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ABSTRACT 
This master thesis describes a graduation project conducted at Philips Healthcare with the objective 
to explore possibilities that root cause analysis based on historical cases can provide, to support 
maintenance decision making for on-site corrective maintenance cases with part replacement. A 
description of the current maintenance policy is presented and how the developed and evaluated 
solution can contribute to solve customer complaints in as few visits as possible; by predicting 
required spare parts – root causes – completely data-driven, along with additional complementary 
tools based on association mining, given specific part usage.  
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MANAGEMENT SUMMARY 
 
Background 
This Master’s thesis focusses on improving on-site corrective maintenance activities with part 
replacement of Philips Healthcare, specifically for magnetic resonance systems – a project in 
collaboration with the customer services department. 
 
Problem Orientation and Definition 
Field services are heavily focused on customer satisfaction. When something goes wrong, the client 
would like the issue to be solved straight way; putting processes on hold as little as possible and losing 
both time and money as few as possible, while an engineer attempts to rectify the issue. Although 
historically productivity of the workforce and its utilization, mean time to repair and on-time 
performance have received attention measuring field service performance, organizations are now 
slowly beginning to track ‘First Visit Fix’ as a vital metric of field service efficiency. Generally, this term 
refers to ‘solving a service work order during the first customer on-site visit’. 
Although FVF rates are improving over the past couple of years, difference in average cost between 
single and multiple visits CM cases with the use of at least one spare part replacement, is increasing. 
Potentially, field service improvements can be made to increase the metric rate, decrease the total 
maintenance cost difference, and improve customer satisfaction and retention on the long term. 
Additionally, knowledge of why and how CM cases are structured is often implicit, and provided 
documentation field engineers might not always provide concrete service actions for occurring issues 
in practice, decisions about replaceable parts and ordering thereof are hence made ad-hoc. 
 
The goal of this research project is to improve the cost-effectiveness of on-site corrective 
maintenance operations for certain MR devices by exploring ways to transition the ad-hoc decision 
process for part replacement during CM activities to a predictive-based fully data-driven corrective 
maintenance approach. Based on the problem context, and gap analysis resulting from discussions 
with the project team and aforementioned department, the following main research question is 
formulated: 

“How can we accurately predict the required spare parts for system’ component 
failure based on available data?” 

 
Method of gathering data and analysis 
To bridge the gap between the current and desired situation, the objective is to choose a solution 
design for fully data-driven RCA and provide complementary data and decision rule visualizations to 
the predicted required part type for a given customer call. A solution direction is chosen based on the 
comparison of several classifiers. The tool is created on a computational modeling environment 
called ‘R’ – statistical programming language. This language is used, as it also is a standard 
programming and analysis language of the Philips Healthcare department of this project’s context. 
In order to thoroughly answer the aforementioned research question, the widely used Cross Industry 
Standard Process for Data Mining (CRISP-DM) methodology is used for a structured report. This 
methodology splits the data mining process into six major phases. Business understanding is the 
initial phase and focuses on establishing a deeper understanding of the problem and business 
context, understanding underlying causes, and the current MR troubleshooting process. The 
subsequent data understanding phase relates to identifying which relevant data exists in the first visit 
fix and corrective maintenance cases with part replacement context, where this is located and how 
the quality of the data can be identified. Data preparation focuses on creating useful and suitable 
data sets for the prediction models. Specifically for this study, all collected errors related to customer 
calls, during a two week period prior to a call, have also been analyzed for independence and causality 
by performing error sequence analysis. Additionally, the vast amount of spare parts have been 
grouped in understandable and clear clusters. During the modelling phase different machine learning 
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techniques are discovered, selected and applied for intended predictions, which are tested and 
validated in an evaluation phase. Although CRISP-DM seems sequential, it can be iterative. 
 
The analysis and model creation is performed by writing and comparing three machine learning 
techniques in ‘R’: XGBoost, Random Forest, and Structured Vector Machines. Model variations are 
created per technique based on the four different studied MR system chains (labeled C1 - C4) given 
the scope of the study, and variations based on different data re-sampling, if required. The selection 
for these methods is based on ranking different supervised learning algorithms on criteria such as 
prediction accuracy, result interpretability, sparse data handling, and others. 
Based on the output – part predictions – of the models, additional analysis such as association rule 
mining is provided related to the prediction, and decision rules are visualized with a single decision 
tree algorithm. This results in a three-phase solution design in which, 1) a general part cluster is 
determined of which spare parts are required to solve a customer CM call, based on case, error and 
system data, followed by 2) a specific part (type) prediction given the – in phase 1 – predicted part 
cluster, and 3) additional (listed) specific spare parts required if solely replacing the – in phase 2 – 
predicted part does not solve the CM issue, in terms of association rule visualizations. Additionally, 
decision rule visualization is provided, if required for service engineers. These phases form the full 
RCA provided solution. 
 
Overview of main finding 
The Random Forest and Structured Vector Machine base-models have an average balanced accuracy 
performance (.52-.62), while XGBoost clearly scores significantly higher than other estimators do 
with very good balanced accuracy of .72 - .84. Moreover: 

o Performance of the XGBoost models per MR chain are overall much better than those 
obtained for Random Forest and SVM, while the last types show similar results with a few 
differences for all considered performance metrics.  

o XGBoost models are able to reach very good specificity values (ranging from .94-.97) (slightly 
better than other classifiers, which are still great specificity scores) and decent precision 
outcomes (.60-.70). 

o Precision values are relatively low for all Random Forest models (ranging .29-.47) and SVM’s 
(ranging .30-.40), while recall values are slightly better, but moderate at best (ranging .43-.51 
and .39-.62, respectively); with an exception of high recall for RFC C2 (Smote) of .74 and SVM 
C4 (Linear) of .67. 

o XGBoost models are the only classifiers with ideally high precision and recall values, as this 
results in models returning many correctly labeled results. However, XGBoost C3 and C4 
models have lower than preferred recall values compared to C1 and C2, which can results in 
models returning fewer results but mostly correctly predicted compared to training labels.  

o Lastly, the same behavior in performance can be observed for all classifiers, where C1 and C2 
models tend to perform better overall, compared to C3 and C4. While for C4 this can be 
explained due to the much more complex system design and errors that are more dependent 
and seem to behave differently. 

 
The final results for the best classifier predicting the required spare part cluster given service work 
order data, logged errors and system registry data, after parameter optimization (Table i): 
 

Table i - Classifier performance after parameter optimization 
Classifier 

 
Evaluation Metric 

µ Recall µ Specificity µ F1 µ AUC Kappa 

XGBoost 

Chain 1 Cases 0.71 0.95 0.76 0.80 0.69 
Chain 2 Cases 0.70 0.98 0.68 0.80 0.66 
Chain 3 Cases 0.55 0.95 0.57 0.73 0.55 
Chain 4 Cases 0.52 0.96 0.55 0.71 0.54 
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After a spare part cluster is predicted based on the highest probability over all different classes, a 
Random Forest classifier is able to predict a more specific spare part based on the data of that cluster. 
As an example, the following results are obtained for a certain chain, and cluster: 
 

Table ii - RFC performance Example, after Part Cluster prediction 

 
Anterior 

Coil 
Base 
Coil 

Body 
Coil 

Breast 
Coil 

Circu-
lator 

Coil 
Assembly 

External 
Coil 

Flex 
Coil 

Foot 
Ankle Coil 

Head 
Coil 

F1 Score 0.29 0.69 1.00 0.95 0.97 0.53 0.87 0.41 0.89 0.74 
Balanced 
Accuracy 

0.59 0.82 1.00 0.99 0.99 0.95 0.94 0.63 0.92 0.87 

 
Head 

Neck Coil 
Head Neck 
Spine Coil 

Knee 
Coil 

NVC 
Coil 

PHC QBC 
RF 

Amplifier 
Shoulder 

Coil 
Wrist 
Coil 

F1 Score 0.93 0.57 0.66 0.85 0.80 1.00 0.88 0.59 0.98 
Balanced 
Accuracy 

0.98 0.62 0.70 0.85 0.98 1.00 0.89 0.70 0.98 

Along with the performance evaluation of proposed solution, the business impact of the model is also 
determined in terms of ideal potential savings if a root cause of customer call is determined correctly 
given the part predictions, soft savings and a more realistic estimation of savings falling in between 
the first two mentioned saving types. 
In addition to the predicted part type from Table ii, association rules are discovered and presented – 
such as the examples of Fig. i. This functions as a supportive tool to find additional parts sometimes 
used when the predict part has been replaced; useful for when a problem is not solved with only the 
predicted part, or if a part replacement per definition involves other (low-level) parts as well.  
 
 
 
 
 
 
 
 
 

Fig. i – Interactive visualization, significant Association Rule Mining 

Future research suggestions 
For future research there are several areas were additional research can lead to insights to improve 
results in terms of data-driven corrective maintenance, prediction accuracy and cost savings. These 
areas are as follows: 

o An important assumption is made with this decision of focusing on four specific MRI chains. 
Only looking at error data from these chains, means that one assumes a customer call’ root 
cause lies within one of these chains. Not a single data source elaborate on what exactly was 
the problem of a customer complaint. Thereby, focusing solely on machine behavior and the 
array and variety of logged errors regarding collecting machine failure information. Hence, 
for additional research, other chains should be included or a methodology is needed to 
identify cases with spare part consumptions that under no circumstance can be related to one 
of the chains and therefore excluded cases from the data set(s). This challenge was also 
apparent given the model assessment phase where part clusters were included and predicted 
in test sets that likely cannot be the root cause of certain chains, based on various SME 
discussions. 

o Optional fault descriptions have not been considered during this study, as it requires 
intensive text mining techniques and dealing with multiple language-related issues as there 
is also no standardized way of input. But, such techniques can be used to detect patterns and 
tendencies, structuring free text input to generate an additional data source for RCA. 
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Table of Abbreviations 
 

Table 1 - List of Abbreviations  

Abbreviation Explanation Abbreviation Explanation 

12NC 
12 digit numerical code, Product ID 
according to standard article coding 
system 

MRI Magnetic Resonance Imaging 

Aop Annual Operating Plan NEMO No Engineer Material Only 

AUC Area Under Curve OEM Original Equipment Manufacturer 

BCa  
Bias-corrected and accelerated 
bootstrap   

OOB Out-Of-Bag Error 

BN Bayesian Networks PFEI 
Front End Interface, Electronics rack 
close to the MRI magnet 

CAGR Compound Annual Growth Rate PM Planned Maintenance 

CBM Condition-based Maintenance r 
Pearson correlation coefficient, 
Pearson's r 

Ci Confidence Interval R&D Research and Development 

CM Corrective Maintenance RCA Root Cause Analysis 

cp Complexity Parameter RF Radio Frequency 

CRISP-DM 
Cross-industry standard process for 
data mining 

RFC Random Forest Classifier 

CT Computed Tomography RHS Right Hand Side 

FAQ Frequently Asked Questions ROC Receiver Operating Characteristics  

FMEA Failure Mode Effect Analysis ROSE Random Over-Sampling Examples 

FMECA 
Failure Mode Effects and Criticality 
Analysis  

RPN Risk Priority Number 

FN False Negatives RSE Remote Service Engineer 

FP False Positives SD Standard Deviation 

FPG Frequent Pattern - Growth SI Service Innovation 

FSE Field Service Engineer SME Subject Matter Expert 

FTA Fault Tree Analysis SMOTE 
Synthetic  Minority Over-sampling 
Technique 

FVF First Visit Fix SPC Spare Part Replacement 

ixR interventional X-ray SPD Service Procedure Document 

JDBC Java Database Connectivity SQL Structured Query Language 

KDD Knowledge Discovery in Databases SVM Support Vector Machines 

KPI Key Performance Indicator SWO Service Work Order 

LHS Left Hand Side TN True Negatives 

MAFTA 
Multi-Attribute Failure Model 
Analysis 

TP True Positives 

MBA Market Basket Analysis TPR Technical Parts Review 

MD Mahalanobis Distance TSD Troubleshooting Document 

MR  Magnetic Resonance   
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1 INTRODUCTION AND PROJECT CONTEXT 
This chapter serves as an introduction to the topic at hand in this document. It starts with elaborating 
on the increasing need of imaging technology in the global healthcare sector. Subsequently, the 
chapter continues describing the importance of field service, also regarding these challenges, the 
introduction of a vital service metric, its impact on business and customer, and potential strategies 
to improve this vital metric. 
 

1.1 CURRENT CHALLENGES IN IMAGING TECHNOLOGY 
In any hospital setting, medical device systems such as Magnetic Resonance Imaging (MRI), 
Computed Tomography (CT) and interventional X-ray (ixR) are vital equipment, which play an 
important role in diagnosing, monitoring, screening and testing of medical conditions for medical 
intervention; in short the diagnosis and treatment of patients. A market study has shown that 
demand of these devices is increasing daily, with a projected growth rate of 5.2% Compound Annual 
Growth Rate (CAGR) over a period from 2014 to 2020; $26.5 bn of global diagnostic imaging devices 
market-valuation in 2014, which is expected to reach $35.8 bn by 2020 (Persistence Market Research, 
2016). Additionally, Research and Markets (2016) expects the MRI systems market to register a 6% 
CAGR between 2015 and 2020. Although technological advancements in diagnostic imaging devices 
and corresponding imaging technology have propelled the global diagnostic imaging devices market, 
other factors are expected to contribute further in usage of such devices. It is predicted that the 
growing aging population, increasing occurrence of injuries, chronic diseases (i.e cancers), 
neurological and cardiac disorders and the increasing number of applications of diagnostic imaging 
devices increase this usage even more in the years to come (Persistence Market Research, 2016; 
Research and Markets, 2016). 
The demand trend and current challenges for the industry show the important of these devices in the 
current healthcare setup. Therefore, it is also important that these type of devices are available to 
clinicians and potentially other personal, all the time. Any downtime of diagnostic imaging devices 
can have major implications or complications due to delayed diagnosis of patient’ rescheduling in 
rescheduling and loss of productivity. Especially, in the cost sensitive healthcare industry, any 
unplanned downtime of such devices can be a burden of both the hospitals as well as the original 
equipment manufacturers (OEM’s) financially. Downtime of these devices is determined as roughly 
10% of their total cost over a period of ten years (Hockel & Hamilton, 2011). 
 

1.2 FIELD SERVICE – FIRST VISIT FIX 
Nowadays in the era of connectivity, it is easy to connect these devices to an OEM monitoring station. 
Once connected, OEM’s can monitor the health and status of these devices remotely, and take 
corrective actions based on preventive maintenance strategies, if needed. Although such methods 
aim to mitigate the risk of unplanned downtime and thereby increasing device usage, it is also 
important to have an efficient corrective strategy and on-site service once customers do experience, 
and raise repair requests for sub-optimally working systems, or unexpected device or component 
failure(s). 
 
Such field services are heavily focused on customer satisfaction. When something goes wrong, the 
client would like the issue to be solved straight way; putting processes on hold as little as possible and 
losing both time and money as few as possible, while an engineer attempts to rectify the issue. 
Although historically productivity of the workforce and its utilization, mean time to repair and on-
time performance have received attention measuring field service performance, organizations are 
now slowly beginning to track ‘First Visit Fix’ as a vital metric of field service efficiency 
(AberdeenGroup, 2013). Organizations could have slightly different variations of this Key 
Performance Indicator (KPI) in terminology and definition but generally, ‘First Visit Fix’ refers to 
‘solving a service work order during the first customer on-site visit’. Each subsequent on-site customer 
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contact for the issue at hand, is no longer considered a first visit fix (Reichheld & Schefter, 2000; 
Zwetsloot, Buitenhuis, Lameijer, & Does, 2015). 
 
This change in KPI focus is due to its potential wide scale implications; it does not only affect field 
service performance, but also key customer-oriented and financial measures that reflect business 
health. A less than satisfactory ‘First Visit Fix’ measure could also mean an early indicator of unhappy 
customers, likely decrease in customer attrition, retention and turnover, and reduced service 
profitability, as service quality has proved to be a determinant of satisfaction and loyalty of customers 
(Kursunluoglu, 2014; Mosahab, Ramayah, & Mahamad, 2010; Politis, Giovanis, & Binioris, 2014). 
Which subsequently also provide an indication regarding an organizational perspective with a 
potential impact on operating cost, margins and turnover (AberdeenGroup, 2013). 
 
Field service research has shown that additional dispatches due to multiple visits required add a cost 
burden to the service organization, in terms of ordering new parts, but also necessary traveling cost 
as every additional visit adds $200-300 on average (AberdeenGroup, 2013). Moreover, all these extra 
visits take field resources away from servicing new repair requests. Less field visits for new work 
impact revenue as well. Organization with an 80% First Visit Fix rate in this study have experiences a 
6.2% increase in service revenues over a period of twelve months compared to 1.6% increase with a 
sub-80% First Visit Fix rate. For those organizations below 50%, the revenue decreased to 2.8% over 
the previous year. 
Organizations that have taken steps in First Visit Fix performance have experienced significant 
benefits in the form of reported improved customer satisfaction and retention (Table 2). 
 

Table 2 - First Visit Fix and Customer Satisfaction Impact (edited from AberdeenGroup (2013)) 

Metric 
Average Results 

First Visit Fix <50% First Visit Fix <80% First Visit Fix >80% 

Satisfaction 46% 64% 87% 

Retention 60% 68% 88% 

Service Margin 23% 28% 29% 

 

1.3 FIRST VISIT FIX – ROOT CAUSE 
The main reason for multiple visits is determined to be part unavailability; meaning that field 
engineers did not bring any parts on-site, either none have been ordered or are still in transit, or 
brought incorrect parts. Hence, First Visit Fix performance is heavily dependent on service parts 
management. Additionally, engineer’ experience has been identified as the second reason; not 
having the knowledge of which parts to repair for a given system failure, potentially contributing to 
the final aspect: insufficient time to complete the task. Several remedies can aid in metric 
improvement, such as a better or more extensive diagnosis of the failure or triage at the call level, 
scheduling of repairs based on part availability, and improved training of field engineers 
(AberdeenGroup, 2013). However, none tackle the root cause of the First Visit Fix issue: improved 
field-based access to (correct) parts.  
Using aforementioned system connectivity with OEM’s for system monitoring, organizations can use 
logged data regarding historic repairs and system failure reporting to identify correct parts to bring 
for on-site repairs. In general: use service history and knowledge base of resolution steps to provide 
visibility into required parts. 
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This project investigates the possibilities to support maintenance decisions for Philips, specifically 
with regard to corrective maintenance cases with consumed parts during on-site Magnetic 
Resonance repairs, to improve diagnostics and decrease required number of visits; aiming to achieve 
a higher first time fix rate.  These concepts are discussed separately below.  
 

1.4 PHILIPS HEALTHCARE 
The project has been conducted at Philips Healthcare in Best – the Netherlands, as one of the leading 
players in the global diagnostic imaging devices market. Philips is one of the most influential 
companies in the Netherlands and the Dutch history, being the most valuable Dutch brand with a 
brand value of $11.7 billion in 2019 (Hinde, 2019). Founded in 1891 in the city of Eindhoven – Noord-
Brabant by Gerard Philips and his father Frederik, its mission is to improve people’s life through 
meaningful innovation, and therefore promise that they deliver innovation that matters to you. After 
an initial expanse in vertical integration, followed by a horizontal integration, the company achieved 
multiple technological landmarks. However, it had to sell several departments and thereby focusing 
on a few core competencies in order to achieve higher flexibility in a competitive environment (Hinde, 
2019). 
 
Philips is known for both its strong presence in the lighting and healthcare industry. Since 2016, the 
company also split off the former business, which has adopted the name Signify N.V. Nowadays, 
Philips is a leading provider of Health technology. The company leverages advanced technology and 
deep clinical and consumer insights, delivering integrated solutions to improve people’s health over 
the entire health continuum. It therefore sees two main business opportunities in this holistic 
continuum (Fig. 1). The business is split into 1) Professional Healthcare, and 2) Consumer Health & 
Wellbeing; aiming for the: 
 

o Industrialization of care:  Standardizing and optimizing the building blocks of 
healthcare to enable health systems to deliver better outcomes at lower cost. 
 

o Personalization of care:  Convergence of professional and consumer healthcare, 
enabled by digitalization, increasing self-management and individualized treatment. 

 
The graduation project has taken place in the professional healthcare continuum; a subset of 
healthcare where the organization also fulfills the role of the original equipment manufacturer (OEM) 
and delivers final products (e.g. MRI-scanner), with corresponding responsibilities and collaboration 
with suppliers to aid producing the product. The next section elaborated on the specific business unit 
of Philips where this study is performed. 
 

 
Fig. 1 - Holistic Health Continuum, edited from (Hinde, 2019) 
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1.4.1 MR Customer Service 
Philips’ campus at Best focuses on professional Healthcare; among others, one of the product groups 
focused on, on this site is Magnetic Resonance Imaging (MRI) – scanners which are also the focus 
regarding this ‘First Visit Fix’-related graduation thesis. 
Customer service and maintenance of MRI-scanners is the responsibility of the corresponding 
department: Magnetic Resonance (MR) Customer Service, along with monitory the state of the 
systems continuously, providing repair services, upgrading the system (software) and providing 
relevant documentation for their products. The department’ goal is to support the Philips’ markets in 
minimizing unplanned downtime by keeping the state of the machines in the field as high as possible. 
Given the job tasks and goal of the department, it can be categorized in the Image Guided Therapy 
support within the Diagnosis and Treatment phase of the aforementioned Philips Healthcare 
Continuum (Fig. 1). 
 

1.5 PROBLEM STATEMENT 
The organization currently uses corrective maintenance (CM) manuals that describe the required CM 
activities, replacement procedures, tests and repairs for each product model and part. Subject matter 
experts (SMEs) in Research and Development (R&D) and Service Innovation (SI) have defined these 
activities for some of the failures that can occur for a system chain and part, specifically for Field 
Service Engineers to use during their on-site visits. However, there is no or incomplete 
documentation explaining the correct parts or combination thereof to use for specific failures modes, 
ideally based on success stories of similar previous repairs and why certain parts may be ordered 
(simultaneously) based on FSE’s experiences. Knowledge of why and how CM cases are structured is 
often implicit knowledge of these engineers.  
Because this knowledge is implicit, and provided documentation to FSE’s does not always provide 
service actions for occurring issues in practice, decisions about replaceable parts and ordering thereof 
are made ad-hoc. With regard to RSE’s, they can provide recommendations regarding service actions 
if they have not been able to remotely solve the issue, but do not provide a list of parts to be replace 
for the situation at hand. It requires significant time and effort in some cases to solve the client’s 
problems as new or additional parts have to be order or returned to successfully close the case in as 
few visits as possible.  
 
Initial review of the distribution of distinct CM cases over the years 2012 - 2019 is performed, 
specifically plotting the amount of cases where the case was solved during the first visit (single visit 
cases) and cases that needed multiple visits to solve (multiple visit cases)); for one specific type of MR 
system (given the study’ scope, see Section 1.9). Note that the 2019 data is still partial based on 

approximately six months of data 1. However, it is clear that a significant percentage of cases, varying 
per year, could not be solved in a single visit; yielding an acceptable FVF rate for the years 2012 – 2019 
with opportunities to improve. This is specifically for on-site repairs where CM has taken place with 
at least one spare part replacement, over all available distinct cases within the scope. These 
percentages are slowly increasing over the years for the specific in-scope MR system, which could be 
explained due to engineer’ experience on repairing the five different Ingenia machines. However, net 
repair cost, differ for CM cases with single or multiple visits significantly as explained later on. 0 and 
Section 7.3 provide detailed analysis and explanation of the FVF rate(s) analysis, based on 
corresponding research objectives. Overall, we can observe that multiple visit repairs cost 
significantly more, even solely based on spare parts (excluding labor and travel costs). Hence, there 
is a great opportunity to reduce service cost; in terms of hard but also soft savings. Fig. 2 shows a 
general overview of the yearly average net costs for Ingenia CM cases with part replacement for one 
or more on-site visits required. 

                                                           
1 Data retrieval from the VERTICA database via squirrel SQL Client. 2019 data is incomplete; based on rec0rds until June 

22th, 2019, due to data availability upon start of the project 
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Therefore, Philips Healthcare believes there is potential to enhance customer satisfaction and reduce 
the number of CM visits & unnecessary costs as improvement to CM activities potentially can be 
made via the historical repair data, such as Spare Part Replacement records, and FMEA provided 
guidelines for potential part failures of specific machine chains. Until now, the CM processes are too 
dependent on expert knowledge that can cause activities to be redundant or to be performed too 
frequently. 
 

In short, although FVF rates are slowly improving over the past couple of years, difference in average 
cost between single and multiple visits for a CM case with the use of at least one spare part 
replacement, is increasing. Potentially, field service improvements can be made to increase the 
metric rate and decrease the total maintenance cost difference. Especially, since considerable effort 
is required to identify the issue at hand based on implicit knowledge and ad-hoc decision making 
which spare parts are likely needed for a solution, by the FSE. 

 
For the last couple of years, Philips Healthcare 
has used a big data resource called Vertica. 
This database contains, among others, 
historical data on all the maintenance 
activities, in theory resulting in easier access 
to the raw data. Although some log file 
analysis might have been done previously, 
historical data analysis of the CM data has not 
happened yet, combined with the FVF data or 
including any other potential data sources for 
improving CM maintenance. Therefore, there 
is an opportunity to analyze and review the 
existing historic on-site CM activities where 
parts have been consumed aiming to improve 
the FVF-rate on the long term.  
 

1.6 RESEARCH OBJECTIVES 
The goal of this research project is to improve the cost-effectiveness of on-site corrective 
maintenance operations for certain MR devices by exploring ways to transition the ad-hoc decision 
process for part replacement during CM activities to a predictive-based corrective maintenance 
approach (Table 3). This objective has been determined based on the developed cause-and-effect 
tree resulting from interviews and discussions with employees of the Customer Service department 
(Fig. 3). The desired field service metric (First Visit Fix) to improve is depicted in green, with potential 
aspects to improve in orange.  
 
