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Abstract

Thin film flows are a classical fluid dynamics problem. One example is dip coating problems where
the thin film flow is responsible for the coating during the vertical withdrawal of a plate from a
reservoir (at sufficiently high speeds). Numerous experiments and numerical studies regarding
this problem can be found in literature [20], as dip coating is widely used in industrial coating
applications because of its simplicity and effectiveness. Additionally, the physics of dip coating is
also relevant to several other common problems such as film entrainment retention.

In this thesis a numerical approach is employed in order to study dip coating problems, using
the CFD software Gerris. Gerris is an open source code based on the volume of fluids methods
with adaptive grid refinement capabilities. The software features a surface tension implementation
and contact line dynamics based on the Cox-Voinov model in combination with local relaxation
of the no-slip boundary condition.

As a first step the software is validated in situations where the physics of surface tension and
of contact line dynamics play an important role. Amongst the case studies there are: a static
meniscus rise, dip coating problem and the modelling of a gas jet. Additionally, novel research is
performed relating the influence of an impinging jet on a film flow. The results reveal the dynamics
of film thinning at the jet impact zone, accompanied with fluid build-up prior to this region. The
relation between film thinning and both jet and wall velocities are investigated by means of a
parameter sweep. The results found, indicate that the film thickness, ej , decays as ej ∝ Rej

−2.41,
where Rej is the jet Reynolds number.
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Chapter 1

Introduction

Liquids wetting solids can be seen everywhere in daily life. By drinking from a glass of water
or watching rain droplets moving down a window. Even though the relevant hydrodynamics of
these phenomena are generally well understood, the dynamics at the contact line, which is the line
separating wet regions from dry regions, presents still aspects in need for deeper understanding.
Mainly, this is due to the vast range of scales present, as, in this type of flow problems, mac-
roscopic fluid descriptions are influenced by the dynamics of molecules, responsible for contact
line motion. At the contact line, classical macroscopic boundary conditions cease to be applic-
able, as molecular dynamics allows fluid particles to freely move along the boundary, restricted
by intermolecular forces. The multiscale nature of the flow problem description at the contact
line makes a description based on macroscopic equations alone difficult and consequently difficult
for applicability in standard Computational Fluid Dynamics (CFD) tools. Numerically, a mac-
roscopic description is desired capable of incorporating molecular dynamic effects in macroscopic
fluid equation solvers (ranging from accurate contact line angle models to methods to resolve for
shear stress singularities by local relaxation of no-slip boundaries [2, 19]).

In this work, one particular case of wetting is discussed, namely dip coating, also better known
as the Landau-Levich problem. The problem describes entrainment of a thin film when a plate
is extracted vertically from a reservoir at sufficient speed. A description of the phenomenon, is
discussed in the pioneering work of Landau and Levich [14] dating back to 1942 and Derjaguin
[8] in 1943. The papers are of particular interest regarding the predicted film thickness, especially
useful for industrial applications such as dip-coating. The problem is a much researched subject,
with experiments [9, 16, 15, 17, 21] and variations including temperature [6] and non-newtonian
fluids have been performed [1].

In this work, a numerical study of the dip coating film entrainment problem is performed by
means of computational simulations, followed by novel research of film thinning and contact line
retention by applying an impinging jet on the film. In Chapter 2, the fundamental physics of
thin film fluid dynamics is described, with emphasis on surface tension and contact line dynamics.
Thereafter a few test cases are studied: the static meniscus rise in contact to a boundary wall, the
dip-coating problem, and the description of a gas jet (that will be used later to impinge a thin film).
In Chapter 3 details are provided on Gerris, the open source CFD software package used, with
emphasis on the implementation of molecular phenomena using macroscopic descriptions. Finally,
validation models are discussed in Chapter 4, confirming that Gerris is able to properly simulate
contact line dynamics in multiphase flows, allowing to combine the case studies to research film
thinning of entrained dip coating films.

Dip coating film impinged by a gas jet 1



Chapter 2

Theoretical background

In this chapter, the fundamental laws of fluid dynamics are reviewed, followed by molecular inter-
actions and consequences thereof. Afterwards, the relevant dimensionless numbers are introduced
and their use in similitude systems explained. Finally, a theoretical description of the models
simulated is given.

2.1 Conservation laws

Any closed system is restricted to behave according to the mass, force, and energy balance. In
differential form these equations are, respectively:

∂ρ

∂t
+∇ · (ρ~u) = 0 (2.1)

∂ρ~u

∂t
+∇ (ρ~u~u) = −∇p+∇ · τ + ρ~g (2.2)

∂ρE

∂t
+∇ (ρ~uE) = −∇ · p~u+∇ ·

(
τ · ~u

)
+ ρ~u · ~g +

∂Q

∂t
−∇ · ~q (2.3)

The first equation is known as the continuity equation, where t is time, ρ the density and ~u the
velocity vector of components (u, v). The second equation is the force balance, including the
pressure p, the stress tensor τ , and gravity ~g. The third equation is the energy balance with E
the energy, Q the heat source or sink and ~q the heat flux. In this work, there are no heat sources
and the systems are assumed to be isothermal. Therefore, the energy balance equation (2.3) can
be omitted for theoretical analysis and numerical models.

Equation (2.2) can be notoriously difficult to solve analytically in its general form. It can
be simplified by assuming the fluids to be incompressible, an assumption that is valid for fluid
velocities much lower than the speed of sound of that medium, i.e. Ma << 1 as per equation (2.14).
Also, there is no phase change, as evaporation of fluid and condensation of gas are neglected in
this work. Mathematically, incompressibility (ρ = constant) allows equation (2.1) to be rewritten
as:

∇ · ~u = 0 (2.4)

Implementation of this equation in equation (2.2) allows to rewrite it as:

ρ
∂~u

∂t
+ ρ~u · ∇~u = −∇p+ µ∇2~u+ ρ~g (2.5)

where the second term on the right hand side is simplified by assuming µ = const. This last
condition is true for Newtonian fluids, such as water and air. The CFD flow solver used, solves
equation (2.5) for each fluid component using the volume of fluid method, with an additional
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CHAPTER 2. THEORETICAL BACKGROUND

term modeling the surface tension. Details on the numerical model will be further elaborated in
Chapter 3.

2.2 Surface tension

Small scale systems such as those discussed in this work are commonly dominated by surface
tension. In this paragraph, an introduction to the phenomenology of surface tension is given using
the example of a liquid-gas system together with its implications to microfluidic flows.

2.2.1 Physical origin

The physical origin of surface tension lies in the cohesive attraction between molecules in a fluid.
In the bulk of the fluid, particles are in equilibrium due to an even force on all sides. At the
liquid-vapor interface, however, this is not the case. Here the liquid attraction is weaker at the
vapor side, yielding a net force into the liquid1. A schematic representation is shown in Figure
2.1.

Interface

Bulk

Figure 2.1: Schematic representation of an half space with a liquid-vapor interface at the top side.
In the bulk the (right hand side) molecules are attracted equally in all directions, while at the
surface, (left hand side) molecules experience a net attraction into the halfspace.

Due to the residual inward force the fluid tends to a minimal surface area. In continuum
physics, this phenomena is described using the macroscopic concept of surface tension, which in
mathematical form can be described as:

δW = γdA (2.6)

where δW is the work required to change the surface area. Hence the dimensional units of surface
tension are J/m2 or N/m.

2.2.2 Laplace pressure

Intermolecular cohesive forces create an internal pressure in the fluid. At the interface, this leads
to a pressure jump, depending on the shape of the interface, as the shape determines the net
pulling force of individual molecules. The consequence is illustrated in Figure 2.2, as shown by the
illustration, spherically shaped droplets are missing additional cohesive forces for molecules at the
interface, yielding a larger inward force. In the fluid this reveals itself as a difference in pressure
between the liquid and gas phases. This results in an extension of equation (2.6) [12]:

δW = −pvdVv − pldVl + γlvdA (2.7)

1Adhesion forces (i.e. attraction between dissimilar molecule) between liquid and gas are not taken into account
here.

Dip coating film impinged by a gas jet 3



CHAPTER 2. THEORETICAL BACKGROUND

In a stable equilibrium δW = 0 and equation (2.7) can be reduced to the well-known Young-
Laplace equation:

∆p ≡ pv − pl = κγlv = γlv

(
1

R1
+

1

R2

)
(2.8)

where the curvature is denoted as κ, often approximated by circular shapes of radii R1 and R2 in
3D, and where ∆p is known as the Laplace pressure, defined to be the difference between vapor
and liquid pressure, respectively. The equation shows that convex shapes described with positive
radii contain a positive Laplace pressure. The opposite is also true for concave surfaces, such as
the one shown in Figure 2.2, where negative radii result in a negative Laplace pressure.

~fR+ > ~f|| ~f|| ~fR− < ~f||

R > 0 ⇒ ∆p > 0 R → ∞ ⇒ ∆p = 0 R < 0 ⇒ ∆p < 0

Figure 2.2: Schematic representation of a convex, halfspace and concave scenario respectively,
with the gas side atop. The convex shape is defined to have a positive radius leading to a positive
Laplace pressure. Elements, indicated by a square, close to the liquid interface experience a net
downward force. The magnitude of this force is determined by the amount of liquid elements
between the visualized square element and the interface (at equal vertical distance).

2.2.3 Static contact line

Near a boundary wall, at the static contact line, cohesive and adhesive forces balance (attract-
ive forces between, respectively, similar and dissimilar molecules), leading to a stationary state
described by Young’s equation:

γlvcos(θE) + γls = γsv (2.9)

with γls, γsv, and γlv ( the latter also referred to as γ from here onwards) the surface tensions of
liquid-solid, solid-vapor, and liquid-vapor interfaces, respectively. The apparent contact angle θE
is the angle at macroscopic level as shown in Figure 2.3. In case there is no angle θE = 0, the
liquid is said to be perfectly or completely wetting the solid surface. When the angle is θ > 0,
the liquid is partially wetting the solid surface, being wetting for θ < 90◦, and non-wetting for
θ > 90◦. The nomenclature corresponds to hydrophilic and hydrophobic, respectively, if the liquid
in question is water.

θE

γsv

γls

γlv

Figure 2.3: Schematic representation of the surface tension forces involved in the Young’s equation
(2.9) at the (triple) contact line of a droplet.
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CHAPTER 2. THEORETICAL BACKGROUND

The contact angle, as described in equation (2.9), is only valid for perfectly flat and homogen-
eous solid surfaces. In practice, even the cleanest surfaces are not perfect [21], leading to contact
line hysteresis, such that static state can be achieved in a range of contact line angles θR < θE < θA.
With θR,E,A the receding, equilibrium and advancing contact line angles, respectively, owing their
names to the direction of movement of the contact line.

θR

θA

Figure 2.4: Schematic representation of stagnant droplets revealing the hysteresis phenomena.
Locally the angles are equal to θE close to the surface, yet reveal themselves as θR and θA from
afar due to surface roughness.

2.2.4 Contact line dynamics

Macroscopic fluid problems are usually assumed to have a no-slip boundary condition. With this
boundary condition, liquid near the contact line is retained at a fixed position with respect to the
wall. This leads to a singularity problem, where an infinite force would be required to move the
contact line [13]: implying that it would be impossible to extract a submerged object from a liquid
reservoir. This paradox indicates that macroscopic no-slip boundary conditions are not valid at
the smallest scale near the contact line. Instead, at atomic scales, contact line motion is properly
described only by molecular dynamics, allowing the contact line at the smallest scale to move in
either direction based on the net force applied. In case of no hysteresis, the force per unit length
F becomes apparent when the contact line angle is different from the equilibrium angle [10]:

F (θD) = γ (cos θE − cos θD) (2.10)

Where θD is the dynamic angle at which movement of the contact line will occur. When hysteresis
is included, the equilibrium angle θE is replaced by either θA or θR in the respective cases that
θD > θA or θD < θR [12]. A schematic overview of contact line motion is shown in Figure 2.5.

