an additional force always improves the
ability of a single cell to pass the pore, it does not necessarily mean that a cell cluster
benefits from it as well. Whether this is actually the case seems to depend on the degree
to which cell-cell adhesion improves cluster passage by having cells drag along other
cells behind them and on the fact that the added force should not be too strong so
that it leads to significant fragmentation of the cell cluster. Finally, on a general note,
we want to mention that recent experimental work has also been performed to study
the ability of CTC clusters to pass through a narrow vessel when it travels through the
bloodstream [3]. In fact they have demonstrated that the clusters containing up to 20
cells are able to pass through a vessel smaller than a single cell [3]. The used simulation
set up could also be used as a model system to study this scenario. However, this would
require that we introduce inertia into the CPM, since the motion within a flow (the
bloodstream) is not Aristotelian.
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5.5 Focal Adhesion Formation

In order to provide more insight about cluster migration during metastasis we have
chosen to simulate different aspects of the extracellular matrix (ECM), i.e. different
environments. The final ECM environment in which we seek to compare single cell to
cluster migration, is one that involves explicit focal adhesions, which are modeled by
the addition of binding sites to the ECM medium (see section 3.1.4). As discussed in
section 3.1.4, this requires a binding energy of a CPM site E(tx). In this section we will
infer the binding energy, which has been used in the next section, from more detailed
Langevin Dynamics simulations. In these simulations we zoom in on the formation of a
single focal adhesion; in particular, we track the time evolution of receptors (integrins)
in a model cell membrane and retrieve the average number of receptors that have bound
to a cylinder (collagen fiber) Nbound(t)

Before proceeding, we mention that throughout this section we have kept the fraction
of receptors, the volume exclusion strength in eq. (3.19) and the cutoff radius and width
of the Morse potential [eq. (3.20)] fixed at 10%, U0 = 4.34kBT , rc = 4.0σ and α = 1.0σ−1

respectively. Moreover, we have (unless otherwise stated) adopted similar membrane
settings to the ones used in [67] for which they have demonstrated that the mechanical
properties of the membrane fall within the experimental regime. Specifically, we have
set µ = 3.0, ζ = 4.0 and u0 = 4.34kBT in eq. (3.14), yielding a bending rigidity of
∼ 20kBT and area compression modulus of ∼ 18kbT/σ

2 [67]. To avoid confusion we
state that in this section σ denotes the membrane particle diameter and not the CPM
spin.

5.5.1 Normal Fiber

Since the cylinder is used to model a collagen fiber, we take its diameter to be consistent
with the size of a collagen fiber. Realising that the typical thickness of the cell membrane
(one particle diameter) is ∼ 10 nm [83], we have set the cylinder radius at rcyl = 10σ to
give the cylinder a typical diameter of a collagen fiber of ∼ 200 nm [84–86]. We have
then run 20 simulations and determined the average number bound receptors Nbound

divided over the total number of receptors in the membrane Nrec as a function of time
for different attractive strengths D0 of the Morse potential. The results are shown in
fig. 5.29.

It can be seen that the number of bound receptors initially increases and eventually
saturates which is consistent with the idea of maturation of a focal adhesion. Moreover,
the curves look very similar for different attractive strengths D0. The only thing that
noticeably changes for stronger receptor attraction to the cylinder is the saturation value
of Nbound, which becomes larger. A possible explanation can be sought in a tradeoff
between bending energy of the membrane and binding energy of the receptors. To have
more receptors attach to the cylinder requires the membrane to wrap more around the
cylinder and eventually this will reach an equilibrium which sets the saturation value of
bound receptors.

In order to study the time evolution of Nbound in more detail, we seek to fit the
obtained curves with a model function to infer a timescale of the maturation. A simple
saturation curve is given by an exponential distribution given by

Nbound(t) = Nsat

(
1− exp(− t

τmat
)

)
, (5.1)

with Nsat the saturation number of bound receptors and τmat a time scale that describes
the maturation. However, a fit with this function provides very inaccurate results on
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short time scales. This suggests the existence of (at least) two processes involved in
the growth of Nbound; to capture this we have fitted the curves with a bi-exponential
function given by

Nbound(t) = Nsat

(
1− w exp(− t

τfast
)− (1− w) exp(− t

τslow
)

)
, (5.2)

with τfast and τslow two timescales describing the short and long time behavior, respec-
tively, and w a weight factor that describes the contribution of each component. We
can see that the curves can be very accurately fitted with this function. (Note that this
is also a result of added fit parameters.)
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Figure 5.29: (a) Plot of the average fraction of receptors bound to the cylinder as a function
of time obtained from simulations (markers) which have been fitted with eq. (5.2) (lines). Inset
zooms in on short time behavior. (b) Plot of the bi-exponential parameters τslow, τfast and w
resulting from the fits shown in (a).

