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Summary

In microwave cavity resonance spectroscopy (MCRS) the resonance frequency of a cavity
mode is tracked to measure perturbations in the permittivity and permeability of the
cavity medium as a function of time. As such, the technique can be used to study
the electron density evolution of a plasma contained in the microwave cavity interior.
The general goal at the heart of this thesis is to reverse the traditional measurement
hierarchy and use a known, very controllable plasma to study and advance MCRS as
a technique. The idea is to create an ultracold plasma (UCP) in the microwave cavity
interior by two-step ionization of a cold atom cloud of 85Rb atoms trapped in a magneto-
optical trap (MOT). Experimental parameters of the MOT position, wavelength, power
and overlap of the excitation and ionization lasers allow unprecedented control over the
initial plasma parameters. The low temperatures of the plasma species, as low as tens
of kelvin for the electrons and millikelvins for the ions, result in relatively long plasma
lifetimes, and corresponding long MCRS measurement times, of about ∼ 100µs. Once
demonstrated, MCRS can be used as a new tool to study UCPs as well.
In this thesis a proof-of-principle MCRS experiment on a UCP is demonstrated using

the grating based magneto-optical trap (GMOT) concept recently developed by the Riis
group at the University of Strathclyde, Glasgow. In a traditional MOT three pairs
of counter propagating laser beams are required to cool and trap atoms in the beam
overlap region. The GMOT concept requires only one laser beam and a diffraction
grating to achieve the same result, greatly simplifying microwave cavity design and
MOT operation in the cavity interior. A microwave cavity with a cylindrical pillbox
geometry has been designed, and the placement and dimensions of the optical access
holes in the cavity walls have been optimized in numerical simulation. More specifically,
the Q-factor of the fundamental TM010 cavity mode has been optimized to maximize
the MCRS measurement sensitivity in the experiment. The microwave cavity has been
commissioned, and the Q-factor, resonance frequency and electric field profile of the
TM010 mode have been verified. Finally, a proof-of-principle experiment is conducted.
The unloaded Q-factor of the commissioned cavity measures Qcav = 3848± 8 and has

a resonance frequency of about 5 GHz. The Q-factor is very close to the simulated value
Qcav = 3990, and close to the theoretical maximum of this cavity geometry Qcav ∼ 4250.
Optimization of the cavity design has been successful in mitigating the potential detri-
mental effects of the holes in the cavity walls on the Q-factor. Due to the installation
of the grating and grating clamps in the microwave cavity interior, the Q-factor drops
significantly to Qcav = 491.0 ± 0.3. With 100 nm, the thickness of the aluminum grat-
ing reflector measures only a faction of the skin depth of the cavity fields (δs = 1.2µm
at 5 GHz). Due to its limited thickness, the surface resistance of the grating reflector
(RS ∼ 300 mΩ) is about a factor 6 higher than the surface resistance of the aluminum
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cavity walls. Increased dissipation in the grating reflector results in the drop in Q-factor
of the cavity mode. The effect is aggravated by concentration of surface currents on the
reflector edges and near the grating clamps. This drop in Q-factor came as a surprise
as the effect of the skin depth on the surface resistance of the grating reflector was not
included in initial simulations. An idea to mitigate these problems is described in the
outlook of this thesis. Preliminary simulations show the drop in Q-factor can be reduced
to Qcav ∼ 3000 by placing the grating 1 mm below the cavity back wall and ensuring
maximal electrical contact between the wall and grating reflector.
The relatively large hole for the trapping laser does have a significant influence on

the resonance frequency and field profile of the cavity mode. The analytical ‘Bessel’
shape of the radial electric field profile of the TM010 cavity mode is modified to a flattop
profile with ‘spikes’ near the hole edge. The radial cavity electric field profile has been
experimentally verified and is in good agreement with simulations. The changes in the
cavity field profile, and mode resonance frequency, are not a problem in the experiment.
To house the cavity in a shared setup for grating based cold atom experiments, a cus-

tom flange with cavity support has been developed. Installed in the setup, the resonance
frequency of an empty cavity has been determined with a reflection based measurement
setup. At room temperature, the resonance frequency of the TM010 mode was deter-
mined to be f0 = 4.986 GHz and can be resolved with an RMS spread of σf0 = 34 Hz.
The RMS resonance frequency spread σf0 is the minimum frequency shift that can be de-
tected in the experiment. The detection limit corresponds to about 30 thousand electrons
located on the cavity central axis, or a field averaged electron density of n̄e = 4×109 m−3.
This is more than two orders of magnitude better than the previous record mentioned
in scientific literature. A very good result.
We were successful in operating the GMOT in the microwave cavity interior by using

a trapping laser beam with a flattop-like transverse intensity profile. To prevent MOT
depletion in the experiment, the MOT loading time was approximately matched to the
repetition period of the ionization laser (100 ms) by increasing the rubidium background
pressure. At a background pressure of pRb = 2.2 × 10−9 mbar we were able to trap
Na = (84.6± 0.3)× 106 rubidium atoms in the MOT with a loading time τload = 120±
3 ms. For the proof-of-principle experiment the MOT loading and ionization scheme
was kept as simple as possible. UCPs were created by partial MOT ionization at a
repetition rate of 10 Hz, while the MOT was continually loaded by the trapping laser.
In the experiment the MOT atom number dropped to Na = (7.0± 0.1)× 107 due to the
recurrent ionization. The resonance frequency shift of the microwave cavity mode was
recorded and fitted with a theoretical model for analysis. Qualitatively, the MCRS signal
of the proof-of-principle experiment behaves as expected. Quantitatively the recorded
resonance frequency shift is within 20% of the expected value determined through MOT
fluorescence measurements and the known photoionization cross section. The MCRS
signal shows possible signs of electron heating by the microwave cavity fields, that has to
be investigated in more detail in future experiments. The possibility of the breakdown of
the self-similar UCP expansion model as the plasma touches the nearest wall is another
topic for future research. All-in-all a successful demonstration of a proof-of-principle
MCRS experiment on a UCP.
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1 Introduction

Over the last five decades the semiconductor industry has been driven by ‘Moore’s
Law’, doubling the number of transistors per dense integrated circuit (IC) about every
two years [1]. A straightforward shrink of transistor dimensions has been the primary
avenue of achieving this drive, resulting in ever more stringent requirements for IC pro-
duction and tools. Photolithography is the workhorse of the semiconductor industry
and the limiting process step in manufacturing of dense integrated circuits. A schematic
representation of the photolithographic process is shown in Fig. 1.1. The reticle, a pho-
tomask with the negative of the IC pattern for a specific processing step, is illuminated
by a light source. Subsequently the image of the IC pattern is projected onto a semi-
conductor wafer covered with a photoresistive layer by a projection (lens) system. After
illumination, further processing steps yield the IC structure desired.
In photolithography the smallest printable feature size is called the critical dimen-

sion CD. It is determined by the maximum resolution of the projection system, and
given by [2]:

CD = k1
λ

n sin θ , (1.1)

with λ the wavelength of the light used for illumination, and n sin θ the numerical aper-
ture of the projection system as seen from the wafer. Here n is the refractive index
of the medium surrounding the wafer, θ is the maximum half-angle of the projection
system, and k1 an empirical process parameter dependent on the photoresist properties
and details of the light field used for illumination (angle distribution, coherence, etc.).

From Eq. 1.1 it is clear the critical dimension can be reduced by decreasing the wave-
length of the light used for illumination. Historically this is what has been done. Pho-
tolithography tools started out using emission lines from mercury discharge lamps [3].
First the 406 nm line, later the 365 nm line. The development of excimer lasers allowed
the wavelength to be reduced further down to 248 nm (KrF) and 193 nm (ArF). Nowa-
days 193 nm lithography tools are used for processing steps in high-volume production
requiring the smallest critical dimensions. However, the technology is stretched to its
practical limits requiring multiple patterning steps for the critical layers.
For the next ‘technology node’ the semiconductor industry has agreed on photolithog-

raphy using extreme ultraviolet (EUV) light at 13.5 nm. This has profound implications
for photolithography tools. A 13.5 nm photon carries about 92 eV of energy and is ab-
sorbed by almost all known materials. For example more than 99% of photons are
absorbed after 1 mm of propagation in air at standard pressure. Hence EUV lithogra-
phy tools are operated in vacuum conditions and use reflective optics (mirrors) in the
projection system. ASML’s NXE:3400B EUV lithography tools are on the brink of high
volume manufacturing [4].
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1 Introduction

Illumination

Reticle (mask)

Lens2θ

Wafer with photoresist

Pattern being 
repeated onto wafer

IC pattern

Figure 1.1: The photolithographic process – schematic. A mask with an IC pattern is
illuminated. The pattern image is projected onto a semiconductor wafer with photoresist
by a lens [5].

One of the many remaining challenges in EUV production tools is in the optimization
of the EUV source. The EUV source in ASML’s current NXE:3400B flagship machine is
a laser-produced plasma source. At a repetition rate of 50 kHz tiny tin (Sn) droplets are
ionized and heated by multiple laser pulses. The hot, highly ionized tin plasma emits
light at 13.5 nm. After collection, 250 W EUV light enters the machine at intermediate
focus [4]. Current EUV lithography machines are not equipped with metrology tools
for the EUV beam (measuring beam power and position) as the available technology
lacks the time (> 10µs) and spatial (> 10µm) resolution required. Moreover beam
sampling would result in loss of EUV beam power available for illumination. With an
EUV beam monitor valuable information could be obtained for optimization of important
operational machine characteristics as wafer yield, throughput and machine uptime, even
if only in the research phase of machine development. The ionizing quality of EUV light
might open up possibilities for contactless beam metrology.

1.1 A Microwave Cavity as an EUV Beam Monitor
An EUV photon of 92 eV carries more than sufficient energy for single photoionization
of all elements in the periodic system. Hence atoms and molecules in the background
gas are ionized all along the beam path in the lithography tool. After ionization, most
of the excess photon energy is transferred to the electron. The electron kinetic energy
is sufficient to create secondary electrons by impact ionization:

X + γ → X+ + e−,
X + e− → X+ + 2e−,
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1 Introduction

(ε,μ)

Figure 1.2: Cylindrical geometry microwave cavity with linear isotropic medium (ε, µ).

where X denotes an arbitrary atom or molecule, γ represents an EUV photon and e− a
free electron. With electrons and ions separated, a plasma is formed all along the beam
path [3]. The term plasma describes a wildly varying range of media. All plasmas in this
thesis are assumed to be macroscopically neutral. In a plasma electrons shield the ions
from fluctuations in the electronic potential up to a characteristic angular frequency, the
electron plasma frequency ωpe:

ωpe =
√
e2ne
ε0me

, (1.2)

where ε0 is the permittivity of free space, me and ne are the electron mass and density
respectively, and e is the elementary charge. Commonly the electron prefix is dropped
and ωpe is referred to as the plasma frequency. A plasma absorbs electromagnetic radia-
tion below the plasma frequency (ω < ωpe). Above the plasma frequency (ω > ωpe) the
plasma is transparent, with a permittivity ε given by:

ε = ε0

(
1−

ω2
pe

ω2

)
. (1.3)

With knowledge of the background gas composition and photoionization cross sections, a
localized measurement of the plasma permittivity (electron density) allows the power and
position of the EUV beam to be computed. Microwave cavity resonance spectroscopy
(MCRS) is a technique that can be utilized to achieve this goal.
A microwave cavity is a space, filled with a linear isotropic medium with permittiv-

ity ε, and permeability µ enclosed by metal boundary walls. The metal structure itself
is referred to as the cavity, the enclosed as the cavity medium. In general, cylindrical
cavity geometries are used with MCRS, see Fig. 1.2. When excited with electromagnetic
radiation, the cavity exhibits resonances at a series of characteristic (angular) frequen-
cies ωn, n ∈ N in the microwave frequency regime. At resonance, standing waves form in
the cavity medium and the wave amplitude is amplified. A specific resonance is called
a ‘mode’ and the mode (resonance) frequency ωn is dependent on the cavity geometry,
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1 Introduction

dimensions and cavity medium properties (ε, µ). For simplicity the next discussion is
restricted to a single mode ω.

A perturbation in the permittivity (∆ε = ε′ − ε) and/or permeability (∆µ = µ′ − µ)
of the cavity medium will result in a shift in the mode frequency (∆ω = ω′ − ω).
Here the ′-accent denotes the perturbed case. Perturbations in the cavity medium are
related to the resonance frequency shift by Slater’s perturbation theorem. For small
perturbations (∆ε,∆µ)→ 0, the theorem takes the form [5, 6]:

ω′ − ω
ω

= −

˚
cav

(
∆εE2 +∆µH2) d3x

˚
cav

(εE2 + µH2) d3x
, (1.4)

where E and H are the amplitudes of the electric and auxiliary magnetic field belonging
to mode ω, x is the position vector in a suitable 3D coordinate, and d3x denotes a volume
element for the integration. Electric and magnetic fields obey the usual relations:

D = εE, B = µH, (1.5)

with D and B the displacement field and magnetic field amplitude respectively. The
mode fields in Eq. 1.4 are integrated over the full cavity dimensions and the denominator˝

cav
(
εE2 + µH2) d3x resembles the energy contained in the cavity fields. Clearly, for

small perturbations ∆ε and ∆µ, the relative change in resonance frequency goes as the
relative change in energy stored in the cavity fields.
When using a microwave cavity to measure the plasma permittivity and permeability

it is convenient to start with an ‘empty’ or vacuum cavity, where (ε, µ) = (ε0, µ0), and
perturb it with the plasma under study. Assuming ∆µ = 0, and using Eqs. 1.3 and 1.2
we can rewrite Eq. 1.4 in terms of the plasma electron density. Details of this derivation
will be discussed in Ch. 3 and result in:

n̄e ≡

˚
cav

ne (x)E2 (x) d3x

˚
cav

E2 (x) d3x
, (1.6)

where n̄e is the field-averaged electron density and we have written spatial dependencies
explicitly. An MCRS measurement using one mode will yield a volume-averaged mea-
surement value n̄e in which the local electron density of the perturbation is weighted by
the square of the local electric field amplitude. The technique is sensitive to electron
densities located in an antinode of the mode pattern (bulge of the standing wave), and
insensitive to densities located in a node (zero crossing). Obviously, for a pulsed source,
the electron density will have a temporal dependence ne (x, t), as will the measurement
result n̄e (t), where the variable t denotes time. The temporal dependence in the electron
density can be resolved up to the temporal resolution of the cavity used for measurement.
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1 Introduction

For microwave cavities with resonant frequencies in the GHz range, submicrosecond tem-
poral resolution can be easily achieved. Passing an EUV beam through two small holes
in a microwave cavity allows the field-averaged electron density of the locally generated
plasma to be determined through MCRS. This technique can be utilized to develop a
contactless EUV beam monitor. Once developed, the beam monitor can be used to
analyze other sources of ionizing radiation as well, for instance in monitoring the beam
power of the X-Ray free electron laser FERMI in Trieste, Italy.
In 2016 a research project was started at the Eindhoven University of Technology to

develop an EUV beam monitor. The research project is a collaboration between the
EPG group and the CQT group at the faculty of Applied Physics, the company ASML
and the research institution FERMI at Elettra. The project consists of two research
lines:

1. Develop an EUV beam monitor with spatial resolution based on multimode MCRS.
Different cavity modes ωn have different spatial sensitivities based on their respec-
tive mode patterns. Combining MCRS measurements of a suitable combination
of cavity modes, the plasma electron density can be reconstructed spatially. The
project delivered its first results, which are published in Ref. [7].

2. Study –and possibly improve– the understanding of MCRS as a plasma diagnostic
by reversing the measurement hierarchy. Starting from a model plasma with fine
control over the electron density distribution, and evolution ne (x, t), the interac-
tion between the plasma and cavity fields can be researched.

The project described in this thesis is part of the second research line.

1.2 An Ultracold Model Plasma
On earth, a plasma is an unstable state of matter. Free electrons and ions inevitably
collide with other atoms and molecules, slow down and recombine. Hence to start a
plasma it needs to be ‘ignited’, and for a plasma to stay ‘alive’ it needs an ongoing
source of ionization to offset the recombination. Main plasma characteristics as electron
and ion temperature, electron density, plasma size and lifetime depend on the technique
used for ionization and the medium being ionized. Typically, ionization is the result
of particle collisions and the resulting plasma has a temperature in the order of the
ionization potential. For most atomic and molecular species the ionization potential is
in the order of 1 eV, resulting in an initial electron temperature of order 104 K or higher.

The first goal of research line two is to create a model plasma with a well defined,
controllable evolution of the electron density distribution within the confinement of a
microwave cavity. In a plasma, the speed of plasma processes (e.g. expansion) is governed
by the thermal energy available in the system. As the ionization process only adds energy
to the system, control means cold. Maximum control is achieved when combining a low
thermal energy ionization medium with a controlled ionization process adding as little
energy to the system as possible. Arguably the ionization process that yields most
control over the resulting plasma properties is photoionization. Combining the best of
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1 Introduction

I I

(a) (b)

Figure 1.3: Creation of an ultracold plasma (UCP) [8]. (a) Two coils in anti-Helmholtz
configuration create an quadrupole magnetic field. Three counter-propagating red-
detuned laser beam pairs cool and trap atoms in the zero crossing of the quadrupole.
(b) An ultracold plasma is created by two-step photoionization. The trap transition
(red laser) is reused as the intermediate state.

both worlds the idea is to create an ultracold model plasma by two-step photoionization
of a cloud of laser-cooled gas.
In a diluted gas, an atom (or molecule) in motion can be slowed down by a counter-

propagating laser beam slightly red-detuned from a closed optical transition (Doppler
cooling). In the overlap region of six counter-propagating red-detuned laser beams one
has control over the atom velocity distribution in three dimensions. In a magneto-optical
trap (MOT), laser cooling is made position-dependent with the use of a quadrupole
magnetic field, see Fig. 1.3a. In the trap about 108 atoms can be trapped and cooled
down to a temperature in the order of 100µK, dependent on the atomic species and
limited by the stochastic nature of the cooling process. Typically the cloud of cold atoms,
the ‘MOT’, has a Gaussian density distribution with a size of order 1 mm and a peak
density of 1×1016 m−3 [9]. This is our cold ionization medium. Two-step photoionization
is performed by reusing the cooling transition as an intermediate state (red laser). In a
second step the electrons are photoionized to the continuum (blue laser), see Fig. 1.3b.
By manipulating the position, intensity profile, overlap and power of the excitation
and ionization lasers we have control over the initial plasma density distribution. By
changing the wavelength of the ionization laser we have control over the excess photon
energy above the ionization threshold. As practically all excess photon energy is carried
away by the electrons, we can set the initial electron temperature Te of the system.
The ion temperature Ti follows the temperature of the ionization medium. The electron
temperature can be as low as the ionization laser bandwidth, which is easily below 1 K.
This is exceptionally cold for earth bound plasmas, hence the name ultracold plasma
(UCP). In general, the initial UCP density distribution follows the Gaussian density
distribution of the ionization medium. A Gaussian initial density distribution leads to a
self-similar expansion, with a UCP expansion velocity of order 100 m/s. Moreover, above
50 K the expansion velocity is only determined by the initial electron temperature [10,

6



1 Introduction

Figure 1.4: The grating magneto-optical trap (GMOT) concept. An incoming laser
beam (↓), together with three first order diffracted beams (↖↑↗) span an overlap volume
in which a MOT (gray) can be created. Adapted from [12].

11]. This will be our ultracold model plasma.
Aligning six laser beams out of sight within the confinement of a microwave cavity is a

cumbersome prospect. Laser alignment is critical as light balance at the MOT position is
required for successful MOT operation. Moreover, the six large holes in the cavity walls
required for optical access complicate cavity design and can be detrimental to its quality
as a resonator. Recently the Riis group from the University of Strathclyde in Glasgow
has developed a MOT concept utilizing a diffraction grating etched in a silicon chip,
the grating magneto-optical trap (GMOT) [13]. The concept requires a single incoming
laser beam and creates a MOT in the overlap volume spanned by the incoming beam,
together with the first diffracted orders of the grating, see Fig. 1.4. Designing an MCRS
experiment utilizing the GMOT concept results in a significant reduction of complexity
in cavity design and MOT operation.

1.3 This Thesis
The goal of the project described in this thesis is to conduct a proof-of-principle MCRS
measurement on an ultracold plasma created with the GMOT concept. The main focus
will be on microwave cavity design. This thesis is organized as follows:
The details of laser cooling and trapping, the subsequent photoionization and resulting

ultracold plasma are discussed in Ch. 2. Chapter 3 deals with microwave cavity theory
and the theoretical background of microwave cavity resonance spectroscopy. Estima-
tions important for cavity design are made throughout these two theoretical chapters.
Microwave cavity design and commissioning is discussed in Ch. 4. In Ch. 5 the MCRS
setup is characterized, and a proof-of-principle MCRS experiment on a UCP is demon-
strated. Finally, this thesis is concluded in Ch. 6 and an outlook for future research is
discussed in Ch. 7.

7



2 Ultracold Plasma

After the solid, liquid and gas phase plasma is sometimes considered the fourth state
of matter. The free electrons and ions interact over relative long distance through the
Coulomb force giving the medium its characteristic properties. One of the ways to
characterize a plasma is by the electron temperature. On earth, most plasmas are man
made with an electron temperature of 103 K or higher [11]. Ionizing laser cooled gasses
can lead to electron and ion temperatures below 10 K, hence the name ultracold plasma
(UCP). This chapter deals with the creation of such a plasma from a laser cooled cloud
of 85Rb-atoms in a magneto-optical trap (MOT).
Microwave cavity resonance spectroscopy (MCRS) is a plasma diagnostic measuring

the plasma electron density. As such the total number of electrons in the plasma is
an important parameter to estimate whether we will have enough signal for detection.
Throughout this chapter estimates will be made for these calculations.
A general introduction to the MOT concept is described in Sec. 2.1 together with the

equations used to determine the MOT characteristics (number of atoms, loading rate)
through fluorescence measurements. Details of the cooling and trapping of 85Rb are
discussed in Sec. 2.2. Section 2.3 introduces the grating magneto-optical trap (GMOT)
concept. The grating principles are explained and the resulting GMOT characteristics
(number of atoms, temperature) estimated. In Sec. 2.4 the two-step photoionization
process used to ionize the 85Rb-atoms is discussed, and an estimation of the number of
electron-ion pairs is made. The resulting UCP serves as a model plasma for the main
goal of this thesis, a proof-of-principle MCRS measurement. Plasma processes, evolution
and relevant timescales for the experiment are discussed in Sec. 2.5. Finally, all relevant
parameters for the experiment and cavity design are summarized in Sec. 2.6.