Dip coating film impinged by a gas jet 5



CHAPTER 2. THEORETICAL BACKGROUND

Ca

θ

θA

θR

Figure 2.5: Schematic of contact line hysteresis, with on the left hand side the velocity of a
retracting contact line angle and, on the right side, the advancing one. The region on the vertical
axis is known as static contact line hysteresis, whereas the outer regions are known as dynamic
contact line hysteresis. The horizontal axes represents the velocity of liquid relative to the substrate
shown by the dimensionless Capillary number Ca = µU

γ . The graph is reproduced from [10].

2.3 Dimensionless numbers and similitude

Dimensionless numbers play an important role in analyzing the physical behavior of systems. It
can be used to determine the dominant physical phenomena or to study geometrical and dynamical
similar system by means of parameter rescaling. Rescaling of system parameters is repeatedly used
throughout this work to prevent numerical artifacts in simulation results. The rescaling of system
parameters is elaborated after an introduction to the most relevant dimensionless numbers of this
work.

2.3.1 Dimensionless numbers

The Reynolds number, Re, is the ratio of inertial to viscous forces in a fluid. It is defined as:

Re ≡ ρUL

µ
(2.11)

with L and U being the characteristic length and velocity scale of the system and, ρ and µ the
density and viscosity fluid properties, respectively. For large values of the Reynolds number the
fluids inertia dominates and the flow becomes turbulent, whereas smaller values of the Reynolds
number are said to be laminar. As it turns out, all cases in this work are within the laminar
regime, with the gas jet being no exception.

The capillary number, Ca, indicates the ratio of viscous forces versus surface tension force and
is defined as:

Ca ≡ µU

γ
(2.12)

with γ the surface tension. The capillary number is relevant for fluid interfaces as commonly
encountered in multiphase fluids. In this work the capillary number is particularly relevant to
contact line movement and the deformation of interfaces close to the triple line.

The Bond number Bo (or Eötvös number) compares the relative importance of gravity to
surface tension:

Bo =
ρgL2

γ
(2.13)

with g gravity and is again a useful quantity for the analysis of thin films and droplets regarding
their shape.

6 Dip coating film impinged by a gas jet
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The Mach number, Ma, indicates the velocity compared to the speed of sound, c, of the
medium:

Ma ≡ U

c
(2.14)

The Mach number substantiates incompressibility assumptions made in the CFD solver, requiring
Ma << 1 for incompressibility assumptions to be applicable.

The CFL number (or Courant number), named after Courant-Friedrichs-Lewy, is an important
dimensionless number in numerical computations:

CFL ≡ U∆t

∆x
(2.15)

with ∆t the time step, ∆x the mesh size and U the velocity of information. A CFL > 1 would
essentially allow information to migrate over distances larger than a single node or mesh size. This
can, for example, be detrimental to numerical solutions of traveling waves. It is common practice
to enforce CFL < 0.7 in microfluidic simulations, although Gerris by default uses CFL < 0.5.

2.3.2 Similitude

Similitude is an important application of non-dimensional numbers. If similitude between systems
is obtained, a system can be accurately solved by a smaller or larger physical model, with the exact
same (rescaled) solution as the original system. The required conditions to obtain similitude are
[5]: geometrical similarity and dynamical similarity. Geometrical similarity is present when the
physical model is an exact scaled replica of the original system. Dynamical similarity is achieved
when forces and velocities in the system are the scaled equivalence of those in the physical model,
i.e. forces and velocities are also rescaled accordingly. Conditions for dynamical similarity are met
if the dimensionless numbers of both the system and physical model are equal. This statement is
supported by the dimensionless form of the Navier-Stokes equation (2.5). In order to write the
dimensionless Navier-Stokes equation, the following definition of dimensionless parameters is used:

t′ ≡ U0

L t, ρ′ ≡ ρ
ρ0

p′ ≡ µU0

L p ∇′ ≡ ∇L
U ′ ≡ U

U0
µ′ ≡ µ

µ0
g′ ≡ g

g0

with U0 and L a characteristic velocity and lengthscale of the system, respectively, and where the
fluid has a density ρ0, and a viscosity µ0, subjected to a gravitational force of g0. By substitution
in the Navier-Stokes equation (2.5) and omitting the primes, the following dimensionless form can
be obtained:

Re

[
∂

∂t
ρ~u+ ρ~u · ∇~u

]
= −∇p+ µ∇2~u+

Bo

Ca
ρ~g (2.16)

The solution of the dimensionless Navier-Stokes equation is only dependent on the dimensionless
numbers: Reynolds number Re, Bond number Bo, and capillary number Ca. Hence a fluid system
is mathematically indistinguishable for any physical model if the dimensionless numbers are equal
and geometrical similarity is present. Thus any length scale of a given geometry with equal
dimensionless numbers lead to the same result.

The concepts of similitude systems are used for conducting experiments which are infeasible
otherwise, for example aerodynamic tests of ships and airplanes, due to their large size. The
concept is however also convenient in CFD, as it allows to change fluid properties without changing
the result (as long as dimensionless numbers are equal). In this work, similitude of systems is used
to reduce artifacts in numerical calculations of the interface. A detailed explanation of similitude
necessity is discussed in Chapter 3.

Dip coating film impinged by a gas jet 7



CHAPTER 2. THEORETICAL BACKGROUND

2.4 Dip coating

This paragraph contains a brief recall of the most important concepts regarding liquid-solid inter-
actions as due to the fundamental physics mentioned before. Various case studies will be discussed:
the first scenario is the static interaction between a liquid and a solid, the second is the dip coat-
ing problem (i.e. the extraction of a plate from a liquid reservoir), finally, a short description of
laminar jet physics is given, together with a formulation of the film thickness when applying an
impinging jet on a dip coating setup. The cases studied in this paragraph will be simulated for
validation purposes and results are reported in chapter 4.

2.4.1 Static capillary rise

A stagnant liquid in contact with a vertical wall develops an equilibrium contact line angle bal-
ancing the surface tensions, as described by equation (2.9). This means that the fluid interface
is displaced until the equilibrium angle is reached. A meniscus is formed for wetting fluids, i.e.
θE < 90◦, and the capillary rise height can be calculated from equation (2.5). In the following
analysis, the fluid velocity is ~u = (0, 0), resulting in a solution for a static meniscus, where the
surface tension and gravitational forces balance in static equilibrium. Implementing ~u = (0, 0) in
equation (2.5):

0 = −∇pl,v + ρl,v~g (2.17)

The solution of equation (2.17) results in a hydrostatic pressure equation pl,v = −ρl,vgy+Cl,v for
both liquid and vapor phases. The integration constants, Cl,v, can be found by defining y = 0
at the liquid-gas interface far away from the wall, where the curvature κ = 0. Here, the Laplace
pressure is negligible, allowing to connect the equations of liquid and gas such that Cl = Cv = pamb,
the ambient pressure.

In contrast, close to the wall the curvature is not negligible and enforces the use of the Laplace
pressure equation 2.8 such that pl + κγ = pv. Substitution of the previously found hydrostatic
pressure terms results in:

−∆ρgy + κγ = 0 (2.18)

with ∆ρ ≡ ρl − ρv. The height of the capillary rise can be determined from equation 2.18 by
describing the curvature in curvilinear coordinates [12]:

κ =
dθ

ds
(2.19)

where the angle θ and the curvilinear coordinate s are defined in Figure 2.6. Next to this, a
trigonometrical argument can be used to show that the linearized curve along s equals −dy

ds = cos θ.
By substitution of the trigonometrical argument in equation (2.19), in combination with equation
(2.18), this leads to:

∆ρgy + γ
dθ

dy
cos θ = 0 (2.20)

Solving this differential equation provides the solution for the meniscus height, h, as a function of
the equilibrium angle, θE :

γsin θ +
1

2
∆ρgy2 = C1 (2.21)

Where the constant C1 can be determined by inserting the boundary condition θ = 90◦ with a
corresponding height of y = 0. The meniscus height h = y(θ) can now be found by inserting the
equilibrium angle at the wall θ = θE :

h(θE) =
√

2lc
√

1− sin θE (2.22)

8 Dip coating film impinged by a gas jet
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s

x

y

θ

b

y = h

y = 0
Liquid

Vapor

Figure 2.6: The curvature of a meniscus in a fluid described in curvilinear coordinate s (coordinate
along the surface interface) and angle θ.

where lc ≡
√

γ
∆ρg is the capillary length. This characteristic length-scale will return quite often

throughout this work and is especially useful in descriptions of systems where surface tension and
gravitational forces balance.

Coincidentally, it is also possible to obtain an analytical solution for the entire meniscus. The
procedure to achieve this uses the definition of the curvature κ in cartesian coordinates:

κ =
d2y
dx2[

1 + ( dy
dx )2

]3/2 (2.23)

Combined with equation (2.18), this equation can be solved into an explicit relation for the curve,
as shown by [12] [22], here only the final result is reported:

x− x0 = lc cosh−1

(
2lc
y

)
− 2lc

(
1− y2

4l2c

)1/2

(2.24)

with x0 the distance such that y = h at x = 0.

2.4.2 Film pulling

In the case of a slow moving wall, in the direction of positive y, the static shape of the meniscus
becomes deformed due to the flow induced by the moving wall. The contact line angle is decreased
to a dynamic contact line angle, θD, by the induced upward flow and will move to the equilibrium
angle θE . The equilibrium angle can however not be maintained due to the moving wall. Therefore,
a new stationary solution is obtained with a contact line velocity equal to the wall velocity.

Above some critical wall velocity, stationary solutions cease to exist as the contact line velocity
is unable to match the speed of the wall. Entrainment of liquid will then coat the wall with a
liquid film, also known as a Landau-Levich film. Several interesting phenomena occur in this film,
it is therefore convenient to break up the film into different regimes and discuss them separately.
First a description of an infinite flat thin film is given, followed by the film front, and finally the
transition zone in between the thin film and the film front will be discussed.

Film flow

A vertical wall moving in upward direction with a flat fluid entrained with thickness e is shown in
Figure 2.7a. The wall induces an upward flow in the liquid due to the no-slip boundary condition
at the wall, while the gravitational body force acts downward. The flow is described by the Navier-
Stokes equation (2.5). A steady state solution exists, because there is no time dependent force,

Dip coating film impinged by a gas jet 9
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indicating that the solution is both time and vertically independent, ∂
∂t = 0, ∂

∂y = 0. Also, the
film is flat and no horizontal forces are present, such that the horizontal velocity is zero, u = 0.
Applying this to the Navier-Stokes equation (2.5) leads to:

0 = −dp

dx
(2.25.a)

0 = −dp

dy
+ µ

d2v

dx2
− ρg (2.25.b)

Evidently, the pressure in the horizontal direction is constant, as the gradient in the horizontal
direction is zero (equation (2.25a)) and there is no curvature in the flat film. What remains is
equation (2.25b), which is the ordinary differential form of a Poiseuille flow. The flow profile can
be solved analytically using two applicable boundary conditions. The first boundary condition
is the velocity near the plate moving at the same speed, v(x = 0) = Up. The second boundary
condition is present at the free interface, where the viscous stress is zero or at least negligible in

case of a gas. This means that the gradient of the velocity is zero at the interface, dv(x=e)
dx = 0,

i.e. the velocity at the interface is continuous from liquid to gas. Solving equation (2.25) using
the boundary conditions gives the final velocity profile in the thin film:

v(x) =
ρg

µ

(
x2

2
− ex

)
+ Up (2.26)

with e the film thickness.
Equation (2.26) also allows the determination of a maximum stable film thickness since negative

velocities near the interface cannot contribute to a thicker film in case the source of liquid is
a reservoir (i.e. a starting point). Hence, a theoretical maximum film thickness occurs when
v(x = em) = 0, resulting in:

em =

√
2µUp
ρg

=
√

2lcCa1/2 (2.27)

with the relevant capillary number, Ca =
µUp

γ , and lc =
√

γ
ρg being the capillary length. Put

differently, if a film exceeds the thickness of equation (2.27), the velocity at the interface will be
negative.