To verify the existence of two distinct processes we have plotted the fitted time scales
τfast and τslow in fig. 5.29b. It shows that these time scales differ by approximately one
order of magnitude and that they are not significantly influenced by changes in D0.
Thus, there seem to exist distinct fast and slow processes, and both of them contribute
to the maturation process since w 6= 0, 1. We expect, based on visualisations of the
cell membrane [see fig. 5.30], that the fast process corresponds to the initial attachment
of the membrane to the cylinder that lies above it, while the slow process represents
the assembly of more and more receptors that have diffused from other parts in the
membrane towards the contact area of the membrane with the cylinder.

To test this idea we have run a similar set of 20 simulations as before but decreased
ζ to a value of 2.5. It has been shown that for this setting the membrane enters a more
gel-like state and the diffusivity of membrane particles is significantly decreased [65,67].
Again we have determined Nbound/Nrec for different attractive strengths of the Morse
potential, plotted in fig. 5.31a. Following the reasoning of the hypothesis, we expect
that the initial process is roughly unaffected by this change, while the second process
should slow down. This is confirmed in fig. 5.31a, which shows that after an initial
increase, i.e. the fast diffusive process, the amount of bound receptors increases less
rapidly afterwards. Furthermore, a fit of the resulting curves with eq. (5.2) (see fig. 5.31)
shows that τslow has increased, indicating the slowing down of the assembly of receptors
around the cylinder.
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Figure 5.30: Visualisations of the cell membrane (a) in its initial configuration (b) before
attachment, (c) directly after attachment, and (d) after assembly of receptors. Receptors are
shown in blue. To improve visibility, we have not shown the cylinder, which floats above the
membrane. Results correspond to normal membrane settings and D0 = 12kBT .

We have also investigated the influence of the membrane flexibility by running similar
simulations for µ = 2.4 and µ = 6.0 which changes the bending rigidity of the mem-
brane within experimental extremes [65, 67]. The resulting curves of Nbound/Nrec and
fit parameters are approximately the same as the ones shown in fig. 5.29 (see figs. D.9
and D.10). This suggests that within the considered regime the membrane flexibility is
not a dominant factor in the assembly of receptors.

Thus, we have identified two distinct processes (attachment and assembly) involved
in the maturation of the model focal adhesion, which appear, under normal circum-
stances, to occur on time scales that differ by approximately one order of magnitude.
The generic behavior of these processes seems to be unaffected by the attractive strength
of the potential and membrane flexibility, while the assembly of receptors can be signif-
icantly slowed down by decreasing the diffusivity of membrane particles.
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Figure 5.31: (a) Plot of the average fraction of receptors bound to the cylinder as a function
of time obtained from simulations with a gel-like membrane by setting ζ = 2.5 (markers) which
have been fitted with eq. (5.2) (lines). Inset zooms in on short time behavior. (b) Plot of the
bi-exponential parameters τslow, τfast and w resulting from the fits shown in (a).

5.5.2 Thin Fiber

Finally, to establish whether our choice for the cylinder size affects our results. In par-
ticular, we have set the cylinder radius at rcyl = 1σ such that the diameter is decreased
by one order of magnitude. Running a set of 20 simulations for the standard membrane
settings, we have determined Nbound/Nrec as a function of time for different D0 and
plotted the results in fig. 5.32.
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Figure 5.32: (a) Plot of the average fraction of receptors bound to the cylinder as a function
of time obtained from simulations (markers) which have been fitted with eq. (5.2) (lines). Inset
zooms in on short time behavior. (b) Plot of the bi-exponential parameters τslow, τfast and w
resulting from the fits shown in (a).

Inspecting fig. 5.32 shows that the generic behavior of the time evolution ofNbound/Nref

for a smaller cylinder is roughly similar to the result of the original fiber size (fig. 5.29),
and as a result can be accurately fitted with eq. (5.2) as well. The only differences are
the smaller saturation values of Nbound and the fitted time scale for the assembly process
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τslow appears to have decreased. We can understand these differences by noting that a
smaller cylinder provides less space for the receptors to attach to, and that it requires
more local bending energy (higher curvature) to wrap around the cylinder. Therefore
fewer receptors attach to the cylinder. Moreover, since the diffusivity of the receptors
remains the same, it will take less time to reach the saturation value as fewer particles
are required. This can explain the smaller values of τslow.

In total, the observed behavior for the assembly of receptors at a rigid cylinder seems
to behave rather robustly upon changing relevant membrane and cylinder parameters.
Therefore, we will take it as inspiration for the binding energy in the CPM, i.e. E(tx).
We highlight that this potential will still be a rough approximation, since it has been
mentioned that at least some integrins attach to the ECM via so called catch bonds
whose lifetime increases with increasing load [87], while we model binding integrins via
a Morse potential, i.e. a slip bond whose lifetime decreases with increasing load.

72



CHAPTER 5. RESULTS AND DISCUSSION

5.6 Cell Binding to the Extracellular Matrix

In this section we want to compare the difference between single cells and clusters
passing through a medium which includes randomly distributed binding (focal adhesion)
sites. This is expected to be a more accurate description of the environment which
can either represent a substrate where cells can locally bind at different locations or
a simplification of cell motion through the 3D extracellular matrix (ECM) where the
binding sites correspond to points in the network where cells can bind to it.

