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Abstract 
 

Large fusion devices like JET and ITER have various heating methods at their disposal that allow the 

machine to reach fusion relevant plasma temperatures. One of the heating methods employed in either 

machine is Ion Cyclotron Resonance Heating (ICRH). In this scheme the plasma is heated by injection 

of radio waves at a frequency matching the ion cyclotron resonance frequency of one of the species at a 

desired location in the plasma. Understanding where the injected power is absorbed, and by which 

species, is important for operating the fusion device, preparation for experiments and analysis of 

experimental data. 

Traditionally numerical methods that accurately describe the behavior of the ICRH waves have been 

extremely CPU- and memory intensive. These so-called all-orders codes make no assumption on the size 

of the wavelength, compared to the Larmor radius in the plasma. However, the all-orders approach results 

in large, completely filled matrices, which need to be inverted in order to obtain the solution for the 

electromagnetic fields. One of the most prominent benchmarks in the field, the AORSA code, requires 

for example 10.000’s of CPU hours to solve a 2D simulation for a tokamak. For stellarators with complex 

3D magnetic topologies, using the same method would require unfeasible amounts of CPU hours and 

system memory. 

The source of these complications is the integro-differential nature of the wave equation in hot 

plasmas. Efforts have been made in order to treat the problem as a purely differential problem, which 

yields sparse, banded matrices that are much faster to invert. The main approach is the usage of a 

truncated Finite Larmor Radius (FLR) expansion. It is based on the assumption that the wavelength of 

the waves in the plasma is much larger than the Larmor radius: 𝜌𝐿𝑘⊥ ≪ 1. The drawback of this method 

is that the damping of the Ion Bernstein Wave (IBW) is often underestimated, as this wave typically has 

wavelengths comparable to the Larmor radius: 𝜌𝐿𝑘⊥ ≈ 1.  

This work examines both approaches and proposes a model that is capable of producing accurate 

predictions of the IBW damping, while using significantly less computational resources than an all-orders 

model. In the process, one cold plasma model is constructed, and three different hot plasma models. It is 

shown that the new hot plasma model is capable of producing electric fields with less than 1% error 

compared to the all-orders results. The main conclusion is that semi-localized approaches can produce 

accurate results, and that full-domain solutions like the all-orders approach are not always necessary. 

Future research should be focused on increasing the robustness of the model, and expansion to 2D and 

3D simulations.  
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1 Introduction 
 

Burning massive quantities of fossil fuels for easy heat and power generation has served humanity 

well since the dawn of the industrial revolution. However, every passing day it becomes more evident 

that we cannot continue this path. Even though there is still plenty of coal, oil and natural gas left for the 

coming decades [1], there is an even more pressing reason to stop burning fossil fuels: global warming. 

In order to reduce the impact and severity of climate change, worldwide greenhouse gas (GHG) 

emissions need to be brought down significantly, as covered in the findings of the International Panel on 

Climate Change (IPCC) [2]. 

Therefore, carbon-free energy sources need to be developed and deployed on a larger scale, as fossil 

fuel burning accounts for more than two-thirds of the worldwide anthropogenic greenhouse gas 

emissions [3]. Currently, nuclear power and hydropower, and to a lesser extent solar power and wind 

power, are the main sources of carbon free electricity [4]. Other sources are being developed that may 

become of importance in the second half of this century, like Gen-IV fission and nuclear fusion [5], the 

latter being the focus of this work. 

Nuclear fusion, the process of combining light elements into heavier elements, is the power source 

of our sun. In its core chains of nuclear reactions, mainly the so-called proton-proton chain reaction [6], 

merges the light hydrogen isotope 1H into the heavier helium isotope 4He. In this process some mass is 

lost, which is converted into energy through Einstein’s famous 𝐸 = 𝑚𝑐2. The energy gained in such a 

fusion reaction is multiple MeV [6]; a million times more than the few eV a typical chemical reaction, 

like burning a methane molecule, releases.  

Replicating this process on earth and tailoring it for energy production purposes has been a 

longstanding technological challenge for decades. The Lawson criterion [7], quickly reveals under which 

conditions a fusion reaction produces enough energy to compensate for energy losses. If 𝑛𝜏𝐸𝑇, the triple 

product between the density 𝑛, the confinement time 𝜏𝐸 and the temperature 𝑇, exceeds a fuel- and 

temperature-dependent threshold, the fusion reaction can be self-sustaining. This product has been 

plotted in Figure 1 for three different fuels.  

 

 
Figure 1: Triple product thresholds for three different fusion fuels: Deuterium+Tritium (D-T), 

Deuterium+Deuterium (D-D) and Deuterium+Helium-3 (D-He3). For a reaction to be energy-positive, 𝑛𝑇𝜏 must 

be higher than these fuel-dependent and temperature-dependent thresholds. (Image reprinted from Dstrozzi [8]) 

The lowest triple product threshold can be found for a D-T fuel mixture, formed by the heavy 

hydrogen isotopes deuterium (2H or D) and tritium (3H or T). Deuterium is abundant on earth, making 

up about 0.015% of seawater [9]. Tritium is a radioactive gas with a 12.3 years half-life [10] that can be 

produced inside a fusion reactor from lithium through breeding [11]. The fusion reaction for this fuel 

mixture is given in equation (1). 

 

 D + T → 4He (3.5 MeV) + n (14.1 MeV). (1) 

 

Every fusion reaction releases a total of 17.6 MeV, carried as kinetic energy by the neutron and alpha 

(4He) particle, which means that fusing 1kg of deuterium-tritium fuel mixture produces 189 GWh of 

energy. For reference, it would require about 23 000 tons of bituminous coal with a burn value of 
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30MJ/kg [12] to produce the same amount of energy. Additionally, in contrast to coal the fusion reaction 

releases no CO2. Furthermore, there is no shortage of fuel supply in sight: both lithium and deuterium 

are available for the foreseeable future [13]. Finally, even though D-T fusion produces low- and 

intermediate-level radioactive waste through activation of structural materials by neutron irradiation and 

through tritium contamination, no long-lived high-level waste is produced [14].  

Unfortunately, so far it has proven very difficult to build a fusion reactor that creates more power 

through fusion than it costs to run the machine. The ITER fusion reactor is a worldwide effort aimed at 

turning this around. It is currently under construction in Cadarache, France, designed to reach a thermal 

fusion output of 500MW with a thermal input of 50MW from auxiliary heating systems [15]. A scale 

model is shown in Figure 2. 

 

 
Figure 2: A scale model of the ITER reactor, exposed on the International Fusion Energy Days 2013. For 

scale, note the human figure standing on the ground. (Image adapted from IAEA imagebank [16]) 

The temperature of the fuel in ITER will be near the optimum temperature for D-T fusion, with 

particles having an energy of 14keV, or a temperature of about 160 million degrees (Figure 1). The fuel 

becomes a fully ionized plasma at these temperatures; all particles are charged and susceptible to 

magnetic and electric fields [17].  ITER therefore employs a tokamak design to obtain the complex 

magnetic topology required to contain the plasma. Tokamaks are a particular magnetic confinement 

fusion design, pioneered in the 1950s by Igor Tamm and Andrei Sakharov [18]. In this particular design, 

the fields are partly generated by external coils, and partly by driving a toroidal current in the plasma. Its 

relative simplicity made it a popular choice for fusion reactors. Some other examples of tokamaks are 

the Joint European Torus (JET), TEXTOR and ASDEX upgrade. 

The confined plasma then needs to be brought up to ignition temperatures by auxiliary heating 

systems. Various heating schemes have been developed that can accomplish this, like Neutral Beam 

Injection (NBI), Electron Cyclotron Resonance Heating (ECRH) and Ion Cyclotron Resonance Heating 

(ICRH). The focus of this report is the ICRH scheme. Amongst others JET has ICRH at its disposal, and 

so will ITER. The advantage of this heating scheme is that the absorption location can easily be chosen 

by changing the antenna frequency. Furthermore, it directly heats ions in the plasma. Chapter 2.1 will 

discuss in more detail what ICRH is, and how it works.  

However, there are some subtleties to wave propagation in hot fusion plasmas. Due to the presence 

of various absorption, reflection, cut-off and mode conversion layers in the plasma, it is difficult to 

determine where the injected power will end up exactly, and which species it will end up heating. 

Therefore, predicting where the heating power ends up nearly always requires numerical simulations. In 

addition, design of the ICRH antenna system requires deep insight in the physics of this heating strategy. 
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Finally, in preparation of experiments it is useful to design heating strategies upfront, to make sure the 

power ends up heating the desired species at the desired location. 

Multiple numerical models have been created in the past for this purpose. Especially spectral codes 

like the All-Orders Spectral Algorithm (AORSA) and TOMCAT-U [19] produce accurate predictions of 

the RF electric field, and in many papers they are seen as a point-of-reference [20], [21], [22]. In these 

spectral codes the electric field is decomposed in a set of Fourier harmonics [23] or plane waves, as 

shown in equation (2) for a 2D simulation. 

 

 �⃗� (𝑥, 𝑦) = ∑�⃗� 𝑛,𝑚𝑒𝑖(𝑘𝑛𝑥+𝑘𝑚𝑦)

𝑛,𝑚

 (2) 

 

Unfortunately, a large computational cost is associated with this approach. With 𝑁, 𝑀 and 𝑃 modes 

in 𝑥, 𝑦 and 𝑧 direction respectively, a linear system of equations is obtained with 3 × 𝑁 × 𝑀 × 𝑃 

equations and the same number of unknowns per equation [23]. A simple test is conducted that examines 

the time required to solve such a linear system, using randomly generated matrices of different sizes. The 

time required to invert such a dense matrix of complex doubles, as function of the number of rows 𝑁𝑟𝑜𝑤𝑠, 

seems to scale approximately as 𝑁𝑟𝑜𝑤𝑠
2.5 , as demonstrated in Figure 3. 

 

 
Figure 3: Time required to solve a linear system 𝐴𝑥 = 𝑏, with 𝐴 an 𝑁𝑟𝑜𝑤𝑠 × 𝑁𝑟𝑜𝑤𝑠 complex double matrix. 

The scaling seems to go approximately as 𝑁2.5. Tests were executed in MATLAB on an i7-7700HQ laptop 

processor, limited to 4 computational threads. 

Experimentation with the 1D AORSA-based all-orders model, discussed in chapter 5.1, suggests a 

minimum of 200 modes in each direction. Extrapolating the findings in Figure 3 for low-resolution 2D 

and 3D simulations yields Table 1. A 1D simulation will run just fine on any PC, but a 2D simulation is 

already stretching it for most workstations and/or laptops. A modern, powerful processor with a high 

core-count, and more than 250GB of RAM would be recommended. A 3D simulation, which would be 

desirable for stellarators with a more complex magnetic topology than tokamaks, can only be executed 

on a powerful supercomputer. At these timescales, experimental data, preparing for experiments, and 

performing parametric scans all become slow and computationally demanding tasks. 

 

Table 1: Storage space requirements and time needed to solve the linear matrix system for a 1D, a 2D and a 

3D scenario. The solve times have been extrapolated from Figure 3, under the assumptions that the same 

hardware is used and that the matrix fits in RAM. 

The straightforward approach is adding more CPU cores to the problem, as AORSA parallelizes well 

[23]. Furthermore, some efforts have been made on running the AORSA matrix factorization on a GPU 

due to a GPU potentially having a better per-core performance and better power efficiency. 

Unfortunately, the initial result showed a data transfer bottleneck [24]. Other acceleration with hardware 

could come from high-speed storage, like Intel® OptaneTM [25], which might benefit out-of-core solvers. 

It is even not unthinkable that hardware is designed, specifically created for inverting large matrices. In 

this work however, an attempt is made to reduce the amount of work required in the first place. 

 𝑁𝑟𝑜𝑤𝑠 Storage space Time 

1D 600 5.8 MB 17 ms 

2D 120 000 230 GB 2.8 hours 

3D 24 000 000 9.2 PB 246 years 
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Some codes, like TORIC [21], EVE [26] and TOMCAT [27], partly tackles this problem by resorting 

to a truncated Finite Larmor Radius (FLR) approximation. In this approximation, it is assumed that the 

wavelength of interest is much larger than the Larmor radius, the radius with which particles gyrate in a 

magnetic field [19], throughout the domain. This results in sparse matrices that require significantly less 

storage space and computational power to invert [21]. For example, AORSA requires 8 hours on 576 

cores to complete a 200x200 mode simulation [23], while TORIC can do it in just 9.5 CPU-hours [21]. 

 Unfortunately, this approach breaks down for certain situations. Around the position where the ICRH 

waves are absorbed, Ion Bernstein Waves (IBW) can be generated through a process called mode 

conversion. The mode-converted IBW typically has wavelengths comparable to the Larmor radius. The 

assumption that the wavelength is much larger than the Larmor radius is violated by these mode-

converted waves. As a result, the damping of these waves is not predicted in a satisfactory way. Figure 

4 demonstrates this effect, using two of the hot plasma models that are discussed in chapter 5. The left 

figure is an all-orders model, based on AORSA. The right figure is a truncated Taylor series mode, 

bearing similarities with a truncated FLR code. Clearly, there are strong differences in the prediction of 

the short-wavelength IBW damping. Depending on the scenario, the differences can be quite large, 

leading to wrong conclusions about the amount of power absorption of the plasma, and the relative 

distribution of the absorbed power per species [19]. 

 

 
Figure 4: Simulation of the electric fields in JET-like plasma conditions. The left figure is created with the all-

orders model, described in chapter 5.1, while the right figure is created with the truncated Taylor series model, 

described in chapter 5.2. For larger images, see Figure 19 and Figure 21. Note the amount of damping of the 

short-wavelength wave, to the left of 𝑥 = 0. 

This damping takes place exactly in the region where most of the power is absorbed. As such it is 

interesting to get accurate and fast calculations of what exactly happens in that region. This brings us to 

the research question for this work: 

 

Can a model be developed that combines the accurate prediction for the Ion Bernstein Wave damping 

from the all-orders model with the computational speed of a truncated Finite Larmor Radius model? 

 

A scheme is developed that comes close to this goal: it can approach the accuracy of an all-orders 

model, while having a computational complexity comparable to a truncated finite Larmor radius model. 

Chapter 2 starts off with a discussion of wave behavior in cold and hot plasmas. Chapter 3 discusses 

some details related to the simulation setup. Chapter 4 introduces the cold plasma model, which is 

significantly easier to simulate than the hot plasma model. Chapter 5 introduces the three hot plasma 

models that were created, and they are compared with each other in Chapter 6. Chapter 7 discusses some 

peculiarities of the new scheme. 

 

  



10 

 

 

2 The physics of RF heating of hot, magnetized fusion plasmas 
 

In a fusion reactor, the plasma can be described as a hot, magnetized fusion plasma. Section 2.1 and 

section 2.2 provide some information about the terms “hot” and “magnetized”. Section 2.3 continues 

with a description of the ICRH heating scheme, which is the central application for which all simulations 

are done. After this, a short review is provided about the time-harmonic Helmholtz equation, which is 

the core equation that the models solve. Finally, without going into too much depth, the dispersion 

relation for cold plasmas and hot plasmas are discussed, highlighting some of the features that will be 

visible in the simulations.  

 

2.1 Differences between a hot and a cold plasma 
 

In a thermodynamic equilibrium, all plasma particles have the same temperature. In weakly ionized, 

low density plasmas, this is not necessarily the case, with the electrons having a significantly higher 

temperature than the ions and the background gas: 𝑇𝑒 ≫ 𝑇𝑖 . These plasmas are called non-thermal 

plasmas, or cold plasmas [28]. In a cold plasma, thermal motion is assumed to be negligible [29]. An 

example is a low-pressure DC glow discharge, for example in a fluorescent lamp, with typically 

𝑇𝑒~104K, while the ions and the background gas are approximately at room temperature [28].  

In a hot plasma on the other hand, significant thermal motion can be observed. An example of a hot 

plasma near thermodynamic equilibrium is a fusion reactor plasma. The extremely high temperatures in 

the core lead to a full ionization of the plasma [17].  

 

2.2 Effects specific to magnetized plasmas 
 

When no background magnetic field is present, the plasma is an isotropic medium [30]. The 

properties are the same in all directions, which means that the waves do not have a preferred propagation 

direction. Anisotropy is introduced by adding a background magnetic field. When the magnetic field 

strength is high enough to significantly affect the movement of the particles in the plasma, one can speak 

of a magnetized plasma. A fusion plasma definitely falls in this category, but in nature it is also possible 

to find examples of magnetized plasmas, like astrophysical or ionospheric plasmas [30] [31]. In addition 

to anisotropy, the background magnetic field also adds extra inhomogeneity to the plasma. 

Some phenomena are exclusive to magnetized plasmas. Thermal motion, for example, is forced into 

circular orbits, as discussed in section 2.3. Additionally, new groups of transverse waves become 

possible, called Alfvén waves [32]. Even for a cold plasma, the presence of a magnetic field already adds 

extra complexity, with more types of waves possible. In a hot plasma, this effect is enhanced due to the 

presence of the thermal motion of the ions. 
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2.3 The Ion Cyclotron Resonance Heating (ICRH) scheme 
 

In a magnetic confinement fusion reactor, the plasma is confined with strong magnetic fields. A 

charged particle with a velocity 𝑣⊥, perpendicular to this background magnetic field, will exhibit 

cyclotron motion due to the Lorentz force 𝐹 𝐿. Figure 5 provides a schematic drawing of this effect. 

 

 
Figure 5: A schematic drawing of an electron exhibiting cyclotron motion. It "gyrates around a magnetic field 

line". The charged particle is kept in orbit by the Lorentz force. 

This gyrating motion is called cyclotron motion. It has a characteristic orbit radius and a characteristic 

frequency. The radius of the circular motion is called the Larmor radius 𝜌𝐿𝑗. It is dependent on the 

velocity perpendicular to the magnetic field, for which often the thermal velocity 𝑣𝑗 is assumed [23].  

 

 𝑣𝑗 = √
2𝑘𝐵𝑇 

𝑚𝑗

 (3) 

 𝜌𝐿𝑗 =
𝑣𝑗

Ω𝑐𝑗

 (4) 

 

The frequency with which the particles gyrate is the cyclotron resonance frequency Ω𝑐𝑗. It depends 

on the mass 𝑚𝑗 and the charge 𝑞𝑗 of the species 𝑗 of interest, and the background magnetic field strength 

|�⃗� (𝑟 )|. 

 

 Ω𝑐𝑗 =
|𝑞𝑗||�⃗� (𝑟 )|

𝑚𝑗

 (5) 

 

The fundamental idea of ICRH is injecting RF waves into the fusion plasma with a frequency 

matching the ion cyclotron resonance frequency Ω𝑐𝑗  of the species 𝑗 that should absorb the power. 

Important to notice is that |�⃗� (𝑟 )| is not uniform. Due to the setup of the machine, in general the 

background magnetic field is strongest near the core, and weaker near the edges of the machine following 

a 1/𝑅 decay. For the typical JET-like parameters as mentioned in Appendix B and the simplified 

magnetic field profile discussed in Chapter 3.2, the cyclotron frequency for hydrogen, Ω𝑐𝐻 , is plotted 

Figure 6. For reference, the antenna frequency 𝜔 is also indicated. 