First Visit Fix KPI information is logged into the Vertica database for each spare part replacement. 
Although Philips employees know FVF needs to be improved and calculations and analysis of aspects 
of the metric are occasionally done, this tends to happen manually. A quantitative and systemic 
analysis of this KPI over all major MR systems is missing and is required to motivate FVF potential 
improvements and validate KPI information received from other departments.  

Table 3 - GAP Analysis 

As-Is To-Be 
First Visit Fix KPI not systemically and quantitatively 
determined 

First Visit Fix KPI systemically and quantitatively determined 
and validated  

Motivations for performing CM service actions implicit Motivations for performing CM service actions explicit 

Ad-hoc FSE spare part ordering Spare part ordering analytically supported for FSE’s 

Logged CM knowledge base not used by RSE or FSE’s 
Logged CM knowledge base used for on-site service actions by 
RSE and FSE’s 

Fig. 2 - Yearly Average Cost Difference FVF per Case, 
for distinct Ingenia CM with parts cases 
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Moreover, as FVF related teams within the organization are nowadays aiming to analyze historic data 
for RSE support, no systemic or developed solutions exist per the knowledge or the researcher. 
Developing a model that aims to motivate CM service actions explicitly and thereby using the logged 
(raw data) knowledge base can be highly helpful in the organization. Not only can it aid in better RSE 
diagnosis and advise for a FSE’ SWO, and thereby increasing RSE Service Quality, it also makes sure 
that the logged knowledge base is used. Additionally using a data-driven method the risks and 
potential other reasons for multiple visits (e.g. FSE Problem Solving Skills, incorrect on-site tools and 
more repair time available due to upfront help with part issue identification) could be mitigated. 
 

 
Fig. 3 – Cause- and-effect Tree 

 

1.7 RESEARCH QUESTIONS 
Based on the problem context, the following main research question is formulated, which captures 
data analysis of failure and spare part specific data,  
 

“How can we accurately predict the required spare parts for system’ component 
failure based on available data?” 

 
This section further derives respective sub-questions (SQ) for the current and desired situation: 
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RQ1. How is the maintenance process currently designed?  
SQ1.1 What are possibilities for support in the AS-is situation of the Magnetic Resonance 

troubleshooting process? 
 
RQ2. What are the available sources and types of data that are suitable to predict the required parts 

for maintenance? 
SQ2.1 What CM activity data is available to analyze maintenance activities? 
SQ2.2 Which data sources and pre-existing documents are available for failure condition 

and service action identification? 
RQ3. How should the relevant data be used for a prediction model development to propose 

improved decision making for CM activities? 
SQ3.1 Which model type is appropriate for the prediction analysis? 
SQ3.2 How can failures conditions be identified corresponding to the part replacement 

data? 
SQ3.3 What is the co-dependency, if any, between spare parts used in historic cases? 
SQ3.4 What is the co-dependency, if any, between historic cases’ failures/system errors? 

 
RQ4. How can the model outcome support maintenance decisions? 

SQ4.1 What are the validated model’ performances, in terms of suitable performance 
metrics? 

 SQ4.2 What is the business potential of the First Visit Fix metric in general? 
 SQ4.3 What is the business potential of the deliverable? 

 

1.8 DELIVERABLES 
To bridge the gap between the current and desired situation, two deliverables are required and 
therefore developed. Understand and quantify the current state of CM activities in terms of the FVF 
performance indicator, and what the potential benefit can be for improvements of this metric. 
Moreover, the study aims for a systemic approach to develop a model for Philips; as support for RSE 
and FSE to provide advice or decide, respectively, which spare parts to use for a certain CM activity. 
The model ideally leverages several sources of data to tailor the output to different device’ part 
failures. Since CM activities for MR devices are rather diverse in terms of system type, system chain, 
and CM purpose, a primary focus on a set of CM activities is required where at least one part has been 
used for on-site repairs, specifically for Ingenia systems. This project aims to function as a proof of 
concept for a systemic data-driven approach to come to concreate diagnostic improvements and 
reduce CM costs at Philips; with the potential of increasing FVF rates. Therefore, the following 
deliverables are pursued: 
 

1. An overview and systemic determination of First Visit Fix KPI values and quantification for 
MR-systems.  

2. Development of a model, scoped as elaborated in the next section, which determines which 
spare parts most likely are needed for a system repair, during a customer visit based on 
historic data. 

3. Evaluation of the model’ performance and explore the potential business impact if 
implemented. 

 
The above mentioned model is not is not further specified at this stage, as appropriate prediction 
model selection, depending on the amount of data and complexity of the problem, takes place in 
Section 6.4. 
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1.9 SCOPE 
This study’ goals is to develop a systemic approach in order to improve the First Visit Fix rate for 
corrective maintenance operations for Philips’ medical devices, specifically: Improve First Visit Fix by 
improved Remote Diagnostics and bringing the right part(s) to fix the problem. On long-term also 
meaning an improved cost-effectiveness for maintenance, along with potentially improved customer 
satisfaction, retention and improved service margins. 
 
However, given the specific Philips department and the fact that First Visit Fix is a general term for 
the healthcare organization the scope of this research is defined in terms of 1) medical equipment 
and 2) maintenance type. 
 
1.9.1 Medical Equipment 
The scope in terms of medical equipment is defined as the magnetic resonance (MRI) devices 
produces by Philips. Over the years, the healthcare organization has developed several generations 
of these devices. For this study, the scope is two-fold, and limited to the four install based systems 
(Achieva, Ingenia, Multiva and Intera) for the first deliverable. For the second deliverable, the scope 
is limited to all systems part of the ‘Ingenia’ product model; decided based on install base, system 
design and priority. All ‘Ingenia’ models are connected to Philips’ database and in some cases a 
system can be repaired by a 3rd party, but this repair and used parts information is also available, 
providing a relatively complete set of considered data.  

 
1.9.2 Maintenance Type 
Aiming to improve First Visit Fix by bringing the correct parts to client’ site for the first visit, historic 
data regarding aforementioned MRI scanners is be considered for 1) corrective maintenance cases 
where First Visit Fix rates and information is known, along with 2) cases with the use of spare parts.  
Based on the urgency, cases are categorized in five categories: P1) Critical Need, P2) System Down, 
P3) System Restricted, P4) Intermittent Problem, and P5) Scheduled Activity; where the first two 
priorities can be labeled as hard failures, and the others as soft failures. The latter lead to systems 
that will not stop working completely, but will continue to operate potentially at lower performance 
(Taghipour & Banjevic, 2012). Note that in terms of technology scheduled activities are not the same 
as planned maintenance activities, and therefore still fall under corrective maintenance. These 
categories are all included in the data set. 
 

1.10 STAKEHOLDER RELEVANCE 
This study contributes to both scientific and practical knowledge. The scientific relevance and the 
practical relevance for both Philips Healthcare, MR SI and the end user is described in this section: 
 
1.10.1 Business relevance 
The findings of this research could be used to the benefit of Philips Healthcare, specifically in the MR 
Customer Service department, and might be used as basis of extension to other MR systems. Current 
MR system repair maintenance is based on planned maintenance strategy and an ad-hoc corrective 
maintenance strategy. Changing the ad-hoc process to a data-driven one, or at least use historic data 
analysis as a complementary source for field service decisions can aid the business in several ways: 
 
Firstly, the findings can prove significant in terms of practical relevance for RSE’s, as a 
complementary method to formulate their advice and corresponding service actions towards an FSE 
when setting up a SWO, as previously logged cases are not used currently for this. It could also be 
relevant for FSE’s to aid in the decision of required spare parts to order once on-site or before even 
visiting the customer.  
Additionally, findings can be important for Philips MR as a basis to increase the First Visit Fix rates for 
MR customer calls, resulting in business potential in terms of decreased corrective maintenance and 
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labor costs for single, and multiple visit repairs; especially decreasing the latter as average cost 
difference between them significantly differs. 
 
Moreover, a societal relevance for the and user could be achieved on the long term, as improvements 
in field service and thereby First Visit Fix help customers in terms of shorter machine downtime, 
decreasing time before clients can continue with their own health practices. Which can result in 
increased customer satisfaction, beneficial for Philips.  

 
If Philips wants to move towards data-driven corrective maintenance based on historic data, there 
also must be scientific evidence for implementing this strategy, in the form of an accurate model that 
shows the applicability or predictive modeling on corrective maintenance policies. 
 
1.10.2 Scientific relevance 
Multiple studies have shown that data-driven maintenance policies have a better result in terms of 
costs, quality and performance (Lawrence, Anuj, & Gerald, 1995; Morant & Larsson-Kråik, Kumar, 
2016; Rosmaini & Shahrul, 2012). This justifies exploring the utility of gathered MR system data by 
Philips for their current corrective maintenance process. 
This research extends knowledge on the domain of data-driven corrective maintenance, in terms of 
combining decision and multi-class classification trees based on historic maintenance data, with 
failure mode trees, for providing maintenance service actions and/or required parts advice to remote 
and field engineers. As further elaborated in the motivation of Section 2.3, this study contributes to 
the domain of maintenance and root cause analysis by not relying on customer or service engineer 
system failures’ descriptions and solutions, but rather solely on machine logs and system reported 
errors prior to a customer complaint. Aiming to predict required types of spare parts or even specific 
parts when certain (sets) of errors are observable in logs files for a system. Additionally, the analysis 
is extended by a method to provide advice regarding extra (often used) parts along with the predicted 
part (root cause), if required. 
For further elaboration on the scientific contribution, and an explanation of the theoretical 
background, see Section 2. 
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2 THEORETICAL BACKGROUND 
This chapter presents an in-depth theoretical background about (data-driven) maintenance and root 
cause analysis, different corresponding methods for analysis; aiming to summarize and elaborate on 
relevant work while identifying the gap of knowledge in existing literature.  
Fig. 4 illustrates the value of the theoretical background, using a conceptual project design model 
based on (van Aken, Berends, & van der Bij, 2012). In which, the top left contains a set of theoretical 
perspectives required to study the subjects of analysis depicted on the top right. Both form the basis 
of data-driven corrective maintenance as the deliverable of the project. 

 
Fig. 4 - Conceptual Project Design 

2.1 MAINTENANCE 
Different maintenance management policies along with associated information systems are used in 
order to reduce or repair unexpected failures, eliminate unscheduled downtimes, and minimize 
maintenance-related costs (Bousdekis, Magoutas, Apostolou, & Mentzas, 2015; Mosaddar & Shojaie, 
2013). The availability of historic data potentially allows organizations to make improvements to 
maintenance processes or to monitor and react proactively to mitigate problems using real-time data 
(Buchmann, 2014). Maintenance is traditionally categorized as corrective maintenance (CM) or 
preventive maintenance, including planned maintenance (PM) and condition-based maintenance 
(CBM) (Cipollini, Oneto, Coraddu, Murphy, & Anguita, 2018; Huiguo, Rui, & Pecht, 2009; Niu & Pecht, 
2009). 
Maintenance operations within Philips are organized by means of cases, which can be categorized 
into two categories: preventive- and corrective maintenance. Philips defines the former in the 
following way: 

“Preventative Maintenance is used for the service request to deliver the scheduled maintenance 
activities, which are contractually agreed upon in advance by a warranty or service contract,  

or purchased by the customer.” 

However, this study focusses on CM analysis aiming to improve First Visit Fix rates. Corrective 
Maintenance is equivalent to Breakdown Maintenance, with other common terms including Reactive 
Maintenance and Run-to-Failure Maintenance. It is the simplest form of maintenance policy that 
consists of repairing equipment or assets once it has already failed. A failure of a system can be 
defined as ‘the inability of a system to meet a specified performance standard’: called a functional 
failure (Corrosionpedia, 2018). A CM strategy has the advantage that the useful lifetime of a part is 
always fully utilized. This means that there is no ‘waste’ of resources caused by a preventive 
replacement of the part. However, the disadvantages of a CM strategy are that it 1) relies on a quick 
reaction time to avoid significant losses during downtime and 2) can potentially cause indirect costs, 
by potentially secondary damages caused by the part failure. Additionally CM requires the least 
planning; but the resources that it saves in planning and day-to-day operations often are considerably 
strained due to unpredictable, frequent, and potential severe breakdowns. According to this policy, 
system’ user only acts after the system or component breaks down (Jardine, Lin, & Banjevic, 2006). 
Philips Healthcare defines CM as: 

“Corrective Maintenance is used for the service request to fix a problem of broken equipment; the fix 
may be delivered remotely with or without parts, onsite with or without parts,  

or delivered in a bench repair center.” 
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2.2 ROOT CAUSE ANALYSIS 
In order to improve future CM service by understanding what kind of service actions might be 
required for problems or symptoms that occur, Root Cause Analysis (RCA) can be used to this extent. 
RCA has an important role in maintenance decision-making and problem solving, as its purpose is to 
find the underling source of observed symptoms of a problem. In other words, it aims to identify 
factors causing system and/or equipment failures - sometimes caused by a cascade of events – finding 
the correct and sustainable solution(s) for failures (Chemweno et al., 2016; Schoenfisch, Stülpnagel, 
Ortmann, Meilicke, & Stuckenschmidt, 2016).  Once identified, maintenance strategies can be 
implemented more effectively, thereby maximizing equipment uptime. 

 
Fig. 5 - Root Cause Analysis Categories 

Techniques for root cause analysis for maintenance, or just in general,  can be classified into three 
broad categories given the state of literature; qualitative, semi-quantitative and quantitative (data-
driven) methods (Fig. 5) (Reid & Smyth-Renshaw, 2012). However, the paradigm currently is mainly 
characterized by primarily qualitative or semi-quantitative methods (Chemweno et al., 2016). These 
categories and scientific contribution to them are described below, along with a tabular summary at 
the end of this section. For specifics regarding this theoretical background, see Appendix EE for the 
literature review. 
 
2.2.1 Qualitative techniques 
Qualitative techniques mostly consist of applying the Ishikawa cause-and-effect diagram, and the ‘5-
whys’ analysis in the context of maintenance RCA studies. The Ishikawa diagram is discussed in 
Sharma & Sharma (2010) where the technique is applied for diagnosing root causes of equipment 
unreliability in a paper pulping machine. In the study, the root causes are enumerated through brain 
storming session, and subsequently visualized on the diagram. Halawani & Ahmad (2011) similarly 
analyzed the root causes of repair-related delays in the failure-based maintenance strategy. In which, 
root causes were derived through expert elicitations from which, the causes are classified into four 
broad categories; machine-related, material-related, manpower-related and method-related. Nebl 
& Schroeder (2011) also analyzed the root causes of quality losses in manufacturing systems using 
the Ishikawa diagram, while more recently, Papic, Kovacevic, Galar, & Thaduri (2016) use the 
Ishikawa for analyzing the root causes of productivity losses in mining equipment. Many different 
studies use this technique, also across domains such as the service delivery system domain as an 
example (Dorsch, Yasin, & Czuchry, 1997). However, all apply the same methodology and are based 
on SME and brainstorming sessions, surveys or alternative method, to identify failure modes and 
corresponding causes. 
Additionally, the ‘5-whys’ analysis is reported, where decision makers follow a deductive query 
process from which a series of five or more questions are asked as to the potential causes of a given 
undesirable event. The query stops when no further causes can be ascribed to the failure event, 
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meaning the root causes are deduced and service actions and solution can be drafted for a given 
failure. Studies discussing the ‘5-whys’ analysis include Viveros, Zio, Nikulin, Stegmaier, & Bravo 
(2014) where the approach is used for analyzing the root causes of failure for equipment used for 
calibrating truck engines. More recently, Benjamin, Marathamuthu, & Murugaiah (2015) apply the ‘5-
whys’ for analyzing root causes of speed losses of equipment at a steel barrel manufacturing facility.  
 
Conclusions can be drawn from studies using aforementioned qualitative techniques. Firstly, both 
techniques are predominantly driven on SME and corresponding (tacit) knowledge. Hence, derived 
causal associations are almost never empirically linked to (observed) failure events. Moreover, 
Chemweno et al. (2016) mentioned additional disadvantages: 1) significant time requirements, 2) 
root cause identification is solely expert-reliant, and 3) high amount of required manpower 
throughout the process. Similar deficiencies are also noted by Medina-Oliva, Lung, Barberá, Viveros, 
& Ruin (2012) while stressing that such methods inadequately map the potential causal 
dependencies. 
 
2.2.2 (Semi-) Quantitative techniques 
In order to address deficiencies of qualitative methods, (semi-) quantitative techniques have been 
introduced, such as Failure Mode and Effect Analysis (FMEA); which is a method to identify - in 
advance - the failure modes, effects and if possible potential causes of failures and/or general service 
actions to prevent a failure mode. FMEA is mainly used to prioritize potential failure events based on 
a calculate risk priority number (RPN). This technique or variations of it, is discussed and used in many 
studies, e.g. in the domains of manufacturing, automotive, sugar- and coal-fired thermal energy 
industry. 
For example, the quality of automotive leaf spring production has been greatly increased, by an 
improved FMEA based on SME, explaining the cause of different failure modes and their effect on 
(the quality) of the product, along with recommended service actions to take if the problem rises 
(Vinodh & Santhosh, 2012). The same holds for the Zadry, Saputra, Tabri, Meilani, & Rahmayanti 
(2018) improving the reliability and ergonomic design of their sugarcane machine using this 
technique by finding root causes to often occurring problems. Additionally the study used cause-and-
effect diagrams to further identify failure modes and corresponding actions, leading to reduction of 
RPN values of multiple failures. 
Other papers have expanded the FMEA method by including a criticality analysis of failure modes 
(FMECA) or including economic considerations (Adhikary, Bose, Bose, & Mitra, 2014; Braglia, 2000; 
Braglia, Frosolini, & Montanari, 2003). Although all use a similar technique, Braglia et al.(2003) 
combines FMECA with fuzzification and SME knowledge for a potential cause for failure modes; 
Braglia (2000) also use multi-attribute failure model analysis (MAFMA) for the selection process of 
most critical cause of a failure event. De Sanctis, Paciarotti, & Di Giovine (2016) and Sharma, Kumar, 
& Kumar (2005) take another unique process (in the offshore industry domain) by determining the 
best maintenance strategy (e.g. preventive, corrective or condition-based) for an item failure after 
determining failure modes for specific items and their impact on the complete system; with the latter 
study combining fuzzy linguistic modeling with FMEA. 
However, FMEA has been criticized as a basis for RCA and decision support, specifically regarding the 
computation of RPN; as this is determined as a product of three ordinal risk indices elicited from SME, 
their knowledge and experience. As a result, the failures prioritized using such methods are not linked 
to empirical failure events (Chemweno et al., 2016). More importantly, FMEA does not take into 
account the inter-dependencies or associations between failure events (Chemweno et al., 2016; Liu, 
Liu, & Liu, 2013); even though this is an important step necessary for RCA and equipment or part 
failure. 
 
Therefore, other quantitative techniques are suggested and applied in literature, such as Fault Tree 
Analysis (FTA), and Bayesian Networks (BN); which are graphical illustrations or diagrams depicting 
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cause-and-effect relations or probable associations between failure events and causes (Chemweno, 
Pintelon, Van Horenbeek, & Muchiri, 2015). 
 
2.2.3 Data-Driven techniques 
Despite vast, and growing, data availability of machine maintenance data and log files, literature that 
leverages this data for decision support and RCA is scarce, specifically in the medical imaging devices 
and maintenance domain(s). Few data-driven methodologies are reported using maintenance data 
for RCA decision support (Chemweno et al., 2015; Reid & Smyth-Renshaw, 2012).  
  
The work of Mathur (2002) bears some relevance to the problem at hand, although based in the 
aviation domain. The paper presents a vision regarding CM diagnostics support to assist in fault-
isolation, troubleshooting, and prognostics support in condition-based preventive maintenance by 
anticipating failures, recommending service actions prior to a catastrophic system failure. Their work 
actually includes the use of system log files to determine system health and status, and management 
of diagnostic models, but historical data is not yet (successfully) used for faultfinding and repair 
troubleshooting. 
 
Chemweno et al. (2016) propose a novel data exploration methodology for RCA at a thermal power 
plant using (hierarchical, fuzzy, and k-means) clustering for general failure modes. Each cluster with 
different failure modes is checked for criticality, and if a failure mode potentially can be solved by 
modifying a component. The methodology’ main outcome is finding potential maintenance 
strategies for identified general root causes of a cluster of failure modes (FBM, CBM, or DOM). 
Specific service actions or required parts for occurred failure events are not provided. 
 
Another approach is used in the study of Zhu, Liyanage, & Jeeves (2019), developing a data-driven 
approach in understanding and detecting failures in Emergency Shutdown systems in the Oil and Gas 
Industry. Along with identified failure modes, the studies outcome is a list of potentially relevant 
system chains, determining how likely it is if certain failure modes can be detected in the different 
chains or if specific chains are irrelevant for a corresponding failure mode. Moreover, it was concluded 
that the understanding of failure mechanisms and the complex dependencies between different 
parts are helpful and even critical in the diagnosis of root causes. 
 
Other works have used log-data and employed a methodology based on Markov Logic Networks to 
provide a ranked diagnoses in the form of a list of possible RCF based on probability, or to predict 
whether a failure is permanent or transient, hence raising an alarm in case of proper severity 
(Majumder, Sengupta, Jain, & Bhaduri, 2016; Zawawy, Kontogiannis, Mylopoulos, & Mankovskii, 
2012). The latter study also aims to identify possible root cause devices in the airline flight check-in 
infrastructure management, in other terms system chains that might be causing a failure. 
 
Unfortunately, machine log files and/or maintenance data is more often used for other purposes than 
RCA: predicting part of equipment failure. Historic data can be used to 1) identify and classify faulty 
components, and determine the probability of fault occurrence using fuzzy logic and artificial neural 
networks (Wu, Liu, & Ding, 2003), 2) estimate machine breakdown probability during a future time 
interval using random forest machine learning based on log messages, event logs and operational 
information (Gutschi, Furian, Suschnigg, Neubacher, & Voessner, 2019) , or 3) determine the high and 
low risk time intervals of failure for each individual asset for a next year given earlier performance 
(Rezvanizaniani, Dempsey, & Lee, 2014). 
 
Specifically in the healthcare domain and imaging devices, similar studies have been performed. 
Sipos, Wang, & Moerchen (2014) used equipment event logs and multiple-instance learning to predict 
medical scanner failures. While MRI log data and corrective maintenance data served as an input to 



15 

researchers for predicting MRI component failure 14 days in advance of the actual failure; as a first 
study within the healthcare and imaging devices domain, aiming to reduce machine downtime and 
cost savings for OEM’s (Patil, Patil, Ravi, & Naik, 2017). 
 

2.3 MOTIVATION STUDY 
As aforementioned, root cause analysis (in the maintenance domain) is mainly focused on qualitative 
and semi-quantitative approaches. Such approaches rely on subject matter expert(s) and 
unfortunately tend to introduces bias in the root cause analysis process and risk of incompleteness. 
Moreover, such analyses usually take place knowing upfront what different failures are for which a 
root cause is identified. The mentioned quantitative techniques for root cause analysis, e.g. fault 
trees and Bayesian networks, are sometimes limited to analyzing root causes in simple systems, or 
are based on the same data source as qualitative methods; other than generated log files. 
Performing such an analysis is also challenging due to the complex failure associations existing 
between inter-connected system components. However, as the collection of maintenance and 
system data has been enhanced in recent years, this could assist in deriving meaningful failure 
associations in the data.  
 
In this study, we do not know upfront why certain maintenance cases have been created, only that 
system repairs have taken place upon customer complaints; contrary to aforementioned (semi-) 
quantitative or data-driven studies, where a concrete failure mode is known or identified for which a 
root cause is aimed to be determined. This study identifies failure modes occurred before case calls, 
and assumes (simultaneous) multiple failure occurrences that can lead to a part replacement. Hereby, 
the study focusses on machine behavior and logged errors within a specific timeframe - prior to 
customer calls - across different system chains, combined with maintenance records, to predict 
required spare parts for when (a set of) errors occurs. Improving on discusses work by not only 
providing a general service action and direction, but based on this predicting a specific required part. 
Moreover, in order to take into account the conclusion of Zhu, Liyanage, & Jeeves (2019),  
‘understanding failure mechanisms and the complex dependencies between different parts’ being 
critical in root cause diagnosis, we aim to investigate – and include into the RCA process – any failure 
dependencies or potential causality, and providing additional case-based part consumption 
dependency. 
This is a novel approach to data-driven RCA to identify the most likely part cluster and of which 
corresponding most likely part required, to solve cases within a first customer visit, based on 
machine, error, and case data rather than actual customer reported issues. 
Hence, based on the deficiencies discussed in this theoretical background and the fact that the 
application of data exploration approaches is really under-reported in the maintenance and imaging 
health devices literature, the need for a data-oriented approach for root cause analysis is imperative, 
which motivates to address these challenges as proposed in this study. 
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3 METHODOLOGY 
Structural research methodologies help to analyze the 
problem and design towards a solution. This section 
provides the overall methodology that has been used in 
this study. The nature of this project and the presented 
research questions form a good foundation for data 
analysis approaches. To answer these questions, the 
widely used cross-industry standard process for data 
analytics and -mining is used: Cross Industry Standard 
Process for Data Mining (CRISP-DM) (Bošnjak, Grljević, & 
Bošnjak, 2009; Provost & Fawcett, 2013; Shearer, 2000). 
This process breaks data mining down into six major 
phases, see Fig. 6, and shows the possible iteration points 
in this framework. For a more detailed overview and a 
step-by-step user guide the reader is referred to Pete et 
al. (2004); written by members of the 1999 consortium 
responsible for the methodology.  
 

3.1 PROJECT OUTLINE 
An overview of the relation between the below discussed CRISP-DM phases and the research 
questions introduced in Section 1.7, is presented in Table 4, along with listed required deliverables per 
phase. Note that, the sequence of the phases is not strict and moving back and forth, iterating 
between different phases might sometimes be required for the duration of the project, per definition 
of the methodology and the nature of the study. 