Specifically, we model a single cell and a cluster consisting of Ncells = 9 identical
(c(σ > 0) = 1) cells in an environment with no explicit ECM (σ ≥ 0), but with a
fraction ρ of all sites randomly denoted as binding sites χ(x) where a focal adhesion can
form. The binding energy (based on the results from the previous section) is given by

E(tx) = −E0

(
1− w exp(− tx

τfast
)− (1− w) exp(− tx

τslow
)

)
. (5.3)

Here E0 denotes the saturated binding energy and we have fixed w = 0.5 for convenience.
Since focal adhesions mature in typically ∼ 1h [88] and the time scales inferred from the
Langevin Dynamics simulations differ approximately one order of magnitude, we have
set τfast = 50 MCS and τslow = 500 MCS. We let the cells drift through this environment
by imposing a linear concentration gradient along the x-axis, C(x) = x + C0 with C0

an arbitrary constant, and using a chemotactic strength λc = 0.5 in eq. (3.2) (note that
active motion due to polarity is ignored in this section). Additionally, the following
parameters have been kept fixed at: T = 1, λv = 1, Vσ,0 = 64, λr = 1, J0,1 = 1.0 and
J1,1 = 0.5 (strong cell-cell adhesion).

To test the effect of the added focal adhesions on cell migration, we have then run
sets of 200 2D CPM simulations for different energies E0 and fractions (or focal adhesion
densities) ρ. Using the obtained trajectories we have determined the average absolute
velocity 〈v〉 of both the cell and the cluster by time-ensemble averaging and choosing a
time period δ = 1000 MCS in eq. (4.6) (again to neglect ’thermal’ effects). The obtained
values give an insight about how fast a cell can migrate through such an environment
in comparison to a cell cluster and have been plotted in fig. 5.33.

The results demonstrate that by increasing either the strength of the individual
bonds E0 or the density of binding sites ρ the average velocity of the cell and the
cluster decreases and the migration seems more hindered. This makes sense since more
and stronger binding tends to keep the cell or cluster more in place and it becomes
harder for the chemotactic gradient to pull them loose and drive them in the x-direction.
Interestingly, we can observe a more sudden drop in average velocity upon increasing
E0, whereas it occurs more gradually when ρ becomes larger. This suggests that at some
point the binding energy E0 becomes sufficiently high that both a chemotactic bias and
’thermal’ fluctuations almost cannot break the bond anymore which means that the cells
are severely limited in their motion and the average velocity rapidly drops towards zero.

However, it can be seen that the dependence on these parameters is roughly the
same for single cells and a small cell cluster. It seems that the migration of cells is not
influenced by the fact that they travel as one cluster or not. This means that effects
like dragging along cells that lag behind or cell-cell attachment do not significantly
change the migration within the investigated regime. The main competition appears
to be primarily between chemotaxis that wants to drive the cells forward and the focal
adhesions that want to keep the cell in place. The only difference between single cell
and cluster motion is the overall slower migration of a cell cluster. This is probably a
consequence of the definition of the chemotactic energy bias ∆Hc, i.e. eq. (3.2).
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Figure 5.33: Plots of the average cell velocity 〈v〉 as a function of (a) the saturated binding
energy E0 (with ρ = 0.1) and (b) the relative density of binding sites ρ (with E0 = 4) for a
single cell and cluster of Ncells = 9 cells passing through a medium with randomly distributed
binding (focal adhesion) sites.

Thus, we have demonstrated that the obtained binding energy of a focal adhesion
can be implemented into the CPM resulting in a slowing down of both cells and clusters
that becomes more dominant when the bond strength and the density of bonds increases.
However, binding on itself appears to have similar effects on how a single cell or small
cell cluster migrates. We expect that a difference becomes more apparent when the
model is extended such that focal adhesions not only bind cells, but also influence their
active motion. Specifically, since focal adhesions are not only used to bind cells to the
ECM but also to pull them forwards and to reorientate their cytoskeletons, it might
be interesting to add a cell polarity whose direction and strength is determined by the
focal adhesions and degree of maturation of them. Moreover, it might be interesting
to extend the focal adhesion model description to three dimensions. This includes for
instance effects like the inability of cells to bind to focal adhesions at places where it is
in contact with other cells.
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6. Conclusion

In this thesis we have modeled and compared single versus collective cell motion in
the context of circulating tumor cell (CTC) clusters using the cellular Potts model
(CPM). The primary aim has been to gain more insight in why small CTC clusters
demonstrate a dramatically enhanced metastatic potential. Here we will briefly state
the most important findings and provide some suggestions for future research.

After a review of the theory of active Brownian motion, we have analysed the motion
of clusters of fast-aligning active Brownian particles. Using a velocity alignment poten-
tial we have derived how fast alignment increases the persistence time of the cluster,
yielding a linear scaling with the number of particles. If the cluster is active enough,
this allows it to cover more distance than single particles, thus increasing metastatic
success. The added effect of alignment is strongest for identical particles and can be
counteracted by adding a particle that rapidly reorientates to the cluster.

