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Abstract

The Golgi apparatus is a key component in intracellular trafficking, altering and directing
proteins essential to the cell. Despite years of research, a model coupling Golgi to the in-
tracellular transport is lacking. In this thesis we develop such a model. We analyse new ex-
perimental data to investigate if intracellular transport can be described by an advection
diffusion equation using two novel methods based on image gradients and neural networks.
Neither of the two methods proved able to answer to answer this question however. We
also theoretically study if the Golgi can be modelled as an active, phase separated droplet in
the advective-diffusive environment set up by the intracellular transport. We find that such
a model can indeed explain several key observations such as the de novo formation of the
Golgi.
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1
Introduction

The cell uses thousands of proteins and lipids to function. Many of these are produced in
the Endoplasmic Reticulum (ER), an organelle found in eukariotic cells. Upon exiting the
ER, these proteins and lipids are then transported throughout the cell in a process known
as intracellular transport. Key component in this intracellular trafficking is the Golgi appa-
ratus, an organelle responsible for biochemically maturing proteins and directing them to
the right location. Intense research over the last years has identified key players,1,2 but an
integrated model coupling Golgi size and function to the intracellular transport is lacking3,4.
In this thesis, we seek to propose such a model.

1.1 The secretory pathway: biology 101 for physicists

Proteins produced in the ER exit the organelle at specific locations referred to as ER Exit
Sites - ERES. At these sites, cargo is packaged into a lipid bilayer and this package, known as
a vesicle, buds off into the cytoplasm5. ERES are located throughout the cell and thus the
vesicles need to be transported to their destination: the Golgi apparatus. In general, we can
recognise two different trafficking modes: diffusive and directive6. In the directive mode,
molecular motors pull vesicles along microtubules by hydrolysing ATP. Microtubules
(MTs) are long tubular polymers spread throughout the cell and form a network which
acts as the backbone for intracellular transport. They are organised around objects known
as MicroTubular Organisation Centers (MTOCs). The primary MTOC is the centrosome,
an organelle located next to the nucleus, but strong evidence exists that the Golgi apparatus
acts a MTOC too7,8.

1



Microtubules are polarised and have two distinct ends, indicated as the (+) and (-). Dif-
ferent molecular motors are utilised for transport towards each end, with dynein being
(-)-directed and kinesin (+)-directed9. Vesicles are often attached to multiple motors of both
types, binding and unbinding constantly, making this active transport a stochastic process
which can, for example, be described by a tug-of-war model10. Furthermore, cargo can also
completely detach from all molecular motors. The vesicle will then move through the cy-
toplasm in a diffusive way, until it reattaches to a microtubule. Note that diffusive mode
is a deceptively simple name, as the cytoplasm is not a simple fluid; it is packed with other
cellular components, giving rise to effects such as anomalous diffusion or crowding.

The intracellular trafficking transports the vesicles towards the Golgi, where the cargo un-
dergoes biochemical modification (a process generally referred to as maturation) and is
sorted before being sent to their destination. The Golgi thus acts as a sort of post-office of
the cell, receiving cargo, repackaging it and sending it to the right destination11. Although
the function of the Golgi is similar for different cell types, its appearance is strongly depen-
dent on it. In plants for example, the Golgi is distributed throughout the cell in separate
but fully functional subunits known as stacks12 , whereas in mammals all these stacks are
localised close to the nucleus in a single organelle known as the Golgi Ribbon7. A stack con-
sists of a number of stacked compartments of a disk-like shape called cisternae. These are
membrane enclosed objects containing the enzymes responsible for biochemically alter-
ing the proteins, a process generally referred to as maturing. Proteins move through the
Golgi in a particular direction and the Golgi thus has distinct entry and exit faces. These are
known respectively as the cis and trans face, with the cisternae being labeled analogously.
The cisternae in the middle of the stack are referred to as medial compartments.

Figure 1.1: Left panel: In the cisternal maturationmodel, compartments mature as a whole and thus change identity.

Right panel: In the vesicle transport model, compartments are static objects and cargo is being transported from

compartment to compartment by vesicles. Image taken from 13.
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At the cis-face vesicles fuse with the Golgi and release their cargo into a compartment, while
their lipid bilayer becomes part of the compartment membrane. Exactly how maturation
then happens is debated13,14. The two main competing explanations are the cisternal matu-
ration and vesicular transport models. In figure 1.1 we show the structure of the Golgi and
and a schematic view of each model. In the cisternal maturation model (left panel of 1.1),
the compartments mature as a whole, changing identity from cis to medial and finally to
trans. Trans compartments are recycled into cis compartments by retrograde vesicular trans-
port. In the vesicular transport model (see right panel of 1.1), the vesicles move in the oppo-
site direction. Rather than constantly changing identity, in this model cisternae are static
entities with a defined task and cargo is moved from one compartment to the next by vesi-
cles. The debate could thus be settled by analysing the direction of the vesicles, but so far
this has proven elusive. At the trans-face, the cargo is encapsulated again in a lipid bilayer
and is transported to its destination, similar to pre-Golgi intracellular transport.

1.1.1 Quantitative models of the Golgi

The Golgi has been intensively studied by biologists for many years, but very few attempts
at quantifying the link between the Golgi and the intracellular transport appear to have
been made: our research only turned up a single attempt by Hirschberg et al15, where the
authors present a model for the trafficking of VSVG virus from the ER to the plasma mem-
brane. The secretory pathway is modeled by dividing it into populations connected by a
first order rate equation, i.e. dφ2/dt = k1→2φ1. Assuming no flowback (i.e. ki+1→i = 0)
and a population for the ER, Golgi and Plasma Membrane, they find that such a model is
sufficient to describe their experimental data, as shown in figure #fig:ratemodel.

Figure 1.2: Left panel: First order ratemodel tted to experimental data by 15Right panel: Inferred concentration in

ER, Golgi and PMusing the tted parameters from the left panel and their model. Image reprinted from 15.
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We reprint their main result in figure 1.2. Although this model describes the experimental
data, it is a phenomenological model and reduces the entire system to a few rate parameters
ki→i+1. These rate parameters are not coupled to any of the underlying processes and hence
this model does not offer any insight into the system. Furthermore, the model lacks any
spatial dependence of the concentration.

1.2 This thesis

The Golgi is thus intimately connected to the intracellular transport. In this thesis we seek
to construct a model which links the two beyond a mere rate model and propose that the
intracellular transport can be modelled as an advection-diffusion equation. The Golgi is
described as an active, phase separated droplet which matures the cargo transported to it
by the intracellular transport. Such a model predicts the spatial organisation of cargoes
being trafficked as well as the formation of the Golgi; studies have shown that the Golgi is
able to form de novo8, meaning that in cells from which the Golgi has been removed, it will
automatically reappear.

We also confront our model with experimental data gathered by the team of Frank Perez at
Institut Curie. This team has developed a new technique called RUSH16, which is used to
study the intracellular transport from the ER to the Golgi and beyond using fluorescence
microscopy. In the next sections we introduce the experimental data, how we intend to
analyse it and justify the description of intracellular transport and the Golgi as a phase sepa-
rated droplet.

1.2.1 Experimental data

RUSH (Retention Using Selective Hooks) has recently been developed16 in the team of
Frank Perez at Institut Curie to study intracellular trafficking from the ER to the Golgi and
even post-Golgi using fluorescent live-cell imaging.

4



Figure 1.3: Schematic overview of the RUSH system. Image taken from 16

Figure 1.3 shows the principle of the RUSH system. Inside the ER, a core streptavidin is
fused to the ER using a hook protein. Another protein known as a streptavidin-binding-
protein (SBP) binds to streptavidin, but connected to the SBP are also the protein to be
transported (‘reporter’) and a fluorescent protein. Upon the addition of biotin, the SBP
is released from the streptavidin as the biotin binds to the streptavidin. The SBP-reporter-
fluorescent complex then exits the ER and can be followed the entire secretory pathway
with fluorescence microscopy.

Because the addition of biotin is a nearly instantaneous process, RUSH allows for precise
timing of release of the report complex. Another advantage is its versatility, as it can be
used for many different proteins. In this thesis we mainly focus on the α-mannosidase-II,
generally referred to as ManII. The ManII protein is retained in the Golgi apparatus after
trafficking, meaning that the data we obtain will only contain transport towards the Golgi,
greatly simplifying the analysis as we will not have to separate pre and post-Golgi traffick-
ing. Figure 1.4 shows two frames containing three cells (denoted by the black dashed line)
in a typical RUSH experiment of ManII trafficking. Initially, all the cargo is retained in
the ER and the fluorescence should thus be diffuse throughout the cell around the nucleus.
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This is shown in the left panel: in all cells we observe the fluorescence in a ring around a
dark centre. Once the ManII is trafficked, the Golgi will show up as a bright object. This
is shown in the right panel, where we have denoted the location of the Golgi by the red cir-
cle. However, some of the cargo is either still in the ER or being trafficked, considering the
fluorescence outside of the Golgi.

Figure 1.4: Two frames of theManII transport images using the RUSH technique.

1.2.2 Model

Vesicles exiting the ERES are transported towards the ER over the microtubules. This is a
stochastic process with the proteins detaching from and (re-) attaching to the microtubules
randomly, while the vesicles move diffusely once detached. Several models have been de-
veloped to describe such intracellular transport processes 6, 17, many in the light of virus
trafficking 18, 19, 20. In general, these models assume a two population model, with one pop-
ulation being cargo attached to a microtubule and another cargo freely diffusing in the
cytoplasm. If one assumes that the timescale for attaching and detaching from the micro-
tubules is much smaller than the transport timescale, the two populations can be assumed
to be in equilibrium. In this assumption, known as a quasi-steady-state reduction, the two
population model reduces to a Fokker-Planck equation. As the Fokker-Planck equation
is functionally equivalent to an advection-diffusion equation, we hypothesise that we can
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model protein transport using an advection-diffusion equation :

∂tc = ∇(D∇c− v⃗c) (1.1)

where c is the concentration of the cargo, D a diffusion coefficient and v an advection ve-
locity. Equation 1.1 is thus the model we fit our data to. Note that the fluorescence images
obtained from the RUSH experiment return an intensity I and not a concentration c, and
hence we make the assumption c ∝ I.
Many biological processes and reactions require a high concentration of some protein or
lipid to occur. This can be achieved by physically separating proteins inside a membrane
(consider the lysosome), but the cell contains several membrane-less organelles. These or-
ganelles thus require a different means of reaching high concentrations and the prime can-
didate is liquid-liquid phase separation. In this process a mixture of liquids A and B sepa-
rates into two phases, one rich in A and one rich in B, due to the interactions between them.
Phase separation can thus produce domains with a high concentration without membranes.
It has been proposed as a model for early protocells21 and is able to correctly describe several
phenomena such as P-granules22 and centrosome growth23.

We use a similar description for the Golgi, as its biogenesis contains strong clues which
point towards phase separation as the process driving the biogenesis. The Golgi is able to
form de novo, meaning that in cells from which the Golgi has been removed, it will reap-
pear without any specific action. Ronchi et al8 studied this in detail and found three phases
of growth. In the first phase, vesicles are released from the ER, but no larger structures are
formed and the vesicles disappear either due to fusion with the ER or degradation. In the
second phase larger stack-like structures are formed, while in the third phase all these struc-
tures are clustered in a single location; the Golgi Ribbon is formed. Phase two has the mark-
ings of a concentration-dependent phase separation: once a critical concentration of vesicles
is reached, the mixed state becomes unstable and the vesicles aggregate and fuse to form
a Golgi stack. When such an transition occurs, not all vesicles in the system aggregate: an
equilibrium between single vesicles and the aggregated vesicles will exist. Coarse graining
such a system yields a dilute phase with a low concentration of vesicles and a dense phase.
Interpreting this dense phase as the Golgi and the dilute phase as the cytoplasm, we thus
describe the Golgi as a phase separated droplet. Also note that by describing the systems in
terms of some coarse-grained vesicle concentration, we can apply phase separation - a theory
normally used to describe membrane-less organelles - to a membrane delimited organelle:
the Golgi.

The Golgi is highly dynamical organelle, taking up and budding off vesicles constantly and
our model needs to account for this. We neglect the precise form of maturation (i.e. cister-
nal maturation versus vesicular transport) and model the maturation by considering two
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populations, immature and mature, with the immature population being converted into
mature inside the droplet. This makes the droplet active and we thus describe the Golgi as
an active phase-separated droplet.