2.1 Magneto-Optical Trap
In this section a coarse, high-level introduction to the MOT concept is given. For details
the reader is referred to other texts, for instance Ref. [9].
Consider a simple two-level atom with a ground state and an excited state. The

electronic transition from the ground to the excited state is resonant with a photon of
frequency ν∗, it has a FWHM natural linewidth Γ and a corresponding excited state
lifetime τ∗ = 1/ (2πΓ ). For a two-level atom at rest and in a light field, the rate Ra at
which photons are scattered is given by a Lorentzian profile:

Ra (Iδ, δ) = πΓ
Iδ/IS

1 + Iδ/IS + (2δ/Γ )2 , (2.1)

8



2 Ultracold Plasma

with Iδ the intensity of the light field, IS the saturation intensity of the transition, and
δ = ν − ν∗ the detuning of the light frequency ν with respect to resonance. In the
remainder of this section all atoms will be treated with this two-level atom picture.
For an atom traveling at velocity v, laser light with frequency ν in the lab frame is

Doppler shifted to ν ′ = ν − k · v. With k the wave vector of the laser light in the
direction of propagation, |k| = 1/λ. λ = c/ν the laser wavelength and c the speed of
light. In the remainder of this thesis vectors are denoted in bold to distinguish them from
scalars. For simplicity the next discussion is held in one dimension. It will be extended
to three dimensions later this section. For a red detuned laser beam (δ < 0), and a
counter propagating atom with velocity vx, the laser light can become resonant with the
electronic transition due to the aforementioned Doppler shift. If so, the atom slows down
–is cooled– due to radiation pressure. Conversely, a blue detuned laser beam (δ > 0) can
cause acceleration, or heating of the atom. For an atom in two equal intensity counter
propagating red detuned laser beams, the first-order Taylor expansion of the force acting
upon the atom is given by:

Fcool ∼= −αvx, (2.2)

with α = α (Iδ, δ) an intensity and detuning dependent constant. Fcool is a damping
force with α the damping constant. Atoms with initial velocities below a specific capture
velocity vc experience a damping force in the light field and are cooled. An atom in such
a light field behaves as if it were traveling through optical molasses, hence the popular
name of the technique. Due to the stochastic nature of the cooling process, atoms in
optical molasses are not cooled down to absolute zero. In the limit of low intensity
(Iδ � IS ) and optimal detuning (δ = −Γ/2), the cooling process is limited to the
so-called Doppler temperature limit, or Doppler temperature TD :

TD = hΓ

2kB

, (2.3)

with h the Planck constant and kB the Boltzmann constant. The Doppler temperature
typically measures several hundred microkelvin, dependent on the atomic species and
transition used for cooling. Associated with the Doppler temperature is a one dimen-
sional velocity vD =

√
kBTD/ma, with ma the atomic mass of the species concerned.

The Doppler velocity typically measures in the order of 10 cm/s.
The technique of optical molasses can be extended to three dimensions with a proper

combination of N red detuned laser beams. For N beams with propagation vectors
{k1,k2, . . .kN }, the same detuning δi = δ < 0 and intensities {I1, I2, . . . IN }. One ends
up with optical molasses provided the intensities add up to zero in three dimensions,∑N
i=1 Ii · ki = 0. In most common configurations N = 4 − 6. Applying the technique

of optical molasses one gains control over the velocity distribution of an atomic species.
Atoms are slowed down, but still move in and out of the cooling region. To gain control
over the atom position distribution requires a second technique discussed next.

Again consider a two-level atom with a ground state and an excited state, in one di-
mension. The ground state has a total electronic angular momentum quantum number
Jg = 0, and an excited state Je = 1. In an external magnetic field the three degenerate

9



2 Ultracold Plasma

magnetic quantum levels of the excited state Me = -1, 0,+1 separate and become dis-
tinguishable (Zeeman effect). Due to the quantum mechanical selection rules electronic
transitions ∆M = -1, 0,+1 are driven by photons with σ−, π and σ+ polarizations re-
spectively. Here σ− (σ+) denotes a photon with circular polarization, rotating in the
clockwise (anti-clockwise) direction with respect to the quantization axis, the direction
of the local magnetic field. π denotes a linear polarization. For a careful combination of
two counter propagating circular polarized (σ− and σ+), red detuned (δ− = δ+ = δ < 0)
laser beams and a magnetic field that varies linear with position (Bx = bx, with b the
linear magnetic field gradient), the radiation pressure exerted upon the atom takes the
form of a restoring force around the zero crossing of the B-field:

Ftrap = −αβ
kx
x, (2.4)

where β = β (b) is a constant depending on the local magnetic field gradient. Atoms
deviating from a position x = 0 are pushed back, effectively holding them in place.
There are very few atoms with strict Jg = 0 to Je = 1 transitions, however this scheme
can be extended to all atomic transitions where Jg → Je = Jg + 1 as well.

Combining the cooling force of Eq. 2.2 with the restoring force of Eq. 2.4 results in:

FMOT = −αvx −
αβ

kx
x, (2.5)

where FMOT is the time-averaged force exerted upon the atom. Eq. 2.5 is a good 1D
approximation of the force atoms experience in a magneto-optical trap [9]. This force
results in cooling and trapping atoms in the region around the zero crossing of the
magnetic field. Cooling and trapping in three dimensions is achieved by combining
a set of N lasers with appropriate polarizations, intensities and detunings (the same
requirement as in the case of optical molasses), with an appropriate magnetic field.
Although it is an example of sloppy language use, both the technique and the resulting
cloud of cold atoms are referred to as a MOT.
A magnetic field that varies linear with position around a zero crossing in three di-

mensions can be constructed with two coils in anti-Helmholtz configuration. Consider
two coils placed along the z-axis. The current through the coils is flowing in opposite
direction with respect to each other (anti-Helmholtz configuration). The resulting field
pattern is a quadrupole magnetic field. For an impression of the field in a plane contain-
ing the z-axis see Fig. 2.1. Arrows in the figure follow magnetic field lines, logarithmic
field intensity is given in blue. The field in the region of the zero crossing (white region in
the center of Fig. 2.1) is given by BMOT = b

(
−x

2 ,−
y
2 , z

)
and ticks all the boxes required

for MOT operation.
In three dimensions, the force of Eq. 2.5 results in a Gaussian density distribution of

the trapped atoms:

na (x) = na0 exp
(
− x2

2σ2
ax

− y2

2σ2
ay

− z2

2σ2
az

)
, (2.6)

na0 = Na√
2π3

σaxσayσaz
,

10
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z

Figure 2.1: Schematic plot of a quadrupole magnetic field BMOT in a plane containing
the z-axis. Arrows follow field lines, logarithmic field intensity given in blue. Note
BMOT = 0 at the MOT position, in the center of the image.
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with na (x) the atomic density distribution, x = (x, y, z) the position vector, and na0
the peak atom density. The total number of trapped atoms is given by Na, and σal
is the RMS size of the distribution in the direction of coordinate l = x, y, z. The
spontaneously emitted photons of the trapping process are on resonance and can easily
be absorbed by an adjacent atom. The resulting radiation pressure is directed radially
outward and limits the peak density in the center of the distribution to a typical value
of na0 ∼ 1× 1016 m−3 [9, 14].

Quantitative determination of na (x) can be achieved with the help of a CCD camera.
The scattering rate in Eq. 2.1 defines the number of photons scattered per atom and unit
of time. Knowing the quantum efficiency and shutter time of the camera, given the solid
angle covered by the camera sensor, the characteristics of the density profile Na and σal
can be determined by fitting the camera image with a 2D Gaussian profile. Obviously
one camera position only yields spatial information in the plane perpendicular to the
normal of the camera sensor.
The number of trapped atoms at a specific point in time Na (t) is determined by the

differential equation:
dNa

dt
= RL − ΓBGNa, (2.7)

with proper boundary conditions. Here RL is the loading rate, and ΓBG is the linear
loss rate; the rates at which atoms in the MOT are loaded from, and lost by collisions
with, hot background atoms respectively. With the boundary condition of Na (0) = 0,
integrating Eq. 2.7 yields:

Na (t) = RL

ΓBG

(1− exp (−ΓBGt)) . (2.8)

For instance, the aforementioned boundary condition can be realized by switching on
the lasers used for cooling and trapping at t = 0. The factor RL/ΓBG in Eq. 2.8 is the
maximum number of trapped atoms at long times (t� Γ−1

BG ) and corresponds to Na in
Eq. 2.6. RL and ΓBG can be determined from a series of fluorescence measurements of
a loading MOT at successive time steps ti. Fitting the series Na (ti) with Eq. 2.8 yields
the rates sought. RL and ΓBG are pressure dependent constants. RL is dependent on the
partial pressure pa of the atomic species used for trapping , and ΓBG is dependent on the
total background pressure p. For stable MOT operation p = pa+pX is typically below a
few times 10−8 mbar, here pX denotes the sum of the partial pressures of all other atomic
species in the background. It originates from the residual gas left after pumping down
the vacuum vessel and from the outgassing of the vessel materials. For pa/pX � 1 the
ratio RL/ΓBG is essentially constant although both rates increase with pressure. To end
up in this regime with some room for error pX is preferably below 10−9 mbar, or in the
UHV regime. This is an important consideration for the design of the vacuum setup,
pumps and materials used.

12
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Table 2.1: Rubidium-85 data for laser cooling with the(
52S1/2, F = 3→ 52P3/2, F

′ = 4
)
transition [18].

Quantity Symbol Value

Atomic mass ma 84.91 u
Wavelength (in vacuum) λ∗ 780.24 nm
Natural linewidth Γ 6.07 MHz
Excited state lifetime τ∗ 26.23 ns
Saturation intensity IS 1.67 mW/cm2

Doppler temperature TD 145.57 µK
Doppler velocity vD 11.94 cm/s

2.2 Rubidium-85
The most obvious candidates for magneto-optical trapping are atomic species with tran-
sitions most closely resembling the two-level atom picture of the previous section. Alkali
metals, with one electron in the outer shell and all other shells fully populated, are the
closest match. Alkali earth metals, with an additional electron in the outer shell, and
metastable noble gasses, where one outer shell electron is in a high metastable state, are
still quite easy to cool and trap. Laser cooling and trapping of rare earth metals and
molecules has been achieved, but is in general an Herculean task [15, 16].

In this research rubidium-85 (85Rb) is used. 85Rb is one of the workhorses in atomic
physics. Its outer electron has a closed optical transition usable for magneto-optical
trapping in a wavelength region where cheap commercial high power diode lasers are
available, hence the popularity. The cooling and trapping scheme is operated between
the 52S1/2 and 52P3/2 energy levels. Here the electron energy level is denoted with the
Russell-Saunders term symbol n2S+1LJ . All letters in the term symbol denote electronic
quantum numbers; of which n is the principal quantum number, L denotes the orbital
angular momentum in spectroscopic notation (S, P, D, F...) and J = L+ S is the total
electronic angular momentum including electron spin S. We have encountered J before
in the description of magneto-optical trapping of a two-level atom in Sec. 2.1. 85Rb
has a nuclear angular momentum with value I = 5/2 leading to a hyperfine structure
within the electronic energy levels and a total atomic angular momentum quantum
number F = J+I. A graphical representation of the 85Rb level structure with hyperfine
splitting is shown in Fig. 2.2. The cooling and trapping scheme is operated between
the 52S1/2, F = 3 and 52P3/2, F

′ = 4 levels by the trapping laser. Due to the finite
bandwidth of the laser, the 52P3/2, F

′ = 3 level can be excited off-resonance. This
opens up the possibility of the electron decaying back to the 52S1/2, F = 2 level, out of
reach for the trapping laser. To keep the cooling transition populated one has to apply
a repumper to continuously empty the 52S1/2, F = 2 level. Characteristics of 85Rb and
the

(
52S1/2, F = 3→ 52P3/2, F

′ = 4
)
cooling transition are listed in Table 2.1.
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Figure 2.2: 85Rb energy level diagram with hyperfine levels 52S1/2 and 52P3/2. Adapted
from [17].

2.3 Grating Magneto-Optical Trap
Recently the Riis group at the University of Strathclyde, Glasgow, has developed the
new concept of a grating magneto-optical trap [13]. In short the technique boils down
to using the first order reflections of a grating chip, together with the incoming laser
beam, to create a MOT in the overlap region of the aforementioned beams. Thereby,
the number of laser beams required to build a MOT is reduced to 1. This simplifies
alignment and operation compared to a conventional 6-beam MOT. A grating chip was
obtained for this project and this section details the grating workings. All grating details
in this section are from Ref. [13] unless stated otherwise. Measurements in Ref. [13] are
performed for 87Rb, which produces reliable data for estimates about our 85Rb MOT.
In their research the Riis group has developed gratings with different diffraction struc-

tures. The grating used in this project is of the so called linear grating type, using a
simple line pattern as the repeating entity. A SEM image of a section of the grating sur-
face is shown in Fig. 2.3a. The diffraction pattern is etched in a silicon wafer. 825 lines
per mm with a 50 − 50% etched − unetched duty cycle result in a grating period of
d = 1.21µm. A 100 nm aluminum layer sputter coated on top of the diffraction struc-
ture serves as a reflector. The full chip measures 20 × 20 mm2 and consists of three
sections with line patterns rotated 120◦ with respect to each other, see Fig. 2.3b. The
trapping laser is coupled to an optical fiber and transported to the setup. Light exiting
the fiber is collimated by a lens, and made circularly polarized by a λ/4-waveplate be-
fore hitting the grating at normal incidence, see Fig. 2.3c. Laser light diffracting off the
grating chip obeys the well known Bragg diffraction condition:

nλ = d sin (θ) , (2.9)
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(a) (b)

fiber

λ/4
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θ
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Figure 2.3: Images of the linear grating chip, illumination and overlap volume. (a) SEM
image of a surface section. (b) Grating schematic. (c) Illumination schematic.
(d) Diffracted orders n = +1 with overlap volume. (e) Overlap volume - detail. Images
(b) through (e) from [12].
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with n the diffraction order, d the period of the diffraction structure and θ the angle
of diffraction with respect to the grating surface normal. For the trapping laser with
λδ = 780 nm the first order diffracts at an angle θ = 40◦. The grating is optimized
to couple laser power to the n = ±1 order. The etch depth of the line pattern is
close to λδ/4 = 190 nm to suppress the 0th-order reflection. Orders n ≥ 2 are cut off as
nλδ/d > 1. The fraction incident laser power reflected into the first orders is ∼ 38% [13].

Laser light in the +1-orders is directed towards the center of the grating. Together
with the incident laser beam they form an overlap volume above the chip, see Fig. 2.3d.
Atoms in the overlap volume are cooled in three dimensions and can be captured to
form a MOT. For a trapping beam with circular cross section the overlap volume can be
approximated by a hexagonal bipyramid. The height ho of the bipyramid is given by:

ho = rb
tan (θ) , (2.10)

with rb the 1/e2 radius of the laser beam. The related 1/e2 overlap volume Vo is given
by:

Vo =
√

3
8

r3
b

tan (θ) . (2.11)

An schematic view of the bipyramid with relevant dimensions and angles is given in
Fig. 2.3e. In our setup we work with a trapping beam with a rb = 11.25 mm radius, only
limited by the use of 1 inch optics. With this beam ho = 13.4 mm and Vo ≈ 370 mm3

for our grating. As we want to create a MOT in the interior of a microwave cavity, ho
is a natural minimum for the cavity height. In these conditions 2rb is bigger than the
grating dimensions, hence part of the beam does not contribute to the overlap volume.
However, as Eq. 2.11 is an underestimation of the actual overlap volume that can only
be computed numerically, Vo ≈ 370 mm3 still is a good approximation.

The MOT atom number Na is an important intermediate parameter influencing the
MCRS signal. Hence Na is maximized and estimates about the MOT characteristics
are made in the remainder of this section. The MOT position can be controlled by
manipulating the location of the zero crossing of the quadrupole magnetic field. To
maximize Na the MOT is centered in the overlap volume. The atom number scales with
the overlap volume. This can be understood as V 1/3

o is a measure for the distance over
which atoms can be cooled and trapped from the hot background gas, the ‘stopping
distance’. The larger the stopping distance, the larger the fraction of hot background
atoms that can be trapped. An empirical study shows the grating MOT follows the
approximate scaling law Na ∝ V 1.2

o , just like a regular 6 beam MOT of similar overlap
volume [13]. For optimal conditions of trap laser intensity Iδ ≈ 45 mW/cm2 and detuning
δ ≈ −2Γ the Riis group has reported they can trap Na = 2.0 × 107 atoms in a MOT
with Vo = 560 mm3 (data digitized with [19]). Hence we should be able to trap about
Na ≈ 1.2× 107 atoms with our grating. Atoms in the trap form a ellipsoid of revolution
with a Gaussian density profile according to Eq. 2.6. The RMS size of the distribution
is split in a direction parallel (σ‖) and perpendicular (σ⊥) to the plane of the grating
with σ⊥/σ‖ = 0.7. At these optimal conditions Iδ � IS hence the Doppler temperature
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Table 2.2: Estimated MOT characteristics.

Quantity Symbol Value

Atom number Na 1.2 ×107

RMS size σ⊥ 340 µm
σ‖ 475 µm

Atom temperature Ta ∼ 1 mK

limit of Eq. 2.3 is not reached. The temperature of the trapped atoms is a few times
the Doppler temperature, or about ∼ 1 mK. Estimated MOT characteristics are listed
in Table 2.2.

2.4 Ionization
To create a plasma, the MOT is ionized with a two-step photoionization scheme. The
scheme is shown schematically in Fig. 2.4a and in the form of an energy level diagram
in Fig. 2.4b. To reduce the complexity of first measurements, the trap laser is used
to drive the excitation transition from the 52S1/2 ground state to the 52P3/2 excited
state. The trap laser wavelength λδ is detuned from resonance and has polarization σ+

(σ− after reflection). The trap laser intensity is high enough to saturate the transition
(Iδ � IS ) over the full MOT. In the second step the excited atoms from the intermediate
level are photoionized above the ionization threshold E0 = hc/λ0 by the linear polarized
ionization laser pulse λI . Here E0 denotes the threshold energy corresponing to a photon
of wavelength λ0, and h is the Planck constant. The excess energy of the ionization
photon ∆E is given by:

∆E = hc

( 1
λI

− 1
λ0

)
, (2.12)

with λ0 = 479.06 nm in 85Rb [18]. The ionization process adds energy and momentum
to the electrons and ions. Neglecting the initial kinetic energy of the atom, energy and
momentum conservation yield:

∆E = p2
e

2me
+ p2

i

2mi
, (2.13)

hkI = pe + pi, (2.14)

where kI is the wave vector of the ionization photon and me (mi) , pe (pi) are the
electron (ion) mass and momentum respectively. Since the momentum of the ionization
photon is very small, pe ≈ −pi. Now due to the large mass ratio of the ion and electron
(mi/me ∼ 105) effectively all the excess photon energy is carried away by the electron
in the form of kinetic energy Ee:

Ee = p2
e

2me
≈ ∆E. (2.15)
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Figure 2.4: Two-step photoionization. The MOT atoms are excited by the trapping
laser λδ, then ionized above the ionization threshold E0 by the ionization laser λI .
(a) Schematic. (b) Energy level diagram with excess energy ∆E. Adapted from [12].

Changing the wavelength of the ionization laser gives control over the initial electron
kinetic energy Ee.
The chance of creating a free electron (or ion for that matter) is given by the single

atom ionization probability pI (u):

pI (u) = p∗

(
1− exp

(−σPIFI (u)
hνI

))
, (2.16)

where u = (u, v) is a 2D Cartesian coordinate to be determined later, p∗ is the probability
of finding the atom in the excited state, σPI is the photoionization cross section from the
excited state, νI = c/λI is the frequency of the ionization photon, and FI is the fluence
of the ionization laser pulse. Since the trap laser intensity is high enough to saturate the
transition p∗ ≈ 1/2. In UCP experiments atoms are ionized in the near-threshold region
with typically ∆E = 0.1− 100 meV. The minimum ∆E is limited by the bandwidth of
the ionization laser. For pulsed dye lasers typically used in experiments∆Emin ∼ 10µeV.
However, in most UCP experiments up to now ∆E ≥ 0.1 meV [11]. The photoionization
cross section from the 52P3/2-state of rubidium measures σPI = 18.8 − 13.6 × 10−22 m2

for the range of excess photon energies ∆E = 0 − 106 meV [20]. The photoionization
cross section is maximal at the threshold, and has a significant RMS measurement error
of 16%.
The fluence of the ionization laser pulse FI (u) is a 2D Gaussian distribution given

by:

FI (u) = F0 exp
(
− u2

2σ2
Iu

− v2

2σ2
Iv

)
, (2.17)

F0 = Epulse
2πσIuσIv

.
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With F0 the peak fluence in the center of the distribution and σIu , σIv its RMS size in
the respective coordinate. Epulse is the ionization pulse energy. By combining Equations
2.16 and 2.6, the initial charged particle distribution nj (x, t = 0) can be determined:

nj (x, 0) = pI (u)na (x) , (2.18)

where j = e, i denotes the distribution for electrons and ions respectively. In the re-
mainder of this report the subscript j will denote these species. Integration of Eq. 2.18
over 3D space yields the total number of free electrons and ions Ne = Ni and the total
ionization fraction fI = Nj/Na. For this proof-of-principle MCRS experiment Ne is
maximized as it is one of the important parameters that determine whether we will have
sufficient signal for detection.
The ionization laser at our disposal is a nanosecond pulsed dye laser currently capable

of producing ∼ 300µJ pulses at the MOT position. Assuming p∗ = 1/2, and optimizing
the overlap of the circular ionization beam with the MOT distribution of Table 2.2, the
maximal ionization fraction measures fI = 20 − 23% for the range of excess photon
energies ∆E = 0− 106 meV. The expected maximum number of free electrons is about
Ne ≈ 2× 106 in a volume a little smaller than the MOT dimensions σ0 ∼ 350µm.