2.4.3 Film thickness

The discussed film flow applies to the ideal case of an infinite film, whereas a dip coating film
starts in a liquid reservoir and ends in the film front. In this paragraph, the influence of the
liquid reservoir and of the moving contact line with respect to the dip coating film are discussed.
Starting with the film thickness withdrawn from a liquid reservoir.

Landau-Levich film

The solution for the film thickness is found by Landau-Levich-Derjaguin and described in their
famous paper [14, 8]. In what follows, a derivation of the Landau-Levich-Derjaguin film thickness
is given based on [16].

In the work of Landau, Levich, and Derjaguin, it is shown that the high curvature in the
meniscus and the viscous stress induced by the moving wall cause surface tension and viscous
forces to dominate the flow over gravitational forces. Therefore gravity can be neglected in this

analysis. Furthermore, in the case Ca << 1 the curvature can be approximated by κ ≈ d2e
dy2 ,

resulting in a Laplace pressure of ∆p = −γ d3e
dy3 . Substitution of the Laplace pressure in equation

(2.25.b) and neglecting gravity leads to a balance between surface tension and viscosity forces:
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Ucl
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v(x)

g

e

Figure 2.7: a) Infinite plate moving in upward direction with velocity Up and a liquid film entrained
subjected to a gravitational pull. The resulting velocity profile in the liquid is indicated by the
curve at v(x), with the dotted line as a reference. The film thickness is denoted by e. b) Simplified
overview of the liquid film front build-up due to the difference in velocity of the plate, Up, and the
contact line, Ucl. The ridge is elongated in vertical direction due to increasing build-up in time.
Here, the transitional zone from the film to the ridge is estimated to be sharp-edged, moving with
a velocity Uj . The thickness of the front ridge and the Landau-Levich film are denoted by er and
ell, respectively.

− γ d3e

dy3
= µ

d2v

dx2
(2.28)

The equation can be solved to reveal the velocity profile at the top of the meniscus, using the
same boundary conditions as the regular film flow (equation (2.26)). Namely, the first being a
stress-free boundary at the interface dv

dx (x = e) = 0. And secondly, fluid in contact with the plate
moving at the same speed due to a no-slip boundary condition, v(x = 0) = Up. The flow profile
then becomes:

v(x) = −γ
µ

d3e

dy3

(
x2

2
− ex

)
+ Up (2.29)

valid in the meniscus shape. In case the plate velocity is significantly larger than the critical
velocity for entrainment, it can be shown that the velocity of (2.26) is approximately equal to the
plate velocity for thin films. Implementing this in a flux balance between the meniscus velocity
profile and the thin film flow:

Upe+
γ

3µ

d3e

dy3
e3 = Upell (2.30)

This equation can be made dimensionless by substitution of E = e/ell, with ell the Landau-Levich
film thickness, and Y = y/λ, where λ ≡ ell/(3Ca)1/3:

d3E

dY 3
=

1− E
E3

(2.31)

By definition, the film thickness far from the meniscus should be equal to the Landau-Levich film
thickness, e(y → ∞) = ell. In dimensionless form, this boundary condition is written as E(Y →
∞) = 1. A solution can thus be found by expansion in a first order power series E = 1 + ε(Y ),
where only small variations are allowed, i.e. ε(Y ) << 1:

d3ε

dY 3
=
−ε

1 + ε
≈ −ε (2.32)
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This differential equation has an exponential solution, ε = α exp[−Y ], with α a measure of the
curvature in the film. All that remains is to connect the exponential solution to the dynamic
meniscus. In the work of Landau and Levich, the dynamic meniscus is assumed to be equal
to the static meniscus solution, the exponential solution can then be connected to the static
meniscus shape at equal curvature. This requires the height of the meniscus at an equilibrium
contact line angle of θE = 0 (liquid-liquid interaction by itself is perfectly wetting), found to
be h(θE = 0) =

√
2 lc (equation (2.22)). Furthermore, it was found that the curvature of both

solutions match at a value of 0.644. Hence the two solutions can be matched at this position.
Ultimately leading to the desired film thickness [14, 16, 12, 20, 21]:

ell ≈ 0.644
√

2lcCa2/3 ≈ 0.945 lcCa2/3 (2.33)

with the capillary length lc =
√

γ
ρg , and capillary number Ca =

µUp

γ . The Landau-Levich equation

(2.33) is confirmed by experiments.

Front ridge

At the film front, movement of the wall will reduce the equilibrium contact line angle to some
dynamic contact line angle, θD < θE . The contact line then starts to move in downwards direction
relative to the plate, towards the equilibrium contant line angle. The velocity of the contact line
relative to the reservoir is now smaller than the plate velocity, Up > Ucl, and shown by Ucl in
Figure 2.7b. A velocity difference between the contact line and the plate velocity becomes apparent
and is called the slip velocity. A dimensionless number can be defined to reflect the slip velocity.
This dimensionless number is the relative capillary number, defined as Ca∗ ≡ µ

γ (Up − Ucl) [21].
The slip velocity enforces a liquid build-up near the contact line due to mass conservation,

visualized in Figure 2.7b. The liquid build-up develops in a front ridge due to the Poiseuille flow
profile, distributing the liquid build-up along the film. In time, the redistribution of fluid causes
a fixed shape and ridge thickness at the film front.

A relation between the ridge thickness, er, and the contact line velocity, Ucl, can be found
by applying a mass balance in the ridge. For the fixed shape of the contact line this produces a
volumetric flow rate of Q = erUcl, whereas the flow rate in the ridge is the integral of the ridge
flow, leading to a balance of:

erUcl =

∫ er

0

v(x)dx (2.34)

Solving using the Poiseuille flow of equation (2.26) allows to derive a relation for the ridge thickness
er:

er =

√
3µ

ρg
(Up − Ucl) =

√
3lcCa∗1/2 (2.35)

In [21] it is implied that the ridge thickness is solely dependent on the equilibrium contact line
angle. A consequence of this assertion would be that the relative capillary number is also solely
dependent on the the equilibrium contact line angle, due to equation (2.35). Meaning that the
slip velocity is independent of the plate velocity, i.e. Ca∗ is independent of Ca. The experimental
results found by [21] and simulations in this work indeed confirm this independence.

2.4.4 Flow in the transition zone

As previously mentioned in Figure 2.7, the transition zone is assumed to have a fixed shape.
Fluid is accumulated here because the flow near the interface of the thinner film is moving faster
than flow in the ridge. This velocity difference leads to a phenomenon known as a capillary
shock, where accumulated capillary waves are retained to pass the transition zone by the velocity
difference [6, 7, 21].
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A relation between the transition velocity Uj , the thickness of the film and the ridge thickness
can be found by applying a mass balance along the entire ridge, including the transition zone as
displayed in Figure 2.7. This results in Qll + Qj − Qcl = 0, being the volumetric flow rate due
to the Landau-Levich film Qll, ridge transition zone Qj , and contact line Qcl, respectively. The
individual volumetric flow rates are:

Qll =

∫ ell

0

v(x)dx (2.36.a)

Qj =

∫ er

ell

Ujdx (2.36.b)

Qcl =

∫ er

0

Ucldx (2.36.c)

with v(x) the Poiseuille flow of equation (2.26). Substitution in the mass conservation results in
the following dimensionless solution:

µUj
γ

= Ca− e2
r + erell + e2

ll

3l2c
(2.37)

Providing the same result as found in [21].

2.4.5 Film thickness with an impinging jet

As discussed in paragraph 2.3.2, a flow problem is only dependent on the relevant dimensionless
numbers. As such, the film thickness in a dip coating setup is a function of e = f(Ca,Re,Bo, θE , l),
with the capillary number Ca, Reynolds number Re, Bond number Bo, equilibrium contact
line angle θE , and a relevant length scale l. However, in paragraph 2.4.3 it is found that the
Landau-Levich film thickness is only dependent on the capillary number and capillary length,
ell = f(Ca, lc), while the ridge thickness is found to be dependent on the relative capillary number
and capillary length er = f(Ca∗, lc). Hence a more convenient way of writing the dependence of
the film thickness would be e = f(Ca,Ca∗, lc).

In addition, implementing an impinging jet in the numerical dip coating requires an additional
dependent parameter for the jet flow. This parameter is the Reynolds number of the jet, Rej,
since the dimensionless Navier-Stokes equation in horizontal direction (perpendicular to gravity)
is solely dependent on this dimensionless number:

Rej

[
∂

∂t
ρu+ ρu · ∇u

]
= −∇p+ µ∇2u (2.38)

Implementation of a horizontal jet impinging a dip coating film is therefore expected to be a
function of:

ej = f(Ca,Ca∗,Rej, lc) (2.39)

where Ca determines the film flow for Ca > Cacr, Ca∗ indicates the amount of slip between the
plate and the contact line, Rej determines the jet flow, and lc the capillary length being a relevant
length scale for the problem, as well as providing the influence of gravity. As previously discussed
in paragraph 2.4.3, the relative capillary number is constant for a given equilibrium contact line
angle and the capillary length is a constant value determined by fluid properties and gravity.
Hence the only variables of the film thinning problem are the capillary number of the fluid and
Reynolds number of the jet. The influence of these variables is investigated in paragraph 4.4 to
further determine the thinned film thickness ej dependency on these dimensionless numbers.

Dip coating film impinged by a gas jet 13



Chapter 3

Numerical methods

In this chapter the numerical methods beyond the computational fluid dynamic software Gerris
are presented. The software is open source and able to solve for Euler, Stokes and Navier-Stokes
equations amongst others. The program allows to solve for multiphase and multicomponent simu-
lations containing molecular phenomena such as contact line dynamics and surface tension. Other
useful features implemented are parallel computing and load balancing together with a simple
mesh characteristic to Gerris.

3.1 Finite volume method

Gerris uses flow solvers of the Finite Volume Method (FVM) type. Similar to the finite difference
and finite element methods, FVM computes values at discretized locations on the mesh. The
difference of FVM is that the equations are computed as a flux through the surfaces of boundaries
in discretized volumes. Because the outward flux is exactly equal to the inward flux of the adjacent
volume, the method is a conservative one. However, due to implementation of multiphase interface
computation the conservation of mass is lost at the interface.

Flow problems discussed in this work have low Mach numbers Ma << 1 and are, by assumption,
isothermal. Due to the former assertion, problems can be assumed incompressible (ρ = constant),
allowing to deal with the Navier-Stokes equation only. The equation solved by Gerris is quite
similar to equation (2.5) with an additional inclusion of a macroscopic description of surface
tension:

ρ
∂~u

∂t
+ ρ~u · ∇~u = −∇p+ µ∇2~u+ ρ~g + κγδs~n (3.1)

with Kronecker δs indicating availability of surface tension only on the interface, and ~n the normal
vector of the interface.

The fundamentals are thoroughly discussed in [18][19], while in the remainder of this chapter,
only the most important features of Gerris will be briefly discussed.

3.2 Domain

A simulation domain is build using square boxes. The software allows to stack multiple boxes on
top and alongside of each other, in order to create more complex model domains. Each individual
boundary non-adjacent to other boxes allows to setup a boundary condition. In addition, Gerris
allows to generate solid boundaries based on logical functions, perforating the domain to its desired
shape or generating a negative of it when using the flip command. In contrast to box boundaries,
solid boundaries only allow for global boundary conditions. Furthermore, solids cannot be used
as open boundaries, limiting domain design flexibility.
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3.3 Mesh

One of the main characteristic features of Gerris is its use of structured quad/octree grid meshes.
This type of mesh retains the advantages of an uniform Cartesian grid, while allowing to locally
refine the grid to a coarser or finer mesh. This adaptive refinement is, as the name implies,
implemented in a dynamic manner and can be applied on any fluid property or function. The
ease of implementation of a quad/octree mesh allows to re-mesh every time step with only a few
percentages of additional computational runtime [4]. An example of the quad/octree mesh can be
seen in Figure 3.1.