 

𝜌𝐿 

𝑒− 

�⃗�  

𝐹 𝐿 

𝑣⊥ 
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Figure 6: Graph of the fundamental hydrogen cyclotron frequency harmonic Ω𝑐𝐻 (in blue), and the antenna 

frequency 𝜔 (in orange) for typical JET parameters (𝐵0 = 3.45𝑇, 𝑓 = 51𝑀𝐻𝑧). Absorption happens at the 

location where the antenna frequency matches one of the cyclotron harmonics of one of the species in the plasma. 

  Absorption primarily happens at the location where the antenna frequency matches one of the 

cyclotron harmonics of one of the species in the plasma. This is a very useful property of this heating 

scheme: the power deposition location can be selected by carefully tuning the antenna frequency.  

In the case presented above, waves with a frequency of 51MHz are injected into the plasma. Near the 

core of the plasma, slightly to the right of 𝑥 = 0, the antenna frequency matches the hydrogen ion 

cyclotron resonance frequency. Most power absorption will be centered around this location, as is visible 

in Figure 4. Worth noting is that in the JET case under consideration (Appendix B), only a 5% hydrogen 

concentration is present; the bulk of the plasma is deuterium. This demonstrates the effectiveness of the 

minority heating scheme, where minorities species like H or 3He are injected into the plasma to establish 

efficient heating of the bulk plasma [33] [34].  
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2.4 The Helmholtz equation for time-harmonic fields in inhomogeneous media 
 

In general, electromagnetic wave propagation is governed by the time-dependent Maxwell’s 

equations. The differential form of these equations in free space is provided in (6)-(9). The electric field 

�⃗� , the magnetic field �⃗� , the current density 𝐽  and the charge density 𝜌 are all functions of the position 𝑟  
and time 𝑡 [35]. 

 

 ∇ ∙ �⃗� (𝑟 , 𝑡) =
𝜌(𝑟 , 𝑡)

𝜖0

 (6) 

 ∇ ∙ �⃗� (𝑟 , 𝑡) = 0 (7) 

 ∇ × �⃗� (𝑟 , 𝑡) = −
𝜕�⃗� (𝑟 , 𝑡)

𝜕𝑡
 (8) 

 ∇ × �⃗� (𝑟 , 𝑡) = 𝜇0 (𝐽 (𝑟 , 𝑡) + 𝜖0

𝜕�⃗� (𝑟 , 𝑡)

𝜕𝑡
) (9) 

 

When the Maxwell-Faraday equation (8) and Ampère’s circuital law (9) are combined into a single 

equation, the time-dependent Helmholtz equation is obtained, eliminating �⃗�  and 𝜌 in the process. 

 

 ∇ × ∇ × �⃗� (𝑟 , 𝑡) + 𝜖0𝜇0

𝜕2�⃗� (𝑟 , 𝑡)

𝜕𝑡2
= −

𝜕

𝜕𝑡
𝜇0𝐽 (𝑟 , 𝑡) (10) 

  

An extra simplification is made by assuming that both the electric field and the current is time-

harmonic, which allows removal of the partial derivatives with respect to 𝑡. Additionally, the current 

density 𝐽  is split into a contribution from the antenna 𝐽 𝑎𝑛𝑡 and the response from the plasma 𝐽 𝑝, such that 

𝐽 = 𝐽 𝑎𝑛𝑡 + 𝐽 𝑝. In inhomogeneous media, the time-harmonic Helmholtz equation is then given by: [23] 

 

 −∇ × ∇ × �⃗� (𝑟 ) + 𝑘0
2�⃗� (𝑟 ) = −𝑖𝜔𝜇0 (𝐽 𝑎𝑛𝑡(𝑟 ) + 𝐽 𝑝(𝑟 )). (11) 

 

Here, 𝑘0 = 𝜔/𝑐 is the free-space wavenumber. The antenna current density 𝐽 𝑎𝑛𝑡 can be used for 

modeling the excitation of the plasma due to the ICRH antennas in the edge. The simplest possible model 

is that of a virtual, infinitely thin oscillating current sheet. However, this results in strong discontinuities 

in the derivatives of the electric field around this current sheath.  

Much more well-behaved solutions are obtained by setting a finite value for one of the electric field 

components at a predefined position near the plasma edge. This effectively models the common situation 

where a Faraday screen is present in front of the ICRH antenna, preventing the electric field component 

parallel to the background magnetic field from passing through [36]. This eliminates 𝐽 𝑎𝑛𝑡 from (11), 

yielding: 

 

 −∇ × ∇ × �⃗� (𝑟 ) + 𝑘0
2�⃗� (𝑟 ) = −𝑖𝜔𝜇0𝐽 𝑝(𝑟 ). (12) 

 

The electric field �⃗� (𝑟 ) is the desired output of the model. However, it requires a proper description 

of the plasma current 𝐽 𝑝. For cold plasmas it will turn out to be easy to describe the plasma current, but 

it will be significantly more difficult for the hot plasma case. 

  



14 

 

 

2.5 Electromagnetic waves in cold, magnetized plasmas 
 

As a starting point for more advanced hot-plasma simulations, simulations are performed in a cold, 

magnetized plasma. Compared to the hot plasma, it is easier to formulate an expression for the plasma 

current density. This is for example demonstrated in textbooks from Stix [37] and Swanson [29]. Even 

though the hot plasma theory is more difficult, the cold plasma demonstrates how the plasma physics can 

be abstracted away in a dielectric tensor. Many components that are written for the cold plasma model 

can be reused for the hot plasma models. In fact, in all hot plasma models that are created, the hot plasma 

dielectric tensor can be swapped for the cold plasma dielectric tensor by changing a single line of code. 

 

2.5.1 The cold plasma dielectric tensor 
 

To show how behavior of particles in a plasma can be captured in the plasma current density through 

a dielectric tensor, an approach similar to D.G. Swanson’s Plasma Waves is followed [29]. The analyses 

starts by noting that the equation of motion of a particle of species 𝑗, exhibiting time-harmonic 

oscillations in a cold, collisionless plasma, is written as: 

 

 −𝑖𝜔𝑚𝑗𝑣 1𝑗 = 𝑞𝑗(�⃗� 1 + 𝑣 1𝑗 × �⃗� 0). (13) 

 

In this equation, the amplitude of the oscillation of the particles is given by 𝑣 1𝑗, the RF electric field 

amplitude is indicated with �⃗� 1, and the static background magnetic field is given by �⃗� 0. For an arbitrarily 

directed �⃗� 0, equation (13) can be rewritten as a system of equations, linear in 𝑣 1𝑗. 

 

 [

−𝑖𝜔𝑚𝑗 −𝐵0,𝑧𝑞𝑗 𝐵0,𝑦𝑞𝑗

𝐵0,𝑧𝑞𝑗 −𝑖𝜔𝑚𝑗 −𝐵0,𝑥𝑞𝑗

−𝐵0,𝑦𝑞𝑗 𝐵0,𝑥 −𝑖𝜔𝑚𝑗

] [

𝑣1𝑗𝑥

𝑣1𝑗𝑦

𝑣1𝑗𝑧

] = [

𝑞𝑗𝐸1𝑥

𝑞𝑗𝐸1𝑦

𝑞𝑗𝐸1𝑧

] (14) 

 

Often the background magnetic field �⃗� 0 is assumed to be in the �̂�-direction, such that �⃗� = 𝐵𝑧�̂�. In 

order to remain compatible with theory, this choice is made here as well. In Appendix A the derivation 

for arbitrarily directed �⃗� 0 is provided. Solving the system for 𝑣 𝑗1 allows rewriting (14) as a system of 

equations, linear in �⃗� 1. The definition for the ion cyclotron frequency (5) is applied for a more compact 

notation.  

 

 [

𝑣1𝑗𝑥

𝑣1𝑗𝑦

𝑣1𝑗𝑧

] =
1

𝑚𝑗
2𝜔(Ω𝑐𝑗

2 − 𝜔2)
[

−𝑖𝑚𝑗𝜔
2𝑞𝑗 𝐵0,𝑧𝜔𝑞𝑗

2 0

−𝐵0,𝑧𝜔𝑞𝑗
2 −𝑖𝑚𝑗𝜔

2𝑞𝑗 0

0 0 𝑖𝑞𝑗𝑚𝑗(Ω𝑐𝑗
2 − 𝜔2)

] [

𝐸1𝑥

𝐸1𝑦

𝐸1𝑧

] (15) 

 

In general, the plasma current in a cold plasma is given in terms of the particle velocity 𝑣 𝑗. However, 

through the process described above it is demonstrated that the plasma current might as well be expressed 

in terms of the electric field �⃗� 1. This allows capturing the plasma behavior in an abstract conductivity 

tensor 𝜎  . 

 

 𝐽 𝑝 = ∑ 𝑛𝑗𝑞𝑗𝑣 𝑗
𝑗

= 𝜎  �⃗�  (16) 

 𝜎  = ∑
𝑛𝑗𝑞𝑗

𝑚𝑗
2𝜔(Ω𝑐𝑗

2 − 𝜔2)
[

−𝑖𝑚𝑗𝜔
2𝑞𝑗 𝐵0,𝑧𝜔𝑞𝑗

2 0

−𝐵0,𝑧𝜔𝑞𝑗
2 −𝑖𝑚𝑗𝜔

2𝑞𝑗 0

0 0 𝑖𝑞𝑗𝑚𝑗(Ω𝑐𝑗
2 − 𝜔2)

]

𝑗

 (17) 
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At this point the dielectric tensor is introduced as a means of simplifying the Helmholtz equation a 

bit further. In this expression, 𝐼   is a 3 × 3 unit dyadic. 

 

 𝜖  (𝑥) = 𝐼  +
𝑖

𝜔휀0

𝜎  (𝑥) (18) 

 

Some extra steps can be taken to further simplify (15) and (17), leading to expressions for the 

dielectric tensor. However, these derivations can easily be found in literature, and involve only small 

mathematical manipulations. Therefore, only the final expression for the cold-plasma dielectric tensor is 

provided, assuming that �⃗� 0 is pointed in the �̂�-direction [29]. 

 

 𝜖  = (
𝑆 −𝑖𝐷 0
𝑖𝐷 𝑆 0
0 0 𝑃

) (19) 

 

𝑆, 𝐷, 𝑅, 𝐿 and 𝑃 are the Stix cold plasma dielectric tensor terms. A collision frequency 𝜈 is inserted 

using a Krook model for both the ions and the electrons [38]. This adds a bit of damping to the model, 

and it makes dealing with the singularities at 𝜔 = ±Ω𝑐𝑗  numerically easier.  

 

 𝑅 = 1 − ∑
𝜔𝑝𝑗

2

𝜔[𝜔 + 𝑖𝜈𝑗 + 𝓆𝑗Ω𝑐𝑗]𝑗

 (20) 

 𝐿 = 1 − ∑
𝜔𝑝𝑗

2

𝜔[𝜔 + 𝑖𝜈𝑗 − 𝓆𝑗Ω𝑐𝑗]𝑗

 (21) 

  𝑃 = 1 − ∑
𝜔𝑝𝑗

2

𝜔(𝜔 + 𝑖𝜈𝑗)𝑗

 (22) 

 𝑆 =
1

2
(𝑅 + 𝐿) (23) 

 𝐷 =
1

2
(𝑅 − 𝐿) (24) 

 

In these expressions, 𝜔𝑝𝑗 denotes the plasma frequency, and 𝓆𝑗 denotes the sign of the charge of 

particle species 𝑗. They are defined as: 

 

 𝜔𝑝𝑗 = √
𝑛𝑗𝑞𝑗

2

𝜖0𝑚𝑗

 (25) 

 𝓆𝑗 =
𝑞𝑗

|𝑞𝑗|
 (26) 
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2.5.2 The cold plasma dispersion relation 
 

In the previous section a definition for the dielectric tensor was provided. When this is substituted in 

the Helmholtz equation, equation (12), a very short expression remains for the cold plasma.  

 

 −∇ × ∇ × �⃗� (𝑥) + 𝑘0
2𝜖  (𝑥) ∙ �⃗� (𝑥) = 0 (27) 

  

The dispersion relation can be derived from here, describing the wavelengths that the plasma allows, 

in relation to the excitation frequency. It can be calculated for every point in the plasma, as if it were an 

infinitely extended homogeneous plasma, with a plane wave with wavevector �⃗�  traveling through it. 

Under the plane wave approximation, the curl-curl can be substituted by outer products with the 

normalized wave vector �⃗� : �⃗� = �⃗� /𝑘0. Solutions are now found for the amplitude and phase of the spectral 

electric field vector �⃗� 𝑘. 

 

 �⃗� × �⃗� × �⃗� 𝑘 + 𝜖  ∙ �⃗� 𝑘 = 0 (28) 

 

The wavevector components parallel and perpendicular to the magnetic field are denoted as 𝑛∥ and 

𝑛⊥ respectively. Without loss of generality, �⃗�  can be fixed in the �̂�-direction, and �⃗�  in the 𝑥 − 𝑧 plane, 

as is proposed in Swanson [29]. Under these assumptions, 𝑛𝑥 = 𝑛⊥, 𝑛𝑦 = 0 and 𝑛𝑧 = 𝑛∥. Using the 

expression for the cold plasma dielectric tensor (19), equation (28) can be written as: 

 

 |

𝑆 − 𝑛∥
2 −𝑖𝐷 𝑛⊥𝑛∥

𝑖𝐷 𝑆 − (𝑛∥
2 + 𝑛⊥

2) 0

𝑛⊥𝑛∥ 0 𝑃 − 𝑛⊥
2

| [

𝐸𝑥

𝐸𝑦

𝐸𝑧

] = 0. (29) 

 

Finding the roots of this system delivers the dispersion relation. This process can be solved by setting 

the determinant of (29) to 0. For a cold plasma this can be done analytically. When a value is assumed 

for 𝑘∥, for example based on experimental observations of the antenna spectrum, a fourth order 

polynomial of 𝑛⊥ is obtained. 

 

 𝐴𝑛⊥
4 + 𝐵𝑛⊥

2 + 𝐶 = 0 (30) 

 𝐴 = 𝑆 (31) 

 𝐵 = 𝐷2 − 𝑆2 − 𝑃𝑆 + (𝑆 + 𝑃)𝑛∥
2 (32) 

 𝐶 = 𝑃(𝑆2 − 𝐷2 − 2𝑆𝑛∥
2 + 𝑛∥

4) (33) 

 

 Finding the roots of (30) yields the perpendicular wavelength of waves that are allowed by the 

homogeneous plasma, as function of the magnetic background field strength �⃗� 0, the particle densities 𝑛𝑗, 

the excitation frequency 𝜔 and the parallel wavenumber 𝑘∥. In general 𝑆, 𝑃 and 𝐷 are complex due to 

the presence of the collision frequency 𝜈. Therefore, finding the roots (30) yields four complex solutions 

for 𝑘⊥, where the real parts indicate the wavelength, and the imaginary parts indicate damping.  

The dispersion roots for the JET case under consideration are plotted in Figure 7. A modified logplot 

is used, plotting 𝑘𝑥
2 for −1 < 𝑘𝑥

2 < 1, and sign(𝑘𝑥
2) ∗ log10(|𝑘𝑥

2|) otherwise. The results have been 

grouped by the dispersion roots belonging to the fast wave and the slow wave. The fast wave has in 

general the largest wavelength of the two. 
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Figure 7: Modified logplot showing the solutions for the cold plasma dielectric tensor. The fast wave and slow 

wave dispersion roots for the JET case under consideration (Appendix B) are separated from each other. 

Throughout most of the simulation domain, the fast wave is propagative (𝑅𝑒(𝑘𝑥
2) > 0), while the slow wave is 

strongly damped. Only near the plasma edge, and near the ion cyclotron resonance layer, the situation is different. 

The fundamental hydrogen ion cyclotron resonance layer is found slightly to the right of the plasma 

center. Close to this location, the real part of the fast wave root (top left) dives down to negative values. 

In addition, there is a spike in the imaginary part (top right). Combined, this indicates a strongly damped 

fast wave. The slow wave is not propagative throughout most of the simulation domain; the real part of 

the slow wave root (bottom left) is nearly always negative.  

For comparison a cold plasma simulation of the electric field using the same parameters is provided 

in Figure 8. The implementation details for this model are discussed in Chapter 4. The waves travel from 

right to left. Around 𝑥 = 0, a strong decrease in the fast wave amplitude is visible, as expected from the 

dispersion plots. The slow wave makes an appearance in the non-physical spill-over areas at edges of the 

simulation domain, beyond 𝑥 = ±𝑎, due to the low density at this location. As discussed in chapter 3.5, 

the spill-over regions are usually not considered in the simulations 

 

 
Figure 8: Cold-plasma results showing some of the wave characteristics. Notice the damping of the fast wave 

at the fundamental hydrogen ion cyclotron resonance layer near 𝑥 = 0. Additionally, evanescent behavior of the 

fast wave is visible beyond 𝑥 = ±𝑎𝑝. The slow wave makes an appearance in the non-physical spill-over regions 

at the edges of the simulation domain, beyond 𝑥 = ±𝑎. 
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2.6 Electromagnetic waves in hot, magnetized plasmas 
 

The wave description becomes more complicated for hot plasmas. The main difference is the fact that 

the particles now exhibit significant thermal motion. As mentioned in section 2.1, due to the background 

magnetic field the charged particles will exhibit cyclotron motion: they “gyrate around magnetic field 

lines”. Aside from that, the particles have a temperature distribution. In this chapter, the dielectric tensor 

for a hot plasma is discussed, and some hot plasma effects are highlighted that differ from a cold plasma 

case. 

 

2.6.1 The hot plasma dielectric tensor 
 

The dielectric tensor for the cold plasma is a useful tool that allows abstracting away the plasma 

properties as a spatially depending dielectric tensor. This allows the usage of the regular Maxwell’s 

equations for solving the wave problem. A similar result is desired for the hot plasma, as it allows reuse 

of the existing tooling and experience gained with the cold plasma model. The following section 

highlights some of the key steps in the derivation of the hot plasma dielectric tensor in chapter 4.3 from 

D.G. Swanson’s Plasma Waves [39], concluding with its definition of the dielectric tensor for 

Maxwellian velocity distributions. Very similar, and older, derivations can be found in work from Stix 

[40], although this work unfortunately is not written in SI units. 

Distributions of particles, both in the spatial domain and the velocity domain, become important for 

hot plasmas. This is for example apparent in the description of the plasma current, which in the hot 

plasma case requires integrals over the particle distribution functions in velocity space [41]. 

 

 𝐽 𝑝(𝑟 , 𝑡) = ∑𝑞𝑗 ∫𝑣 𝑓𝑗(𝑟 , 𝑣 , 𝑡)𝑑
3𝑣

𝑣𝑗

 (34) 

 

This dependence on the distribution functions must be considered in the derivation of the dielectric 

tensor. In most treatments of the hot plasma dielectric tensor, the collisionless Boltzmann equation, in 

some works referred to as the Vlasov equation or the kinetic equation, is taken as the starting point [42]. 