2.5 Plasma
As alluded to before, the defining characteristic of plasma as a medium originates from
the availability of free charge carriers; electrons and ions. The Coulomb force causes
long range interactions between particles, whereas in gaseous media interactions are
dominated by close binary collisions. In this report we will restrict the word plasma to
macroscopically neutral charged particle collections. In the case of our singly ionized
plasma the electron density equates the ion density in the bulk of the medium.
Even the lightest ion, the proton, has a large mass as compared to the electron, i.e.

mi/me > 103. Hence electrons respond much quicker to potential fluctuations than the
ions, effectively screening the ions from these fluctuations. The characteristic 1/e length
scale for screening of potential fluctuations in a plasma is the famous Debye (screening)
length λD :

λD =
√
ε0kBTe
nee2 , (2.19)

where Te is the electron temperature. This screening of potential fluctuations is the
defining characteristic of plasma as a medium. To qualify a medium as a plasma, three
conditions emerge from this definition [21]. Firstly: the length scale σ0 of the plasma
dimensions should be large compared to the Debye length, σ0 � λD . For σ0 ≤ λD

screening is not effective and the medium loses it’s characteristic property. Secondly:
since the shielding effect is the result of the collective particle behavior, the Debye
number ND � 1, where:

ND = 4π
3 neλ

3
D
. (2.20)
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The Debye number is the average number of electrons to be found in a sphere with
radius λD . If, on average, there is no electron to be found in a region spanned by the
Debye length, there is no screening and one cannot speak of a plasma.
The typical excess ionization energy ∆E = 0.1 − 100 meV discussed in the previous

section leads to an initial electron temperature Te = 1−1000 K1. With a typical electron
density ne ∼ 1015 m−3 in a volume with dimensions σ0 ∼ 350µm, the first plasma
condition (σ0 � λD) is easily fulfilled. The second condition (ND � 1) is not fulfilled in
the low-end of the initial electron temperature range Te = 1− 10 K. With less than one
electron in a Debeye sphere short-range interactions become important in describing
the medium characteristics. However, as we will see later this section, the electron
temperature in a freely expanding UCP rises to order ∼ 10 K in the first ∼ 100 ns after
creation and the second plasma condition is fulfilled in the bulk of the medium.
With both of these conditions fulfilled, the charged particles exhibit collective behavior

and a characteristic frequency arises, the plasma frequency:

ωpj =
√
e2nj
ε0mj

. (2.21)

The plasma frequency is the characteristic (angular) collision frequency for electron-
electron (ωpe), and ion-ion interactions (ωpi). In general the electron plasma frequency is
much higher than the ion plasma frequency (ωpe � ωpi) due to the aforementioned large
mass ratio of the electrons and ions. Here the third plasma condition comes in. If the
electron-neutral interactions (ωpn) dominate electron-electron interactions (ωpn > ωpe),
the electrons (and ions) will be in forced equilibrium with the neutrals and the medium
can be treated as a neutral gas. Hence for the medium to be a plasma, ωpe � ωpn. This
is the case down to a surprisingly low critical ionization fraction fIc � 1. For example
in the case of helium with an electron temperature of 104 K, it is found fIc ' 10−7 [22].
Hence our 85Rb plasma at a temperature T ≤ 103 K and a ionization fraction fI ∼ 10−1

certainly behaves as a plasma.
The lifetime of a UCP can be divided in three distinctive phases related to the

timescales of the inverse plasma frequency ω−1
pj . These phases are depicted graphically

in Fig. 2.5. From ionization at time t = 0 s in order of increasing timescale [11]:

electron equilibration The first phase is characterized by electron-electron interactions
at a typical timescale of ω−1

pe ∼ 1 ns. Three processes develop in parallel.

• Directly after ionization the UCP is neutral. ‘Fast’ electrons escape over the first
few periods of the electron plasma frequency and the remaining ‘slow’ ions turn the
plasma slightly positively charged. The resulting potential well traps the remaining
electrons. The initial stage of this process is finished after ∼ 10 ns. Electrons

1Note directly after ionization one can not strictly speak of an electron temperature. Electron velocities
are still uncorrelated and have not yet developed a Maxwellian velocity distribution. However, the
electron kinetic energy is a good approximation for the thermal energy, Ee ≈ 3/2kB Te. Details will
be discussed later this section.
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Figure 2.5: Typical UCP timescales. Adapted from [10].

will keep escaping the plasma at a much lower pace due to heating processes
discussed later this section. This process is finished after about ∼ 1µs. In our
UCP with Ne ≈ 2 × 106, more than 90% of the electrons remain trapped for
∆E = 0.1− 100 meV.

• Electrons thermalize through collisions among each other and establish a tempera-
ture, with Ee ≈ 3/2kBTe. The range of excess photon energies ∆E = 0.1−100 meV
leads to a contribution to the electron temperature of 1− 1000 K. The aforemen-
tioned heating processes provide another contribution. After about ∼ 100 ns the
electron temperature is well established.

• Ionization is a stochastic process, electrons are ionized at random positions with
random directions of propagation. With the Coulomb force this creates a potential
energy landscape for the electrons. Over the first few periods of the electron plasma
frequency the potential energy is converted to thermal energy of the electrons. This
process is called disorder-induced heating (DIH). DIH and other heating effects
lead to a minimum electron temperature in the order of ∼ 10 K. At higher initial
electron temperatures above 100 K, these contributions are of limited importance.

ion equilibration The second phase is characterized by ion-ion interactions at a typical
timescale of ω−1

pi ∼ 100 ns. As the ion temperature follows the temperature of the MOT
atoms, the ion velocity distribution is Maxwellian from the start. In our experiment
Ti ≈ Ta ∼ 1 mK. However, the ion positions are not yet correlated. DIH of the ions
results in an increased ion temperature in the order of ∼ 1 K. During this process
electrons are heated as well. Ion equilibration is finished after about ∼ 1µs.

plasma expansion The third phase is characterized by plasma expansion. In typical
UCP experiments the plasma simply expands into free space, cooling the electrons and
ions adiabatically. Plasma lifetime is mostly determined by the electron temperature,
as hot electrons increase the plasma expansion velocity. At long times t � ω−1

pi the
potential well holding the electrons together becomes shallow, allowing hot electrons to
escape. A typical UCP lifetime is in the order of 100µs.
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2 Ultracold Plasma

Typically, UCP expansion is well described by the famous electronic Vlasov equation.
For singly ionized ions:

∂fj
∂t

+ v · ∂fj
∂x −

qj
mj

∂fj
∂v ·

∂ϕ (x)
∂x = 0, (2.22)

where fj (x,v) is the one particle phase space distribution function for species j, qj is
the species’ charge, and ϕ (x) is the total mean-field potential determined by the Poisson
equation:

∇2ϕ = e

ε0
(ne − ni) . (2.23)

The electronic Vlasov equation neglects particle collisions which results in the zero on
the right-hand side of Eq. 2.22. This is a good approximation because of two conditions
in our definition of a plasma. In the limit ND � 1 there are very many charged particles
in a Debye sphere and collective particle interactions will dominate over close binary
collisions. Hence we can get away with neglecting these collisions altogether and only
the mean-field potential ϕ (x) remains [22]. In the limit ωpe � ωpn we can neglect
collisions with neutrals as well.
A general, closed-form analytical solution of Eq. 2.22 cannot be given [10]. However,

we can apply two additional assumptions: as recombination is negligible over a typi-
cal UCP lifetime, we can assume ∂fj/∂t = 0. Furthermore assuming quasineutrality
(ne (x) ≈ ni (x)) leads to a whole set of solutions with a self-similar expansion. Starting
with a Gaussian initial density distribution for the ions, leads to an expansion of the
form:

nj (x, t) = nj0 (t) exp
(
− x2

2σ2
jx (t) −

y2

2σ2
jy (t) −

z2

2σ2
jz (t)

)
, (2.24)

nj0 (t) = Nj√
2π3

σjx (t)σjy (t)σjz (t)
,

σjl (t) =
√
σ2
jl (0) + v2

expt
2, for l = x, y, z. (2.24a)

Where j = i and vexp denotes the expansion velocity at long times t � ω−1
pi . This

equation holds for j = e as well as the electrons follow the ions during UCP expansion.
The assumption of quasineutrality might seem counter intuitive as ϕ (x) 6= 0 in Eq. 2.23.
The details behind the derivation are subtle and can be found in Ref. [10]. Note ni (x, 0)
from Eq. 2.18 is not strictly Gaussian, but nearly. A Gaussian self-similar expansion
describes experiments well in a UCP made from laser cooled metastable xenon [23].
Moreover, for Te ≥ 50 K the expansion velocity is determined by the initial electron
temperature:

vexp =
√
ξkBTe/mi, (2.25)

with ξ = 0.9 a fit constant [23]. At ξ = 1 the 1D expansion velocity is fully determined
by the electron thermal energy, miv

2
exp = kBTe.

This will be our model plasma for the proof-of-principle MCRS experiment on a UCP.
By two-step photoionization of a 85Rb MOT we create a UCP with a Gaussian density
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2 Ultracold Plasma

distribution and a self-similar expansion. By setting the wavelength of the ionization
laser to λ50 = 477.86 nm the electron temperature becomes Te = 50 K, see Eq. 2.12. At
Te = 50 K the plasma expansion velocity becomes predictable vexp ≈ 66 m/s while plasma
lifetime is maximized and of order ∼ 100µs. Note the expansion velocity might differ
from the value expressed here as the ξ = 0.9 dependence is derived for a singly ionized Xe
UCP. In this derivation the influence of the quadrupole magnetic field required for MOT
operation is neglected as well. During expansion electrons are expected to gyrate around
magnetic field lines, reducing the expansion velocity. The reduction in the transverse
UCP expansion velocity has been studied experimentally in an homogeneous magnetic
field [24]. As effects in a quadrupole magnetic field are not easily computed, this problem
is left to be solved later. A reduction in the expansion velocity is expected.

2.6 Summary for Design
The idea is to create a UCP in a microwave cavity. The plan is to achieve this goal
by two-step photoionization of a GMOT consisting of 85Rb-atoms. For reliable MOT
operation the vacuum system should be capable of pumping down the cavity to the UHV
regime, or below 10−9 mbar. As we will see in Ch. 3 the MCRS signal is dependent on
the total number of electrons Ne in the plasma. To maximize Ne we need to maximize
the number of atoms Na in the MOT. The MOT atoms are trapped in the overlap
volume Vo of the trapping beams. To maximize Na the full overlap volume should
fit in the cavity interior, leading to a minimum cavity height ho = 13.4 mm. The
expected maximum number of trapped atoms is Na = 1.2 × 107 with a temperature
Ta ∼ 1 mK in a volume with a RMS size of roughly σ ∼ 400µm. To maximize the
MCRS measurement time, and have a simple, predictable model for the UCP expansion,
the optimum electron temperature is Te = 50 K. This requires an ionization wavelength
of λ50 = 477.86 nm and leads to a maximum ionization fraction of fI = 20%. The
resulting UCP totals about ∼ 2 × 106 electrons in a volume a little smaller than the
MOT dimensions σ0 ∼ 350µm. The UCP has an expansion velocity of vexp ≈ 66 m/s
and an expected lifetime of ∼ 100µs. An MCRS measurement resolution of ∼ 1µs should
be fine to resolve the plasma expansion with good accuracy. All relevant parameters for
the design of the experiment are summarized in Table 2.3.
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Table 2.3: Summary of estimations for design.

MOT

Atom number Na 1.2 ×107

RMS size σ⊥ 340 µm
σ‖ 475 µm

Atom temperature Ta ∼ 1 mK

Ionization

Ionization wavelength λ50 477.86 nm
Pulse energy Epulse 300 µJ
Total ionization fraction fI 20 %

UCP

Number of electrons Ne 2 ×106

RMS size σ0 ∼ 350 µm
Electron temperature Te 50 K
Ion temperature Ti ∼ 1 K
Expansion velocity vexp ∼ 66 m/s

Measurement

Resolution tmin ∼ 1 µs
UCP lifetime tmax ∼ 100 µs

Cavity

Minimum cavity height hmin 13.4 mm
Background pressure p < 10−9 mbar
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3 Theory of Microwave Cavity Resonance
Spectroscopy

The proof-of-principle microwave cavity resonance spectroscopy (MCRS) experiment
on an ultracold plasma (UCP) that is the subject of this thesis, entails designing and
building a microwave cavity, operating the grating magneto-optical trap (GMOT) in the
cavity interior, ionization of the ultracold atom cloud (MOT) and tracking the evolution
of the cavity resonance frequency as a function of time. To that end relevant theory for
cavity design, characterization and operation is discussed in this chapter, together with
the theoretical background of the MCRS technique.
This chapter is divided into three sections. Section 3.1 deals with microwave cavity

theory. It discusses the resonant mode used in the MCRS experiment, and introduces
the concept of the quality factor (Q-factor) of a cavity mode. The Q-factor is an impor-
tant figure of merit for cavity performance as it determines the trade-off between two
competing qualities of the MCRS measurement. The Q-factor determines the width of
a mode resonance peak, and thus influences the measurement resolution of an MCRS
measurement. A high Q-factor means a narrow resonance peak which is more easy to
resolve with high accuracy. Conversely, build up of cavity fields in a high Q-factor cav-
ity is slower, reducing the temporal resolution of the MCRS measurement. A trade-off
needs to be found. The analytical expressions derived in this section will guide the
considerations for cavity design in Ch. 4.
Section 3.2 deals with microwave cavity perturbation theory in two distinct cases.

In the first case the theoretical background of the MCRS technique is discussed for a
vanishingly small perturbation by a plasma. The second case deals with a perturbation
by a spherical, high permittivity dielectric bead. Operating the GMOT in the cavity
interior requires large holes in the cavity walls for optical access. Holes in the cavity
walls alter the resonant geometry of the cavity in a non-trivial way and the cavity
fields, resonance frequency and Q-factor will have to be determined through numerical
simulation. The simulations of the cavity field profile can be verified experimentally with
the aforementioned perturbation with a dielectric bead (bead-pull method). Again, as
in the previous chapter, estimations important for cavity design are made throughout
this chapter, and summarized in Sec. 3.3.

3.1 Cavity Theory
The plan is to design and conduct an MCRS experiment using a cylindrical ‘pillbox’
cavity geometry. Therefore it is convenient to introduce a cylindrical coordinate sys-
tem next to the Cartesian coordinate system used in the rest of the setup, see Fig. 3.1.
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3 Theory of Microwave Cavity Resonance Spectroscopy

Figure 3.1: Pillbox cavity with definition of the Cartesian and cylindrical coordinate
systems, where h is the cavity height and R the cavity radius. Adapted from [25].

The origin of the right-handed Cartesian coordinate system (x, y, z) is located on the
axis of revolution (the z-axis) at the back plane of the cavity. The cylindrical coordi-
nates (r, φ, z) are defined with respect to the same origin. In Fig. 3.1, h is the cavity
height and the cavity radius is denoted by R.

Cavity fields in the cylindrical coordinate system are defined in the usual fashion. The
electric field vector E has a total amplitude E with components Er, Eφ and Ez in the
respective directions. The same holds for the magnetic field vector B:

E = Er r̂ + Eφ φ̂ + Ez ẑ and E = |E| =
√
E2
r + E2

φ + E2
z , (3.1a)

B = Br r̂ +Bφ φ̂ +Bz ẑ and B = |B| =
√
B2
r +B2

φ +B2
z , (3.1b)

here r̂, φ̂ and ẑ denote the unit vectors in the respective directions. Full field expres-
sions are obtained by multiplying the components in Eq. 3.1 with the time factor eiωt

and taking the real part of the expression. In the time factor, ω denotes the angular
frequency of the field and i is the imaginary unit. Note the phase difference between the
electric and magnetic field is 90◦. In the remainder of this thesis angular frequencies are
denoted by ω and ordinary frequencies by f , keeping the same subscripts by convention.
Obviously ω = 2πf .

3.1.1 Resonant Mode
Solving Maxwell’s equations with proper boundary conditions in a cylindrical cavity ge-
ometry leads to two sets of resonant solutions. The solutions are called ‘modes’, and
divided in a transverse electric (TE) and transverse magnetic (TM) set. Historically
microwave cavities have been developed in the context of beam manipulation (radar),
with the z-axis being the direction of beam propagation. Hence the transverse direction
is defined with respect to this axis. TE (TM) modes have no components of the electric
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ẑ

Figure 3.2: TM010 mode profiles. Left: E-field (red). Right: B-field (blue). Arrows
follow field lines. Field amplitude in red and blue respectively. Adapted from [25].

(magnetic) field in the direction of propagation, only transverse components. To distin-
guish the individual modes, both sets are labeled with the indices m, n and p (TEmnp
and TMmnp) related to the number of nodes in the φ, r and z direction respectively. For
both sets of modes the indices m, n and p are represented by a natural number, while
for TM modes n ≥ 1 and for TE modes p ≥ 1 as well.

In the proof-of-principle experiment we plan to use the TM010 mode. It is the fun-
damental mode for a pillbox cavity where the cavity diameter exceeds the cavity height
(2R > h). In the TM010 mode only field components Ez and Bφ exist and both only
depend on the radial coordinate. For an ‘empty’ (vacuum) cavity the field amplitudes
are given by [26]:

Ez (r) = E0J0

(
x01r

R

)
, (3.2a)

Bφ (r) = √ε0µ0E0J1

(
x01r

R

)
, (3.2b)

where xmn is the nth root of Jm (x), the Bessel function of the first kind, ε0 and µ0
are the vacuum permittivity and permeability respectively, and E0 is the peak electric
field amplitude on the z-axis. Bessel functions are the harmonic functions of cylinder
geometries and thus encountered here. A graphical representation of the TM010 mode
profiles is plotted in Fig. 3.2. The electric field profile (red) is plotted on the left side of
the figure, the magnetic field profile (blue) on the right. Arrows denote field lines, and
field amplitude is color coded on a linear scale. Note the electric field has an antinode
on the z-axis, where the magnetic field has a node.
The resonance frequency ω0 of the TM010 mode only depends on the cavity radius and

is given by:
ω0 = x01

R
√
ε0µ0

. (3.3)

With x01 ≈ 2.405, the TM010 mode in a cavity with a radius R = 25 mm has a resonance
frequency of f0 = 4.6 GHz.
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Thermal Stability

An MCRS experiment depends on measuring the resonance frequency shift of a mi-
crowave cavity. Other, uncontrolled parameters influencing the resonance frequency
lead to a decrease in measurement accuracy. All solid materials expand and contract
during temperature fluctuations, and so will the microwave cavity. Hence the resonance
frequency of the TM010 mode in the microwave cavity is dependent on temperature T .
The partial derivative of the resonance frequency in Eq. 3.3 with respect to temperature
is given by:

∂f0
∂T

= −x01
2π√ε0µ0

1
R2

dR

dT
= −f0κT , (3.4)

here κT = 1
R
dR
dT is the linear expansion coefficient of a solid material. For example, in

the case of an aluminum cavity at room temperature κT = 23.1 × 10−6 K−1 [27] which
leads to a change in resonance frequency of ∼ 100 kHz ·K−1 for the TM010 mode in our
4.6 GHz model cavity.

3.1.2 Quality Factor
The quality factor (Q-factor) Q is an important figure of merit for microwave cavity
performance. It is an important design criterion in the design of an MCRS experiment
as we will see later this section. The Q-factor is the ratio of time-averaged energy stored
in the cavity fields U to the energy lost per cycle. In terms of time-averaged energy
loss Ploss this becomes [26]:

Q ≡ ω0
U

Ploss
. (3.5)

With the cavity fields known analytically from the previous section, the Q-factor of the
model cavity can be estimated. Integrating the time-averaged energy in the cavity fields
of Eq. 3.2 over the cavity dimensions yields [26, 28]:

U = 1
4

˚
cav

(
ε0 |E|2 + 1

µ0
|B|2

)
d3x = πε0

2 E2
0J

2
1 (x01)hR2, (3.6)

where d3x denotes a volume element. Cavity energy losses have different components
discussed next.

Conductor Loss

Due to the finite conductivity of the cavity walls, electromagnetic fields impinging on
the wall surface do not cancel directly on the interface, but penetrate the wall material.
Over a characteristic length scale called the skin depth δs, the field amplitude decreases
by a factor 1/e [26]:

δs =
√

2
µwσwω0

, (3.7)
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where µw and σw denote the permeability and conductivity of the wall material re-
spectively. In the case of a 4.6 GHz aluminum cavity at room temperature µw ≈ µ0 and
σw = 3.56×107 S/m [29] leading to a skin depth of δs = 1.2µm. As cavity fields penetrate
the cavity wall, the wall surface resistance RS is dependent on the wall thickness d [26]:

R−1
S

=
ˆ d

0
σw exp

(
− x
δs

)
dx. (3.8)

For d → ∞ the surface resistance has a limiting value given by RS = 1/ (σwδs). In
the case of a thick walled 4.6 GHz aluminum cavity RS = 23 mΩ. A common design
criterion is to assume the surface resistance has reached its final value after 5 skin
depths of penetration into the wall material.
With the surface resistance defined, the time-averaged conductor loss in the cavity

walls can be estimated. Time-varying magnetic fields impinging on the wall surface lead
to a surface current J = µ−1

0 n̂ × B|wall. Here n̂ is the wall surface normal unit vector
pointing to the cavity interior. Using the fields defined in Eq. 3.2 the time-averaged
conductor loss in the cavity wall reads [26, 28]:

Pwall = RS

2

¨

wall

1
µ2

0
|n̂×B|2 d2x = RS

πε0
µ0

E2
0J

2
1 (x01)R (R+ h) . (3.9)

Combining the results of Eqs. 3.6 and 3.9, an analytical expression for the Q-factor of
the TM010 mode due to conductor loss in the cavity walls can be derived:

Qwall = ω0
U

Pwall
= 1
δs

µ0
µw

Rh

R+ h
. (3.10)

Assuming the cavity height to be the height of the GMOT overlap volume derived in
the previous chapter (h = 13.4 mm), the Q-factor due to conductor loss for the TM010
mode in a 4.6 GHz aluminum cavity is approximately Qwall ∼ 7000.