(a) (b)

Figure 3.1: a) Schematic representation of a quad/octree mesh around a small object. There are
three levels of mesh sizes present. If, for instance, the object was refined two levels higher than
the coarse outer cells, this would be the minimal cell configuration. b) Adaptive mesh refinement
surrounding a droplet based on the VoF tracking function T . This particular example is captured
from a simulation.

The grid size is set up in levels. Each level increases the amount of cells as a power of 2 in all
directions for one particular box domain. Adaptive mesh refinement can be used to locally increase
the level based on any internal function. With the only restriction that the mesh generator of a
multilevel grid is restricted to one level difference with adjacent cells.

3.4 Volume of Fluid method

Multiphase and multicomponent simulations in Gerris can be realised using the Volume of Fluid
method (VoF). The method introduces a characteristic function T to track fluids. For example,
in this work T = 0 denotes the gas phase, whereas T = 1 is the liquid phase. Material properties
of the fluids are applied based on value of T . For the density and viscosity this implies:

ρ = ρ0 + (ρ1 − ρ0)T (3.2.a)

µ = µ0 + (µ1 − µ0)T (3.2.b)

Allowing the material properties to vary throughout the domain based on T . In order to allow
fluids to displace one another, a dynamic description of the tracking function is required, this is
the advection equation for T :

∂T

∂t
+ ~u · ∇T = 0 (3.3)

Relevance of this equation is solely important to cells containing the interface between fluids, being
the only position where ∇T 6= 0 due to the incompressibility assumption.
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3.5 Implementation of molecular phenomena

Both surface tension and contact line movement are molecular phenomena. However, Gerris only
solves for the macroscopic fluid dynamics Navier-Stokes equation. To solve for both molecular
phenomena, VoF, Height Functions (HF), Continuum Surface Force (CSF) and the Cox-Voinov
model are used [2]. The following paragraphs contain a brief explanation of the basic principles.

3.5.1 Surface tension

In short, HF is used to determine a sharp interface [2][19]. The VoF tracking function T is
exploited for this purpose by summing a column (or row) of T around the interface cell to obtain
the height of the interface in that particular cell [2], this is either performed in vertical or horizontal
direction. Effectively, this procedure results in an interface height approximation with an accuracy
smaller than the cell size. The normal vector of the interface ~n can then be extracted using a
finite difference scheme on the neighboring interface heights. Combining ~n and the cell centre
heights allow reconstruction of the interface in that cell. The procedure is of the Piecewise Linear
Interface Calculation (PLIC) type [2], and strongly benefits from small mesh sizes as it is first
order accurate.

Near the domain boundaries, cells in (at least) one direction are absent. Here ghost cells are
used with an interface set to the equilibrium angle θE of the boundary, used for the determination
of the interface of a cell adjacent to the boundary. The method therefore acts as a boundary
condition for the interface.

Furthermore, a finite difference scheme is used to determine the curvature by approximation of
the first and second order derivative of the interface height and inserting it into equation (2.23).
With both the surface interface and curvature known, surface tension can be implemented as
shown in equation (3.1) by use of a discretized CSF method.

The above method converges with mesh refinement and should be less prone to spurious (or
parasitic) currents [11][2] in comparison to other methods. Some other methods work in converse
by determining the normal vector by evaluating ∇T . The spurious currents mentioned are numer-
ical artifacts which are further elaborated in paragraph 3.6. A drawback of HF is that an object
should not be fully contained by a mesh cell, as this will result in incorrect interface computations.
In Gerris however, adaptive mesh refinement can be used to resolve this deficiency by applying
additional mesh refinement.

3.5.2 Contact line dynamics

In general, viscous flow along a boundary is solved by applying a no-slip boundary condition. This
contradicts with contact line movement along the boundary, leading to a singularity problem, as
discussed in 2.2.4. Contact line movement is hence prohibited by the no-slip condition applied
on the boundary. To resolve this, a local relaxation of the no-slip boundary condition is used to
remedy the stress singularity at the contact line, based on the mesh size.

Furthermore, a model for advancing and receding contact lines is required. Gerris solves this
by using a method based on the Cox-Voinov model [20]. The model relates the equilibrium angle,
θE , and the capillary number to the dynamic angle, θD, of a moving contact line:

θ3
D = θ3

E − 9Ca ln

(
l

l0

)
(3.4)

where l is an outer macroscopic length such as the capillary length or domain size and l0 a
microscopic length related to molecular processes. The former can be determined from properties
provided in the simulation. The latter is approximated as a fraction of the mesh size. A direct
consequence is that the final outcome of a simulation becomes mesh and domain dependent [3].
Therefore attention must be paid when simulating a real case scenario. Implications of mesh
dependence are further discussed in chapter 4.
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3.6 Parameter scaling

Accurate modeling of surface tension in multiphase flows can be challenging using the VoF method,
due to material property discontinuities at the interface. In general it is found that inaccuracies
in curvature computation lead to spurious currents [11]. In Gerris, the origins of spurious currents
lie in computational accuracy of: curvature computation, advection scheme and surface tension
scheme, as noted in [19]. In order to act against these unwanted artifacts, scaling of fluid properties
can be executed using the similitude concept of paragraph 2.3.2. Reducing the material property
discontinuities should reduce the spurious currents, and in particular, it is found that a reduction
in density ratio is rather effective for simulations discussed in this work. Hence, the parameter
rescaling procedure performed enforces a density ratio of ρl/ρg = 5, which automatically leads to
a viscosity ratio of µl/µg ≈ O(10).

Parameter scaling is also relevant for the maximum timestep used in Gerris. The software
automatically determines an appropriate timestep based on the Courant-Friedrichs-Lewy (CFL)
number and surface tension. The latter is important for inclusion of the shortest capillary waves
present [19]. Hence a restriction is applied to the timestep, constraining the maximum timestep
to be smaller for larger surface tension values. A consequence of high surface tension is therefore
a high computational cost.
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Chapter 4

Model validation

In this chapter, the software package Gerris is studied and validated for its ability to accurately
simulate the different physics test cases described in Chapter 2. For simplicity and computational
efficiency 2D cases are discussed. First the case of a static meniscus rising a vertical wall is
discussed, followed by the dip coating case, a horizontal gas jet flow, and finally, the dip coating
flow is combined with an impinging jet to study jet induced film thinning.

4.1 Meniscus rise

First, the correct implementation of the contact line angle and surface tension is validated using
the case of a static meniscus rising at a vertical wall. Due to the restriction in density differences
discussed in Chapter 3, all simulations use rescaled fluid properties while maintaining dynamical
similarity. Both the physical and rescaled properties are shown in Table 4.1. The physical fluid
properties are used for the remainder of this work. The gas phase contains the properties of
carbon dioxide and the liquid phase represents water with the viscosity increased by a factor 10.
This raise in viscosity increases dissipation of waves in the simulation and hence helps reduce the
computational cost. The parameter file of the simulation leading to these results are shown in
Appendix A.

Table 4.1: Physical and rescaled parameters of both the liquid and gas in dynamically similar
systems. The liquid and gas parameters are distinguished by the subscripts l and g, respectively.

Physical Rescaled Units
L 2 · 10−2 2 m
Up 0.5 0.5 m/s
ρl 103 10 kg/m3

ρg 2 2 kg/m3

µl 10−2 10−2 kg/ms
µg 1.5 · 10−5 1.5 · 10−3 kg/ms
γ 7.2 · 10−2 7.2 · 10−2 kg/s2

g 9.81 9.81 · 10−2 m/s2

θE 60 60 degrees
t 10−2 1 s

The simulation is set up in a square box with at the bottom a liquid reservoir and atop the
gas phase, as shown in Figure 4.1a. The box size has been set to be sufficiently large at several
times the capillary length, namely L > 7lc. A no-slip boundary condition is implied on the left
wall with a fixed equilibrium contact line angle of θE = 60◦. The right hand side and bottom wall
are free slip walls. The top is an open boundary maintaining a pressure of p = 0 Pa.
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Starting a simulation from an initially flat interface such as depicted in Figure 4.1a causes
waves which persist for long periods of time, t > 200 s (rescaled quantity). To reduce the influence
of surface waves, the simulation is restarted with a meniscus initialized1 to the height found in
the simulation perturbed by waves. This new initialized interface is denoted by the dotted line
in Figure 4.1a. The simulation containing the initialized meniscus interface also produces waves.
However, employing this procedure reduces the amplitude of waves present, thus allowing it to be
resolved faster by viscous dissipation.

Gas: (ρg, µg)

Liquid: (ρl, µl)

L

L

Open boundary: P = 0 Pa

Free slip wall

No-slip wall

x

y

~g

θE = 60◦

(a) (b)

Figure 4.1: a) Schematic representation of the initial conditions of the static meniscus test case. In
blue the initial interface of the first simulation is shown. The dotted line resembles the meniscus
at a height resulting from this simulation. This height was then used to approximate a meniscus
shape of the initial liquid-gas interface for the second simulation. b) Stationary solution of the
simulation at t = 200 s (rescaled quantity), revealing the capillary rise at the left side of the domain
on a vertical wall. In blue a fluid with the properties of water is shown, with the exception of
viscosity, being ten times the normal value. Teal indicates the gas phase possessing the properties
of carbondioxide.

The stationary solution of the simulation started with an initial meniscus is achieved after
t = 200 s (rescaled quantity) and is shown in Figure 4.1b. Extraction of the liquid-gas interface
from Figure 4.1b allows for comparison with the analytical solution of equation (2.39), as presented
in Figure 4.2. As shown, the simulation result matches the analytical solution.

1Using an exponential function with empirically found parameters
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Figure 4.2: Comparison of simulation results with the analytical solution. The interface between
the liquid and gas phase extracted from Figure 4.1b is indicated by the blue line. The dotted red
line indicates the analytical solution of the capillary rise at a vertical wall determined by equation
(2.24). Note that the vertical axis is shifted compared to Figure 4.1b, such that y/lc = 0 now
refers to the liquid-gas interface on the right hand side of the domain.

4.2 Dip coating flow

The next step is to validate the physics of a dynamic case by simulating the entrainment of a dip
coating film. The velocity of the plate is chosen to be Ca > Cacr, such that film entrainment is
observed. The simulation is made out of one box in Gerris with a box size of L ≈ 30lc. The setup of
boundary conditions is similar to the case of the static meniscus rise. A schematic representation
of the dip coating simulation is shown in Figure 4.3a. On the left hand side, a no-slip wall moving
upward (in positive y-direction) with a velocity Up = 0.5 m/s, and an equilibrium angle θE = 60◦.
The bottom and right hand side walls are free slip walls to constrain the fluids. The top boundary
is an open boundary set to a static pressure of zero. The simulation is run for t = 25 s (rescaled
quantity), at which point the contact line has surpassed the top boundary. The initial setup starts
with a liquid reservoir at the bottom of the domain at a height of approximately 1/10th of the
domain size. Above the liquid a gas is present up to the top boundary. The physical and rescaled
fluid properties are shown in Table 4.2. Additional details for this simulation are shown in the
parameter file set reported in Appendix B.

A snapshot at t = 22s (rescaled value) of the simulation can be seen in Figure 4.3b with an
additional close-up of the film shown in Appendix C. The result clearly shows film pulling with
build-up of fluid near the front of the film. A time-lapse of the interface between phases can be
seen in Figure 4.4. Here the final result clearly shows the ridge build-up and the capillary shock.

4.2.1 Landau-Levich film

The liquid-gas interface of the Landau-Levich film can be extracted from the simulation at t = 22 s
(rescaled quantity), shown up to the capillary shock in Figure 4.5. Here the dotted line denotes
the Landau-Levich film thickness solution of equation (2.33). Note that the theoretical solution is
obtained by asymptotical matching, and the simulated film thickness is therefore only supposed to
approach the solution. Figure 4.5b shows the vertical velocity profile through horizontal planes at
various heights. Revealing the flow profiles from the wall, x/lc = 0, up to the local film thickness.