It describes the evolution of 𝑓𝑗 in the absence of collisions. Furthermore, the assumption is made here 

that only the Lorentz force is acting on the particles, which yields equation (35). 𝑞𝑗, 𝑚𝑗 and 𝑓𝑗 are the 

charge, mass and distribution function of species 𝑗 respectively. When comparing this with (13), for the 

cold plasma dielectric tensor, the increased mathematical complexity in case of a hot plasma can be seen: 

 

 
𝜕𝑓𝑗(𝑟 , 𝑣 , 𝑡)

𝜕𝑡
+ 𝑣 ∇𝑓𝑗(𝑟 , 𝑣 , 𝑡) +

𝑞𝑗

𝑚𝑗

[�⃗� (𝑟 , 𝑡) + 𝑣 × �⃗� (𝑟 , 𝑡)]∇𝑣𝑓𝑗(𝑟 , 𝑣 , 𝑡) = 0. (35) 

 

Note how through the plasma current (34), the time-dependent Helmholtz equation (10) is strongly 

tied to the Vlasov equation (35). This is a strong motivation for finding a description of the dielectric 

tensor; as it can be used to abstract away this coupling. 

Fortunately, in the RF-heated plasmas under consideration, there are two processes at different 

timescales. On the one hand, there is the RF time-harmonic perturbation of the plasma. On the other 

hand, there is a slow evolution of the distribution functions. Absorption of the waves by the plasma for 

example creates an energetic tail of particles that influences the wave propagation. These radically 

different timescales motivate a linearization of the Vlasov equation, as mentioned for example in Stix 

[40], Bittencourt [42] and van Eester and Lerche [43].  

 

 𝑓𝑗(𝑟 , 𝑣 , 𝑡) = 𝑓0𝑗(𝑟 , 𝑣 , 𝑡) + 𝑓𝑅𝐹𝑗(𝑟 , 𝑣 , 𝑡)                        (| 𝑓𝑅𝐹𝑗| ≪ 𝑓0𝑗) (36) 

 

Here, 𝑓0𝑗 contains the slowly varying, quasi-static distribution function, while 𝑓𝑅𝐹𝑗 contains the RF 

perturbation. 
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In Swanson [39] it is than shown that through some manipulations, the RF distribution function 𝑓𝑅𝐹𝑗 

can be expressed in terms of the quasi-static 𝑓0𝑗 by integrating along the zero-order particle trajectories 

in space, from time 𝑡′ = −∞ to 𝑡′ = 𝑡 [40] [44]: 

 

 𝑓𝑅𝐹𝑗(𝑟 , 𝑣 , 𝑡) = −
𝑞𝑗

𝑚𝑗

∫ [�⃗� 𝑅𝐹(𝑟 ′, 𝑡′) + 𝑣 ′ × �⃗� 𝑅𝐹(𝑟 ′, 𝑡′)] ∙ ∇𝑣′𝑓0𝑗(𝑣 
′)𝑑𝑡′

𝑡

−∞

. (37) 

 

This is the first step to writing the RF response of the plasma in terms of a dielectric tensor. By 

making suitable approximations for the fields and the motion of the particles, the integral can be 

performed analytically. For example, for the velocity the circular gyrotron motion is assumed. 

Additionally, �⃗� 𝑅𝐹  and �⃗� 𝑅𝐹 are assumed to be time-harmonic.  

The separation of timescales allows for an iterative scheme, where the wave equation is solved 

separately from the kinetic equation. The wave equation updates the RF electric field �⃗� 𝑅𝐹, and the kinetic 

equation is used for updating the equilibrium distribution 𝑓0𝑗 [43]. In this work the iteration is out of 

scope; only the wave equation is solved, as highlighted in Figure 9. 

 

 
Figure 9: Iterative scheme enabled by linearizing the particle distribution contributions (reprinted and 

modified from [43]). The current project solely focuses on solving the wave equation for a single iteration, 

indicated with the orange box. 

Combining (34) and (37) yields, through a lot of manipulations, an expression for the dielectric tensor 

that only depends on static, or semi-static plasma parameters. These include for example the slowly 

varying equilibrium distribution 𝑓0𝑗, the background magnetic field, the density and the excitation 

frequency. It requires integrals over the parallel and the perpendicular velocity dimensions, 𝑣∥ and 𝑣⊥ 

respectively [39]. As an example, 𝜖33 is provided, the other eight components of 𝜖   have similar forms. 

 

 𝜖33 = 1 + ∑
𝜔𝑝𝑗

𝜔
∑ 2𝜋 ∫ 𝑑𝑣∥ ∫ 𝑑𝑣⊥

∞

0

∞

∞

𝑛𝐽𝑛
2(𝑏𝑗)

𝑏𝑗(𝜔 − 𝑛𝓆𝑗Ω𝑐𝑗 − 𝑘∥𝑣∥)

𝑣⊥

𝑣∥

 𝐹∥

∞

𝑛=−∞

 

𝑗

 (38) 

 𝐹∥ = 𝑣∥ [
𝜕𝑓0𝑗

𝜕𝑣⊥

+
𝑛𝓆𝑗𝜔𝑐𝑗

𝜔
(
𝑣𝑧

𝑣⊥

𝜕𝑓0𝑗

𝜕𝑣⊥

−
𝜕𝑓0𝑗

𝜕𝑣∥

)] (39) 

 

The definitions for the plasma frequency 𝜔𝑝𝑗, the ion cyclotron frequency Ω𝑐𝑗  and the sign of the 

particle charge 𝓆𝑗 have been used in (38) and (39). Additionally, the Bessel function of the first kind 

makes its appearance in (38), with argument 𝑏𝑗 = 𝓆𝑗𝑘⊥𝑣⊥/Ω𝑐𝑗. When �⃗� 0 is again assumed to be in the 

�̂�-direction, 𝑘⊥ = √𝑘𝑥
2 + 𝑘𝑦

2 is the component of the wave vector perpendicular to �⃗� 0, and 𝑘∥ = 𝑘𝑧 is the 

component of the wavevector parallel to �⃗� 0. 

This definition for the dielectric tensor can be used for any differentiable equilibrium distribution 

function 𝑓0𝑗. However, significant simplifications in the expressions can be made under the assumption 

that there are Maxwellian velocity distributions both perpendicular and parallel to the background 

magnetic field. Especially the integrals over velocity space simplify significantly. This choice was made 



20 

 

 

in this work as well, bringing the final expressions for the dielectric tensor that have been utilized in this 

work [44].  

 

 𝜖  𝑗 = (

𝐾1𝑗 + sin2(𝜓)𝐾0𝑗 𝐾2𝑗 − cos(𝜓) sin(𝜓)𝐾0𝑗 cos(𝜓)𝐾4𝑗 + sin(𝜓)𝐾5𝑗

−𝐾2𝑗 − cos(𝜓) sin(𝜓)𝐾0𝑗 𝐾1𝑗 + cos2(𝜓)𝐾0𝑗 sin(𝜓)𝐾4𝑗 − cos(𝜓)𝐾5𝑗

cos(𝜓)𝐾4𝑗 − sin(𝜓)𝐾5𝑗 sin(𝜓)𝐾4𝑗 + cos(𝜓)𝐾5𝑗 𝐾3𝑗

) (40) 

 𝜓 = tan−1 (
𝑘𝑦

𝑘𝑥

) (41) 

 

𝐾0𝑗 … 𝐾5𝑗 are six similar expressions for contributions to this tensor. 𝜓 denotes the angle that the 

perpendicular wavevector component makes with the �̂�-axis and can be determined using the four-

quadrant arctangent. 

Before introducing 𝐾0𝑗  . . 𝐾5𝑗, some dimensionless numbers need to be introduced. 𝜆𝑗 is the argument 

of the modified Bessel functions of the first kind 𝐼𝑛(𝜆𝑗) of order 𝑛, and is related to ratio between the 

perpendicular wavelength and the Larmor radius. For the IBW, 𝜆𝑗~1. 휁𝑛𝑗  is the argument of the plasma 

dispersion function 𝑍(휁𝑛𝑗), and is related to the ratio between the antenna frequency and the 𝑛-th 

cyclotron frequency harmonic [45].  

 

 𝜆𝑗 =
1

2
𝑘⊥

2𝜌𝐿𝑗
2  (42) 

 휁𝑛𝑗 =
𝜔 + 𝑛Ω𝑐𝑗

𝑘∥𝑣𝑗

=
𝜔/Ω𝑐𝑗 + 𝑛

𝑘∥𝜌𝐿𝑗

 (43) 

 

The Larmor radius 𝜌𝐿𝑗 and the thermal velocity 𝑣𝑗 are as defined in equations (3) and (4). The 

derivative of the modified Bessel function of order 𝑛 with respect to 𝜆𝑗 is denoted by 𝐼𝑛
′ (𝜆𝑗), and the 

derivative of the plasma dispersion function with respect to 휁𝑛𝑗  is denoted by 𝑍′(휁𝑛𝑗). The 6 components 

𝐾0𝑗 … 𝐾5𝑗 are now given by: 

 

 𝐾0𝑗 = 2
𝜔𝑝𝑗

2 𝑒−𝜆𝑗

𝜔𝑘𝑧𝑣𝑗

∑ 𝜆𝑗(𝐼𝑛 − 𝐼𝑛
′ )𝑍(휁𝑛𝑗)

∞

𝑛=−∞

, (44) 

 𝐾1𝑗 =
𝜔𝑝𝑗

2 𝑒−𝜆𝑗

𝜔𝑘𝑧𝑣𝑗

∑
𝑛2𝐼𝑛
𝜆𝑗

𝑍(휁𝑛𝑗)

∞

𝑛=−∞

, (45) 

 𝐾2𝑗 = 𝑖
𝓆𝑗𝜔𝑝𝑗

2 𝑒−𝜆𝑗

𝜔𝑘𝑧𝑣𝑗

∑ 𝑛(𝐼𝑛 − 𝐼𝑛
′ )𝑍(휁𝑛𝑗)

∞

𝑛=−∞

, (46) 

 𝐾3𝑗 = −
𝜔𝑝𝑗

2 𝑒−𝜆𝑗

𝜔𝑘𝑧𝑣𝑗

∑ 𝐼𝑛휁𝑛𝑗𝑍
′(휁𝑛𝑗)

∞

𝑛=−∞

, (47) 

 𝐾4𝑗 =
𝑘⊥𝜔𝑝𝑗

2 𝑒−𝜆𝑗

2𝑘𝑧𝜔Ω𝑐𝑗

∑
𝑛𝐼𝑛
𝜆𝑗

𝑍′(휁𝑛𝑗)

∞

𝑛=−∞

,  (48) 

 𝐾5𝑗 = 𝑖
𝑘⊥𝓆𝑗𝜔𝑝𝑗

2 𝑒−𝜆𝑗

2𝑘𝑧𝜔Ω𝑐𝑗

∑ (𝐼𝑛 − 𝐼𝑛
′ )𝑍′(휁𝑛𝑗)

∞

𝑛=−∞

. (49) 

 

In principle, an infinite number of terms should be added to 𝐾0𝑗 … 𝐾5𝑗 to get the exact value, but in 

practice it suffices to limit the amount of terms in the sum, because the sum converges at a reasonable 

speed for low 𝜆𝑗. For all hot-plasma simulations, 𝑛 between [−4,4] was used. Note that 𝐾0𝑗 … 𝐾5𝑗 are 

position-dependent, because the density, magnetic field and temperature are not constant throughout the 

plasma. 

Furthermore, special care must be taken when 𝑘⊥ → 0, or 𝑘∥ → 0. Numerical treatment of these points 

is given in Appendix D and Appendix E. Additionally, the product 𝑒−𝜆𝑗𝐼𝑛(𝜆𝑗) has poor numerical 

properties for large 𝜆𝑗. 
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2.6.2 The plasma current density in a hot plasma 

 
The formulation of the dielectric tensor in a hot plasma (40) assumes that the background medium is 

homogeneous, such that the plasma current density in the spectral domain can be written as a simple 

multiplication between the conductivity tensor spectrum and the electric field spectrum. 

 

 𝐽 𝑝(�⃗� ) = 𝜎  (�⃗� ) ∙ �⃗� (�⃗� ) (50) 

 

The time-harmonic Helmholtz equation (11) however deals with electric fields in the spatial domain. 

Additionally, in a fusion reactor the background medium is inhomogeneous. In general, the response of 

the plasma to the electric field is non-local, and dispersive in both space and time. It can be expressed as 

[23] [46]: 

 

 𝐽 𝑝(𝑟 , 𝑡) = ∫ ∫ 𝜎  (𝑟 , 𝑟 ′, 𝑡, 𝑡′) ∙ �⃗� (𝑟 ′, 𝑡′)𝑑𝑟 ′
∞

−∞

𝑑𝑡′
𝑡

∞

.  (51) 

 

The spatial dependence of 𝜎   is caused by the spatially-dependent plasma properties like its density 

𝑛 and temperature 𝑇, and the equilibrium magnetic field �⃗�  [23]. However, nearly all literature provides 

descriptions of the dielectric tensor in the spectral domain. Additionally, the convolution-like description 

of the plasma current in (51) is not desired in numerical applications.  

Therefore, the assumption is often made that the plasma is locally homogeneous, which means that 

the Larmor radius is much smaller than the device size: 𝜌𝐿 ≪ 𝐿. Filling in the typical JET parameters 

reveals that the Larmor radius is at most 4mm in the core of the machine. The simulation domain on the 

other hand is 2 meters wide, which validates the assumption. 

In this case, the spectrum of the plasma current at each test position 𝑥𝑡 in the plasma is written using 

the spectrum of the electric field �⃗� (𝑘𝑥) and the dielectric tensor spectrum, evaluated at 𝑥𝑡:  𝜎 
 (𝑘𝑥)|𝑥=𝑥𝑡

. 

The inverse Fourier transform is used to obtain an expression in the spatial domain. Additionally, the 

assumption is made again that the electric and magnetic fields are time-harmonic. 

 

 𝐽 𝑝(𝑥) = ∫ 𝜎  (𝑘𝑥)|𝑥=𝑥𝑡
∙ �⃗� (𝑘𝑥)𝑒

𝑖𝑘𝑥𝑥𝑑𝑘𝑥

∞

∞

  (52) 

 

To allow for a slightly cleaner notation, 𝜎  (𝑘𝑥)|𝑥=𝑥𝑡
 is denoted as 𝜎  (𝑥, 𝑘𝑥) from now on. Similar to 

the cold plasma case, an expression like (18) is used to obtain a dielectric tensor. Substituting the equation 

of the plasma current in the Helmholtz equation yields the integro-differential problem that is used in all 

three hot-plasma models. 

 

 −∇ × ∇ × �⃗� (𝑥) + 𝑘0
2 ∫ 𝜖  (𝑥, 𝑘𝑥) ∙ �⃗� (𝑘𝑥)𝑒

𝑖𝑘𝑥𝑥𝑑𝑘𝑥

∞

−∞

= 0 (53) 
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2.6.3 The hot plasma dispersion relation 

 
At a similar method to the cold plasma, the dispersion relation for a hot plasma can be determined. 

For a homogeneous hot, magnetized plasma, there is a similar wave equation as for the cold plasma, 

equation (28). 

 

 �⃗� × �⃗� × �⃗� 𝑘 + 𝑘0
2 𝜖  (�⃗� ) ∙ �⃗� 𝑘 = 0 (54) 

 

However, in contrast to the cold plasma, the hot plasma dielectric tensor is a function of �⃗�  as well. 

Therefore, it is difficult to obtain analytic solutions for the dispersion relation, except for some simplified 

cases. Examples are propagation purely perpendicular to �⃗� 0, such that 𝑘∥ = 0. For a general case 

however, the roots to (54) must be found by numerical methods. This section discusses this procedure 

and shows the results for the same JET case that was used in the cold plasma case. First of all, (54) can 

be written as a matrix system of the form: 

 

 

(

 
 

[

−(𝑘𝑦
2 + 𝑘𝑧

2) 𝑘𝑥𝑘𝑦 𝑘𝑥𝑘𝑧

𝑘𝑥𝑘𝑦 −(𝑘𝑥
2 + 𝑘𝑧

2) 𝑘𝑦𝑘𝑧

𝑘𝑥𝑘𝑧 𝑘𝑦𝑘𝑧 −(𝑘𝑥
2 + 𝑘𝑦

2)

] + 𝑘0
2 𝜖  (�⃗� )

)

 
 

∙ [

𝐸𝑥

𝐸𝑦

𝐸𝑧

] = 0. (55) 

 

Solutions are searched for 𝑘𝑥 in the complex plane; for 𝑘𝑦 and 𝑘𝑧 values are assumed based on typical 

values seen for the JET antenna.  

A very basic rootfinder is implemented in order to search for solutions. The strategy consists of 

sampling every grid point at 2000 𝑘𝑥 positions, between −106 < 𝑘𝑥 < 106. For each of the samples, the 

determinant is calculated numerically. At the point where the determinant shows a transition through 0, 

a solution is noted down. The results are plotted in the figure below. 

 
Figure 10: Some hot plasma dispersion roots. This graphs shows only a part of the possible waves in the 

plasma. More roots can be found by a more advanced rootfinder that searches for complex solutions. 

If the objective is to find more roots, the algorithm must be adjusted. Right now, only real-valued 𝑘𝑥 

are investigated, but the cold plasma case already demonstrates that this is insufficient. As such, only 

weakly damped waves are found with this method: evanescent waves, or strongly damped waves are not 

discovered. Still, it is interesting so compare the results to Figure 7. In Figure 10 some high-wavenumber 

solutions are present which do not occur in the cold plasma. Even more, around the hydrogen ion 

cyclotron resonance layer the dispersion roots approach each other, which provides a way to couple 
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energy from the low-wavenumber wave, the fast wave, to the high-wavenumber wave, the Ion Bernstein 

Wave. 

This coupling, or mode conversion, is a peculiar feature of the hot plasma simulations. The mode-

converted IBW can clearly be seen in Figure 11. To the left of 𝑥 = 0, part of the long-wavelength fast 

wave is converted into the short-wavelength ion Bernstein wave. This wave quickly damps out as its 

energy gets absorbed. This mode conversion process is not unique for fusion, it can also be observed in 

other magnetized plasmas, for example Earth’s magnetosphere [31]. 

 

 
Figure 11: Hot plasma results for the same JET scenario as Figure 8. Note how in the hot plasma case energy 

from the long-wavelength fast wave is coupled into the short-wavelength Ion Bernstein Wave, a process referred to 

as mode-conversion. 
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3 Description of the one-dimensional plasma model 
 

All models that have been created share a comparable setup of the simulation. This chapter discusses 

some details on the positioning of the 1D grid, the boundary conditions, the plasma profiles and the 

excitation. Additionally, the spill-over areas are discussed that are needed for the all-orders model. 