Next, CPM simulations have been carried out to model cell motion. Single cell
simulations have shown good agreement in terms of mean square displacement with the
theory of active Brownian motion and with experimental results in 2D and in 3D. In
particular, the cell speed and persistence time can be accurately controlled by an active
energy bias and an implemented persistence time.

Extending the simulations to small cell clusters, we have examined the effect of
cell-cell alignment by adding a Vicsek-like model to the CPM. Consistent with theory,
alignment enhances the persistence of cell clusters and improves cluster motion, improv-
ing their metastatic ability. We have found that weakening the strength of alignment
beyond a critical point results in a relatively rapid transition to a non-aligned state. This
state is characterised by a similar persistence as for a single cell and a disintegration or
significant slowing down of the cluster due to individual cells wanting to move in dif-
ferent directions. Additionally, we have shown that the strength of alignment required
to have the cluster benefit from it, is strongly linked to the individual persistence time
of cells, i.e. stronger individual persistence requires weaker alignment. Since single cell
persistence is known to be enhanced by the stiffness of the environment, a cluster might
only benefit from alignment when the ECM is stiff enough.

We have then focused on durotaxis, i.e. the migration up a stiffness gradient. To this
end, we have imposed a linear persistence time or local cell speed gradient in the CPM.
We have demonstrated that in a persistence time gradient there exists no durotactic
benefit originating solely from an increased size of the cluster. Alignment, however,
increases the persistence time of the cluster and so as a whole it experiences a stronger
gradient which leads to improved durotaxis. In comparison, a cell cluster can benefit
from only an increased size when we implement a local cell speed gradient and let cells on
opposite edges tend to move in opposite directions. This is consistent with experimental
results and suggests that the effect can be especially dominant when cells are confined
to a 1D domain or path.

To study the ECM environment through which cells migrate more explicitly, we have
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run simulations involving small cell clusters passing though a narrow passage. These
have indicated how strong cell-cell adhesion can greatly decrease the average passage
time of the cluster relative to each cell migrating on its own, limiting the disadvantage
of migrating as a cluster. We have also demonstrated that a cluster passes most rapidly
(and much faster relative to each cell migrating on its own) when cells adhere to the
obstacle or experience an increased traction force inside the pore.

Finally, to introduce a more extended description of the extracellular matrix into the
CPM, we have modeled the formation of a focal adhesion with more detailed Langevin
Dynamics simulations. Specifically, we have tracked the number of membrane receptors
attached to a rigid cylinder (collagen fiber) above the membrane. We have identified two
distinct processes, attachment and assembly, involved in the maturation of the model
focal adhesion, which occur over time scales that differ by approximately one order
of magnitude. The saturation curves of the number of bound receptors are shown to
behave robustly and their functional form has been implemented as a binding energy in
the CPM to model sites where focal adhesions can form. Letting either cells or small
clusters drift through an environment of such focal adhesion sites shows roughly the
same results. This indicates that slowing down of the cells due to binding at focal
adhesion sites on itself does not favor one over the other.

6.1 Outlook

We have demonstrated that already in a minimal model setup single cell and cluster
migration can be significantly different and for certain settings the results favor migration
in larger clusters. However, there still remain open questions. Firstly, we have captured
all effects on the cell polarity from the environment by random reorientations. To
improve the realism of the simulations, it can be interesting to let the polarity vector
and possibly the active energy bias depend on the model focal adhesions the cell has
formed or the physical obstacles it senses around itself. The effect of degradation or
remodelling of the ECM by the cell has also not been included, while it can play an
important role in especially 3D cell migration. To fully capture the effects of steric
hindrance it seems necessary to explicitly model the cell nucleus by defining extra spins
in the CPM. Additionally, the crucial benefit of migrating as a cluster in the process of
metastasis might also occur within or when entering the bloodstream instead of in the
ECM. This would require an extension of the CPM to an inertial system or the use of a
different model. Finally, we mention that the CPM is a rather coarse-grained model on
a discrete lattice, hence it is never fully accurate. This means that when very detailed
descriptions of the cell are required, it might not be the most ideal model.
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A. Derivations Chapter 2

In this appendix we present several extended derivations of results that have been used
throughout chapter 2.

A.1 2D Mean Square Displacement

In order to derive the mean square displacement (MSD) for a 2D active Brownian particle
travelling at a speed v0 we start with the Fourier-Laplace transform of the corresponding
Fokker-Planck equation introduced in section 2.1

1

τ

∂2P̂

∂φ2
=
[
s+ iv0 (qx cos(φ) + qy sin(φ)) +D(q2

x + q2
y)
]
P̂ − 1

2π
. (A.1)

Setting the wavevectors qx = qy = 0 (denoted by 0) results in

1

τ

∂2P̂0

∂φ2
= sP̂0 −

1

2π
. (A.2)

which can be solved to give

P̂0 = C1 exp(
√
τsφ) + C2 exp(−

√
τsφ) +

1

2πs
, (A.3)

where the exponential terms represent the homogeneous solution with C1 and C2 integra-
tion constants. These constants can be determined by realising that a Fourier transform
of the initial condition (P (r, φ, 0) = δ(r)/2π) results in P (q, φ, 0) = 1/2π which is in-
dependent of the transformation variables q = [qx, qy]. Using the initial value theorem,
i.e. lims→∞ sF (s) = f(0) for the Laplace transform F (s) of an arbitrary function f(t),
we can formulate the condition [33]

lim
s→∞

sP̂0 = P (q = 0, φ, 0) = 1/2π, (A.4)

from which we derive that C1 = C2 = 0. Thus, we discard the homogeneous solution
and find that