Furthermore, visual inspection of the time lapse in Figure 4.4 reveals that the Landau-Levich
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Table 4.2: Physical and rescaled parameters of both the liquid and gas in dynamically similar
systems. The liquid and gas parameters are distinguished by the subscripts l and g, respectively.

Physical Rescaled Units
L 8 · 10−2 8 m
Up 0.5 0.5 m/s
ρl 103 10 kg/m3

ρg 2 2 kg/m3

µl 10−2 10−2 kg/ms
µg 1.5 · 10−5 1.5 · 10−3 kg/ms
γ 7.2 · 10−2 7.2 · 10−2 kg/s2

g 9.81 9.81 · 10−2 m/s2

θE 60 60 degrees
t 10−2 1 s

Gas: (ρg, µg)

Liquid: (ρl, µl)

L

L

Open boundary: P = 0 Pa

Free slip wall

No-slip wall

x

y

~g

Up

(a) (b)

Figure 4.3: a) Schematic representation of the dip coating simulation. The wall on the left hand
side is now a moving wall with a velocity Up. The top boundary is again a open boundary, and
the bottom and right hand side again employ a free slip boundary condition. b) Density plot of
the results obtained at t = 22 s (rescaled quantity). In blue the liquid phase is shown, and in teal
the gas phase.

film does not immediately acquire a fixed thickness. Hence the film thickness is recorded over
time at a fixed vertical position of y/lc = 10 shown in Figure 4.6. The graphs show that after the
ridge front passes, the film does not immediately adopt a fixed film thickness, instead, the film
thickness increases in time.

4.2.2 Film ridge

Also the front ridge can be isolated from the capillary shock up to the contact line, as shown in
Figure 4.7a. Here the dotted line resembles the solution of equation (2.35), estimated using the
resulting Ucl of the simulation. The value is expected to hold close to the contact line around
y/lc ≈ 27. The capillary shock clearly shows resemblance to the experimental work of [21]. Figure
4.7b shows the vertical velocity profile near the thickest part before the transition zone, the thin
middle section, and the liquid front.
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Figure 4.4: Time lapse of the interface profile, the horizontal scale has been stretched such that
the relevant phenomena are visible. The time step in the legend denote rescaled quantities.
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Figure 4.5: a) Lower half of the dip coating film up to the capillary shock. Again the horizontal
axis is stretched. The dotted line indicates the solution according to the Landau-Levich equation
(2.33): x/lc = 0.159. b) Shows the vertical velocity profile, v, through horizontal planes positioned
at various heights. Note that the velocity increases as the film becomes thinner due to mass
conservation.

4.2.3 Mesh dependence

As described in paragraph 3.5.2 the Cox-Voinov model requires a molecular length scale to ap-
proximate the behavior of the contact line. The value of this length scale is material dependent
and unknown prior to the simulation. Therefore, Gerris approximates this value using a fraction
of the mesh size. As a result, the velocity of the contact line is dependent on the mesh size. An
example can be seen in Figure 4.8, where a decrease in the mesh size by a factor 2 reveals an
approximate 15% reduction in vertical distance traveled by the contact line with respect to the
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Figure 4.6: a) Film thickness at a fixed vertical position of y/lc = 10 over time. Clearly visible is
the film front ridge and the capillary shock b) Close-up of the film development after the capillary
shock.
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Figure 4.7: a) Interface of the ridge including the transition zone to the Landau-Levich film.
The vertical dotted line resembles the theoretical solution for the ridge film thickness close to the
contact line given by equation (2.35) using Ucl from the simulation, leading to an expected ridge
thickness of er/lc = 0.297. The horizontal lines denote the heights at which the velocity profiles
reported in panel b) are obtained. b) Vertical velocity profile through a thick section of the jump,
a thin middle section and the film front.

reservoir.

The accurate setup of a physical case therefore requires a correction to the microscopic length
scale. This can be accomplished by choosing the domain and mesh such that the contact line
velocity of the simulation matches the physical case. In order to determine the mesh dependency,
a simulation setup can be solved for different mesh sizes. From these simulations, the contact
line velocity can be measured and compared with one another. However, because the slip velocity
relative to the plate does not change, i.e. the relative capillary number (Ca∗) is constant, a more
accurate approach is to include additional measurements obtained from different wall velocities.
This method results in an average constant value of Ca∗ for each of the refinement levels, as
reported in Figure 4.9.

The data is gathered by tracking the velocity of the interface a few cell sizes apart from the
moving wall, and averaging the outcome over time. As it turns out, inaccuracies caused by this

Dip coating film impinged by a gas jet 23



CHAPTER 4. MODEL VALIDATION

method do not allow to distinguish the mesh refinement dependence, albeit it does show that the
relative capillary number is indeed independent of the plate velocity (due to the horizontal red
line in Figure 4.9).
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Figure 4.8: Entrained film progression for different levels of refinement with Ca = 1.39 · 10−2.
A refinement level indicates the amount of cells every direction of a domain is divided into. A
refinement level of 9 corresponds to 29 cells in one direction of the domain. The interfaces are
extracted at the same time t = 1.5s.

4.2.4 Equilibrium angle dependence

In addition to the mesh dependence, inaccuracies of the contact line angle can also result in contact
line velocities different than expected. In order to quantify this, various θE are simulated and the
results are reported in Figure 4.10. As indicated by the linear fit, a deviation could lead to a
velocity increase of approximately 1.5% per degree for this particular case.
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Figure 4.9: (a)(b)(c) Mesh dependence of different mesh refinement levels: 7,8, and 9, respectively
(i.e. the domain is split into: 27×27, 28×28, and 29×29 mesh boxes, respectively). The horizontal
axis shows the wall velocity in dimensionless units, the vertical axis indicates the dimensionless
velocities of the contact line (Ucl) and the relative difference between contact line and wall Up−Ucl
(Ca∗) in blue and red, respectively.
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Figure 4.10: Contact line velocity dependence on the equilibrium contact angle, θE .

4.3 Jet flow

The third case is that of a jet flow. The jet behaviour is visualized before implementing it in the
dip coating simulation. For this model, a domain of equal size as the dip coating simulation is
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used. A schematic representation of the domain with a detailed description is displayed in Figure
4.11. Here, the boundary on the left hand side is a rigid no-slip wall, while the bottom, right
hand side, and top boundary are open, with a constant hydrostatic pressure, p = ρgg(L− y) (the
origin is at the bottom left of the domain). A horizontal jet, with a nozzle width of Lj/lc = 0.69,
is implemented at a central height, Ly/lc = 13.15. This jet reaches from the open boundary on
the right up to a distance of x/lc = 3.00 away of the left wall. Details of the domain and of the
gas used in the domain are reported in Table 4.3, with Uj the jet velocity setpoint used in the
simulation.

Table 4.3: Physical and rescaled parameters for both the liquid and for the gas in dynamically
similar systems.

Physical Rescaled Units
L 8 · 10−2 8 m
Up 0 0 m/s
Uj 2 2 m/s
ρg 2 2 kg/m3

µg 1.5 · 10−5 1.5 · 10−3 kg/ms
g 9.81 9.81 · 10−2 m/s2

t 10−2 1 s

Gerris only allows to set one boundary condition per boundary. Hence it is not possible to have
both an inlet velocity boundary and a open boundary condition on the right hand side. Therefore
the jet flow is generated using a local body force with an accelation of ~a = (ax, 0), applied on the
fluid in the teal region of Figure 4.11. The acceleration function is based on a proportional control
function used in control systems. In this case, the function regulates to a desired jet velocity Uj .
The accelerating control function is tuned in order to force a parabolic flow profile:

ax(y, u) =

[
1− 4(y − Ly)2

L2
j

]
(u− Uj) (4.1)

Where Ly is the center height and Lj the jet width, shown in Figure 4.11. The proportional
control function is applied in the teal region only, i.e. (Ly − 1

2Lj) < y < (Ly + 1
2Lj). Notice that

at the nozzle walls the acceleration is ax(y = Ly ± 1
2Lj , u) = 0, it is velocity dependent in the

center of the jet ax(y = Ly, u) = u−Uj and it vanishes when the velocity is equal to the setpoint
value ax(y, u = Uj) = 0.

The acceleration control function is only applied in the teal region of the nozzle to allow the
flow to fully develop. It is empirically found that a different flow profile of, for instance, a flat
acceleration profile (ax(u) = u− Uj) does not influence the flow profile at the nozzle opening.

A disadvantage of using a proportional control function is that it produces a steady state error
that may be eliminated by using a more complex control function. In this case, however, the error
does not pose a problem since the steady jet velocity value can be obtained from simulation data
at the nozzle centerline.

The result of the simulation are displayed in Figure 4.12. Figure 4.12a shows a snapshot of
the simulation after t = 6 s (scaled quantity), revealing a steady jet flow. After some time, the
flow starts to oscillate in upward and downward direction. This oscillatory movement is shown in
Figure 4.12b after t = 16.5 s (scaled quantity).

Additionally, simulation results can be used to validate the jet velocity control function. Figure
4.13a shows the velocity profile through the nozzle exit, x/lc = 3.00. The result reveals a Poiseuille
flow profile as expected. Furthermore, the volumetric flow rate is displayed in Figure 4.13b,
showing that the jet reaches a constant flow rate within t = 5 s (scaled quantity), maintained until
the end of the simulation. With the flow profile and volumetric flow rate of the jet validated, it
can now be applied in a dip coating simulation to investigate film thinning.
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Open boundary: p = 0 Pa
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Open boundary:

p = ρggyLy/lc = 13.15

Lj/lc = 0.69x/lc = 3.00

Uj

Open boundary:

~a = (ax, 0)

Figure 4.11: Schematic representation of the jet simulation setup. On the left hands side is a no-
slip wall, while the bottom, the right and the top boundary conditions are set to open boundaries
with a fixed pressure of p = ρgg(L − y). The gas is accelerated in the teal region using the
proportional control function denoted by ~a.

(a) (b)

Figure 4.12: a) Jet behaviour at t = 6 s (scaled quantity). The velocity is shown relative to the
velocity setpoint Uj = 2 m/s. b) A close-up of the left part of the domain after several up- and
downward oscillating motions at t = 16.5s (scaled quantity).
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Figure 4.13: a) Jet flow profile at t = 22 s (scaled quantity). b) Volumetric flow rate through the
nozzle exit x/lc = 3.00. Differences between the data points and the average after t = 5 s result
in a variance of σ2 = 1.36 · 10−6.
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4.4 Dip coating film impinged by a jet

The dip coating and jet models are now combined to investigate the influence of a jet on a dip
coating film. For this model, the domain is of equal length compared to the dip coating and jet
simulations. A schematic representation of the domain with a detailed description is displayed in
Figure 4.14. The dimensions of the jet nozzle are the same as shown in Figure 4.11. On the left
hand side the moving wall is shown, moving at a velocity Up. The boundaries on the top and
on the right are open boundaries, again set to a hydrostatic pressure, p = ρgg(L − y). Free slip
boundary conditions are used for the bottom and reservoir wall.

Gas: (ρg, µg)

L

L

Open boundary: p = 0 Pa

No-slip wall
x

y

~g

Free slip boundary

p = ρggy

Uj

Open boundary:

~a = (ax, 0)

Up

Wall
Reservoir

Liquid: (ρl, µl)

Figure 4.14: In blue the liquid reservoir is shown with a meniscus shape at the start of the
simulation. The rest of the domain is filled with gas, with in teal the region where the proportional
function ~a is active. In addition to previous simulations, a reservoir wall is implemented in the
bottom right corner of the domain to retain the fluid in the reservoir. A free slip boundary
condition is imposed on both the reservoir and on the bottom wall.