 

3.1 Simulation domain 
 

The propagation of electromagnetic waves in a fusion plasma is dependent on the background 

magnetic field. As the cold plasma and the hot plasma dielectric tensors point out, a magnetized plasma 

is an anisotropic medium. For correct simulations of the wave behavior, it is therefore necessary to 

consider the magnetic field topology. Due to the axisymmetry of tokamaks it often suffices to perform 

2-dimensional wave simulations. The two-dimensional simulation domain would then be a cross section 

of the fusion reactor plasma. Stellarators have a more complex magnetic geometry, and as such they 

might benefit from three-dimensional simulations of the entire fusion reactor.  

However, 3D and even 2D simulations of acceptable resolution are too demanding for a regular PC 

or laptop, hence all simulations in this work are executed on a 1-dimensional grid. A very simple torus 

geometry is assumed, with major radius 𝑅0, and minor radius 𝑎 [47]. Triangularity and elongation are 

not considered. The High Field Side (HFS), where the background magnetic field is highest, is in the 

center of the machine, while the Low Field Side (LFS) is on the outboard side of the machine. A rendering 

of a Tokamak, with a JET-like ratio of minor radius to major radius, is provided in Figure 12.  

 

 

 
 
Figure 12: A simple rendering of a tokamak with a JET-like ratio (𝑅0 = 2.97𝑚, 𝑎𝑝 = 0.95𝑚) (top), and the 

corresponding 1D simulation domain (bottom). Note that 𝑥 = −𝑎 and 𝑥 = 𝑎 match the metallic walls of the 

machine, while the spill-over areas bear no physical correspondence. 

In Figure 12, 𝑅 is the radial coordinate, with 𝑅 = 0 in the center of the machine, and 𝑅 = 𝑅0 

corresponding to the major radius of the machine. In order to simplify matters a bit, the shifted radial 

coordinate 𝑥 is introduced, such that 𝑥 = 𝑅 − 𝑅0. The 1-dimensional physical domain runs from the wall 

on the HFS at 𝑥 = −𝑎, through the plasma core at 𝑥 = 0, to the wall on the LFS at 𝑥 = 𝑎. Excitation 

takes place on the wall on the LFS. 

The boundaries of the full simulation domain are located at 𝑥 = ±𝑎𝑠 = ±𝐿/2. The region between 

𝑎 and 𝑎𝑠 is a “spill-over” region, and bears no physical meaning. This is discussed in more detail in 

section 3.5. Finally, 𝑎𝑝 is the transition point between the parabolic-like core plasma profiles, shown in 

dark pink, and the exponentially decaying edge plasma profiles, shown in light pink for the densities and 

temperatures. 
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3.2 Background magnetic field profile  
 

Tokamaks like JET and ITER house an impressive set of large, powerful magnets which, together 

with a strong current through the plasma, generates the complex magnetic topology required to confine 

the plasma [48]. Especially in 2D and 3D simulations, this complex field topology should be accounted 

for in its entirety, as it influences the propagation of the waves. However, in this simplified model, only 

the toroidal magnetic field component, �⃗� 𝜃, is considered, as it is the strongest field component. The 

toroidal direction in a Tokamak is the direction “along the donut”, as visualized in Figure 13.  

 
Figure 13: Sketch of the Toroidal direction and the poloidal direction within a Tokamak. 

In the 1D geometry under consideration, the assumption is made that the background magnetic field 

is pointed into the paper, in the �̂�-direction, and that it is only a function of the shifted radial coordinate 

𝑥, such that 

 

 �⃗� (𝑥) = �⃗� 𝑧(𝑥) = 𝐵𝑧(𝑥)�̂�. (56) 

 

The field strength 𝐵𝜃(𝑥) is strongest at the HFS, and lowest at the LFS. This is represented by a 1/𝑅 

decay. The profiles are generated based on 𝐵0, the magnetic field in the core of the plasma, at 𝑥 = 0: 

 

 𝐵𝜃(𝑥) =
𝐵0𝑅0

𝑅
= 𝐵0

𝑅0

𝑥 + 𝑅0

. (57) 

 

This profile has been visualized in Figure 14 for the JET parameters used throughout this work: 𝑅0 =
2.97m and 𝐵0 = 3.45T. 

 
Figure 14: Background magnetic field strength profile 𝐵𝑧(𝑥) for JET parameters: 𝐵0 = 3.45𝑇 and 𝑅0 =

2.97𝑚. The field is highest at the HFS, and lowest at the LFS, and decays as 1/𝑅.  

  

Toroidal 

Poloidal 
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3.3 Temperature and Density profiles 
 

The temperature and density profile, like the magnetic field profile, are simplified compared to 

reality. In the core plasma, both profiles are defined by the parabolic-like functions 𝐺(𝑥) described in 

the work of van Eester and Lerche [19]: 

 

 𝐺𝑐𝑜𝑟𝑒(𝑥) = (𝐺0 − 𝐺𝑠) (1 − (
𝑥

𝑎𝑝

)

2

)

𝛼

+ 𝐺𝑠. (58) 

 

𝐺0 is the temperature or density on the magnetic axis, at 𝑥 = 0. 𝑎𝑝 is the transition point between the 

parabolic core plasma profiles and the exponentially decaying edge plasma profiles, and 𝐺𝑠 is the density 

or temperature at this point. Finally, 𝛼 is a shaping parameter. For the density profiles, 𝛼𝑛 = 1, yielding 

a parabola, while the temperatures have a stronger peaked nature, with 𝛼𝑇 = 1.5. 

In the edge, the profiles decay exponentially, making sure they are continues with the core profiles at 

the transition point 𝑎𝑝.  

 

 𝐺𝑒𝑑𝑔𝑒(𝑥) = 𝐺𝑠𝑒
−

|𝑥−𝑎𝑝|

𝜆  (59) 

 

𝜆 can be used to tune how fast the profile decays. Both for the temperature and the density 𝜆𝑇 = 𝜆𝑛 =
0.05 is chosen. The profiles are plotted in Figure 15. 

 
Figure 15: Electron temperature and density for JET parameters. The transition point between the parabolic-

like core plasma profiles and the exponentially decaying edge plasma profiles is indicated with the dashed lines.  
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3.4 Boundary conditions 
 

In this system, the boundary conditions are chosen such that the left wall, at 𝑥 = −𝑎, is a Perfect 

Electric Conductor (PEC). A PEC wall does not allow electric fields parallel to the wall, and as the walls 

are in the 𝑦 − 𝑧 plane, 𝐸𝑦 and 𝐸𝑧 are forced to 0. At the right wall, at 𝑥 = 𝑎,  the excitation is modeled 

by setting a finite value for 𝐸𝑦. As discussed in section 2.4, this is comparable to the common situation 

where a Faraday screen blocks the electric field component parallel to the magnetic field, 𝐸𝑧 , from 

passing through. This gives four Dirichlet boundary conditions for 𝐸𝑦 and 𝐸𝑧: 

 

 𝐸𝑦|𝑥=−𝑎 = 0, (60) 

 𝐸𝑧|𝑥=−𝑎 = 0, (61) 

 𝐸𝑦|𝑥=𝑎 = 1, (62) 

 𝐸𝑧|𝑥=𝑎 = 0. (63) 

 

These boundary conditions are added to the system matrix via Lagrange multipliers, instead of 

replacing existing equations [49] [50]. A total of 4 rows and 4 columns are added to the system matrix 

by conditions (60)-(63). All models except the all-orders model receive three extra conditions due to the 

periodicity requirements. 

 

 
 

 
Figure 16: Structure of system matrix used for the simulations. The left-upper block contains the “actual” 

equations, linear in 𝐸. Amongst others it contains expressions for the curl-curl and the dielectric tensor 

contributions. The boundary conditions are added as Lagrange multipliers. (Recreated from [50]) 

After solving the linear system, the solution contains both the electric field values and the values for 

the Lagrange multipliers. Only the electric field values are kept, the Lagrange multipliers are discarded.  
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3.5 Spill-over areas 
 

The Fourier-type approach from the all-orders model prefers fields that are periodic across the 

simulation domain. This is incompatible with the actual field structure. The one-sided excitation on 𝐸𝑦 

at the right wall for example results in a clear aperiodic situation, as the PEC boundary condition at the 

left wall forces 𝐸𝑦 to 0. Additionally, there are evanescent regions in the plasma edge, which are typically 

difficult to represent with a Fourier series. 

To deal with this problem, a small, non-physical, spill-over area is added on both sides of the 

simulation domain. In these regions, the electric fields can regain periodicity. To demonstrate how this 

works, the results for the all-orders model, discussed in section 5.1, is shown. 

 

 
Figure 17: Electric field results from the all-orders model, demonstrating the spill-over areas for |𝑥| > 𝑎. 

These areas do not bear any physical significance, and as such they are cut off in all plots to follow. 

The region beyond |𝑥| > 𝑎 does not bear any physical meaning, and its only purpose is to allow for 

the solutions to be periodic. In all further results these regions cut away to avoid confusion. The spill-

over approach is used in all models, even for the purely differential models that do not necessarily require 

it, to keep the results as similar as possible. 
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3.6 Computational grid and Finite Difference scheme 
 

For all models an equidistant grid is used with 𝑁 grid points. The total simulation domain has a length 

𝐿, spanning from 𝑥 = −𝑎𝑠 to 𝑥 = 𝑎𝑠. The spacing ℎ between the grid points is given by: 

 

 ℎ =
𝐿

𝑁 − 1
 . (64) 

 

The edges are not sampled twice, so the leftmost grid point is located at 𝑥1 = −𝑎𝑠, and the rightmost 

grid point is located at 𝑥𝑁 = 𝑎𝑠 − ℎ. This avoids adding duplicate information to the matrix system, as 

the periodic boundary condition enforces continuity of the electric fields at 𝑥 = ±𝑎𝑠. Neglecting to take 

this into account can result in ill-conditioned system matrices. 

 

 
Figure 18: Sketch of the distribution of the gridpoints. The nodes are spaced at equal distance ℎ from each 

other. The edge is not sampled twice: there is a sample at 𝑥1 = −𝑎𝑠 and a sample at 𝑥𝑁 = 𝑎𝑠 − ℎ. 

The cold plasma model, and two of the hot plasma models, use a Finite Difference (FD) scheme [51]. 

Other numerical schemes like Finite Element (FEM) might be more suitable for 2D or 3D simulations, 

or for non-uniform meshes. For a one-dimensional, equidistant grid however, the FD scheme is one of 

the easiest-to-implement numerical methods for discretizing derivatives. As an example, the second order 

derivative of the electric field with respect to 𝑥, at a discretized position 𝑥𝑖, can be written as: 

 

 
𝜕𝐸(𝑥)

𝜕𝑥2
|𝑥=𝑥𝑖

≈
𝐸𝑖−1 − 2𝐸𝑖 + 𝐸𝑖+1

ℎ2
 . (65) 

 

Here 𝐸𝑖−1, 𝐸𝑖 and 𝐸𝑖+1 refer to the values of the electric fields at the nodes 𝑥𝑖−1, 𝑥𝑖 and 𝑥𝑖+1. This is 

an example of a central difference scheme with second order accuracy. The coefficients for the finite 

difference scheme can be found in literature for many derivative orders, and for various orders of 

accuracy [52]. 

The cold plasma model (chapter 4) and the truncated Taylor series model (chapter 5.2) both use finite 

difference schemes of second order accuracy. These models only contain the first and second order 

derivative of �⃗�  with respect to 𝑥. The truncated polynomial fit model (chapter 5.3) requires coefficients 

for much higher-order derivatives.  

 

 

  

𝑥 

−𝑎𝑠 0 𝑎𝑠 

𝑥1 𝑥2 𝑥3 𝑥𝑖−1 𝑥𝑖+1 𝑥𝑖 𝑥𝑁 … … 
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4 Cold plasma model 
 

The cold plasma model is implemented based on the discussion of the theory in chapter 2.5, as a 

starting point for the more advanced hot-plasma simulations. The benefit of taking the cold plasma as a 

starting point, is that it will be easy to test the numerical schemes of the hot plasma models. In all hot 

plasma models that are created, the hot plasma dielectric tensor can be swapped for the cold plasma 

dielectric tensor by changing a single line in the code, to show that the numerical scheme can reproduce 

the cold plasma results. This chapter mainly discusses the implementation details, the results from this 

model can be seen in Figure 8. 

 

4.1 Implementation of the Helmholtz equation 
 

Even though the double curl of the electric field,  ∇ × ∇ × �⃗� (𝑟 ), might look difficult to implement, it 

is not the most challenging contribution to equation (11). A shorthand notation is used, where the curl-

curl is written as the tensor �⃗⃗� ⃗⃗ , acting on �⃗� . When curvature of the magnetic field is not included, �⃗⃗� ⃗⃗  has 

a rather simple expression: 

 

 −∇ × ∇ × �⃗� (𝑟 ) = �⃗⃗� ⃗⃗ �⃗� (𝑟 ) =

[
 
 
 
 
 
 
𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
−

𝜕2

𝜕𝑥𝜕𝑦
−

𝜕2

𝜕𝑥𝜕𝑧

−
𝜕2

𝜕𝑥𝜕𝑦

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
−

𝜕2

𝜕𝑦𝜕𝑧

−
𝜕2

𝜕𝑥𝜕𝑧
−

𝜕2

𝜕𝑦𝜕𝑧

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2]
 
 
 
 
 
 

�⃗� (𝑟 ) (66) 

 

The expression for �⃗⃗� ⃗⃗  can be further simplified for the 1D case under consideration. The only free 

direction of the electric field �⃗� (𝑟 ) is the 𝑥-direction; 𝑦- and 𝑧-dependence is captured by assuming a 

plane wave solution in �̂�- and �̂�-direction, with the wave numbers 𝑘𝑦0 and 𝑘𝑧0 respectively. Suitable 

choices for these wavenumbers are found by an a-priori assumption of the antenna excitation in these 

directions, either by experimental data, or through higher-dimensional models. Under this assumption, 

�⃗� (𝑟 ) is given by: 

 

 �⃗� (𝑟 ) = �⃗� (𝑥)𝑒𝑖(𝑘𝑦0𝑦+𝑘𝑧0𝑧) (67) 

 

This choice simplifies the double curl matrix �⃗⃗� ⃗⃗  significantly, as the derivatives with respect to 𝑦 and 

𝑧 reduce to multiplications with 𝑖𝑘𝑦 and 𝑖𝑘𝑧 respectively. Therefore, without curvature, the final 

expression for �⃗⃗� ⃗⃗  becomes: 

 

 �⃗⃗� ⃗⃗ =

[
 
 
 
 
 
 −(𝑘𝑦

2 + 𝑘𝑧
2) −𝑖𝑘𝑦

𝜕

𝜕𝑥
−𝑖𝑘𝑧

𝜕

𝜕𝑥

−𝑖𝑘𝑦

𝜕

𝜕𝑥
−𝑘𝑧

2 +
𝜕2

𝜕𝑥2
𝑘𝑦𝑘𝑧

−𝑖𝑘𝑧

𝜕

𝜕𝑥
𝑘𝑦𝑘𝑧 −𝑘𝑦

2 +
𝜕2

𝜕𝑥2]
 
 
 
 
 
 

 (68) 

 

A derivation of �⃗⃗� ⃗⃗  in the curved field line case has been included in Appendix C. Some extra terms 

appear, but the approach is very similar. Both versions are implemented in code, however all results are 

generated with corrections for curvature taken into account. 
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4.2 Formulation of the cold plasma system of equations 
 

Using the matrix style of formulation for the curl-curl that is discussed in the previous section, and 

using the cold plasma dielectric tensor as described in section 2.5.1, a very compact notation for the 

Helmholtz equation can be created. For simplicity, the Helmholtz equation for the cold plasma case in 

1D is repeated here. 

 

 −∇ × ∇ × �⃗� (𝑥) + 𝑘0
2𝜖  (𝑥) ∙ �⃗� (𝑥) = 0 (69) 

 

A common approach for all models, including the hot plasma models, is grouping the contributions 

for each partial derivative order. The curl-curl for example can be split into three submatrices �⃗⃗� ⃗⃗ 0, �⃗⃗� ⃗⃗ 1 and 

�⃗⃗� ⃗⃗ 2, where  �⃗⃗� ⃗⃗ 0, �⃗⃗� ⃗⃗ 1 and �⃗⃗� ⃗⃗ 2 now contain respectively the contributions for the 0th, 1st and 2nd derivatives of 

�⃗� (𝑥) with respect to 𝑥. 

 

 �⃗⃗� ⃗⃗ = �⃗⃗� ⃗⃗ 0 + �⃗⃗� ⃗⃗ 1
𝜕

𝜕𝑥
+ �⃗⃗� ⃗⃗ 2

𝜕2

𝜕𝑥2
 (70) 

 �⃗⃗� ⃗⃗ 0 = [

−(𝑘𝑦
2 + 𝑘𝑧

2) 0 0

0 −𝑘𝑧
2 𝑘𝑦𝑘𝑧

0 𝑘𝑦𝑘𝑧 −𝑘𝑦
2

] (71) 

 �⃗⃗� ⃗⃗ 1 = [

0 −𝑖𝑘𝑦 −𝑖𝑘𝑧

−𝑖𝑘𝑦 0 0

−𝑖𝑘𝑧 0 0

]  (72) 

 �⃗⃗� ⃗⃗ 2 = [
0 0 0
0 1 0
0 0 1

] (73) 

 

The dielectric tensor is already a 3 × 3 tensor, without need for derivatives with respect to 𝑥, and as 

such it can be combined with �⃗⃗� ⃗⃗ 0. As such, it is possible to formulate the sub-matrices �⃗⃗� ⃗⃗ 0, �⃗⃗� ⃗⃗ 1 and �⃗⃗� ⃗⃗ 2 

that correspond to the contributions for the 0th, 1st and 2nd derivatives of �⃗� (𝑥) respectively. 

 

 �⃗⃗� ⃗⃗ 0 = �⃗⃗� ⃗⃗ 0 + 𝑘0
2𝜖   (74) 

 �⃗⃗� ⃗⃗ 1 = �⃗⃗� ⃗⃗ 1 (75) 

 �⃗⃗� ⃗⃗ 2 = �⃗⃗� ⃗⃗ 2 (76) 

 

This combination forms the final form of the Helmholtz equation that is implemented in MATLAB. 

 

 (�⃗⃗� ⃗⃗ 0 + �⃗⃗� ⃗⃗ 1
𝜕

𝜕𝑥
+ �⃗⃗� ⃗⃗ 2

𝜕2

𝜕𝑥2
) ∙ �⃗� (𝑥) = 0 (77) 

 

The partial derivatives with respect to 𝑥 are implemented using a finite difference scheme of second 

order accuracy. As such, each grid-point adds three 3 × 3 tensors to the system matrix, 27 contributions 

in total. 