Table 4 - Project Phase, Research Questions Relation 

Relation Project Phases to Research Questions 

  
Research 
Question 

 Deliverables 

Business Understanding  1  Business objective, Service performance 

Data Understanding  2  Data summary and initial insights 

Data Preparation  2, 3  Formatted (cleaned) data 

Modeling  3, 4  Model descriptions, test design, parameter settings 

Evaluation  4  Main findings, model performance insights 

Deployment    Final report, presented findings 

 

3.2 CRISP-DM CYCLE 
The remainder of this section introduces each phase of the cycle, also projected on the study as hand. 
This methodology provides a generic list of tasks for each phase as well, which is used as a guideline 
to define the approach for the project (Wirth & Hipp, 2000). Authors of the articles encourage 
selecting and leaving out tasks based on their relevance and including additional ones if providing 
value to the project. The basic approach is presented in Table 5, before elaborating per phase.  
 
3.2.1 Business Understanding  
Understanding the project objectives from a business perspective and converting it to data problem, 
reviewing existing corrective maintenance, spare part replacement, data. First, the business 
objectives and state regarding on-site corrective maintenance with parts usage are determined. This 
is achieved by acquiring input from the respective Business Innovation Unit (BIU), responsible for 
remote service and forwarding work orders to the field for corrective maintenance.   

Fig. 6 - CRISP Data Mining Cycle 
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Table 5 - CRISP general tasks 

Business Understanding 
Data 

understanding 
Data 

Preparation 
Modeling Evaluation 

Determine Business 
Objectives and Project 

Goals 

Explore available 
Database 

Data 
Selection 

Select  and perform 
modeling technique 

Evaluate results with 
performance tests 

Assess Maintenance 
Operations 

Explore 
Additional Data 

Sources 

Data 
Aggregation 

Consider  performance 
metrics 

Consider importance 
of data cleaning 

Assess Field Service 
Performance 

Interpret the data 
Feature 

Selection 
Implement potential 

operational conditions 

Evaluate results with 
regard to business 

potential 
improvement 

  
Data 

Cleaning 

Transform prediction 
output in suggested 
course of action for 

R/FSE 

 

  Data Output   

Secondly, an understanding of the current maintenance operations within Philips for MR systems is 
required, specifically what the process is from the moment a customer call takes place until the issue 
is solved or is escalated to form a thorough AS-is situation. Moreover, understanding corresponding 
field service performance metrics was needed for obtaining the reasoning of why the topic at hand is 
important to focus on and why future improvements in such a metric are needed. Identifying 
potential causes for a less than desirable FVF rate and how the researches can contribute to aspects 
that can be improved or supported with this study are part of this phase as well. 
 
3.2.2 Data Understanding  
The goal of this phase is to get a good understanding of the available data. This process started by 
exploring a large database that is primarily constructed for research purposes and contains raw and 
processed data from a variety of databases. Exploring this ‘Vertica’ database provides an 
understanding of the availability, type and linking of the data. Interaction with experts from Philips 
Healthcare is sometimes required for finding and understanding the terminology, since each topic 
and corresponding knowledge is distributed among different people and departments; such as 
Research & Development, Customer Service, Imaging Remote Services, and data analysts of the 
Service Innovation team, and  FVF team in Bangalore, India, for Vertica specific SQL query issues. 
For getting a basic insight into the data by collecting, familiarizing, and performing quality analysis, 
and especially preparing the data in the next phase, the general process takes place (Fig. 7), where 
the researcher uses a SQL Environment (in this case SQuirreL Client) to access the data. Initial data 
merging and cleaning already took place due to limitations of the Vertica and personal system to 
extract data an mass, and further steps take place in ‘R’ and ‘MS Excel’.  
 
3.2.3 Data Preparation 
Extracting, and converting raw data into a structured data set in a workable tabular format, 
containing variables useful for the prediction model as shown in Fig. 7. Preparation of the data is an 
important step in order for it to be usable for modeling, and can be one of the most time consuming 
aspects of a project. Five tasks similar to those presented in the CRISP-DM methodology are required 
to complete for this study: 1) Identified potential data during the previous phases are extracted from 
the database, 2) which are subsequently aggregated. Quantitative data can originate from different 
sources, and consist of different formats. Additionally, aggregation does not necessarily only need to 
happen due to cross database data availability, but also records-wise. Philips Healthcare registers 
spare part replacement and labor information per activity for example, resulting in one record per 
activity while a complete case can and most certainly consists of multiple records. 
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Fig. 7 - Data Understanding, and Preparation Process 

 
Moreover, 3) data is pre-processed and cleaned; potential missing values and unreliable data have 
been identified, along with outliers; after which data distribution is checked and transformed 
accordingly. Missing values are excluded or imputed based on the amount or type of missing variable 
value, discussed in Section 5.  Reasons for ex- or including data is documented, especially important 
during the evaluation phase preventing incorrect conclusions or relevant for reproducing them. 
Although data can contain all MR System repairs, a subset of data had to be extracted since Philips 
Healthcare FSE’s do not always perform these repairs. In some cases, these tasks are outsourced. FVF 
KPI data is not available for such cases. The same holds for cases where customers call with the 
request of sending specific parts, exactly knowing what has to be replaced. This is logged as a NEMO-
case: No Engineer Material Only. Additionally, to understand why SWO’s were created, what the 
reason was for a customer call, and therefore MR system error behavior; different raw MRI system 
error log files were useful to identify failure information. 4) Features are derived from the extracted 
data to characterize Ingenia systems by means of input variables, useful for the modelling phase to 
predict the outcome. Lastly, 5) data required formatting, to be used as input file for modeling. An 
overview of the final dataset along with corresponding descriptive statistics is reported in the 
preparation section of the report. 
 
Due to its size and various different identified Vertica data tables, the complete entity-relation 
diagram, with examples of relevant attributes and primary and foreign keys, is depicted in Appendix 
D. 
 
3.2.4 Modeling  
This phase is aimed at creating a model to 
generate a suggested course of action with 
respect to certain service actions and spare 
parts potentially required during a 
corrective maintenance visit given a device 
failure, using corresponding modeling 
techniques. The concept of the model is 
defined and test design set up. The data is 
split into a training- and test set, and 
checked for any potential class imbalance. 
The training set is used to train the model, 
however, this shapes the model entirely on 
the training set. Resulting in less data samples to train on, and taking into account potential 
overfitting, cross-validation is used. Cross-validation allows the researcher to validate the model that 
has been trained before running it on the test data without losing training samples to the validation 
set. Avoiding any bias where models are trained solely on the training set, k-fold cross-validations 
can be used (Kohavi, 1995). 
 

Fig. 8 - Cross-Validation Schematic Overview 
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K-fold cross-validation works by dividing the training set into k consecutive subsets of equal size. One 
of the created subsets acts as the validation set, while the others used as training set. The model 
trains on the k-1 sets, subsequently evaluated on the validation set. This evaluation results in a 
prediction error, which is the average of the values, computed in the loop. The value of k should be 
around 10, or in some cases even higher, to get rid of potential bias (Kohavi, 1995).  

 
3.2.5 Evaluation 
Model evaluation supersedes the previous step, in which several performance tests are used to 
analyze the model output. Subsequently, the performance of the model is translated to potential 
business’ impact, per corresponding research question. Evaluation metrics allow this assessment. A 
confusion matrix provides a graphical review of the model’ behavior and is usable for the calculation 
of the evaluation metrics, also discussed in this section. 
This confusion matrix classifies made predictions into four different categories: True Positive (TP), 
False Positive (FP), False Negative (FN), and True Negative (TP), where the x-axis of the matrix is set 
to the actual label, and the y-axis as the predicted label. All cases should fall within of the cells of the 
matrix. Moreover, the Area Under the Curve is a suitable visualization for (multi class) classification 
problems, where the curve(s) represent(s) the Receiver Operating Characteristics (ROC) curve; a 
trade-off between the true positive rate and the false positive rate of the confusion matrix. This area 
represents a different way of calculating the performance of the model. AUC retrieves a number 
between zero and one, where 0.5 would mean that the model makes an uninformed decision. No 
threshold value is needed for the classification, being an advantage of the AUC. However, when data 
is highly imbalanced it is not the best metric, only to be used, due to FN influencing the true positive 
rate. 
Additionally, conclusions regarding the model, considering the feature importance, considering 
alternative models, along with business impact, are all included in the evaluation as well. 
For all metrics considered and used in this study, Table 22 in Section 6 provides a brief explanation 
and corresponding formula. 
 
3.2.6 Deployment 
With regard to the developed model, it is necessary to make sure that it also works or can easily work 
correctly with new data. With regard to finalizing the project, this final report with relevant 
appendices and presentation are provided as components of this phase. As mentioned, the report 
contains detailed description of all CRISP-DM phases, the rationale of decisions made, and visualizing 
the different data mining results. Finally, a reflection step is included to discuss which aspects during 
the project went right and what could be improved during future research.   
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4 BUSINESS AND DATA UNDERSTANDING 
The analyses for the first research question are presented in the first part of this chapter. It reflects 
the first phase of the CRISP-DM cycle, described in the previous section. The goal is to analyze the 
As-Is situation of the Philips Troubleshooting process and provide other relevant information for the 
business understanding whilst contributing as input for other data-mining phases, moreover get a 
better insight in the As-Is situation of the First Visit Fix metric. The research questions and sub 
questions are be tackled in chronological order, starting with the As-Is of the maintenance process to 
answer RQ-1.1. The second part of the chapter focusses on the second phase of the CRISP-DM cycle, 
data understanding, and aims to answer RQ2. 
 

4.1 AS-IS SITUATION - PHILIPS MR MAINTENANCE 
Before diving into specifics, first displayed is a consolidated overview of the current troubleshooting 
process for MR devices in the As-Is situation, is presented in Fig. 9. This process is constituted based 
on five, not all mandatory, different subtasks for troubleshooting, which take place either off-site, 
remotely, or on-site. These subtasks are: Customer Call, Remote Quick Fixes, Remote In-Depth 
Analysis and Fixes, On-Site Repair, Additional (remote) Assistance, and Problem Escalation. The 
general BPMN model is described below, while the whole process in more detail can be found in 
Appendix A. 

 
Fig. 9 - Consolidated Overview MR Troubleshoot Process 

<Customer Call>:   CM activities are usually the result of a (impending) system failure. However, there 
are several ways CM cases could be initiated at Philips (Fig. 10), although it is assumed that all CM 
historic cases are initiated due to the customer. In this case, the customer has a complaint or notices 
an issue with the MRI scanner. Once Philips receives this call, the call center deals with the initial 
phase of the MRI Troubleshooting Process, after which Remote Service Engineers (RSE) aim to solve 
the issue at hand remotely, before potentially involving Field Service Engineers (FSE) or other Philips 
employees. 
 
Alternatively, Philips can initiate a CM case due to a FSE whom notices another problem during a CM 
on-site visit. If the issue is related to the actual scheduled CM activity, the FSE could try to fix the 
newly noticed issue during the same visit. However, if it is unrelated a separate CM case with 
corresponding SWO will be created. 
 
RSE’s continuously monitor the state of a system based on the system logs that are uploaded daily 
and along with their predictive models. Once a RSE notices a potential issue, or finds that certain 
threshold values have been exceeded (or will be soon), the RSE will alert the local market and advise 
them with potential actions to take based on the observation(s). This does not yet lead to a 
maintenance case.  If the market decides that actions should be taken to solve the issue(s) at hand, 
and if and only if a visit to the corresponding on-site location has already been scheduled for another 
case, this will count as a CM case and will be added to the already scheduled visit and corresponding 
SWO. 
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In the most likely event that no visit has been scheduled this, a new SWO will be created for a FSE, 
categorized as PM; and therefore not counting as a CM case. 
Every time a CM case is initiated, a corresponding Troubleshooting Document (TSD) is also created, 
which – at this stage – can contain information regarding the customer, usually inquired based on five 
standardized questions. After the call center wraps up the incoming call, the RSE is provided with the 
TSD. An RSE contact the customer to find answers regarding twelve standardized questions to obtain 
problem related information. 

 
Fig. 10 - CM Case Sources Philips 

<Remote Quick Fixes>:   Depending on the answers to the questions, an RSE can start with the quick 
fixes phase. Several fixes such as rebooting the system, power cycle of a suspected chain or the entire 
system can be performed, and results are noted in the TSD. Additional fixes by the RSE are possible 
also, if deemed necessary or helpful. If the quick fixes do not bring a solution within a limited time, 
the RSE should continue with the next phase. In case the issue at hand is solved, the process ends 
successfully and the updated TSD and case information is written to the OneEMS database. 
 
<Remote In-Depth Analysis & Fixes>:   Based on the previous actions, the RSE can use one or more – 
in any order possible – flow charts based on the potential issue. Specific flow charts are set up for 
different use cases to 1) find the root cause remotely and solve the problem remotely, 2) ask for 
cooperation on site to find the root cause and solve it, and 3) make a SWO for an FSE to go on site.  
Flow charts exist in case: 1) error messages are displayed by the Application Software, 2) system does 
not start (completely), or 4) the image on the monitor has insufficient image quality or is missing. For 
4) potential mechanical malfunction or leakage of cooling liquid or helium such chart does not exist. 
In any case, employees are referred to relevant SPD’s and FAQ’s when needed. 
 
If the problem is still not solved, other troubleshooting actions or tests can be doen by the RSE, using 
(technical) drawings of the suspected system chain if needed. If there are useful actions, they are 
recorded in the TSD in chronological order, otherwise a SWO is immediately created for an FSE to go 
on site. For this, the RSE attaches relevant log files and images to the TSD before it is send to a FSE. 
 
<On-Site Repair>:   Repair of technical installations, in most cases, requires additional pieces of 
equipment to replace defective parts, spare or service parts. Three main types of spare parts are 
distinguished in maintenance operations: retables, repairables, and consumables (Fortuin & Martin, 
1999; Gu, 2013): 

o Repairables - Non-Interchangeable: 
Such parts need to be repaired and when fixed used to solve the issue at 
hand. These are components, which can technically and economically be 
repaired, but have to risk of a temporarily unavoidable system shutdown. 

- Rotables: 
A module that can quickly be swapped with a service one, and returned to 
the factory or workshop for repair, since it is generally less expensive to 
repair it rather than discard it for a new one. After repair, the part becomes 
‘as good as new’ and is stored as a spare. 
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o Expendables: These parts cannot be repaired at all or are not economical to do so,  
and will be scrapped after removal and inspection results as 
unserviceable. 

o Consumables: When such a part becomes defective, it is removed from the system,  
 replaced and discarded by a new item bought from a supplier.  

With regard to Philips’ operations, parts will always be removed from the system during an on-site 
repair and always replaced by a newly ordered part. Even though the initial defective part might be 
repairable, and therefore considered as a rotable, most parts are very expensive to actually repair. 
Philips has a rule of thumb that only parts with repair costs lower than €1000,- can be considered to 
be repaired afterwards (hence, refurbished), avoiding potentially exceeding the cost price for a new 
item. For on-site repairs, either spare have been ordered and have arrived (on location) up front, or 
parts need to be ordered after exact problem identification. In case the problem at hand has not been 
solved during the first visit, either due to time constraints regarding problem identification or 
problem solving, or because additional parts are required (e.g. multi part solution, dealing with a 
defective spare part on arrival or required part has not been ordered yet), the FSE has to return for 
another visit. 
 
<Additional (remote) Assistance>:   For unsuccessful repairs, assistance of Tier 2 (helpdesk) can be 
acquired; whom aim to provide further ad-hoc solutions. FSE performs actions based on available 
immediate advice; otherwise, Tier 2 studies course of action and hands over a TSD copy to Tier 3. 
 
<Problem Escalation>:   The problem is escalated and Tier 3 (e.g. specialists, engineers) are contacted. 
Support of this tear attaches the TSD to OneEMS and assists accordingly. 
 
Based on above troubleshooting understanding, previous problem statement along with the cause-
and-effect tree (X), and gap analysis one can find the opportunities for the RCA deliverables of this 
study within the current business. The data-driven RCA can aid in problem solving at the RSE level, 
as additional tool for remote in-depth analysis of the customer complaint. After quick-fixes and initial 
service directions, the part-prediction(s) can be useful in formulating a (general) service action when 
creating an SWO for FSE’s on the field. However, modeling results can also be visualized and 
transformed to be used for FSE’s as well for on-site complementary input. 
  

4.2 FIELD SERVICE METRICS 
The following FVF related Field Service metrics are used at the organization, but only for cases and 
repairs explicitly solved by Philips (RSE and FSE) employees. Cases where material is sent but no 
employees are needed do not contribute to the metrics. (External) third parties can also perform on-
site repairs, but no FVF information is available for these cases; only parts used or returned 
information.  

1) First Time Right represents the ability of Philips Healthcare Customer Service organization to complete 
Corrective Maintenance calls remotely or during first customer visit (with 0 or 1 visit maximum). 

 
2) First Time Fix represents the ability of the Philips Healthcare Customer Service organization to complete 

on-site repairs during the first customer visit. Hence, only focusing on on-site repairs, while FTR includes 
remote service as well. 
 

3) Number of Visits represents the number of distinct days with Service Work Order time booking with an on-
site activity type (excluding Travel). 

Part Replacement Data of both single and multiple visits with regard to the FVF Field Service Metric, 
has been analyzed; resulting in FVF performance. This is done, based on cleaned data from Section 5, 
and presented in Appendix K and Appendix L due to confidentiality. Part of the FVF analysis is used in 
Section 7 (Appendix CC) to discuss potential business impact of created model(s) of Section 6. 
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Next up is the data understanding phase, containing the following steps: collect initial data, describe 
data (volume, attributes), explore data (basic statistics, sub-populations), and verify data quality 
(Wirth & Hipp, 2000). As announced previously, corrective maintenance data, specifically where parts 
replacement has taken place, is collected using the Vertica database. Using this data source directly 
contributes to RQ2, specifically SQ2.1. Other considered data sources are also mentioned in this 
section, referring to SQ2.2. Vertica Systems is a column-oriented based database management 
system used at Philips Healthcare, and it contains most of the ‘big data’, where data can be extracted 
using SQL queries in the Java Database Connectivity (JDBC) format using SQL clients like Squirrel, 
or, with additional libraries. Since Vertica is a shared resource Philips Healthcare wide, queries with 
low computational requirements are preferred. 
 

4.3 GENERAL DATA COLLECTION PROCEDURE 
The specific Vertica tables that are referenced for this study are documented in Appendix D. The 
queries have been written in a way to only include data columns that are relevant; also, to minimize 
the strain on querying servers and taking into account the maximum amount of memory allocated to 
the SQL client on the local system. Hence, only data for MR devices is included, and rows containing 
null values for important fields are excluded. In some cases, queries had to be extended and join 
several tables to retrieve required data from these tables, via identification fields such as SapSWO or 
CaseNumber or ProductGroup, referring to the unique identifier or type of an MR device. All extracted 
data is stored in dedicated files for later use. 
Alternatively, an active connection between the database and a modeling environment could have 
been set up. This would make sure, that the up-to-date data can be queried in real-time while building 
the model or performing additional analyses. However, the decision to store the extracted data in 
dedicated local files was a deliberate decision by the researcher and is preferred because of several 
reasons. First, an active connection seemed unnecessary, as the relevant data is based on historic 
cases and will not change; only additional cases could be added over time. 
Moreover, ample CM cases were available over a time-period of multiple years along with six months’ 
worth of 2019 data. Furthermore, implementing an active connection could result in querying data 
more frequently than required, putting more strain on the querying servers of Philips and local 
devices than necessary. This also guarantees that during the remainder of the CRISP-DM phases the 
same dataset is used. 
 
Additional non-Vertica database sources are identified as well, such as 1) low-level design documents 
for MR models, 2) Service Procedure documents, and 3) Failure Mode Effect Analysis Sheets. These 
sources either describe the specification of MR models, potential failure modes along with potential 
prevention controls or general service actions required. However, these documents are not always 
complete in terms of fault finding and follow up instructions. As we are focusing on a fully data-driven 
method for RCA, these documents have been considered but not further used for the remainder of 
the study, apart from their potential usefulness in identifying specific failures for which it is known 
upfront that no part replacements are required.  
Based on these documents a few errors – collected from MR log files corresponding to specific SWO’s 
– have been excluded from analysis as we know certainly these do not require any part consumption 
but rather some form of (part) adjustment. 
 

  



24 

4.4 SYSTEM TYPE IDENTIFICATION 
Before we can extract relevant data for different MRI devices, it is important to know how these 
devices are referenced to, or identified in Vertica. The Spare Part Replacement (SPC) section of the 
database contains a table called “SPC_Product”. Focusing on MR systems in this table one can 
observe the following relevant columns: ‘MaterialCode’, ‘Description’, ‘ProductGroup’, 
‘ProductGroupDescription’, ‘Modality’, ‘MainArticleGroupDescription’, ‘ArticleGroupDescription’. Using 
the following query one can identify the following Product Groups as identifier for the following MR 
systems (Table 6): 
 
SELECT MaterialCode, Description, MainArticleGroup, ProductGroup, ProductGroupDescription, Modality, 
MainArticleGroupDescription, ArticleGroupDescription 
FROM "Development"."SPC_product" 
WHERE "Development"."SPC_product"."Modality" ='MR' 
AND "Development"."SPC_product"."Description" LIKE '%*enter System Type name*%';  

Table 6 - Identified System Types based 0n Description attribute 

Product Group 
Identified 
System Type 

Product Group 
Identified 
System Type 

Product Group 
Identified 
System Type 

I_MRI001 Achieva I_MRI005 Intera I_MRI009 MRI Workstation 

I_MRI002 7.0T Achieva I_MRI006 Marconi I_MRI010 Panorama 

I_MRI003 Gyroscan  I_MRI007 Ingenia I_MRI011 Panorama LFO 

I_MRI004 Sonalleve I_MRI008 Magnets I_MRI012 Multiva 

 
Please note that the ‘Description’ attribute, specifically, has to be used identifying the product groups, 
as ‘ProductGroupDescription’ does not always contain the names of the MR systems, and 
‘MainArticleGroupDescription’ contains the specific type of MR device for the main system identified 
(e.g. the Ingenia system type exits of several different Ingenia Systems). Moreover, software versions 
of the MR system as shipped or maintained, is mentioned in ‘ArticleGroupDescription’.  
Additionally, so-called ‘(digital) dStream’ version exists for certain MR devices. This is possible for 
Achieva and Intera systems, which can be upgraded during their lifetime. Ingenia dStream systems 
exist as well, but manufacture as is, and not upgraded to mid-lifecycle. Afterwards, these systems are 
called Achieva dStream, Intera Achieva, and Ingenia dStream, respectively. However, as the Achieva 
and Ingenia upgraded systems fall within the same category and product group, Intera Achieva 
systems are not. These are officially labeled as Achieva dStream systems and change their product 
group to I_MRI001. 
 
Alternatively, one can use system codes (called 6Nc numbers or Product Codes), which are available 
externally and refer to a specific type within one of the system types. These numbers can be matched 
within this same Vertica table with the ‘MaterialCode’ attribute. However, the researcher deliberately 
decided not to use this identification method, as the list of 6Nc numbers is continuously expanding 
and other parties aiming to achieve the same goals need to be aware of the this and the up-to-date 
6Nc list. 
  

4.5 DATA DESCRIPTION 
This section contains a descriptive analysis of the final data set. This analysis is split into a summary 
of the data, followed by a brief introduction to the insights found in the data. This analysis has been 
conducted using various tools and software; ‘R’, ‘SQuirreL SQL Client’, and ‘MS Excel’. 
From the extracted raw data, it is clear that records representing different cases require to be 
combined; as cases can consist of multiple SWO records (Fig. 11). The figure serves as an illustration 
from part of the raw data and features. Duplicate Case Number’s therefore should not be mistaken 
for duplicate data, knowing that the Vertica database consists – as aforementioned – from different 
data sources and generational databases. Section 5 provides the description of this process. 
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Fig. 11 - Illustration of SWO data requiring data aggregation 

4.5.1 Data Quality 
Data quality refers to the condition of a dataset containing a set of values of quantitative or 
qualitative variables. Although there are several definitions of data quality it is generally considered 
of high quality if it is "fit for (its) intended uses in operations, decision making and planning" (Redman, 
2008). Alternatively, data is perceived to be of high quality if it correctly represents the real-world 
construct to which it refers. As data volume increases, the importance of internal data consistency 
becomes significant. It this section the main data quality components are be discussed (DAMA, 2013): 
 
Accuracy refers to the degree at which the data actually represents the real world status that it is 
measuring. As the study involved working with raw data recorded from CM cases and machine file 
uploads, the accuracy of the data can only partly be determined. Accuracy of part consumption is 
difficult to verify as it is unknown how ordered parts are logged into Vertica specifically or if any 
manual input errors are made, but extreme or unrealistic cases with regard to labor time durations, 
costs, visits, and other SWO related aspects are addressed in Section 5.4. 
 
Completeness is defined as the level at which desired data attributes are supplied. Assessing data 
completeness for this project requires looking at two different aspects: 1) overall data set 
completeness, and 2) data completeness regarding field service metrics. For the former a missing 
value analysis was made, presented in Section 5.3. Table 7 shows an overview of available SWO’s, 
regarding the latter; specifically the amount of extracted records. Note that in the raw data multiple 
records can represent a specific case. Due to Vertica and local system restrictions, while extracting 
the researcher has already included a filter on the amount of used spare parts (Quantity Used > 0) and 
amount of returned parts (Quantity Returned >= 0). This results in raw data based on on-site repair 
CM cases with parts used and excluding remote solved cases. 
A clear distinction can be made between the majority of the extraction containing field service (FVF) 
metric data and a small section that does not contain this information (Nemo data). For some cases, 
the customer exactly knows which parts are needed to solve the MR issue and is able to perform the 
repair themselves; for whom these parts are sent and no engineer is required. FVF metrics are only 
registered for FSE solved cases. Meaning, that this subset of Nemo data (24%) is not relevant for this 
study. 
In terms of error occurrence and log file availability, completeness can be determined after 
preprocessing e.g. completeness of data regarding daily machine uploads. 0 provides the complete 
analysis. In short, a sudden factor two increase for average number of distinct errors per case is 
observed for the years 2016 and 2017. Two potential factors contributing to more observed (distinct) 
errors have been identified together with SME’s: 1) Log File Availability, and 2) Software Release 
related causes. An increase in logged (distinct) errors can potentially be explained by the overall 
increased log file availability (of 5-10%) in these years, and (significant) increases of these numbers 
for certain markets. 
Although we can conclude that software release can be a contributing factor to increased average 
error in 2016-2017, nothing explicit can be said about the average amount of distinct errors per case, 
per year, for each release. 
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Timeliness is the last data quality component considered in this section. This represents the age of 
data, in other words the extent to which data is updated for and thereby usable. Timeliness is an 
important prerequisite for data science when it comes to data analysis. Extracted data for this study 
contains records from as early as January 2012 and is updated since on a daily basis. Hence, relevant 
data until June 18th, 2019 has been queried. 