1.2.3 Biological image analysis

Image analysis is a lively and ongoing subject in cell biology, with many new methods being
developed constantly, especially with quantisation in mind24, 25, 26, 27. Techniques for quan-
tifying intracellular transport roughly fall into two categories: single particle tracking (SPT)
or correlation spectroscopy. SPT tracks fluorescent proteins or beads moving through the
cell on a frame-to-frame basis, so that each particle’s trajectory can be reconstructed. These
trajectories can then be analysed to obtain information about the transport. The fluores-
cent movies obtained from the RUSH experiments are not clear enough to accurately lo-
calise the vesicles, so that SPT can not be used to analyse the transport. Methods based on
correlation spectroscopy28, 29, 30 rely on a general relationship between the fluctuations and
the underlying density of particles and transport properties. These techniques thus require
a nearly constant concentration, but the RUSH experiments show highly dynamical con-
centrations. Thus, none of the techniques we found are directly applicable to the RUSH
data.

As stated, we hypothesise that we can describe the intracellular process by an advection-
diffusion equation and we wish to confront this with the RUSH data. The question we
are thus asking is a rather general one: how do we fit some spatiotemporal (nD+1) data to
a model? More specifically, since a model is most often presented in the form of a partial
differential equation (i.e. df/dt = α(x, t)df/dx + β(x, t)d2f/dx2 + ...), for what param-
eters α(x), β(x)... is the temporal evolution of a given dataset best described? We have de-
veloped and evaluated two different methods. Our first method approaches the problem
rather directly by calculating spatial and temporal derivatives directly from the data using a
technique known as image gradients. Our second method is based on a recently developed
technique based on neural networks31. We will show that by encoding physics into the neu-
ral network, we are not only able to infer the optimal parameters (i.e. α(x, t) = α0), but
even an optimal parameter field α(x, t).

1.2.4 Structure and main questions

The central theme of this thesis is thus the relation of the intracellular transport and the
Golgi apparatus. We approach this problem from two sides: on the one hand, we anal-
yse experimental data to study if intracellular transport can indeed be described by an
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advection-diffusion equation. On the other hand we theoretically investigate how an active
droplet can form and behaves in a concentration profile set up by an advection diffusion
equation.

This thesis hence consists of two parts. In the first part of this thesis we show two model
fitting methods we have developed and apply them to the RUSH experimental data. In the
second part we construct a model for the Golgi as an active, phase separated droplet in a
diffusive-advective environment and theoretically investigate if this model can explain Golgi
formation and maintenance. In a chapter-by-chapter breakdown, we have the following:

• Part I - Model fitting and data analysis

– Chapter 2 introduces the framework we have developed for model fitting spa-
tiotemporal data using image gradients.

– Chapter 3 applies the method developed in chapter 2 to experimental data.
– Chapter 4 shows an alternative method for model fitting based on neural net-

works.

• Part II - Golgi as an active phase-separated droplet

– Chapter 5 introduces the Cahn-Hilliard equation, which describes phase sepa-
ration, an approximation of it known as effective droplet theory and develops
our model.

– Chapter 6 contains the predictions the model developed in chapter 5 and inves-
tigates the biological implications.

• Chapter 7 is the concluding chapter and summarizes all the findings from the previ-
ous chapters.
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2
Model fitting

In this chapter we introduce the method we have developed for fitting a model in the form
of a PDE to spatiotemporal data. We start off with the general concept and subsequent
section will elaborate on each step.

Assume we have access to experimental data of some process f(x, t). Parallelly, we have also
developed a model describing this process, but it is in the form of a PDE:

∂tf(x, t) = λ1∇2f(x, t) + λ2∇f(x, t) + λ3f(x, t) + λ4 (2.1)

We now wish to investigate if this model fits the data f(x, t) and what coefficient values λi
best describe the dataset. To do so, we consider each term on the right of equation 2.1 in
f(x, t) as some variable xi and ∂tf as y, so that we can rewrite it as:

y = λ1x1 + λ2x2 + λ3x3 + λ4

If we thus can find the variables xi and y, we can perform a fitting procedure such as least
squares to obtain the coefficients λi. In other words, if we can calculate the spatial and tem-
poral derivatives of our data, we can fit the model. Although the concept seems trivial, its
implementation is not. Data is rarely noiseless and obtaining accurate derivatives from
noisy data is notoriously hard, but it forms the heart of our method. In the case of biologi-
cal data, segmentation into sub-areas is often required and the coefficients λi might not be
constant but space- and time- dependent.
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The process of fitting the data thus has several steps:

1. Denoising and smoothing
2. Calculating derivatives
3. Segmenting
4. Fitting

In the next sections, we describe each step separately. Note that the method we present here
has been developed empirically: there’s no theoretical background as to why this particu-
lar combination should work. Instead, it’s been developed by analysing the data, adapting
each step on the go. Nonetheless, the resulting process is general and presents a new tool
to quantify fluorescence microscopy. To illuminate the process, we have thus chosen to
illustrate the effects of each step with RUSH experimental data instead of synthetic data.

2.1 Step 1 - Smoothing and denoising

The first step is to denoise and smooth the data, which is required for accurately calculating
the derivatives. This is a very active area of research (especially in life sciences) and several
methods exist35. After evaluating several methods, we have settled on the so-called ‘WavIn-
POD’ method, introduced in 2016 by the authors of [36]. They show that this methods
outperforms several other advanced methods37 by combining two existing methods: Proper
Orthogonal Decomposition (POD) with Wavelet filtering (Wav). Both subjects are vast
(especially Wavelet transform) and as we are only interested in the result, we only present a
short introduction here, adapted from [36].

POD is closely related to Principal Component Analysis (PCA) in statistics and is already
used in physics to analyse turbulent flows 38. Similar to other transformations such as the
Fourier transform, we wish to expand a function as the sum over a set of orthogonal func-
tions:

f(x, t) =
r∑

n=1

Enαn(x)φn(t) (2.2)

where αn and φn are called respectively the spatial and temporal modes and En indicates
the relative strength of each mode. However, contrary to a Fourier transform, the orthog-
onal functions are not some predetermined set, but are determined from the data. More
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specifically, the data is decomposed into its eigenvectors αn and φn, with En being the eigen-
values. Modes with high eigenvalues En ’contribute more’ to the behaviour of f(x, t) than
modes with lower eigenvalues and we can use this observation to denoise data by letting
the sum of equation 2.2 only run over the most important modes. In fact, when plotting
the sorted log10 spectrum of En, a ’knee’ is observed: modes above the knee constitute the
signal, whereas modes below are essentially noise. We show the eigenvalue spectrum of the
ManII data in figure 2.1.
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Figure 2.1: Eigenvalue spectrum of the POD of theManII data. We have placed the cutoff at mode 27.

Note that although a knee is visible, exactly where to place the mode cutoff is not clear.
Techniques to consistently determine the cutoff exist38, 39, but yielded unsatisfactory per-
formance when applied to the shown spectrum. We thus determined the cutoff by hand by
checking the if the data after applying the POD still showed the same trend and features.

Consider an oscillation consisting of two frequencies f1 and f2. Initially, the signal is solely
composed of f1, but after some time the frequency is switched to f2. Fourier transforming
such a signal would yield two delta peaks at f1 and f2: it returns with infinite precision which
frequencies are present in the signal, but not when. In a wavelet transform, this infinite
precision in the frequency domain is traded for information in the time domain by the
uncertainty theorem: a wavelet transform will not give back the frequencies f1 and f2 with
infinite precision, but it will state when they are present.
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In practice, wavelet transforming returns the signal as an approximation plus a set of de-
tails for each datapoint. We can then filter the signal by applying by some sort of cutoff to
the details. Note that cutting off the details will only change the signal locally; we thus do
not lose any sharpness anywhere else in the data as one would with Fourier filtering. Wav-
inPOD combines these two techniques by applying wavelet filtering to the POD modes.
First, the dataset is decomposed into its POD modes and the energy spectrum is analysed to
select a cutoff mode. All retained modes are wavelet filtered and are then retransformed to
give the denoised and smoothed signal. In figure 2.2 we show the results of the smoothing
in the time and spatial domain. In the left panel we show the signal of a single pixel in time,
while we plot a line of pixels in a single frame in the right panel. The red lines denote the
original (unfiltered) signal, the blue line the effect of just applying POD filtering and the
black one the result of the WavInPOD technique. Note that the effect of the wavelet filter-
ing is to smooth the signal significantly and in comparing the original data to the filtered
data that we have retained the sharpness of the features whilst obtaining a significantly
smoother signal.
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Figure 2.2: Effect of PODwith a cutoff of 27 andwavelet ltering with a level 3 db4wavelet. Left panel shows the

result in the time domain, right panel in the spatial domain. Lines have been offset for clarity.

2.2 Step 2 - Derivatives

After having denoised the images, we calculate the spatial and temporal derivatives. Ob-
taining correct numerical derivatives is hard and becomes much more so in the presence
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of noise40. Next to a finite-difference scheme, one can for example (locally) fit a polyno-
mial and take its derivative.41 However, the computational cost of these methods is high
and they do not scale well to dimensions higher than one. We thus require an alternative
method. In fact, obtaining the gradient of a 2D discrete grid has another subtlety which we
need to address.

Naively, one could obtain the gradient of a 2D grid by taking the derivative using a finite
difference scheme with respect to the first and second axis. If there are features on the scale
of the discretisation (∼ few pixels), such an operation will lead to artefacts and underesti-
mate the gradient. These issues have long been known and several techniques have been
developed to accurately calculate the gradient of an ‘image’. The most-used image-gradient
technique is the so-called Sobel operator and we derive its structure here. Consider a basic
central finite difference scheme:

df(xi)
dx ≈ f(xi+1)− f(xi−1)

2h
where h is defined as xi+1 − xi. Applying this operation to a set of three pixels thus returns
the derivative of the middle pixel. We can rewrite this as a matrix S

S = 1
2
·
[
−1 0 1

]
which, when applied element wise to the three pixels, returns the middle pixels’ derivative.
Applying the matrix S element wise to each point in a dataset is known as an convolution
and convolving a matrix A with the matrix S yields its derivative:

∂xA ≈ A ∗ 1
2
[
−1 0 1

]

2-2

1

1

-1

-1

3x3 Sobel

0

0

1-1

Finite difference

0 0 0

0 0 0

Figure 2.3: In the left panel we show how a nite difference operator would be applied to the black pixel. The right

panel shows this for the Sobel operator.
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As stated, this operation is inaccurate and introduces artefacts. To improve this, we wish
to include the pixels on the diagonal of the pixel we are performing the operation on as
well (see figure 2.3). The distance between the diagonal pixels and the center pixel is not 1
but

√
2 and the diagonal gradient also needs to be decomposed into x̂ and ŷ, introducing

another factor
√

2. We thus obtain the classic 3 × 3 Sobel filter in the x̂ and ŷ direction:

Gx =
1
8
·

−1 0 1
−2 0 2
−1 0 1

Gy =
1
8
·

−1 −2 −1
0 0 0
1 2 2


Increasing the size of the Sobel filter increases its accuracy and we have implemented a 5x5
operator. The matrix implementation is also beneficial from a computational standpoint,
as convolutional operations are very efficient and one can derive a Sobel operator for arbi-
trary dimensions. Separate methods to calculate second order derivatives exist, we simply
apply the Sobel operator twice. We also make use the derivatives to segment the movie. We
show this in the next section.

2.3 Step 3 - Segmentation

In the case of the RUSH data, obtained images and movies often contain multiple cells.
Each of these cells can be further segmented into two more areas of interest: the cytoplasm,
which is were we want to fit our model and the Golgi apparatus. We wish to make a mask
which allows us to separate the cells from the background and divide each cell into cyto-
plasm or Golgi. Figure 1.4 shows two typical frames in the MANII transport cycle. Note
that no sharp edges can be observed, especially once the MANII localises in the Golgi. No
bright field images were available as well, together making use of techniques such as de-
scribed in [42] unavailable. We have thus developed our own method which depends on
the intensity and its time derivative. It consists of four steps:

1. Normalize the intensity I and its time derivative between 0 and 1.
2. Sum all the frames over some quantity. To separate the Golgi, we determined∑

n I(x, y, tn), while we calculated log10 (
∑

n I(x, y, tn) · ∂tI(x, y, tn)) for the
cytoplasm.