The results of this model for the JET parameters in appendix B have already been shown during the 

discussion of the cold plasma dispersion relation, Figure 8. 
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5 Hot plasma models 
 

Three hot plasma models have been created, each with their own strengths and weaknesses. First, an 

“all-orders model” is discussed, which is accurate, but computationally very heavy. Secondly, a 

“truncated Taylor series model” is discussed, which is very fast, but fails to predict the damping of the 

Ion Bernstein Wave correctly. Finally, a “truncated polynomial fit model” is discussed, which aims to 

combine the best from both worlds. 

 

5.1 All-orders model 
 

The first model that is discussed, is an all-orders model. All-orders refers to the fact that no 

assumption is made on the value of 𝜆𝑗. It has been created based on the All-Orders Spectral Algorithm 

(AORSA), from the work by Fred Jaeger [23]. This model was recreated for a 1-dimensional case, with 

a few minor changes. It is a computationally heavy, brute-force approach, and will be considered to be 

the benchmark throughout the report. A short summary of this model is given below, more details can 

be found in the AORSA paper. 

 

5.1.1 Expression of the electric field as a sum of Fourier modii 
 

The core of the AORSA code is the usage of the spectral collocation method, in which the electric 

field is expanded in a sum of Fourier modii. It is a simple, but effective way of discretizing the electric 

field spectrum, and it deserves a short description. The spectrum of the electric field, �⃗� (�⃗� ), is related to 

the electric field in spatial coordinates, �⃗� (𝑟 ), via the inverse spatial Fourier transform: 

 

 �⃗� (𝑟 ) = ∫ �⃗� (�⃗� )𝑒𝑖�⃗� ∙𝑟 𝑑�⃗� . (78) 

 

The spectrum is a continuous, complex function of �⃗� , and like the electric field in the spatial domain 

it is unknown. However, in a one-dimensional simulation domain of a certain length 𝐿, it is easy to depict 

field modii that fit an integer number of wavelengths in the cavity. The corresponding wavenumbers 𝑘𝑛 

are given by: 

 

 𝑘𝑛 =
2𝜋𝑛

𝐿
. (79) 

 

Here 𝑛 is an integer mode number, ranging from −
𝑁

2
 to 

𝑁

2
. 𝑁 is the number of gridpoints, but it is 

simultaneously the total number of modii. The expansion is only made in the �̂�-direction in the one-

dimensional case. Similar to the cold plasma, a plane wave solution is assumed for the �̂�- and �̂�-direction, 

with wavenumbers 𝑘𝑦0 and 𝑘𝑧0 based on assumptions, measurements of simulations of the expected 

antenna spectrum in those directions. �⃗� (𝑟 ) can then be expressed as the aforementioned sum of electric 

field modii. The goal of the all-orders simulation is finding the values for each electric field mode �⃗� 𝑛. 

 

 �⃗� (𝑥) = ∑�⃗� 𝑛𝑒𝑖𝑘𝑛𝑥

𝑛

 (80) 
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5.1.2 Manipulation of the Helmholtz equation towards a system linear in �⃗⃗�  
 

Using a similar expansion for the plasma current, an expression is obtained that is linear in �⃗� 𝑛. At 

each position in the plasma, the plasma current can be found based on the local spectrum of the hot 

plasma dielectric tensor [23], 

 

 𝐽 𝑝(𝑥) = ∑ 𝜎(𝑥, 𝑘𝑛)�⃗� 𝑛𝑒𝑖𝑘𝑛𝑥

𝑛

. (81) 

 

The expressions for the electric field and the plasma current can be substituted directly into the 

Helmholtz equation (11). Some rewrites, which are possible due to the distributive properties of the curl 

yields a system of equations in which �⃗� 𝑛 are the unknowns. 

 

 ∑ [−∇ × ∇ × �⃗� 𝑛 + 𝑘0
2�⃗� 𝑛𝜖  (𝑥, 𝑘𝑛)] 𝑒𝑖𝑘𝑛𝑥

𝑛

= 0 (82) 

 

This equation can be cleaned up using similar techniques as for the cold plasma model. First of all, 

the curl-curl is written in tensor form. It differs slightly from the cold plasma tensor in equation (68), in 

that the partial derivatives with respect to 𝑥 are now replaced by 𝑖𝑘𝑛. 

 

 �⃗⃗� ⃗⃗ = [

−(𝑘𝑦0
2 + 𝑘𝑧0

2 ) 𝑘𝑛𝑘𝑦0 𝑘𝑛𝑘𝑧0

𝑘𝑛𝑘𝑦0 −(𝑘𝑛
2 + 𝑘𝑧0

2 ) 𝑘𝑦0𝑘𝑧0

𝑘𝑛𝑘𝑧0 𝑘𝑦0𝑘𝑧0 −(𝑘𝑛
2 + 𝑘𝑦0

2 )

] (83) 

 

The curl-curl tensor �⃗⃗� ⃗⃗  can again be grouped together with the dielectric tensor 𝜖   to produce the 

combined tensor �⃗⃗� ⃗⃗ 𝑛, 

 

 �⃗⃗� ⃗⃗ 𝑛 = �⃗⃗� ⃗⃗ (𝑘𝑛) + 𝑘0
2𝜖  (𝑥, 𝑘𝑛), (84) 

 

which allows for a very compact notation of equation (82):  

 

 ∑�⃗⃗� ⃗⃗ 𝑛(𝑥, 𝑘𝑛)𝑒𝑖𝑘𝑛𝑥�⃗� 𝑛
𝑛

= 0. (85) 

 

Even though this entire section has been tailored to 1D simulations, extension to 2D and 3D is 

possible with minimal effort. In the AORSA code for example, a 2-dimensional derivation is performed, 

starting from an expansion in Fourier harmonics in both �̂� and �̂�-direction. 
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5.1.3 Introduction of the weak form by using the Fast Fourier Transform 
 

So far, the approach is near-identical to the approach taken in the AORSA code. At this point, the 

approach slightly differs. The system matrices that are obtained with the AORSA approach are typically 

nearly stochastic. A more regular matrix, with the dominant contributions on the main diagonal, is 

produced by writing down the weak formulation of (85) using test functions 𝐺𝑛. 

 

 𝐺𝑛(𝑥) = 𝑒−𝑖𝑘𝑛
′ ∙𝑥 (86) 

 

The weak form requires multiplication by 𝐺𝑛 and integration over the entire domain. 

 

 ∫ 𝑒−𝑖𝑘𝑛
′ 𝑥 (∑�⃗⃗� ⃗⃗ 𝑛(𝑥, 𝑘𝑛)𝑒𝑖𝑘𝑛𝑥�⃗� 𝑛

𝑛

)𝑑𝑥
𝐿

0

= 0 (87) 

 

Swapping the sum and integral, and regrouping components, gives the new expression for the 

Helmholtz equation.  

 

 ∑ (∫ 𝑒−𝑖𝑘𝑛
′ 𝑥�⃗⃗� ⃗⃗ 𝑛(𝑥, 𝑘𝑛)𝑒𝑖𝑘𝑛𝑥𝑑𝑥

𝐿

0

) �⃗� 𝑛
𝑛

= 0 (88) 

 

The multiplication with the basis functions, and the integration, are computationally expensive: tests 

showed out the time required scaled approximately with 𝑁3 for this formulation. Fortunately, due to the 

nature of the basis functions, this operation can be very efficiently executed by using a Fast Fourier 

Transform (FFT), bringing it down to a complexity of roughly 𝑁 log𝑁. Some rewriting is required in 

order to shape (88) into a form that is compatible with MATLAB’s Fourier transform. The definition of 

its built-in fft function is given by [53]: 

 

 𝑌(𝑘) = 𝑓𝑓𝑡(𝑋) = ∑𝑋(𝑗)𝑒−
2𝜋𝑖
𝑁

(𝑗−1 )(𝑘−1)

𝑛

𝑗=1

 (89) 

 

First, the integral needs to be discretized, with ℎ the grid spacing: ℎ = 𝐿/(𝑁 − 1). 

 

 ∑(∑𝑒−𝑖𝑘𝑛
′ 𝑥𝑠�⃗⃗� ⃗⃗ 𝑛(𝑥𝑠 , 𝑘𝑛)𝑒𝑖𝑘𝑛𝑥𝑠

𝑠

)ℎ�⃗� 𝑛
𝑛

= 0 (90) 

 

Here 𝑘𝑛
′  is a symmetric spectrum with 𝑁 modes. 𝑛′ ranges from 1…𝑁, and the corresponding modes 

range from −𝑁𝑘 … 𝑁𝑘 (𝑁 = 2𝑁𝑘 + 1). Furthermore, with 𝑛 = 1… 𝑁 as well, the expressions for 𝑘𝑛
′  are 

similar, given by: 

 

 𝑘𝑛
′ =

2𝜋(𝑛′ − 𝑁𝑘 − 1)

𝐿
, (91) 

 𝑘𝑛 =
2𝜋(𝑛 − 𝑁𝑘 − 1)

𝐿
. (92) 

 

The grid is sampled at “fft-compatible” gridpoints 𝑥𝑠, with 𝑠 = 1…𝑁: 

 

 𝑥𝑠 = (𝑠 − 1)
𝐿

𝑁
 . (93) 
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These expressions can be substituted in (90), yielding an expression that closely resembles 

MATLAB’s fft transform. 

 

 ∑(∑[𝑒𝑖(𝑘𝑛+𝑘𝑁)𝑥𝑠�⃗⃗� ⃗⃗ 𝑛(𝑥𝑠, 𝑘𝑛)] 𝑒−
2𝜋𝑖
𝑁

(𝑠−1)(𝑛′−1)

𝑁

𝑠=1

)ℎ�⃗� 𝑛
𝑛

= 0 (94) 

 

Which yields effectively: 

 

 ∑�⃗⃗� ⃗⃗ 𝑛
𝑓𝑓𝑡(𝑥𝑠, 𝑘𝑛)�⃗� 𝑛

𝑛

= 0, (95) 

 �⃗⃗� ⃗⃗ 𝑛
𝑓𝑓𝑡(𝑥𝑠, 𝑘𝑛) = fft [ℎ𝑒𝑖(𝑘𝑛+𝑘𝑁)𝑥𝑠�⃗⃗� ⃗⃗ 𝑛(𝑥𝑠 , 𝑘𝑛)]. (96) 

 

As mentioned before, the power of the fast Fourier transform dramatically speeds up the computation 

of the integrals, changing it from a computational complexity of about 𝑁3 to a complexity of  roughly 

𝑁 log𝑁. With this reformulation, the matrix inversion is again the computational bottleneck. 

 

5.1.4 Implementation in MATLAB 
 

Except for the boundary conditions, the system matrix for the all-orders model has a fill factor of 

100%. Each grid point adds 𝑁 3 × 3 tensors to the matrix. Therefore, there are a total of 3𝑁 × 3𝑁 

contributions in the core of the system matrix in a one-dimensional case. The boundary conditions add a 

few extra rows and columns, but this is a minor addition to the large, full core matrix. A sketch of the 

core matrix, as it is implemented in MATLAB, is provided in equation (97). 

 

 

[
 
 
 
 
 �⃗⃗� 
⃗⃗ 

1
𝑓𝑓𝑡(𝑥1, 𝑘1) �⃗⃗� ⃗⃗ 2

𝑓𝑓𝑡(𝑥1, 𝑘2) … �⃗⃗� ⃗⃗ 𝑁
𝑓𝑓𝑡(𝑥1, 𝑘𝑁)

�⃗⃗� ⃗⃗ 1
𝑓𝑓𝑡(𝑥2, 𝑘1) �⃗⃗� ⃗⃗ 2

𝑓𝑓𝑡(𝑥2, 𝑘2)  ⋮
⋮  ⋱  

�⃗⃗� ⃗⃗ 1
𝑓𝑓𝑡(𝑥𝑁 , 𝑘1) …  �⃗⃗� ⃗⃗ 𝑁

𝑓𝑓𝑡(𝑥𝑠, 𝑘𝑁)]
 
 
 
 
 

[
 
 
 
 �⃗�
 
1

�⃗� 2
⋮

�⃗� 𝑁]
 
 
 
 

= [

0
0
⋮
0

] (97) 

 

Due to the expansion of the electric field in its spectral components, the Dirichlet boundary conditions 

for the electric field require some extra attention for the all orders model. The desired values for the 

electric field at the left and right wall are the same as those discussed in (60)-(63). The excitation at the 

right wall is taken as an example. 

 

 ∑ 𝐸𝑦,𝑛𝑒𝑖𝑘𝑛𝑎

𝑛

= 1 (98) 

 

These boundary conditions are appended to the system matrix, using the Lagrange multiplier 

approach that is discussed in chapter 3.4, adding a total of 4 rows and 4 columns. 
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5.1.5 All-orders model results 
 

A high-resolution simulation is presented, consisting of 5001 grid points/modii. This is about the 

limit that a PC with 16GB RAM can comfortably run before running into memory issues. A JET-like 

scenario is chosen, with the parameters as discussed in Appendix B, and profiles as discussed in chapters 

3.2 and 3.3. It is a deuterium plasma, with a 5% hydrogen minority. The results from this all-orders 

simulation are used as a point of reference for all other hot-plasma simulations. 

 

 
Figure 19: Real part of the electric field components, as calculated by the all-orders model. Only the region 

between −𝑎 and 𝑎 is plotted. The spill-over regions are cut away. Furthermore, the transition between the core 

plasma profiles and the edge plasma profiles is indicated with the dashed red lines. Note how the short-wavelength 

Ion Bernstein Wave is present in this hot-plasma case, in contrast to the cold plasma. 

The fundamental hydrogen ion cyclotron resonance layer is present slightly to the right of 𝑥 = 0. 

Around this point, the fast wave loses much of its amplitude, indicating absorption. In contrast to the 

cold-plasma results, a short-wavelength wave is present to the left of 𝑥 = 0. This is the mode-converted 

Ion Bernstein Wave (IBW). The wave generated in the core of the machine, near the fundamental 

hydrogen cyclotron resonance. Visual inspection learns that the IBW is damped out by the time it reaches 

𝑥 = −0.66m. 
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5.2 Truncated Taylor Series model 
 

Instead of following the approach taken by the all-orders model, where the entire equation is solved 

in the spectral domain, everything is now written in the spatial domain. The description that follows in 

this chapter shows just one of the possible routes that can be used. It was suggested by Dirk van Eester 

and adapted for 1D application. This model will make assumptions on the value of 𝜆𝑗, which is incorrect 

for mode-converted Bernstein waves. Still, the approach taken is very elegant, and it lays the foundation 

for the truncated polynomial model, which is discussed in chapter 5.3. 

 

5.2.1 Taylor Expansion of the dielectric tensor 
 

As discussed before, an a-priori choice for the wavenumbers 𝑘𝑦0 and 𝑘𝑧0 are chosen in �̂�-, and �̂�-

direction respectively, based on the antenna parameters, 2D or 3D simulations, or experimental results. 

Only 𝑘𝑥 corresponds to a free direction. These three wavenumbers are grouped together in what will be 

called the continuous wave vector �⃗� 𝑐: 

 

 �⃗� 𝑐 = [𝑘𝑥 𝑘𝑦0 𝑘𝑧0 ]𝑇 . (99) 

 

In this case, 𝜖  (𝑥, �⃗� ) becomes only dependent on the local plasma parameters at a certain position 𝑥, 

and the wavenumber in �̂�-direction, 𝑘𝑥, via �⃗� 𝑐: 

 

 𝜖  (𝑥, �⃗� ) = 𝜖  (𝑥, �⃗� 𝑐)𝛿(𝑘𝑦 − 𝑘𝑦0)𝛿(𝑘𝑧 − 𝑘𝑧0). (100) 

 

The next step is writing down the Taylor expansion of 𝜖  (𝑥, 𝑘𝑥) around a test wavenumber 𝑘𝑥𝑡, which 

together with the chosen 𝑘𝑦0 and 𝑘𝑧0 results in the test wavevector �⃗� 𝑡: 

 

 �⃗� 𝑡 = [𝑘𝑥𝑡 𝑘𝑦0 𝑘𝑧0 ]𝑇 . (101) 

 

The second order Taylor expansion is than simply given by: 

 

 𝜖  (𝑥, �⃗� 𝑐) ≈ 𝜖  (𝑥, �⃗� 𝑡) + (𝑘𝑥 − 𝑘𝑥𝑡)𝜖 
 
𝑘𝑥

+
1

2
(𝑘𝑥 − 𝑘𝑥𝑡)

2𝜖  𝑘𝑥𝑘𝑥
. (102) 

 

Where the compact notation 𝜖  𝑘𝑥
 and 𝜖  𝑘𝑥𝑘𝑥

 denote respectively the first and second derivatives of 

𝜖  (𝑥, �⃗� 𝑐) with respect to 𝑘𝑥, evaluated at �⃗� 𝑡: 

 

 𝜖  𝑘𝑥
= [

𝜕

𝜕𝑘𝑥

𝜖  (𝑥, �⃗� 𝑐)]
�⃗� 𝑐=�⃗� 𝑡

, (103) 

 𝜖  𝑘𝑥𝑘𝑥
= [

𝜕2

𝜕𝑘𝑥
2
𝜖  (𝑥, �⃗� 𝑐)]

�⃗� 𝑐=�⃗� 𝑡

. (104) 

 

This approximation holds under the condition that the spectrum is narrow, such that a Taylor 

expansion around a certain �⃗� 𝑡 is justified. Note also that the derivatives act on each of the dielectric 

components separately, such that, for example: 
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 𝜖  𝑘𝑥
=

[
 
 
 
 
 
 

𝜕

𝜕𝑘𝑥

𝜖11(𝑥, �⃗� 𝑐)
𝜕

𝜕𝑘𝑥

𝜖12(𝑥, �⃗� 𝑐)
𝜕

𝜕𝑘𝑥

𝜖13(𝑥, �⃗� 𝑐)

𝜕

𝜕𝑘𝑥

𝜖21(𝑥, �⃗� 𝑐)
𝜕

𝜕𝑘𝑥

𝜖22(𝑥, �⃗� 𝑐)
𝜕

𝜕𝑘𝑥

𝜖23(𝑥, �⃗� 𝑐)

𝜕

𝜕𝑘𝑥

𝜖31(𝑥, �⃗� 𝑐)
𝜕

𝜕𝑘𝑥

𝜖32(𝑥, �⃗� 𝑐)
𝜕

𝜕𝑘𝑥

𝜖33(𝑥, �⃗� 𝑐)]
 
 
 
 
 
 

�⃗� 𝑐=�⃗� 𝑡

. (105) 

 

A graph of 𝜖11(𝑥, �⃗� 𝑐) is provided, together with its Taylor expansion around 𝑘𝑥𝑡 = 0 in Figure 20. 

 

 
Figure 20: Comparison between the calculated spectrum of the dielectric tensor component 𝜖11 (solid line) 

and the second order Taylor expansion (dashed line) around 𝑘𝑥𝑡 = 0. The spectrum is taken in the core of JET, 

under the same JET parameters used throughout the report. Only the real part of 𝜖11 is plotted. 