Table 7 - Initial Raw Dataset descriptives before data cleaning2 

CM Cases Total 
On-site repair with parts 

(𝑪𝑴𝒐𝒏−𝒔𝒊𝒕𝒆) 
No Engineer Material Only 

(Nemo) 
# Records (case lines) 100% 80.4% 19.6% 

# CaseNumbers 100% 80.4% 19.6% 

# Number of Visits records 100% 100% 0% 

# FVF & FTR records (not distinct) 100% 100% 0% 

 
4.5.2 Initial Insights 
All records of each MR system have been plotted per month over the whole period of 2012 – 2019, for 
an initial insight of the raw data (Fig. 12). Although mostly increasing trends can be observed for the 
MR systems in terms of total records per month, the most striking and important observations is the 
timeliness of the MR systems individually; instead as a whole. Three out of four systems have 
available data for on-site CM cases from January 2012, while only one has SWO information available 
from 2013 onwards. This is important for further analysis, as only overlapping years need to be taken 
into account to prevent any unnecessary bias. Therefore, during data cleaning  the 2012-related data 
points have been excluded. 

 
The same holds for, in general, 
unrealistic amount of visits per CM 
case. Number of Visits have been 
plotted in strip charts which show the 
number of visits per records for each 
system type or summarized per year 
(Fig. 13). Mean values have been 
indicated in red. Occasional records 
with high customer visit values might 
be considered outliers; as discussed 
in the next chapter. 

 

 
Fig. 13 - Jitter Strip Charts Number of Visits per System Type & Year 

                                                           
2 Exact values regarding the initial, raw, data extraction based on the project’s scope are not available due to confidentiality. 
Values in the 𝐶𝑀𝑜𝑛−𝑠𝑖𝑡𝑒  column are identical per criteria. The same holds for the number of nemo related records and case 
numbers. No number of visit records, FVF or FTR records are available for nemo cases. 

Fig. 12 - Scatterplot Records per System per Month 
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5 DATA PREPARATION 
This chapter explains the steps taken during the data cleaning steps performed on the acquired data 
set. The output of this phase are the train and test sets that are used for the modeling phase or FVF 
metric analysis. This first main section of the chapter is divided in three main steps, based on the 
Knowledge Discovery in Databases (KDD) - process framework. These steps include feature 
selection, data cleaning along with outlier identification and system error identification, and data 
integration. Of which, the error identification – towards the end of this first section – contributes in 
providing an answer to SQ2.2. 
 
After the KDD- process, the second section of this chapter focusses on the occurred errors 
corresponding to cases along with potential independence and clustering of said logged errors. 
However, before any results and corresponding conclusions can be drawn regarding SWO’s and 
between multiple and single visit cases in this or later chapters, a crucial preceding step is required; 
statistically significant difference between these two subsets. 
 

5.1 FEATURE SELECTION 
Feature selection plays a vital role in machine learning or specifically classification problems, and 
essentially function as a set of input variable that represent a property of the entity observed. This 
section aims to define features with potentially good predictive power that may or may not be used 
for predictive purposes. Selecting the relevant data for features is difficult as it is a challenge to know 
upfront which data could lead to interesting features. In this project, features have primarily been 
selected based on available data discovered during the data-understanding phase. Along with SME’s 
potentially valuable features are defined, which were extracted and merged appropriately as 
elaborated on in Section 4 and Section 5.2 respectively. Table 8 provides an overview of the main 
feature categories along with a couple of example features. Some of these features are static as they 
are similar for multiple cases such as MR system type or location, while others are more important 
such as consumed parts. Additionally, from the data tables used (Appendix D), some columns could 
immediately be disregarded as potential features, since they either contained duplicate data (in a 
different format), non-explanatory variables, or simply empty columns.  

Table 8 - Feature Types 
Feature 
Category 

Features Data Type Description 

System 
Characteristics 

o Product Group 
o Priority 
o SRN 
o Market 

Categorical 
Ordinal 
Numeric 
Categorical 

Specific MR System model 
Case priority referring to a hard or soft problem 
Numerical system identifier, unique per machine 
Location / region from where the customer 
originates and location of the system. 

Case 
Characteristics 

o CaseNumber 
o CaseOpenDate 
o CaseCloseDate 
o Parts Consumed 

(Part12Nc) 
o MaterialDescription 
o Quantity Consumed 
o Quantity Returned 
o LaborDuration 
o LaborActivity 
o Number of Visits 
o Entitlement Type 

Numeric 
Timestamp 
Timestamp 
String 
 
String 
Numeric 
Numeric 
Timestamp 
Categorical 
Numeric 
Categorical 

Numerical case identifier 
Timestamp at which the customer reported the 
problem 
Timestamp at which the case was reported to be 
resolved 
12 numerical Identifier of the part involved in the 
case 
Consumed Part12Nc’s descriptions 
Number of parts consumed during the case 
Number of parts returned during the case 
Total labor duration calculated during the case 
Specific labor activities taken place during the case 
Number of customer visits required for the case 
Financial classification of a case 

Error 
Characteristics 

o MR Chain 
o Chain Unit 
o Error / FaultCode 
o LogDateTime 

Ordinal 
String 
String 
Timestamp 

Specific chain in which an error occurred 
Specific subunit currently installed in MR System 
Specific error or error description occurred 
Logged timestamp of registered error 
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5.2 TRANSFORMATION TO CASE-BASED DATA 
In order to transform the raw dataset into a pre-processed set where distinct cases are presented per 
row with corresponding information, several steps need to be taken depending on the variable 
information that is being transformed to a case-based format. 
 
5.2.1 General Process 
For most variables the transformation to a case-based format can be done using standard MS Excel 
functions; in order to transform multiple records per case to a one record per case dataset, to be 
applied for system or call related information, monetary or used and returned spare part variables.  
Due to the vast amount of raw data, this process has been performed for each MR system individually, 
after which the separate case-based (pre-processed) data have been merged. The result of distinct 
cases of the pre-processing phase is shown in Table 9. Percentages are presented instead of absolute 
values due to confidentiality.  

Table 9 - Pre-processed Dataset descriptives before data cleaning 
 Total (𝑪𝑴𝒐𝒏−𝒔𝒊𝒕𝒆) Achieva Ingenia Intera Multiva 

# Records (case lines) 100% 52% 24% 23% 1% 

# CaseNumbers 100% 52% 24% 23% 1% 

# Distinct Cases 61% 51% 25% 23% 1% 

 
5.2.2 Parts 12NC & Material Description 
Transforming spare part variables to a case-based data set takes a few more steps than the data 
columns discussed so far. Two spare part variables are relevant: ‘Part12Nc’ and ‘MaterialDescription’; 
both need to be considered as String variables, where the former acts as an identification number 
and the latter describes what the part specifically is. Even though ‘Part12Nc’ technically is a discrete 
numerical variable, consisting of length 12, it is considered as String since in rare occasions it might 
have a different format. 
For each distinct case, a VBA based vertical lookup function is used to search and sum all ‘Part12Nc’ 
numbers and descriptions among the extracted pre-processed row-based dataset, see Appendix E 
 
5.2.3 Data Construction 
Some data construction by creating additional variables is required for further analysis, based on 
extracted cost data. This is required for further FVF analysis, and more importantly having a suitable 
continuous variable for subsequent outlier identification and normality checks. The latter is not 
possible with aforementioned discrete variables (Table 8). Total on-site corrective maintenance costs 
are divided from component (cost) price and labor cost at Philips. Determining CM cost for extracted 
distinct SWO cases is discussed below. 
 
Total Corrective Maintenance Costs – Net Part Cost 
Cost prices of components are stored and available for retrieval in corresponding data tables, and can 
range from a few euros to tens of thousands euros, depending if one is dealing with a replacement 
fuse or whole coils or magnets of a MR system. 
 
At first I intended to use average part cost prices, by determining the average prices for all distinct 
parts over the period of 2012-2019, which can be applied for specific system types. Additionally, it 
was aimed to obtain a list with distinct cases, all corresponding parts and exact cost price instead of 
the average part cost based over the years.  Using the attribute ‘postingdate’ we could potentially 
identify the cost price for a part, for a specific case with the ‘postingdate’ and case date closest to each 
other. 
 
However, we made the explicit decision afterwards to use the sum of the ‘Annual Operating Plan 
(Aop) Currency’ (‘AopCurrency’) instead, as this takes into account the net cost for a spare part, e.g. 
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including costs for returning the replaced component, or returning unused components. This decision 
has been made, as all service costs regarding parts are included in further calculations, instead of 
solely average cost price. This information is accessible for SWO’s in the local market currency, as 
well as conversions to Euros. To determine the total (net) part cost for each case, these values must 
be summed over all records belonging to a distinct case. This additional dataset and the larger 
primary set of distinct CM cases are merged using ‘CaseNumber’ as identifier. 
 
Total Corrective Maintenance Costs – Labor Cost 
Additionally, labor information for each repair is recorded along with information regarding 
technicians and performed activities, which can be used to determine the overall or specific labor cost 
per work order. Field Service Engineers (FSE) whom perform the on-site repairs and Remote Service 
Engineers (RSE) approximately cost €100,- per hour; which is used as a rule of thumb at Philips. Labor 
costs are not directly available in Vertica and must be derived from other data in the “SPC_labor” 
table, such as duration of a repair per SWO, number of engineers and activity types. 
Labor cost can be broken down into travel, corrective maintenance, remote maintenance, 
installation, and application costs based on 27 available activities types. Table 22 provided an 
overview with set up labor cost categories and corresponding activity codes. This distribution of 
codes and the specific categories have been verified with the R&D department. Further elaboration 
on the four length-strings is available in Appendix C. 

Table 10 - Labor Categories and Activity Codes (derived from SPC_labor) 

Labor Cost Category Labor Activity Codes 

Total Travel Cost TRAV, TRVL 

Total Corrective Maintenance Cost CMAI, DIAG, FILL, MONI, RPCL, RTST, SWSU 

Total Remote Cost APAS, RMSE, TESU  

Total Installation Cost 
BCKO, DEIN, IN01, IN02, IN03, IN04, IN05, LOCA, PRCO, REIN, SIRE, UPGR, 
UTRA 

Total Application Cost APSE, BTRA  

The query outputs the cost categories per record, after which a total labor cost variable can be 
calculation based on a summation of the cost categories. Note that for the purpose of this study, 
remote cost are not relevant for total labor cost and need be excluded, as the project only focuses on 
on-site CM repairs. To determine the cost for each distinct case, all total cost values for all records 
belonging to a distinct cased are summed. See Appendix E for a snippet of the script calculating the 
labor cost. 
 

5.3 DATA CLEANING 
It is not always clear what data should be in- or excluded of the dataset due to decisions to be made, 
and therefore it can be – at times - subjective. This section describes these decisions, based on 
previous and new observations, categorized in fixed decisions and ones that are debatable or 
modifiable depending on the focus of future studies using the same data sources. 
Excluding data happens by filtering the processed dataset and removing distinct cases that meet 
certain conditions. This filtering can be done at different moment in the process, while meeting the 
only requirement that it happens before the modeling phase. Therefore, some of the filtering and 
checks have been performed in the SQL queries while extracting data, and others in ‘R’.  
 
5.3.1 Fixed Data Cleaning Decisions 
Given the scope of the project, the following filters have been applied to every Vertica query: 

o Modality:  Magnetic Resonance (MR) 
o Number of visits: > 1, in order to exclude remote cases. 
o Quantity consumed: > 1, due to the focus of CM with used parts. 
o Nemo:   False, excluding cases with no field service metric information,  

leaving only cases where on-site repairs by FSE’s were required. 
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Additionally,  
o N/A values:  Exclude cases where data is missing and is not obtainable otherwise,  

such as CaseNumber, CaseOpenDate, CaseClosedDate, 
QuantityConsumed, Spare parts used (Part12Nc). 

o  (Net) part cost:  Exclude cases where (net) part cost information is missing  
corresponding to the service work orders, as this is an important 
variable; which also cannot be imputed due to highly varied part 
prices. 

 

5.3.2 Modifiable Data Cleaning Decisions  
Distinct CM cases subject to the following have also been removed from the dataset. However, this 
are debatable decisions and may vary given the scope and aim of the study: 

o 2012 data:  As observed previously, only 2013-2019 data is used for all analyses  
as not all MR systems have available data for the year 2012. Hence, 
these records are excluded for prevent unnecessary skewness.  

o Negative (total) costs: Exclude cases with calculated negative (part and labor) cost. 
o SRN range:  Some SRN values are known to be test systems, therefore SRN <  

1000 and SRN > 97 000 can be eliminated from the dataset. 
o Labor information Marginalize CaseNumbers without any or incomplete labor  

information to determine the total labor cost are removed.  
 

Regarding the last decision, there are several ways to deal with missing or incomplete data, especially 
if it is cost related (Das, Datta, & Chaudhuri, 2018; Garcia-Lacencina, Sanch-Gomez, & Figueiras-
Vidal, 2010; Hair, Black, Babin, & Anderson, 2014). Both imputation and marginalization techniques 
could be applied. Marginalization excludes data points with unobserved features from the dataset. 
Alternatively, imputation attempts to fill in the missing features by making reasonable estimates 
based on the values observed for the corresponding features over the rest of the dataset. There are 
arguments to be made for each method, but in this research, marginalization is used. Hence, cases 
corresponding to missing labor information values are ignored and excluded.  
 
Marginalization can be a good method if data is characterized by missing at random (MAR), meaning 
that missing data is random and depends neither on any observed and unobserved data. 
Consequently, in the case of MAR, removing data from the dataset will not affect the shape of the 
dataset and if the dataset remains large enough, proper models can be constructed. Even if the 
dataset is not characterized by MAR if the rate of missing values is relatively low, approximately 1-
5%, incomplete data instances can be removed safely. Lastly, imputation was not chosen as a method 
as imputed values are treated just as reliable as the truly observed data, but these values are only as 
good as the assumptions made to impute the missing values. In case of imputation, these calculated 
labor costs will not be reliable as ‘required number of FSE’s’ and ‘Repair Duration’ values are highly 
varied, and not yet considering that total labor cost calculation will be even more difficult if 
corresponding activity types are also missing. 
 
After all data cleaning checks have been performed, the following set (Table 11) remains. Table 12 
shows the number of distinct cases (SWO’s) that have been excluded during the data cleaning 
process.  
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Table 11 - Case Based Dataset descriptives after Data Cleaning 
 Total Multiple Visit Single Visit 

# Distinct Cases  180 600 76 338 104 262 

 
Table 12 - Missing and Filtered Values 

Missing Data Attribute / Filtered Negative Values Total Achieva Ingenia Intera Multiva 

(not available) Casenumber 0 0 0 0 0 

(not available) CaseCloseDate 0 0 0 0 0 

(not available) QuantityConsumed 0 0 0 0 0 

(not available) Part12Nc 0 0 0 0 0 

(not available) Part Cost Information 4 3 1 0 0 

(not available) Labor Cost Information 2 0 2 0 0 

Negative sum part (Aop) cost 9 4 2 1 2 

Negative total cost 25 10 8 7 0 

2012 data 2 099 1 099 171 829 0 

Total 2 139 1 116 184 837 2 

 

5.4 OUTLIER IDENTIFICATION 
Before the data preparation is completed, one should check the data set on potential outliers. 
Outliers do not follow the pattern of the bulk of the data. Therefore, 1) outliers might indicate an error 
in the data collection, or might be unrepresentative of the population (substantive concern), or 2) 
outliers have a disproportionate influence on statistical analysis (practical concern) (Hair et al., 2014). 
This section describes this process and starts with determining the distribution of the data set based 
on the relevant continuous variable. Parametric distribution tests usually include the use of a 
histogram, boxplots and Q-Q plot; descriptive graphical and descriptive numerical methods are used 
(Baghban et al., 2013; Ghasemi & Zahediasl, 2012).  
 
5.4.1 Normality Check 
First, a normality check is performed; although this is always important, it especially is required when 
a monetary variable is used for outlier detection. The aforementioned total (net part + labor) cost 
calculations per distinct case number are used for the process, as it is the only usable case-related 
continuous variable. Number of Visits would seem logical at first as detection and normality check 
variable but the underlying assumption for a normality test is that the data is continuous. Number of 
visits is a discrete variable. When viewing discrete data, one lacks information between any two 
integer values and this loss of information makes assessing normality difficult. Although a discrete 
variable-based histogram could seem plausible, it is disastrous for a normality check (Ghasemi & 
Zahediasl, 2012; Minitab, 2011). 
 
Fig. 14 shows the histogram based on the available data for total cost based on all systems. A heavy 
right-tail (right skewed) distribution is very common in business data, usually observed when 
histograms are made of revenues, prices, wages, or company sizes, for example (Hair et al., 2014)b. 
This histogram is an effective graphical technique for showing both the skewness and kurtosis of the 
data set. These values have been determined as 90.02 and 15849.95 respectively. The probability 
distribution of the variable about its mean is highly asymmetrical and the data is highly skewed, as 
the skewness is must greater than 1 (considered as the upper limit of this numeric indicator) (Bulmer, 
1979). The heavy tail and non-normality is also confirmed with the high kurtosis value. 
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Hence, the data set needs to be 

transformed before any outliers are 

detected. The log transformed histogram 

of the total cost variable and the 

corresponding Q,Q-plot, also based on 

transformed data are depicted in Fig. 15. 

Log transformation proves to result in a 

normal distribution based on this 

graphical method and confirmed with 

skewness = -0.21 and kurtosis = 2.94. 

 

According to Bulmer (1979) data are 
considered approximately symmetrical if 
the skewness is between -0.5 and +0.5. Some are more lenient and consider an absolute skew values 
below 2 as reference for normality, given sample sizes are greater than 300 (Kim, 2013). Normal 
distributions have a kurtosis of 3. A distribution with kurtosis < 3 are platykurtic: shorter and thinner 
tails compared to a normal distribution, however our post transformation kurtosis is extremely close 
to 3 and can be considered mesokurtic, hence a normal distribution (Sheskin, 2011; Westfall, 2014). 
This is also verified by the Q,Q-plot which plots the observed quantiles against the theoretical 
quantiles of the normal distribution: sample quantiles are very close or even equal to the theoretical 
quantiles (Hair et al., 2014). 
 
 

 

5.4.2 Boxplot – Outlier Identification 
Boxplots for single and multiple visit CM cases are displayed in Fig. 16. Note that the y-axis is log-
transformed and no negative data points are shown. Plots for either the single or multiple visits look 
similar, but do have medians and more clearly, different confidence intervals. Comparing pairs of 
boxplots per year, show a clear difference between total cost for single and multiple visit cases. 
Plotted scores greater than 1.5 times the interquartile range are out of the boxplot and could be 
considered as outliers, and those greater than 3 times the interquartile range are potentially extreme 
outliers. Symmetric plots with the median line at approximately the center of the box and with 
symmetric whiskers that are longer than the subsections of the center box also suggest that the data 
may have come from a normal distribution (Ghasemi & Zahediasl, 2012). Although some plots do 
seem to have an extreme outliers as a few data points are depicted far from the whiskers, most of the 
potential outliers reside just out of the whiskers.  

Fig. 15 - Histogram & Q,Q-Plot of Log Transformed Total Cost Values 

Fig. 14 - Histogram of All System's Total CM Cost 
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Fig. 16 - Boxplots for Multiple and Single Visit Total Cost per year, respectively 

5.4.3 Mahalanobis Distance – Outlier Identification 
As outliers cannot clearly be detected with boxplot, a multivariate statistical measure of effect and 
distance, the Mahalanobis Distance (MD), is used to determine potential outliers; a method 
introduced by Mahalanobis (1936). MD is defined as the distance between a (multidimensional) point 
and a distribution. It is the multivariate form of the distance measured in units of standard deviation; 
hence, it measures how many SD’s a data point is from the mean, where  MD values greater than 3 
can be considered as outliers (Hair et al., 2014). Given a normal distribution, as is the case with our 
log transformed data, with covariance matrix S and the mean μ, squared MD of a data point is given 
by: d2 (x) = (x - µ)’ S-1 (x - µ) (Hair et al., 2014; Sapp, Obiakor, Gregas, & Scholze, 2007); given 
observation, x, mean µ and S-1 as inverse covariance matrix.  
 
A preliminary check regarding correlation between log total cost and log number of visits variables 
and potential multivariate distributions has been performed to make sure we are not dealing with 
univariate distributions while using the MD method. A plot of MD values suggest correlation. After 
all MD values were determined for the data set, ranging from 0.35 to 30 and two extreme values of 72 
and 103, 18.08% of values were considered as potential outliers conform the MD > 3 rule of  thumb. 
Although all these distinct cases could be discarded, the researcher decided to further look into what 
exactly would be excluded from the dataset. 
 
5.4.4 Mahalanobis Distance > 3 subset analysis 
Further analysis of the 18.08% potential outliers yields the data presented in Table 13. The subset of 
MD > 3 values consists of (and to be excluded). Based on these results, the decision was made to focus 
on cases with one, two, or three required visits, as almost all  cases with more than three visits would 
already be excluded due to the MD criteria. Meaning, that excluding all cases with four or more visits 
corresponds to excluding 6.39% of the data set. 
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Table 13 - Analysis of MD > 3 cases 

% Description 

99.93% Of all cases with four or more visits required to be excluded. 

20.25% Of all cases with three visits required to be excluded. 

5.33% Of all cases with two visits required to be excluded. 

14.77% Of all cases with one visit required to be excluded. 

12.49% Of all cases with one, two, or three visits required to be excluded. 

 
However, the MD calculation also suggests to exclude some of the cases with fewer number of visits. 
To determine if these should also be taken into account, an overview was made of total cost for these 
cases (Fig. 17). Reasoning that if this smaller subset mostly consists of high total cost (expensive parts 
and/or high labor costs) to exclude it from the data set; as we know that there is a correlation between 
log total cost and log number of visit. As the majority of this subset consists of relatively low total 
cost (and cheap parts) the explicit decision with Philips Healthcare is made that this subset (11.69% 
of the total dataset) is not considered as outliers. No more outliers are detected at this point. 
 

 
Fig. 17 - Distribution Distinct Cases (MD > 3)  per Total Cost Interval 

 

5.5 ERROR IDENTIFICATION 
Data of the extracted CM dataset is two-fold; on the one hand is should consist of case-related data 
and corresponding variables, while on the other hand it also needs to identify why a certain case was 
created. In other words, what are the errors occurred, resulting in a customer call for repair? Just as 
the SWO data, to identify the error(s) raw error data is extracted via Vertica as well from tables and 
views corresponding to those presented in the Entity Relation Diagram (Appendix D). 

Note that, as the Root Cause/model-based Analysis of this study is clearly scoped on Ingenia MR 
Systems, Error Identification only takes place for these system types. This in comparison with the 
data collection, creation, preparation and cleaning, along with outlier identification in the previous 
sections, which were performed for multiple MR Systems as these are included in the FVF Field Metric 
Analysis. 

Raw error data for different chains needs to be preprocessed before error occurrence is analyzed for 
specific CM cases. The general process is presented in Fig. 18. Occurred errors generally consist of a 
fault code or string description, but these are not unique to a chain or part type, and do not necessarily 
have the same error description. Hence, it is important to know what specific part type or sub-unit is 
installed in a system, at the time of the error and for which chain an error is given. All potential part 
types and distinct errors for the different chains are available in Appendix G. Our prepared subset of 
Ingenia systems may only consist of a few distinct ones. 



35 

 
Fig. 18 - General Error Collection Process 

For each of the four analyzed MR chains the SRN corresponding to occurred error is matched with 
the last modified/installed part type before the error’ timestamp, corresponding to the same chain; 
identifiable with an SRN.  
A new variable is created in an attempt to mitigate the issue of identical error names but being 
substantially different, and simultaneously anonymizing the data; consisting of chain number, Cxx, 
part type, Tyy, and error code, Ezz: Cxx Tyy Ezz; xx, yy, zz of any  possible (distinct) chain, part type and 
error observed in the error data (Table 14).  

Table 14 - Part Types and Errors per Chain 
 Chain Label (C) # Distinct Part Types (T) # Distinct Errors (E) 

Chain 1  1 14 70 

Chain 2 2 18 117 

Chain 3 3 7 63 

Chain 4 4 1 45 

 
5.5.1 Equipment Number – SNR 
Now that the error data of different MR chains is processed, this information has to be joined with 
the SWO data. The processed error dataset at this point is structured in such a way that for each 
occurred error: 1) an error code is available, 2) along with which type of spare part (of the specific MR 
chain) was installed in the system at the time of error occurrence, 3) a unique serial number (SRN) of 
the system, and 4) – if applicable – the subunit of the chain. 
While the SRN functions acts as key identifier in this case, SWO data has a case number with an 
‘AssetID’ as corresponding variable. However, since SWO and Error data have a different data source 
from which a copy of the data is sent to the Vertica Database, the identifiers for the MR systems do 
not match. The ‘ISDA_medicalsystem_vw’ table is useful for this problem, linking ‘AssetID’ to an 
identical ‘EquipmentNumber’ and corresponding ‘SRN_INT’. 
 