P̂0 =
1

2πs
. (A.5)

Next we can take the derivative with respect to qx of eq. (A.1), insert eq. (A.5) and
evaluate at qx = qy = 0 to find

1

τ

∂2P̂x,0
∂φ2

= sP̂x,0 +
iv0 cos(φ)

2πs
. (A.6)
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(For convenience we adopt the notation P̂α,0 ≡
(
∂P̂
∂qα

)
0

and P̂αα,0 ≡
(
∂2P̂
∂q2α

)
0

with α =

x, y.) This equation can be solved to give

P̂x,0 =
−iv0τ cos(φ)

2πs(1 + τs)
. (A.7)

where again we have discarded the homogeneous solution to the differential equation
(eq. (A.6)) due to the condition lims→∞ sP̂x,0 = 0 which results from taking the deriva-
tive of eq. (A.4) with respect to qx before evaluating at qx = qy = 0.

If we then take the second derivative with respect to qx of eq. (A.1), insert both the
results of eq. (A.5) and eq. (A.7) and evaluate at qx = qy = 0 we find

1

τ

∂2P̂xx,0
∂φ2

= sP̂xx,0 +
v2

0τ cos2(φ)

πs(1 + sτ)
+
Dτ

πs
, (A.8)

which can be solved to give

P̂xx,0 = − v2
0τ

2 cos(2φ)

2πs(1 + sτ)(4 + sτ)
− v2

0τ

2πs2(1 + sτ)
− D

πs2
. (A.9)

Once more we have discarded the homogeneous solution as a result of the condition
lims→∞ sP̂xx,0 = 0 which follows from taking the second derivative with respect to qx of
eq. (A.4) before evaluating at qx = qy = 0.

A similar procedure can then be applied with respect to qy instead of qx resulting in

P̂y,0 =
−iv0τ sin(φ)

2πs(1 + τs)
, (A.10)

which can be used to find

P̂yy,0 =
v2

0τ
2 cos(2φ)

2πs(1 + sτ)(4 + sτ)
− v2

0τ

2πs2(1 + sτ)
− D

πs2
. (A.11)

Finally, we can insert the retrieved expressions for P̂xx,0 and P̂yy,0 in eq. (2.8) which
yields

〈
r2
〉

(s) = −
∫ 2π

0

(
P̂xx,0 + P̂yy,0

)
dφ =

∫ 2π

0

(
v2

0τ

πs2(1 + sτ)
− 2D

πs2

)
dφ =

2v2
0τ

s2(1 + sτ)
+

4D

s2
.

(A.12)

This result coincides with the one stated in eq. (2.9).

A.2 3D Probability Density Function

We intend to derive a solution for the marginal probability density function P̃ (θ, t) of a
point particle performing active Brownian motion with a speed v0 in three dimensions.
Starting with its Fokker-Planck equation given by eq. (2.14) we have

∂P̃ (θ, t)

∂t
= − ∂

∂θ

(
P̃

2τ tan θ

)
+

1

2τ

∂2P̃

∂θ2
. (A.13)
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Applying separation of variables by defining P̃ (θ, t) = Θ(θ)T (t) and rearranging terms
we can rewrite eq. (A.13) as

2τ

T (t)

dT (t)

dt
=
d2Θ

dθ2
− 1

tan(θ)

dΘ

dθ
+

Θ(θ)

sin2(θ)
. (A.14)

Since the left and right side of this equation are functions of only t or θ respectively,
they can only be equal if both of them are constant. Denoting this constant −l(l + 1)
yields a set of two ordinary differential equations:

dT (t)

dt
+
l(l + 1)T (t)

2τ
= 0

d2Θ

dθ2
− 1

tan(θ)

dΘ

dθ
+

(
1

sin2(θ)
+ l(l + 1)

)
Θ(θ) = 0

(A.15)

The top equation has a straightforward general solution given by

T (t) = C exp

(
− l(l + 1)

2τ
t

)
, (A.16)

with C a constant. Also, for the solution to remain finite at t→∞ we require l ≥ 0.
For the second differential equation involving Θ(θ) we substitute the variable u ≡

cos(θ). This simplifies the equation to the following form

(1− u2)
d2Θ

du2
+

(
l(l + 1) +

1

1− u2

)
Θ(u). (A.17)

Dividing the equation by (1 − u2)1/2 and rewriting it in terms of the function R(u) ≡
Θ(u)/(1− u2)1/2 finally results in

(1− u2)
d2R

du2
− 2u

dR

du
+ l(l + 1)R(u) = 0, (A.18)

in which we can recognise the Legendre differential equation [33]. The solution to this
equation is given by