5.2.2 Differential operators and inverse Fourier transform 
 

A very neat property of the inverse spatial Fourier transform is now used, which is the key to both 

the truncated Taylor model, and the truncated polynomial model. For an arbitrary function 𝑓(𝑘), the 

inverse Fourier of 𝑘𝑛𝑓(𝑘) results in an 𝑛𝑡ℎ derivative of 𝑓(𝑥) [54]:  

 

 ∫ (𝑖𝑘)𝑛
𝑓(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘

∞

−∞

=
𝑑𝑛

𝑑𝑥𝑛
𝑓(𝑥). (106) 

 

Note that this transform requires a bilateral Fourier transform: it assumed the full spectrum, from −∞ 

to ∞ is considered. This might be a source for error, as the spectrum of 𝜖   is in principle infinitely wide, 

and both the truncated Taylor model and the truncated polynomial model fail to account for the full 

spectrum.  

This property is quite important, as it allows writing the integro-differential wave equation from the 

hot plasma model as a purely differential model. Sparse, banded matrices are obtained, instead of the 

completely filled matrices, common to the all-orders model. Both the truncated Taylor series model, and 

the Truncated polynomial fit model, discussed in section 5.3, use this property. 
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5.2.3  Substitution in wave equation 
 

In order to make full use of the inverse Fourier transform property described above, it is useful to 

rewrite the Taylor expansion, and group the contributions by powers of 𝑘𝑥.  

 

 𝜖  (𝑥, �⃗� 𝑐) ≈ (𝜖  (𝑥, �⃗� 𝑡) − 𝑘𝑥𝑡𝜖 
 
𝑘𝑥

+
1

2
𝑘𝑥𝑡

2 𝜖  𝑘𝑥𝑘𝑥
) + (𝜖  𝑘𝑥

− 𝑘𝑥𝑡𝜖 
 
𝑘𝑥𝑘𝑥

) 𝑘𝑥 + (
1

2
𝜖  𝑘𝑥𝑘𝑥

) 𝑘𝑥
2 (107) 

 

The three groups that correspond to 𝑘𝑥
0, 𝑘𝑥

1 and 𝑘𝑥
2 will be denoted as the 3 × 3 tensors ℰ  0, ℰ  1 and ℰ  2 

respectively: 

 

 ℰ  0 = 𝜖  (𝑥, �⃗� 𝑡) − 𝑘𝑥𝑡𝜖 
 
𝑘𝑥

+
1

2
𝑘𝑥𝑡

2 𝜖  𝑘𝑥𝑘𝑥
, (108) 

 ℰ  1 = 𝜖  𝑘𝑥
− 𝑘𝑥𝑡𝜖 

 
𝑘𝑥𝑘𝑥

, (109) 

 ℰ  2 =
1

2
𝜖  𝑘𝑥𝑘𝑥

. (110) 

 

This choice allows for a very compact notation of 𝜖  (𝑥, �⃗� 𝑐): 

 

 𝜖  (𝑥, �⃗� 𝑐) ≈ ℰ  0 + ℰ  1𝑘𝑥 + ℰ  2𝑘𝑥
2. (111) 

 

When the approximation for the dielectric tensor is then substituted in the one-dimensional hot-

plasma wave equation, the intermediate result is:  

 

 −∇ × ∇ × �⃗� (𝑥) + 𝑘0
2 ∫[ℰ  0 + ℰ  1𝑘𝑥 + ℰ  2𝑘𝑥

2] ∙ �⃗� (𝑘𝑥)𝑒
𝑖𝑘𝑥𝑥𝑑𝑘𝑥 = 0. (112) 

 

At this point, the inverse Fourier transform property can be used, which transforms the powers of 𝑘𝑥 

into derivatives with of �⃗� (𝑥) respect to 𝑥. It is at this point that the integro-differential equation becomes 

a purely differential equation, which can be solved much faster. 

 

 −∇ × ∇ × �⃗� (𝑥) + 𝑘0
2 [ℰ  0 − 𝑖ℰ  1

𝜕

𝜕𝑥
− ℰ  2

𝜕2

𝜕𝑥2
] �⃗� (𝑥) = 0 (113) 

 

Finally, by writing the curl-curl again as the tensor components �⃗⃗� ⃗⃗ 0, �⃗⃗� ⃗⃗ 1 and �⃗⃗� ⃗⃗ 2, the final expression 

in terms of the 3 × 3 tensors �⃗⃗� ⃗⃗ 0, �⃗⃗� ⃗⃗ 1 and �⃗⃗� ⃗⃗ 2 is given, where the subscripts denote the contributions for 

the 0th, 1st and 2nd order derivatives respectively: 

 

 [�⃗⃗� ⃗⃗ 0 + �⃗⃗� ⃗⃗ 1
𝜕

𝜕𝑥
+ �⃗⃗� ⃗⃗ 2

𝜕2

𝜕𝑥2
] �⃗� (𝑥) = 0, (114) 

 �⃗⃗� 0 = �⃗⃗� ⃗⃗ 0 + 𝑘0
2ℰ  0, (115) 

 �⃗⃗� 1 = �⃗⃗� ⃗⃗ 0 − 𝑖𝑘0
2ℰ  1, (116) 

 �⃗⃗� 2 = �⃗⃗� ⃗⃗ 2 − 𝑘0
2ℰ  2. (117) 
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5.2.4 Truncated Taylor Series model results 

 
The results for the truncated Taylor series model is given in Figure 21. All parameters and profiles 

are kept the same as for the all-orders model: it is again a JET-like scenario, with 5% hydrogen in 

deuterium. Instead of 5001 grid points, 100.000 grid points were chosen, to highlight the strength, but 

also weakness of this approach. 

 
Figure 21: Real part of the electric field components, as calculated by the truncated Taylor series model. Only 

the region between −𝑎 and 𝑎 is plotted, bounded by the dashed blue lines, the spill-over regions are cut away. 

Furthermore, the transition between the core plasma profiles and the edge plasma profiles is indicated with the 

dashed red lines. 

The results from this model mainly differs from the all-orders results in Figure 19, left of the cyclotron 

resonance layer. The damping of the IBW is much smaller, resulting in propagation of this wave until 

the left wall. Due to the decreasing temperature near the edge, the Larmor radius decreases and the IBW 

shrinks with it. The high resolution reveals that the IBW keeps propagating until it hits the left wall, at 

which point it has a wavelength of only 0.7mm. This in contrast to the all-orders model, where the wave 

doesn’t even come close to leaving the plasma core. To summarize: this approach is very fast, even with 

100.000 grid points, but damping of the IBW is underestimated. This is visible in the absorbed power as 

well, as will be discussed in chapter 6.2.  
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5.3 Truncated Polynomial Fit model 
 

This model is the main product of this work. It is based on the observation that the dielectric tensor 

is, under most circumstances, a very smooth and slowly varying function of 𝑘⊥, and this property is 

exploited by fitting an 𝑁𝑝
𝑡ℎ order polynomial through the dielectric tensor components. A neat property 

of the Fourier transform than allows a reduction from an integro-differential model to a 𝑁𝑝
𝑡ℎ order 

differential model. This offers significant benefits regarding computational complexity compared to the 

all-orders model, while not sacrificing too much accuracy, as will be shown in the results. 

 

5.3.1 Approximating the dielectric tensor in �⃗⃗� -space 
 

The dielectric tensor 𝜖  (𝑟 , �⃗� ) is dependent on the local plasma conditions like magnetic field, 

temperature and densities, and the wavenumber of interest. In a 1D simulation, 𝑘𝑦 and 𝑘𝑧 at position 𝑥𝑖 

are known and fixed as well. Therefore, the 9 dielectric tensor components 𝜖𝑖𝑗 at position 𝑥𝑖 can be 

written as a function of 𝑘𝑥: 

 

 𝜖𝑖𝑗(𝑟 , �⃗� )|𝑥=𝑥𝑖
= 𝜖𝑖𝑗(𝑘𝑥). (118) 

 

ICRH simulations with AORSA suggest that ion Bernstein waves with wavelengths comparable to 

the Larmor radius are born: 𝑘𝑥𝜌𝐿~1 [23]. However, upon inspection of the dielectric tensor components 

it becomes clear that it should be possible to approximate the components up to 𝑘𝑥𝜌𝐿~2 with a 

polynomial of order 𝑁𝑝: 

 

 𝜖𝑖𝑗(𝑥, 𝑘𝑥) ≈ ∑ 𝑐𝑖𝑗,𝑝(𝑥)𝑘𝑥
𝑝

𝑁𝑝

𝑝=0

. (119) 

 

This is visualized in Figure 22, where an 8-th order polynomial is fitted through −1 < 𝑘𝑥𝜌𝐿 < 1 for 

JET-like parameters around the hydrogen ion resonance layer, with Maxwellian distribution functions. 

 
Figure 22: Demonstration of an 8-th order fit through −1 < 𝜌𝐿𝑘𝑥 < 1, for JET-like parameters around the 

hydrogen resonance layer. The fits are the dashed red lines, the computed values are the solid lines. 
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This expansion again allows usage of (106), the property of the inverse Fourier transform, that states 

that 

 

 ∫ (𝑖𝑘)𝑛𝑓(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘
∞

−∞

=
𝑑𝑛

𝑑𝑥𝑛
𝑓(𝑥). (120) 

 

Therefore, the inverse Fourier transform for the hot plasma current density can be translated to a sum 

of derivatives, up to order 𝑁𝑝. Per grid point 𝑥𝑖 9 fits are performed, one for each dielectric tensor 

component 𝜖𝑖𝑗. The coefficients for each power 𝑝 of 𝑘𝑥 are housed in the 3 × 3 tensor 𝑐  𝑝, yielding: 

 

 ∫𝜖  (𝑥, 𝑘𝑥) ∙ �⃗� (𝑘𝑥)𝑒
𝑖𝑘𝑥𝑥𝑑𝑘𝑥 ≈ ∑ −𝑖𝑝𝑐  𝑝(𝑥)

𝑑𝑝

𝑑𝑥𝑝

𝑁𝑝

𝑝=0

�⃗� (𝑥). (121) 

 

Rewriting the curl-curl as the operator �⃗⃗� ⃗⃗ , as in equation (66), and inserting (121) in the general 

Helmholtz equation , yields the intermediate differential form of the Helmholtz equation: 

 

 (�⃗⃗� ⃗⃗ (𝑥) + 𝑘0
2 ∑ −𝑖𝑝𝑐  𝑝(𝑥)

𝑑𝑝

𝑑𝑥𝑝

𝑁𝑝

𝑝=0

) �⃗� (𝑥) = 0. (122) 

 

A very clean expression remains for the Helmholtz equation: 

 

 ∑ �⃗⃗� ⃗⃗ 𝑝
𝑑𝑝

𝑑𝑥𝑝

𝑁𝑝

𝑝=0

�⃗� (𝑥) = 0, (123) 

 

with �⃗⃗� ⃗⃗ 𝑝 the 3 × 3 tensor containing the contributions from �⃗⃗� ⃗⃗ 𝑝 and 𝑐  𝑝. It should be clear that �⃗⃗� ⃗⃗ 𝑝 only 

delivers contributions for 𝑝 = 0,1,2, while 𝑐  𝑝 delivers contributions up to 𝑝 = 𝑁𝑝. 

 

 �⃗⃗� ⃗⃗ 𝑝 = �⃗⃗� ⃗⃗ 𝑝 − 𝑘0
2𝑖𝑝𝑐  𝑝(𝑥) (124) 
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5.3.2 Implementation in MATLAB 
 

Equation (123) is implemented in MATLAB, using the expressions for the dielectric tensor, and the 

limit for 𝑘⊥ → 0 is implemented as explained in Appendix E.  

For every position in the plasma, the Larmor radius 𝜌𝐿 of the lightest ion species in the plasma is 

determined. The window over which the fit is performed, ranging from −𝑘𝑥𝑚𝑎𝑥 …𝑘𝑥𝑚𝑎𝑥 , is scaled with 

the local Larmor radius. Effectively, this means that for the lower temperatures near the edge, a wider 

spectrum is considered for the fit. A “window size” parameter 휁 is introduced for this purpose, such that 

the quantity 𝑘𝑥𝜌𝐿𝑗  stays constant across the simulation domain. Note that 휁 bears a lot of similarities with 

𝜆𝑗, equation (42). 

 

 𝑘𝑥𝑚𝑎𝑥𝜌𝐿𝑚𝑖𝑛 = 휁 (125) 

 

The dielectric tensor is then sampled at a minimum of 𝑁𝑝 + 1 points in the range −𝑘𝑥𝑚𝑎𝑥 … 𝑘𝑥𝑚𝑎𝑥 . 

A least squares fit is than performed through these points to find 𝑁𝑝 + 1 coefficient matrices 𝑐  𝑝. The 

contributions from the curl-curl are then added according to (124) to find 𝑁𝑝 + 1 matrices �⃗⃗� ⃗⃗ 𝑝. A central 

difference scheme with 2nd order accuracy is used to find 𝑎𝑛
𝑝
, the coefficients for derivative order 𝑝 at 

gridpoint 𝑛. 

 

 𝐴  𝑛 = ∑
𝑎𝑛

𝑝

ℎ𝑝
�⃗⃗� ⃗⃗ 𝑝

𝑁𝑝

𝑝=0

 (126) 

 

As an example, for 𝑁𝑝 = 2: 

 

 𝐴  −1 = 0�⃗⃗� ⃗⃗ 0 +
−1/2

ℎ
�⃗⃗� ⃗⃗ 1 +

1

ℎ2
�⃗⃗� ⃗⃗ 2, (127) 

 𝐴  0 = 1�⃗⃗� ⃗⃗ 0 +
0

ℎ
�⃗⃗� ⃗⃗ 1 +

−2

ℎ2
�⃗⃗� ⃗⃗ 2, (128) 

 𝐴  1 = 0�⃗⃗� ⃗⃗ 0 +
1/2

ℎ
�⃗⃗� ⃗⃗ 1 +

1

ℎ2
�⃗⃗� ⃗⃗ 2. (129) 

 

At the edges of the simulation domain, periodic boundaries are assumed. The spill-over areas from 

the all-orders model are left intact. At the walls, at 𝑥 = ±𝑎, the boundary conditions for 𝐸𝑦 and 𝐸𝑧 are 

again inserted using Lagrange multipliers. 
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5.3.3 Truncated Polynomial fit results 

 
The results for the truncated Polynomial model is given in Figure 23. All parameters and profiles are 

kept the same as for the all-orders model: it is again a JET-like scenario, with 5% hydrogen in deuterium, 

and 5001 grid points. An 8th order polynomial was used, with a fit window the size of 휁 = 1.1.  

 
Figure 23: Real part of the electric field components, as calculated by the truncated Taylor Polynomial model. 

Only the region between −𝑎 and 𝑎 is plotted, bounded by the dashed blue lines, the spill-over regions are cut 

away. Furthermore, the transition between the core plasma profiles and the edge plasma profiles is indicated with 

the dashed red lines. 

The graph is remarkably similar to all-orders results in Figure 19, to the point where side-by-side 

comparisons reveal very little differences. Therefore, a quantitative description of the differences is given 

in the next chapter. However, it should be noted that in contrast to the truncated Taylor model, the IBW 

follows very similar characteristics to the all-orders model. Visual inspection reveals that the IBW has 

damped out by the time it reaches 𝑥 = −0.69m, which is very similar to the 𝑥 = −0.66m observed for 

the all-orders model.  
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6 Comparison of hot-plasma models 
 

In the previous chapter, three hot-plasma models have been introduced. Visual inspection gives some 

clues about the differences and similarities, but in order to rigorously compare how the models compare 

to each other, a metric that quantifies the error is desired. For this purpose, the Root Relative Squared 

Error (RRSE) is introduced [55]. This metric measures the error in the fields, normalized to the total 

power in the “signal”. When the simulation is denoted as 𝑃, and the actual value as 𝐴, the 𝑅𝑅𝑆𝐸  is given 

by 

 

 𝑅𝑅𝑆𝐸 = √
∑ |𝑃𝑛 − 𝐴𝑛|2𝑁

𝑛=1

∑ |𝐴𝑛 − �̅�|2𝑁
𝑛=1

. (130) 

 

In this equation, �̅� is the mean of the actual data, 

 

 �̅� =
1

𝑁
∑ 𝐴𝑛

𝑁

𝑛=1

. (131) 

 

The advantage of this metric is that it is provides an error relative to the total signal strength, without 

magnifying errors around zero-crossings. One disadvantage can be that phase shifts are punished. This 

is demonstrated in Figure 24: a small phase shift is seen as equally bad as a significant amplitude 

difference. However it turns out that all models produce very similar fast-wave results, both in phase and 

magnitude. The RRSE is useful in this case, as it mainly punishes differences in the IBW behavior: when 

the damping of this wave is not correct, there are often associated shifts present in the IBW as well. 

 

 
Figure 24: Example showing equal RRSE for a scaled and a shifted version of a sine wave.   

Other metrics could be used for additional information. The wave propagation simulations are often 

run in order to find the answer to some specific question: “where does the injected power end up”, “how 

efficient is the heating strategy”, or “which species gains the most energy”. This model lacks a 

description for the kinetic flux, which means that part of the power absorption is not accounted for. As 

such, these models cannot give a quantitative answer to those questions. Therefore, the choice is made 

to compare only the results for the electric field through the RRSE. However, section 6.2 gives a 

qualitative comparison between the absorbed power, based on the Poynting flux alone, between the all-

orders model and the truncated Taylor series model. 

The subsequent sections of this chapter compare the models with each other, bases on the RRSE 

metric. The last section concludes with a discussion about the computational time required by the three 

models. 
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6.1 Comparison of the electric field generated by the three hot-plasma models 
 

Visual inspection of the electric fields generated by the three hot-plasma models already reveals some 

differences. In principle there are three electric field components: 𝐸𝑥, 𝐸𝑦 and 𝐸𝑧. However, 𝐸𝑧 is very 

weak due to the large conductivity parallel to the magnetic field, and 𝐸𝑦 does not contain the mode-

converted ion Bernstein wave for the JET-case under consideration. Therefore, only |𝐸𝑥| is shown in 

Figure 25. The focus is on the region where the ion Bernstein Wave is present, which is to the left of the 

fundamental hydrogen ion cyclotron resonance layer near 𝑥 = 0.  

 
Figure 25: Comparison of the results for |𝐸𝑥| by each model. The top two graphs show the “all-orders-like 

behavior” from the all-orders model (top left), and a high-order truncated polynomial fit model (top right). The 

bottom two graphs show the “truncated FLR-like behavior” from the truncated Taylor series model (bottom left) 

and a low-order truncated polynomial fit model (bottom right). The black dashed lines represent the separation 

between core plasma and edge plasma. Note mainly the difference in damping of the short-wavelength wave from 

right to left. 

The main difference between the 4 graphs can be found in the amount of damping of the mode-

converted ion-Bernstein wave from right to left; the fast wave behavior is near-identical regardless of the 

approach chosen. The two very similar graphs at the top reveal that a high-order truncated polynomial 

fit model is capable of reproducing fields closely resembling those of the all-orders model. Instead results 

closely resembling the truncated Taylor series model are achieved for a low polynomial order, 

demonstrating the versatility of the truncated polynomial fit model. 
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6.2 Absorbed power – All-orders compared to truncated Taylor series 

 
In order to rigorously describe the absorbed power, the model requires a description for the kinetic 

flux [19]. However, based on the electric fields alone, an estimate on the absorbed power can be made, 

based on the power carried by the Poynting flux alone [56].  