SWO’s with corresponding SRN’s are matched with the unique re-labeled error codes. For each SWO 
we have analyzed the historic error data preceding the SWO CaseOpenDate. This is because of two 
important assumptions: 
 

o The CaseOpenDate for a SWO is considered to be the timestamp when a customer call has 
taken place. Therefore, all occurred distinct errors within a fixed time period before the 
CaseOpenDate – be it a single distinct error or a set of distinct errors – are seen as the reason 
for an on-site customer repair. 

o The pre-defined time period in which relevant errors are taken into account is two weeks. 
 
Initially, the researcher aimed to make a distinction between an on-site CM request (SWO)-
timestamp and a second timestamp of when customer call have taken place, respectively: 
CaseOpenDate and CallOpenDate. Although both variables seemingly can be found in Vertica, it 
seems that these timestamps are identical and – just like other instances – are the same variable and 
data but with a different variable name. Hence, due to the unavailability of this data, this assumption 
has been made. Therefore, instead of analyzed only error occurrences during t2, and potentially 
disregarding t1, t3 -duration has been the focus (Fig. 19). 
For this purpose, three different Visual Basic for Applications (VBA) codes in MS Excel have been 
developed.  The first one acts as a multiple string values lookup given multiple criteria. Each SRN 
corresponding to a SWO is searched for in the processed error data, and outputs these string values 
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in an array/concatenation; given these 
error values have occurred between 
TimeCondition1 and TimeCondition2 
(respectively the date exactly two weeks 
prior to the CaseOpenDate, and the 
CaseOpenDate itself). The second VBA 
function is required to remove duplicate 
fault codes; or in other words, selecting the 
distinct values from the previous function’ 
output, within a cell.  
 
The last function deals with the 
alphabetical (ascending) order of the 
errors. It might be the case when the same 
set of errors have occurred for two or more different SWO’s, but these errors have occurred in a 
different order. For example, one SWO might have the set {1, 2, 3} as error codes, while another SWO 
may have a corresponding set of {3, 2, 1,}.  Although this does not make any different due to equality 
in set theory, given ‘𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠𝑒𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵, 𝐴 = 𝐵 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ∀𝑥 [𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ]′ , all sets of error 
codes have been ordered alphabetically to mitigate the risk of any potential related issues (0). 
 
5.5.2 Additional Case Exclusions 
It is observed that not all ‘AssetID’s’ have a corresponding SRN, using the only view available in Vertica 
with this required information. These missing values occur for 7.13% of the remaining Ingenia cases, 
which are excluded for further analysis after some discussions. It is not possible to obtain the 
remaining SRN at all or without considerable time consumption.  
This surprising observation was further studied, and the following conclusions were made for 
potential future improvement of Vertica: 
 

1) Values might be missing due to the introduction of a new database containing SWO data; as 
a replacement of the current OneEMS. The Vertica database consists of raw data collected 
from different sources; it could be the case that MR Systems, for specific countries, are 
already connected to this new database, of which raw data is not visible in Vertica yet. This 
has been confirmed not to be the cause as data regarding these countries (based on a random 
sample check) is available in Vertica, hence not the cause of missing SRN’s. 
 

2) Cases with an available AssetID, but a missing EquipmentNumber and SRN; it seems that this 
subset of the missing values corresponds to MR Systems that are not remotely (online) 
connected. The only view available and used joining AssetID’s and SRN’s apparently only 
consists of remote systems. Potentially fault(code) data is registered and available for these 
systems and corresponding cases, but cannot be accessed due to an unknown (required) SRN 
number. 
 

3) Cases with no available AssetID in the SWO related tables, and therefore also no available 
EquipmentNumber and SRN; a random sample of known case numbers where manually 
searched for using a tool used by RSE’s. This shows that some of these cases, in fact, do have 
a known AssetID. It is unrealistic to manually look up the corresponding AssetID’s for 1.37% 
of such cases, not knowing if all will result in known AssetID’s and SRN’s. 

  

Fig. 19 - Timeline Analyzed Occurred Errors 
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Table 15 - Final Data Set Ingenia based on scope, after Preparation and Cleaning 
 Total Multiple Visit Single Visit 

# Cases including all SRN’s 42 971 15 792 27 179 

# Cases excluding 1000 < SRN > 97 000 range 40 056 14 546 25 510 

# Cases with Chain 1 Errors 1 926 773 1 153 

# Cases with Chain 2 Errors 4 048 1 544 2 504 

# Cases with Chain 3 Errors 4 400 2 945 1 455 

# Cases with Chain 4 Errors 11 153 6 608 4 545 

# Usable Cases: Chain 1–4 errors or combination 17 136 6 618 10 518 

 

5.6 DATA INTEGRATION 
The final step was to merge the different data-frames after preprocessing into the final data set, as 
well as dividing the data into a train and test set. Merging all the input data together results in a 
cleaned data set with 169k rows and 17 columns or features, with no missing values. This dataset, 
containing four different MR systems, is used for FVF and parts analysis and consists of all system and 
case characteristics-related selected features (Section 5.1, Table 8), except for ‘CaseCloseDate’, ‘Labor 
Duration’ and ‘Labor Activity’. These last two are replaced with the data construction variables net 
part cost and labor cost (Section 5.2.3). 
However, for RCA, the focus is on the subset with Ingenia (42k cases, 17k usable) systems, as 
aforementioned in Section 1.9; consisting of the following features: ‘Parts Consumed (Material 
Description)’, ‘Product Group’, ‘Priority’, ‘Market’, ‘Entitlement Type’’, ‘CaseNumber’, ‘MR Chain’, ‘Chain 
Unit’, and ‘Errors’. 
Finally, splitting the data results in a train and test, a distribution of 70% and 30% respectively is 
applied as is often used in machine learning settings (Adi Bronchstein, 2017). During modelling, k-
fold cross validation method is used for validation, whereby the data set is divided into ten equal sets. 
For a more detailed data overview and modeling of RCA, see Section 6. 
 

5.7 STATISTICAL SIGNIFICANCE 
Now that the data preparation phase is complete, it is important to check whether the two sub-sets 
of FVF, namely cases with single required visits and those with multiple required visits, differ 
significantly, before further FVF KPI analysis is done as part of related research questions, and 
conclusions drawn based on further calculations. As the ‘Total CM Cost’ has been used as variable to 
determine normality in the log transformation regarding outlier identification, we use the same 
variable to determine which conclusions can be drawn based on above FVF calculations. All relevant 
‘R’ code for the following section can be found in Appendix G. 
 
Table 16 presents the calculated average cost for single and multiple visit data per year, along with 
the corresponding sample sizes and standard deviations, based on the log-transformed data. For all 
subsets per year and overall, Welch’s Two Sample t-test has been performed and corresponding p-
value is determined. The researcher has made the decision to use this specific t-test instead of the 
more common Student’s t-test as Welch performs better than Student's t-test whenever sample sizes 
and variances are unequal between groups, and gives the same result when sample sizes and 
variances are equal. 
For all cases, p-values are very small and can be considered equal to zero. Hence, there is a significant 
difference in total (net part & labor) cost for single and multiple visit-cases. Meaning that FSE’s who 
spend multiple visits per case, on average, spend significantly more in terms of total costs than those 
who do not. 
To confirm that sample differences are indeed statistically different, we additionally use the concept 
of 95%- confidence intervals and notched boxplots. Confidence Intervals have been determined and 
presented in Table 17. These values, more easily observable via notched box plotted scales with 95% 
CI, further strengthen this finding, since intervals are not overlapping. Due to this result, there is  
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Table 16 - Statistical Significance ‘Total CM Cost’ - 1 

Year 
Log Avg. 

Multiple Visit 
Cost 

Log Avg. 
Single Visit 

Cost 

N (Multiple 
Visits) 

N (Single 
Visits) 

Log SD 
(Multiple 

Visits) 

Log SD 
(Single Visits) 

p-value 

2013 8.125362 7.373383 6 964 8 363 1.053871 1.267979 2.2e-16 

2014 8.133249 7.312643 9 189 13 177 1.064133 1.296779 2.2e-16 

2015 8.163601 7.352897 11 611 17 192 1.061210 1.279057 2.2e-16 

2016 8.255559 7.409511 11 957 18 952 1.044438 1.290363 2.2e-16 

2017 8.254501 7.321626 11 855 20 417 1.042176 1.310895 2.2e-16 

2018 8.278300 7.341018 9 586 18 260 1.053283 1.321552 2.2e-16 

2019 8.290751 7.323257 3 633 7 900 1.055865 1.322577 2.2e-16 

Overall 8.212886 7.349294 64 795 104 262 1.054563 1.299942 2.2e-16 

strong evidence that the difference between the two medians – per value pair – is statistically 
significant at the 0.05 level (Mcgill, Tukey, & Larsen, 1978). 
 
However, while p-values can inform whether an effect exists, it does not reveal the size of the effect, 
even though p-values depend on two aspects: the size of the effect and the size of the sample.  One 
could theoretically get a 'significant' result either if the effect were very large (despite having only a 
small sample size) or if the sample were very large (even if the actual effect size were tiny). Therefore, 
it is important to also know the size of the effect by reporting effect sizes; reporting these with their 
own CI along with the p-values (Coe, 2002; Sullivan & Feinn, 2012). In other words, it might be the 
case that a statistically significant results was obtained only because of a very large sample size. 
Therefore, effect sizes should be reported as they are independent of sample size, unlike significance 
tests (Lakens, 2013). 
 
Table 17 additionally presents the effect size in terms of Cohen’s, d (based on pooled SD), which 
suggests that d should be 1) at least equal 0.2 to be considered a small effect, 2) at least 0.5 to be 
considered a medium effect, and 3) 0.8 or greater to be considered a large effect. Even though d is 
widely used, it does not take into account the sample sizes of the paired comparisons. This underlying 
assumption is important to this analysis as single and multiple visit subsets are not (always) the same 
size, as shown previously. Another, but very similar, effect size metric that considers this is Hedges’ 
g. Hedges & Olkin, (1985) mention: “Although using the pooled standard deviation to calculate the 
effect size generally gives a better estimate than the control group SD, it is still unfortunately slightly 
biased and in general gives a value slightly larger than the true population value”. Hedges’ g formula 
provides an approximate correction, and might result in a different and more accurate outcome. 
However, the difference with Cohen’s d disappears with larger sample sizes (Sullivan & Feinn, 2012). 
 
Overall, effect sizes and corresponding CI might slightly differ between d and g calculation, but are 
overall very similar. All effect sizes are considered good: classified as medium, or large. Based on this 
and previous statistics, we can accurately develop conclusions between single and multiple visit data. 
 
Back-transformation is sometimes used as a method for readability purposes of (above) log-
transformed data. However, it often will not output the values expected, as, for example, mean 
values might not match the untransformed mean unless the data are perfectly Gaussian. In addition, 
confidence intervals might not be symmetrical anymore as (McDonald, 2014). To avoid these issues, 
but still get a good estimate of the CI’s, the bias-corrected and accelerated (BCa) bootstrap interval 
method is applied on the non-transformed data (Almonte & Kibria, 2004; Burbrink & Pyron, 2008; 
DiCiccio & Efron, 1996). This resampling CI calculation creates multiple resamples, and computes the 
effect size of interest on each of these resamples. The bootstrap resamples of the effect size are used 
to determine the 95% CI. The resampling distribution of the difference in means approaches a normal 
distribution. 
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Table 17 - Statistical Significance ‘Total CM Cost’ - 2 

Year 

Log 95% - 

CI, Multiple Visits 

Log 95% - 

CI, Single 
Visits 

Effect Size 
– Cohen’s, 

d 

Log Cohen’s d, 
95% - CI 

Effect Size 
– Hedges’, 

g 

Log Hedges’ g - 
95% - CI 

2013 8.1006 – 8.1501 7.3462 – 7.4006 0.64 0.6071 – 0.6723 0.64 0.6071 – 0.6722 

2014 8.1115 – 8.1550 7.2905 – 7.3348 0.69 0.6527 – 0.7075 0.68 0.6527 – 0.6801 

2015 8.1443– 8.1829 7.3338 – 7.3720 0.68 0.6536 – 0.7020 0.68 0.6536 – 0.7020 

2016 8.2368 - 8.2743 7.3911 – 7.4279 0.70 0.6808 – 0.7279 0.73 0.6808 – 0.7279 

2017 8.2357 – 8.2733 7.3036 – 7.3396 0.77 0.7418 – 0.7886 0.77 0.7418 – 0.7886 

2018 8.2572 – 8.2994 7.3219 – 7.3602 0.76 0.7329 – 0.7840 0.76 0.7329 – 0.7839 

2019 8.2564 – 8.3251 7.2941 – 7.3524 0.78 0.7367 – 0.8178 0.78 0.7367 – 0.8178 

Overall 8.2048 – 8.2210 7.3414 – 7.3572 0.71 0.7026 – 0.7228 0.71 0.7026 – 0.7228 

This is due to the Central Limit Theorem where a large number of independent random samples will 
approach a normal distribution even if the underlying population is not normally distributed. This 
gives us the benefits of: no need to assume and test for normality and it accounts for any skew (Ho, 
2019). The ‘R’-script and corresponding output of this method is presented in Appendix J. 
 

5.8 ERROR CODE CORRELATION 
Correlation values have been determined for all occurred errors in the past two weeks prior to a 
customer call for the four separate chains, based on the dataset as a whole. The underlying 
hypothesis is that Error Codes represent independent failure states. To test this hypothesis, the 
correlation between error X frequency and error Y frequency is calculated. If the correlation is weak, 
the error codes X and Y represent independent failure states, if not; error codes represent dependent 
failure states. As input to this calculation the output (error code sets) for all CM cases of Section 5.5 
has been used. CM cases where no Chain 1–4 errors occurred were not included as input; hence, 
potential bias of these values was mitigated.   
 
The ‘R’-script is included in Appendix M, which includes the creation of contingency tables, error 
frequency plots, and correlation calculation. For this, Pearson correlation coefficients, Pearson’s r, 
have been determined, associations are considered very high when .90 to 1.00 (-.90 to -1.00), high 
0.70 to 0.90 (-.70 to -.90), moderate .50 to .70 (-.50 to -.70), low if .30 to .50 (-.30 to -.50), and negligible 
in case of .00 to .30 (.00 to -.30) (Chen & Popovich, 2002; Hinkle, Wiersma, & Jurs, 2003; Mukaka, 
2012). The correlation matrix per chain and part type is presented in Appendix N due to size, 
conclusions based on this output and relevant correlations are discussed in the paragraphs below. 
Additionally, corresponding significance are provided in terms of p-value (categorized as p < .0001, p 
< .001, p < .01, and p < .05). 
 
5.8.1 Ingenia – Chain 1 
For the cleaned subset of Ingenia system CM cases, eight out of 70 distinct Chain 1 (C1) errors have 
occurred (in any combination) during the analyzed time-period; specifically for part type T01. 
Additionally, two different failure conditions for T05, 21 for T07 and 28 distinct errors for T08. 
Correlation coefficients << .70 hold true for most C1 errors, except for: (To1E17, T01E29: r(3) =.71, p < 
.001), (To1E20, T01E25: r(1) =.86, p < .001), (To5E54, T05E60: r(1) =.1.00, p < .001), (To7E15, T07E16: 
r(2) =.72, p < .001), (To7E59, T07E60: r(2) =.94, p < .001), (To7E37, T07E59: r(1) =.75, p < .001), and 
(To8E12, T08E49: r(10) =.70, p < .001). However, the hypothesis “errors represent independent failure 
states”, is proven for most errors, as well as most aforementioned error combinations, due to 
unsatisfactory degrees of freedom. Only (To8E12, T08E49: r(10) =.70, p < .001) can be considered 
dependent. Although not highly correlated, (T08E01, T08E12: r(54) =.40, p < .001) can be interesting 
for further investigation based on a larger dataset or system design check, due to its significantly 
higher degrees of freedom for C1. 
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5.8.2 Ingenia – Chain 2 
Error analysis revealed five different installed part types (T04, T05, T15, T16, and T18) in the Ingenia 
systems, regarding Chain 2 (C2). Errors for T15 were all independent, as can be seen in Appendix N. In 
spite of interesting and surprising results, recommended for further research, none of the correlated 
errors, although significant, can be found dependent; due to low degrees of freedom. This holds for: 
(T04E07, T04E24: r(2) =.85, p < .0001), (T05E13, T05E38: r(5) =.77, p < .0001), (T05E28, T05E41: r(4) 
=.71, p < .0001), (T16E53, T16E63: r(4) =.80, p < .0001), and (T18E01, T18E02: r(1) =1.00, p < .0001). In 
terms of frequency of occurrence, it is recommend finding out why T05E28 occurs significantly more 
often (199 times) than other C2 highly correlated errors. 
 
5.8.3 Ingenia – Chain 3 
Chain 3 (C3) errors have taken place for seven different part types (T01-07); all errors, albeit a small 
amount, for T02, T03, and T04 have proven independent due to very low coefficients and non-
significant p-values. Further results are two-fold; a few errors are highly correlated and occur very 
frequently in our data set, and have high degrees of freedom. These are potential errors to cluster as 
they might also be causal; this holds for: (T06E61, T06E62: r(857) = .72, p < .0001), (T06E61, T06E63: 
r(1659) = .92, p < .0001), and (T06E62, T06E63: r(857) = .82, p < .0001). 
Others, might be useful to look into during future research, but do not provide sufficient power for 
this study: (T01E13, T01E14: r(6) = .86, p < .0001), (T01E21, T01E23: r(5) = .72, p < .0001), (T01E17, 
T01E18: r(3) = .73, p < .0001), (T05E53, T05E54: r(15) = .73, p < .0001), and lastly for another part type 
(T07E56, T07E58: r(6) = 1.00, p < .0001). 
 
A large cluster of sixteen errors with extremely high Pearson values can be observed for T05 related 
errors for C3, ranging from .73 to 1.00 and statistically significant (p < .0001) as shown and color 
marked in Appendix N due to its size. These, mostly very high, values unfortunately have low sample 
sizes and df’s ranging from two to six and therefore insufficient data to make any conclusion. 
However, with SME’s discussions took place regarding required future study of these errors and 
potential clustering as they seem to also be related system design-wise upon further inspection. 
 
5.8.4 Ingenia – Chain 4 
With regard to C4; this last MR chain and corresponding errors seems to behave very differently and 
more random compared to other chains; as can be observed from frequency of and correlations 
between errors of the only part type (C4T1). Contrary to C1-C3, which either have (very) high r-values 
or no or very low correlations, overall C4 correlations are relatively high across the board; given that 
C4 also as a chain operating completely different than the earlier three. Why this is the case cannot 
be explained, at the time of writing, by the researcher or SME’s. For a complete overview of (relevant) 
correlations, see Appendix N, but strong results are as follows: (T01E13, T01E44: r(4516) = .73, p < 
.0001), (T01E43, T01E44: r(2750) = .73, p < .0001), (T01E13, T01E43: r(2750) = .76, p < .0001), (T01E03, 
T01E13: r(845) = .71, p < .0001), (T01E13, T01E29: r(797) = .71, p < .0001), and (T01E20, T01E21: r(871) 
= .85, p < .0001). 
 
5.8.5 Ingenia – Inter Chain & Conclusion 
Thus far, results have been presented on different part types concerning a specific MR chain and 
corresponding errors. It is not necessary to determine cross-part type Pearson’s r-values as MR 
systems only have one installed part type given a specific chain and system; meaning, for example, 
that a system only contains T01 regarding C1, and cannot have another part type (i.e. T02) positioned 
at the same time. 
Additionally, cross chain values are not required also, as MR chains operate completely independent 
from each other, i.e. Chain 1 errors cannot results in Chain 2 errors. However, this has been verified 
and found to be the case. 
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Concluding, it was assumed that all errors would be independent due to system design, but the 
section provides insight into potential dependence of some errors across different MR chains, and are 
candidates to cluster these similar and dependent error codes. 
Other output resulted in additional surprising results but even though some very (highly) correlated, 
and significant (p-values) based on the sample size, the relatively low sample size resulted in low 
degrees of freedom. These concepts are directly related to each other, making sure that not one is 
directly the cause of being unable to conclude that errors are correlated to each other; but rather, the 
low frequency of occurrence (and thus sample size containing such an error) (Hair et al., 2014; Jawlik, 
2016; Walker, 1940). 
 
The potential candidate errors for clustering, presented above based on correlation analysis, are not 
clustered at this point. Since correlation does not necessarily mean causation should exist between 
errors, further analysis is required. Although causation is difficult to prove in general, the next section 
focuses on error sequence and frequent pattern analysis, after elaborating on different techniques 
considered and their suitability, before any decisions are made. 
 

5.9 ERROR SEQUENCE ANALYSIS 
Although above Pearson analysis provides a good idea of how error codes correlate and can 
potentially be clustered based on this, additional analysis is required which implies or determines 
causality for and between error codes, to this extend.  Due to the nature of the data and system 
design, it is not preferable to use other methods such as Confirmatory Factor Analysis for clustering 
or causality on the final data set, as this method is correlation based. Results, after performing said 
analysis on all error combinations, might not be accurate or realistic as MR system’s chains (Cx) 
operate independently and each system only has one part type (Ty) installed at the time.  
 
However, other techniques are available to analyze the occurred errors within a two-week period 
before case open dates and order of occurrence. Sequence Analysis methods were considered, such 
as 1) SPADE (Sequential PAttern Discovery using Equivalence classes), and 2) Granger Causality test. 
The former algorithm outputs sequence rules, using a vertical id-list database format and assumes 
that no sequence has more than one event with the same time-stamp, so that the timestamp or 
interval can be used as event identifier (Zaki, 2001). However, this assumption cannot be made with 
the dataset of this study, as multiple errors and corresponding cases to different MR systems can 
happen at the same time or same two-week time interval, which impedes the successful application 
of this method. The latter method is a time series method for causality between two variables in a 
time series, finding patterns of correlation and forecasting which error(s) might occur when a certain 
(set) of error(s) has been observed (Wei, 2013). 
 
5.9.1 Frequent Pattern – Growth (FPG) 
One suitable method found is Frequent Pattern – Growth (FPG), which is a mining method for 
extracting frequent item sets with application in association rule learning (Han, Jian, Yiwen, & 
Runying, 2004). Although causality requires knowledge about the causal and effect attributes in ones 
data and involves relationships occurring over time, FPG can imply causal structures along with 
strong c0-occurrence relationship between events (Tan, Steinbach, Karpatne, & Kumar, 2019). FPG 
aims to build a causality graph of events in which graph nodes make up the events and edges depict 
discovered rules representing causality between events (Benslimane, Damiani, Grosky, & 
Hameurlain, 2017; Nguyen & Ha, 2014; Silverstein, Brin, Motwani, & Ullman, 2000). 
The technique uses an extended prefix-tree structure on a complete set of frequent patterns by 
pattern fragment growth (Shidhu, Meena, Nawani, Gupta, & Thakur, 2014); making it very efficient 
and scalable for larger data sets (Wang & Cheng, 2018). Another advantage of the method is its ability 
of run without candidate generation, as a results no candidate test is required and no repeated scans 
of the complete database (Han et al., 2004; Shidhu et al., 2014). 



42 

More important, specifically for this study, is its ability to deal with transactional data as input, in 
which each transaction can contain a set of items. The algorithm output provides information 
regarding associations between item sets, and thereby providing an indication of causality between 
errors; which error(s) are likely to follow once a specific error (set) has occurred. Users can provide a 
minimum support value for a corresponding parameter to which item sets need to comply before 
they are included in a discovered rules list. The collection of frequent items is ordered automatically 
by decreasing sequence of support count (Zheng, Yin, Liu, & Zhang, 2015).  
 
For the final dataset consisting of single visit cases of this study, the result set, 𝐿, is presented in Table 
18, providing 16 discovered rules out of 10k instances and 200 error attributes. The list is ordered by 
decreasing support and provides additional metrics, such as confidence, lift, leverage, and conviction. 

Table 18 - FP-Growth Rules (n=16 rules, 10k instances, 200 attributes) 

 
Item set A (frequency A) > 

Item set B (frequency B) 
 

Item set A (frequency A) > 
Item set B (frequency B) 

# Confidence Lift Leverage Conviction # Confidence Lift Leverage Conviction 

1 
C3T06E63 (1106) > C3T06E61 (1048) 

9 
C3T06E61 (2444) > C3T06E63 (1048) 

0.95 4.08 0.08 14.39 0.43 4.08 0.08 1.57 

2 
C4T01E13, C4T01E43 (926) > C4T01E44 (661) 

10 
C4T01E44 (3348) > C4T01E13 (1381) 

0.71 2.24 0.03 2.37 0.41 1.53 0.05 1.24 

3 
C4T01E44, C4T01E43 (934) > C4T01E13 (661) 

11 
C4T01E43 (1690) > C4T01E44, C4T01E13 (661) 

0.71 2.63 0.04 2.49 0.39 2.98 0.04 1.43 

4 
C4T01E43 (1690) > C4T01E44 (934) 

12 
C4T01E13 (2831) > C4T01E43 (926) 

0.55 1.74 0.04 1.52 0.33 2.04 0.04 1.25 

5 
C4T01E43 (1690) > C4T01E13 (926) 

13 
C4T01E44 (3348) > C4T01E43 (934) 

0.55 2.04 0.04 1.61 0.28 1.74 0.04 1.16 

6 
C4T01E30 (1046) > C4T01E44 (567) 

14 
C4T01E13 (2831) > C4T01E44, C4T01E43 (661) 

.54 1.70 0.02 1.49 0.23 2.63 0.04 1.19 

7 
C4T01E13 (2831) > C4T01E44 (1381) 

15 
C4T01E44 (3348) > C4T01E13, C4T01E43 (661) 

0.49 1.53 0.05 1.33 0.20 2.24 0.03 1.14 

8 
C4T01E44, C4T01E13 (1381) > C4T01E43 (661) 

16 
C4T01E44 (3348) > C4T01E30 (567) 

0.48 2.98 0.04 1.61 0.17 1.70 0.02 1.08 

 
Fig. 35 and Fig. 36 in Appendix O provide corresponding association pictures (Frequent Pattern 
Graphs) to 𝐿 for an alternative overview of the same 16 rules, along with confidence values for each 
relation between (a set of) errors.  These overviews are created for Chain 3 and Chain 4 errors, as no 
sequence patterns were found for Chain 1 and Chain 2. These results seem to validate the Pearson 
correlation calculations between distinct errors within chains as rules between similar errors are 
displayed. Graphs including specific errors description, instead of the re-labeled ones, are also 
available in the Appendix. 
 