Rl(u) = alPl(u) for l ∈ N0, (A.19)

with Pl(u) a Legendre polynomial of the first kind of degree l [33]. For a more extensive
description of these functions and their properties the reader is for instance referred
to [33]. Also, note that we already dismissed Legendre polynomials of the second kind
(often denoted Ql(u)) since these functions diverge for u = ±1 (θ = 0, π). Converting
back to our original angular function we find

Θl(θ) = al sin(θ)Pl(cos(θ)), (A.20)

where we used that (1− u2)1/2 = sin(θ).
If we then combine both results, i.e. eq. (A.16) and eq. (A.20), and make use of the

fact that Legendre polynomials form a complete set we can formulate a general solution
for P̃ (θ, t):

P̃ (θ, t) = sin(θ)

∞∑
l=0

alPl(cos(θ)) exp

(
− l(l + 1)

2τ
t

)
. (A.21)
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Here we absorbed the constant C from eq. (A.16) into the coefficients al from the
Legendre polynomials. Letting the particle start in the z-direction at t = 0 we have

P̃ (θ, 0) = sin(θ)
∞∑
l=0

alPl(cos(θ)) = δ(θ), (A.22)

with δ(θ) the Dirac delta function. Mulitplying eq. (A.22) with Pl′(cos(θ)) and after-
wards integrating both sides over the θ domain [0, π) then results in

2al′

2l′ + 1
= 1, (A.23)

where we have used that Pl(1) = 1 and the fact that Legendre polynomials are orthogonal
so that

∫ 1
−1 Pl(x)Pl′(x)dx = 2δll′/(2l + 1) with δll′ the Kronecker delta [33]. Thus, we

find that al = (2l + 1)/2. Inserting this in eq. (A.21) yields

P̃ (θ, t) =
sin(θ)

2

∞∑
l=0

(2l + 1)Pl(cos(θ)) exp

(
− l(l + 1)

2τ
t

)
. (A.24)

This result coincides with the one shown in eq. (2.15).

A.3 Cluster Persistence Time

We seek to prove that the persistence time of a cluster of N fast aligned active particles,

i.e. τcm = N2
(∑N

i=1
1
τi

)−1
, never exceeds the value it would obtain when each particle’s

persistence time equals the average persistence time of all of them. Specifically, we have
to prove that for a set of N persistence times {τi > 0} the following relation always
holds

N2

(
N∑
i=1

1

τi

)−1

≤
N∑
i=1

τi. (A.25)

Multiplying both sides with
∑N

i=1
1
τi

, which is a positive number, and reversing both
sides we find(

N∑
i=1

τi

)(
N∑
i=1

1

τi

)
≥ N2. (A.26)

The product of two sums on the left hand side can now be rewritten to give (for N ≥ 2)

N∑
i=1

τi
τi

+

N−1∑
i=1

N∑
j=i+1

(
τi
τj

+
τj
τi

)
≥ N2, (A.27)

Realising that the first term on the left hand side is simply N and taking it to the right
hand side we have

N−1∑
i=1

N∑
j=i+1

(
τi
τj

+
τj
τi

)
≥ N(N − 1). (A.28)

Now we can notice that if τi
τj

+
τj
τi

= 2 for all combinations i, j, the sum in eq. (A.28) will

give N(N − 1) corresponding to the equality sign. Thus, we can demonstrate that the
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sum in eq. (A.28) is greater than or equal to N(N − 1) by showing that, independent
of their respective values, each pair τi,j obeys

τi
τj

+
τj
τi
≥ 2. (A.29)

The above relation can be rewritten as

(τi − τj)2 ≥ 0, (A.30)

and since τi is positive and real this will always be true. Thereby we have proved our
original relation shown in eq. (A.25) and eq. (2.43).
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B. LAMMPS Script

units lj

atom_style hybrid sphere dipole

dimension 3

boundary p p p

processors * * 1 # set the number of MPI processors in Lz direction to 1

read_data "data_10.in"

group mem1 type 1 # receptors fluid membrane

group mem2 type 2 # inert beads fluid membrane

group memall type 1:2 # all membrane

set group mem1 dipole 0 0 1

set group mem2 dipole 0 0 1

# membrane particle parameters

variable rc_global equal 2.6

variable rc equal 2.6

variable rmin equal 1.12

variable mu equal 3.0

variable zeta equal 4.0

variable eps equal 4.34

variable sigma equal 1.00

variable theta0_11 equal 0.0 #No spontaneous curvature

variable theta0_22 equal 0.0

variable theta0_12 equal 0.0

# Cylinder parameters (zcyl > r_actualcylinder = 10)

# The second cylinder describes volume exclusion via LJ126 potential,

# while the first cylinder describes an attraction via a Morse potential

variable rcyl2 equal 9.5 #Ensures cylinder has r=10

variable alpha equal 1.0 #Width of the attractive potential

variable rcyl1 equal 9.5 #Ensures cylinder has r=10

variable zcyl equal 14 #Membrane particles are 5

#sigma below the cylinder in the start configuration
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variable r_attract equal 4.5 #Range of the attractive Morse potential