3. Threshold the image to obtain the mask. This is either done automatically through
an Otsu threshold or by manually adjusting the threshold until desired result.

4. The mask is post-processed by filling any potential holes inside the mask.
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We show this process in figure 2.4. The upper two panels show the images obtained after
performing the summing operation for the Golgi and cytoplasm (also referred to as ’active
area’) respectively, while the lower left panel shows the final mask obtained after threshold-
ing these two images. For comparison, we have plotted a frame of the data to compare the
mask to.
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Figure 2.4: Four panels showing the different stages of making themask. From segmenting the upper two panels we

determine the Golgi and active area, leading to themask in the lower left. This can be compared to the actual data in

the lower right frame.
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2.4 Step 4 - Fitting

The final step in our method is to fit our model to the data. By having determined both
the spatial and temporal derivatives, we have effectively reduced the movie to an m by n
sized dataset, where m is the number of datapoints and n the amount of features calculated.
In the case of the RUSH data movie, m is number of pixels multiplied by the number of
frames, while n = 5 as we calculate ∂xI, ∂xxI, ∂yI, ∂yyI and ∂tI. The fitting thus becomes a
generic problem, which can be solved by virtually any fitting method. We use least-squares,
but one could use for example a Bayesian method. Each fitting method assumes that the
fitting parameters are constant across a dataset however. Given the nature of the cell, the
diffusion constant and advection will not be constant: they will be spatially dependent
and it is not unlikely that they will show some temporal dependence as well. On a small
enough scale however, we can reasonably approximate these fields as constant and here we
can perform a fit. To not lose any spatial resolution and prevent artefacts, we use the sliding-
window technique, which is illustrated in figure 2.5. In a small window around a pixel, we
perform the fitting procedure, thus yielding the diffusion coefficient and advection velocity
for that pixel. We then move the window to the next pixel, thus finding diffusion and ad-
vection fields with a similar resolution as the data. In the next chapter we apply this method
to the RUSH experimental data.

Sliding window

Figure 2.5: Schematic overview of the sliding window technique. The solid black line encompasses an area around its

blue coloured central pixel and the t output is assigned to that pixel. We thenmove the window (dashed black line)

and perform the t for the orange coloured pixel.
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3
Data analysis

In this chapter we apply the method developed in the previous chapter to the ManII exper-
imental data obtained using the RUSH technique. We first present an initial analysis of the
data by investigating the fluorescence curves of several areas of interest and study movies’
time derivative. We then analyse the results of the least squares fit.

3.1 Initial analysis

We stated in the introduction that we assume that the concentration is proportional to the
intensity of the fluorescence, c ∝ I. To test this assumption, we plot the time-evolution
of the fluorescence of the entire cell. We normalise the fluorescence between 0 and 1 be-
fore computing the mean over each frame, to get rid of the background in our statistics.
The left panel of frame 3.1 shows the average fluorescence of each frame, normalised on the
maximum average intensity. In the right panel we plot the same quantity but for the flu-
orescence in each of the three cells’ Golgi. Note a significant drop of almost 30% in total
fluorescence between the initial and final frame. We recognise two regimes: a strong initial
drop up until frame 100 and a slower decay after. The right panel shows a saturation of the
fluorescence in the Golgi after frame 100, so we attribute the decrease in total fluorescence
after frame 100 to photobleaching. The first regime is more troublesome, as this strong de-
crease is not explained by photobleaching and thus casts strong doubts on our assumption
that c ∝ I. Since this drop is spread out over a hundred frames, on a frame-to-frame basis
this effect can be neglected in our model.
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Figure 3.1: Left panel: Normalised total uorescence per frame. Right panel:Normalised uorescence in each of the

three cells’ Golgi.

In the right panel we observe that all three curves show a roughly linear increase in fluores-
cence. The blue line seems to have some sort of delay, but also increases linearly after this
delay. The cell indicated by the purple line shows a significant drop at frame 200, but since
the ManII protein is retained in the Golgi, this is not caused by any type of intracellular
transport and thus not of interest to us. The linear increase and common pattern suggests
that the transport properties are not concentration dependent at these concentrations. We
now study the time derivative of the fluorescence. We have plotted it at frame 0, 20 50 and
100 in figure 3.2.

Although figure 3.1 has shown that c ∝ I is a doubtful assumption, an increase in fluores-
cence will mean an increase in concentration. Areas where the time derivative is positive
thus correspond to a concentration increase, whereas areas with a negative time derivative
correspond to a concentration decrease. In figure 3.2, positive areas are shaded, while neg-
ative are shaded blue. As expected, the Golgi shows up in each cell as a bright red object.
Note however that we also observe red areas towards the edges of the cells. As the concen-
tration close to the Golgi decreases due to trafficking, the blue area moves outwards and
slowly takes over the red area. As to the cause of this outer red ring in each cell, we speculate
this is caused by a diffusion: reporters exiting the ER through the ERES initially diffuse,
increasing the concentration in some areas.
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Figure 3.2: The determined time derivative four different frames of theManII RUSH experiments.

3.2 Analysis of least-squares fit

In this section we present the results of our least squares fit. We have used a 7 by 7 pixels
area in the spatial domain to perform the sliding window operation and have fitted each
frame of the movie independently. The sliding window operation returns diffusion and
advection fields the same size as our data. Due to the physical limitations of print media, we
only show several frames of the results here. Since a picture is worth more than a thousand
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words, an animation of 272 frames must be worth a book and we refer the reader to our
Github to find the full results.

We show the inferred diffusion field at frame 4 and 40 in figure 3.3, together with the dis-
tribution of diffusion coefficients throughout the entire movie and the fraction of positive
diffusion constants per frame.
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Figure 3.3: Analysis of the inferred diffusion eld. The upper row shows the inferred eld at two frames, while the

lower row shows the distribution of values and the fraction of physical values as a function of time.
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We observe structures larger than the fitting window which, although varying in time,
do not differ greatly no a frame-to-frame basis. This means that our fit is capturing at
least some of the underlying dynamics. On the other hand, we observe many areas with
a negative diffusion coefficient and the inferred diffusion coefficients are on the order of
10−4μm2/s- orders of magnitude than expected. In the lower left panel we plot the distribu-
tion of values, which shows that roughly 60% of the inferred field has a positive diffusion
coefficient. In the lower right panel we have determined this fraction as a function of time.
It shows that, save for a few initial frames, this fraction is not (strongly) time-dependent.
Note however that results are skewed due to its strong peak around 0; many coefficients
are negative but extremely close to zero (e.g −10−5). Negative diffusion coefficients could
indicate to clustering, but could also be the result of an incorrect fit. We investigate this in
depth after studying the advection profiles, which we show in figure 3.4. In the four pan-
els we show the inferred velocity in the x̂ and ŷ direction in the upper two panels, and the
magnitude and angle in the lower two.

Similar to the diffusion, we observe patterns both in time and space bigger than our fitting
window, meaning that the fit is not completely random. On the other hand, we are not able
to discern any specific flow patterns from the figures in 3.4. For example, we would expect
a rainbow-like pattern pointing towards the Golgi in the lower right corner, but no such
pattern is observed.
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Figure 3.5: Diffusion and advection velocities of a single pixel in time. We have plotted the scaled and translated signal

as a black dashed line to show the correlation.

To gain more insight into our fit, we analyse a single pixel in time. Figure 3.5 shows the dif-
fusion constant and advection velocities as fitted at this pixel as a function of time. The
scaled and translated intensity of the pixel is plotted by the black dashed line as a reference.

The signal of this pixel remains roughly constant for the first 10 frames and then decreases
to noise level. Note that during this initial constant phase, the diffusion constant is nega-
tive. Once the signal starts decreasing, or, in other words, cargo starts flowing, we see a phys-
ical diffusion constant and non-zero velocities. Once the signal returns to around noise-
level around frame 50, the inferred velocities and diffusion constant seem to become ran-
dom around 0. In other words, our method seems to work when the signal is changing but
struggling when the signal is either constant or at noise level. We observe similar behaviour
in other pixels, so we contribute the unphysical diffusion values to constant and noise-level
signal.

Using the Einstein-Stokes relation, the diffusion constant of a vesicle with a 50nm radius
should be on the order of 5μm2/s. Although this is an upper bound, as the vesicle can
hardly be considered freely diffusing through the cytoplasm, this is still several orders of
magnitude higher than the observed diffusion constants of 10−4μm2/s. One possible expla-
nation for this difference is the ‘mixing’ of the transport fluorescence with the fluorescence
of the ER. After the addition of biotin, the fluorescent cargo gets released, but still has a fi-
nite residence time in the ER. Since the obtained images are projected over an axis, changes
in fluorescence we observe can be both due to intracellular transport as well as processes in-
side the ER. If these processes have different timescales, this can strongly affect the inferred
coefficients. Also note that we have assumed that the intensity of a pixel describes a coarse-
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grained concentration which we can describe by an advection-diffusion equation. Once
the size of the vesicles becomes on the order of the pixel size, this assumption breaks down.
In the case of the ManII trafficking, the pixels are roughly two to three times the size of a
vesicle, meaning that we are at the limits of our assumption.

3.3 Conclusion

We have applied the method developed in the previous chapter to the RUSH trafficking
data of the ManII protein. Both the diffusion and the advection fields show patterns larger
than the fitting window, but no clear structure can be discovered. Furthermore, roughly
40% of the diffusion coefficients were negative, but we also can attribute many of these neg-
ative values to either extremely close to zero or a wrong fit due to constant data. Conclud-
ingly, we are unable to determine if intracellular transport can be described by an advection-
diffusion equation. We present our recommendations to the experimentalists and possible
improvements of the fitting method in the conclusion.
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4
Physics Informed Neural Networks

In the previous chapters we showed the difficulties in fitting a model in the form of a par-
tial differential equation to spatio-temporal data. The method we developed was a classi-
cal numerical approach, separating the problem into several substeps such as denoising,
smoothing and numerical differentiation. The main weak points of the developed method
are the calculation of numerical derivatives and its rather crude fitting method. In this chap-
ter we present an alternative technique, generally referred to as Physics Informed Neural
Networks (PINNs), which solves these issues. Although only recently introduced, it has al-
ready shown impressive performance in fitting models and numerically solving equations31,
43, 44, 45, 46. Neural networks are a new technique in physics and this chapter also serves as an
introduction to neural networks in general. The chapter has the following structure:

• Neural Networks - This part will cover the basics of neural networks: their inner
workings, training and other general features.

• Physics Informed Neural networks - In this second part we introduce the concept
behind PINNs, use it to solve a toy problem and apply it to our RUSH data.
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4.1 Neural Networks

Normally when programming a computer to perform some task, we break the problem
into smaller pieces and write down precise instructions. Often, a model of the underlying
process is also needed to transform some input into an output. The performance of the
algorithm is then only as good as the underlying model and when dealing with complex
processes, such models often become intractable or oversimplified. Artificial Neural Net-
works (ANNs) are a different approach to such a problem. Instead of being programmed,
they are trained and hence ‘learn’ an underlying model. In a process known as supervised
learning, the network is given inputs and the desired outputs for each input. Training the
network then consists of adjusting its internal parameters until the predictions match the
desired outputs. In the next sections we discuss how to adjust these parameters.

4.1.1 Architecture

An excellent introduction is given by Michael Nielsen in his freely available book “Neural
networks and deep learning.” The following section has been strongly inspired by his presen-
tation.
At the basis of each neural network lies the neuron. It transforms several inputs into an
output in a two-step process. In the first step, the inputs x are multiplied with a weight
matrix w and a bias b is added:

z = wx + b
z is called the weighted input and is transformed in the second step by the neuronal activa-
tion function σ. This gives the output of the neuron a, also known as the activation:

a = σ(z) = σ(wx + b) (4.1)

The activation introduces non-linearity into the network and hence is crucial; without it a
neural network would merely be several matrix multiplications. The classical activation is
a tanh, i.e σ(z) = tanh(z), but many other forms exist, each having its benefits. Several
neurons in parallel constitute a layer and several layers can be connected to create a net-
work. The layers in the middle of the network are referred to as hidden layers. An example
of such a network with two hidden layers is shown in figure 4.1.
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Input layer Output layerHidden layers

Neuron Layer

Figure 4.1: Schematic overview of a neural network. The left layer is known as the input layer, the right layer as the

output layer and the layers inbetween are referred to as hidden layers.