 

 𝑃𝑎𝑏𝑠(𝑥) =
1

2
𝑅𝑒{𝐸∗(𝑥)𝐽𝑝(𝑥)} (132) 

 

This will lead to slightly unphysical results, with the absorbed power for example oscillating around 

0 for the mode-converted ion Bernstein wave. However, it highlights a difference between the two 

approaches in the damping of the IBW. 

 

 

 
 

 
Figure 26: comparison of the absorbed power, based on the Poynting flux, between the all-orders model (top) 

and the truncated Taylor series model (bottom). Note how in the bottom graph, the power absorption is smeared 

out over a longer distance. 

Note how in the all-orders graph, the power absorption is much more concentrated. This matches the 

observations in the results for the electric field, where the IBW is damped more quickly. This quicker 

damping translates to a higher absorption. Depending on the scenario, the differences between the all-

orders approach and a truncated FLR approach can be larger than what is shown here [19].  
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6.3 RRSE as function of 𝑵– comparison between models 
 

To show the effect of increasing resolution, a comparison between the three models is made. For the 

truncated polynomial fit model, the choice is made for a fit window of 휁 = 1.2 and a polynomial order 

of 𝑁𝑝 = 8. For the JET case under consideration this choice provides all-orders-like results across a large 

range of resolutions, as demonstrated in Figure 27 and Figure 29. 

 

 
Figure 27: Error as function of the number of grid points, in comparison to a 5000-gridpoints all-orders 

model. For the truncated polynomial fit model, 𝑁𝑝 = 8 and 휁 = 1.2 is used. Note how the truncated Taylor series 

model error essentially flatlines after about 1000 grid points, while the truncated polynomial fit model can 

produce much lower errors. 

The truncated Taylor polynomial model does not benefit a lot from increasing the resolution beyond 

about 1000 grid points. Beyond this point, the fast wave results are correct, but the damping of the Ion 

Bernstein Wave is not, as demonstrated in Figure 25 . Increasing the resolution does not solve this issue. 

Meanwhile, the truncated polynomial fit can produce more accurate predictions of the Ion Bernstein 

Wave damping, which manifests itself in a lower RRSE. Compared to the all-orders model however, it 

comes at a drastically lower computational cost. 
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6.4 Comparison of the Computational complexity 
 

For the one-dimensional case under consideration, all models complete within minutes, even the all-

orders model. However, as indicated in Table 1 in the introduction, the real benefits are obtained for 2D 

and 3D situations. To examine how the models compare to each other, the computational time required 

to obtain the electric field is sampled at 500 different resolutions, and summarized in Figure 28. The 

computational effort is split in the preparation phase and the actual matrix solve.  

For the all-orders model, simulations up to 𝑁 = 5000 have been performed, as this is about the limit 

for a machine equipped with 16GB RAM. The two finite difference models can be run with much higher 

resolutions due to the sparsity of the matrices, and as such they have been calculated up to 𝑁 = 100 000. 

Linear fits have been calculated through the log-log plot, to determine the 𝑁𝛼 scaling for both the 

preparation phase and the matrix solve phase. For the preparation phase, the fit only takes the values for 

𝑁 > 2000 into account, as this is where linear behavior starts to be visible in all three models. 

 
Figure 28: Computational time taken for the electric field calculation by the three different models. The left 

image shows the time needed for the matrix inversion, while the right image shows the time needed for all other 

code. The vertical scaling is aligned for easy comparison. The straight lines indicate 𝑁𝛼 scaling. 

For the two finite difference models, the time required to solve the linear system scales approximately 

with 𝑁, while it scales with 𝑁2.7 for the all-orders model. The preparation phase consumes a significant 

amount of time for all three models, but scales approximately with 𝑁 for high resolutions.  

In Table 2 these findings are extrapolated to 2D and 3D situations, under the assumption that the 

same hardware is used and that each direction requires 200 modii. Additionally, the assumption is made 

that multi-dimensional finite difference schemes influence the computational time by raising the stencil 

size 𝑠 to the number of dimensions 𝐷: 𝑡 ∝ 𝑠𝐷. Without testing in practice, the 2D and 3D values are only 

speculative, but they should give a rough idea of the relative differences between the models. 

 

Table 2: Scaling of the computational time for a minimum resolution case (200 modii in each direction) in 1D, 

and extrapolation to 2D and 3D based on Figure 28. The assumption is made that the 1D computational times are 

representative for 2D and 3D computational times, and that the same hardware is used for all situations: an HP 

ZBook studio G4 with a quad-core i7-7700HQ and 16GB RAM. 

  

 Truncated Taylor Truncated 

Polynomial 

All-orders 

Matrix setup (measured) ∝ 𝑁0.9 ∝ 𝑁0.9 ∝ 𝑁1.1 

Matrix invert (measured.) ∝ 𝑁1.0 ∝ 𝑁1.1 ∝ 𝑁2.7 

Stencil size 3 9 − 

Time for 𝑁 = 200 (1D) - measured 0.11 s 0.55 s 5.2 s 

Time for 𝑁 = 4𝐸4 (~2D) - approx 3 ∙ 4 s = 12 s 9 ∙ 20 s = 3 min 5.5 h 

Time for 𝑁 = 8𝐸6 (~3D) - approx 9 ∙ 9 min = 81 min 81 ∙ 40 min = 54 h 920 years 
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7 Peculiarities of the truncated polynomial fit model 
 

For the results in the previous chapter, an 8th order polynomial was used with a window size of 휁 =
1.2. This choice is not set in stone; there is a lot of freedom in choosing both the polynomial order 𝑁𝑝 

and the fit window 휁. Both influence the quality of the fit, and the description of the dielectric tensor in 

𝑘-space. Furthermore, testing revealed that there is one additional, unexpected parameter that influences 

the results in a non-trivial manner: the number of gridpoints 𝑁. Intuition would suggest that higher 

resolutions yield more accurate simulations, and hence smaller errors. This is not the case for the 

truncated polynomial fit model: the solution becomes unstable above a certain resolution.  

This chapter is dedicated to showing the effect of changing 𝑁, 휁 and 𝑁𝑝 on the RRSE.  

 

7.1 Truncated polynomial fit model – behavior with respect to 𝑵 and 𝜻 
 

The results in the previous section showed that the truncated polynomial fit model is able to recreate 

results closely resembling the all-orders model using appropriate choices for the polynomial order and 

the fit window. However, further experimentation reveals that besides the polynomial order 𝑁𝑝 and the 

fit window 휁, there is a third parameter that strongly influences the results: the number of grid points 𝑁. 

Figure 29 contains a heatmap of the RRSE as function of both 𝑁 and 휁 for a polynomial of order 8. 

 

 
Figure 29: RRSE as function of both the number of grid points N and the fit window size 휁, with an 8th order 

polynomial. The RRSE is calculated with respect to an all-orders simulation with 5001 grid points. The left picture 

shows an overview for a large range of 𝑁 and 휁, while the right picture highlights a small section in high 

resolution. Note how in this zoom there are alternating resolutions of high and low RRSE. From the 10.000 

samples taken in both figures, a minimum RRSE of 0.22% is found at 𝑁 = 1504 and 휁 = 0.386. 

A clear relation between the resolution, the fit window and the error cannot be derived from this 

figure. Contrary to expectation, a higher resolution does not automatically lead to a lower error. There is 

an upper limit to the resolution, above which the error suddenly jumps up. Below this limit, two other 

interesting cases can be distinguished. Firstly, there are resolutions for which an appropriate selection 

for the fit window results in a reduced error. Secondly, there are resolutions that perform visibly worse 

than a slightly higher or slightly lower resolution, regardless of the chosen fit window. This effect is 

clearest in the zoom in Figure 29, where low-error resolutions alternate with higher-error resolutions.  

Tests pointed out that a similar effect can be observed in the truncated Taylor series model, which 

raises the suspicion that it is not necessarily the fit procedure that produces this behavior. One possible 

explanation is that the cyclotron resonance layer of one of the species 𝑗 ends near one of the grid points 

for some of the resolutions. This would make the argument of the plasma dispersion function 휁𝑛𝑗  a small 

number, see equation (43). In the MATLAB code, the plasma dispersion function is calculated using 

various approximations for the Dawson function, as the built-in function is very slow especially for 

|휁𝑛𝑗| < 10. In this same region the approximations are troublesome as well due to slowly converging 

sums, potentially resulting in numerical pollution. Tests have been run with the built-in Dawson function 

and higher precision approximations to no avail. 
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 Other sources of error could be the fact that near the plasma edge, the Larmor radius becomes very 

small, which means that the fit domain in 𝑘⊥ becomes wider than the maximum wave number supported 

by the resolution 2𝜋𝑁/𝐿. Finally, implementation errors of some kind have not been found, but they 

cannot be excluded. 

These effects combined pose a problem for the application of this model: without a-priori knowledge 

of the location of the minima in the error, an all-orders model is required to find a suitable combination 

of the resolution, the fit window and the polynomial order. 

 

 

7.2 Truncated Polynomial fit model – influence of the polynomial order 
 

As discussed in section 6.1 and section 7.1, the polynomial order 𝑁𝑝 is the third non-plasma related 

parameter that significantly influences the accuracy of the electric field calculation. In order to be able 

to draw some conclusions on the effect of the polynomial order, the following methodology is used. First 

the RRSE is calculated for 10.000 (𝑁, 휁) pairs for all polynomial orders between 𝑁𝑝 = 2 and 𝑁𝑝 = 12, 

creating figures like Figure 29a. These results can be found in Appendix F for the interested reader. All 

(𝑁, 휁) pairs which result in an RRSE>1 are discarded. Of the remaining samples, two figures are 

extracted: the minimum RRSE and the average RRSE. The results are summarized in Figure 30. 

 

 
Figure 30: Average RRSE and minimum RRSE for the truncated polynomial fit model, under different 

polynomial orders. In general, both the average error and the minimum error tend to go down with increasing 

polynomial order, with the most significant gains up to 𝑁𝑝 = 8. 

In general, there is a clear downward trend with increasing polynomial order for both the minimum 

RRSE and the average RRSE. This trend continues until at least an 10th order polynomial for the JET 

case under consideration. After this point the error seems to increase again, although no datapoints were 

generated beyond 𝑁𝑝 = 12.  

Furthermore, it seems to be beneficial to use polynomials of even order. This could be attributed to 

usage of the central difference scheme, which uses only symmetric stencils of odd sizes. Therefore, an 

odd polynomial, say 𝑁𝑝 = 7 uses the same stencil size as the next even polynomial, 𝑁𝑝 = 8. For nearly 

no added computational resources, a better fit can be created, resulting in a lower error. 
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8 Discussion 
 

The truncated polynomial fit model has a clear advantage over the all-orders model in terms of 

computational complexity. Like the truncated Taylor series model, a 𝑁 scaling is obtained for the matrix 

inverse, instead of an 𝑁2.7 scaling for the all-orders model. This translates to significant savings on the 

computational resources required to run the simulations, especially for hypothetical 2D and 3D cases. 

The advantage over the truncated Taylor series model is that it can correctly predict the damping of the 

Ion Bernstein Wave. This was demonstrated in Figure 25 and Figure 27, both by visual inspection and 

through the usage of the RRSE metric.  

One issue that affects this model, is the fact that there are three non-plasma-related parameters that 

strongly influence the model performance: the number of grid points 𝑁, the window 휁 over which the 

polynomial fit is performed, and the polynomial order 𝑁𝑝. By carefully choosing a suitable combination 

of these parameters, all-orders results can be achieved with a differential-only approach. The problem is 

that it is difficult to assess a priori which combination of parameters is most suitable. Finding the right 

combination as of now requires comparison with an all-orders model, a limitation that dramatically 

reduces the usability of this model. 

An observation from working with this code, is that the system matrices suffer from very high 

condition numbers, typically of the order 1017 − 1019. The source of this poor conditioning has not been 

identified yet. As the problem gets worse for high polynomial orders, it might be related to 

incompatibility between the finite difference scheme and high-order derivatives. Other numerical 

schemes like finite-elements have not been investigated, perhaps a solution lies in this direction.  

Some preliminary testing with quad-precision has been done using the Advanpix Multiprecision 

Computing Toolbox [57] for MATLAB. Mixed results were obtained; even though quad-precision 

seemed to bring improvements, it was not a silver bullet that took away the problem entirely. Moreover, 

the simulations got significantly slower due to MATLAB’s poor optimization for multi-precision 

computing, combined with the fact that current computer hardware has no native support for quadruple 

precision operations.  

There are some aspects of the model that could be improved on by future work (chapter 9). Transition 

from the finite difference scheme to a finite element scheme would be desired, as it is better suited for 

non-uniform meshes. It is for example not unthinkable that a high resolution is assigned specifically to 

the region where short-wavelength waves, like the IBW, are present. This would allow for an easier 

extension to two dimensions or three dimensions. Additionally, the model currently does not take the DC 

plasma current into account, which produces an additional poloidal magnetic field. In this case, the 

assumption that 𝑘𝑧 = 𝑘∥ is not valid anymore. Adding this contribution requires for example a coordinate 

transformation [23]. A proper description of the kinetic flux would allow for more accurate predictions 

of the power absorption and current drive. 

However, even though the model has its limitations, perhaps the most important conclusion is the 

fact that this work proves that full-domain solutions like AORSA’s spectral collocation method are not 

always required for accurate predictions of the wave behavior in fusion plasmas. An approach that has a 

finite width both in the spatial domain and the spectral domain can produce very accurate results, for 

only a fraction of the computational effort. This opens the door for other approaches that take both the 

behavior in the spatial domain and the spectral domain into account, like the spectral element method 

[58] and wavelets [59]. 
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9 Future work 
 

In order to increase the applicability of the model, research should be conducted to determine the 

exact relation between resolution, fit window and polynomial order. If the results from Figure 29 can be 

explained by theory, or if a source for the difficult relation can be found, a selection for 𝑁𝑝, 휁 and 𝑁 can 

be made without needing to compare to an all-orders model. Otherwise, the benefit from the fast model 

is diminished, as the slow all-orders model always needs to be used to determine whether the results are 

correct. It would be interesting to test whether the problem persists with other numerical schemes, like 

the finite element scheme. This scheme has the added advantage that it is easier to deal with non-uniform 

grids, or higher-dimensional meshes. In this same spirit, it would be interesting to investigate other semi-

localized approaches like wavelets and the spectral element method. 

A very interesting follow-up question would be to investigate whether this approach can be ported to 

a 2D or 3D case. Instead of fitting a polynomial of through 𝜖  (𝑘𝑥)|𝑥=𝑥𝑡
, this would translate to fitting 

curved planes through 𝜖  (𝑘𝑥 , 𝑘𝑦)|𝑥,𝑦=𝑥𝑡,𝑦𝑡
 in a 2D simulation. The fitting procedure itself is not very 

difficult, as demonstrated for a simple case below (𝑁𝑝𝑥 = 4,𝑁𝑝𝑦 = 4). The question is whether this can 

be used to produce accurate 2D or even 3D simulations. 

 

 
Figure 31: Demonstration of a 2D surface fit of 𝑅𝑒{𝜖11}, for a 4th order polynomial in both X and Y direction. 

Even if this approach does not scale to a two- or three-dimensional case, a hybrid approach can be 

considered. This approach would use the truncated polynomial fit approach in the radial direction, and 

the spectral collocation method in poloidal and toroidal direction. The motivation for this choice is that 

the radial direction shows the strongest aperiodic behavior. Sources of the aperiodicity are evanescent 

behavior in the plasma edge; one-sided excitation, and presence of mode-conversion; reflection; and 

absorption layers. The poloidal and toroidal directions however are a lot more periodic, and the 

expectation is that these directions are better suited for a spectral method. The hybrid case will have 

reduced computational costs compared to using the spectral method in all directions. 

Finally, in order to make conclusions about the power deposition location and power fluxes, a proper 

description for the kinetic flux needs to be included in the model. The TOMCAT and TOMCAT-U papers 

by Dirk van Eester discuss how to correctly account for the kinetic flux but retrofitting this to the existing 

model is not feasible. Starting from scratch with the additional equations is the preferable route.  
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10 Conclusion 
 

Simulating the behavior of electromagnetic waves in hot, magnetized fusion plasmas is a challenging 

numerical problem. Especially correctly predicting the behavior of the Ion Bernstein Wave has been 

proven to be a non-trivial task. In order to get accurate predictions for this wave, up until now all-orders 

hot plasma models were used, that don’t make assumptions on the smallness of the Larmor radius 

compared to the wavelength under investigation. The typical approach in this case is a spectral 

collocation method, which results in computationally demanding simulations, especially for 2D and 3D 

cases. 

In order to investigate whether there is a method that reproduces accurate predictions for the IBW 

damping, without extreme computational expenses, four one-dimensional models have been created. 

First, a cold plasma model is discussed. This model does not contain the IBW, but it serves as a starting 

point for the more complex hot plasma models. Three hot plasma models were subsequently developed.  

The truncated Taylor series model is the fastest model of the three. The assumption is made that the 

spectrum of the dielectric tensor is very narrow, such that a Taylor approximation of the dielectric tensor 

is allowed around 𝑘𝑥 = 0. Using a very useful property of the Fourier transform and some mathematical 

manipulations, a sparse and banded matrix is obtained. The assumption on the narrowness of the 

spectrum results in a correct prediction of waves with a low wavenumber, such as the fast wave. On the 

other hand, high-wavenumber waves like the Ion Bernstein Wave are not predicted correctly, as is visible 

in Figure 25. This is a general conclusion for truncated Finite Larmor Radius codes; the damping of the 

Ion Bernstein Wave is underestimated. Quantitative comparisons of the absorbed power confirmed these 

findings. 

The slowest but most accurate model is the all-orders model, a model that makes no finite Larmor 

Radius expansions. The AORSA code from Fred Jaeger is used as a starting point, and it is adapted for 

1-dimensional application. AORSA is often considered to be a benchmark for other numerical schemes, 

and the same vision is adopted in this work. This model is the slowest of the three hot plasma models. A 

very strong scaling of the computational effort with the resolution is found: 𝑡 ∝ 𝑁2.7. Therefore, 2D 

simulations with the AORSA code are often run on computing clusters with 100’s or 1000’s of CPU 

cores, let alone the resources required for a high-resolution 3D simulation. 

The focus of this work has been on finding a mid-way between both approaches, combining the speed 

of the truncated Taylor series model with the accuracy of the all-orders model. In order to accomplish 

this, the truncated Taylor series model has been adjusted, forming the truncated polynomial fit model. 

Instead of forming a Taylor series around 𝑘𝑥 = 0, a polynomial of powers of 𝑘𝑥 is fitted through 

𝜖𝑥=𝑥𝑡
(𝑘𝑥). It is shown that this approach is capable of producing results that closely resemble the all-

orders results, at a computational cost that scales with 𝑁, instead of 𝑁2.7. Especially for 2D and 3D 

situations, the performance gain could be significant.  