# Tether parameters

variable kmem equal 50 #Spring constant used to keep membrane at a fixed height

variable rsp equal 0 #Equilibrium distance spring

# only membrane gets velocity, start with Temp=3 to offset the potential

# energy when relaxed from hex lattice

variable Nmem1 equal "count(mem1)"

variable Nmem2 equal "count(mem2)"

if "${Nmem1} > 1" then "velocity mem1 create 3.0 1 rot yes mom yes "

if "${Nmem2} > 1" then "velocity mem2 create 3.0 1 rot yes mom yes "

# Use hybrid overlay for pair_style membrane and lj/expand

#pair_style hybrid/overlay membrane ${rc_global} morse ${rc_global}

pair_style hybrid membrane ${rc_global}

pair_modify shift yes

# Initialise Membrane interactions to zero for all possible combinations

# of types, 1-1, 2-1, 2-2. * is just a shortcut for that

pair_coeff * * membrane 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pair_coeff 1 1 membrane ${eps} ${sigma} ${rmin}

${rc} ${zeta} ${mu} ${theta0_11}

pair_coeff 2 2 membrane ${eps} ${sigma} ${rmin}

${rc} ${zeta} ${mu} ${theta0_22}

pair_coeff 1 2 membrane ${eps} ${sigma} ${rmin}

${rc} ${zeta} ${mu} ${theta0_12}

# Reduce the delay from default 10 to 2 to get rid of dangerous builds

neigh_modify delay 1

neigh_modify page 200000 one 20000

variable dofsub equal "count(mem1) + count(mem2)"

variable dofsubrot equal "count(memall)"

compute cT all temp/sphere

compute_modify cT extra ${dofsub}

compute cP all pressure cT

compute cTrot memall temp/sphere dof rotate

compute_modify cTrot extra ${dofsubrot}

############### INTEGRATORS #############

#Define cylinder where the membrane interacts with

#(different potentials for receptors and nonreceptors so two walls)

region cyl1 cylinder x 0 ${zcyl} ${rcyl1} -35 35 side out

region cyl2 cylinder x 0 ${zcyl} ${rcyl2} -35 35 side out
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fix wall1 mem1 wall/region cyl1 morse 15.0 ${rmin} ${r_attract}

${alpha} #Morse potential with minimum at the same location as LJ126

fix wall2 memall wall/region cyl2 lj126 4.0 ${sigma} ${rmin}

#Define spring that keeps the membrane at a fixed height so that

#it does not encapsulate the cylinder

fix mheight all spring tether ${kmem} NULL NULL 0 ${rsp}

#Integrate in the NPH ensemble and regulate temperature via a Langevin thermostat

fix fLANG all langevin 1.0 1.0 1 12341 zero yes

fix fNPH all nph/sphere x 0.0 0.0 10 y 0.0 0.0 10 &

couple xy update dipole

fix_modify fNPH press cP

#fix_modify fNPH press thermo_press

#fix fNVE all nve/sphere update dipole

#fix fCENTER membrane recenter INIT INIT INIT

#compute avpe all pe

#fix fAVPE all ave/time 10 5000 50000 c_avpe ave one file avPe.avpe

# dump coordinates to file trj.dat. You can simply use vmd -lammpstrj trj.dat

#dump fDump all custom 10000 "trj.dat" id type x y z

#dump cDump mem1 custom 1000 "cFolTrj.dat" x y z ix iy iz

#dump cDump2 mem1 custom 1000 "cFolTrj2.dat" x y z

dump cUnfDump mem1 custom 1000 "cUnfTrj1.dat" xu yu zu

dump cUnfDump2 mem2 custom 1000 "cUnfTrj2.dat" xu yu zu

dump xyzDump all xyz 1000 output.xyz

#dump_modify fDump sort id

thermo_style custom step c_cT c_cTrot pe ke etotal xhi press c_cP

timestep 0.01

thermo 1000

run 2000000

write_data "lastconfig.out"
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C. Cellular Potts Model Definitions

In the explanation of the standard cellular Potts model (CPM) and its extensions in
section 3.1, we make use of several cell properties. These properties are fairly intuitive
and are not explicitly defined throughout the section. In this appendix we will provide
a formal definition of all relevant cell (cluster) properties. We repeat that cells are
represented as domains of equal spin σ(x) ∈ N on a lattice whose sites are characterised
by their position x and that the spin σ labels each cell. The results are listed below.

– The volume or area of cell σ:

Vσ =
∑
x

δσ(x),σ, (C.1)

where δi,j denotes the Kronecker delta and the sum is taken over all lattice sites x

– The center of mass of cell σ:

Rσ =
1

Vσ

∑
σ(x)=σ

x, (C.2)

where the sum is taken over all lattice sites x whose spin σ(x) are equal to the cell’s
spin σ.

– Change in the center of mass of the candidate cell during a spin-copy attempt in which
its value σ(x) is replaced by the target site value σ(x′):

∆Rσ(x)(σ(x)→ σ(x′)) =
Rσ(x) − x

Vσ(x) − 1
, (C.3)

where Rσ(x) and Vσ(x) are the center of mass and volume of the candidate cell before
the attempt.