For the domain displayed in Figure 4.14, multiple simulations are performed in a parameter
sweep, to investigate film thinning by the jet. The parameters varied are the jet velocity setpoint
Uj and wall velocity Up, as these quantities determine Rej and Ca of equation (2.39), respectively.
Fluid properties and velocity ranges used are reported in Table 4.4.

Table 4.4: Physical and rescaled parameters of both the liquid and of the gas in dynamically similar
systems. The liquid and gas parameters are distinguished by the subscripts l and g, respectively.
The parameters Up and Uj contain a range of values used in the parameter sweep.

Physical Recaled Units
L 8 · 10−2 8 m
Up 0.7− 1.5 0.7− 1.5 m/s
Uj 1.5− 5.0 1.5− 5.0 m/s
ρl 103 10 kg/m3

ρg 2 2 kg/m3

µl 10−2 10−2 kg/ms
µg 1.5 · 10−5 1.5 · 10−3 kg/ms
γ 7.2 · 10−2 7.2 · 10−2 kg/s2

g 9.81 9.81 · 10−2 m/s2

θE 60 60 degrees
t 10−2 1 s
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An example of film thinning is shown in Figure 4.15. In this particular setup, the wall velocity
is, Up = 1.0m/s or Ca = 13.9·10−2 and the jet velocity setpoint Uj = 2 m/s resulting in Rej = 69.5.
The result clearly shows film thinning after the jet and fluid build-up before the jet. The dynamic
shape of fluid build-up causes wave formation in the film after the jet. These waves stabilize once
a static shape is formed such as shown in Figure 4.15. For high jet velocities, shear stress applied
by the jet is sufficient to tear apart the fluid build-up, resulting in an inaccurate droplet separation
since both radii, R1 and R2, of the Laplace equation (2.8) are required for this phenomenon, i.e.
a 3D model is required for accurate droplet separation computations.

(a) (b)

Figure 4.15: a) Progression of an impinged film at t = 10 s with, in blue, the liquid and, in grey
to red colorscale, the velocity profile of the gas phase. The jet velocity setpoint is Uj = 2 m/s
(scaled quantity). The relevant dimensionless numbers are Rej = 68.7 and Ca = 13.9 · 10−2 b)
Close-up of the jet impact region, clearly showing film thinning and fluid build-up.

4.4.1 Jet velocity dependence

A parameter sweep on jet velocities allows to relate the jet velocity to the film thickness. This
procedure is performed in a relatively small range of jet velocities (as reported in Table 4.4) and
shown in Figure 4.16 for a constant wall velocity, Up = 1 m/s, corresponding to Ca = 13.9 · 10−2.
Data in blue covers the film thinning due to the jet, with horizontal inaccuracies due to the
proportional velocity control function of the jet and vertically due to waves in the film. A fit
function is obtained by a linear fit in logarithmic scale, reported in Figure 4.16b, resulting in a
film thickness dependence of:

ej = f(Ca,Ca∗, lc)Rej
−2.41 (4.2)

which applies to films capable of advancing past the jet. The latter point must be emphasized,
since the jet can influence the liquid front shape to such a point that entrainment could possibly
be inhibited by an increased contact line velocity relative to the plate.

Additionally the graph shows, in red, the film thickness prior to the jet at y/lc = 10. For low
jet velocities no significant differences are observed. For high jet velocities, however, the shear
stress of the jet flow leads to waves in the film prior to the jet (y/lc < 10). These waves perturb
the meniscus, leading to an overall thinner film prior to the jet.
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Figure 4.16: a) Film thickness before (red) and after (blue) the nozzle for various jet Reynolds
numbers. The dotted lines denote the film thickness without the implementation of the jet. The
error bars indicate three times the standard deviation of the measured dispersion. b) Log-log plot
of the same data of panel a) including the fitting function.

Film thinning does not necessarily mean a reduced volumetric flow rate, due to possible speed
up of the film flow. To quantify this, volumetric flow rate is measured at a fixed vertical position of
y/lc = 15. An example is shown in Figure 4.17b obtained from the simulation reported in Figure
4.15 (Figure 4.17a shows the control measurement without a jet). The control measurement graph
is similar to Figure 4.6, due to v(x, y = 15lc) ≈ Up as shown in Figure 4.5b (which uses a lower wall
velocity). The volumetric flow rate in the thinned film Figure 4.17b shows a significant influence
of wave formation in both the ridge and thinned film. The graphs are reproduced for the majority
of jet Reynolds numbers used and shown in Appendix G Figure G.1. The average volumetric flow
rate, Q, in the thin film parts of these simulations are extracted and shown in Figure 4.18, again
revealing a decline for increasing jet velocities, scaling as Q ∝ Re−2.26.
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Figure 4.17: a) Flow rate of a dip coating film, without a jet and for Ca = 13.9 · 10−2, normalized
by the volumetric flow rate Qnojet = 4.31 · 10−2m2/s (scaled units) in the Landau-Levich film
measured at y/lc = 15. b) Flow rate of the simulation shown in Figure 4.15, again normalized by
Qnojet.
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Figure 4.18: a) Flow rate for various jet Reynolds numbers normalized by Qnojet. The reported
error bars is estimated as three times the standard deviation. b) Logarithmic plot of the data
including the fit funciton.

4.4.2 Wall velocity dependence

Similar to the jet velocity dependence, the wall velocity can be varied to study its influence, as
shown in Figure 4.19 for a fixed Rej = 68.7. The blue measurements indicate that the film thick-
ness indeed increases with the wall velocity. However, a decreasing trend in the thickness of the
measurements prior to the jet in red is observed, while equation (2.36) predicts an increasing trend
with the capillary number. The cause for this trend is the time at which the measurements are
taken, as faster moving films reach the top domain boundary sooner, hence, forcing the thickness
measurements to be taken earlier in time, which, according to Figure 4.6 leads to a misinterpret-
ation of the film thickness. Nevertheless, the film thickness is found to increase after the jet for
higher wall velocities, even though the method employed does not allow for a proper quantitative
description due to the misinterpretation of the film thicknesses.
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Figure 4.19: a) Film thickness before (red) and after (blue) the nozzle for varies wall velocities.
b) Log-log plot of the data including the fitting function.

4.4.3 Contact line velocity

The contact line velocity associated with the simulation of Figure 4.15, is reported in Figure 4.20,
revealing a difference in the contact line velocity moving towards and away from the jet. More
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specifically, the figure shows a significant decrease in velocity when approaching the jet and a
significant increase in surpassing the jet impact zone. Additional plots for different configurations
are shown in Appendix F, namely Figure F.1 and Figure F.2.
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Figure 4.20: Contact line velocity versus time for the simulation shown in Figure 4.15. The vertical
lines indicate when the contact line passes the nozzle walls, at Rej ≈ 69 and Ca = 13.9 · 10−2.
Note that jet bending is not taken into account. The fitting function is chosen as the derivative of
a Gaussian function, f(t) = a(x− c)exp[−b(x− c)] + d, with fitting parameters reported in Table
F.1.

Specific configurations of the model reveal a stagnant contact line at the jet impact region.
The immobility of the contact line is however accompanied by a high curvature at the contact line,
requiring a finer mesh size for accurate simulations. In turn, a different mesh size will result in
different contact line dynamics due to its mesh dependence, i.e. different slip velocity, such that it
is not possible to have both accurate simulations of contact line retention and be able to compare
the simulation results with those included in this report.
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Conclusions

In this work, numerical studies are presented related to the classical Landau-Levich flow problem
using the open source software Gerris. All investigations were performed in 2D due to the higher
computational cost of fully 3D simulations, and also due to the high level of mesh refinement
required for accurate modelling of the liquid-gas interface and contact line dynamics. The case
studies represent dynamically similar systems of a viscous fluid in contact with a vertical wall.

The first case studied is that of a meniscus rising due to wetting at a vertical solid wall. Both
the height and contact line angle comply with the theoretical predictions, and the shape of the
liquid-gas interface converges to the analytical solution. The results of this case study thereby
helps to validate the proper implementation of the physics involved: surface tension, wetting, and
the numerical discretization of the interface.

The second case studied is the dip coating setup. The dynamical development of the entrained
film on the wall as it is withdrawn from the liquid reservoir, reveals a ridge at the film front,
followed by the Landau-Levich film. The Landau-Levich film approaches the thickness predicted
by Landau and Levich, whereas the front ridge agrees with the thickness predicted, using the
contact line velocity from the simulation. Both the film front and the Landau-Levich film reveal a
Poiseuille flow profile. In the Landau-Levich film it is found that the flow profile speeds up as the
film becomes thinner. This acceleration is caused by mass conservation, as the film thins to the
thickness predicted by Landau and Levich. Also observed in the simulations is the capillary shock
in the transition between the front ridge and the Landau-Levich film, being of similar shape as in
the work of [21]. Furthermore, it is shown that the slip velocity between the wall and the contact
line is constant, regardless of the wall velocity. Hence, it is known that the ridge thickness and
the slip velocity can only be dependent on the equilibrium contact line angle.

In the numerical results however, the model for the contact line dynamics is mesh dependent, as
Gerris uses quantities determined by the mesh size. This, in turn, makes also the slip velocity mesh
dependent (in addition to the equilibrium angle dependence). Even though a mesh dependence
is clearly observed, no quantitative description for it could be obtained. Therefore, it can be
concluded that Gerris is capable of accurately simulating dip-coating problems, once it is accepted
that the contact line velocity and front ridge thickness are mesh dependent (this might lead to
some level of inaccuracies in the front ridge).

The third case studied discussed is that of a laminar jet setup. The jet flow used in this work
is in the laminar regime ranging from Rej ≈ O(101) − O(102). In order to generate the jet, a
proportional control function is employed to regulate the jet velocity by applying a body force
on the gas in the jet nozzle. It is found that the jet flow profile at the nozzle exit is a Poiseuille
flow profile. The results also show that the jet volumetric flow rate stabilizes to a constant value,
proving that the proportional controller is stable in this system. It is found that vorticity is
generated at the start of the simulation, perturbing the jet flow and causing an up- and down-
ward oscillatory motion of the jet flow. The oscillatory motion is however not observed when the
jet is applied to a dip coating film. From the results of the simulation, it can be concluded that
a local body force controlled by a proportional control function allows to generate a jet flow that
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regulates to a constant velocity. A specified jet velocity can be accurately obtained, if the steady
state error in the proportional control function is taken into account.

Finally, in the fourth case studied, dip coating and jet are combined to investigate the novel
phenomenology that emerges due to jet film thinning. In particular the influence of the jet and of
the wall velocities are investigated. From the simulations performed, film thinning is observed at
the jet impact zone, where the fluid tends to accumulate. The fluid accumulation gives rise to a
second ridge just below the jet impact zone, pinning the jet flow on top.

The dependence of the film thinning on the jet velocity is performed by a parameter sweep,
using a small range of jet velocities in the order of Rej ≈ O(101) − O(102). A relation between
the film thickness, er, and the jet Reynolds number is found to be ej ∝ Rej

−2.41, which is only
valid for films that pass the jet. Furthermore, it is found that the volumetric flow rate, Q, reveals
a similar decay, being proportional to Q ∝ Rej

−2.20.
The investigation for a relation between the film thickness and the wall velocity contains

inaccuracies due to the time required for the film to develop. Nevertheless, a relation between the
film thickness and the wall velocity is found, although it is not expected to be accurate due to
inaccurate measurements.

The Gerris flow solver is found to be accurate to simulate multi-phase dip coating flows contain-
ing surface tension and contact line dynamics. It does however require special attention regarding
the mesh dependence of contact line dynamics. Overall, it can be concluded that film thinning us-
ing an impinging jet, reduces the flow rate of the film entrained and can hence be used to generate
thinner films.
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Recommendations

Contact line dynamics is a challenging subject in numerical simulations, due to numerical com-
putation of the liquid-gas interface and surface tension. As shown in the work, Gerris is capable
of simulating physical simulations regarding dip coating. Also shown is the loss of accuracy in
determining the front ridge due to a mesh dependence. Therefore, a valuable addition to the
software would be to allow more user control regarding contact line dynamics. This would allow
the use of experimental data to fine tune the contact line dynamics model.