Based on the results of the Pearson correlation and Frequent Sequence analyses, and the similarity 
of the output, we can conclude that most of the errors and chains are independent from each other, 
and the following error codes for Chain 3 and Chain 4 can be clustered: 

• C3T06E61 & E62 & 63  >  C3T06E616263 
• C4T01E20 & E21 >  C4T01E2021 
• C4T01E13 & E43 & E44  >  C4T01E134344 

  



43 

5.10 SPARE PART CLUSTERING – APPROXIMATE STRING MATCHING 
Given the approximately 1k distinct spare parts in the final dataset, in which many parts are very 
similar as they represent different variations of the same spare part, or intended for different 
systems, clustering of these parts is required. This results in more general and understandable part 
clusters.  For this, some basic text mining is needed. Approximate string matching is an important 
subtask of many data processing applications applied in the context of i.e. statistical matching, text 
search, text classification, spell checking, and genomics. At its core lies the ability to quantify the 
similarity between two strings in terms of string metrics; which can be divided in 1) edit-based 
distances, 2) q-gram based distances and 3) heuristic distances (van der Loo, 2014). To determine 
edit-based distances one counts - possibly weighted - the number of fundamental operations 
necessary to turn one string into another. These operations include substitution, deletion, character 
insertion, and/or character transposition. Distances based on q-grams are obtained by comparing the 
occurrence of q-character sequences between strings.  Lastly, heuristic measures have a less strong 
mathematical underpinning, although not less effective, but have been developed as a practical tool 
for certain applications (van der Loo, 2014; Vogler, 2013). 
 
Although various metrics could be used in ‘R’, depending on the application and input, some general 
considerations are useful. The choice between an edit-based or heuristic metric on one hand or a q-
gram based distance on the other, is to an extend prescribed by string length. Contrary to edit-based 
or heuristic metrics, q-gram metrics can be computed between very long strings since the number of 
q-grams encountered in natural language (i.e. q≥3) is usually less than the q-grams allowed by the 
alphabet. The choice of edit-based distance mostly depends on required accuracy. For example, in a 
dictionary lookup where differences between matched and dictionary items are small, an edit 
distance that allows for more types of edit operations (i.e. optimal string alignment or Damerau-
Levenshtein) may give better results. The heuristic Jaro- and Jaro-Winkler distances were designed 
with human-typed, relatively short strings in mind, hence area of application is clear and useful for 
this project (van der Loo, 2014).  
 
5.10.1 Heuristic Distance Measure: Jaro-Winkler 
Since the goal of this string clustering is to group together similar spare parts, which are all relatively 
short string-based descriptions, a heuristic measure would be preferable. Which, quickly results in the 
use of the Jaro-Winkler method. 
The Jaro distance has been successfully applied to statistical matching problems concerning fairly 
short strings (Jaro, 1989). It therefore measures the number of matching characters between two 
strings that are not too many positions apart and adds a penalty for matching characters that are 
transposed. The distance measure is given by (Dreßler & Ngonga Ngomo, 2017; Jaro, 1989; van der 
Loo, 2014): 

𝑑𝑗𝑎𝑟𝑜(𝑠, 𝑡) =  {

0 𝑤ℎ𝑒𝑛 𝑠 = 𝑡 = 𝜀
1 𝑤ℎ𝑒𝑛 𝑚 =  0 𝑎𝑛𝑑 |𝑠| + |𝑡| > 0

1 − 
1

3
(𝑤1

𝑚

|𝑠|
+  𝑤2

𝑚

|𝑡|
+ 𝑤3

𝑚 − 𝑇

𝑚
) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Here, the 𝑤𝑖 are adjustable weights but in most publications they are chosen equal to 1. Furthermore, 
m is the number of characters that can be matched between s and t, and t representing the number 
of transpositions. Also, assuming that 𝑠𝑖 =  𝑡𝑗  are considered a match only when: 

|𝑖 − 𝑗| <  ⌊
max {|𝑠|, |𝑡|}

2
⌋ , 

and every character in s can be matched only once with a character in t. Finally, if s’ and t’ are 
substrings of s and t respectively, obtained by removing the nonmatching characters, then T is the 
number of transpositions necessary to turn s’ into t’. Here, nonadjacent transpositions are allowed. 
 



44 

Winkler extended the Jaro distance as he believed that similarity score between two strings that have 
a longer set of symbols in common at their beginning should have a higher similarity score than those 
which contain a mistake or difference in first few symbols (Winkler, 1999). This was achieved by 
incorporating an extra penalty for character mismatches in the first four characters. The Jaro–Winkler 
distance uses a prefix scale 𝑝, which gives more favorable ratings to strings that match from the 
beginning for a set prefix length, 𝑙. The lower the Jaro–Winkler distance for two strings is, the more 
similar the strings are. The score is normalized such that 1 equates to no similarity and 0 is an exact 
match. The Jaro-Winkler distance is given by (Winkler, 1990): 

𝑑𝑗𝑤(𝑠, 𝑡) =  𝑑𝑗𝑎𝑟𝑜(𝑠, 𝑡)[1 −  𝑝ℓ(𝑠, 𝑡)] , 

where ℓ(𝑠, 𝑡) is the length of the longest common prefix, up to a maximum of four characters and 𝑝 

is a user-defined weight. Restrictions set to 𝑝 ∈ [0,
1

4
] making sure that 0 ≤ 𝑑𝑗𝑤(𝑠, 𝑡)  ≤ 1. The factor 

𝑝 determines how strongly differences between the first four characters of both strings determine 
the total distance. If 𝑝 = 0, the Jaro-Winkler distance reduces to the Jaro distance; therefore, all 

characters contribute equally to the distance function. If 𝑝 =
1

4
, the Jaro-Winkler distance is equal to 

zero, even if only the first four characters differ. Both Winkler (1990) and (Cohen, Ravikumar, & 
Fienberg (2003) use a value of 𝑝 = 0.1 and report better results in a statistical matching benchmark 
than with 𝑝 = 0. 
 
With over a thousand distinct spare parts in our final data set of single visit cases, a fair balance needs 
to be obtained between number of clusters and the number of distinct parts allocated per cluster. 
Distinct spare parts are clustered based on the determined Jaro-Winkler distances. After trial and 
error the number of clusters has been set to 105; a lower number would results in multiple clusters 
with large amount of parts, while a higher number results in much more clusters consisting of single 
digit number of parts. 

  
Fig. 20 - Number of Distinct Parts per Cluster 

In order to give a slight important to similar parts (starting with the same characters), the p value has 
been set to 0.01. Increasing this value does provide a technically better clustering in terms of 
approximate string matching, but results in spare part matching that are functionally not similar. 
Fig. 20 provides a visual overview of number of spare parts over all 105 clusters, while the “average 
number of parts per cluster” – overall – equals 11.73. Table 19 provides an example of cluster output, 
with part number, cluster number, and part description. 
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Table 19 - Approximate String Matching - Example Cluster Output 
Part 

Number 
Cluster Part Description 

Part 
Number 

Cluster Part Description 

658 77 FRU, dS Wrist 8ch 3.0T 1029 90 PHANTOM BOTTLE NiCL 

657 77 FRU, dS Wrist 8ch 1.5T 1028 90 PHANTOM HOLDER SH8 

656 77 FRU, DS HEADNECK COIL 3.0T 1027 90 PHANTOM BOTTLE 2000CC L13 

655 77 FRU, DS HEAD COIL 1.5T 1026 90 PHANTOM BOTTLE 1000CC 3T SPECTRASYN 

654 77 FRU, dS Head 32 ch 3.0T 1025 90 PHANTOM BOTTLE 3000CC 3T SPECTRASYN 

653 77 FRU, dS ANTERIOR 1.5T 1024 90 PHANTOM BOTTLE 1000CC L11 

… 77 … 1023 90 PHANTOM BOTTLE 3000 CC L13 

650 77 FRU, dS FOOTANKLE 8CH 1.5T 1022 90 PHANTOM HOLDER NVC-ACR 

646 77 FRU, DS BASE COIL 1.5T    

 
Although Jaro-Winkler provides a proper output clustering similar part descriptions, this has to be 
checked manually as well. Part descriptions may look the same and have a small similarity distance; 
practically and effectively, they may be completely different. Alternatively, part descriptions can vary 
while the same part is being described, such as the use of abbreviations. Hence, to make sure that 
not only clusters are created based on string similarity, but also on part functionality, a manual check 
has been done by the researcher along with ‘System Specialist’ and ‘Architect Serviceability’ SME’s. 
Due to this, the number of clusters could have been decreased; spare parts belonging to the same 
category have been grouped further, small mistakes have been fixed, and checked for alternative 
ways of writing for similar or identical part descriptions. As a result, now the number of clusters has 
been reduced to a total of 15 (labeled as: PartCluster1 – PartCluster 15). The defined part clusters used 
for the remainder of document, along with original labels and class imbalance (further elaborated in 
Section 6.2), is presented in Appendix S.  
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6 MODELING 
This chapter is the result of the fourth phase of the CRISP-DM methodology (Section 3.2). In the 
following sections, first an overview of the modeling assumptions is presented, followed by model 
selection and corresponding theoretical descriptions of these different (selected) data mining 
techniques. Most importantly, the chapter concludes with an assessment and validation of the 
generated model(s). 
 

6.1 MODELING ASSUMPTIONS 
The algorithms, models and underlying data rely on assumptions made during the modeling process, 
hence the importance of validating the unsupervised learning methods via several model quality 
tests. The assumptions made underlying the machine learning techniques are listed below: 
 

o Available data instances are independent and identically distributed (IID). Models are trained on 
a subset and tested on another; assuming that the two are correlated when taking care of 
overfitting. 

o The final dataset discussed in Chapter 5 is representative of the original, raw, data.  
This implies that after all the original data has been cleaned, the remaining dataset, based on the 
scope, cleaning and preparation, is still representative of the original data. This is important, since 
only this data is used to construct the model. However, ideally, the model is applied to all 
operational systems and MR chains, including those excluded, for a complete model. Said chapter 
discusses the data preparation and cleaning including justification for made decisions. 

o The input order of the data is not important to the models/algorithms; all data is treated the same. 

 

6.2 DATA OVERVIEW 
This subsection provides a brief overview of the final dataset used for modeling and the RCA. A couple 
of characteristics, that are the result of processed data and decisions made in Section 5, are 
mentioned that should be considered in this phase of the study. 
Binary classification applications and studies tend to deal with so-called imbalanced datasets, which 
are datasets with high difference between proportions of class labels: class distribution skew (He & 
Garcia, 2009; Sun, Wong, & Kamel, 2009). Awareness of such imbalance is important so that 
appropriate considerations are made during model development.  
 
A first imbalance is observed the classification of single or multiple visit cases, as previously shown i.e 
in Section 5.5. However, due to the aim of the models it is wise to only use the subset of single visit 
cases, to get a trained model based on problems solved with parts in a single try. Hence, this 
imbalance is not an issue. Within the single visit subset, another imbalance is found for the amount 
of cases of the different chains of a MR system. Compared to other chains, chain 4 cases are present 
in the data set by a factor of 2. Hence, it might be an option to build separate models for the different 
chains to avoid overfitting to the chain 4 related cases, along with one large, all including model. Table 
20 shows this skew on four levels. 
 

Thirdly, looking at the frequency of all different errors, also a large skew is seen, with a long right tail, 
with almost half of the distinct errors occurring a few amount of times. This issue is less apparent 
zooming in on distinct errors per chain (Fig. 21), however, it is still worthwhile to mention and take 
into account during modeling (Section 6.6); potentially by creating models per chain or using one of 
the available cross validation methods.  

Table 20 - (Class) Skew of final dataset on multiple levels 

 Total Multiple Visit Cases Single Visit Cases 

# Usable Cases: Chain 1–4 errors or combination 17 136 (100%) 6 618 (38.62%) 10 518 (61.38%) 

  



47 

Entity 
% of Cases 
Containing Chain X Errors 

Number of Distinct 
Occurred Errors 

Chain 1 8.73% 53 

Chain 2 18.96% 63 

Chain 3 22.29% 43 

Chain 4 50.02% 36 

 

 
Fig. 21 - Distinct Error Frequency Skew per Chain 3 

 
Lastly, as the complete dataset has an imbalance in terms of the target variable (part cluster), created 
train and test sets most likely will also be skewed with regard to this feature as well. Several 
resampling techniques exist which aim to modify imbalanced data into balanced distribution using a 
specific method. The modification takes place by altering the size of original or training data set and 
provide the same proportion of balance. Note that such re-sampling methods are to be applied if a 
machine learning algorithms is not inherently capable of handling unbalanced datasets. Methods for 
resampling include (Tantithamthavorn, Hassan, & Matsumoto, 2018): 
 

o Undersampling – is one of the commonly used strategies to deal with unbalance in empirical data, 
which uses majority classes to reduce the number of observations (randomly eliminate) from such 
classes to balance the data set. The is recommended to use the strategy when the data set is 
large, additionally improving model run time, but may result in training data losing important 
information pertaining to majority classes. 
 

o Oversampling – Contrary to the previous strategy, it replicates observations from minority classes 
to balance the data; also called up sampling. Random oversampling has the advantage of not 
having any information loss, but it does add replicated observations in the original data set; 
hence, potentially risk of overfitting. The strategy results in higher training accuracy, but lower 
accuracy for unseen data. 
 

o Synthetic Data Generation (Hybrid) – Combining the above techniques by generating an 
augmented sample of data is possible via a smoothed-bootstrapping approach to draw artificial 
samples from the feature space neighbourhood from the minority classes: called SMOTE 
(Synthetic Minority Over-sampling Technique) (Blagus & Lusa, 2013; Chawla, Bowyer, Hall, & 
Kegelmeyer, 2002). Note that Random Over-Sampling Examples (ROSE) is also very well known, 
but this – at the time of writing – only is suitable for binary classification. 

 

The study’ test design explains the selected method(s) for resampling for our purpose, in Section 6.6. 
 

                                                           
3 Note, these graphs are just for simple visualization purposes. Axis have been altered for a general idea of error frequency 
and skewness. The first Chain 2 error occurred 749x, while the first two errors of Chain 2 occurred 2675 and 177x respectively, 
and the first Chain 4 error took place 5289 times. These large numbers are, in some cases, due to error clustering. 
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6.3 MODEL FORMULATION 
Classification aims to identify to which of a set of categories a specific data instance belongs to; based 
on a set of training instances for which the category is already known. Every data instance can be 
defined as a vector 𝑥 consisting of n features and a corresponding class label 𝑦.  
Once the classification algorithm is implemented, it aims to predict the class label – noted as 𝑦̂  given 
a vector 𝑥 =  {𝑥1, 𝑥2, … , 𝑥𝑛} based on previous training with upfront known x and y values. As 
mentioned before this study refers to conducted part replacements as the target variable (outcome), 
defined class label 𝑦. And, 𝑥 as a feature vector representing characteristics of the conducted CM case 
and corresponding MR system. Although the classification problem in this study’s context is not 
binary in nature, with only two possible class labels such as true and false, or successful and 
unsuccessful, due to the multiple part clusters (as presented in Section 5.10), it does represent a multi-
class classification problem, which does not have a constraint on number of classes. Based on input 
values, the model determines the probability for parts from a cluster required to a CM case. The part 
cluster with the highest probability is labeled as the predicted outcome; either the part cluster is 
predicted correctly or not. A simple visualization of the multi-class classification output and logic is 
depicted in Fig. 22. 
 

 
Fig. 22 - Classification Output Example 

 
Given common terminology, class labels are defined as positives and negatives. Therefore, the set of 
class labels outcomes for this classification problem is defined as {+, −}, where ′ + ′ represents a 
positive class, and ′ − ′ represents an negative class. For data instances in the validation (test) set, 
each one has a real class 𝑦 and can be assigned a predicted class label 𝑦̂. The differences between 𝑦 
and 𝑦̂ function as input to assess the performance of a classifier the following is defined for this 
purpose: 

o TP: Correctly Predicted Real Positives, where      (𝑦 =  + &  ŷ =  +) 
o TN: Correctly Predicted Real Negatives, where    (𝑦 =  − &  ŷ =  −) 
o FP: Wrongly Predicted Positives (Real Negatives), where   (𝑦 =  − &  ŷ =  +) 
o FN: Wrongly Predicted Negatives (Real Positives), where   (𝑦 =  + &  ŷ =  −) 

 

6.4 MODEL SELECTION 
General (candidate) models have been presented in Section 2, as part of the theoretical background. 
Finding suitable estimators for the problem at hand is often a hard part of solving machine learning 
projects; requiring careful consideration and not necessarily one best method. However, different 
estimators are better suited for different data and contexts. Table 21 provides a list of candidate 
models applicable for our classification problem. Due to the project duration, a choice and focus was 
made on a subset of modeling techniques, based on the tabular criteria comparison (the darker the 
grey marking, the more important the criteria); derived from Provost & Fawcett (2013) and Lim, Loh, 
& Shih (2000). 
 
Based on the theoretical background and discussions with the project group it was decided to initially 
start with decision tree-based algorithms as they are not considered to be completely black box 
contrary to other, potentially also suitable, techniques. Specifically, random forest and extreme 
boosting (XGBoost) are good candidates given their predictive accuracy and speed and ability for 
parameter tuning and handling of sparse data. Such techniques do not hide all algorithm details from 
the user and can be visualized, which is especially important in the context of this study. Assuming, 
such methods are suitable to predict spare part (types) given occurred errors, it is also important for 
FSE’s and RSE’s to understand why or how a certain decision or output is provided.  
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Table 21 - Learning Algorithm Comparison 

 
Decision 

Trees 
SVM Naïve Bayes 

Neural 
Networks 

Random 
Forests 

XGBoost 

Type of Problem, Classification? Yes Yes Yes Yes Yes Yes 

Result Interpretability Moderate Moderate Moderate Bad Moderate Moderate 

Predictive Accuracy Moderate Moderate Moderate Good Good Good 

Training Speed Fast Fast Fast Slow Slow Slow 

Prediction Speed Fast Fast Fast Fast Moderate Fast 

Parameter Tuning Needed Moderate Minimal Moderate A Lot Moderate Moderate 

Irrelevant Feature Contribution Handling N0 Yes No Yes Yes Yes 

Feature Scaling Required No No No Yes No No 

Sparse Data Handling Fine Fine Fine Bad Fine Fine 

Large amount of observations required Yes No Yes Yes Yes Yes 

 
This is also key for RSE’s that provide advice to FSE’s in terms of parts relevant to certain customer 
complaints as these methods are understandable and output reasoning is visible. 
Although, other methods such as multi class multi label neural networks are also very interesting for 
our cause, and might in theory provide interesting results, this algorithm is not included. This is due 
t0 the inability of handling very sparse data making it unsuitable for our current final data set – as 
proven by extremely high error rates in initial testing of various algorithms. 
 

6.5 MODEL PERFORMANCE METRICS 
Evaluating the classification model’ performances, is expressed using confusion matrix-based 
metrics, as preluded in Section 3.2. Due to different output labels in the multi class classification 
models, solely using the matrix is not as meaningful, hence the use of other common used metrics 
(Powers, 2011). Table 22 shows the selection of different measures, along with a brief explanation 
and formula used determining its value. 
 
Intuitively, one might use accuracy as a metric to determine how often a model predicts a (new) case 
correctly, as this metric exactly quantifies this proportion. However, for this study this might not be 
the best metric as this might provide an optimistic accuracy estimate in case of imbalanced data by 
classifying cases to the dominant class(es) and does not consider relative importance between all 
correctly classifying positive and negatives.  This is not an issue if equal importance is given to each 
of the classes, but as aforementioned, not all classes are equally represented in the data set. Hence, 
accuracy itself is not the best evaluation method for this multi class classification. This problem can 
be overcome by introducing another estimate of a balanced accuracy (Brodersen, Ong, Stephan, & 

Buhmann, 2010). The balanced accuracy is defined as:  
1

2
(

𝑇𝑃

𝑃
+  

𝑇𝑁

𝑁
). If the classifier performs relatively 

well on the different classes, then this term reduces to the conventional accuracy which is the number 
of correct predictions divided by the number of predictions. However, if the value of the conventional 
accuracy is solely high due to the imbalanced test set, then the balanced accuracy decreases to 
chance (Brodersen et al., 2010). 
 
The balanced accuracy metric is derived via TPR and TNR values, which represent the sensitivity and 
specificity respectively. Both are other common used metrics and express the fraction of correctly 
classified positives or negatives from their corresponding real set. These are useful as can be argues 
that both are not directly related to class skew as they are defined over a real set. The same study 
mentions that class skew of a training set does not need to be the same as the skew during operation 
(Korst, Pronk, Barbieri, & Consoli, 2019; Sokolova & Lapalme, 2009). However, comparing model 
performances it might not always be clear which one is superior due to the comparison of two 
separate metrics. For this reason, the Area Under the Curve (AUC) is used which summaries the 
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combination of TPR and TNR by averaging all the different AUC’s from each class’ Receiver Operating 
Characteristic (ROC) space; which is the area under the classifiers curve as a fraction of the unit square 
(Provost & Fawcett, 2013). 
All metrics are determined for the different models, and are used to evaluate their performances. 

Table 22 - Model Evaluation Metrics 

Metric Alternative Term Explanation Formula 

Accuracy 
Conventional 

Accuracy 

Depicts the amount of rightfully classified labels. 
Note, using this metric on imbalanced data, the 
model will have the tendency to favor a majority 
class. The AUC can be used to deal with this risk, as it 
indicates overall model performance. 

(TP + TN) / (TP + FN + TN 
+ FP) 

Balanced 
Accuracy 

- 
Adjusted accuracy value in case of highly imbalanced 
data with classifications of cases to dominant classes. 

(TPR + TNR) / 2 

Error Rate - 
Number of all incorrect predictions divided by the 
total number of the dataset 

(FP + FN) / (TP + FN + TN 
+ FP) 

Precision 
Predictive Positive 

Value 
Ratio of correctly predicted positive observations to 
the total predicted positive observations 

TP / (TP+FP) 

Sensitivity 
True Positive Rate 

(TPR), Recall 
Number of correct positive predictions divided by the 
total number of positives 

TP / (TP+FN) 

Specificity 
True Negative Rate 
(TNR), Selectivity 

Proportion of negatives correctly classified as 
negatives. 

TN / (TN+FP) 

F1 Weighted Average 
Weighted average of Precision and Recall. Takes both 
the FP and FN into account. More useful than 
accuracy,  given an uneven class distribution 

2*(Recall * Precision) / 
(Recall + Precision) 

Cohen’s 
Kappa 

- 
How well a classifier performs as compared to how 
well it would have performed simply by chance. 

(1-observed agreement) / 
(1-  hypothetical 

probability of chance 
agreement 

 

6.6 TEST DESIGN 
Given the data overview the decision was made with the project team to create multiple multi-class 
classifiers per machine learning algorithm. The complete single visit final data set is used for an 
overall model consisting of all potential errors, along with other system and case variables such as: 
System Model (categorical, ranging from 1–8, Priority (categorical, ranging from 1-5), Market 
(categorical, 1-14), EntitlementType (categorical, either 1 or 2), and of course different Chain 1-4 
errors. And the set is also divided in cases with errors only from a specific chain, such that we have 
four separate subsets with SWO’s for each chain. 
 
6.6.1 k-fold Cross Validation 
The data sets are divided randomly in a training set and a test set based on a 70:30 ratio, and in order 
to avoid over- and or under fitting, the k-fold cross validation method is used. This has a single 
parameter ‘k’ which refers to the number of groups that a given data sample is split into; hence the 
naming of the procedure to ‘k-fold’ cross validation. As explained in Section 3.2, this is primarily used 
in applied machine learning when using a limited sample to estimate how the model performs when 
required to make predictions based on non-training data. Moreover, this approach has the advantage 
of not wasting much data. It is important to select the value of k such, that any risk of model accuracy 
misrepresentation (e.g. bias or high variance) is mitigated. Through experimentation and studies, it 
is found that generally a model evaluation with k = 10 results in low bias and modest variance, hence 
the choice for said k-value (James, Witten, Hastie, & Tibshirani, 2013; Kuhn & Johnson, 2013). 
 
6.6.2 Data resampling 
Before training the models, training sets are each resampled to create models based on over-sampled 
and SMOTE-resampled train data as well. It is important not to resample the whole data set or test 
sets in order to avoid overfitting. Note that each model uses the same randomly created training and 
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test sets (resampled or not) to have similar input and being able to compare model output and 
performance fairly. Out of the three presented resampling methods, under sampling is not selected.  
Although under sampling can be more helpful than oversampling, as it does not change the 
classification rule, or that it can outperform the third mentioned (hybrid) SMOTE technique, it is not 
wise to use this resampling method for our dataset; some classes occur in relatively low amount of 
cases, such that the (train)dataset(s) shrinks significantly (Hulse, Khoshgoftaar, & Napolitano, 2007).  
Hence, to fulfill the first data mining goals of this project of predicting the most likely spare part 
cluster based on the input data, and subsequently a specific spare part based on the aforementioned 
prediction, the following prediction models are created as potential viable solutions: Extreme 
Gradient Boosting (XGBoost), Random Forest, and Support Vector Machines.  
 

6.7 MODELING TECHNIQUES 
Selected modeling techniques from Section 6.4 are briefly introduced here, in which the same 
definition for output and input is used, followed by initial modeling results in the next section based 
on aforementioned test design and baseline models elaborated on here.  
Decision trees use a technique called ensemble – further classified into Boosting and Bagging - that 
helps reducing factors such as variance, bias and noise. Such an ensemble is a collection of predictors, 
or classification and regression trees (CART’s), which are combined in one to give a final prediction; 
based on e.g. a mean of all tree predictions. A CART provides a real score for each of the model leaves, 
compared to a traditional decision tree, which contains a single decision value. 
 