– Change in the center of mass of the target cell during a spin-copy attempt in which
its value σ(x′) replaces the candidate site value σ(x):

∆Rσ(x′)(σ(x)→ σ(x′)) =
x−Rσ(x′)

Vσ(x′) + 1
, (C.4)

where Rσ(x′) and Vσ(x′) are the center of mass and volume of the target cell before
the attempt.

– The center of mass of a cluster of cells:

Rc =
1∑
σ Vσ

∑
σ

VσRσ, (C.5)

where the sum is taken over all cells σ in the cluster.
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– The preferred radius of a cell in 2D:

rσ =

(
Vσ
π

)1/2

(C.6)

– The preferred radius of a cell in 3D:

rσ =

(
3Vσ
4π

)1/3

(C.7)
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D. Additional Figures

D.1 For Section 5.1
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Figure D.1: Plots of the average cell velocity 〈v〉 over a time period δ = 500 MCS as a function
of the strength of the active energy bias κp. Results are obtained from a set of 20 3D single cell
simulations of 20000 MCS with a constant polarity vector p and linearly fitted.
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Figure D.2: Simulated trajectories of 10 2D CPM cells for different implemented persistence
times τ and active energy bias strengths κp. Total simulation time is 50000 MCS and black dots
denote the end point of the trajectory. Other CPM parameters are discussed in section 5.1.

D.2 For Section 5.2
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Figure D.3: Plots of the calculated (a) 2D and (b) 3D instant diffusion coefficients Din =
MSD/2dt for cell clusters consisting of variable numbers of Ncells cells (markers) which have
been fitted with a PRW using eq. (2.10) and eq. (2.20) respectively (lines). Results correspond
to γ = 50.
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Figure D.4: Persistence time and active diffusion coefficient Dp for (a-b) 2D and (c-d) 3D
motion obtained from fitting calculated MSDs with eq. (2.10) and eq. (2.20) respectively. Values
are retrieved for clusters consisting of different number of Ncells cells and correspond to γ = 50.
Moreover, the results are compared to or fitted with the theoretical results of 2D active Brownian
motion for fast-aligning particles.
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Figure D.5: Persistence time and active diffusion coefficient Dp obtained from fitting calculated
MSDs with eq. (2.10). Values are retrieved for different alignment parameters γ and correspond
to a cluster with Ncells = 9 cells and an individual persistence time τ = 500 MCS. Red dotted
lines in (a) serve as visual aide and denote the values Ncellsτ (top line) and τ (bottom line).

95



APPENDIX D. ADDITIONAL FIGURES

100 101 102 103 104 105

Time (MCS)

10-3

10-2

10-1

100

D
in

=
M

S
D
/4

t
(a

2
/M

C
S
)

τ = 100

τ = 300

τ = 500

τ = 600

τ = 800

τ = 1000

(a)

100 101 102 103 104 105

Time (MCS)

10-3

10-2

10-1

100

D
in

=
M

S
D
/4

t
(a

2
/M

C
S
)

τ = 200

τ = 500

τ = 800

τ = 1100

τ = 1400

τ = 1700

τ = 2000

(b)

Figure D.6: Plots of the calculated instant diffusion coefficients Din = MSD/4t for different
values of τ (markers) which have been fitted with a PRW using eq. (2.10) (lines). Results
correspond to (a) γ = 500 MCS and (b) γ = 1500 MCS and a cluster consisting of Ncells = 4
cells.
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Figure D.7: Plot of the cluster persistence time τp obtained from the fits demonstrated in
fig. 5.18a.

D.3 For Section 5.3

0 5000 10000
Time (MCS)

0

20

40

60

80

100

<
x
>

(a
)

Ncells = 1

Ncells = 2

Ncells = 4

Ncells = 9

(a)

0 5000 10000
Time (MCS)

0.0

0.1

0.2

0.3

D
I x

Ncells = 1

Ncells = 2

Ncells = 4

Ncells = 9

(b)

Figure D.8: Plots of (a) the average displacement in the x-direction and (b) the x-component
of the durotactic index as a function of time for aligned (γ = 1) cell clusters experiencing a
linear gradient of dτ/dx = 20 MCS/a in single cell persistence time from τmin = 200 MCS to
τmax = 2000 MCS. Results correspond to different sized clusters.
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D.4 For Section 5.5
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Figure D.9: (a) Plot of the average fraction of receptors bound to the cylinder as a function
of time obtained from simulations (markers) which have been fitted with eq. (5.2) (lines). Inset
zooms in on short time behavior. (b) Plot of the bi-exponential parameters τslow, τfast and w
resulting from the fits shown in (a). Results correspond to flexible membrane settings µ = 2.4.
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Figure D.10: (a) Plot of the average fraction of receptors bound to the cylinder as a function
of time obtained from simulations (markers) which have been fitted with eq. (5.2) (lines). Inset
zooms in on short time behavior. (b) Plot of the bi-exponential parameters τslow, τfast and w
resulting from the fits shown in (a). Results correspond to stiff membrane settings µ = 6.0.
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