4.1.2 Training

Consider again equation 4.1. In a network with multiple layers, it is useful to express the
activation al of layer l in the activation of layer l− 1, so that 4.1 becomes :

al = σ(zl) = σ(wlal−1 + bl) (4.2)

where wl and bl are respectively the weight matrix and bias of layer l. As stated, training a
neural network means adjusting the weights wl and biases of each layer bl until the output
of the neural network aL - the activation of the last layer L - matches the desired output yi.
We thus require a metric to define the difference between the prediction and the desired
output. This metric is known as the cost functionL and one of the most commonly used
cost functions is the mean squared error:

L =
1

2n
∑

i
|yi − aLi |2 (4.3)
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where n is the number of samples, yi the desired output of sample i and the prediction of
the network given the inputs of sample i. As the cost function is a measure of the differ-
ence between the prediction and desired outputs, training a neural network comes down to
minimizing the cost function. Such minimization problems are solved by gradient descent
techniques.

Gradient descent techniques are based on the fact that given some position, the minimum
from that position can be reached by following the steepest descent. Thus, given a function
f(x) to minimize with respect to x, we guess an initial position xn and iteratively update it
until it converges:

xn+1 = xn − γ∇f(xn) (4.4)

γ is known as the learning rate and sets the ‘stepsize’. Although this is an iterative tech-
nique, if the minimization problem is convex (i.e. no local minima), gradient descent is
guaranteed to converge to it. Note that gradient descent requires calculation of the deriva-
tive with respect to to the variables of the function to be minimized. In other words, one
needs to know the derivative of the cost function with respect to each of the weights and
biases in the network. A naive finite difference scheme would quickly grow computation-
ally untractable, even for networks with just two hidden layers. Alternatives to gradient
descent exist, but all require calculation of the derivatives. In the next section we present an
algorithm which is able to efficiently calculate these derivatives.

Back propagation and automatic differentiation

In this section we introduce the so-called backpropagation algorithm. The backpropagation
algorithm allows for the efficient calculation of the cost function derivatives in a neural net-
work. For simplicity, we move away from a vector notation and introduce wl

jk, the weight
of the k-th neuron in layer l − 1 to neuron j in layer l and blj, the bias of the neuron j in the
l-th layer. We introduce the error of neuron j in layer l as:

δlj =
∂C
∂zlj

We can rewrite this using the chain rule as:

δlj =
∑

k

∂C
∂alk

∂alk
∂zlj
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The second term on the right is always zero except when j = k, so the summation can be
dropped. Given equation 4.1, we note that ∂alj/∂zlj = σ′(zlj). For the last layer l = L, we can
directly calculate the derivative, resulting in:

δLj = |aLj − yj|σ′(zLj ) (4.5)

Equation 4.5 relates the error in the output layer to its activation and weighted input.
Again using the chain rule, we can express the error in a layer l, δlj ,in terms of the error in
the next layer, δl+1

j :

δlj =
∑

k

∂C
∂zl+1

k

∂zl+1
k

∂zlj
=
∑

k
δl+1
k

∂zl+1
k

∂zlj

Using equation 4.2, we obtain after substitution:

δlj =
∑

k
δl+1
k wl+1

kj σ′(zlj) (4.6)

Equation 4.5 gives us the error in the final layer, while equation 4.6 allows us to propagate
the error back through the network - hence the algorithm is named backpropagation. Two
more expressions are needed to relate the error in each neuron δlj to the derivatives with
respect to. the weights and biases. Making use yet again of the chain rule gives the last two
backpropagation relations:

∂C
∂blj

∂blj
∂zlj

=
∂C
∂blj

= δlj (4.7)

δlj =
∑

k

∂C
∂wl

jk

∂wl
jk

∂zlj
→ ∂C

∂wl
jk
= al−1

k δlj (4.8)

Given the four fundamental backpropagation relations, we state the algorithm. It consists
of four steps:

1. Complete a forward pass, i.e., calculate aLj .
2. Calculate the error in the final layer using 4.5 and propagate it backwards using 4.6 to

obtain the error in each neuron. Using 4.7 and 4.8, calculate the derivatives required
for the minimizer.

3. Perform a minimization step (e.g. equation 4.4) and update the weights and biases.
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4. Return to step one until the minimization algorithm in step three converges.

Mathematically, back propagation is a version of a more general technique known as auto-
matic differentiation. Suppose we want to calculate the derivative of some data f(x). Sym-
bolic differentiation would give the most precise answer, but often the function f is not
known. Furthermore, even if f would be known, it quickly becomes too hard to calculate
a symbolic derivative of a complex function f. One could then turn to numerical differen-
tiation using some finite difference scheme or locally fitting a polynomial whose derivative
is then calculated. All these methods require relative closely spaced data and are very sensi-
tive to noise. Automatic differentiation is a third type of differentiation which allows for
the precise calculation of derivatives. At its fundamental level, any computational opera-
tion, no matter how complex, is a long string of elementary operations whose derivative
is easily determined. Using the chain rule, we can then calculate the derivative of any com-
putation in terms of these smaller elementary operations. To see this, consider a function
f(x) = a+ bx. Writing this in terms of elementary operations gives:

f(x) = a+ bx = w1 + w2w3 = w1 + w4 = w5

The derivative of each subexpression wi is easily calculated:

w′
1 = 0,w′

2 = 0,w′
3 = 1,w′

4 = w′
2w3 + w2w′

3,w′
5 = w′

4 + w′
1

The derivative of f is then:

f′ = w′
5 = w′

4 + w′
1 = (w′

2w3 + w2w′
3) + w′

1 (4.9)

We have thus expressed the derivative of f in quantities we know and indeed, after filling in
the remaining derivatives we obtain f′ = w2 = b. Note the similarity to backpropagation;
in automatic differentiation we are only interested in the final expression on the right of
equation 4.9, whereas in backpropagation we wish to know the intermediate derivatives (i.e.
w′

5,w′
4) too. Back propagation is thus a version of automatic differentiation in which the

intermediate values are calculated too. In the next section we show that automatic differen-
tiation enables easy encoding of physics into a neural network, leading to a so-called Physics
Informed Neural Network (PINN).
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4.2 Physics Informed Neural Networks

In this section we introduce Physics Informed Neural Networks (PINNs), a recently de-
veloped technique31, 46 which merges physical models and neural networks. We first intro-
duce how PINNs encode physical laws and models in neural networks and discuss why
this yields such a powerful technique. This is illustrated by applying it to a simple diffusive
process and show that even in the presence of noise, PINNs can accurately infer a (spatially-
varying) diffusion constant. We then apply a PINN to the RUSH data and end the chapter
with our conclusions.

4.2.1 The concept

Consider a set of spatiotemporal experimental data, u(x, t) and a model which describes the
temporal evolution of this dataset:

∂tu = λ1 + λ2u+ λ3∇u+ λ4∇2u = f(1, u, ux, ...) (4.10)

We now wish to know which value for the parameters λi best describes the dataset u(x, t).
Naively, one could train a neural network on a training set created by numerically solving
4.10 for different values λi and then feed this network the experimental data u(x, t). Al-
though theoretically this yields the correct result, for complex processes such as a Navier-
Stokes flow or the Schrodinger equation this quickly grows intractable due to the massive
amount of training data required for an accurate prediction.

PINNs circumvent this issue by directly encoding physical laws and models such as 4.10
into the neural network. We can write any PDE as:

g = −∂tu+ f(1, u, ux, uxx, u2, ...) (4.11)

This function g can be added to the cost function, because to satisfy the PDE, g → 0:

L =
1

2n
∑

i
|ui − aLi |2 +

l
n
∑

i
|gi|2

where l sets the effective strength of the two terms. By adding g to the cost function, it acts
as ‘physics-regularizer’ and unphysical solutions are penalized; we have thus encoded the
physics directly into the neural network. Since neural networks also return high precision
derivatives through automatic differentiation, equation 4.11 can be accurately determined.
Note that while we know the form of g, its coefficients λi are unknown. However, we can
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treat the coefficients as variables of the cost function, i.e. L(wl, bl, λ) and thus by training
the network on the dataset u(x, t), we automatically infer the coefficients. Consequently,
we do not need a vast set of training data, as we solve the problem by training the network.

Theoretically, PINNs should not only be able to infer constant coefficients, but also coeffi-
cient fields. Instead of treating the coefficients as a variable to be optimized, we add another
output to the network. Such a network is known as a multi-output PINN and the differ-
ence between a single and multi output network is shown in figure 4.2. PINNs can also be
used to numerically solve PDEs. By removing the mean squared error term from the cost
function but adding initial values and boundary conditions, training the network will now
result in the network learning the solution to the PDE g, whilst respecting the given bound-
ary and initial conditions. This alternative means of numerically solving a model does not
need advanced meshing of the problem domain required in computational fluid dynam-
ics or carefully constructed (yet often unstable) discretization schemes, as it requires the
physics to be fullfilled at every point in the spatiotemporal domain.

x

t

u

PINN

x

t

u

Multi output PINN

λ

Figure 4.2: Left panel: a single output PINN. Right panel: Amulti-output PINN. The network now also predicts the

coef cients values at each data point.

4.2.2 PINNs in practice

Before applying a PINN to the RUSH data, we study a toy problem to gain more insight
into its behaviour. We also prove that a PINN is able to correctly infer a coefficient field
from noisy data. Our toy problem of an initial gaussian 1D concentration profile:

c(x, 0) = e−
(x−x0)2

2σ

with x=0.5 and σ = 0.01 diffusing in a box of length L according to:

∂c(x, t)
∂t = ∇ · [D(x)∇c(x, t)] (4.12)
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on the spatial domain [0, 1] with perfectly absorbing boundaries at the edges of the domain:

c(0, t) = c(1, t) = 0

If D(x) = D, this problem can be solved using a Greens function. Although being a simple
problem, it contains all the essential features of a PINN. For the application of a PINN to
more complex systems such as the Burgers, Schrodinger or Navier-Stokes equations, we
refer the reader to the papers of M. Raissi et al (46, 31).

4.2.2.1 Constant diffusion coefficient

We first numerically solve equation 4.12 with a diffusion coefficient of D(x) = D0 = 0.1
between t = 0 and t = 0.5. Using a spatial and temporal resolution of 0.01, our total
dataset consists of 5151 samples, while we have configured the neural network with 6 hidden
layers of 20 neurons each and have set λ = 1. The left panel of figure 4.3 shows the ground
truth (i.e. the numerical solution of equation 4.12) and the absolute error with respect to to
the groundtruth of the neural network output.
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Figure 4.3: Left panel: Simulated ground truth of the problem. Right panel: The absolute error of neural network. Note

that most of the error is located at areas with low concentration, i.e. signal.

The inferred diffusion coefficient is Dpred = 0.100026: an error of 0.026%. From the abso-
lute error we observe that the error seems to localize in areas with low concentration. This
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is a feature we have consistently observed: in areas with low ‘signal’, the neural network
struggles. Considering that in these areas there is simply not much data to learn from, this is
not unexpected.

The input data of the previous problem is noiseless and thus of limited practical interest.
We add 5% white noise to the data of the previous problem and train the network on this
noisy dataset. Note that the network is now doing two tasks in parallel: it’s both denoising
the data and performing a fit. In the left panel of figure 4.4 we show the concentration pro-
file at times t = 0, 0.1 and 0.5, with the prediction of the PINN superimposed in black
dashed lines at each time. On the right panel we show the absolute error with respect to
the ground truth. Observe that the error again localizes in areas with low concentration.
The inferred diffusion constant is D0 = 0.10052: an error of 0.52%. Although the error
is an order of magnitude higher compared to the noiseless data, an error of less than 1% is
extremely impressive.
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Figure 4.4: Left panel: The original noisy concentration pro le at several times with the neural network inferred de-

noised version superimposed. Right panel: The absolute error of neural network with respect to the ground truth.

Note that most of the error is located at areas with low concentration.