6.7.1 XGBoost 
Boosting is an ensemble technique in which predictors are not made independently, but rather 
sequentially. It is an umbrella term for techniques that combine multiple weak learners iteratively 
into strong learners for improved prediction accuracy. Subsequent predictors learn from the mistakes 
of previous predictors and therefore observations have an unequal probability of appearing in 
subsequent models. Moreover, observations with the highest error appear most; hence predictors 
are not selected based on a bootstrap process but on error. Because of this, it takes less time and 
iterations for such learners to reach actual  predictions. 
 
eXtreme Gradient Boosting (XGBoost) is applied as a boosting technique which creates models that 
predict the residuals or errors of prior models, added together for a final prediction. The gradient part 
of the name refers to the used gradient descent algorithm to minimize the loss (Ruder, 2016). This 
algorithms along with the Random Forest introduced in the next section, use the same ensemble 
algorithms, but differ in the way models are created. Because of the boosting technique, XGBoost is 
inherently capable of dealing with unbalanced data, and improving performance of cases that likely 
are predicted badly; while still being praised by its overall performance and speed (Chen & Guestrin, 
2016). However, as a downside, such methods might not handle noise that well. 
 
Before introducing the actual initial training process, XGBoost parameters are highlighted. The 
booster and task parameters are key as they define the environment of the learning process and 
specify the learning task, along with the corresponding learning objective. The parameters that are 
relevant, are:  

o eta (default = 0.3, range: (0,1)); Step size shrinkage used in update to prevent overfitting. After 
each boosting step, we can get the weights of new features, and eta shrinks the feature weights 
to make the boosting process more conservative. 

o objective (default = reg:linear); most important parameter of the model, specifying which 
objective function is used for optimization. Although there are 10+ different objective functions, 
the default value is linear regression, which is not suitable for our goal. Here, specifically a choice 
is made for ‘multi:softmax’. This activation function transforms numeric outputs into class 
probabilities that sum to one. This is the correct options as we have defined 16 distinct part cluster 
outputs for our model earlier. 
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o max_depth (default = 6, range: (0, ∞)); Maximum depth of a tree, of which an increased value 
makes the model more complex and more likely to overfit. 

o eval_metric (default based on objective); evaluation metric for validation data. A default metric 
is be assigned according to the objective (e.g root mean square error for regression, and error for 
classification). For our model, we select multiclass logloss (mlogloss). 

 
Along with other parameters, the snippet below shows the R script for the initial set up: 
numberOfClassesCx <- length(unique(casesCx$partcluster)) 
paramsCx <- list(booster = "gbtree", objective = "multi:softprob", 
            num_class = numberOfClassesCx, eval_metric = "mlogloss", 
            eta = 0.03, silent = 1) 
xgbcvCx <- xgb.cv(params = paramsCx, data = xgb_trainCx, nrounds = 500, 
            nfold = 10, showsd = TRUE, stratified = TRUE, print_every_n = 10, 
            early_stop_round = 10, maximize = FALSE, prediction = TRUE) 
  
The initial model is trained based on nrounds = 500, which should be enough. Especially including an 
early stopping, meaning that training should stop if no more learning is done in (in this case) 10 
consecutive iterations. However, as apparent from the mlogloss plot (Fig. 41), the logloss value has 
not been stabilized after 500 training iterations; although it has drastically reduced from its initial 
value starting the training process. Therefore, this is something do take into account during 
parameter tuning.  
 
6.7.2 Random Forest 
Alternatively, bagging is a technique in which many independent predictor models (learners) are built 
and combined using an averaging technique (e.g. majority vote, normal average). Each observation 
is selected with replacement to be used as input for each of the models. Thus, each model has 
different observations based on the bootstrap process. As this method takes many uncorrelated 
learners to make a final model, it reduces error by reducing variance. One of the selected algorithms 
within this technique is the Random Forest Classifier (RFC). This essentially works by constructing 
multiple decision trees and performs aforementioned averaging techniques to perform classification. 
Its random part comes from the random selection of observations along with features to create each 
tree. Summarized in a few steps: 1) select random samples from the data (training) set, 2) construct 
a decision tree for each sample and get a predictions results of each tree, 3) perform a vote for each 
predicted result, and 4) select the prediction result with the most votes as the final prediction. 
 
Although cross-validation is introduced in Section 6.6, this technique does not necessarily need this 
as there is another way to estimate the test error of random forest models using out-of-bag (OOB) 
error estimation. For this estimation, roughly 2/3 of the samples are used to construct the tree, and 
therefore not using the remaining 1/3 of the observations. However, these are rather used as test 
data. Although OOB estimation is useful for setting parameters, in this study we look at these results 
as well but (conclude to) primarily rely on k-fold cross validation. Additionally, RFC are known for 
suffering in performance predicting underrepresented classes in unbalanced datasets: Section 6.2 
(Chen, Liaw, & Breiman, 2004). Without any aforementioned resampling techniques, models focus 
on improvement by predicting the most represented classes, hence the inclusion of over- and SMOTE 
sampling methods; being the only classifier type to require resampling. 
 
The baseline model is initiated as follows: 

o mTry (default =√(number of variables in data frame); amount of variables randomly sampled as 
candidates at each split. 

o ntree; number of trees to grow. 
 

rf_Cx <- randomForest(partcluster ~., data = trainRFCx, 
            ntree = 1000,  na.action=na.roughfix, obb.prox = FALSE )  
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6.7.3 Support Vector Machines 
Another widely used classifier technique, but less exposed in the theoretical background, are Support 
Vector Machines (SVM’s). SVM’s are a set of related supervised learning methods for classification 
and regression analysis based on the concept of decision planes that define decision boundaries. Such 
a decision plane ideally separates objects having different class memberships (Grove & Faytong, 
2012; Nisbet, Miner, & Yale, 2018). It creates boundaries for which the margin between the classes is 
maximized, creating what is termed “optimal separation” (Simske, 2019). While the SVM approach 
can provide excellent results for used training data, it can be sensitive to noise with small- and 
medium sized data sets, resulting in lower than expected accuracy. To construct an optimal 
hyperplane SVM employs an iterative training algorithm, for which k-fold cross validation is 
applicable, and minimizing an error function. For this study, SVM Type 1 is used, known as C-SVM 
classification, as one of four distinct type SVM model (two classification based, and two regression 
based). 
 
Furthermore, SVM’s use kernels that can either be linear, polynomial, radial basis function, or 
sigmoid. While the latter choice closely relates to neural networks, equivalent to a two-layer 
perceptron network (Kaufmann, 2011), in this study the most commonly known linear classifier is 
used along with the polynomial kernel. 
 
The baseline model is initiated as follows, based on parameters discussed above: 
modelCxSVM <- svm(training_setCxSVM$parts ~ ., data = training_setCxSVM, 
            type = 'C-classification', kernel = 'linear', scale = FALSE, 
            probability = TRUE, cross = 10, gamma = 0.1 )  
 
6.7.4 Decision Trees – Visualizing Decision Rules 
After the best performing classifier(s) are selected based on one of the three techniques discussed 
above, decision rules between error data, system data, and case data can be visualized 
complementary to the predicted part cluster. Training sets for the example trees of C1–4 errors are 
either up-sampled or not at all, based on part distribution within the subset of the predicted part 
cluster. In case of equal or slight imbalance, the 70% subset is used for training, otherwise it is 
upsampled. SMOTE has not been applied as we are – in this stage – dealing with even smaller subsets, 
and it is decided to use all cases available, hence not down sampling the already relative small 
majority classes. 
 
The complexity parameter (cp) (default = 0.01, range: (0, 1)) is used to control the size of the decision 
tree, reduce the likelihood of overfitting, hence pruning the default tree and selecting the optimal 
tree size. If the cost of adding another variable to the decision tree from a specific node is above the 
value of cp, then tree building does not continue. In order words, tree construction does not continue 
unless it would decrease the overall lack of fit by a factor of cp. Using this function in the ‘rpart’ 
package, a penalty is imposed to a tree for having too many splits. A too small cp-value results in 
overfitting, while a too large value outputs a small tree. As with all other models, 10-fold cross 
validation is used to train the model, via trControl and in this case we also specified the number of 
cp-value to evaluate via tuneLength: 10 instead of the default 3. The optimal cp-value is selected 
based on the lowest cross-validation error (xerror), also taking into account xstd and the relative 
error.  
 
ControlC2 = trainControl(method = "repeatedcv", number = 10, repeats = 10, classProbs = TRUE, 
summaryFunction = multiClassSummary) 
cartC2 = caret::train(SpecificPartType ~., data = *traindataset*, method = "rpart", trControl = ControlC2, 
tuneLength = 10)  
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6.8 MODEL ASSESSMENT 
For a proper comparison, the algorithms are evaluated on the same data using the same metrics. For 
each model a 10-fold cross validation was used, as aforementioned, and retrieved the results 
numerically. Configured such, with the same random seed, to ensure same data splits and 
performance. Table 24 shows the result of running the code, with the model average accuracy 
presented first. As mentioned, this metric is not at all suitable for our goal, but this serves as a 
comparison to the actual (proper) weighted balanced accuracy. In addition, the min and max columns 
display the minimum and maximum scores corresponding to the worst and best predicted classes. 
Lastly, the mean AUC value, determined by averaging the AUC under the ROC curve of each class 
performance of the specific classifier - using the multiclass.roc function of the pROC package – 
ranging from .6 to .8. 
Random Forest model performance, specifically, was only determined based on resampled trained 
data, based on the resampling methods comparison on Table 23. It is observed that the SMOTE and 
oversampling methods outperformed non-resampling significantly in OOB error estimation and 
training error rate. Interestingly, accuracy per models does not differ that much compared to the gain 
in oob.error rat, but each model does perform better compared to non-resampled data, although no 
significant differences between SMOTE and oversampling are observed. The models per chain do 
perform better than the overall model, which tends to focus on acquired their perceived performance 
by focusing on majority classes. The ‘best fitting’ model depends on the preferences and 
requirements of the user, when it comes to these resampling methods.  

We can see that the classifiers have an average performance (.52 - .62), while XGBoost clearly scores 
significantly higher than other estimators do with very good balanced accuracy of .72 - .84 (Table 24). 
For further insight, average test scores for other metrics such as specificity or F1 are shown in Table 
25, for which a 0.5 F1 score indicates a poor model and values above 0.7 are an indication of a strong 
model. Comparing results from the classifiers above after parameter tuning, the following 
conclusions can be drawn: 
 

o Performance of the XGBoost models per MR chain are overall much better than those 
obtained for Random Forest and SVM, while the last types show similar results with a few 
differences for all performance metrics. Very good results for the different metrics and 
models are marked green in the results tables below. 

o XGBoost models are able to reach very good specificity values (ranging from .94-.97) (slightly 
better than other classifiers, which are still great specificity scores) and decent precision 
outcomes (.60-.70). 

o Precision values are relatively low for all Random Forest models (ranging .29-.47) and SVM’s 
(ranging .30-.40), while recall values are slightly better, but moderate at best (ranging .43-.51 
and .39-.62, respectively); with an exception of high recall for RFC C2 (Smote) of .74 and SVM 
C4 (Linear) of .67. 

o XGBoost models are the only classifiers with ideally high precision and recall values, as this 
results in models returning many correctly labeled results. However, XGBoost C3 and C4 
models have lower than preferred recall values compared to C1 and C2, which can results in 
models returning fewer results but mostly correctly predicted labels compared to training 
labels. Systems with high recall and low precision are not preferred at all, as such models (as 
the linear and poly SVM models) return many results but most labels incorrectly predicted. 

o Given the very low recall value (.48) and moderate precision (.57) the overall (Chain 1-4) 
boosting model is not preferred to separate models per MR chain. 

o Moreover, the same behavior in performance can be observed for all classifiers, where C1 and 
C2 models tend to perform better overall, compared to C3 and C4. While for C4 this can be 
explained due to the much more complex system design and errors that are more dependent 
and seem to behave differently as concluded in Section 5.8, an explanation cannot be given 
for C3 at this point. 
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o No definite conclusion can be drawn regarding which resampling methods are best. Both 
oversampling and SMOTE seem to perform relatively the same. Best fitting models might 
depend on the requirements of the user. Although for C2 subset SMOTE outperforms 
oversampling. In any case, no resampling is not advised given overfitting and poor OOB and 
error rates. Given the overall slightly higher scoring performance metrics for SMOTE, we 
continue with RFC based on SMOTE sampling. 

Table 23 - Comparison Resampling Methods, OBB, Train & Test Accuracy (%) 4 

Sampling Method / 
Subset 

None Oversampling Hybrid Sampling (SMOTE) 

OOB 5 
Train Set 

Accuracy 6 
OOB 

Train Set 
Accuracy 

OOB 
Train Set 
Accuracy 

Chain 1 68.10 69.89 30.33 77.69 24.68 77.59 

Chain 2 62.71 62.40 32.58 74.35 33.84 70.51 

Chain 3 68.39 33.52 63.25 41.27 58.00 43.47 

Chain 4 63.53 63.53 38.66 66.02 35.29 66.75 

All Chains 62.26 52.55 44.74 59.85 46.48 60.02 

Table 24 - Classifier evaluation based on model test set - 1 

# Multi Class Classification Model Accuracy (µ) 
Accuracy 

Balanced (µ) 

Accuracy 

Balanced (min) 

Accuracy 

Balanced (max) 
µ AUC 

1 XGBoost      

 All Chains Model 0.550 0.716 0.593 0.874 0.693 

 Chain 1 Model 0.720 0.841 0.662 1.000 0.803 

 Chain 2 Model 0.706 0.822 0.664 1.000 0.802 

 Chain 3 Model 0.599 0.742 0.619 0.847 0.726 

 Chain 4 Model 0.602 0.722 0.648 0.865 0.697 

2 Random Forest (Oversampling)      

 All Chains Model 0.168 0.550 0.498 0.748 0.595 

 Chain 1 Model 0.168 0.564 0.469 0.745 0.680 

 Chain 2 Model 0.195 0.516 0.500 0.676 0.611 

 Chain 3 Model 0.124 0.523 0.483 0.745 0.611 

 Chain 4 Model 0.122 0.544 0.500 0.748 0.700 

3 Random Forest (SMOTE)     

 All Chains Model 0.128 0.544 0.500 0.745 0.616 

 Chain 1 Model 0.323 0.594 0.500 0.797 0.713 

 Chain 2 Model 0.258 0.520 0.500 0.747 0.533 

 Chain 3 Model 0.324 0.523 0.500 0.678 0.576 

 Chain 4 Model 0.289 0.538 0.500 0.824 0.692 

4 Support Vector Machines (Linear)      

 Chain 1 Model 0.283 0.575 0.449 0.720 0.631 

 Chain 2 Model 0.351 0.604 0.480 0.856 0.608 

 Chain 3 Model 0.376 0.620 0.562 0.719 0.741 

 Chain 4 Model 0.342 0.540 0.448 0.809 0.638 

5 Support Vector Machines (Poly)      

 Chain 1 Model 0.292 0.534 0.450 0.746 0.646 

 Chain 2 Model 0.330 0.596 0.462 0.796 0.639 

 Chain 3 Model 0.337 0.576 0.475 0.718 0.717 

 Chain 4 Model 0.332 0.543 0.454 0.735 0.640 

                                                           
4 Accuracy = ( 1 – Training or Test Set Classification Error Rate) * 100. Percentage, ranging 0-100, higher value is preferred 
5 Percentage, ranging 0-100, Lower value is preferred 
6 Percentage, ranging 0-100, Higher value is preferred 
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Table 25 – Classifier evaluation based on model test set - 2 

# Classifier 
Evaluation Metric 

Precision (avg) 
(min, max) 

Recall (avg) 
(min, max) 

Specificity (avg) 
(min, max) 

F1 (avg) 
(min, max) 

1 XGBoost     

 All Cases Chain 1 – 4 
0.570 

(0.411, 0.935) 
0.487 

(0.189, 0.870) 
0.944 

(0.812, 0.998) 
0.501 

(0.292, 0.788) 

 Chain 1 Cases 
0.659 

(0.333, 1.000) 
0.708 

(0.333, 1.000) 
0.974 

(0.944, 0.990) 
0.764 

(0.400, 1.000) 

 Chain 2 Cases 
0.696 

(0.417, 1.000) 
0.676 

(0.333, 1.000) 
0.969 

(0.898, 1.000) 
0.674 

(0.400, 1.000) 

 Chain 3 Cases 
0.650 

(0.441, 1.000) 
0.532 

(o.250, 0.877) 
0.953 

(0.776, 1.000) 
0.565 

(0.364, 0.800) 

 Chain 4 Cases 
0.601 

(o.390, 0.770) 
0.490 

(0.304, 0.888) 
0.953 

(0.841, 0.998) 
0.529 

(0.378, 0.825) 

2 Random Forest (Oversampling)     

 Chain 1 Cases 
0.472 

(0.067, 0.769) 
0.433 

(0.333, 0.526) 
0.938 

(0.857, 0.963) 
0.482 

(0.333, 0.667) 

 Chain 2 Cases 
0.355 

(0.183, 0.395) 
0.451 

(0.351, 0.484) 
0.938 

(0.619, 1.000) 
0.317 

(0.293, 0.467) 

 Chain 3 Cases 
0.463 

(0.308, 0.833) 
0.357 

(0.121, 0.667) 
0.940 

(0.620, 1.000) 
0.335 

(0.142, 0.521) 

 Chain 4 Cases 
0.401 

(0.137, 0.833) 
0.397 

(0.200, 0.650) 
0.939 

(0.763, 0.996) 
0.207 

(0.150, 0.370) 

3 Random Forest (SMOTE)     

 Chain 1 Cases 
0.392 

(0.250, 0.484) 
0.359 

(0.167, 0.667) 
0.943 

(0.805, 1.000) 
0.323 

(0.200, 0.600) 

 Chain 2 Cases 
0.285 

(0.249, 0.384) 
0.743 

(0.700, 0.828) 
0.938 

(0.2825, 1.000) 
0.393 

(0.383, 0.405) 

 Chain 3 Cases 
0.459 

(0.333, 0.522) 
0.379 

(0.143, 1.000) 
0.942 

(0.352, 1.000) 
0.324 

(0.205, 0.543) 

 Chain 4 Cases 
0.336 

(0.157, 0.753) 
0.305 

(0.158, 0.727) 
0.947 

(0.804, 0.993) 
0.262 

(0.145, 0.740) 

4 Support Vector Machines (Linear)     

 Chain 1 Cases 
0.359 

(0.189, 0.333) 
0.511 

(0.250, 0.684) 
0.892 

(0.253, 1.000) 
0.386 

(0.295, 0.577) 

 Chain 2 Cases 
0.375 

(0.200, 0.778) 
0.536 

(0.167, 0.824) 
0.904 

(0.439, 1.000) 
0.426 

(0.194, 0.626) 

 Chain 3 Cases 
0.370 

(0.275, 0.464) 
0.397 

(0.407, 0.947) 
0.899 

(0.781, 1.000) 
0.339 

(0.211, 0.623) 

 Chain 4 Cases 
0.358 

(0.217, 0.682) 
0.670 

(0.550, 0.826) 
0.904 

(0.569, 0.990) 
0.444 

(0.275, 0.747) 

5 Support Vector Machines (Poly)     

 Chain 1 Cases 
0.337 

(0.235, 0.586) 
0.521 

(0.250, 0.680) 
0.889 

(0.571, 1.000) 
0.388 

(0.242, 0.630) 

 Chain 2 Cases 
0.363 

(0.200, 0.667) 
0.624 

(0.333, 0.882) 
0.903 

(0.295, 1.000) 
0.353 

(0.290, 0.580) 

 Chain 3 Cases 
0.300 

(0.200, 0.456) 
0.397 

(0.156, 0.960) 
0.888 

(0.707, 1.000) 
0.343 

(0.170, 0.620) 

 Chain 4 Cases 
0.401 

(0.200, 0.510) 
0.567 

(0.120, 0.940) 
0.898 

(0.431, 1.000) 
0.363 

(0.280, 0.662) 

6.9 REVISED PARAMETER SETTINGS 
To improve the created models, usually two options are available in such supervised machine learning 
studies: 1) gather more data, and perform feature engineering, or 2) revising parameters using the 
same data. Although the former options tends to provide the best payoff in terms of model 
performance and – depending on required (pre-) processing of newly extracted data – invested time. 
However, as SWO’s from as early as 2013 until mid- 2019 has been used already, not a lot of additional 
work orders can be added to the data set. Other data sources have been exhausted as well regarding 
cases, MR product and chains; hence the decision for parameter tuning on existing models. 
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6.9.1 Grid Search 
To determine the best parameters for the models, each model allowed for a GridSearch CV 
optimizing strategy. It generates candidates from a defined grid of parameter values that are set up 
with the param function or equivalent. Parameter search uses the score function. Parameter settings 
are searched and evaluated based on the F1 metric. Subsequently the grid search was fitted for each 
model and displayed the best hyper-parameters, and corresponding performance. 
Hyper-parameters are tuned on the existing models, unlike general parameters that are trained 
during the learning process, these are not directly learned within estimators. In the case of Random 
Forest models, the hyper-parameters to be tuned include the ‘number of trees’ and ‘number of 
features considered when splitting a node (mTry)’. As all RF models have been trained with nTrees = 
1000, error rates for each class were observed to be constant. Error rates already started to reach a 
constant value from nTrees = 650 onwards. Therefore, solely decreasing or increasing this value does 
not have a positive impact on model performance: 
controlRFCx  <- trainControl(method = ”repeatedcv”, number = 10, repeats = 3, search = “grid”) 
tunegridRFCx <- expand.grid(.mtry = c(1:X)) 
                # X depends on MR Chain , and total number of distinct errors as features  
rf_gridsearchCx <- train(partcluster ~., data = trainCXRFParts_SMOTE , method = “rf”, 
                metric = "Accuracy", tuneGrid = tunegridRFCx, trControl = controlRFCx) 
                print(rf_gridsearchCx )  

XGBoost models are tuned based on the eta, colsample_bytree, depth, and gamma parameters, but 
most importantly also the number of rounds. From the baseline models, we observed that after 500 
rounds log loss still did not reach a constant error rate, hence this number has also been doubled to 
see if it leads to better models or if early stopping is achieved:  
ControlParamteresCx <- trainControl(method = "cv", number = 10, 
                                    savePredictions = TRUE, 
                                    classProbs = TRUE, verbose = 2 ) 
parametersGridCx <-  expand.grid(eta = c(0.02, 0.03, 0.05), colsample_bytree=c(0.0, 0.5,0.7), 
                                 max_depth=c(3,6,9), nrounds=c(500, 1000), early_stop_round=10 
                                 gamma=c(0, 0.5, 1), min_child_weight=2, nrounds=1000, 
                                 num_class=numberOfClassesCx, silent=1, nfold=10, 
                                 eval_metric="mlogloss", print_every_n=10 ) 
modelxgboostCxTuned <- xgb.cv(data = xgb_trainCx, booster="gbtree", 
                              trControl = ControlParamteresCx, 
                              tuneGrid = parametersGridCx )  

SVM’s are optimized, tuning the hyper-parameters ‘C’ and ‘Gamma’. The former represents the cost 
of misclassification, where a larger C-value give a low model bias and relatively high variance and vice 
versa. The latter is the parameter of a Gaussian Kernel (to handle non-linear classification, which 
results in low bias and higher variance with smaller values (Hsu, Chang, & Lin, 2016). Again, 
parameter values are specified, after which the grid search was instantiated and fitted for each SVM 
model. Lastly, the best hyper-parameters are displayed and corresponding performance of the best 
tuned model are determined, via: 
linear.tuneCXPoly   <-  tune.svm(partcluster ~., data = training_setCXSVM, type = 'C-classification', 
                        kernel = "polynomial", scale = FALSE, probability = TRUE, cross = 10, 
                        cost = c(0.001, 0.01, 0.1, 0.5, 1), gamma = c(0, 0.1, 0.2, 0.3, 0.4, 0.5) 
summary(linear.tuneCXPoly) 
best.linearCXPoly   <- linear.tuneCXPoly$best.model 
tune.testCXPoly     <- predict(best.linearCXPoly, newdata = test_setCXSVM) 
CMCXSVM_tunedPoly   <- table(tune.testCXPoly, test_setCXSVM$parts)  

Table 26 shows the model performance using tuned hyper-parameters and corresponding 
improvement. Additionally, Cohen’s Kappa metric is shown, which is a score for inter-rater 
agreement and is often used to compare the observed accuracy with the expected accuracy (random 
chance). The calculation is based on the difference between how much agreement is actually present 
(observed) compared to how much agreement would be expected to be present by chance 
(expected). The difference is standardized to on a -1 to 1 scale, where 1 is perfect agreement, 0 is 
exactly what would be expected by chance, and negative values indicate agreement less than chance. 
The original rule of thumb is defined as: < 0 (less than chance agreement), .01-.20 (slight agreement), 
.21-.40 (fair agreement), .41-.60 (moderate agreement), .61-.80 (substantial agreement), and .81-.99 
(almost perfect agreement) (Landis & Koch, 1977; Viera & Garrett, 2005). 
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Table 26 - Classifier Performance after Parameter Optimization, model.test.set 

# Classifier 
Evaluation Metric  

µ Recall µ Specificity µ F1 µ AUC Kappa 

1 XGBoost 7      

 Chain 1 Cases 0.71 0.95 0.76 0.80 0.69 

 Chain 2 Cases 0.70 (+ 0.03) 0.98 (+0.01) 0.68 (+ 0.01) 0.80 0.66 

 Chain 3 Cases 0.55 (+ 0.02) 0.95 0.57 0.73 0.55 

 Chain 4 Cases 0.52 (+ 0.03) 0.96 (+ 0.01) 0.55 (+ 0.02) 0.71 (+ 0.01) 0.54 

2 Random Forest (SMOTE) 8      

 Chain 1 Cases 0.56 (+0.2) 0.94 0.44 (+0.12) 0.62 0.42 

 Chain 2 Cases 0.74 0.94 0.42 +(0.03) 0.71 0.45 

 Chain 3 Cases 0.38 0.94 0.32 0.53 0.38 

 Chain 4 Cases 0.42 (+0.11) 0.95 0.31 (+0.05) 0.68 (+ 0.1) 0.39 

3 Support Vector Machines (Linear) 9      

 Chain 1 Cases 0. 51 0.94 (+ 0.04) 0. 39 0.73 (+ 0.10) 0.33 

 Chain 2 Cases 0.62 0.95 (+ 0.05) 0.43 0.66 (+ 0.05) 0.32 

 Chain 3 Cases 0.40 (+ 0.01) 0.95 (+ 0.06) 0.44 (+ 0.1) 0.75 (+ 0.05) 0.24 

 Chain 4 Cases 0.67 0.95 (+ 0.04) 0.44 0.64 (+ 0.02) 0.32 

After parameter tuning, it can be observed that both the Random Forest and SVM models perform 
slightly better. The former mostly have an improved F1 score or for C1 and C4 models an improved 
recall as well. The latter surprisingly performed much better based on the specificity and AUC 
metrics; now having similar specificity values as the Random Forest models, just underperforming 
compared to the XGBoost. Smaller improvements are observed for the XGBoost classifiers as well, 
but these still perform much better across the board compared to the other classifiers. Especially 
when comparing Kappa values, for which all four classifiers being considered substantial agreement. 
Whereas RFC’s are score lower to this regard, and SVM’s very poorly. Concluding, that one should opt 
for boosting models to predict part clusters or specific part types. 
 