Radiation Loss

Operating the GMOT in the cavity interior requires holes in the cavity walls for optical
access. From an energy point of view, electromagnetic fields in the cavity interior can
‘leak’ out of the resonant structure through holes in the cavity walls and lead to radiation
loss. The hole placement, geometry and dimensions all will have an influence on the
radiation loss –and thus the Q-factor– and are important considerations for cavity design.
Mathematically, a hole in the cavity wall can be viewed as a separate resonant struc-

ture, just as the microwave cavity itself. Assuming a hole with a circular cross section
–which is convenient for laser access– the hole behaves as a cylindrical waveguide. Hole
(waveguide) dimensions are defined in Fig. 3.3, where lh and rh are the hole length and
radius, respectively. Note ẑ is the hole longitudinal axis. It is the direction of power
flow from the cavity interior to the exterior. The hole longitudinal axis ẑ might differ
from the cavity coordinate z, dependent on the hole placement on the cavity wall.
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Figure 3.3: Hole in cavity wall for optical access, with radius rh, length lh and ẑ the
direction of the longitudinal axis.

A cylindrical waveguide exhibits resonant modes TEmn and TMmn. These are the
same modes as for a cylindrical cavity without the constraints in the longitudinal dimen-
sion along the z-axis. The dominant mode of a cylindrical waveguide is the TE11-mode.
Frequencies below the dominant mode cannot propagate in the waveguide and are cut
off. Hence, in microwave theory, the dominant mode of a waveguide is called the cutoff
frequency fc. For vacuum cylindrical waveguides the cutoff frequency is given by [26]:

fc = p
′
11

2πrh
√
ε0µ0

, (3.11)

here p′
mn is the nth root of the derivative of Jm (x) with respect to x, and approximately

amounts to p′
11 = 1.841.

Frequencies below the cutoff frequency cannot propagate in a waveguide. In the
context of a microwave cavity with a hole in the cavity wall, cavity modes with resonant
frequencies below the hole cutoff frequency (f0 < fc) will not propagate and reflect. In
the case of total reflection there will be no radiation loss (Phole → 0) and the associated
Q-factor will approach infinity (Qhole →∞). The power loss in Eq. 3.5 is the sum of the
individual components (Pcav = Pwall + Phole) and so:

Q−1
cav = Q−1

wall +Q−1
hole. (3.12)

A hole totally reflecting a cavity mode will not significantly change the cavity Q-factor.
The Q-factor of the TM010 mode in a 4.6 GHz aluminum cavity with totally reflecting
holes for optical access is limited by conductor loss and remains approximately Qcav ∼
7000. In the context of an MCRS experiment, total reflection on the cavity holes is the
desired situation as it achieves two things:

• The Q-factor of the cavity mode is preserved, maximizing MCRS measurement
accuracy as we will see later this section.

• The cavity mode is isolated from the environment. Cavity fields will not propagate
into the rest of the setup, nor will sources with frequency components f < fc in
the rest of the setup contribute to the cavity fields. Hence we can be sure the
measured MCRS signal is exclusively the result of cavity perturbation.
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With different holes for optical access in the cavity walls, preserving the Q-factor of a
cavity mode will depend on the hole with the largest radius. In the envisaged experiment,
this will be the hole for the trapping laser. The trapping laser beam line uses 1 inch
optics, so a hole radius rh = 13 mm should be sufficient for optical access without limiting
the trapping beam. A hole with a 13 mm radius has a cutoff frequency fc = 6.8 GHz,
see Eq. 3.11. All cavity modes with f0 < fc will not radiate into the rest of the setup
and preserve their Q-factor. This is the case for the 4.6 GHz model cavity discussed in
the previous section.
Note that reflection on a cavity hole is a resonant phenomenon, and cavity fields are

not instantly reflected at the cavity–hole interface. Reflection will develop on a length
scale in the order of the cutoff wavelength λc, where λc = c/fc. Cavity holes with a
length lh � λc will still radiate cavity fields. Likewise, even in the case of total reflection,
cavity fields will penetrate the hole to some extent. Hence cavity holes contribute to the
volume occupied by the cavity fields and change the geometry of the resonant structure.
The resulting cavity mode profile and resonance frequency will deviate from the cavity
fields discussed in Sec. 3.1.1, and are hard to compute analytically. During cavity design
in Ch. 4 the mode profile, Q-factor and resonance frequency will be determined through
numerical simulation.

External Loss

A microwave cavity cannot be operated in isolation. It will need a connection with the
outside world for mode excitation and –in the case of an MCRS experiment– detection
of the resonance frequency. The external part of the resonant circuit will invariably
attribute to power loss, which is covered in the term external loss. To describe the
external loss and how it influences the Q-factor of the cavity it is convenient to introduce
some concepts from electronic circuit theory.
In electronic circuit theory the resistance, capacitance and inductance of a microwave

cavity can be represented by a combination of idealized electrical components; resistors,
capacitors and inductors. Components are connected by idealized, perfectly conducting
wires into a lumped element model. The most basic lumped element model exhibiting
resonant behavior is an RLC network, named after its three components. RLC networks
exist in two topologies, a series network and a parallel network. Both can be used to
describe the resonant behavior of a microwave cavity. In this thesis the arbitrary choice
for a series RLC network is made.
A graphical representation of a series RLC network is shown in Fig. 3.4a. It consists

of a resistor Rc, inductor L and capacitor C. In this model the resistor covers the losses
while L and C represent the energy stored in the magnetic and electric cavity fields,
respectively. An AC voltage of frequency ω applied across the terminals experiences an
electrical impedance Zcav given by:

Zcav = Rc + iωL+ 1
iωC . (3.13)

A series RLC network exhibits a resonance at a frequency ω0 = 1/
√
LC and has a

Q-factor Qcav = ω0L/Rc [26, 30]. Note this definition for the resonance frequency and
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Rc L

C

(a)

Resonant
Circuit
Qcav

Rext

(b)

Figure 3.4: Lumped element networks representing the cavity electrical behavior (a) Se-
ries RLC network representing the microwave cavity itself with resistor Rc, inductor L
and capacitor C. (b) Cavity circuit with Q-factor Qcav connected to an external
load Rext.

Q-factor is strictly for a series RLC network. The cavity impedance Zcav can be rewritten
in terms of the Q-factor:

Zcav = Rc + iRcQcav

(
ω

ω0
− ω0

ω

)
≈ Rc

(
1 + 2iQcav

∆ω

ω0

)
, (3.14)

where ∆ω = ω − ω0 is the difference between the applied frequency and resonance
frequency and we assume ∆ω � ω0 in the approximation. On resonance (ω = ω0) the
cavity impedance is purely real, and it reaches its minimum value of Rc.
For mode excitation, a microwave cavity is connected to a microwave generator matched

to a transmission line. The transmission line has a characteristic impedance Z0, where
typically Z0 = 50 Ω. Electromagnetic waves in a microwave network reflect on sudden
changes in the electrical impedance. The fraction of the wave reflected on the inter-
face is determined by the voltage reflection coefficient ΓV . For electromagnetic waves
propagating from a region of electrical impedance Z1 to a region Z2 it is defined as [26]:

ΓV ≡
Z2 − Z1
Z2 + Z1

. (3.15)

On the cavity–transmission line interface, the voltage reflection coefficient is given by:

ΓV = Zcav − Z0
Zcav + Z0

= Rc − Z0 + 2iRcQcav∆ω/ω0
Rc + Z0 + 2iRcQcav∆ω/ω0

. (3.16)

During on-resonance excitation (ω = ω0) reflection is minimal (zero) when the cavity
impedance is matched to the transmission line Zcav = Z0. In all other cases, part of
the voltage is reflected back into the transmission line and dissipated elsewhere in the
network.
From the point of view of the microwave cavity, the microwave generator is seen as

an external load. For a generator matched to the cavity transmission line, the load
impedance Zgen is purely real and Zgen = Z0 = Rext, see Fig. 3.4b. To account for the
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power dissipated outside of the cavity boundaries we can define an external Q-factorQext.
For a series network it is given by [26, 30]:

Qext = ω0L

Rext
= ω0L

Z0
. (3.17)

The ratio of the cavity Q-factor to the external Q-factor is called the coupling coeffi-
cient β. It is the ratio of power loss in the network, with respect to power loss in the
cavity:

β = Qcav
Qext

= Pext
Pcav

= Z0
Rc
. (3.18)

Obviously β > 0. The range of possible coupling coefficients describes three distinct cases
related to the main location of power dissipation. For β < 1 the cavity is undercoupled,
while for β > 1 the cavity is overcoupled. In the case β = 1 the cavity is critically
coupled and the power dissipation in the cavity is matched to the power dissipated in
the external network. In practice coupling is achieved by connecting the transmission
line to an antenna protruding the cavity interior. Details about how coupling is achieved
in practice are discussed in Sec. 3.1.4. Note the coupling element is omitted from the
discussion here, and in the lumped element models in Fig. 3.4. This is not a problem as
this derivation boils down to an argument about power storage and dissipation. Power
storage and dissipation in an antenna is negligible, as compared to the microwave cavity
itself. The Q-factors of the cavity and the external network add reciprocally and form
the loaded Q-factor of the microwave cavity QL :

Q−1
L

= Q−1
cav +Q−1

ext = (1 + β)Q−1
cav. (3.19)

It is the Q-factor of the microwave cavity loaded by the external network. Contrast-
ingly Qcav, the Q-factor of the microwave cavity itself, is called the unloaded Q-factor
and is purely a theoretical value. In an MCRS experiment the loaded Q-factor is of
importance, during microwave cavity design we will optimize the unloaded Q-factor.
An MCRS experiment entails measurement of the shift in cavity resonance frequency

due to a perturbation. Typically the resonance frequency is measured as a function of
time. To determine the cavity resonance frequency one can measure the power reflected
from the cavity Prefl. as a function of frequency. Combining Eqs. 3.16 and 3.18 (after
some algebra) the normalized reflected power is given by:

Prefl.
Pinc.

= |ΓV |
2 = 1− 4β

(1 + β)2
1

1 + 4∆ω2Q2
L
/ω2

0
= 1− L, (3.20)

where the reflected power is normalized to the incoming power Pinc., and L denotes a
Lorentzian. The power reflected from the cavity describes a downward facing Lorentzian
with a FWHM bandwidth BW:

BW = ω0
QL

= ω0 (1 + β)
Qcav

. (3.21)

An example of the theoretical reflection curve of Eq. 3.20 for a critically coupled (β = 1)
cavity mode with resonance frequency ω0 is shown in Fig. 3.5. The bandwidth BW
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Figure 3.5: Normalized reflected power |ΓV |
2 as a function of frequency for a critically

coupled (β = 1) microwave cavity mode ω0. The reflected power is described by a
downward facing Lorentzian with an FWHM bandwidth BW = QL/ω0.

determines the width of the resonance peak (although facing downward, we will be using
the term peak for convenience). Fitting the reflected power from the cavity with Eq. 3.20
one can determine the resonance frequency ω0 of a cavity mode in an MCRS experiment.
With the resonance frequency ω0 = 2π × 4.6 GHz and the unloaded Q-factor Qcav ∼

7000 of the cavity mode estimated, the choice of the coupling factor β remains. Ul-
timately, the MCRS measurement sensitivity is determined by the maximum slope
of the Lorentzian in Eq. 3.20. The maximum slope is found at the inflection point
(∂2 |ΓV |

2 /∂ω2 = 0), and in terms of the unloaded Q-factor Qcav it is given by:

∂ |ΓV |
2

∂ω

∣∣∣∣
max

= ±3
√

3 β

(1 + β)2
Qcav
ω0

. (3.22)

The maximum slope of the Lorentzian scales linear with the unloaded Q-factor Qcav,
and inversely with the resonance frequency ω0 and bandwidth BW (see Eq. 3.21). It has
an optimum for a critically coupled cavity (β = 1) and hence it is chosen to critically
couple the microwave cavity to the external network in this proof-of-principle MCRS
experiment. For critical coupling, the loaded Q-factor of the microwave cavity in the
external network becomes QL ∼ 3500.

3.1.3 Cavity Response Time
Build-up and decay of cavity fields in a microwave cavity takes a finite amount of time.
In an MCRS experiment a time-dependent perturbation can be resolved up to a temporal
resolution determined by the cavity response time. As a measure for the cavity response
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time it is convenient to look at the cavity energy balance during transients in the power
exciting the cavity mode.

In the switch-off transient the cavity is assumed to be excited on resonance (ω = ω0)
with power P0, and operating in steady state. The power from the generator is switched
off at t = 0:

Pinc. =
{
P0 t < 0
0 t ≥ 0

. (3.23)

With no power coming from the generator, the time-averaged energy stored in the cavity
fields U is discharged by the different loss components in Ploss discussed previously. The
differential equation describing the switch-off transient reads [31]:

dU
dt = −Ploss = −ω0

U

QL

, (3.24)

where we made use of Eq. 3.5 in rewriting Ploss. Integration of Eq. 3.24 with the boundary
conditions in Eq. 3.23 yields:

U (t) = Umaxe−t/τ , (3.25)

where Umax = P0QL/ω0 is the time-averaged energy stored in the cavity fields during
steady state, and τ = QL/ω0 is the cavity response time. During the switch-off transient
the time-averaged energy stored in the cavity fields decays exponentially with time.
The switch-on transient shows the same exponential behavior with a term

(
1− e−t/τ

)
.

If –during an MCRS experiment– the resonance frequency of a cavity mode changes
instantly from ω1 to ω2 due to a perturbation of the cavity medium, frequency component
ω1 decays, and frequency component ω2 builds up, exponentially in the cavity interior
with a time factor τ . After 6 periods of the cavity response time the power from the cavity
–as measured in reflection– has reached over 99.5% of its final value. For a 4.6 GHz cavity
with a loaded Q-factor QL ∼ 3500 the cavity response time is τ ∼ 120 ns. In our MCRS
experiment the plasma behavior can be resolved with high accuracy up to a temporal
resolution of 6τ ∼ 700 ns. A temporal resolution in the order of one microsecond is fine
to resolve the ultracold plasma expansion.
Note the estimation of the loaded Q-factor is based on an idealized theoretical model.

The Q-factor achieved in practice will be lower, and the associated cavity response
time will be faster. Furthermore the model assumes full decay (> 99.5%) of frequency
component ω1, and build up of component ω2 as a measure for the time resolution in
the experiment. Faster processes might still be detectable at the cost of signal-to-noise.

3.1.4 Coupling
Coupling of microwave power to a microwave cavity can be achieved in a variety of
ways. In the low-power measurement application of the MCRS experiment envisaged
in this thesis, power transmission on coaxial cables is the standard. A coaxial central
conductor protruding from the wall into the cavity interior acts as an antenna and is
a simple way of achieving coupling in practice. For these simple antennas two basic
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Figure 3.6: The central conductor of an SMA-type coaxial connector protrudes the
cavity interior and acts as a linear antenna, with lant the antenna length.

geometries exist. In a loop antenna, currents on the central conductor terminated in a
loop couple magnetically to the cavity fields. In a linear antenna, currents on the central
conductor ending in a linear rod couple electrically. In this thesis the choice is made
to use a linear antenna, as it is even easier to construct than a loop antenna. A linear
antenna can be used in a ‘set and forget’ fashion.
A schematic representation of a linear antenna constructed from an SMA-type connec-

tor is shown in Fig. 3.6. The central conductor of the SMA connector is isolated from the
outer conductor (shield) by dielectric material, usually Teflon. The conductor protrudes
the cavity interior by a length lant. A general, exact analytical solution of antenna
coupling to a microwave cavity cannot be given. However, for antenna lengths much
smaller than the wavelength λ associated with the applied microwave power (lant � λ),
a perturbative approach can be used [32, 33]. This approach gives insight into how cou-
pling can be achieved and optimized in practice. In a perturbative approach a fractional
wavelength linear antenna (lant � λ) can be approximated by an electric dipole Pant.
Normalized to the applied microwave power, the dipole amplitude is dependent on the
antenna length:

|Pant| ∝ lant. (3.26)

The dipole acts as a source for the cavity fields, and once the fields build up in the cavity
interior, as a source for the fields radiated back into the transmission line. For a linear
antenna excited near a cavity resonance ω0 it can be shown that the coupling strength
is proportional to the inner product between the electric dipole representing the coupler
and the electric fields in the coupling region ECR [25, 30]:

Coupling strength ∝ Pant ·ECR , (3.27)

where ECR is the cavity electric field belonging to mode ω0. This has consequences for
antenna placement and tuning of the coupling factor β:

• For optimal coupling the linear antenna is aligned in parallel with the electric field
in the coupling region (Pant ‖ ECR).
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• Coupling is stronger in a high-field region of the excited mode, like in an antinode
of the electric field profile.

• Coupling (and the coupling factor β) can be manipulated by tuning the length of
the linear antenna, influencing the dipole amplitude |Pant|.

A longer antenna has more coupling strength, and an antenna with a given length couples
more strongly in an anti-node of the electric field. At a given antenna position, the
desired coupling factor can be achieved by reducing the length of an overlong antenna.
With the correct orientation (Pant ‖ ECR) the antenna can be placed anywhere practical
during cavity design. During tuning of the antenna length one can keep track of the
achieved coupling factor by measuring the reflected power as a function of frequency
with the use of a network analyzer. Fitting the measured values with Eq. 3.20 yields the
coupling factor.

3.2 Cavity Perturbation
3.2.1 Plasma
In a microwave cavity, the cavity medium is perturbed by the introduction of free elec-
trons, e.g. a plasma. This has implications for the resonance frequency of an excited
cavity mode. In this section the resonance frequency shift of a microwave cavity due to
a perturbation by a plasma is discussed in theory.
In the general case, consider a microwave cavity with a linear, isotropic cavity medium

characterized by a permittivity ε and permeability µ. The unperturbed cavity fields are
denoted by E and H belonging to mode ω. The cavity medium changes by a perturbation
in the medium permittivity and/or permeability. In the new situation the medium
permittivity is given by ε + ∆ε, and the medium permeability by µ + ∆µ. The cavity
fields, and mode resonance frequency, are perturbed and denoted by Ep, Hp and ωp
respectively. Plugging the new situation into Maxwell’s equations and comparing it to
the unperturbed case yields [6, 34]:

ωp − ω
ωp

= −

˚
cav

(∆εEp ·E∗ +∆µHp ·H∗) d3x

˚
cav

(εEp ·E∗ + µHp ·H∗) d3x
. (3.28)

Here the asterisk (∗) denotes a complex conjugate. Eq. 3.28 is an exact result and
known as Slater’s perturbation theorem. Its evaluation in practical situations poses a
problem as E and H can be known analytically while Ep and Hp (in general) are not. In
perturbation of an empty ‘vacuum’ cavity, (ε, µ, ω) resort to their vacuum counterparts
(ε0, µ0, ωvac) and E and H are known from theory. For vanishingly small perturbations
(∆ε,∆µ)→ 0 we can approximate Ep, Hp and ωp with their unperturbed counterparts
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E, H and ωvac to arrive at:

ωp − ωvac
ωvac

= −

˚
cav

(
∆εE2 +∆µH2) d3x

˚
cav

(ε0E2 + µ0H2) d3x
, (3.29)

which can be evaluated in the case of an experiment.

DC Field Free Case

In our proof-of-principle experiment we perturb the cavity medium (vacuum) with an
ultracold plasma. In absence of external DC magnetic fields, the plasma is unmagnetized
and ∆µ = 0 [5]. Eq. 3.29 resorts to:

ωp − ωvac
ωvac

= −

˚
cav

∆εE2 d3x

2ε0

˚
cav

E2 d3x
, (3.30)

where we have used the fact that
˝

cav ε0E
2 d3x =

˝
cav µ0H

2 d3x on resonance.
In general, a medium permittivity can be described relative to the vacuum permittivity

ε = εrε0, where εr is the medium relative permittivity. For frequencies above the plasma
frequency ωp > ωpe, in the collisionless plasma approximation, neglecting the effects of
the (cold) ions, the relative plasma permittivity εr,p is given by [5]:

εr,p = 1−
ω2
pe

ω2
p

. (3.31)

With Eq. 2.21 we can write the perturbation of the cavity medium permittivity ∆ε in
terms of the plasma electron density ne:

∆ε = −ε0
ω2
pe

ω2
p

= − nee
2

meω2
p

, (3.32)

where ∆ε and ne can be dependent on position and time. In the case of our ultracold
model plasma ne (x, t) is given by Eq. 2.24. With Eq. 3.32 we can define Eq. 3.30 in
terms of the field-averaged electron density n̄e:

n̄e =
2meε0ω

2
p

e2
ωp − ωvac
ωvac

. (3.33)

Writing spatial dependencies explicitly, n̄e itself is defined as:

n̄e ≡

˚
cav

ne (x)E2 (x) d3x

˚
cav

E2 (x) d3x
. (3.34)
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The field-averaged electron density is the plasma electron density weighted by the square
of the local electric field of the cavity mode. It is the electron density that –if spread
over the full cavity volume– results in the same change in resonance frequency as the
perturbation ne (x). The absolute value of n̄e is sensitive to electron densities ne (x)
located in an antinode of the electric field profile, and insensitive to electron densities
located in a node.
Since the UCP in our MCRS experiment evolves with time ne (x, t), so will the cavity

resonance frequency. For interpretation of measurement results it is convenient to rewrite
Eq. 3.33 in terms of the ordinary cavity frequency shift ∆fp = fp − fvac. Writing time
dependence explicitly, it is given by:

∆fp (t) ≈ e2

8π2ε0mefvac
n̄e (t) , (3.35)

where we have assumed ∆fp � fvac, and neglected higher orders of ∆fp.
In the context of our proof-of-principle experiment, Equations 3.34 and 3.35 have con-

sequences for optimization of microwave cavity design, and more specifically, placement
of the UCP within the cavity interior. The cavity frequency shift ∆fp is sensitive to elec-
tron densities located in an antinode of the electric field, which is located on the z-axis in
the case of the TM010 mode see Fig. 3.2. Creating the UCP on the z-axis maximizes the
MCRS measurement sensitivity and parameter space available in the experiment. The
optimal attainable UCP with our GMOT setup amounts to Ne ≈ 2× 106 electrons in a
volume of typical dimensions σ0 ∼ 350µm, see Table 2.3. Placing the UCP on the z-axis
the maximum attainable frequency shift with the TM010 mode in our 4.6 GHz model
cavity is ∆fmax ∼ 3 kHz. This is a relative frequency shift of ∆fmax/f0 ∼ 7× 10−7, very
small indeed.
In practice, the cavity resonance frequency can be resolved with a finite resolution.