In regard to simulations of a dip coating film impinged by a jet. Film thinning results in a
film thickness of less than a cell size. This is not an issue in flat films, since the interface height
calculation is accurately computed for thicknesses smaller than a cell size. It does however pose
a problem near the highly curved film front, where the linear approximation used to determine
the liquid-gas interface is insufficient and the surface tension implementation becomes flawed.
Adopting a smaller mesh solves this issue. Note however that contact line dynamics also changes
due to the mesh dependence. The problem of insufficient mesh refinement is especially relevant
when performing simulation with the intent to stop film entrainment using a jet, as the liquid
front curvature becomes high before the contact line velocity becomes zero.

The proportional control function used by the jet can be altered to converge faster to the desired
value by multiplying the equation given in equation 4.1. Note, however, that it is a feedback system
(using velocity of previous time step to determine acceleration) and multiplication by high numbers
might result in an unstable system. Although this is unlikely to occur in fast systems like the
one discussed, the use of a proportional control function should always be checked for oscillating
outputs.

Furthermore, droplet separation at the liquid build-up prior to the jet is a fully 3D effect and
should therefore be resolved in 3D models. Additionally, for high jet velocities, the jet causes
waves in the film prior to the jet (y/lc < 10). These waves might also propagate in the z-direction
(towards the paper), which would also require the use of a 3D model.
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Appendix A

Meniscus rise parameter file

1 0 GfsSimulat ion GfsBox GfsGEdge { x = 0 .5 y = 0 .5 } {
Global {
#de f i n e u w 1 .2
#de f i n e h i 0 . 5 // i n t e r f a c e he ight
#de f i n e rho g 2e−2
#de f i n e r h o l 10
#de f i n e mu g 1 .5 e−5
#de f i n e mu l 1e−2
#de f i n e gamma l 7 .2 e−2
#de f i n e grav 9 .81 e−2
#de f i n e CA 60

// Multi−component v a r i a b l e s
#de f i n e VAR(T,min ,max) (min + CLAMP(T, 0 , 1 ) ∗(max−min) )
#de f i n e rho (T) VAR(T, rho g , r h o l )
#de f i n e mu(T) VAR(T,mu g , mu l )
}

GfsTime { end = 200 } #dtmax=1e−4}
GfsRef ine 6

# Adding l i q u i d
VariableTracerVOFHeight T # Used to t rack the i n t e r f a c e
Var iableCurvature K T # Curvature K( appa ) determined by t r a c e r T

SourceTension T gamma l K # Sur face t en s i on as per t r a c e r and curvature

# Smooths the dens i ty . Required when us ing l a r g e dens i ty d i f f e r e n c e s
Va r i ab l eF i l t e r ed T1 T 1
PhysicalParams { L = 2 }
Source V −grav
PhysicalParams { alpha = 1 ./ rho (T1) }
SourceV i s co s i ty mu(T1)

GfsAdvectionParams { c f l = 0 .5 } # Allows the f low not to move more than ha l f a
g r i d s i z e

I n i tF r a c t i on T ( ( h i + 0.1568∗ exp(−8∗x )− y ) )

# Adaptive g r id re f inement
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 10 } (T > 0 && T < 1)

GfsOutputTime { s tep = 0.01 } stdout
GfsOutputBalance { s tep = 0.01} stdout
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GfsOutputProject ionStats { s tep = 0.01 } stdout
# GfsOutputScalarSum { s tep = 0.01 } stdout
# GfsOutputPPM { s tep = 0.002 } { ppm2mpeg > Density .mpg } { min = 0 max = 1 v = T

}
# GfsOutputPPM { s tep = 0.002 } { ppm2mpeg > Ve loc i ty .mpg } { min = 0 max = 1 v = U

}

# Temporary to determine meshing
GfsOutputSimulation { s tep = 0 .1 } %3.2 f . g f s
GfsOutputSimulation { s t a r t=0 step =0.1} CAtest−%d−%05.2 f . vtk {
va r i a b l e s = T,U,V,P
format = VTK
p r e c i s i o n = %.12 f
}

GfsEventScr ipt { s tep = 0 .1 } {
mv ∗ . ∗ . g f s /data/ s to rage3 /boog/LL/$( basename ”${PWD}” ) / g f s / .
mv ∗ . vtk /data/ s to rage3 /boog/LL/$( basename ”${PWD}” ) /vtk / .
}

}
GfsBox { id = 1 pid = 0

l e f t = Boundary {
BcDi r i ch l e t V 0
BcAngle T CA

}

bottom = Boundary {}
top = Boundary {

BcDi r i ch l e t P 0
BcNeumann V 0

}
r i g h t = Boundary {}

}
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Dip-coating film parameter file

1 0 GfsSimulat ion GfsBox GfsGEdge { x = 0 .5 y = 0 .5 } {
Global {
#de f i n e u w 0 .5
#de f i n e h i 0 .85 // i n t e r f a c e he ight
#de f i n e rho g 2
#de f i n e r h o l 10
#de f i n e mu g 1 .5 e−3
#de f i n e mu l 1e−2
#de f i n e gamma l 7 .2 e−2
#de f i n e grav 9 .81 e−2
#de f i n e CA 60

// Multi−component v a r i a b l e s
#de f i n e VAR(T,min ,max) (min + CLAMP(T, 0 , 1 ) ∗(max−min) )
#de f i n e rho (T) VAR(T, rho g , r h o l )
#de f i n e mu(T) VAR(T,mu g , mu l )
}

GfsTime { end = 23 } #dtmax=1e−4}
GfsRef ine 7

# Adding l i q u i d
VariableTracerVOFHeight T # Used to t rack the i n t e r f a c e
Var iableCurvature K T # Curvature K( appa ) determined by t r a c e r T

SourceTension T gamma l K # Sur face t en s i on as per t r a c e r and curvature

# Smooths the dens i ty . Required when us ing l a r g e dens i ty d i f f e r e n c e s
Va r i ab l eF i l t e r ed T1 T 1
PhysicalParams { L = 8 }
Source V −grav
PhysicalParams { alpha = 1 ./ rho (T1) }
SourceV i s co s i ty mu(T1)

GfsAdvectionParams { c f l = 0 .5 } # Allows the f low not to move more than ha l f a
g r i d s i z e

I n i tF r a c t i on T ( ( h i + 0.125∗ exp(−8∗x )− y ) )

# Adaptive g r id re f inement
AdaptFunction { i s t e p = 1 } { min leve l = 7 maxlevel = 11 } (T > 0 && T < 1)
AdaptFunction { i s t e p = 1 } { min leve l = 7 maxlevel = 9 } (T > 0 . 5 )
AdaptFunction { i s t e p = 1 } { min leve l = 7 maxlevel = 11 } ( x < 0 . 15 )

GfsOutputTime { s tep = 0.01 } stdout
GfsOutputBalance { s tep = 0.01} stdout
GfsOutputProject ionStats { s tep = 0.01 } stdout
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# GfsOutputScalarSum { s tep = 0.01 } stdout
# GfsOutputPPM { s tep = 0.002 } { ppm2mpeg > Density .mpg } { min = 0 max = 1 v = T

}
# GfsOutputPPM { s tep = 0.002 } { ppm2mpeg > Ve loc i ty .mpg } { min = 0 max = 1 v = U

}

# Temporary to determine meshing
GfsOutputSimulation { s tep = 0.01 } %3.2 f . g f s
GfsOutputSimulation { s t a r t=0 step =0.01} CAtest−%d−%05.2 f . vtk {

va r i a b l e s = T,U,V,P
format = VTK
p r e c i s i o n = %.12 f

}

GfsEventScr ipt { s tep = 0.01 } {
mv ∗ . ∗ . g f s /data/ s to rage3 /boog/LL/$( basename ”${PWD}” ) / g f s / .
mv ∗ . vtk /data/ s to rage3 /boog/LL/$( basename ”${PWD}” ) /vtk / .

}

}
GfsBox { pid = 0

l e f t = Boundary {
BcDi r i ch l e t V ( t > 0 .3 ? u w:0 )
BcAngle T CA

}
r i g h t = Boundary {}
bottom = Boundary {}
top = Boundary {

BcDi r i ch l e t P 0
BcNeumann V 0

}
}
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Dip-coating film close-up
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Figure C.1: Density plot close-up of the dip coating simulation result, obtained at t = 22s (rescaled
quantity). In blue the liquid phase is shown, and in teal the gas phase.
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Jet flow parameter file

1 0 GfsSimulationMoving GfsBox GfsGEdge { x = 0 .5 y = 0 .5 } {
Global {

#de f i n e u j 2 . 5
#de f i n e h i 0 .85 // i n t e r f a c e he ight
#de f i n e rho g 2
#de f i n e r h o l 10
#de f i n e mu g 1 .5 e−3
#de f i n e mu l 1e−2
#de f i n e gamma l 7 .2 e−2
#de f i n e grav 9 .81 e−2
#de f i n e CA 60

// Multi−component v a r i a b l e s
#de f i n e VAR(T,min ,max) (min + CLAMP(T, 0 , 1 ) ∗(max−min) )
#de f i n e rho (T) VAR(T, rho g , r h o l )
#de f i n e mu(T) VAR(T,mu g , mu l )
}

GfsTime { end = 23 } #dtmax=1e−4}
GfsRef ine 7

# F i r s t cube ho lds the r e s e r v o i r . The second and th i rd s o l i d s are the edges o f the
nozz l e . Note that the s i z e i s taken such that the s o l i d occup i e s smooth l i n e s
a long the mesh .

# So l i d ( cube ( 0 , 0 . , 0 . , 0 . 0 1 5 6 2 5 ) ) { tx = 1 ty = 0 sy = 150 sx = 8.1}
So l i d ( cube ( −0 .001 , −0 .225 ,0 . ,0 .03125) ) { tx = 0 .6 ty = 0.513125 sy = 3 sx = 240 }
So l i d ( cube ( −0 .001 , −0 .138 ,0 . ,0 .03125) ) { tx = 0 .6 ty = 0.513125 sy = 3 sx = 240 }

# Locat ing cube at ty = 0 .5 r e s u l t s in gcc e r r o r ( 5 . 1 works )

Source U ( x > 1 && y < 3.65625 && y > 3.46875 ? ( u j+U) /(0 .09375∗0 .09375) ∗(y
−3.5625) ∗(y−3.5625)−( u j+U) : 0 )

# Adding l i q u i d
VariableTracerVOFHeight T # Used to t rack the i n t e r f a c e
# VariableCurvature K T # Curvature K( appa ) determined by t r a c e r T

# SourceTension T gamma l K # Sur face t en s i on as per t r a c e r and curvature

# Smooths the dens i ty . Required when us ing l a r g e dens i ty d i f f e r e n c e s
# Var i ab l eF i l t e r ed T1 T 1
PhysicalParams { L = 8 }
Source V −grav
PhysicalParams { alpha = 1 ./ rho (T) }
SourceV i s co s i ty mu(T)
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GfsAdvectionParams { c f l = 0 .5 } # Allows the f low not to move more than ha l f a
g r i d s i z e

GfsProject ionParams {
t o l e r an c e = 1e−6
nre lax = 4
e r e l a x = 1
min l eve l = 0
nitermax = 100
ni termin = 8
}

# In i tF r a c t i on T ( ( h i + 0.125∗ exp(−8∗x )− y ) )

# Adaptive g r id re f inement
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 11 } (T > 0 && T < 1)
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 8 } (T > 0 . 5 )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 10 } ( y > 0 .75 && T > 0 && x

< 0 . 6 )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 9 } ( T > 0 && x < 0 . 4 )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 11 } ( y > 1 . && T > 0 . )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 8 } ( x < 1 .3 && (y < 5 && y >

1 . 7 ) )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 9 } ( x < 1 . && (y < 4 .1 && y

> 3) )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 7 } ( x < 7 && y < 7 )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 8 } ( y > 3 .485 && y < 3 .657 )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 9 } ( y > 3 .485 && y < 3 .657

&& x < 1 . 5 )

EventBalance { i s t e p = 1 } 0 .2

# GfsOutputBoundaries {} boundar ies
GfsOutputTime { s tep = 0.01 } stdout
GfsOutputBalance { s tep = 0.01} stdout
GfsOutputProject ionStats { s tep = 0.01 } stdout
# GfsOutputScalarSum { s tep = 0.01 } stdout
# GfsOutputPPM { s tep = 0.002 } { ppm2mpeg > Density .mpg } { min = 0 max = 1 v = T

}
# GfsOutputPPM { s tep = 0.002 } { ppm2mpeg > Ve loc i ty .mpg } { min = 0 max = 1 v = U

}

# Temporary to determine meshing
GfsOutputSimulation { s tep = 0 .1 } %3.2 f . g f s #{ va r i a b l e s = U,V,P }
GfsOutputSimulation { s t a r t=0 step =0.01} CAtest−%d−%05.2 f . vtk {

va r i a b l e s = T,U,V,P
format = VTK
p r e c i s i o n = %.12 f

}

GfsEventScr ipt { s tep = 0.01 } {
mv ∗ . ∗ . g f s /data/ s to rage3 /boog/LLjet /$( basename ”${PWD}” ) / g f s / .
mv ∗ . vtk /data/ s to rage3 /boog/LLjet /$( basename ”${PWD}” ) /vtk / .