4.2.2.2 Varying coefficients

As stated, it should be possible to infer coefficient fields by using a two output neural net-
work. We first test this on the noisy constant diffusion (D0 = 0.1) dataset of the previous
problem. In this case, while the neural network is allowed to assign a different diffusion
constant to each point in the spatiotemporal domain, it should return D = 0.1 for each.
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Figure 4.5 shows a summary of the results in four panels. In the upper left we show the data
on which the network is trained, while the upper right panel shows the predicted concentra-
tion profile. Note the excellent match between the two. In the lower right panel we show
the inferred diffusion field. We observe a good match in the middle of the plot, but the neu-
ral network again struggles in areas with low concentration, such as close to the edges of the
system. A more quantitative analysis of the predicted diffusion and concentration is pre-
sented in the lower left corner. Here we plot the Cumulative Distribution Function (CDF)
of the absolute relative error of both the concentration and the diffusion constant. Note
that the PINN predicts the concentration very well, with roughly 80% of the points having
less than 5% error, but struggles more with the diffusion coefficient. Given that the diffu-
sion coefficient is inferred self-consistently thorugh its role in the physics-informed part of
the cost function, this is not unexpected.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

t

Input concentration

0.00 0.25 0.50 0.75 1.00
x

Predicted concentration

0.15
0.00
0.15
0.30
0.45
0.60
0.75
0.90
1.05

0 10 20 30 40 50
Relative error (%)

0.00

0.25

0.50

0.75

1.00
CDF or relative error

Concentration
Diffusion

0.00 0.25 0.50 0.75 1.00
x

0.0

0.1

0.2

0.3

0.4

0.5

t

Predicted diffusion field

0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Figure 4.5:We show the training data and predicted concentration pro le in the upper left and right panels. The lower

right panel shows the inferred diffusion eld while the lower left panel shows the CDF of the relative error of the

diffusion and concentration.
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In figure 4.6 we show a similar analysis for data with a non-constant diffusion field. Equa-
tion 4.12 has been numerically solved on a grid consisting of 50000 points and diffusion
constant profile D(x) = 0.2 + 0.1 tanh(x). Remarkably, the neural network is able to
accurately infer the network with 85% of the diffusion field having an error of less than
10%. In figure 4.7 we show the inferred diffusion profiles in more detail by projecting them
along the time axis. Observe that, yet again, the error is largest where the signal is lowest.
Nonetheless, we have proven that a neural network is able to accurately infer a coefficient
field from noisy data.
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Figure 4.6:We show the training data and predicted concentration pro le in the upper left and right panels. The lower
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diffusion and concentration.
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Figure 4.7: Projection of the inferred diffusion pro le along the time axis.

4.2.2.3 Real cell

We now apply the PINN technique to the RUSH data. Having observed in the previous
section that the technique struggles in domains with low signal, we select a subset of the
data consisting of 10 by 10 pixels during the first 30 frames, thus giving a dataset of 3000
points. We first fit this data assuming that it is described by a single diffusion coefficient and
advection speed. The physics informed part of the cost function is thus:

g = 0 = −∂tc+D(∂xxc+ ∂yyc)− vx∂xc− vy∂yc

We train the network on the raw data: none of the filtering procedures presented in the
model fitting chapter are used. The neural network gives the following results: D = −3 ·
10−6, vx = 0.82, vy = 0.32, whereas the least-squares fitting gives D = 0.049, vx =
−0.046, vy = 0.013. These results are completely different: the least squares predicts a
diffusion constant and velocity roughly on the same order, whereas the neural network pre-
dicts a negligibly small diffusion constant. The direction and magnitude of the advection
is different as well. To gain more insight into the fit, we study the concentration profiles of
frame 5 as given by the original noisy signal, the output of the neural network, the filtered
signal and the reconstructed signal of the least-squares fit. The signal is reconstructed by
propagating the first frame using the calculated time derivative with the optimal fit parame-
ters. The result is shown in figure 4.8.
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Figure 4.8: In the upper right panel we show the un ltered data of our subset for frame 5. The upper right panel shows

the inferred pro le by the PINN, while the lower two panels show respectively the ltered data and the data recon-

structed from the least squares t.

As can be observed from figure 4.8, the inferred concentration profile by the neural net-
work matches the raw data very well, while the least squares fit does not. Since we have
taken a 10 by 10 pixel patch of the data, this a fairly small scale and seeing such a close re-
semblance to the raw data might mean our model is fitted to the noise instead of the signal.
Later frames reveal an inferred concentration profile less like the raw data however. Con-
cludingly, the neural network seems to outperform the least-squares method, but due to
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the small scale of our data, no clear verdict can be rendered. Increasing the scale of our data
however make a cost function with constant coefficients unlikely.

In the previous section we proved that PINNs are able to infer coefficient fields. We now
try to infer the coefficient fields for our subset of data. In figure 4.9 we show the result for a
single frame.
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Figure 4.9:We show the raw data, inferred concentration, diffusion and advection elds and the physics informed cost

as a function of the frames.
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In the six panels, we show respectively the raw data, the inferred concentration profile, the
diffusion coefficient and advection and in the lower right corner the physics informed cost g
per frame. Observe that the diffusion and advection profiles are exactly equal. Inspection of
the concentration profile derivates ct, cx, cyy... shows no aberrant behaviour, implying that
the neural network is functioning properly. These diffusion and advection profiles thus
minimize the cost function but having similar coefficient values at each point is unlikely.
Recall also that the diffusion coefficient obtained in the constant coefficient model above is
orders of magnitude smaller than the advection. Inspection of the physics informed part of
cost function shows that is on the order of 10−3. Although one to two orders of magnitude
higher than a typical cost for synthetic data, for real experimental data this does not seem
suspiciously high. Concludingly, our results are clearly incorrect, but the neural network
seems to perform properly and we thus cannot speculate on the causes of these results.
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5
Golgi as a phase separated droplet

In the first part of thesis we investigated if intracellular transport could be described by an
advection-diffusion equation by analysing experimental data of the RUSH experiments.
Unfortunately, the data resisted all our methods and no conclusion could be drawn. In this
second part of the thesis we turn the question on its head and theoretically investigate if the
Golgi can be described as an active, phase separated droplet in a diffusive-advective flow. In
this chapter we present a general introduction to phase separation, followed by a section
where we discuss an approximation known as the effective-droplet approximation. This
approximation makes the phase separation analytically tractable. We then introduce our
model and biologically justify it. We study the models’ behaviour in the next chapter.

5.1 Phase separation

Consider a mixture of two molecules A and B, with underling interaction strengths χij.
Defining an order parameter c = NA/NB, the system can either be in a mixed state with
c = c̄ everywhere or in a phase separated state with two states of concentration c−0 and c+0 ,
depending on the strength and sign of of the interactions χij. The phase separated state can
be described by a phenomenological free energy density function f with two minima at c−0
and c+0 47:

f(c) = b
2(Δc)2 (c− c−0 )2(c− c+0 )2

where b characterises the strength of molecular interactions and Δc = |c−0 − c+0 |. This free
energy density function is shown in figure 5.1 for c−0 = 0.1, c+0 = 0.9.
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Figure 5.1: Phenomenological free energy density withminima at c−0 and c+0 .

The total free energy of the system must also include a term penalising sharp gradients, so
that we write the free energy of the system as

F(c) =
∫

dV(f(c) + 1
2
κ(∇c)2 (5.1)

This is known as a Ginzburg-Landau free energy. The equilibrium concentration profile is
found by minimising equation 5.1:

δF
δc = f′(c)− k∇2c = μ(x) = 0, (5.2)

where δF/δc is a functional derivative, as we minimize with respect to the concentration
profile. In general, no analytical solution can be found due to the non-linear nature of the
equation. We see however that the free energy density f is minimised by two phases of con-
centration c−0 and c+0 , but that these are separated by a domain wall with a finite width due
to the inclusion of the second term in equation 5.1.
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If a system initially in a mixed state is quenched so that it becomes unstable, fluctuations
throughout the system will give rise to a maze-like concentration pattern in a process
known as spinodal decomposition. This is shown for different times in figure 5.2.

Figure 5.2: Cahn hilliard domains

The domains grow in time in a process known as coarsening. This process will continue un-
til only two separate domains are left: one with concentration c−0 and one with c+0 . We can
derive an equation governing the dynamics shown in figure 5.2. Since the order parameter is
a concentration, it can only exchange locally so that:

∂tc = −∇ · j

where j is a flux. This type of dynamics of phase separation is also known as ’Model-B’. We
can relate the flux to the chemical potential:

j = −m∇μ

where m is a mobility. Equation5.2 also gives us an expression for the chemical potential, so
that we finally obtain the Cahn-Hilliard equation:

∂c
∂t = m∇2[

df
dc − κ∇2c]

It is this equation which governs the behaviour observed in figure 5.2. Due to its non-
linearity and fourth order derivatives solving the Cahn-Hilliard is usually forsaken in favour
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of deriving scaling relations, which for example show that the domain size R scales with
time t for some constant α: R ∼ tα. Another option is to study the system in the so-called
effective droplet approximation, as we do in the next section.

5.2 Effective droplet

Consider a phase one-dimensional phase separated system. If the domain wall is extremely
thin, we can approximate the system by describing it as two bulk phases separated by an
interface. We effectively split the system into two separate problems - one concerning the
dilute phase and one concerning the dense phase- and match them at the interface through
appropriate boundary conditions. By assuming the interface to be at thermodynamic equi-
librium, the growth of the droplet is described in terms of the fluxes across the interface.
This is shown in figure 5.3, where we have approximated the concentration profile (blue
line) by an effective droplet which exchanges material with its environment through its in-
terface (black dashed line).

J

c-

c+

Figure 5.3:Model of an effective droplet. Blue line is full Cahn-Hilliardmodel, black dashed line effective droplet.

Consider again the Cahn-Hilliard equation. In the bulk phase, the interfacial term can be
ignored so that we obtain:

∂c
∂t = m∇2μ. (5.3)

Linearising the chemical potential μ around an equilibrium concentration yields

∂c
∂t = mf′(c±0 )∇2c = D∇2c, (5.4)
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where all multiplicative constants can be absorbed into a single constant D. Observe that
linearising the chemical potential yields a diffusion equation. A solution to equation 5.4
requires a boundary condition at the interface of the droplet. We derive the boundary con-
ditions at the interface by assuming the interface to be at thermodynamic equilibrium. Con-
sider a phase-separated system with an infinitely thin interface. The total free energy of the
system can then be written as:

F = V1f(c1) + V2f(c2)

where Vi and ci are respectively the volume and concentration of phase i and f(ci) is the free
energy density. Assuming incompressibility (V1 + V2 = V) and conservation of particles
(V1c1 + V2c2 = Vc) constrains the system to two free variables, so that minimising the free
energy with respect to c1 and V1 gives two conditions:

f′(c1) = f′(c2)

0 = f(c1) + f(c2) + (c2 − c1)f′(c2)

Since f′(c) = μ(c), the first condition requires that both phases have the same chemical po-
tential, while the second one states that the pressure in each phase must be equal. The obvi-
ous solution to these equations is a mixed state with c1 = c2. A non-trivial phase-separated
solution can be found as well using Maxwells tangent construction. We thus see that an
equilibrium also exists if the system is phase separated into two phases at concentration c−0
and c+0 , the minima of the free energy density function. Note that this is valid for our 1D
description. In higher dimensions, the curvature of the droplet will affect the boundary
conditions due to the Laplace pressure and one can show that this leads to an extra term
which scales with the inverse radius48.