This will impose a limit on the minimum frequency shift that can be measured in an
MCRS experiment. The current record of our colleagues of the EPG group is to resolve
the resonance frequency of a TM010 mode (f0 = 1.6 GHz) in a microwave cavity (QL =
490) with an RMS error of σf0 ∼ 280 Hz [34]. Using a similar reflection based setup as our
colleagues this would mean we should be able to measure a minimum relative frequency
shift of ∆fmin/f0 = σf0/f0 ∼ 2 × 10−7. In absolute terms the minimum measurable
frequency shift in our model cavity is about ∆fmin ∼ 800 Hz. More information about
the cavity and measurement setup of the EPG group can be found in Ref. [7].

Measuring a maximum relative frequency shift of ∆fmax/f0 ∼ 7 × 10−7, while the
minimum measurable is ∆fmin/f0 ∼ 2× 10−7 does not leave a lot of room for error. To
be fair, we should be able to measure relative frequency shifts below ∼ 2× 10−7 as the
estimated Q-factor of our model cavity is considerably higher than that of the EPG group
(∼ 3500 vs. 490). However, the Q-factor of our model cavity is a theoretical value and
it remains to be seen whether it can be achieved in practice. Increasing the difference
between the minimum and maximum relative frequency shift would give more room
for error and expands the parameter space available for scanning the electron density
in the experiment. Since the initial volume occupied by the UCP (Vucp ∼ 1 mm3) is
much smaller than the cavity volume (Vcav ∼ 25 cm3), the electric field is essentially
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constant over the plasma. This means the maximum relative frequency shift ∆fmax can
be improved by increasing the fill factor FF = Vucp/Vcav of the plasma in the microwave
cavity, see Equations 3.34 and 3.35. In our situation the fill factor can be increased by
reducing the cavity volume (height). Increasing the cavity fill factor is explored during
cavity design in Ch. 4.
Temperature stability of the microwave cavity resonance frequency is another chal-

lenge. A temperature drift of ∆T ∼ 30 mK would lead to the same change in resonance
frequency as the maximum expected perturbation by the UCP (∆fmax ∼ 3 kHz), see
Eq. 3.4. During experiments temperature drifts should be minimized, or known and
corrected for.

DC Magnetic Field - MOT Coils

The previous analysis is held in absence of DC electromagnetic fields. This is not strictly
the case as a DC magnetic quadrupole field (see Fig. 2.1) is used to trap ultracold atoms
in the MOT. Presently the MOT coils cannot be switched off at a reasonable time scale
below 1 ms due to the self induction of the coils and eddy currents in the setup. Note
the ultracold atoms are trapped, and the UCP is created, in the zero crossing of the
quadrupole. The influence of the DC magnetic field on microwave cavity perturbation
is discussed in this section.
Slater’s perturbation theorem (Eq. 3.28) is derived from Maxwell’s equations. The

addition of a DC magnetic field does not lead to new AC components in Maxwell’s
equations and the theorem remains valid. This leaves the influence of the DC magnetic
field upon the plasma permittivity and permeability to be discussed.
Under the influence of a DC magnetic field a plasma becomes an anisotropic medium.

Instead of an isotropic plasma permittivity εp the plasma permittivity is split in a di-
rection parallel ε‖ , and a direction perpendicular ε⊥ to the local magnetic field. Perpen-
dicular to an uniform DC magnetic field BDC the plasma permittivity becomes [35]:

ε⊥ = ε0

(
1−

ω2
pe

ω2 − ω2
ce

)
, (3.36)

where ωce is the (angular) electron cyclotron frequency. It is the field free plasma permit-
tivity with a correction term −ω2

ce due to the electron gyration. The electron cyclotron
frequency is defined to be strictly positive ωce > 0 and given by ωce = eBDC/me. Parallel
to the magnetic field BDC the plasma permittivity is unchanged and remains [35]:

ε‖ = ε0εr,p = ε0

(
1−

ω2
pe

ω2

)
, (3.37)

as in Eq. 3.31. Note Eqs. 3.36 and 3.37 are valid in the collisionless plasma approximation
and assume cold ions. Both are valid assumptions in a freely expanding UCP.
The DC magnetic field in the setup is produced by the previously mentioned MOT

coils. The coils have a radius of 91 mm, consist of 196 turns and are capable of draw-
ing 15 A of current [36]. Neglecting the quadrupole field topology, a MOT coil has a
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maximum magnetic field of Bmax ∼ 20 mT on axis at the coil center. This would lead to a
electron cyclotron frequency of fce ∼ 570 MHz. Since fce � f0 in our 4.6 GHz model cav-
ity the permittivity perturbation perpendicular to the DC magnetic field (∆ε⊥ = ε⊥−ε0)
would lead to a correction of about ∼ 1% with respect to the scalar value in Eq. 3.32.
During expansion the UCP will collide with the cavity wall before it reaches the location
of the magnetic field maximum and the correction of Eq. 3.36 can be safely ignored our
proof-of-principle experiment. This leaves the effect of the DC magnetic field on the
plasma permeability perturbation to be discussed next.
The effect of the DC magnetic field on the plasma permeability perturbation ∆µ

remains unclear. The perturbation ∆µ is expected to be small with respect to the
permittivity perturbation ∆ε as in the field free case for two reasons:

1. The permeability perturbation ∆µ in Slater’s perturbation theorem (Eq. 3.28) is
the permeability perturbation due to the AC fields of the cavity mode or ∆µ(AC) .
A DC magnetic field might lead to a DC plasma permeability µDC 6= µ0 and can
only indirectly influence the cavity resonance frequency shift ∆µ (µDC).

2. The Bohr–Van Leeuwen Theorem states that [37]:
In a constant magnetic field and in thermal equilibrium, the magnetiza-
tion of an electron gas in the classical Drude–Lorentz model is identically
zero.

Thermal equilibrium and the Drude–Lorentz model are good assumptions for the
electrons in a freely expanding UCP. These are the same assumptions as used
in the UCP expansion model in Sec. 2.5 and in the derivation of the (relative)
plasma permittivity in Eq. 3.31. According to the Bohr–Van Leeuwen theorem the
magnetization of a plasma in a DC magnetic field is identically zero (the plasma is
unmagnetized) and the DC plasma permeability is unchanged µDC = µ0. Ref. [5]
states that ∆µ(AC) = 0 for unmagnetized plasmas (µDC = µ0) which suggests that
∆µ(AC) = 0 in the case of a DC magnetic field as well.

For these two reasons the effect of the permeability perturbation ∆µ on the cavity fre-
quency shift ∆fp is neglected in the remainder of this thesis, and efforts are focused
on realization of the experiment in practice. Note that the electric field of the TM010
mode has an antinode on the cavity z-axis where the magnetic field has a node, see
Fig. 3.2. Creating the UCP on the cavity z-axis the initial cavity frequency shift due to
the permittivity perturbation ∆fp (∆ε) |t=0 will be maximal, where the initial shift due
to the permeability perturbation ∆fp (∆µ) |t=0 will be minimal. If needed, the effect
of the DC magnetic field can be examined by switching off the MOT coils in between
MOT loading and ionization. With some effort the MOT coils can be switched off at
timescales below 1 ms with counter-current compensation [38]. With a typical tempera-
ture Ta ∼ 1 mK of the trapped atoms in the magneto-optical trap, MOT expansion in
1 ms negligible and does not hinder experiments.
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3.2.2 Dielectric Bead
The main goal of this thesis is to design a microwave cavity for a proof-of-principle MCRS
experiment on a UCP. Creating the UCP in the cavity interior requires relatively large
holes in the cavity walls for optical access. These holes change the cavity geometry and
numerical simulation is required to determine the cavity Q-factor, resonance frequency
and field profile during cavity design. To validate the simulations the cavity Q-factor and
resonance frequency can be determined externally with the use of a network analyzer
(see Sec. 3.1.2), however the cavity field profile cannot. The cavity electric field profile
can be validated experimentally by perturbing the microwave cavity fields with a high
permittivity dielectric bead. A summary of the theoretical background of this technique
is described in this section.

In the case of perturbing the microwave cavity fields with a vanishingly small per-
turbation in the previous section we assume the electric field to be constant over the
perturbation. In the case of perturbation with a high permittivity dielectric material this
assumption does not hold. Due to the high permittivity, the internal electric field Eint
in the dielectric material starts to deviate from the external applied field E of the cavity
mode. This difference needs to be corrected for. In the case of a spherical object which
is small with respect to the cavity dimensions, the internal electric field in a dielectric
material with relative permittivity εr can be approximated by [5, 6, (Corrigendum)]:

Eint = 3
εr + 2E. (3.38)

Comparing an empty (vacuum) cavity with one containing a piece of dielectric material
with permittivity ε = ε0εr we can write for Slater’s perturbation theorem (Eq. 3.28):

ωd − ωvac
ωvac

= −

˚
cav

∆ε (x) Ed (x) ·E∗ (x) d3x

2ε0

˚
cav

E2 (x) d3x
, (3.39)

where Ed = Eint in the dielectric material and corresponds to the unperturbed cavity
fields E elsewhere, ωd is the resonance frequency of the perturbed cavity and spatial
dependencies are written explicitly. Note we still assume the overall cavity perturbation
to be small and approximate the perturbed cavity fields with their unperturbed coun-
terparts as before. Evaluating the numerator of Eq. 3.39 for a spherical dielectric bead
of volume Vd at position xd yields:

ωd − ωvac
ωvac

=− 3 (εr − 1)
2 (εr + 2)

VdE
2 (xd)˚

cav

E2 (x) d3x
. (3.40)

Defining the cavity frequency shift in the same way as in the previous section ∆fd =
(ωd − ωvac) /2π we arrive at the result of practical importance:

∆fd (xd) ∝ E2 (xd) . (3.41)
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The cavity frequency shift due to the perturbation with a spherical dielectric bead scales
with the square of the local electric field averaged over the bead volume. By pulling a
dielectric bead attached to a string through the cavity interior, one can measure the elec-
tric field profile (bead-pull method). With the electric field profile known, the magnetic
field profile follows from Maxwell’s equations. To increase the measurement accuracy
and resolution it is advantageous to use a small dielectric bead with a high permittivity.
Note that determination of the absolute electric field profile with this technique is chal-
lenging. It requires absolute knowledge of the volume Vd and relative permittivity εr of
the dielectric bead, which are both hard to determine with high accuracy. However, the
relative electric field profile can be easily determined and is sufficient for verification of
numerical simulations.

3.3 Summary for Design
In this chapter the relevant microwave cavity theory for the proof-of-principle MCRS
experiment on a UCP is discussed in the context of a 4.6 GHz model cavity for the TM010
mode. The model cavity material is chosen to be aluminum (Al) and the cavity measures
13.4 mm in height and has a 25 mm radius. The skin depth δs in aluminum at 4.6 GHz
is 1.2µm which leads to a Q-factor of the microwave cavity of ∼ 7000 due to conductor
loss in the cavity walls. Holes in the cavity walls needed to operate the MOT in the
cavity interior can lead to power loss and a deterioration of the cavity Q-factor. A hole
with a circular cross section and a 13 mm radius has a cutoff frequency fc = 6.8 GHz
and should reflect the 4.6 GHz cavity fields. In the case of total reflection the unloaded
cavity Q-factor is preserved and remains Qcav ∼ 7000. Drilling a 13 mm radius hole
in a 25 mm radius cavity alters the resonant structure and associated mode profile,
resonance frequency and Q-factor. These changes are hard to determine analytically and
will have to be simulated numerically in Ch. 4. Simulated cavity fields can be verified
experimentally with the bead-pull method discussed in Sec. 3.2.2. By critically coupling
(β = 1) the microwave cavity to the external circuit –needed for mode excitation and
detection of the MCRS signal– the loaded Q-factor of the cavity becomes QL ∼ 3500.
A 4.6 GHz microwave cavity with QL ∼ 3500 has a 1/e cavity response time τ ∼ 120 ns,
which is fine to resolve the ultracold plasma expansion. Creating the UCP on the
central (z) axis of the microwave cavity maximizes the MCRS measurement sensitivity.
For an optimal UCP with Ne ≈ 2 × 106 electrons in a volume with initial dimensions
σ0 ∼ 350µm the maximum expected cavity frequency shift measures ∆fmax ∼ 3 kHz.
Using a similar reflection based setup as our colleagues of the EPG group the expected
minimum measurable frequency shift is ∆fmin ∼ 800 Hz, which gives little room for
error in our proof-of-principle experiment. The maximum attainable frequency shift
∆fmax can be optimized by increasing the fill factor in Ch. 4, i.e. by increasing the
ratio of the UCP to cavity volume Vucp/Vcav. The change in resonance frequency of
the TM010 mode in a 4.6 GHz aluminum microwave cavity due to thermal expansion is
∂f0/∂T ∼ 100 kHz. During experiments temperature fluctuations should be minimized,
or known and corrected for. Relevant parameters for design of the experiment are
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Table 3.1: Summary of estimations for microwave cavity design.

Model Cavity

Material Al
Height h 13.4 mm
Radius R 25 mm
Mode TM010
Resonance frequency f0 4.6 GHz
Thermal stability (Al – 4.6 GHz) ∂f0/∂T ∼ 100 kHz/K

Quality Factor

Skin depth (Al – 4.6 GHz) δs 1.2 µm
Hole cutoff frequency fc 6.8 GHz
Unloaded Q-factor Qcav ∼ 7000
Coupling factor β 1
Loaded Q-factor QL ∼ 3500
Cavity response time τ ∼ 120 ns

MCRS

Maximum frequency shift ∆fmax ∼ 3 kHz
– relative ∆fmax/f0 ∼ 7 ×10−7

Measurable frequency shift ∆fmin ∼ 800 Hz
– relative ∆fmin/f0 ∼ 2 ×10−7

UCP volume (initial) Vucp ∼ 1 mm3

Cavity volume Vcav ∼ 25 cm3

summarized in Table 3.1.
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4 Microwave Cavity Design &
Characterization

In this chapter microwave cavity design and characterization for the envisaged proof-
of-principle microwave cavity resonance spectroscopy (MCRS) experiment is discussed.
Section 4.1 deals with microwave cavity design, Q-factor optimization, and cavity com-
missioning and characterization. In Sec. 4.2 the design, commissioning and characteri-
zation of the parts needed to mount the cavity in the experimental setup is discussed.

4.1 Microwave Cavity
4.1.1 Cavity Design
A microwave cavity for the envisaged MCRS experiment was designed to meet the re-
quirements discussed in the previous chapters. The cavity design is optimized for maxi-
mum MCRS signal and measurement resolution in three ways:

1. The UCP is created on the central cavity axis in an antinode of the TM010 cavity
electric field profile. In this way the frequency shift ∆fp of the cavity mode is
maximized for a given number of free electrons in the UCP.

2. The cavity volume is minimized to increase the fill-factor of the UCP in the cavity
for the same reason as in point 1. A given number of free electrons perturbing a
smaller cavity will result in a bigger frequency shift ∆fp.

3. The geometry and placement of the holes in the cavity walls, required for optical
access are optimized to maximize the cavity Q-factor. A higher Q-factor increases
the measurement resolution of the MCRS technique and lowers the minimum fre-
quency shift ∆fmin that can be measured in the experiment.

An exploded view of the cavity is shown in Fig. 4.1. The grating chip 1 used to create
the GMOT in the cavity interior lies within a recess centered on the back wall of the
cavity housing 2 . The recess ensures the grating surface is parallel to the cavity back
wall with the four semi-circle features at the grating corner points being a consequence of
milling. Two miniaturized metal clamps hold the grating in place and prevent charging
of the grating surface during experiments. Opposite to the grating is the cavity screw
cap 3 , with the big hole providing optical access for the trapping laser. When closed,
the screw cap screws tight to a rim in the cavity housing, ensuring electrical contact.
Four symmetrically placed smaller holes in the cavity housing 2 provide optical access
for the ionization laser and the camera used to observe the MOT fluorescence in the
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Figure 4.1: Exploded view of the microwave cavity. The grating 1 and microwave
antenna 4 are positioned on the cavity back wall in the cavity housing 2 , opposite to
the cavity screw cap 3 .

cavity interior. The microwave antenna 4 is placed on the back face of the cavity
housing, out of view from all optical access holes. Aluminum is chosen as the cavity
material for its vacuum compatibility, machinability and good electrical conductivity
(high Q-factor). The clamps holding the grating are made of aluminum as well. Where
possible all locations of air pockets are vented to shorten the pump-down time in the
setup (virtual leak). For the same reason, there is a small hole directly behind the
grating chip (not in the figure). This hole is useful when removing the grating from the
cavity as well.

Cavity dimensions A cross section of the microwave cavity with dimensions is shown
in Fig. 4.2. For clarity, the orientation of the trapping and ionization lasers is shown in
Fig. 4.3.

The cavity diameter is minimized while still comfortably housing the 21 × 21 mm2

grating 1 in the cavity interior. Note the effective grating surface measures only 20×
20 mm2. A diameter of 50 mm (radius R = 25 mm) leads to a resonance frequency
f0 ∼ 4.6 GHz of the TM010 mode (see Eq. 3.3). The access hole for the trapping laser (I)
is located in the screw cap 3 , opposite to the grating. The trapping laser beam path
uses 1 inch optics, hence its access hole measures 26 mm in diameter (radius rh = 13 mm)
to prevent clipping. Hole I has a length lh to be determined later in Sec. 4.1.2. The
trapping laser incident on the grating results in an overlap volume in which 85Rb atoms
can be cooled and trapped. In Fig. 4.3 the boundary of the overlap volume is depicted
by the dashed line. The overlap volume has a height of ho = 13.4 mm perpendicular
to the grating, see Table 2.3. With an inner height of h = 8 mm the cavity volume is
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Figure 4.2: Microwave cavity cross section with dimensions (dimensions in mm). The
grating 1 is centered on the back wall of the cavity housing 2 , opposite to the cavity
screw cap 3 . Hole I located in the screw cap provides optical access for the trapping
laser, the four holes (II) in the cavity housing provide optical access for the ionization
laser and MOT camera.

Trapping
laser

Ionization
laser

Figure 4.3: Microwave cavity cross section with orientation of the trapping and ion-
ization lasers. The MOT (black ellipsoid) is centered in the overlap volume (boundaries
dashed).
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Trapping
laser

Figure 4.4: Microwave cavity cross section with the trapping laser light reflected in the
negative (n = -1) grating order. The MOT (black ellipsoid) is centered in the overlap
volume (dashed line) as in Fig. 4.3. About 30% of the trapping laser light reflected into
the negative order leaves the cavity after multiple reflections in the cavity interior.

minimized (fill-factor maximized) while the center of the overlap volume remains visible
for the MOT camera and ionization remains possible. The overlap volume protrudes
into hole I and is not clipped by the cavity wall. The expected number of atoms in the
MOT (black ellipsoid in Fig. 4.3) remains optimal. Lowering the cavity height has the
added advantage that a higher percentage of the trapping laser light leaves the cavity
through hole I directly. With a height of 8 mm about 70% of the light diffracted into the
n = -1 order leaves the cavity through hole I directly, just as the light diffracted into the
n = +1 order. This is illustrated in Fig. 4.4. The remaining 30% of trapping laser light
in the negative grating order leaves the cavity through hole I after multiple reflections
in the cavity interior. The reflections do not pass the MOT position and do not disturb
the MOT balance. The four small holes (II) in the cavity housing 2 are 7.5 mm high
and 6 mm wide with semi-circular top and bottom edges.

Influence of cavity holes Holes in the cavity walls change the resonant geometry of the
microwave cavity. Care has to be taken to preserve the cavity Q-factor and numerical
simulation is required to determine the cavity field profile.
The hole for the trapping laser (hole I) has a 13 mm radius which leads to a cut-off

frequency fc = 6.8 GHz (see Eq. 3.11). The hole will reflect cavity modes with frequencies
f < fc over a length scale in the order of the cutoff wavelength λc = c/fc (order 10 mm).
Hole I is located in an antinode of the (analytical) electric field profile of the TM010
mode (see Eq. 3.2 and Fig. 3.2), and coupling of the cavity fields is high. Care has to be
taken to prevent radiation loss. The length lh of hole I is varied in numerical simulations
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in Sec. 4.1.2 to prevent radiation loss and consequently preserve the cavity Q-factor.
Due to its size and location in a high coupling region, hole I will change the cavity field
profile. Simulated cavity fields are discussed and verified in Sec. 4.1.3. The four access
holes in the cavity housing (hole II) have a cut-off frequency above 250 GHz. Due to
their small size, coupling of the cavity fields into the holes is minimal and the holes have
a negligible influence on the cavity fields and Q-factor.

4.1.2 Quality Factor
To optimize the cavity Q-factor and determine the cavity fields, the cavity electro-
magnetic behavior is simulated in CST Microwave Studio [39]. Microwave Studio is a
numerical simulation package, using a finite element method. Simulations are performed
using the frequency domain solver and the reflection coefficient ΓV at the antenna port is
exported for analysis. To extract the cavity Q-factor, resonance frequency and coupling
factor, the simulated reflection coefficient is fitted with a modified version of Eq. 3.20
including an offset α, infinitely far off resonance [25, 40]:

|ΓV | =

√√√√(α− 1)2 (βδV )2 + (α+ β − 1)2

(α+ 1)2 (βδV )2 + (α+ β + 1)2 , (4.1)

where β = Qcav/Qext is the coupling factor and δV is given by:

δV ≈ 2Qext

(
ω − ω0
ω0

)
. (4.2)

To recapitulate, Qcav is the unloaded Q-factor of the microwave cavity which is related to
the loaded Q-factor QL of the cavity in the external network by QL = Qcav/ (1 + β), see
Eq. 3.19, and ω0 is the (angular) resonance frequency of the cavity mode. The offset α
can be attributed to losses in the transmission line connecting the microwave cavity to
the generator and will be of use in the next section.
In simulations the length lh of the hole for the trapping laser (hole I in Fig. 4.2) is

varied to minimize radiation loss and consequently preserve the Q-factor of the microwave
cavity. First, an empty cavity is optimized. The complex structure of the clamps and
grating chip are added later. As the optimization parameter the unloaded Q-factor Qcav
of the cavity is chosen to isolate the process from coupling effects of the antenna and
the external circuit. In the remainder of this discussion, simulated Q-factor values are
rounded to the nearest ten. Results of the Q-factor optimization are shown in Fig. 4.5.
The unloaded Q-factor of the empty cavity (black squares) increases rapidly up to a
hole length of 20 mm after which it levels off. At lh = 26 mm the unloaded Q-factor
effectively has reached its limiting value of about Qcav ∼ 4000. With a 4 mm safety
margin, lh = 30 mm is chosen as the trapping laser hole length, which results in a
simulated unloaded Q-factor of the empty cavity Qcav = 3990 and a resonance frequency
f0 = 5.0 GHz.