}

}
GfsBox { pid = 0

l e f t = Boundary {
BcDi r i ch l e t V 0
BcAngle T CA

}
r i g h t = Boundary {

BcDi r i ch l e t P grav∗ rho g ∗(8−y )
BcNeumann P 0
BcNeumann U 0

}
bottom = Boundary {}
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top = Boundary {
BcDi r i ch l e t P 0
BcNeumann P 0
BcNeumann V 0

}
}
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Landau-Levich film impinged by a
gas jet parameter file

1 0 GfsSimulationMoving GfsBox GfsGEdge { x = 0 .5 y = 0 .5 } {
Global {
#de f i n e u w 1 .
#de f i n e u j 2 .
#de f i n e h i 0 .85 // i n t e r f a c e he ight
#de f i n e rho g 2
#de f i n e r h o l 10
#de f i n e mu g 1 .5 e−3
#de f i n e mu l 1e−2
#de f i n e gamma l 7 .2 e−2
#de f i n e grav 9 .81 e−2
#de f i n e CA 60

// Multi−component v a r i a b l e s
#de f i n e VAR(T,min ,max) (min + CLAMP(T, 0 , 1 ) ∗(max−min) )
#de f i n e rho (T) VAR(T, rho g , r h o l )
#de f i n e mu(T) VAR(T,mu g , mu l )
}

GfsTime { end = 23 } #dtmax=1e−4}
GfsRef ine 7

# F i r s t cube ho lds the r e s e r v o i r . The second and th i rd s o l i d s are the edges o f the
nozz l e . Note that the s i z e i s taken such that the s o l i d occup i e s smooth l i n e s
a long the mesh .

So l i d ( cube ( 0 , 0 . , 0 . , 0 . 0 1 5 6 2 5 ) ) { tx = 1 ty = 0 sy = 150 sx = 8.1}
So l i d ( cube ( −0 .001 , −0 .225 ,0 . ,0 .03125) ) { tx = 0 .6 ty = 0.513125 sy = 3 sx = 240 }
So l i d ( cube ( −0 .001 , −0 .138 ,0 . ,0 .03125) ) { tx = 0 .6 ty = 0.513125 sy = 3 sx = 240 }

# Locat ing cube at ty = 0 .5 r e s u l t s in gcc e r r o r ( 5 . 1 works )

Source U ( x > 1 && y < 3.65625 && y > 3.46875 ? ( u j+U) /(0 .09375∗0 .09375) ∗(y
−3.5625) ∗(y−3.5625)−( u j+U) : 0 )

# Adding l i q u i d
VariableTracerVOFHeight T # Used to t rack the i n t e r f a c e
Var iableCurvature K T # Curvature K( appa ) determined by t r a c e r T

SourceTension T gamma l K # Sur face t en s i on as per t r a c e r and curvature

# Smooths the dens i ty . Required when us ing l a r g e dens i ty d i f f e r e n c e s
# Var i ab l eF i l t e r ed T1 T 1
PhysicalParams { L = 8 }
Source V −grav
PhysicalParams { alpha = 1 ./ rho (T) }
SourceV i s co s i ty mu(T)
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GfsAdvectionParams { c f l = 0 .5 } # Allows the f low not to move more than ha l f a
g r i d s i z e

GfsProject ionParams {
t o l e r an c e = 1e−6
nre lax = 4
e r e l a x = 1
min l eve l = 0
nitermax = 100
ni termin = 8
}

I n i tF r a c t i on T ( ( h i + 0.125∗ exp(−8∗x )− y ) )

# Adaptive g r id re f inement
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 11 } (T > 0 && T < 1)
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 8 } (T > 0 . 5 )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 10 } ( y > 0 .75 && T > 0 && x

< 0 . 6 )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 9 } ( T > 0 && x < 0 . 4 )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 11 } ( y > 1 . && T > 0 . )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 8 } ( x < 1 .3 && (y < 5 && y >

1 . 7 ) )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 9 } ( x < 1 . && (y < 4 .1 && y

> 3) )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 7 } ( x < 7 && y < 7 )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 8 } ( y > 3 .485 && y < 3 .657 )
AdaptFunction { i s t e p = 1 } { min leve l = 6 maxlevel = 9 } ( y > 3 .485 && y < 3 .657

&& x < 1 . 5 )
# AdaptFunction { i s t e p = 1 } { min leve l= 6 maxlevel = 7 } (U > 8)

EventBalance { i s t e p = 1 } 0 .2

# GfsOutputBoundaries {} boundar ies
GfsOutputTime { s tep = 0.01 } stdout
GfsOutputBalance { s tep = 0.01} stdout
GfsOutputProject ionStats { s tep = 0.01 } stdout
# GfsOutputScalarSum { s tep = 0.01 } stdout
# GfsOutputPPM { s tep = 0.002 } { ppm2mpeg > Density .mpg } { min = 0 max = 1 v = T

}
# GfsOutputPPM { s tep = 0.002 } { ppm2mpeg > Ve loc i ty .mpg } { min = 0 max = 1 v = U

}

# Temporary to determine meshing
GfsOutputSimulation { s tep = 0 .1 } %3.2 f . g f s #{ va r i a b l e s = U,V,P }
GfsOutputSimulation { s t a r t=0 step =0.01} CAtest−%d−%05.2 f . vtk {

va r i a b l e s = T,U,V,P
format = VTK
p r e c i s i o n = %.12 f

}

GfsEventScr ipt { s tep = 0.01 } {
mv ∗ . ∗ . g f s /data/ s to rage3 /boog/LLjet /$( basename ”${PWD}” ) / g f s / .
mv ∗ . vtk /data/ s to rage3 /boog/LLjet /$( basename ”${PWD}” ) /vtk / .

}

}
GfsBox { pid = 0

l e f t = Boundary {
BcDi r i ch l e t V ( t > 1 ? u w:0 )
BcAngle T CA

}
r i g h t = Boundary {

BcDi r i ch l e t P grav∗ rho g ∗(8−y )
BcNeumann P 0
BcNeumann U 0
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}
bottom = Boundary {}
top = Boundary {

BcDi r i ch l e t P 0
BcNeumann P 0
BcNeumann V 0

}
}
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Appendix F

Contact line velocity while passing
the jet
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Figure F.1
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Figure F.1: Contact line velocity along the jet for varies jet Reynolds numbers for a fixed wall
velocity, Ca = 13.9 · 10−2. The fitting function is f(t) = a(x− c)exp[b(x− c)] + d. Fit parameters
are available in Table F.1.

52 Dip coating film impinged by a gas jet



APPENDIX F. CONTACT LINE VELOCITY WHILE PASSING THE JET

−0.02

0

0.02

0.04

0.06

0.08

0.1

13 13.5 14 14.5 15 15.5 16 16.5 17

µUcl

γ

t[s]

CL velocity along the jet

CLvelocity

(a) Ca = 9.72 · 10−2

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

µUcl

γ

t[s]

CL velocity along the jet

CLvelocity
f(t)

(b) Ca = 11.1 · 10−2

0

0.02

0.04

0.06

0.08

0.1

0.12

4 4.5 5 5.5 6 6.5 7 7.5 8

µUcl

γ

t[s]

CL velocity along the jet

CLvelocity
f(t)

(c) Ca = 12.5 · 10−2

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

3.5 4 4.5 5 5.5 6 6.5 7

µUcl

γ

t[s]

CL velocity along the jet

CLvelocity
f(t)

(d) Ca = 15.3 · 10−2

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

3 3.5 4 4.5 5 5.5 6 6.5

µUcl

γ

t[s]

CL velocity along the jet

CLvelocity
f(t)

(e) Ca = 16.7 · 10−2

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

3 3.5 4 4.5 5 5.5 6

µUcl

γ

t[s]

CL velocity along the jet

CLvelocity
f(t)

(f) Ca = 18.1 · 10−2

Dip coating film impinged by a gas jet 53



APPENDIX F. CONTACT LINE VELOCITY WHILE PASSING THE JET

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

2 2.5 3 3.5 4 4.5 5 5.5 6

µUcl

γ

t[s]

CL velocity along the jet

CLvelocity
f(t)

(g) Ca = 19.4 · 10−2

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

2 2.5 3 3.5 4 4.5 5 5.5

µUcl

γ

t[s]

CL velocity along the jet

CLvelocity
f(t)

(h) Ca = 20.8 · 10−2

Figure F.2: Contact line velocity along the jet for varies wall capillary numbers with a fixed jet
Reynolds number, Rej ≈ 86. The fitting function is f(t) = a(x−c)exp[b(x−c)]+d. Fit parameters
are available in Table F.2.

Table F.1: Fit parameters corresponding to Figure F.1.

Rej a b c d σ2 · 10−5

53 0.0464 2.27 4.84 0.0767 1.40
56 0.0472 2.40 4.83 0.0813 2.10
59 0.0477 2.50 4.82 0.0839 2.07
66 0.0662 2.86 4.78 0.0819 1.12
69 0.123 3.43 5.67 0.0829 1.52
79 0.137 4.25 4.69 0.0841 1.71
86 0.219 5.03 6.58 0.0838 2.80

112 0.341 8.46 4.39 0.0840 2.93
137 0.891 11.4 4.28 0.0839 38.2
153 0.619 5.43 4.35 0.0901 28.9

Table F.2: Fit parameters corresponding to Figure F.2.

Ca ·10−2 a b c d σ2 · 10−5

9.72 0.0883 1.09 15.5 0.0474 33.0
11.1 0.133 1.13 8.09 0.048 10.3
12.5 0.230 4.27 6.49 0.0662 3.65
15.3 0.216 5.93 5.34 0.0966 1.25
16.7 0.244 6.93 4.94 0.105 1.04
18.1 0.211 5.65 4.58 0.118 3.67
19.4 0.168 6.02 4.32 0.133 3.61
20.8 0.123 5.13 4.09 0.145 4.65
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Flow rate of thinned films
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Figure G.1: Flow rate for different jet velocities and a fixed wall velocity, Ca = 13.9 · 10−2.
Measured at a fixed position of y/lc = 15. Normalized by Qnojet = 4.31 · 10−2m2/s (scaled), the
flow rate at y/lc = 15 without an impinging jet.
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