Having defined the boundary conditions at the interface, the stationary concentration pro-
file (i.e. dc/dt = 0) inside and outside the droplet can be solved. From these concentration
profiles the fluxes at the interface which determine the droplet growth can be calculated.
We show this in the next section.
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5.2.1 Fluxes, activity and interfaces

Given a concentration profile c(x), a diffusive flux can be calculated by applying Ficks’ sec-
ond law:

J(x) = −D ∂c
∂x

Using this expression, the flux at the interface on the inside and outside of the droplet, Jin
and Jout, can be calculated. Note that ’in’ and ’out’ refer respectively to inside and outside of
the droplet rather than the direction of the flux; the boundary conditions fix the concentra-
tion at the interface but not the fluxes. If Jin and Jout are not balanced, a net flux exists across
the interface, which leads to either growth or decay of the droplet. This change in droplet
radius can be described by the interface velocity vn. We now derive an expression for vn in
terms of the fluxes across it. To move an interface a distance Δx, a net material gain of ΔxΔc
is required. This net gain is determined by the net flux in a time Δt, so that:

ΔxΔc = (Jin − Jout)Δt

which can be rewritten as:
Δx
Δt = vn =

Jin − Jout
Δc (5.5)

In a passive droplet the concentration profile is a solution of the Laplace equation: ∇2c = 0
and Jin will thus be zero, meaning that the interface speed will always be bigger zero. Indeed,
passive droplets grow to infinity in an infinite system. We show in the next chapter that
by making the droplet active, the flux Jin will be non-zero. This has two important conse-
quences. First, if Jin = Jout, the interface velocity is zero and the droplet will have a stable
radius. The second effect is that an active droplet moves itself up a concentration gradient
Consider a droplet of radius R at position x0 with two interfaces moving respectively at vl
and vr. In a time dt, the droplet moves to a new position x0 + dx and will have a new radius
R+ dR:

x0 − R+ vldt = x0 + dx0 − (R+ dR)
x0 + R+ vrdt = x0 + dx0 + (R+ dR)

Solving this set of equations for dx0 and dR gives:

dR
dt =

1
2Δc(vr − vl) (5.6)
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dx0
dt =

1
2Δc(vl + vr) (5.7)

Combining these equations with equation 5.5 relates the growth and movement of the
droplet to the fluxes across the interface:

dR
dt =

1
2Δc

[
(Jx=R

in − Jx=−R
in ) + (Jx=−R

out − Jx=R
out )

]
(5.8)

dx0
dt =

1
2Δc

[
(Jx=−R

in + Jx=R
in )− (Jx=−R

out + Jx=R
out )

]
(5.9)

Assuming the droplet is symmetric, Jx=−R
in + Jx=R

in = 0, so equation 5.9 simplifies to

dx0
dt = −(Jx=−R

out + Jx=R
out ) (5.10)

If the droplet is in a concentration gradient c = α+ βx, we can estimate the flux at x = −R
as −D(α− c−0 )/l, with l some lengthscale. At x = R the flux is then −D(c−0 − (α+ 2βR)/l.
We thus obtain

dx0
dt ∝ −2DRβ

l (5.11)

and we see that an active droplet moves up the gradient. Equations 5.9 and 5.8 completely
determine the behaviour of the droplet. In the effective droplet model we thus write ev-
erything in terms of fluxes across the interface and then use equations 5.9 and 5.8 to find a
stable droplet.

5.3 Golgi as an active droplet

In the introduction we justified using a phase-separation approach to describe the Golgi. In
this section we develop our model for the Golgi from biological considerations, but having
established the mathematical background of phase separation, we present the mathematical
description in parallel. Due to the addition of advection to our system, our model is un-
solvable in any dimension higher than 1D. Not only do we ignore the Laplace pressure, the
replacement of a single continuous interface of the droplet in 2D or higher by two separate
interfaces in 1D precludes any shape deformations, which could play a big role.
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Our model comprises four different populations: Immature cargo, mature cargo, the Golgi
itself and the cytoplasm, which acts as the solvent. A typical ’cycle’ would consist of imma-
ture cargo entering the system, being transported towards the Golgi where it is turned into
the material comprising the Golgi before being matured after which it is transported out of
the system. The solvent plays no explicit role in this and we thus model it implicitly by de-
scribing the cargo in terms of concentration. We also ignore the mature cargo for now and
simply assume the immature cargo decays inside the droplet. As stated, we model the Golgi
as a phase separated droplet, so that we can describe the system in terms of a single con-
centration c, with the dilute phase corresponding to immature cargo and the dilute phase
representing the Golgi.

Using the effective droplet concentration, we have essentially ’decoupled’ the dense and di-
lute phase. We exploit this to couple our model for the intracellular transport to the Golgi.
The dilute phase corresponds to immature cargo being trafficked towards the Golgi and
hence is similar to the concentration profile set up by the intracellular transport. We thus
use an advection-diffusion equation to model the concentration profile of this phase. As
some evidence exists of vesicles degrading8, we add an additional decay term to the intracel-
lular transport model, so that we obtain:

D∂2
xc(x)− v∂xc(x)− ac(x) = 0 (5.12)

with v an advection velocity and a some decay constant. Note that equation 5.12 is exactly
the model we have used to fit the experimental data, but we have now added an additional
degradation term.

We now turn our attention to the dense phase. Upon adding the drug nocadazole to mam-
malian cells, microtubules are depolymerised and the Golgi ribbon breaks up into separate
stacks50. These stacks are fully functional7 but move away from their perinuclear location to
colocate with an ERES. Identifying the dense phase with a single Golgi stack instead of the
entire Golgi ribbon allows us to use a one-dimensional approach where a droplet can move
from one side of the system representing the Golgi ribbon, to the other side representing
the ERES. As each stack is fully functional, we make no simplifications with respect to the
function of the Golgi. Since we are not interested in how the Golgi matures the cargo (see
the cisternal maturation versus vesicular transport models), we model it as decay term with
maturation rate k, leading to the following equation for the dense phase:

∂c
∂t = D∇2c− kc
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The addition of this maturation term makes the droplet active. Studies have found that
newly formed stacks are moved from their location close to the ERES to the Ribbon by
active transport8, so we also add active transport, modelled by and advection term, to the
dense phase:

D∂2
xc(x)− v∂xc(x)− kc(x) = 0 (5.13)

We assume for simplicity that both phases are advected with velocity v > 0 and have diffu-
sion constant D. The only difference between the two phases then is the decay rate a and
the maturation constant k. As stated, we model our system in 1D, with one boundary rep-
resenting the ERES and the other boundary as the location of Golgi Ribbon. We place the
ERES on the left side of the system and thus model this boundary as a source:

(−D∂xc+ vc)|x=0 = Jin

The other side of the system represents the Golgi Ribbon. Here, many different stacks
come together due to the advection and we thus model it as a zero-flux boundary:

(−D∂xc+ vc)|x=L = 0

As our free energy function has minima at c+0 and c−0 , the boundary conditions at the inter-
face between the dense and dilute phase are:

c(x0 ± R) =
{
c+0 , inside
c−0 , outside

We thus model the Golgi as an active droplet in a concentration gradient, similar to51, but
have also added advection. We solve our model in the next chapter both analytically and
numerically to investigate the behaviour of advected active droplets.
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6
Results model

The previous chapter introduced phase separation and our model for the Golgi as a phase-
separated droplet. In this chapter we study the behaviour of such a model. In the first sec-
tion, we analytically solve the model for a free droplet, i.e. a droplet free to move through-
out the system. Using these expressions, we investigate the effect of advection on an active
droplet and study the steady states of our model.

Considering the biology, the diffusion constant D and the decay rates k and a will most
likely be system parameters and thus fixed. On the other hand, the advection speed v en-
compasses the active transport across the microtubules and could easily vary, depending on
the amount of molecular motors available and the rate at which they hydrolyse ATP; the
influx Jin is dependent on the activity of the ER and will probably vary too. We are thus in-
terested in creating phase diagrams of the steady state radius and position as a function ofJin
and v.

In the second section we a slightly modified model in which the droplets are located at the
edge of the system. Taking a broader view, we study when phase separation takes place
and if an effective droplet exists when the system separates. We also numerically study the
model and validate the effective droplet model by confirming mass conservation. The chap-
ter ends with a short section discussing our conclusions and possible biological connec-
tions.
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6.1 Effective droplet

In this section we derive analytical expressions for the fluxes across the interface of the
droplet. We present the most general case, including advection, decay and maturation
and derive simplified expressions later. Both the dense and dilute phase are described by
an advection-diffusion-decay equation, which has a general solution given by

c(x) = C1e−
x
l− + C2e

x
l+ . (6.1)

We have defined a lengthscale l± as

l± =
2D√

4kD+ v2 ± v
, (6.2)

where the maturation rate k should be replaced by the decay rate a in the dilute phase. Note
it is a combination of a lengthscale set by the diffusion lD =

√
D/k and a lengthscale set by

the advection lv = 2D/v:

1
l± =

√
k
D +

( v
2D

)2
± v

2D =

√ 1
l2D

+
1
l2v
± 1

lv
.

We have defined symmetric boundary conditions for the droplet, c(R) = c(−R) = c+0 .
Solving equation 6.1 with these boundary conditions will lead to a convex concentration
profile. In a system without advection we have l+ = l− = lD and the concentration profile
will thus be symmetric around c(0). If v > 0 however, we have l− > l+ and the droplet
is no longer symmetric around c(0); rather, the position of the minimum concentration
moves right, while the minimum concentration itself increases. This is shown in figure 6.1,
where we have plotted a concentration profile for v = 0 in blue and v > 0 in orange.
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Figure 6.1: Concentration pro les inside an active droplet for v=0 (blue) and v>0 (orange). Note that theminimum

concentration increases and that its locationmoves right.

For a diffusive-advective flow, the flux is determined by J(x) = −D∂xc(x) + vc(x) and
applying this to the droplet concentration yields the fluxes. The fluxes itself are not par-
ticularly insightful, but considering equations 5.6 and 5.7, we can define a maturation flux
Jmat = Jx=R

in − Jx=−R
in and a positional flux Jpos = Jx=R

in + Jx=−R
in , so that

dR
dt =

1
2Δc

[
Jmat + (Jx=−R

out − Jx=R
out )

]
(6.3)

dx0
dt =

1
2Δc

[
Jpos − (Jx=−R

out + Jx=R
out )

]
(6.4)

The maturation flux Jmat is the flux at the interface due to the maturation in the droplet.
Note it is solely determined by the diffusive flux, as

Jx=R
in − Jx=−R

in = (−D∂xc(x) + vc(x))|x=R − (−D∂xc(x+ vc(x))|x=−R

= D(∂xc(x)|x=−R − ∂xc(x)x=R). (6.5)

The maturation flux does have a dependence on the advection through the concentration
profile. Since Jrad is solely determined by the diffusive flux and the solutions of 6.1 are con-
vex, the fluxes at the two interfaces have opposite signs. More so, Jx=R

in < 0 and Jx=−R
in > 0,
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so that Jmat < 0. This means that the droplet will shrink unless sustained by some influx
from outside the droplet, as can be seen from equation 6.3. If the maturation flux is exactly
balanced by this influx, the droplet radius remains stable. Whereas passive droplets will
grow to an infinite radius, active droplets remain at a finite radius due to their suppresion
of the Ostwald Ripening49. For our particular choice of boundary conditions, we have de-
rived for Jmat:

Jmat =
−2c+0 D

l
sinh R

l− sinh R
l+

sinh R
l

, (6.6)

where we have defined an ‘effective lengthscale’ l as

l = l+l−
l+ + l− .

Notice that if k = 0, the maturation flux vanishes; without the activity the concentration
profile inside the droplet would be flat and no maturation flux exists. Also note that as long
as k ̸= 0, the maturation flux will be non-zero as well and the system is thus out of equilib-
rium. This is a key aspect of active matter: a steady state may be reached (i.e dR/dt = 0),
but the system will have non-zero fluxes and hence will not be at thermal equilibrium.

For a small, non-advected droplet, l− = l+ = lD , l = lD/2 and R ≪ lD , we can approxi-
mate the maturation flux as

Jmat = −2c+0 kR. (6.7)

Effectively, we have approximated the concentration profile inside the droplet as c(x) =
c+0 , so that the flux lost due to decay with rate −k for a droplet with size 2R indeed gives
equation 6.7. One would expect that the limit of R → ∞ would yield an infinite flux but
taking the limit of 6.6 gives

lim
R→∞

= −2c+0
√
kD,

which shows that the flux saturates for R >
√

D/k = lD. When R ≫ lD, the concen-
tration in the middle of the droplet drops to zero and since the maturation scales with the
concentration, the flux saturates. In this regime, the effective droplet theory is not valid
and hence we require that R < lD. In the case of an advected droplet this is a more subtle
point, as advection increases the minimum concentration inside the droplet (as can be seen
in figure 6.1). We study this numerically in the next section.

The positional flux Jpos is the internal flux which leads to droplet movement. For our set of
boundary conditions, we have derived

Jpos = 2cin0 D
[
Pe−
l−

sinh R
l+ cosh R

l−
sinh R

l
− Pe+

l+
sinh R

l− cosh R
l+

sinh R
l

]
, (6.8)
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where we have defined the Peclet-like numbers

Pe± = 1 ∓ vl±
D

In a passive droplet c(x) = c+0 so that the positional flux equals 2c+0 v, but in an active
droplet we need to take into account the internal diffusion. Recall that the diffusive fluxes
point inwards and hence are aligned antiparallel, whereas the advective fluxes are aligned.
The net flux at the two interfaces is thus different, leading to equation 6.8 instead of 2c+0 v.