Simulations in Fig. 4.5 include the effects of surface roughness of the wall material.
Milling of the microwave cavity out of a piece of solid aluminum leads to a typical RMS
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Figure 4.5: Simulated unloaded cavity Q-factor Qcav as a function of hole length lh.
Squares - empty cavity, circle - cavity with grating and hole length lh = 30 mm.

surface roughness Rq = 0.5µm [41]. A surface roughness of 0.5µm is within an order of
magnitude of the skin depth at 5 GHz in aluminum (δs = 1.2µm) and has a significant
effect on the effective conductivity of the wall material. The effective conductivity of the
cavity wall is reduced by ∼ 25% to σeff = 2.7 × 107 S/m [39]. The analytical unloaded
Q-factor for the TM010 mode in a microwave cavity with radius R = 25 mm, height
h = 8 mm and an effective conductivity σeff = 2.7× 107 S/m is Qcav ∼ 4250 (Eq. 3.10).
This value is very close to the simulated Q-factor of Qcav = 3990. Introduction and
optimization of the optical access holes in the cavity walls has a minimal effect on
the Q-factor of the cavity TM010 mode and there is not much to be gained in further
optimization.
Due to the introduction of the grating and clamps in the cavity interior the simulated

unloaded Q-factor drops significantly to Qcav = 390, see Fig. 4.5. The grating is simu-
lated as a 21× 21 mm, 0.6 mm thick piece of silicon dielectric, with a 100 nm aluminum
reflector on top. The reflector thickness is about four orders of magnitude smaller than
any other length scale in the simulation, and so it is modeled as an infinitely thin (2D)
metal sheet to prevent simulation artifacts. The frequency domain solver of CST Mi-
crowave Studio does not include dissipation in 2D metal sheets in the calculation of the
electromagnetic field profile. It can either treat 2D metal sheets as fully transparent
(all fields pass the material), or fully opaque (no fields pass the material). A 5.0 GHz
electromagnetic wave propagating through 100 nm aluminum retains over 90% of its am-
plitude and so the grating reflector is modeled as a transparent 2D metal sheet. The
simulation overestimates the field amplitude on the cavity wall behind the grating, and
the resulting Q-factor will be a lower estimate of the expected value.
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As 100 nm is only a fraction of the skin depth in aluminum at 5.0 GHz (δs = 1.2µm),
special care is taken to model the material properties of the grating reflector. The re-
flector material is modeled as a single layer, 100 nm thick aluminum tabulated surface
impedance material (no surface roughness) to account for these effects. Due to its limited
thickness the surface resistance (Eq. 3.8) of the grating reflector is about Rs ∼ 300 mΩ,
much higher than the surface resistance of the aluminum cavity wall Rs ∼ 25 mΩ (at
5.0 GHz). The increase in surface resistance leads to an increased power dissipation with
respect to the empty cavity, and a lower Q-factor. The dissipation is further increased
by concentration of surface currents on the reflector edges and clamps. To ensure phys-
ical contact between the clamps and grating, the grating surface is elevated ∼ 20µm
above the cavity back wall. As a consequence, the clamps are the only electric contacts
between the cavity housing and grating reflector which results in the concentration of
surface currents mentioned previously. When the clamps are removed in simulations the
unloaded Q-factor increases to Qcav = 740. Note that the big effect of the increased
reflector surface resistance on the cavity Q-factor was only discovered after commission-
ing of the microwave cavity. Microwave Studio assumes any structure in the simulation
is more than five skin depths (> 5δs) thick and assigns the full surface conductance
(minimum surface resistance) of the material to the structure properties. Structures less
than 5δs thick can be simulated without warning. During cavity design the expected
unloaded Q-factor of the microwave cavity was Qcav = 2300, a less severe drop. An idea
to increase the cavity Q-factor will be discussed in Ch. 7.

4.1.3 Commissioning
A microwave cavity was commissioned using the design described in this section and
the result is shown in Fig. 4.6. Fig. 4.6a shows the cavity interior (top view) with the
grating and clamps installed in the cavity interior. Fig. 4.6b shows the cavity with the
screw cap closed.

Quality Factor
An antenna was matched, and the voltage reflection coefficient measured as a function of
frequency both for the empty cavity, and with the grating installed in the cavity interior.
Measurement data of the network analyzer1 is shown in Fig. 4.7 and fitted with Eq. 4.1.
Results of the fitting procedure are compared to simulated values in Table 4.1.
Measurement results for the empty cavity are shown in Fig. 4.7a. The unloaded Q-

factor measures Qcav = 3848 ± 8, the coupling factor is β = 1.04 and the resonance
frequency is f0 = 5.05 GHz. Here, and in the remainder of this discussion only measure-
ment errors exceeding the last digit are mentioned. With Qcav = 3848± 8, the unloaded
Q-factor of the microwave cavity is very close to the simulated value of Qcav = 3990 and
it can be concluded that simulations provide an accurate description of reality. With
the introduction of the grating into the cavity interior the unloaded Q-factor drops sig-
nificantly. Due to the large change in Q-factor, a new antenna was tuned to effectively

1Rohde&Schwarz ZVH8
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(a) (b)

Figure 4.6: Photos of the commissioned microwave cavity. (a) Cavity housing with
clamps and grating. (b) Microwave cavity with screw cap.
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Figure 4.7: Q-factor of the microwave cavity with fit for (a) an empty cavity, and
(b) the cavity with grating. The fit results are compared to simulated values in Table 4.1.

Table 4.1: Simulated and measured unloaded Q-factor Qcav of the microwave cavity.
Simulated Q-factors are rounded to the nearest ten.

Measurements Simulation
f0 (GHz) β Qcav Qcav

Empty 5.05 1.04 3848 ± 8 3990
Grating 4.98 1.21 491.0± 0.3 390
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couple microwave power into the microwave cavity in the new situation. Measurement
results for the cavity with grating are shown in Fig. 4.7b. The unloaded Q-factor mea-
sures Qcav = 491.0 ± 0.3 with a coupling factor β = 1.21 and resonance frequency
f0 = 4.98 GHz. The cavity was left slightly overcoupled (β > 1) for reasons that will
become clear in Sec. 4.2. With a coupling factor β = 1.21 about 1% of microwave
power is reflected by the microwave cavity during on-resonance excitation, which is not
a problem in the experiment. With Qcav = 491.0 ± 0.3 the measured Q-factor exceeds
the simulated value of Qcav = 390. This is not surprising as the grating reflector is
modeled as a transparent metal sheet, leading to an increase in the simulated dissipation
as discussed previously. Still, it is clear the increased surface resistance of the grating
reflector is the main contribution to the drop in cavity Q-factor and the simulations
are surprisingly accurate given the complexity of the grating and clamp structure. The
validity of the simulation is investigated in more detail with the verification of the cavity
fields discussed next.

Cavity Fields
The introduction of the grating into the microwave cavity interior, and the hole for the
trapping laser, have a significant influence on the cavity field profile. The simulated field
profile of the TM010 microwave cavity mode is discussed and verified in this section.
As the envisaged MCRS experiment only depends on the (squared) cavity electric field
profile, the magnetic field profile is left out of the discussion.
A plot of the simulated squared electric field profile E2 in the cavity yz-plane is

shown in Fig. 4.8. The field is normalized to E2 (0, 0, 2 mm) for easy comparison with
the fields obtained in the verification process later this section. The orientation of the
cavity axes is indicated in the top right of the figure and the cavity walls are depicted
in black. The analytical cavity electric field profile of the TM010 mode has the shape
of a Bessel function along the radial cavity dimension, see Eq. 3.2 and Fig. 3.2. Due to
the introduction of the grating, and the hole for the trapping laser, the ‘Bessel shape’ is
modified to a ‘flat top’ profile, as shown in Fig. 4.8. At the cavity front wall (z = 8 mm),
the cavity electric field concentrates on the hole edge and forms ‘spikes’ in the radial
profile. Along the cavity z-axis the electric field profile continually decreases for z > 0.
This evolution of the radial cavity electric field profile is shown more clearly in Fig. 4.9d.
In the figure, the radial (squared) electric field profile E2 along the y-axis is plotted at
three z-axis positions. At z = 2 mm (black curve) the radial profile has the flat top
structure as discussed earlier. At z = 4 mm (red curve) the flat top structure is more
pronounced, and at z = 6 mm (blue curve) the spikes caused by the field concentration
on the hole edge are clearly visible. The radial profiles have a slight asymmetry due to
the antenna position in the (x,−y) cavity quadrant and the field amplitude is slightly
higher in the region close to the microwave antenna.
To verify the cavity field simulations, measurements of the cavity electric field have

been performed using the bead-pull method discussed in Sec. 3.2.2. To that end a
barium titanate (BaTiO3) dielectric bead, attached to a piece of fishline, was pulled
through the cavity interior along the cavity y-axis while manually recording the cavity
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Figure 4.8: Squared electric field profile E2 of the TM010 mode in the cavity yz-plane.
Fields are normalized to E2 (0, 0, 2 mm) and cavity walls are depicted in black. Field
amplitude corresponds to Fig. 4.9. Orientation of cavity axes is indicated in the top-right
of the figure.

resonance frequency shift on a network analyzer. Barium titanate was chosen as the
bead material for its very high relative permittivity εr > 103 at 5 GHz [42], increasing
the measurement sensitivity of the technique. The dielectric bead measures a small 2 mm
in diameter, which defines the spatial resolution of the measurement. The radial cavity
electric field profile was recorded at three positions along the z-axis, at z = 2, 4 and
6 mm respectively, and measurement results are compared to simulations in Fig. 4.9a–c.
All data is combined in Fig. 4.9d for an overview. Every data point in the figure is the
average of three independent measurements. The RMS spread is calculated for every
data point individually, and averaged over all data points in the figure to determine
the error bars. In the figure, the relative (squared) electric field profile is normalized
to E2 (0, 0, 2 mm) for easy comparison with simulations. The simulated field amplitudes
correspond to Fig. 4.8, and the orientation of the cavity axes is indicated in the top-right
of the figure.
In general, the data from the bead-pull method corresponds really well with simula-

tions. At z = 2 mm measurements deviate slightly from simulations near the grating
location in the center of the figure. This is not surprising, considering the difficulty in
accurately simulating the complicated structure of the grating reflector and clamps. At
z = 6 mm measurements and simulations deviate about 10% near the left hole edge at
y = −15 mm. The deviation is already slightly visible in the data at z = 4 mm, and the
source remains to be guessed. It could be that the cavity screw cap is slightly skewed
in the cavity housing, locally prohibiting electrical contact. Or it could be the hole
chamfer (flattened edge) is slightly wider at y = −15 mm. A chamfered hole edge is less
sharp, and more chamfer leads to less concentration of the cavity electric field on the
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Figure 4.9: Squared cavity electric field profile E2 of the TM010 mode on the cavity
y-axis, comparison between bead-pull measurements (marks) and simulations (lines).
Data at (a) z = 2 mm (squares) (b) z = 4 mm (circles) (c) z = 6 mm (triangles) (d) all
combined. Electric field amplitude is normalized to E2 (0, 0, 2 mm) and corresponds to
Fig. 4.8. Orientation of cavity axes is indicated in the top-right of the figure.

hole edge. Either way, the deviation of the cavity fields will be encountered during UCP
expansion and will lead to an error of a few percent in the cavity resonance frequency
shift, as compared to simulated values. This is not a problem in the proof-of-principle
experiment.
The MCRS measurement sensitivity is reduced due to the flat top profile of the cavity

electric field. A UCP with ∼ 2×106 electrons centered on the cavity z-axis at z = 5 mm
results in a simulated maximum cavity resonance frequency shift ∆fmax ∼ 1.5 kHz,
about twice the minimum measurable frequency shift of ∆fmin ∼ 800 Hz. This leaves
little room for error, but could still be detectable.

4.2 Cavity in Setup
The envisaged MCRS experiment will be conducted within the boundaries of a shared
setup for grating based cold atom experiments. In Section 4.2.1 the details of the shared
setup are discussed, and Sec. 4.2.2 deals with the design and commissioning of the custom
flange and parts needed to house the cavity within the setup.

55



4 Microwave Cavity Design & Characterization

Figure 4.10: Cross sectional view of the shared setup for grating based cold atom
experiments. The setup is based on a CF100 cube. Two coils outside the cube produce
a magnetic quadrupole field required for MOT operation. The fixed grating position on
the cube horizontal axis, at 64.5 mm from the left cube face allows for easy switching of
experiments. Dimensions in mm.

4.2.1 Shared Setup
Our proof-of-principle MCRS experiment will be conducted within the boundaries of
a shared setup for grating based cold atom experiments. A cross section of the setup
is shown in Fig. 4.10. The grating chip is housed in a CF100 cube and positioned
perpendicular to the trapping laser entering the cube along the center axis from the left
of the figure. Sharing the grating position at 64.5 mm from the (left) cube face prevents
realignment of the optical setup (lasers and cameras) and allows for easy switching
of experiments. Two coils produce the magnetic quadrupole field required for MOT
operation. The quadrupole zero crossing (MOT position) can be moved along the shared
coil axis by changing the ratio of the currents driving the two coils. At the top face a
CF100 to CF63 reducer flange connects the cube to the rubidium dispensers2. At the
right face a CF100 to CF40 reducer flange connects the cube to the vacuum pump
section and beamline. The beamline is used in other experiments conducted on this
setup where a GMOT is used as an ultracold electron source. The beamline is not used
in the experiment described in this thesis and its valve is kept closed permanently. The
vacuum pump section consist of a Ion-getter pump3 and a turbo pump section. The
current drawn by the ion pump serves as a pressure gauge. Initial pump down of the
setup is performed by the turbo pump section. At a few 10−8 mbar the ion pump is

2SAES Rb/NF/7/25 FT10-10
3SAES NEXTorr D 100-5
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Figure 4.11: Custom CF100 flange with viewport 1 , 2× 50 Ω SMA microwave
feedthrough 2 and circular 6-pin electrical feedthrough 3 .

sparked, the getter element is activated and the setup pumps down to the 10−10 mbar
regime. The valve to the turbo pump section is closed and the setup is held at pressure
by the ion-getter pump. During experiments the partial rubidium pressure in the cube
is in the 10−9 mbar regime. The front, back and bottom face of the cube are covered
by UV grade CF100 viewports allowing for maximal optical access. The ionization laser
(not shown in the figure) propagates in a direction out-of-plane in the figure through
the viewports at the front and back face of the cube. The viewport on the bottom face
of the cube provides optical access to the excitation laser (not used in this experiment)
and to the camera used for fluorescence measurements (MOT characterization). All
metal components in the setup are made of non-ferrous materials (copper, aluminum)
or nonmagnetic 316L stainless steel to prevent interference with experiments.

4.2.2 Custom Flange
To house the microwave cavity in the shared setup, a custom flange and cavity sup-
port have been designed and commissioned. The custom CF100 flange provides all the
required optical and electrical feedthroughs for the experiment, and is intended to be
mounted on the left cube face of the CF100 cube in Fig. 4.10. The cavity support con-
nects the microwave cavity to the CF100 flange and ensures the grating in the cavity
interior ends up at the correct position.
A schematic drawing of the custom CF100 flange is shown in Fig. 4.11. The view-

port 1 , located on the central axis of the flange, provides optical access for the trap-
ping laser. It has a UV grade fused silica window with a 36 mm view diameter. The
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Figure 4.12: Microwave cavity mounted on the CF100 flange, vacuum side. The cav-
ity support holds the microwave cavity in place and ensures the grating in the cavity
interior is in the correct position within the setup. The semi-rigid coax cable transports
microwave signals to the microwave cavity.

high quality 50 Ω SMA microwave feedthrough4 2 transports microwave signals for
the MCRS experiment into the vacuum chamber. The SMA feedthrough transmits mi-
crowave signals in the frequency range of 0 − 18 GHz and is implemented in twofold
to allow for multi-mode MCRS experiments in the future. The circular 6-pin electrical
feedthrough 3 is installed to allow the microwave cavity temperature to be recorded
with an NTC thermistor during the experiment. The CF100 flange is made of non-
magnetic 316L stainless steel to prevent interference with the MCRS experiment and is
specified at a helium leak-rate below 1× 10−10 mbar · L/s.
The microwave cavity is mounted on the vacuum side of the CF100 flange on top

of the cavity support, see Fig. 4.12. The cavity support is made of aluminum for its
non-ferrous properties and UHV compatibility. Four 12 mm diameter holes in the base
of the support help pumping down the cavity interior. The cavity support allows the
propagation of the trapping laser into the microwave cavity and ensures the grating
in the cavity interior ends up at 64.5 mm from the left cube face of the CF100 cube,
see Fig. 4.10. In this position the MOT camera, trapping and ionization lasers in the
setup can be reused without major realignment. A UHV compatible semi-rigid coax
cable transmits the microwave signals to the microwave cavity. The SMA connectors are

4Allectra 242-SMAD18G
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soldered to the semi-rigid coax cable using a UHV compatible silver solder5.
For stable MOT operation, the background pressure in the vacuum vessel is preferably

in the 10−9 mbar regime. The holes in the cavity and connector flange might hinder
pumping down of the cavity and frustrate MOT operation in the cavity interior. At a
pressure of 10−9 mbar, the mean free path of the gas molecules is sufficiently large for
the gas flow to be in the free molecular flow regime. In this regime parts obstructing
the gas flow (pipes, holes) are commonly described by a flow conductance, the inverse of
the flow resistance. The conductance between the cavity interior and CF100 cube (all
paths combined) is 2.9 × 10−2 m3/s. The conductance between the cube interior and
the ion-getter pump (see Fig. 4.10) is 2.7 × 10−2 m3/s. With both conductances in the
same order of magnitude, the pressure in the cavity interior is not limited by the cavity
hole dimensions. Assuming a nitrogen (N2) background gas, the ion-getter pump has
a pumping speed of 40 L/s. A pressure reading of 1 × 10−9 mbar at the pump leads to
a pressure of a few times 10−9 mbar in the microwave cavity interior, which is fine for
MOT operation.
After installation of the microwave cavity onto the CF100 flange a curious effect was

observed. For a critically coupled cavity (β ≈ 1), the coupling factor of the cavity
TM010 mode decreased by about ∆β = −0.2, as measured on the atmospheric side
of the CF100 flange ( 2 in Fig. 4.11). By leaving the cavity (without flange) slightly
overcoupled β ≈ 1.2, a coupling factor close to the planned coupling factor β = 1 was
achieved when mounted on the flange. This is the reason for leaving the cavity slightly
overcoupled (β = 1.21) in Sec. 4.1.2.

A later investigation showed the drop in coupling factor disappeared when the semi-
rigid coax cable, used to transport the microwave signal in vacuum, was replaced by
a cable only containing straight SMA connectors. This suggests the drop in coupling
factor is due to the right-angle SMA connector, connecting the semi-rigid coax cable
to the microwave cavity antenna (see Fig. 4.12). The wavelength of an 5 GHz signal
propagating in the semi-rigid coax cable is about 4 cm. Forcing the 5 GHz signal in a
right-angle (90◦) turn within a few millimeters is bound to cause reflections. Interference
between the signal reflected on the connector, and microwave cavity could explain the
drop in coupling factor, as measured on the flange. Details of the investigation can be
found in the Appendix.

To determine the microwave cavity characteristics, the voltage reflection coefficient |ΓV |
is measured as a function of frequency on two positions; on the flange (label: with flange),
and on the cavity directly (label: without flange). The result is shown in Fig. 4.13. In
the figure, data measured without flange is plotted in black, and data measured with
flange is plotted in orange. The black line corresponds to the data in Fig. 4.7b. With
flange, far off resonance, reflection is lower due to the extra propagation distance of the
microwave signal in the transmission line (microwave feedthrough and semi-rigid coax).
On resonance the voltage reflection coefficient without flange measures ∼ 10% (∼ 1% in
power), which drops to ∼ 4% (∼ 1h in power) with the flange. On resonance reflection
with the flange is lower due to the aforementioned drop in coupling factor. Data in the

5The solder is based on an Sn/Cu/Ag alloy
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Figure 4.13: Voltage reflection coefficient |ΓV | as a function of frequency for the cavity
TM010 mode. Comparison between measurements on cavity directly (label: without
flange), and measured on the CF100 flange (label: with flange). Microwave cavity
characteristics are listed in Table 4.2.

graph is fitted with Eq. 4.1 and fit results are listed in Table 4.2. Without flange, the
resonance frequency of the cavity TM010 mode measures 4.98 GHz, the coupling factor
is 1.21 and the loaded Q-factor QL = 222, as mentioned in Sec. 4.1.2. Here, the loaded
Q-factor is mentioned as it is the parameter of practical importance in an MCRS experi-
ment. It determines the width of the resonance peak, and the cavity response time in the
measurement setup. When the microwave cavity is installed on the CF100 flange, the
microwave cavity characteristics as perceived by the measurement setup change slightly
to a resonance frequency of 4.99 GHz, a coupling factor of 1.06 and a loaded Q-factor
QL = 229.