Some issues with this approach have been identified. Mainly the complex relation between the 

resolution, the fit window and the polynomial order is currently not understood. As such, it is not possible 

to estimate a priori which combination of these parameters yields a low-error result. Some possible ways 

forward have been discussed. This includes investigating other numerical schemes that might be more 

robust.  

To conclude, this approach demonstrates that it is possible to achieve all-orders results without a full-

domain approach like the all-orders model. It opens the door for other semi-localized wave 

representations, like wavelets or the spectral element method. Examining these options and extending 

the idea to 2D would be interesting follow-up research.  
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Appendix A: Generalized dielectric tensor 
 

The cold plasma dielectric tensor that is commonly found in literature is generally derived for 

magnetic fields aligned in the �̂�-direction. In this section a general dielectric tensor is derived, following 

a similar approach to Swanson, waves in plasma , starting from the linearized equation of motion for a 

single particle: 

 

 −𝑖𝜔𝑚𝑗𝑣 1𝑗 = 𝑞𝑗(�⃗� 1 + 𝑣 1𝑗 × �⃗� 0) (133) 

 

For an arbitrary �⃗� 0, this translates to the system of equations: 

 

 [

−𝑖𝜔𝑚𝑗 −𝐵0,𝑧𝑞𝑗 𝐵0,𝑦𝑞𝑗

𝐵0,𝑧𝑞𝑗 −𝑖𝜔𝑚𝑗 −𝐵0,𝑥𝑞𝑗

−𝐵0,𝑦𝑞𝑗 𝐵0,𝑥 −𝑖𝜔𝑚𝑗

] [

𝑣𝑥

𝑣𝑦

𝑣𝑧

] = [

𝑞𝑗𝐸𝑥

𝑞𝑗𝐸𝑦

𝑞𝑗𝐸𝑧

] (134) 

 

This system can be solved for 𝑣 1𝑗 using standard linear algebra. To clean up the equations, the 

cyclotron frequency is written in vector form as �⃗⃗� 𝑐𝑗 , and its �̂�-, �̂�- and �̂�- contributions 𝜔𝑐𝑗𝑥 , 𝜔𝑐𝑗𝑦  and 

𝜔𝑐𝑗𝑧  are introduced.  

 

 �⃗⃗� 𝑐𝑗 = [

𝜔𝑐𝑗𝑥

𝜔𝑐𝑗𝑦

𝜔𝑐𝑗𝑧

] =
|𝑞𝑗|

𝑚𝑗

[

|𝐵0,𝑥|

|𝐵0,𝑦|

|𝐵0,𝑧|

] (135) 

 𝜔𝑐𝑗
2 = |�⃗⃗� 𝑐𝑗|

2
= 𝜔𝑐𝑗𝑥

2 + 𝜔𝑐𝑗𝑦
2 + 𝜔𝑐𝑗𝑧

2  (136) 

 

This gives for 𝑣 1𝑗, temporarily dropping the subscript 𝑗 for compactness: 

 

 [

𝑣𝑥

𝑣𝑦

𝑣𝑧

] =
𝑖𝑞

𝑚𝜔(𝜔𝑐
2 − 𝜔2)

[

𝜔𝑐𝑥
2 − 𝜔2 𝜔𝑐𝑥𝜔𝑐𝑦 + 𝑖𝜔𝑐𝑧𝜔 𝜔𝑐𝑥𝜔𝑐𝑧 + 𝑖𝜔𝑐𝑦𝜔

𝜔𝑐𝑦𝜔𝑐𝑥 + 𝑖𝜔𝑐𝑧𝜔 𝜔𝑐𝑦
2 − 𝜔2 𝜔𝑐𝑦𝜔𝑐𝑧 − 𝑖𝜔𝑐𝑥𝜔

𝜔𝑐𝑧𝜔𝑐𝑥 − 𝑖𝜔𝑐𝑦𝜔 𝜔𝑐𝑧𝜔𝑐𝑦 + 𝑖𝜔𝑐𝑥𝜔 𝜔𝑐𝑧
2 − 𝜔2

] [

𝐸𝑥

𝐸𝑦

𝐸𝑧

] (137) 

 

Or, in a more compact notation, and re-introducing the subscript 𝑗: 
 

 [

𝑣1𝑗𝑥

𝑣1𝑗𝑦

𝑣1𝑗𝑧

] =
𝑖𝑞𝑗

𝑚𝑗𝜔(𝜔𝑐𝑗
2 − 𝜔2)

(�⃗⃗� 𝑐𝑗 �⃗⃗� 𝑐𝑗
𝑇 + 𝑖𝜔 [

𝑖𝜔 −𝜔𝑐𝑗𝑧 𝜔𝑐𝑗𝑦

𝜔𝑐𝑗𝑧 𝑖𝜔 −𝜔𝑐𝑗𝑥

−𝜔𝑐𝑗𝑦 +𝜔𝑐𝑗𝑥 𝑖𝜔
]) [

𝐸𝑥

𝐸𝑦

𝐸𝑧

] (138) 

 

From this expression for 𝑣 1𝑗, 𝜎   can be calculated using: 

 

 𝐽 = ∑𝑛𝑗𝑞𝑗𝑣 𝑗
𝑗

= 𝜎  ∙ �⃗�  (139) 

 

The result is: 

 

 𝜎  = ∑
𝑖𝜖0𝜔𝑝

2

𝜔(𝜔𝑐
2 − 𝜔2)

(�⃗⃗� 𝑐𝑗�⃗⃗� 𝑐𝑗
𝑇 + 𝑖𝜔 [

𝑖𝜔 −𝜔𝑐𝑗𝑧 𝜔𝑐𝑗𝑦

𝜔𝑐𝑗𝑧 𝑖𝜔 −𝜔𝑐𝑗𝑥

−𝜔𝑐𝑗𝑦 +𝜔𝑐𝑗𝑥 𝑖𝜔
])

𝑗

 (140) 

 

Using (18), this gives the dielectric tensor 𝜖   for an arbitrarily directed �⃗� 0: 

 𝜖  = 𝐼  − ∑
𝜔𝑝𝑗

2

𝜔2(𝜔𝑐𝑗
2 − 𝜔2)

(�⃗⃗� 𝑐𝑗 �⃗⃗� 𝑐𝑗
𝑇 + 𝑖𝜔 [

𝑖𝜔 −𝜔𝑐𝑗𝑧 𝜔𝑐𝑗𝑦

𝜔𝑐𝑗𝑧 𝑖𝜔 −𝜔𝑐𝑗𝑥

−𝜔𝑐𝑗𝑦 +𝜔𝑐𝑗𝑥 𝑖𝜔
])

𝑗

 (141) 
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Appendix B: JET parameters 
 

 

Parameter Value Description  

𝑁  2501 number of grid points in k-space 

𝑁ℎ𝑎𝑟𝑚,𝑚𝑎𝑥   4 (symmetric) number of terms in the dielectric tensor 

𝑁𝑘  50 number of k-space sample points.  

𝑁𝑝  8 polynomial order 

휁  1.2 k_perp*rho_L number for throughout domain 

𝑅0  2.97 m major radius 

𝑎𝑠  1.35 m Total size of simulation domain 

𝑥𝑎𝑛𝑡   1.05 m antenna position relative to machine axis 

𝑎𝑝  0.95 m plasma minor radius 

𝜈/𝜔  1e-3 collision frequency relative to omega  

𝑓  51e6 Hz Antenna frequency 

𝑛𝑡𝑜𝑟  27 toroidal mode number (kz = ntor/r) 

𝑘𝑦0  0 Wavenumber in y-direction 

curve_k_parr     true make k_parr dependent on r as ntor/r 

aperature true use aperature-type excitation (1) or current sheet (0) 

𝐵0  3.45 T magnetic field on axis 

𝑛0  7e19 m-3 edge density, if a parabolic profile is used 

𝑛0,𝑒𝑑𝑔𝑒   2e19 m-3 edge density, if a parabolic profile is used 

𝛼𝑛  1 density profile parameter if a parabolic profile is used 

𝜆𝑛  0.05 tune exponential decay in edge (smaller = faster decay) 

𝑇0  5e3 eV core temp (eV) 

𝑇0,𝑒𝑑𝑔𝑒   1e2 eV edge temperature (eV) 

𝛼𝑇  1.5 profile shape parameter for temperature  

𝜆𝑇  0.05 tune exponential decay in edge (smaller = faster decay) 

𝑁𝑠𝑝𝑒𝑐𝑖𝑒𝑠  2 number of ion species 

𝐴𝑖𝑜𝑛  [1        2   ] mass number of ions 

𝑍𝑖𝑜𝑛  [1        1   ]   charge of ions 

𝑐𝑜𝑛𝑐𝑖𝑜𝑛  [0.05   0.95]   concentration relative to ne 

 

The density and temperature profiles of each ion species can be set separately from the electrons, but 

in this case the profiles are assumed to be equal for both the ions and the electrons.  
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Appendix C: Curved magnetic field lines 
 

To account for the background magnetic field curvature, a plane wave solution is introduced in a 

cylindrical coordinate system. The magnetic field is aligned in the �̂�-direction, while the variation is in 

�̂�-direction. 

 

 �⃗� (𝑟 ) = �⃗� (𝜌)𝑒𝑖(𝑘𝜙𝜙+𝑘𝑧𝑧) (142) 

 

Expressing the double curl in the Helmholtz equation as a matrix product yields: 

 

 

−∇ × ∇ × �⃗� 

=

[
 
 
 
 
 
 

1

𝑟2

𝜕2

𝜕𝜙2
+

𝜕2

𝜕𝑧2
−

1

𝑟2

𝜕

𝜕𝜙
−

1

𝑟

𝜕2

𝜕𝜙𝜕𝑟
−

𝜕2

𝜕𝑧𝜕𝑟

1

𝑟2

𝜕

𝜕𝜙
−

1

𝑟

𝜕2

𝜕𝜙𝜕𝑟

𝜕2

𝜕𝑧2
+

𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
−

1

𝑟2
 −

1

𝑟

𝜕2

𝜕𝜙𝜕𝑧

−
1

𝑟

𝜕

𝜕𝑧
−

𝜕2

𝜕𝑟𝜕𝑧
−

1

𝑟

𝜕2

𝜕𝜙𝜕𝑧
 

𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜙2
  
]
 
 
 
 
 
 

[

𝐸𝑟

𝐸𝜙

𝐸𝑧

] 
(143) 

 

Comparing this tensor with the Cartesian expression is a little challenging, as the �̂� direction in the 

cylindrical system corresponds to the �̂� direction of the Cartesian system. Hence, the components are 

reshuffled such that they look more like �⃗⃗� ⃗⃗  from (68). 

 

 

[
 
 
 
 (−∇ × ∇ × �⃗� )

𝜌

(−∇ × ∇ × �⃗� )
𝑧

(−∇ × ∇ × �⃗� )
𝜙]
 
 
 
 

= �⃗⃗� ⃗⃗ ∙ [

�⃗� 𝜌

�⃗� 𝑧

�⃗� 𝜙

] (144) 

 

This gives the expression for �⃗⃗� ⃗⃗ , without plane wave expansion: 

 

 �⃗⃗� ⃗⃗ =

[
 
 
 
 
 
 

1

𝑟2

𝜕2

𝜕𝜙2
+

𝜕2

𝜕𝑧2
−

𝜕2

𝜕𝑧𝜕𝑟
−

1

𝑟2

𝜕

𝜕𝜙
−

1

𝑟

𝜕2

𝜕𝜙𝜕𝑟

−
1

𝑟

𝜕

𝜕𝑧
−

𝜕2

𝜕𝑟𝜕𝑧

𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜙2
−

1

𝑟

𝜕2

𝜕𝜙𝜕𝑧

1

𝑟2

𝜕

𝜕𝜙
−

1

𝑟

𝜕2

𝜕𝜙𝜕𝑟
−

1

𝑟

𝜕2

𝜕𝜙𝜕𝑧

𝜕2

𝜕𝑧2
+

𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
−

1

𝑟2]
 
 
 
 
 
 

 (145) 

 

Similar to the Cartesian case, a plane wave expansion is introduced, such that 
𝜕

𝜕𝜙
→ 𝑖𝑘𝜙 and 

𝜕

𝜕𝑧
→

𝑖𝑘𝑧. To make comparison with the Cartesian expression easier, the following additional substitutions are 

made: 
𝑘𝜙

𝑟
→ 𝑘𝑧, 𝑘𝑧 → 𝑘𝑦, 𝑟 → 𝑥. The extra terms, compared to the Cartesian case, are indicated in bold. 

 

 �⃗⃗� ⃗⃗ =

[
 
 
 
 
 
 −(𝑘𝑧

2 + 𝑘𝑦
2) −𝑖𝑘𝑦

𝜕

𝜕𝑥
−

𝒊𝒌𝒛

𝒙
− 𝑖𝑘𝑧

𝜕

𝜕𝑥

−
𝒊𝒌𝒚

𝒙
− 𝑖𝑘𝑦

𝜕

𝜕𝑥
−𝑘𝑧

2 +
𝜕2

𝜕𝑥2
+

𝟏

𝒙

𝝏

𝝏𝒙
𝑘𝑦𝑘𝑧

𝒊𝒌𝒛

𝒙
− 𝑖𝑘𝑧

𝜕

𝜕𝑟
𝑘𝑦𝑘𝑧 −𝑘𝑧

2 +
𝜕2

𝜕𝑥2
+

𝟏

𝒙

𝝏

𝝏𝒙
−

𝟏

𝒙𝟐]
 
 
 
 
 
 

 (146) 

 

Note that 𝑘𝑧 is now dependent on 𝑟 as 𝑘𝑧(𝑟) = 𝑘𝜙/𝑟. 𝑘𝜙 is the toroidal mode number.  
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Appendix D: Hot plasma limits when 𝒌∥ → 𝟎 
 

In the limit where 𝑘∥ → 0, the argument of the plasma dispersion function 휁𝑛 → ∞. This means the 

following limits need to be determined: 

 

 lim
𝑘∥→0

1

𝑘∥

𝑍 (휁𝑛(𝑘∥)) =
𝑣𝑙

𝜔 + 𝑛Ω𝑐

lim
𝜁𝑛→∞

휁𝑛 𝑍(휁𝑛) (147) 

 lim
𝑘∥→0

1

𝑘∥

𝑍′ (휁𝑛(𝑘∥)) =
𝑣𝑙

𝜔 + 𝑛Ω𝑐

lim
𝜁𝑛→∞

휁𝑛 𝑍′(휁𝑛) (148) 

 lim
𝑘∥→0

1

𝑘∥

휁𝑛(𝑘∥)𝑍
′ (휁𝑛(𝑘∥)) =

𝑣𝑙

𝜔 + 𝑛Ω𝑐

lim
𝜁𝑛→∞

휁𝑛
2 𝑍′(휁𝑛) (149) 

 

The plasma dispersion function 𝑍(휁𝑛) is related to the Dawson integral 𝑆(휁): 

 

 𝑍(휁) = 𝑖√𝜋𝑒−𝜁2
− 2𝑆(휁) (150) 

 

The asymptotic series of 𝑆(휁) is given by: 

 

 𝑆(휁𝑛) = ∑
(2𝑛 − 1)‼

2𝑛+1휁2𝑛+1

∞

𝑛=0

=
1

2휁
+

1

4휁3
+

3

8휁5
+

15

16휁7
+ ⋯ (151) 

 

So, the asymptotic expressions for 𝑍(휁𝑛) and 𝑍′(휁𝑛), without expanding the imaginary part, are given 

by: 

 

 𝑍(휁𝑛) ≈ 𝑖√𝜋𝑒−𝜁𝑛
2
−

1

휁𝑛

−
1

2휁𝑛
3
−

3

4휁𝑛
5
− ⋯ (152) 

 𝑍′(휁𝑛) ≈ −2𝑖√𝜋휁𝑛𝑒−𝜁𝑛
2
+

1

휁𝑛
2
+

3

2휁𝑛
4
+ ⋯ (153) 

 

Using the asymptotic expressions, finding the limits is trivial. The imaginary part is always forced to 

zero due to the strong exponential decay. Only the real part survives in the limit. 

 

 lim
𝜁𝑛→∞

휁𝑛 𝑍(휁𝑛) = −1 (154) 

 lim
𝜁𝑛→∞

휁𝑛 𝑍′(휁𝑛) = 0 (155) 

 lim
𝜁𝑛→∞

휁𝑛
2 𝑍′(휁𝑛) = 1 (156) 

 

However, for very small 𝑘∥, which means very large 휁𝑛, numerical problems might still occur. This 

can be avoided by avoiding small 𝑘𝑧, except for 𝑘𝑧 = 0, which is well defined. 
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Appendix E: Hot plasma limits when 𝒌⊥ → 𝟎 
 

In the limit where 𝑘⊥ → 0, the argument of the Bessel function 𝜆𝑗 → 0. Each element of the dielectric 

tensor contains at least the exponent 𝑒−𝜆𝑗, and one or more of the modified Bessel functions, or their 

derivatives. Most of the limits where 𝑘⊥ → 0 show no special behavior around 𝑘⊥ → 0, as the limits of 

the Bessel functions and the exponent behave nicely: 

 

 lim
𝜆𝑗→0

𝑒−𝜆𝑗 = 1 (157) 

 lim
𝜆𝑗→0

𝐼𝑛 = {
1 if 𝑛 = 0

0 otherwise
  (158) 

 lim
𝜆𝑗→0

𝐼𝑛
′ = {

1

2
 if 𝑛 = ±1

0 otherwise

 (159) 

 

This already provides a way for effective evaluation of the Bessel function when 𝑘⊥ = 0. The only 

contribution that is slightly troublesome is:  

 

 lim
𝜆𝑗→0

𝑛𝐼𝑛
𝜆𝑗

= {

𝑛

2
 if 𝑛 = ±1

0 otherwise
 (160) 

 

At 𝑛 = 0, the value of 
𝑛𝐼𝑛

𝜆𝑗
 is forced to 0. For all non-zero 𝑛, l’Hôpital can be used to investigate the 

limit. In combination with the limit from (159) we find: 

 

 lim
𝜆𝑗→0

𝑛𝐼𝑛
𝜆𝑗

= lim
𝜆𝑗→0

𝑛𝐼𝑛
′ = {

𝑛

2
 if 𝑛 = ±1

0 otherwise
 (161) 
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Appendix F: Heatmaps of 𝑵 − 𝜻 for other polynomial orders 
 

𝑁𝑝 = 2 𝑁𝑝 = 3 

 
 

𝑁𝑝 = 4 𝑁𝑝 = 5 

  

𝑁𝑝 = 6 𝑁𝑝 = 7 
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𝑁𝑝 = 8 𝑁𝑝 = 9 

  
𝑁𝑝 = 10 𝑁𝑝 = 11 

  
𝑁𝑝 = 12  

 

 

 
 