We now turn to the fluxes on the outside of the droplet. A droplet of radius R at position
x0 has its interfaces at x0 ± R and defining x1 = x0 − R and x2 = x0 = R we have derived
the following expressions for the flux at the interfaces

Jx=−R
out = Jin

(1 + l−
l+ )e

−x1
l−

Pe− + Pe+ l−
l+ e

−x1
l
+

cout0 D
l−

Pe+(1 − e−x1
l )

l+
l− + Pe+

Pe− e
−x1
l

(6.9)

Jx=R
out = −cout0 D Pe−Pe+(1 − e−x2+L

l )

l+Pe− + e−x2+L
l l−Pe+

(6.10)

Although not particularly enlightening, we note the similarity between the second term of
6.9 and 6.10. The flux on the left of the droplet has another term in Jin, accounting for the
source we have placed at the left boundary. In the next section we study the phase diagram
equations 6.6, 6.8, 6.9 and 6.10 give rise to.

6.2 Free droplet

In this section we study the phase diagram of free droplets and their steady states. More
specifically, we wish to investigate when droplets have a stable state (i.e. dR/dt = dx0/dt =
0) at some position x∗ in the system. The first configuration we study ignores the decay
outside the droplet, i.e. a = 0. In this case, the outside fluxes become constant and inde-
pendent of the location of the droplet, as the only way for the cargo to ‘exit’ the system is to
mature in the droplet:

Jx=−R
out = Jin
Jx=R
out = 0
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The flux on the right interface of the droplet is zero as there is no source nor decay and in
our quasi-steady state approximation the flux then must be equal to zero. The equations
for the flux in the droplet remain unchanged as they are independent of the transport pa-
rameters. Developing the internal droplet fluxes for R ≪ l± gives:

Jrad ≈ −2c+0 kR (6.11)

Jpos ≈ 2c+0 v (6.12)

Putting these expressions in equations 6.3 and 6.4 gives

dR
dt ≈ 1

2Δc(Jin − 2c+0 kR), (6.13)

dx0
dt ≈ 1

2Δc(2c+0 v− Jin).

The stable radius, Rstable ≈ Jin/2c+0 k is thus independent of the velocity v and the droplet
will maintain its position if vstable ≈ Jin/2c+0 . This means that, save for vstable, the droplet
will always move either right or left and that the movement direction switches at the switch-
ing velocity vstable. It is non-zero due to the self-movement of an active droplet; recall that an
active droplet will move itself up a concentration gradient. The advection needs to compen-
sate for this movement, giving rise a non-zero vstable.
We now study this system numerically. As the fluxes on the outside of the droplet are inde-
pendent of the velocity, we are in fact studying the effect of advection on an active droplet,
irrespective of its environment. We plot the stable radius of the droplet in figure 6.2a and
the corresponding minimum concentration in 6.2b . We have used the following parame-
ters: D = 1, k = 0.1, c+0 = 0.9.
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Figure 6.2

Note that the stable radius of small droplets is independent of the velocity, but that we do
observe some dependence for bigger droplets. However, concurrently with the size increase
is the minimum concentration decrease, as shown in figure 6.2b . For very low v and high
Jin, the concentration even drops to 0.4 - a concentration corresponding to the dilute well
of the free energy and thus clearly unphysical. Increasing v raises the minimum concentra-
tion, while also slightly decreasing the radius of the droplet. To understand this decrease in
radius, consider again figure 6.1. Calculating some average concentration c̄ = 1

V
∫
c(x)dV,

it is clearly visible in this figure that c̄ is higher for the advected droplet. Estimating the mat-
uration flux as Jmat ∝ −2Rk̄c, an advected droplet thus has a higher maturation flux than
a non-advected droplet. The maturation flux needs to be balanced by the influx Jin for a
stable droplet so that

Jin = 2kRc̄. (6.14)

Since both Jin and k are fixed, R must decrease and thus advection compacts active droplets.
The superimposed dashed line in figure 6.2a corresponds to dx0/dt = 0 and thus repre-
sents the stable droplets for which dR/dt = dx0/dt = 0. Observe that for small v it indeed
shows a linear dependence between Jin and v as predicted, but that for higher v we do ob-
serve some non-linearity. Due to the low concentrations those areas are unphysical however.
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We now investigate the stability of this line by perturbing 6.13 around Rstable. We obtain

dδR
dt = −2c+0 kδR.

Since both k > 0 and c+0 > 0, any fluctuations decay; the steady state is stable. The sys-
tem we have studied so far is completely independent of the position in the system as the
outside fluxes are constant. By including decay outside the droplet, i.e. a ̸= 0, the outside
fluxes will become dependent on the position of the droplet.

We solve equations 6.6, 6.8, 6.9 and 6.10 numerically by finding the x∗0 and R∗ for which
dx0/dt = dR/dt = 0 inside our system, i.e. 0 < x∗0 < L, 0 < R∗ < L/2. Using
k = 0.3, a = 0.1,D = 1, c−0 = 0.1, c+0 = 0.9,L = 5 , we plot the steady state radii and
positions in figures 6.3a and 6.3b.
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(a) Steady state radius as a function of v and Jin made
using k = 0.3, a = 0.1,D = 1, c−0 = 0.1, c+0 =
0.9,L = 5. Blue areas correspond to no droplet. Note
that the radius increases with increasing v.
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(b) Steady state position as a function of v and Jin made
using k = 0.3, a = 0.1,D = 1, c−0 = 0.1, c+0 =
0.9,L = 5. Blue areas correspond to no droplet.
Observe that the droplet moves closer to the left of the

system for increased v.

Figure 6.3

In areas which are blue in both plots no droplet exists in the system. We identify two causes,
each connected to a corresponding ‘cutoff line’ in the stable position plot. First, by adding
decay, we have added another ‘exit’ for the contents of the system. Thus, for low Jin and v
a droplet will not exist. This explains the lower left cutoff and is supported by the fact that
this edge corresponds to the line R = 0. The other edge has x0 = 0, meaning that the
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droplet moved past the edge of the system. In the radius plot we also observe a third cutoff
in the upper left corner. This corresponds to the x0 = 5 edge and represents a droplet at the
far end of the system. To satisfy the no-flux boundary condition, the droplets’ radius must
go to zero. Hence this area is shaded blue in the radius plot, but not in the position plot.

Note that advection increases the droplet radius, contrary to the no-decay case. Recall that
advection decreased the radius because the outside fluxes were constant. Having added de-
cay to the system, this not the case anymore. For a droplet at a fixed point x0, increasing
v increases the outside flux as less is lost to decay. Although increasing v also increases the
maturation flux inside the droplet, the increase of the outside flux is dominant and hence
the droplet radius increases with increasing v. Also observe in figure 6.3b that increasing v
decreases x0. Increasing the flow thus leads to the droplet moving further up that flow, a
very counterintuitive situation. To see why this happens, consider a droplet of fixed radius
R at position x0. Increasing v increases c̄, which according to equation6.14 can only be com-
pensated by a higher influx. In a system with decay, the influx will be higher upstream and
hence the droplet moves upstream.

We study the stability of these steady states by plotting dx0/dt and dR/dt at Jin = 0.18 and
v = 0.1 in figures 6.4a and 6.4b.
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Figure 6.4

The solid black lines denote dR/dt = 0 and the dashed lines dx0/dt = 0. The red line is
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the line x0 = R; a steady state needs to be above this line, as below this line x0 − R < 0,
meaning that the droplets’ left interface is outside of the system. We observe that the line
dR/dt = 0 is stable, but as dx0/dt = 0 is not, the steady state is unstable. This plot is
typical for all parameters, so we conclude that all steady states are unstable: the droplet ei-
ther moves left or right until it hits the edges of the system. The free droplet model does not
properly describe this situation, as it always has two interfaces. In reality, when the droplet
hits the edges of the system one of the two interfaces disappears and the droplet becomes
like a wetting layer. We investigate this in the next section.

6.3 Droplet stuck to walls

In the previous section we showed that a droplet will always move left or right until it hits
the edges of the system, but that this is not properly described by our free droplet model.
In this section we present a slightly modified model to account for this situation. Once
the droplets’ interface hits the edge of the system, it ceases to be an interface between a
dense and a dilute phase: rather, the boundary condition of the droplet must become the
boundary condition of the system. For a droplet on the left of the system we thus have the
boundary conditions c(R) = c+0 and J(0) = Jin, while for the droplet on the left we have
c(L − R) = c+0 and J(L) = 0. We present the behaviour of this modified model in this sec-
tion, taking a slightly wider view than before. Instead of assuming the existence of a droplet,
we first investigate when droplets phase separate at the edges of the system. We will then
prove the existence of a stable effective droplet when such a phase separation should take
place and that mass is conserved. Finally, we present a phase diagram and discuss the biolog-
ical connection and implications.

6.3.1 Occurence of phase separation

Consider again the double well free energy with minima at c−0 and c+0 :

f(c) = b
2Δc2 (c− c−0 )2(c− c+0 )2 (6.15)

This free energy describes a system phase separating into a dense area with concentration
c+0 and a dilute area of concentration c−0 . Phase separation is usually approached by the
quenching of a mixed state, but we have a different system. Specifically, we have an open
system which initially does not contain a droplet and experiences an influx from one side.
Before a droplet is formed, the entire system is thus in the dilute well of the free energy.
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Hence we ask at at which concentration this initial configuration becomes unstable and a
droplet is formed.

Thermodynamics show that stability requires d2f/dc2 > 0. In areas where d2f/dc2 < 0,
fluctuations keep growing and the system will phase separate. For the free energy density
given by 6.15, the area between the two inflection points (see the vertical lines in figure 5.1)
c = (c+0 + c−0 )/2 ± √3(c+0 − c−0 ) is unstable. Thus, if the concentration in the dilute
phase reaches the lower inflection point, a droplet will form. On the other hand, if the con-
centration in the dense phase becomes lower than upper inflection point, a dilute phase will
form.

To study when this minimum concentration is reached, we consider our system without a
droplet which is thus described by a single advection-diffusion-decay equation with bound-
ary conditions J(0) = Jin and J(L) = 0. Resulting concentration profiles will have the
highest concentrations at the edges of the system and we thus calculate at which Jin the con-
centration reaches the lower inflection point at x = 0 and x = L. We obtain:

Left: Jin = −
2al((1 − 1√

3 c+0 ) + (1 + 1√
3 c−0 ))

vl
D − coth(L

2l)
(6.16)

Right: Jin = al((1 − 1
√3

c+0 ) + (1 +
1
√3

c−0 ))
(
e− L

2l (
vl
D−1) − e− L

2l (
vl
D+1)
)
, (6.17)

where l is a lengthscale defined as l = D/
√

4aD+ v2. We plot equations 6.16 and 6.17 in
figure 6.5 for a = 0.1,D = 1, c−0 = 0.1, c+0 = 0.9,L = 5
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Figure 6.5: Theminimum required in ux for a given advection speed to form a droplet on the left (blue line) and right

(orange line). Plotting parameters are a = 0.1,D = 1, c−0 = 0.1, c+0 = 0.9,L = 5.

The blue line shows the minimum Jin for the left side of the system, while the orange line
shows the minimum for the right. We can recognize four areas in figure 6.5. Below both
the blue and the orange line, the concentration never reaches the lower inflection point and
thus no droplets will be formed. In the area below the orange line but above the blue line,
only a droplet on the left is formed, while exactly the reverse happens on the right side of
the plot: only a droplet on the right is formed. Finally, we note that in the upper area both
droplets can be formed. In this regime, Jin and v are high enough for the concentration to
reach the inflection point at both sides of the system.