The reflection on the right-angle SMA connector slightly modifies the microwave cav-
ity characteristics, as perceived by the MCRS measurement system outside the vacuum
chamber. This modification is constant in time, and might only drift slowly with temper-
ature due to material expansion (contraction). On the typical timescale of the MCRS
experiment, defined by the UCP expansion (1 − 100µs), temperature drift is negligi-
ble and does not influence the experiment. In future experiments the right-angle SMA
connector on the semi-rigid coax cable should be replaced by a straight SMA connector.
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Table 4.2: Comparison of microwave cavity characteristics with and without flange.
Data obtained from fitting the graphs in Fig. 4.13 with Eq. 4.1. Measurement errors are
beyond the last digit.

f0 (GHz) β QL

Without Flange 4.98 1.21 222
With Flange 4.99 1.06 229
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To conduct the microwave cavity resonance spectroscopy (MCRS) experiment on an
ultracold plasma (UCP), the microwave cavity and flange have been installed in the
shared setup for grating based cold atom experiments. This chapter deals with the char-
acterization of the MCRS setup, the creation and characterization of the MOT in the
microwave cavity interior, and the attempt to conduct the envisaged proof-of-principle
MCRS experiment on a UCP. The microwave cavity and experimental setup are de-
scribed in Sec. 5.1. Section 5.2 deals with the MCRS measurement setup, measurement
scheme and characterization. Finally, Sec. 5.3 describes the creation and characteriza-
tion of the MOT in the microwave cavity interior, and the envisaged proof-of-principle
experiment.

5.1 Setup
The microwave cavity and flange have been installed in the shared setup for cold atom
experiments. An overview of the setup with the location of the main components is
shown in Fig. 5.1. Sticking to the orientation of the CF100 cube faces introduced in the
discussion of Fig. 4.10, the cavity and flange have been installed on the left cube face of
the CF100 cube. The vacuum system is pumped down by the vacuum pumps located
behind the reducer flange on the right cube face and the rubidium vapor is supplied
by the dispensers on top of the cube. The rubidium gas is cooled and trapped by the
trapping beam entering the vacuum system through the viewport in the cavity flange.
The resulting magneto-optical trap (MOT) fluorescence is observed by two cameras.
MOT camera 1 is located below the setup. MOT camera 2 is located in the ionization
laser beam path, and observes the MOT fluorescence behind a dichroic mirror (mirror
not in the figure). The ionization laser enters the vacuum system through the viewport
at the front cube face and exits at the back viewport after passing through the cavity. In
passing the cavity, the ionization laser pulse partially ionizes the MOT and the resulting
UCP shifts the cavity resonance frequency. This shift in the cavity resonance frequency
is subsequently recorded by the microwave setup located outside of the vacuum system
(not shown in the figure). The microwave setup will be described in full detail the next
section.
The trapping laser is based on a 780 nm diode laser1 generating up to 250 mW of

laser light. The laser is locked to the
(
52S1/2, F = 3→ 52P3/2, F

′ = 4
)
cooling tran-

sition by a rubidium vapor cell and passes an acousto-optic modulator (AOM) to be
able to detune the light with respect to the transition. An electro-optic modulator

1Moglabs cateye diode laser
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Figure 5.1: Overview of the MCRS setup with location and orientation of the main
components; vacuum pumps, rubidium supply, trapping and ionization lasers and MOT
cameras. MOT camera 2 is mounted behind a dichroic mirror in the ionization laser
beam path.
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(EOM) generates two sidebands at ±2.915 GHz, one of which drives the repump tran-
sition

(
52S1/2, F = 2→ 52P3/2, F

′ = 3
)

to keep the cooling transition populated. A
more detailed description of the trapping laser can be found in Ref. [36]. The trapping
laser light is amplified up to a maximum of 500 mW by a tapered amplifier2 and coupled
into a polarization maintaining fiber for transport to the setup. At the setup the laser
light is coupled out of the fiber and expanded into a beam with a flattop-like transverse
intensity profile measuring 1 inch in diameter (25.4 mm). Before entering the vacuum
system, the trapping laser is circularly polarized with a λ/4 waveplate.
The flattop-like transverse intensity profile of the trapping laser is created by expand-

ing the (Gaussian) beam exiting the fiber, and clipping the sides on an orifice. A flattop
intensity profile is important in balancing the cooling force (Eq. 2.2) at the MOT po-
sition with our grating type [43]. A force imbalance in the cooling force reduces the
trap depth of the magneto-optical trap and consequently the MOT atom number and
density. A suboptimal MOT atom number would reduce the chance of measuring an
MCRS signal in the experiment.
The ionization laser is a pulsed dye laser3 which generates 6 ns FWHM pulses at

a repetition rate of up to 10 Hz. With the Coumarin 480 laser dye, the accessible
wavelength range is 460 − 500 nm. Before transportation to the setup, the ionization
laser is linearly polarized with a polarizing beamsplitter cube, and the laser wavelength
is determined with a spectrometer4. At the setup, the ionization laser beam can be
manipulated with a 2D translation stage to scan the MOT position and optimize the
number of electrons in the UCP. After the stage a long focal length lens (750 mm) weakly
focuses the ionization laser at the MOT. Before entering the vacuum system, 1% of the
ionization laser light is split off and imaged on a CCD camera to determine the transverse
intensity profile at the MOT position. The ionization laser is operated below maximum
power, and at 10 Hz, to increase the laser stability. At the MOT position ∼ 300µJ
pulses are available for the experiment. A cross section of the microwave cavity with
orientation of the trapping and ionization lasers, MOT and overlap volume is shown in
Fig. 4.3.

5.2 Microwave Cavity Resonance Spectroscopy
The microwave setup used to excite the cavity mode and determine its resonance fre-
quency is a variation of the reflection based setup of Ref. [7]. A schematic representation
of the setup is shown in Fig. 5.2. The cavity mode is excited by a microwave genera-
tor5 capable of producing -60 to +14 dBm microwave signals in the frequency range of
25 − 6000 MHz. The microwave signal arrives at the cavity after passing through the
directional coupler6 and microwave feedthrough in the cavity flange. After reflection on

2New Focus TA-7600
3Spectra-Physics Quanta-Ray PDL-3
4Avantes AvaSpec-3648
5Mini-Circuits SSG-6000RC
6Mini-Circuits ZHDC-10-63+
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Directional
Coupler

Microwave	Generator
25	–	6000	MHz

−10	dB

Microwave
Cavity

Power	Detector

Oscilloscope

PC

trig.

PC

Flange

fi

NTC

Figure 5.2: Microwave Setup. The microwave generator is connected to the cavity
through a directional coupler. The directional coupler directs -10 dB of the microwave
signal reflected by the cavity to the power detector. The DC voltage from the power
detector is recorded by an oscilloscope.

the cavity, the directional coupler directs -10 dB of the reflected cavity microwave signal
to the power detector7. The power detector is a logarithmic detector which converts
the incoming microwave signal to a DC voltage. The power detector is sensitive to -60
to +10 dBm microwave signals in the frequency range of 1− 8000 MHz. Its DC output
voltage ranges between 0− 2 V and has a negative nominal slope of -25 mV/dB. Finally,
the power detector output voltage is recorded by an oscilloscope8.
The power and frequency of the microwave generator, and the horizontal and vertical

range of the oscilloscope as well as the number of averages Navg are set by a PC. The
oscilloscope is synchronized to the ionization laser by a trigger signal from a fast TTL
pulse generator9 and read out by the PC after the number of averages has been reached.
To get an idea of the cavity temperature drift during the experiment, the temperature
of the cavity flange is recorded with an NTC thermistor10.

7Analog Devices HMC602
8Agilent Infinivision DSO7054A
9SpinCore PulseBlaster PB12-100-4k

10Epcos G560/5k/+
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Figure 5.3: Explanation of the MCRS measurement scheme. (a) Example of an oscil-
loscope measurement trace (solid line) at frequency fi. With oscilloscope zoom range
(green band) and theoretical reflection curve (dotted line). Details in text. (b) Mi-
crowave cavity frequency shift ∆fp on the power detector due to the presence of a
plasma (exaggerated). The detector voltage drops for frequencies fi < fvac + 1

2∆fp, and
rises for fi > fvac + 1

2∆fp. For small shifts ∆fp � BW the change in detector voltage
goes with the (negative) slope of the reflection curve −dVdet/df , see (c).
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5.2.1 Measurement Scheme
On the output port of the power detector, the reflected microwave signal from the
cavity is converted to a DC voltage. In turn this detector voltage is recorded by the
oscilloscope. An example of the theoretical reflection curve of the cavity mode as seen
on the oscilloscope is shown in Fig. 5.3a. In the figure, the dotted line resembles the
theoretical reflection curve (microwave power vs. frequency), with the frequency plotted
at the top axis. The shape of the downward facing Lorentzian of Eq. 3.20 is modified due
to the logarithmic nature of the detector, and faces upward due to its negative output
slope.
An MCRS experiment entails tracking the resonance frequency of a cavity mode as a

function of time, and determining the resonance frequency shift ∆fp (t). To determine
the mode resonance frequency with the setup described in Fig. 5.2, the resonance is
scanned by the microwave generator with a discrete number of frequencies fi, where
i = 1, 2, 3 . . . The oscilloscope is synchronized to the ionization laser by a trigger signal
and the detector voltage Vdet is recorded as a function of time during UCP expansion
∼ 100µs. An example of an oscilloscope measurement trace is shown in Fig. 5.3a (solid
line). To determine the mode resonance frequency at a specific time tj in the experiment,
all measurements Vdet (fi, t = tj) are fitted with a modified version of Eq. 3.20 to include
the effects of the logarithmic detector:

Vdet (f) = V0 + 10C · log (1− L) , where (5.1)

L = A · BW2

4 (f − f0)2 + BW2 . (5.1a)

Here V0 is a voltage offset of the peak on the detector, C is the detector slope and L
denotes the Lorentzian of the reflection curve in Eq. 3.20. For fitting, the Lorentzian is
slightly modified and rewritten in terms of ordinary frequencies. The modified Lorentzian
is shown on the second line of the equation, with A the peak amplitude, and BW the
FWHM bandwidth in ordinary frequency. The resonance frequency shift ∆fp = fp−fvac
is determined as a function of time, and the field-averaged electron density n̄e (t) is
determined with the use of Eq. 3.33 for interpretation of the experiment.
In the envisaged MCRS experiment on a UCP, the resonance frequency of a vacuum

cavity mode shifts due to the presence of the plasma. Since the relative plasma permit-
tivity is smaller than unity (εr,p < 1) the resonance frequency shift is positive ∆fp > 0,
see Fig. 5.3b. As illustrated in the figure, the resonance frequency shift will be observed
as a change in detector voltage at generator frequency fi. The voltage drops for fre-
quencies fi < fvac + 1

2∆fp, and rises for frequencies fi > fvac + 1
2∆fp (see arrows in the

figure). Effects in the figure are exaggerated for clarity. For small shifts ∆fp � BW
the change in detector voltage goes with the (negative) slope of the reflection curve
on the detector −dVdet/df , see Fig. 5.3c. The change in detector voltage is maximal
(±0.3µV/Hz) close to the resonance, and changes sign across the resonance. Ultimately,
the minimum frequency shift ∆fmin that can be measured with the MCRS setup is lim-
ited by the resolution at which the detector voltage can be resolved by the oscilloscope.
For the maximal expected frequency shift of ∆fmax ∼ 1.5 kHz, the maximal change in
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detector voltage at constant frequency amounts to about ∆Vmax ∼ ±0.5 mV. This value
is a crude measure for the lower limit of the oscilloscope resolution needed to resolve the
frequency shift ∆fmax.

The oscilloscope used in the MCRS setup8 has 8-bit vertical resolution, and a max-
imum sample rate of 4 GHz. It has 10 horizontal, and 8 vertical divisions as shown by
the grid lines in Fig. 5.3a. The resonance peak of the microwave cavity TM010 mode
measures about 0.7 V (28 dB). As shown in the figure, the oscilloscope vertical scale
is set to 100 mV/div (0.8 V total) to be able to measure the full resonance peak. This
results in a measurement resolution (least significant bit – LSB) of about 3 mV. Not
enough to resolve the maximum expected frequency shift of the MCRS experiment. To
maximize the MCRS measurement sensitivity, the scope vertical resolution is optimized
in two ways:

1. The oscilloscope is zoomed in to its maximum vertical resolution of 2 mV/div for
measurement at each generator frequency fi. In this way the vertical resolution of
the oscilloscope is increased 50×, as compared to the 100 mV/div full scale shown
in Fig. 5.3. The green band in the figure represents the zoom range for the specific
measurement trace at frequency fi. In short the procedure is as follows: The
generator is set to frequency fi, and an oscilloscope trace of the experiment is
recorded at full scale. The average voltage of the oscilloscope trace Vavg is read
out by the PC, and the oscilloscope is zoomed to its maximum resolution centered
on Vavg. Measurement data for the required number of repetitions Navg is collected
and the procedure is repeated at the next frequency fi+1 until finished.

2. The oscilloscope vertical resolution is artificially increased to 12-bit resolution with
an oversampling technique. At relatively long time bases compared to the max-
imum sampling rate, the oscilloscope can combine multiple subsequent measure-
ment samples into one data point (oversampling). For voltage signals with an
RMS noise level exceeding 1/2 LSB, as is the case in our experiment, averaging of
subsequent measurement samples leads to an increased measurement resolution.
A time base of 10µs/div leads to 4-bit of extra vertical resolution (12-bit total).

With these two techniques combined the oscilloscope measurement resolution is increased
to an LSB of 4µV, or a minimum detectable change in reflected power of 2×10−4 dB. The
increased measurement resolution results in a minimum detectable frequency shift ∆fmin
in the order of 10 Hz that could be achievable in the experiment.

5.2.2 Measurement Sensitivity
In an MCRS measurement the MCRS signal depends on the shift of the resonance fre-
quency f0 of a cavity mode at successive time steps tj . As such, the minimal detectable
frequency shift ∆fmin is limited by the RMS spread σf0 in the resonance frequency mea-
surement. To test the setup, and determine the RMS spread of the resonance frequency
measurement, an MCRS measurement on an empty cavity was performed.
The resonance of the TM010 cavity mode was scanned from 4.981 to 4.991 GHz in fre-

quency steps of 100 kHz at a generator power of 10 dBm. The oscilloscope was operated
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Figure 5.4: Determination of the MCRS measurement sensitivity on an empty cavity.
(a) MCRS measurement at time step t1 = 0µs. Measurement data (squares) is fitted
with Eq. 5.1 (red line) to determine the resonance frequency f0 (t1). (b) Resonance
frequency f0 as a function of time tj (black line). For clarity the difference with the
average resonance frequency favg determined in the experiment is plotted (f0 − favg).
The RMS confidence interval of the fit procedure (gray line) measures ∼ 320 Hz, whereas
the RMS spread in the resonance frequency (green bar) measures σf0 = 34 Hz.

at maximum vertical resolution with the previously discussed measurement scheme, and
every oscilloscope trace (1000 time steps tj) was averaged Navg = 100 times to reduce
background noise. At a repetition rate of 10 Hz the MCRS measurement took about
20 minutes to complete.
All measurements Vdet (fi, t = tj) were fitted with Eq. 5.1 to determine the resonance

frequency f0 (tj). An example of the measurement data (squares) and fit (red line) at
time step t1 = 0µs is shown in Fig. 5.4a. At a cavity temperature of about 22.6 ◦C the
average resonance frequency of the TM010 mode was determined to be favg = f0 (tj) =
4.9862 GHz. The resonance frequency f0 is plotted as a function of time tj in Fig. 5.4b
(black line). For clarity, the resonance frequency is plotted in terms of the difference
with the average resonance frequency determined in the experiment (f0 − favg). The
RMS confidence interval of the individual resonance frequency measurements f0 (tj)
measures about ∼ 320 Hz and is shown by the gray lines in the figure. The RMS
spread σf0 in the resonance frequency measurements (green bar) is considerably smaller,
and measures σf0 = 34 Hz. This is the MCRS measurement resolution of the experiment,
and a good measure for the minimum detectable frequency shift ∆fmin.
The minimum detectable frequency shift of∆fmin = σf0 = 34 Hz is within the expected

order of magnitude determined by the oscilloscope vertical resolution (∼ 10 Hz) and
results in a minimum relative shift of ∆fmin/f0 = 7 × 10−9. The minimum detectable
frequency shift corresponds to a field-averaged electron density n̄e = 4×109 m−3 or about
3 × 104 electrons at the expected MOT position on the cavity z-axis, 5 mm above the
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grating surface. It provides ample resolution to resolve the maximum expected frequency
shift ∆fmax ∼ 1.5 kHz, even if a suboptimal number of rubidium atoms can be trapped
and ionized. The minimum detectable field-averaged electron density is more than two
orders of magnitude below the previous record mentioned in scientific literature [7]. A
considerable result in its own right.

This measurement on an empty cavity has been optimized to maximize the MCRS
measurement resolution (minimize ∆fmin) within a practical measurement time. In-
creasing the number of frequency steps and/or number of averages per frequency step
could still improve the MCRS measurement resolution.

Temperature drift
In this proof-of-principle experiment, the cavity temperature is measured on the at-
mospheric side of the cavity flange, see Figs. 5.1 and 5.2. In future experiments the
temperature should be measured in vacuum, on the cavity directly, to rule out ambigu-
ities in the measurement.
During the empty cavity measurement, the temperature of the cavity flange drifted by

about 30 mK, see Fig. 5.5a. In the figure the flange temperature drift ∆T is plotted as a
function of measurement time tm (bottom axis) and corresponding generator frequency fi
(top axis). In the experiment, the cavity is thermally isolated from the environment apart
from the cavity support on which it is mounted (see Fig. 4.12). The only potential source
heating the cavity is the microwave power coming from the generator. The microwave
generator operates at 10 dBm, of which about 5 dBm (3 mW) reaches the cavity. Even
at this low power, heat conduction through the cavity support is not sufficient to be
sure the cavity follows the temperature of the cavity flange. During measurement, the
cavity temperature could deviate from the value measured on the flange. If, in a worst-
case scenario, all generator power would be absorbed by the 170 g cavity, the cavity
temperature would rise 25 mK on top of the temperature drift of the cavity flange (55 mK
total). Let’s assume the cavity temperature drift measured 100 mK in the experiment.
For the cavity TM010 mode with a resonance frequency of 4.99 GHz the temperature
drift results in a frequency drift of ∆fdrift = -12 kHz (see Eq. 3.4). Very small compared
to the bandwidth of the resonance peak |∆fdrift| � BW, where BW = 22 MHz.
The effect of temperature drift on the MCRS measurement is illustrated in Fig. 5.5b

for small drifts |∆fdrift| � BW. In the figure the resonance peak of the cavity mode
drifts over a range ∆fdrift between the start (dotted line) and end (dashed line) of
the measurement. The positive temperature drift ∆T > 0 (∆fdrift < 0) and scanning
direction fi+1 > fi have the result that the measured resonance peak (squares) appears
contracted on the detector. The measured resonance frequency f0 obtained through
fitting (solid line) lies within the resonance frequency drift range of the measurement.
Due to the temperature drift in the empty cavity measurement, the relative error

in the (absolute) accuracy of the measured resonance frequency ∆fdrift/f0 ∼ 10−6 is
higher than the relative MCRS measurement resolution ∆fmin/f0 ∼ 10−8. This is fine
in the case of an MCRS experiment where the resonance frequency shift is the important
metric. For small frequency drifts |∆fdrift| � BW the resonance peak will be slightly
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Figure 5.5: Temperature drift during an MCRS measurement. (a) Temperature
drift∆T during the empty cavity measurement as measured on the cavity flange. Bottom
axis: measurement time tm. Top axis: generator frequency fi. (b) Influence of tem-
perature drift on an MCRS measurement. For a positive temperature drift (∆T > 0),
the resonance peak drifts towards lower frequencies between the start (dotted line) and
end (dashed line) of an MCRS measurement. For small drifts |∆fdrift| � BW, and a
positive scanning direction fi+1 > fi, the measured resonance peak (squares) appears
contracted on the detector. A stable resonance frequency f0 within the drift range is
obtained through fitting (solid line). Drift in the figure is exaggerated for clarity.
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z

Figure 5.6: First MOT in the microwave cavity interior. In the photo, the MOT
fluorescence is shown in white.

deformed on the detector, however it will shift on the timescale of the UCP expansion
(∼ 100µs). Small temperature drifts have a negligible influence on the envisaged MCRS
measurement due to the large disconnect in timescales of the respective processes. The
cavity frequency drifts ∼ 10 kHz in a time span of ∼ 10 minutes whereas the expected
frequency shift measures ∼ 1 kHz in ∼ 100µs.

5.3 Proof-of-Principle
To conduct the MCRS experiment on a UCP, a MOT was created in the microwave
cavity interior, see Fig. 5.6. The figure shows a photo of the MOT fluorescence as
seen through one of the small holes in the cavity side wall at the back viewport of the
setup. Subsequently the MOT parameters have been optimized for the proof-of-principle
experiment.
In first experiments, the MOT loading and ionization scheme is kept as simple as

possible. The trapping laser loads the MOT continuously, and the ionization laser creates
UCPs at a repetition rate of 10 Hz. The MOT atom number and loading time are
optimized with MOT camera 1 located below the setup to maximize the total number
of electrons in the UCP. Both MOT parameters depend on the background rubidium
pressure in the vacuum system. A higher rubidium pressure leads to faster MOT loading
times, and a lower MOT atom number due to an increased number of collisions with
the hot rubidium atoms in the background. The MOT loading rate was determined by
switching on the trapping laser at t = 0 s and determining the MOT atom number Na at
different time steps through fluorescence measurements. Measurements are fitted with
Eq. 2.8 to determine the linear loss rate ΓBG , and related loading time τload = Γ−1

BG , as
well as the MOT atom number Na at long times t� τload.
To prevent MOT depletion during ionization, the MOT atom number was optimized

with the constraint of the MOT loading time approximately matching the repetition
period of the ionization laser (τload ≈ 100 ms). Optimum conditions were found at a
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Figure 5.7: Optimized MOT characteristics at pRb = 2.2×10−9 mbar. (a) MOT loading
curve. The MOT atom number Na is fitted with Eq. 2.8 as a function of time tload.
The MOT has a loading time of τload = 120 ± 3 ms and a maximum number of atoms
Na = 84.6 ± 0.3 × 106 when fully loaded. (b) Picture of a fully loaded MOT with
2D Gaussian fit. The MOT RMS size (green line) measures σay = 825 ± 1µm and
σaz = 479± 1µm.

partial rubidium pressure of pRb = 2.2 × 10−9 mbar, measured at the ion-getter pump.
The pressure of all other atomic and molecular species in the background gas was pX <
10−10 mbar. In Fig. 5.7a the MOT loading curve is plotted and fitted with Eq. 2.8 as
discussed previously. This leads to a loading time of τload = 120 ± 3 ms and an atom
number Na = (84.6± 0.3)× 106 when the MOT is fully loaded. During the experiment
MOT coil 1 was driven at I1 = -8.2 A and coil 2 at I2 = 14.0 A, see Fig. 4.10 for coil
locations. The trapping laser power incident on the grating measured 40.6 mW/cm2 of
which ∼ 55% drives the cooling transition and ∼ 20% is in the sideband driving the
repump transition. The remainder of trapping laser power is in the second repumper
sideband and its higher orders and do not contribute to the experiment. The optimized
MOT is located on the cavity z-axis, approximately 3.45 mm above the grating surface,
and has an RMS size of σay = 825 ± 1µm and σaz = 479 ± 1µm, see Fig. 5.7b. The
MOT x-dimension cannot be observed on MOT camera 1.
The number of atoms in the MOT is about a factor 7 higher than expected during the

MOT estimations in Sec. 2.3 (∼ 8.5× 107 measured where ∼ 1.2× 107 were expected).
This result is a consequence of the trapping laser characteristics. In a previous attempt,
we could only trap 2.4 × 106 rubidium atoms with a collimated trapping laser with a
Gaussian transverse intensity profile and a 1/e2 diameter of 25 mm. The estimations in
Sec. 2.3 are based on experiments in Ref. [13] in which the collimated trapping laser has
a Gaussian transverse intensity profile with a 40 mm 1/e2 diameter. It seems the MOT
atom number improves considerably the closer the trapping laser resembles a flattop
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transverse intensity profile. Higher up in the overlap volume the lower intensity wings
of the trapping laser could lead to an imbalance in the cooling force acting upon the
MOT atoms. An imbalance in the cooling force leads to a reduced MOT trap depth and
atom number. A second possibility is the (ever so slight) divergence of the flattop like
trapping beam used in the final experiment. In discussion with the grating developers
of the Riis group, Dr. A.S. Arnold reported the GMOT atom number is very sensitive
to beam divergence/convergence. The effect is not yet fully understood and on their list
of ideas for future research. Either way, the result is beneficial for the envisaged MCRS
experiment. Note, at the time of the experiment the tapered amplifier output was halved
at a maximum of 0.25 W due to a manufacturing problem. The MOT atom number as a
function of trapping laser power has not yet saturated, so it is possible more atoms can
be trapped when the tapered amplifier is repaired.
To conduct the experiment, the ionization laser was aligned through the cavity. For

a maximum number of electrons in the UCP, and an optimal MCRS signal, the ion-
ization laser was scanned over the MOT position with the 2D translation stage. The
ionization laser was set to a wavelength of 477.86 nm corresponding to an initial electron
temperature Te = 50 K. It contained 260µJ per pulse at a repetition rate of 10 Hz.
Due to the new loss channel of the MOT ionization, the MOT atom number reduced
to Na = (7.0± 0.1) × 107. The resonance of the TM010 cavity mode was scanned from
4.981 to 4.991 GHz in frequency steps of 100 kHz, the same as in the empty cavity mea-
surement. The generator power remained 10 dBm and measurements at every generator
frequency were averaged with Navg = 100 times. All potential sources heating the cavity,
like the MOT coils and trapping laser, were switched on more than an hour before the
experiment to be sure the cavity temperature has stabilized. The measurement took
about 33 minutes to complete.
First measurement results of the proof-of-principle MCRS experiment are shown in

Fig. 5.8. In the figure the detector voltage Vdet, recorded by the oscilloscope, is plotted as
a function of time t after ionization for a few frequency steps across the vacuum resonance
frequency fvac = 4985.85 MHz at 25.0 ◦C. As expected, the detector voltage drops for
generator frequencies below, and rises for generator frequencies above, resonance. Also,
the shift in detector voltage increases with distance to the resonance for the generator
frequencies presented here. Further away from resonance, the shift in detector voltage
diminishes as expected.
In Fig. 5.9 the temperature drift of the cavity flange ∆T is plotted as a function

of measurement time tm. The corresponding generator frequency fi is plotted at the
top axis. During the experiment, the temperature of the cavity flange changed by about
∆T = -45 mK. The total cavity temperature drift, including cavity heating by the power
from the microwave generator, is well within 100 mK and has a negligible influence on
the experiment.
The measurement data of the proof-of-principle experiment has been fitted with

Eq. 5.1 to determine the resonance frequency shift. The result is shown in Fig. 5.10. In
the figure the cavity resonance frequency shift ∆fp of the TM010 mode has been plotted
as a function of time t after ionization (black line). The field-averaged electron density n̄e
on the right axis is reconstructed with the use of Eq. 3.35.
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Figure 5.10: Proof-of-Principle MCRS experiment on a 85Rb UCP. The cavity fre-
quency shift ∆fp of the TM010 mode is plotted as a function of time t after ionization
(black line). The field-averaged electron density n̄e on the right axis is reconstructed
with Eq. 3.35. The simulated cavity frequency shift (red line) is determined using the
simulated cavity fields and the self-similar expansion model of Eq. 2.24. With an initial
electron temperature Te = 50 K, the expansion velocity is vexp ≈ 66 m/s. In simulations
the MOT arrives at the nearest wall (grating reflector) at twall ≈ 26µs (dashed line).
Details in text.
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The evolution of the MCRS signal can be divided into two distinct phases related to
characteristic processes within the lifetime of a UCP. In the first phase, the frequency
shift rises to 5.5 kHz and quickly declines to about 4.5 kHz within a time span of 1µs
after ionization. This is the electron-electron, and ion-ion equilibration phase. Hot
electrons escape the UCP and the plasma becomes slightly positively charged due to the
ion surplus. The net positive charge creates a potential well, trapping the remaining
electrons. This is the free-space analogue of the formation of a plasma sheath on a wall.
The process continues during ion-ion equilibration. Disorder-induced heating (DIH) of
the ions acts as an energy source for the electrons and hot electrons keep escaping the
plasma until ion-ion equilibration is finished. This is typically the case after a few
periods of the ion plasma frequency, or about ∼ 1µs. In the second phase the UCP
freely expands into the microwave cavity interior driven by the thermal energy of the
remaining electrons. In the expansion phase, two subphases can be distinguished related
to the cavity electric field profile. The UCP is created at z = 3.45 mm on the cavity
central axis. This is within the region of the flattop electric field profile of the cavity
mode, see Figs. 4.8 and 4.9. The UCP expands into a region of near-constant electric
field amplitude and the resulting MCRS signal is near-constant up to t ∼ 10µs. After
∼ 10µs the UCP expands into the rest of the cavity interior and experiences a lower
electric field amplitude. The MCRS signal declines until diminished at ∼ 90µs, a typical
value for the lifetime of a UCP.
For the quantitative analysis of the MCRS signal, the initial number of electrons and

dimensions of the UCP have been determined with Eq. 2.18. In the proof-of-principle
experiment, the MOT contained Na = (7.0± 0.1) × 107 atoms in a volume with RMS
dimensions σax = 1198 ± 8µm, σay = 788 ± 6µm and σaz = 498 ± 2µm centered on
the z-axis at a height z = 3.45 mm above the grating. The ionization laser pulse con-
tained 260µJ per pulse at a wavelength of 477.86 nm and measured σIx = 368 ± 7µm
and σIz = 189± 8µm at the MOT position. By interpolation of measurement results in
Ref. [20], the photoionization cross section at the ionization laser wavelength was deter-
mined to be σPI = 17×10−22 m2. The resulting UCP contains Ne = 5.26×106 electrons
in an approximate Gaussian density distribution with initial RMS dimensions σex0 ≈
420µm, σey0 ≈ 770µm and σez0 ≈ 210µm. The evolution of the UCP expansion has
been determined with the self-similar expansion model of Eq. 2.24 for t > 0. At an initial
electron temperature of Te = 50 K, the expansion velocity measured vexp ≈ 66 m/s. The
resulting cavity frequency shift ∆fp and field-averaged electron density n̄e have been
determined using Eqs. 3.34 and 3.35, and the simulated cavity fields discussed in Ch. 4.
The resulting simulated cavity frequency shift is shown by the red line in Fig. 5.10.
After an expansion time of twall ≈ 26µs the UCP expands into the nearest wall that is
the grating reflector (2σez (twall) = 3.45 mm). This is indicated by the dashed vertical
line in the figure. At this time, the concequences of the plasma-wall interaction on the
self-similar plasma expansion model are unclear. One could expect a deviation from the
model due to recombination on the cavity wall, and rising asymmetries in the plasma
density distribution. In the current simulations, electrons touching the wall surface are
simply excluded from simulations and the plasma is left to expand in self-similar fashion.
The simulated cavity frequency shift at t = 0 s measures 4.5 kHz and is within 20% of
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the measured value. A good result given all the uncertainties in laser alignment, MOT
and laser dimensions and the photoionization cross section. However, the simulated
MCRS signal decline is considerably slower as compared to the MCRS measurements.
At twall = 26µs the measured MCRS signal has lost about 50% of its initial value whereas
the simulated MCRS signal has only just started to decrease. On closer inspection there
are a few signs of electron heating and an increased UCP expansion velocity in the
MCRS signal of Fig. 5.10. The initial peak in the MCRS signal of the hot electrons
leaving the plasma measures about 1 kHz, or about 18% of the maximum. This points
to 88% of the electrons remaining trapped in the plasma. Extrapolating the data in
Ref. [11], a UCP with 5.25× 106 electrons and an initial electron temperature of 50 K is
expected to retain about 98% of its electrons. Electron heating by the microwave fields
could explain the increased loss of electrons [44]. Also, curiously, there is no change
in the measured MCRS signal at the expected time the UCP touches the wall (twall).
One would expect an increased decline in MCRS signal due to plasma recombination
on the wall surface. The decline in the MCRS measurement already starts at ∼ 10µs.
This points to an increased UCP expansion velocity, possibly the consequence of the
electron heating discussed previously. Further experiments will have to shed light on
these effects.
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In this thesis a proof-of-principle microwave cavity resonance spectroscopy (MCRS) ex-
periment on an ultracold plasma (UCP) is described. The UCP is created by two-step
photoionization of a cloud of cold rubidium atoms trapped in a grating based magneto-
optical trap (GMOT) in the interior of a microwave cavity. The main body of this thesis
deals with microwave cavity design and commissioning after which a proof-of-principle
MCRS experiment has been demonstrated.
This research has shown it is possible to retain the Q-factor of a cavity mode in a

microwave cavity with a relatively big hole in the cavity walls. In particular, the unloaded
Q-factor of the TM010 mode of a cylindrical pillbox cavity geometry was optimized by
varying the length of the hole required for optical access of the trapping laser to the
cavity interior. The unloaded Q-factor of the commissioned aluminum cavity without
grating measured Qcav = 3848± 8, close to the theoretical maximum of Qcav ∼ 4250 for
a pillbox cavity with the same dimensions. Maximizing the Q-factor of a cavity mode
has two important results in the context of an MCRS experiment:

• It maximizes the MCRS measurement resolution and detection limit as a high-Q
(narrow) resonance peak is more easy to resolve with high accuracy.

• It isolates the MCRS experiment from the surrounding environment. If not iso-
lated, microwave sources outside the cavity might influence the MCRS measure-
ment, or the cavity behavior could become sensitive to the setup geometry in the
proximity of the hole in the cavity wall (i.e. reflections).

The hole for the trapping laser did have a considerable influence on the field profile and
resonance frequency of the TM010 mode. The ‘Bessel’ shape of the radial electric field
profile changed into a flattop profile, and the resonance frequency shifted from 4.6 GHz
to about 5.0 GHz.

Due to the installation of the grating into the cavity interior the unloaded Q-factor
of the TM010 mode dropped from Qcav = 3848 ± 8 to Qcav = 491.0 ± 0.3. The 100 nm
aluminum reflector on top of the grating has a considerably higher surface resistance
(Rs ∼ 300 mΩ) than the aluminum cavity walls (Rs ∼ 25 mΩ) and increased dissipation
of microwave power in the grating reflector leads to a lower Q-factor of the cavity mode.
The problem is further aggravated by concentration of surface currents on the reflector
edges and grating clamps. A solution to mitigate this problem will be presented in the
next chapter.
We have shown it is possible to cool and trap 85Rb atoms in the microwave cavity

interior in a magneto-optical trap (MOT) based on the GMOT concept. Trapping laser
light reflected into the negative grating order does not get back to the MOT position
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and does not disturb the MOT balance with this cavity geometry. Using a trapping
beam with a flattop-like transverse intensity profile (84.6± 0.3) × 106 rubidium atoms
can be trapped in the cavity interior, about 7 times more than expected. The higher
MOT atom number is a consequence of the trapping laser characteristics as in an earlier
attempt with a Gaussian trapping laser beam only 2.4 × 106 atoms could be trapped.
The details about the mechanism of the improved trapping are not fully understood,
however the result is very beneficial for the realization of the experiment.
With the MCRS setup the resonance frequency of the cavity TM010 mode can be

resolved up to an RMS noise level of σf0 = 34 Hz (relative σf0/f0 = 7 × 10−9) in a
measurement time of about 20 minutes. This corresponds to a minimum detectable
field-averaged electron density of n̄e = 4× 109 m−3, more than two orders of magnitude
better than the previous record mentioned in scientific literature [7]. The detection limit
corresponds to about 3 × 104 electrons on the cavity central axis, a considerable result
in its own right. With increased averaging, the detection limit could be reduced even
further at the cost of measurement time. A cavity temperature drift of 100 mK (12 kHz)
over the total measurement time is not a problem in the experiment as it only influences
the absolute resonance frequency, not the resonance frequency shift important to the
MCRS experiment. Temperature drift on the timescale of UCP expansion (∼ 100µs) is
practically non-existent and can be safely neglected.
A proof-of-principle MCRS experiment on a UCP has been demonstrated. In the ex-

periment, the MOT atom number dropped to (7.0± 0.1) × 107 atoms due to repeated
ionization of the MOT atom cloud by the ionization laser. Qualitatively the recorded
MCRS signal behaves as expected. An initial peak in the MCRS signal points to hot elec-
trons escaping the UCP. The ion surplus creates a potential well, trapping the remaining
electrons. The flattop electric field profile of the cavity mode results in a near-constant
MCRS signal in the first ∼ 10µs of the UCP expansion phase. After 10µs the MCRS
signal declines on the timescale of about 90µs, typical for the lifetime of a UCP. Quanti-
tatively the measured maximum resonance frequency shift of ∆fmax = 5.5 kHz is within
20% of the expected value determined through fluorescence measurements in combina-
tion with simulations. However, the electron temperature seems higher than expected.
About 18% of the electrons escape the plasma within a microsecond after formation,
where a loss of a few percent was expected. Also, the measured MCRS signal drops off
before the UCP is expected to have expanded into the nearest cavity wall. Both effects
could be explained by electron heating by the microwave cavity fields [44]. These effects
will have to be investigated in more detail in future experiments.

80



7 Outlook

As with any first demonstration of a measurement technique applied to an existing
field of physics, new measurement possibilities arise exploiting the technique’s partic-
ular strengths. The validity of previous experimental results can be tested and new
experimental frontiers can be probed. With the demonstration of the proof-of-principle
microwave cavity resonance spectroscopy (MCRS) experiment on an ultracold plasma
(UCP) a new technique to study UCPs has arrived [10, 11]. With MCRS we probe
the average plasma electron density in situ in a nondestructive fashion and with submi-
crosecond temporal resolution. The opportunities for future research are many, here we
name a few.
By scanning the power and wavelength of the ionization laser the relation between

the initial electron temperature and the fraction of trapped electrons can be revisited,
see Ref. [11]. The same holds for the relation between the initial electron temperature
and the UCP expansion velocity of Eq. 2.25. These experiments might shed new light
on the lower trapped electron fraction and the discrepancy fall off time scales between
the simulated, and measured, MCRS signal in the proof-of-principle experiment. The
same experiment could yield information about the 85Rb photoionization cross section
from the 52P3/2-level at arbitrary wavelengths above the ionization threshold.
MCRS is the first measurement technique available that can study the behavior of

the UCP electron density on a submicrosecond timescale. It would be interesting to
investigate whether there is any structure within the peak of the hot electrons escaping
the plasma in the first stage of UCP evolution.
The single most detrimental effect on the MCRS measurement sensitivity of the proof-

of-principle experiment is the drop in Q-factor due to the installation of the grating into
the microwave cavity interior. The unloaded Q-factor dropped from Qcav ∼ 3850 to

Figure 7.1: Cross section of the microwave cavity back wall with receded grating. The
21 × 21 mm2 grating is clamped flush to a 20 × 20 mm2, 1 mm deep hole in the cavity
back wall. The 20× 20 mm2 patterned grating surface is exposed to the cavity interior
and the 0.5 mm rim has full electrical contact with the cavity back wall.
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∼ 500 due to the high surface resistance of the 100 nm aluminum reflector on top of
the grating, and concentration of surface currents on the reflector edges and grating
clamps. Simulations have shown the latter is the most detrimental effect. The grating
measures 21×21 mm2, all of which is covered by the grating reflector. Only 20×20 mm2

is effectively patterned, leaving a 0.5 mm rim on the grating edge that could be used
to ensure electrical contact with the cavity. If, in the current cavity design, the grating
were clamped below a 20× 20 mm2 square, 1 mm deep hole in the cavity back wall, the
cavity Q-factor is expected to increase to Qcav ∼ 3000. A cross section of the cavity
back wall in the new situation is shown in Fig. 7.1. The increase in Q-factor measures
about a factor 6. When achieved in practice, a similar increase in MCRS measurement
sensitivity can be expected (see Eq. 3.22). Note there is an aluminum slab behind the
grating in Fig. 7.1 to mitigate concentration of the cavity electric field on the hole edge
facing the cavity interior. The slab prevents power loss through the hole in the cavity
wall behind the grating as well. The latter can also be achieved by increasing the hole
length, as is done with the hole for the trapping laser in Ch. 4.
Spatial information about the UCP electron density can be obtained by conducting

multi-mode MCRS, as demonstrated in Ref. [7]. In the current cavity design the next
cavity mode is located at 6.6 GHz, close to the cut-off frequency of the hole for the
trapping laser. The mode is not isolated from the cavity exterior, has a low Q-factor
(Qcav ∼ 100), and is out-of-reach for the microwave generator and directional coupler
used in the experiment. In a redesign of the microwave cavity, the cavity radius could be
increased to lower the mode resonance frequency. This would increase the mode Q-factor
and bring it within reach of excitation and detection with the current microwave setup.
Potentially other cavity modes could be brought within reach as well. Investigating
the spatial evolution of the UCP electron density distribution is interesting in its own
right. However, multi-mode MCRS opens the door to resolving patterned initial plasma
distributions as well. For example, by modulating the intensity profile of the excitation
and/or the ionization laser we could study the evolution and interaction of two or more
adjacent UCPs.
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Appendix

Reflection on a Right-Angle Connector
When the microwave cavity was installed on the CF100 flange a curious drop in coupling
factor β was observed, as measured on the atmospheric side of the CF100 flange. For
a critically coupled cavity (β ≈ 1) the coupling factor, as measured on the flange ( 2
in Fig. 4.11), was reduced by about ∆β = −0.2. For experiments the cavity (without
flange) was left slightly overcoupled (β = 1.21) to have a coupling factor close to the
planned β = 1 with the flange.
On the vacuum side of the CF100 flange, the microwave signal is transported to the

cavity by a semi-rigid coax cable, see Fig. 4.12. To investigate the drop in coupling
factor, the semi-rigid coax cable (cable I) was replaced by a cable with straight-angle
connectors (cable II). A photo of both cables is shown in Fig. 1. For both cables,
the voltage reflection coefficient |ΓV | was measured on the flange with the use of a
network analyzer. Measurements on the flange (label: with flange) are compared to
measurements without flange (label: without flange) in Fig. 2 and fitted with Eq. 4.1
to determine the microwave cavity characteristics. Fit results are listed in Table 1. In
the figure, the reflection measurement without flange is shown by the black line. The
coupling factor β = 1.21 (see Table 1) leads to a on-resonance voltage reflection of 10%
(1% in power) apparent in the peak (minimum) of the reflection curve. With the flange
and cable I (orange line) the coupling factor drops to β = 1.06 and the on-resonance
voltage reflection improves to 4% (2h in power). This effect disappears when the cable I
is replaced by cable II (red line). With cable II the coupling factor remains β = 1.21
and the on-resonance voltage reflection is 11%. A marginal difference with the situation
without the flange.
The main difference between cable I and II is that the latter does not contain a right-

angle connector. In the right-angle connector the microwave signal is forced in a 90°
turn (right angle) in a propagation distance of a few millimeters. Since the wavelength
of a 5 GHz microwave signal propagating on a coax cable is about 4 cm, taking a 90°
turn in a propagation distance of a few millimeters is bound to cause reflections. A
reflection of 1% of microwave power (10% voltage) on the right-angle connector could
explain the drop in on-resonance reflection when the cavity is installed on the flange
with the semi-rigid coax cable. In future experiments right-angle connectors should be
avoided in the transmission line. Also apparent in Fig. 4.12 is the off-resonance drop
in reflected voltage in the wings of the reflection peak when the cavity is installed on
the flange (both with cable I and II). This effect is due to dissipation in the extra piece
of transmission line of the SMA-feedthrough in the flange and the cables. Obviously
cable II is of lesser quality and dissipates more.

86



Appendix

Figure 1: Coax cables used for testing. Bottom – semi rigid coax cable with right-angle
connector used in the experiment (cable I). Top – non-UHV compatible coax cable with
only straight-angle connectors (cable II).
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Figure 2: Measured voltage reflection coefficient |ΓV | as a function of frequency for the
cavity TM010 mode. Comparison between measurements on the cavity (label: without
flange), on the flange with cable I (label: flange - cab. I) and on the flange with cable II
(label: flange - cab. II). Cavity characteristics of all situations are listed in Table 1.

Table 1: Comparison of microwave cavity characteristics without flange, flange with
cable I and flange with cable II. Data obtained from fitting the graphs in Fig. 2 with
Eq. 4.1. Measurement errors are beyond the last digit.

f0 (GHz) β QL

Without Flange 4.98 1.21 222
Flange - Cab. I 4.99 1.06 229
Flange - Cab. II 4.98 1.21 208
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