Note however this analysis is purely based on the free energy density function; we have
neglected the ∇2c in the total free energy which penalises gradients in the concentration. Al-
though we do not quantify the effect of including this term, we do observe that penalising
gradients significantly raises the free energy of a system without a droplet. Consequently,
forming a droplet will be energetically more favourable at lower concentrations, meaning
equations 6.16 and 6.17 are an upper bound for when droplets are formed. Also note that
for the validity of our approach, we require a stable droplet in the effective droplet model to
exist at and above the influxes in equations 6.16 and 6.17. We investigate this is in the next
section.
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6.3.2 Effective droplet

We construct the effective droplet phase diagram for this system by determining for which
J∗in a stable droplet (dR/dt=0) with radius R = 0 exists. For an influx higher than J∗in, a
droplet with R > 0 then exists, so that J∗in is the minimum influx required for a droplet to
exist. For the left and right droplet, we find the following:

Left: Jin = − 2ac−0 l
vl
D − coth(L

2l)
(6.18)

Right: Jin = ac−0 l
(
e− L

2l (
vl
D−1) − e− L

2l (
vl
D+1)
)

(6.19)

Note that these equations have the same form as 6.16 and 6.17, save for some prefactor.
Defining the minimum flux as defined by equations 6.16 and 6.17 as JAD and the minimum
flux as calculated by the effective droplet model in equations 6.18 and 6.19 as JED we obtain
the same ratio for both the left and right sides:

JAD

JED =
(3 −√3)c+0 + (3 +√3)c−0

6c−0
Note that JAD > JED if c+0 > c−0 . In other words, the minimum flux required for a stable
droplet is smaller than the minimum flux required to form a droplet if the concentration
in the dense phase is higher than the concentration in the dilute phase, which it is by defini-
tion. We thus see that a stable droplet with a non-zero radius is guaranteed to exist if phase
separation occurs as determined by equations 6.16 and 6.17.
A second criterium would be mass conservation: the mass in a separated system should
be similar to the mass in a phase separated system. The mass in the our system without a
droplet is: ∫ L

0
c(x)dx = Jin

a
We assume that Jin and a are such the droplet appears on the left side of the system so that
the total mass inside the system is then:∫ R∗

0
cin(x)dx+

∫ L

R∗
cout(x)dx

Where the stable droplet radius R∗ corresponds to dR/dt|R=R∗ = 0. Assuming the droplet
radius remains small, we can determine the stable droplet radius and thus perform the inte-
gral. For simplification, we assume that k = a and we find:∫ R∗

0
cin(x)dx+

∫ L

R∗
cout(x)dx =

Jin
a
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We thus see that mass is conserved when phase separation occurs.

The effective droplet phase diagram predicts an area in which droplets on both the left and
right are stable. We now investigate if both droplets can coexist, i.e. that the system has a
droplet on the left and the right, using a two droplet model. Defining the radius of the left
droplet as R1 and the right droplet as R2, solving the fluxes for dR1/dt = dR2/dt = R1 =
R2 = 0 yields a minimum influx Jin

Jin =
c−0 D

2l

(
vl
D +

(1 + e L
l − 2e−L

2l (
vl
D−1))

(1 − e L
l )

)

and if lD, lv ≫ L we also obtain a minimum advection velocity v∗:

v∗ = aL
2

(6.20)

We plot the corresponding phase diagram in figure 6.6 .
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Figure 6.6: Analytically derived phase diagram of droplets on the edges of the system.

We observe six configurations and that all these cross at a single point. Note some sort of
symmetry exists: considering the area above the diagonal of the plot and following it clock-
wise from the origin, we first observe no droplets, then a droplet on the left, followed by
either a droplet on the left or right and finally the area where its possible for a single droplet
on the left or right or two droplets simultaneously to exist. Below the diagonal we observe
an analogous trajectory, where instead of a single droplet on the left we now have a droplet
on the right. Considering the problem concentration profile without the droplet we pre-
sented in the previous section this symmetry makes perfect sense: for low v/Jin the concen-
tration will be highest on the left hence droplets will be formed on the left. For high v/Jin
exactly the opposite happens and droplets on the right are favoured. For high enough v and
Jin, droplets on both sides can be formed.

Observe that all phases intersect at a single point. Expanding the crossing of the minimal
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fluxes for lD, lv ≫ L we obtain
vcross =

aL
2

which is similar to equations 6.20. This means that the intersection at this point is a system
property and not just a side-effect of our parameter choice. In figure 6.7 we plot the results
of numerically solving the equations.

Figure 6.7: Numerically determined phase diagram of the droplets in the system. The red solid and dashed lines repre-

sent theminimum in ux required for respectively a droplet on the left and right. The black dashed line corresponds to

dR1/dt = 0 in the two droplet model, while the dotted-dashed line is dR2/dt = 0.

The red solid and dashed lines represent the minimum influx required for respectively a
droplet on the left and right. The black dashed line corresponds to dR1/dt = 0 in the two
droplet model, while the dotted-dashed line is dR2/dt = 0. Contrary to equation 6.20, this
is not perfectly vertical. This is because 6.20 has been derived assuming that both the left
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and right droplet appear at the same time; in reality, one of the droplet can have a non-zero
radius before a second droplet appears. Numerically we also find that all the configurations
are connected through some critical point. To see why this happens, consider the crossing
of the two minimum influxes as determined by equations 6.16 and 6.17. At this point, the
concentration profile is such that the concentration on each side of the system is similar:
dR/dt = R = 0 on both sides. By changing Jin or v any of the configurations can be
reached from this point and hence all the lines cross at a single point.

6.4 Biological implications

We now compare the behaviour of our model to biological observations. First off, our
model predicts that the only stable position for the droplet is at the edges of the system. Bi-
ologically, stacks are either located at the ribbon or at the ERES, thus matching our model.
Furthermore, this position is dependent on the state of the microtubules: when the micro-
tubules are depolymerised, the ribbon breaks up and the stacks co-localise with the ERES.
Our free droplet models predicts similar behaviour, with the switching happening at a fi-
nite advection velocity. The model in which the droplets are stuck to the edges of the sys-
tem also shows such an advection-dependent transition, but also shows the possibility of
having droplets at both the ERES and the Ribbon; something which is not observed in real
cells. Another small but not unimportant detail is that the droplet size in our model is de-
pendent on the amount of trafficking. Similar observations have been made for the Golgi50.

We now make a speculative connection to the internal maturation of the Golgi. We have
shown that an active droplet is able to move itself up a concentration gradient. This move-
ment is generated by imbalanced fluxes: the droplet grows on one side, but shrinks on the
other, akin to tread-milling. In the cisternal maturation model, the Golgi grows on one
side by vesicles forming a cis compartment, whereas the opposite happens on the trans side.
This similar to how an active droplet moves and cisternal maturation could thus be the pro-
cess by which the stack moves from its position in the ribbon to the ERES.
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7
Conclusion

In this thesis we have investigated the connection between the intracellular transport and
the Golgi apparatus. In the first part of this thesis we analysed the experimental data gener-
ated by the RUSH technique and investigated if intracellular transport could be explained
by an advection-diffusion model. To do so, we developed a new technique based on im-
age gradients and evaluated a second method based on neural networks - Physics Informed
Neural Networks. Unfortunately, neither of the two could give a definite answer. Our
home-made method returned diffusion and advection fields which showed a non-random
pattern, but did not betray any coherent underlying structure. The PINN seemed to out-
perform our image gradient method, but led to a clearly incorrect answer when allowed to
infer a varying coefficient field. We attribute the failure of both methods mostly to the qual-
ity and quantity of the data and thus present several recommendations to experimentalists.

To properly quantify fluorescence microscopy data, the entire setup should be rethought
with this in mind. As such, above all a choice of quantification method must be made. As-
suming they wish to use one of the methods we have presented, a calibration should be
performed to learn the mapping of the fluorescence intensity to the concentration. Tak-
ing bright field images should also be considered, as these can be used for segmentation.
Finally, the image acquisition procedure can be improved by ensuring a steady frame-rate
and increasing it. Although increasing the frame rate increases photo bleaching, the last 200
frames of the roughly 300 frame movie of the ManII trafficking contain almost no informa-
tion about the intracellular transport. By focusing the image acquisition time, more useful
data can be gathered.

We also foresee several directions to improve our image-gradient method. The most gains
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can be made in the step where the derivatives are calculated. The Sobel filter we have ap-
plied is an extremely simple approximation and improving this step would vastly improve
results. The fitting method we have applied - least squares - , is also rather basic and known
to be sensitive to outliers and noise. Since the image gradients turn the data into a generic
set of features, any fitting procedure could be used. In selecting a different fitting proce-
dure, care should be taken to select a method which can properly handle noisy data with
outliers.

We have proven that it is possible to infer coefficient fields with physics informed neural
networks. Despite the failure of PINNs applied to the RUSH data, we believe PINNs show
great promise and we propose several avenues to improve their performance. Implementing
Bayesian neural networks would yield a distribution instead of a single value as an output.
We believe this to be of prime importance, as the results of PINNs are not robust yet. Sec-
ondly, fitting using coefficient fields is a very hard problem in which it is likely the network
will get stuck in incorrect local minima. To remedy this, we propose a ‘boots-trapping’ tech-
nique, in which one would first assume the coefficients to be locally constant, similar to the
sliding window technique of the image-gradient method. Using this as a starting point, in
the second step the fully spatially varying expressions are then used to improve the first step
estimate.

In the second part of the thesis we have investigated if the Golgi could be described as a
phase separated droplet in a diffusive-advective environment. In the process, we also stud-
ied the effect of advection on active droplets and found that it compacts them. We showed
that droplets can indeed phase separate in such an environment and switch position be-
tween the edges of the system depending on the magnitude of advection. Active droplets
move by growing on one side and shrinking on the other and we thus speculate that cis-
ternal maturation can actually be responsible for moving the stacks from their location in
the ribbon to an ERES when the microtubules are depolymerised. However, our model
also showed the possibility for two droplets to exist simultaneously in the ribbon and at
the ERES - a situation not observed in cells. We also note that our model allowed several
stable configurations to exist at a given parameter set. More work is required to investigate
if any of these states are preferred over one another, probably through simulations or nu-
merically solving the complete Cahn-Hilliard equation. We have also modelled the Golgi
as a droplet of immature cargo, including a conversion term but otherwise completely ne-
glecting mature cargo. Future work should incorporate this by for example switching to a
two-component model. Furthermore, we note that dynamics could be added to the model,
as the advection-diffusion equation has a time dependent solution through Greens’ func-
tions.
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7.1 Afterword

When people ask me why I did my masters project in Paris at Institut Curie I always answer
it’s sort of an escalated joke. When Remy told me he was going to Institut Curie for his
post-doc we discussed the research done there and it seemed really interesting, so when he
jokingly asked me why I wouldn’t do my masters project there I thought, ’why not?’ and
a few weeks later I was boarding a TGV to Paris to discuss possible projects with Pierre.
Now, having lived in Paris for nearly a year, I haven’t regretted the decision one second.
Well, except for when I’m filling in another form for HR - I seem to have gotten the full
’French treatment’. So Remy, I guess I owe you a thanks for that joke. We’ll get to that PhD
later.

The scientific world is a small place. Having decided on a project with Pierre as my supervi-
sor, I thought Kees would make for a good supervisor in the Netherlands and upon telling
him about my project he responded that he knew Pierre from back in the day. Pierre and
Kees, thanks for having given me the freedom to follow what I found interesting (hence
the chapter on neural networks), but also asking the right questions to make me realise that
most of my crazy ideas wouldn’t work. Your advice and guidance has kept this thing on
track.

I’ll keep working with Pierre and Remy as I’m starting my PhD here in Paris in January.
We’ll be working on applying physics informed neural networks to biophysical problems,
specifically the actin cortex. The last year I’ve found out that I really enjoy working on the
interface of physics, biology and computer science, so that’s exactly what I’m going to do
the next three years.

My PhD is not going to be at Curie, meaning that I’m not going to be seeing the people
of UMR168 everyday anymore. And that’s making me a little bit sad, since I can’t put into
words how much fun the last year has been. Allison, Efe, Amit, Jean-Patrick, Anne-Marie,
Thibaut, Michael, Joanna, Julienne, Maj (yes, even you), and whoever else I’ve forgotten
(sorry about that), thanks.

Despite the fun I’ve had and all the different things I’ve learned (who knew biology could
be so complex?), it wasn’t always easy. About six weeks into my project a man whom I
might best describe as a second father to me unexpectedly passed away. He always pushed
me to not bitch and work harder, telling me how he’d been stupid and failed. Always re-
minding me he’d be there at my graduation. But he won’t be there, and so I dedicate this to
him.

Jan, deze is voor jou.
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