6.10 ASSOCIATION MINING 
Based on de outcome of the preferred model, one knows which part or type is most likely required 
given an occurred error. However, the CM data used to this extend can be used for other insights as 
well.  As part of RSQ3.3, this data can also function as input to find out any co-dependency between 
spare parts. Once a (type of) spare part is identified via above methods, association mining is helpful 
for additional historic insights regarding additional spare parts likely used with the predicted part. 
 
6.10.1 Association Rules - Apriori 
As the final data base – specifically consumed spare parts per case attribute - of this study resembles 
transactional data, methods as Market Basket Analysis (MBA) (also called association discovery, 
association rules, or affinity analysis) are very suitable based on the Apriori algorithm. Data 
preparation of Section 5 has taken place with this technique in mind as well, such that the final data 
is suitable as input for MBA and other analyses. MBA is usually used in other domains and context 
rather than Healthcare, RCA, and MR log file data; as it is part of analytics in retail organizations to 
determine the placement of goods, designing sales promotions for different segments of customers 
to improve customer satisfaction and therefore also supermarket’ profit (Loraine & Ashok, 2012). 
Researchers are aiming to use such techniques in other fields as well, such as marketing, 

                                                           
7   Rounds = 1000, max-depth = 6, colsample_bytree = 0, eta = 0.01, gamma = 0 
8 ntree = 1000 (classifiers), mTry & Kappa values-training set based, for C1: (43; 0.92), C2: (49; 0.87), C3: (32; 
0.59), and C4: (42; 0.56) 
9 optimal cost and gamma values respectively, for C1: (0.5; 0), C2: (1; 0), C3: (1; 0), and C4: (0,5; 0). 
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bioinformatics, and education (Kaur & Kang, 2016). Examples of studied MBA aspects in academic 
literature are, using customer interest profile and interests on particular products for one to-one 
marketing (Weng & Liu, 2004), and purchasing patterns in a multi-store environment to improve the 
sales (Chen, Tang, Shen, & Hu, 2004). As a data mining method it focuses on discovering purchasing 
or consumption patterns by extracting associations on organization’ transactional data; and 
determines which items are brought or used together (Berry & Linoff, 2004).  
 

As mentioned, this technique attempts to structure knowledge by finding associations between 
items based on transactions involving them. This is a search through the data for combinations of 
items, resulting in a rule: “If A (antecedent) occurs then B (consequent) is likely to occur as well” (Grabot, 
2018). It is likely that many co-occurrences occur of which a section is simply due to chance, instead 
of a generalizable pattern.  For this reason, and risk mitigation for too many produced associations 
and being able to analyze them all (Valle, Ruz, & Morras, 2018), ‘support’ is used; requiring rules to 
apply to at least a– user defined – percentage of transactions (Provost & Fawcett, 2013).  
 
6.10.2 Criterion Values 
Hence, association rules were determined using criterion values of support, confidence and/or lift. An 
association rule is thus expressed in the form 𝑋 ⇒ 𝑌, where 𝑋 ∩ 𝑌 = ∅. Let 𝑋 be a set of variables in 
𝐼, 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} be a set of all possible variables (in this context all possible spare parts), likewise 
𝑌 be a set of other variables in 𝐼. The support criterion can be defined as the probability of 𝑋 and 𝑌 
co-occurring in the transaction data set. A support value, z, would mean that z% of the transactions 
in the data involve item consumptions of the item focus in the rule. Hence, the support indicates 
goodness of the choice of rule (Azevedo & Jorge, 2007; Kikuchi, 2016): 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ⇒ 𝑌) = 𝑃(𝑋 ∩ 𝑌).  
The confidence of a rule 𝑋 ⇒ 𝑌 is the conditional probability of observing 𝑌 given that 𝑋 is present in 
a transaction. Hence, the conditional probability that 𝑋 is consumed and also 𝑌, and thus indicating 

the correctness of the rule (Azevedo & Jorge, 2007; Kikuchi, 2016): 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 ⇒ 𝑌) =
𝑃(𝑋∩𝑌)

𝑃(𝑋)
. 

Lastly, lift of a rule is the ratio of the support if 𝑋 and 𝑌 are independent. If lift is greater than 1 this 
would indicate that the presence of 𝑋 in the transaction has increased the probability that 𝑌 will occur 
in the same transaction. Similarly, if smaller than 1 it would indicate that the presence of 𝑋 has 
decreased the probability that 𝑌 will occur (Kikuchi, 2016; Provost & Fawcett, 2013): 𝑙𝑖𝑓𝑡(𝑋 ⇒ 𝑌) =
𝑃(𝑋∩𝑌)

𝑃(𝑋)𝑃(𝑌)
. 

 
6.10.3 Association Significance 
Although lift is also used for (in)dependence of 𝑋 and 𝑌, this ratio – in practice – can be >> 1, implying 
that the relationship between items is more significant than would be expected if the two sets were 
independent. The dependence and significance of an association can be further quantified. 
The dependence between antecedent and consequence of an association rule can be expressed via 
the Chi-square test for independence, along with the significance of these items. This method could 
also be used in case there is any suspicion for spurious correlation between antecedent and 
consequence (Alvarez, 2003; Brijs, Vanhoof, & Wets, 2003). Hence, these values are also determined 
for each found associations as an indicator. 
However, if one only focuses on association mining based for a specific item (spare part), it might be 
the case that low frequencies or low expected values provide an incorrect view of dependence. In 
addition, or even as replacement, Fisher’s Exact Test is a more appropriate (alternative) method than 
chi-squared in such situations; this is a statistical significance test used in the analysis of contingency 
tables and is valid for all sample sizes (Bower, 2003; Chen, 2011); testing significance of deviation 
from a null hypothesis (e.g. p-value) (VanPool & Leonard, 2011). Using this test, found associations 
rules are tested for significance for stronger and more specific results. Although, some studies argue 
that Fisher’s test can be conservative, i.e. its actual rejection rate can be below the significance level, 
it is still a very suitable method for association significance (Andres & Tejedor, 1995). 
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7 RESULTS 
In this section, the results and main findings of the modeling techniques of the previous chapter are 
discussed. The structure of this chapter is as follows: first, I report on the more complex relations that 
underlie the ensemble tree models in terms of feature importance, followed by the main findings of 
predicting part cluster of different models, followed by predicting even more concrete spare part as 
a next step in the RCA, visualizing and validating decision rules, potential business impact 
calculations, and concluding with the results of the MBA analysis. 
 

7.1 FEATURE IMPORTANCE - XGBOOST 

The section reports on the relation between features and output variable represented by the model’ 
feature importance for additional insights. Feature importance of the XGBoost C1 – C4 models are 
depicted in Fig. 23, as these overall outperformed the Random Forest models. The overall model, 
containing all chain cases is not included here due to its lower performance (recall = 0.49, precision = 
0.57, F1 = 0.50) and extreme imbalance in terms of cases per MR chain (Section 6.2). Due to high 
number of features the figure shows an extracted selection based on features’ Gain. The Gain implies 
the relative contribution of a feature to the model calculated by taking each feature’s contribution 
for each tree in the model. A higher Gain value compared to another feature implies its importance 
for generating a prediction: simply the improvement in accuracy brought by a feature. Although this 
is one of the most important factors to look at, also graphs based on Cover importance are in included 
in Appendix X; which measures the relative quantity of observations concerned by a feature. To plot 
the importance I use the R function xgb.plot.importance of the DiagrammeR package. To plot the 
output tree the functions xgb.plot.tree for one tree, specifying the ordinal number of the target tree 
or xgb.plot.multi.trees for combined multiple trees. 

 

 
Fig. 23 - Feature Importance XGBoost Models - Gain 
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What emerges from these plots is that a number of features score high in all four models. Apart from 
the different errors with high predictive power over the various models, we observe that system 
model scores high across all plots. This makes sense as different Ingenia models not only differ in part 
composition, and thereby different potential error codes, but also in functionality and price category 
consisting of more expensive parts. Moreover, an SWO’s priority attribute (total of five categories) 
determines whether the customer complaint is based on a hard or soft failure. In other terms, is the 
system still working but with caveats or completely nonfunctional; which can determine the severity 
of the problem. Hence, other required part usage, such as less expensive low level spares or more 
complex and expensive core system components. 
Market, however, is a very surprising feature. More in-depth analysis shows that not all part clusters 
have been consumed in all markets, in our final single visit data set (Appendix Z). Now, this can simply 
be due to no systems defects have taken place yet requiring parts from those clusters in said markets.  
Different system models are delivered to all those markets, and therefore we cannot draw any 
conclusions regarding certain parts needed for different countries. However, specific system usage 
and occupancy regarding different MRI scans or frequency thereof, might be an external factor that 
determines more frequent (specific) breakdowns. Unfortunately, this cannot be validated with our 
dataset, these remain educated guesses. 
 

7.2 MODEL FINDINGS 

From Table 27 it is clear that some part clusters are predicted much better or worse than others for 
each of the different XGBoost models. Looking at the results more in depth, we observe that the four 
different classification error values per part cluster for the different MR chain subset models are also 
not always consistent. This behavior can be explained by showing that overall the models tend to 
predict the correct part clusters required, based on evaluation with SME. 
Based on domain knowledge and experience, it is to be expected that Chain 1 cases often require 
Cluster 2 parts to solve maintenance issues, along with Cluster 15 items for various lower level items 
or Cluster 14 items to support or being able to perform the repair, such as the use of service tools. All 
these parts are mostly correctly classified. Cases with other consumed cluster items with high 
classification errors such as cluster 1, 4, 5, and 11 for chain 1 cases are not surprising as they are not 
expected to be used. 
Chain 2 items have multiple cluster potentially required; such as cluster 7, 9, 11 or 13. Unfortunately, 
cluster 13 items are not included in the test set. Moreover, cases with consumed items of cluster 8, 10 
and 12, score well also. These are lower level spare parts to the aforementioned four clusters. 
Chain 4, as discussed earlier, is a much more complex MR chain compared to others, and this is also 
clear from this section along with the XGBoost results from the modelling section. Customer 
complaints and errors regarding this chain could either require spare parts from cluster 4 or 5 if severe 
hard or soft failures occur, but also cluster 15 items (complementary to the replacement part) such as 
cables, accessories or positioning aids. An example of the output provided by the XGBoost model is 
shown in Appendix X, along with corresponding confusion matrices of the four (C1-4) models in 
Appendix Z. 

Table 27 - Test Confusion Matrix-based Error rate – XGBoost Models 
Classification 

Error 
Part 

Cluster 1 
Part 

Cluster 2 
Part 

Cluster 3 
Part 

Cluster 4 
Part 

Cluster 5 
Part 

Cluster 6 
Part 

Cluster 7 
Part 

Cluster 8 
Chain 1 0.50 0.18 0.00 0.67 0.60 - 0.40 0.06 
Chain 2 0.33 0.27 0.16 0.27 0.33 - 0.25 0.20 
Chain 3 0.60 0.24 0.33 0.56 0.63 - 0.32 0.56 
Chain 4 0.65 0.36 0.69 0.49 0.36 - 0.51 0.52 

Classification 
Error 

Part 
Cluster 9 

Part 
Cluster 10 

Part 
Cluster 11 

Part 
Cluster 12 

Part 
Cluster 13 

Part 
Cluster 14 

Part 
Cluster 15 

Chain 1 0.29 0.07 0.46 0.25 - 0.19 0.00 
Chain 2 0.30 0.25 0.33 0.20 - 0.00 0.19 
Chain 3 0.33 0.50 0.41 0.74 - 0.30 0.12 
Chain 4 0.47 0.40 0.49 0.44 - 0.40 0.11 
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The third model based on chain 3 cases, seems not to perform as expected. The difference in 
performance between the first two and last two models were apparent from Table 25 and Table 26, 
but the chain 3 model tends to improve its performance attempting to predict the most likely part 
cluster (based on SME validation) and surprisingly underrepresented cluster (#1) in this subset. Apart 
from the final part clustering 0 also presents the part cluster distribution per chain subset. From this, 
we can see that cluster 1 is really underrepresented in this model. 
However, maintenance cases based on this MR chain do not always require replacing complete parts 
within cluster 1. Discussions with RSE’s revealed that chain 3 is essentially the connection between 
the MR backend and frontend. Due to system design, parts within cluster 1, contrary to others, can 
also be repaired by replacing separate components. These (low level) items are classified in part 
cluster 6 and 15.  
 
Surprisingly, after above modelling results (Table 27), cases with part consumption are observable in 
de test sets per model (see also confusion matrices - Appendix Z), from part clusters that are not 
expected by SME’s. This brings up an interesting point of discussion regarding the different chains 
selected in the project’ scope and underlying assumption to find root causes for SWO’s within these 
chains. Section 8.5 elaborates on this. 
 
Although XGBoost models have proven to be the better option in predicting required spare part 
clusters, Random Forest can be used successfully, taking it a step further, in predicting the specific 
spare parts types given we focus on the predicted part cluster(s) and let a subset of cases having 
consumed parts from that part cluster be selected. As example, I focus on the C2 subset, where part 
clusters 7, 9, and 11 have the highest probability of being required for cases from experience; as we 
know from FVF analysis that RF Coils are the parts for which most financial savings can be achieved 
as they dominate as consumables (Section 7.3). These clusters represent these parts (apart from the 
low-level RF related parts) also. In essence, one is building a RFC model on a subset of cases, 
automatically selected based on the previous model output, with these consumed parts and the part 
cluster as additional feature, for which the results of Table 28 are achieved; predicting a specific part 
based on the SWO and Error data. Overall the classifier performs very well with a Kappa of .88, and 
mid to high F1 scores. Lower balanced accuracy and F1 are marked in orange, but are still acceptable 
apart from Anterior Coils and Flex Coils having very low F1 scores. 
 

Table 28 - RF Coil Output – RFC.test – PartCluster 7, 9, 11 (mTry = 35, Kappa = 0.88) 
 Anterior 

Coil 
Base 
Coil 

Body 
Coil 

Breast 
Coil 

Circu-
lator 

Coil 
Assembly 

External 
Coil 

Flex 
Coil 

Foot 
Ankle Coil 

Head 
Coil 

F1 Score 0.29 0.69 1.00 0.95 0.97 0.53 0.87 0.41 0.89 0.74 
Balanced 
Accuracy 

0.59 0.82 1.00 0.99 0.99 0.95 0.94 0.63 0.92 0.87 

 Head 
Neck Coil 

Head Neck 
Spine Coil 

Knee 
Coil 

NVC 
Coil 

PHC QBC 
RF 

Amplifier 
Shoulder 

Coil 
Wrist 
Coil 

F1 Score 0.93 0.57 0.66 0.85 0.80 1.00 0.88 0.59 0.98 
Balanced 
Accuracy 

0.98 0.62 0.70 0.85 0.98 1.00 0.89 0.70 0.98 

 
7.2.1 Visualizing Decision Rules 
As discussed in Section 6, focusing on the subset of ‘PredictedPartCluster’ data, insights that are more 
detailed can be found. Random Forest models, as evaluated for Table 28, are referred to as black box 
models, but it is possible to visualize complete individual trees in the ensemble based from the 
modelled classifier. One could plot a Conditional Inference Trees (CIT) for i.e. the classifier with 
highest accuracy; however, this tree would not capture the whole decision rule for the classifier. It 
would just depict one possible tree; while many others still exist that influence the predicted class. 
For this reason, if one is interested in the relation between system errors and parts, a single decision 
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tree should be used, which can function as supportive outcome ideally for FSE’s on the field. Hence, 
based on the same data a single decision tree algorithm was used as elaborated on in Section 6.7. 
Table 29 shows an overview of the results, while Appendix Z provides corresponding confusion 
matrices. 

Table 29 – Pruning results, test set prediction performance 

Decision Tree 
Train set re-

sampled? 
CP-value xError xStd Kappa F1 

Chain 1 – Part Cluster 2 N0 0.010 0.75 0.07 0.63 0.84 
Chain 2 – Part Cluster 7, 9, 11 Yes 0.011 0.36 0.01 0.67 0.73 
Chain 3 – Part Cluster 15 No 0.020 0.59 0.04 0.42 0.56 
Chain 4 – Part Cluster 5 Yes 0.014 0.56 0.01 0.58 0.65 

 
Fig. 24 and Fig. 25, show the classification to the, distinct and potential part types based on the 
highest predictors ‘Priority’, ‘SystemType’, and ‘EntitlementType’ and distinct system errors for Chain 
1 and Chain 2 cases, respectively, as example: PartCluster 2 and (PartCluster 7, 9, 11). ‘Market’ has 
been left out at this stage, as it is not fully explainable based on current data why this exactly is a high 
ranking feature. The outcome has been reshaped from a traditional decision tree – for improved 
formatting and more detail - via the ‘partykit’ package in R, to only present the part type with the 
highest determined probability instead of the usual probability distribution shown for each class per 
node, along with the error rate. The package has a downside, in which p-values are not shown at the 
nodes. Significance has been determined to be p < 0.001 at each node. Or, a more traditional tree can 
be obtained as Fig. 25; due to size restrictions for this document. Other decision trees (visualizations) 
for the other Chains are available in Appendix X. 
 
 
 

 
Field Service Engineer Validation 
Although the decision trees are validated in terms of a test set, an attempt is made to additionally 
validate it with a SME. The visualization are discussed with a FSE, who was able to provide insights in 
the depicted C1 and C2 trees. Unfortunately the SME was not able to help with the C4 visualization, 
as these error codes were not familiar. In this study’s dataset, errors regarding chain 4 are labeled 
with a specific fault code, where the SME is used to a brief failure description provided by the on-site 
system. Regarding C3; Table 29 suggests that this model performs relatively poorly, this is confirmed 
with the decision tree, clearly biased towards a specific error code; and therefore not useful to further 
validate. 
 
The two other pruned decision trees were deemed to be very insightful to the SME. Relations 
between error codes and predicted spare parts seemed very plausible based on SME’s experience. 
Four out of five presented error codes in the C1 model have been confirmed predicting a very likely 
required spare part, given the error code and after a check with the corresponding SPD by the SME. 
However, error C1T01E27 can have additional root cause aside from the predicted 
C2118PowerModule. Furthermore, the SME stated that although it is very interesting that system 

Fig. 25 - Single Decision Tree, PartCluster 2, C1 Cases Fig. 24 - Single Decision Tree, PartCluster 7, 9, 11, C2 Cases 
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models – among other non-error attributes – is included in these decision trees, for C1 it generally 
does not matter which specific C1 type is installed in a system and therefore is not expected to be 
present in related decision trees. 
 
The same general conclusion holds true for the C2 decision tree as well, for 67% of the error codes, 
the related spare parts seems very possible to be causing the error. The SME was not able to recall 
the other error codes are corresponding service actions. However, the SME warned that the current 
C2 view for part cluster 7,9,11 might not be complete as for a specific error (C2T05E09) it was recalled 
that other root causes do exist apart from those presented in relation to this error. Moreover, for this 
chain, system model and priority are very useful, as different failures (soft or hard, represented by 
priority) does require other parts, and not all parts presented in these clusters are used in all Ingenia 
system models. 
Using the corresponding SPD, I further observe that this document – as mentioned during the 
problem context – does not always mention root causes for failures in terms of parts, but rather 
provides general service actions. Comparing the errors of this decision tree with the documentation, 
I also observe that the model provides information regarding three errors that are not included at all 
in the faultfinding section of the SPD: C2T05E116, C2T15E116, and C2T15E117. 
 
With regard to priority, the discussion with the SME provides a valuable insight. The priority of a 
customer call can affect the part-purchase behavior of an FSE considerably. Lower priority values 
indicate hard failures. In order to help the customer and solve the issue as quickly as possible, FSE 
(unintentionally) can order multiple (different) spare parts to solve the problem during a single visit, 
when the multiple parts are not necessarily needed. If these parts are not consumed and also not 
returned by the FSE, or not correctly stated to be returned in Vertica, such behavior can influence the 
performance of such models negatively. 
 
Lastly, it is observed that the amount of error codes in the C1 ,C2 and C4 decision trees  are roughly 
half of the corresponding chain error codes that are present in the respective part cluster subsets. It 
is not clear why this is the case; it could be that not all errors are represented in both the train and 
test sets, given the error distribution per chain dataset (Fig. 21), or due to model performance, but 
also that some errors do not require part replacements. Unfortunately, the SME is not aware of any 
documentation explaining if there are any chain specific errors that should not result in part 
replacement, but rather on-site system adjustments. 
 
Feature importance 
Feature importance for all four decision trees has been determined and is presented in Appendix Y, 
Y.3. These figures differ a bit from the previously discusses feature importance graphs, which is not 
necessarily surprising; as the decision trees are not based on the same data set as the XGBoost 
models, but rather a subset of a potentially predicted part cluster. Such s part cluster subset can 
contain a lower amount of distinct errors. This is apparent is overall, the four different feature 
importance plots have many similar errors being with high or low importance as the XGBoost feature 
importance, but some errors are disappeared from the top x features list, as they are not present in 
these data subsets. 
However, even in these plots, System Model, Priority and Entitlement Type are still considered very 
important attributes, apart from the C1 – Part Cluster 2 decision tree. This finding corresponds with 
the insights gathered from the SME validation, that given system C1 parts can be present in all 
different Ingenia system types; hence System Model should not be an important attribute in such a 
model. In Appendix Y we can see that this attribute is not present in the related feature importance 
graph. 
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7.3 BUSINESS IMPACT 

Based on the created model that predicts from which cluster spare parts or part type are needed, 
potential business impact and savings can be determined by analyzing the (financial) differences of 
the single multiple visit cases subsets, as part of the remaining questions of RQ4. The section starts 
with how the financial potentials for the FVF metric have been determined, as part of SQ4.2, followed 
by SQ4.3 using the FVF metric findings to elaborate on the business impact of the modelling phase. 
 
7.3.1 FVF Business Impact 
The potential business impact by improving FVF rates can be determined by analyzing the differences 
between the subset of single and multiple visit cases consisting of the four different system types in 
our FVF analysis scope (Section 1.9). Conclusions can be drawn as statistical significance between 
groups has been proven (Section 5.7); aiming to 1) determine the average total cost (net part & labor 
cost) difference between single and multiple visits, 2) how different parts and part cost intervals 
contribute to this average, and 3) which type of parts dominate in the CM cases looking at most 
consumed parts. 
 
Regarding the first aspect, average total case costs per year have been calculated for both single and 
multiple visits, defined as 𝐶𝑠𝑖𝑛𝑔𝑙𝑒,   𝑦𝑒𝑎𝑟  and 𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒,   𝑦𝑒𝑎𝑟; where year ranges from 2013 to 2019. Per 

year the average difference between determined (∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒,𝑦𝑒𝑎𝑟), after which the overall 

average difference in total cast per case is found, to be: ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠. To iterate, this finding 

is based on all SWO’s from Achieva, Ingenia, Intera and Multiva systems within our project scope, 
with 1 to 3 visits, limited to 1 to 20 part consumptions, and all different financial classifications types. 
For further insights, this cost difference per year has been split up between labor (∆𝐶𝑙𝑎𝑏𝑜𝑟,   𝑦𝑒𝑎𝑟) and 

net part cost (∆𝐶𝑛𝑒𝑡 𝑝𝑎𝑟𝑡 𝑐𝑜𝑠𝑡,   𝑦𝑒𝑎𝑟) contribution and into the different products, along with case 

distribution per year and FVF rates. Exact values seen in Appendix CC. From these, we observe: 
- ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒,𝑦𝑒𝑎𝑟  increases approximately by 10% per year 

- This average additional cost per case increase is also consistent over the product models, 
and ∆𝐶𝑙𝑎𝑏𝑜𝑟,   𝑦𝑒𝑎𝑟 and ∆𝐶𝑛𝑒𝑡 𝑝𝑎𝑟𝑡 𝑐𝑜𝑠𝑡,   𝑦𝑒𝑎𝑟. 

 
Subsequently, we are also interested in what the contribution of different type of cases is, to 
∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠. Therefore, eight different case cost intervals 𝐶𝑆𝑊𝑂 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑘€) have been 

introduced: <=1k€, 1-5k€, 5-10k€, 10-15€, 15-20k€, 20-25k€, 25-30k€, and >30k€. Appendix CC shown 
a tabular overview for each cost interval with corresponding case count per category, further 
specified into average cost per interval 10 and sum of case cost and number of cases for multiple and 
single cases separately. Lastly, the differences between multiple and single costs are determined 
(∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠,   𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) 11; where interval ranges from 1 to 8. These values each represent 

the contribution of the cost interval to the overall determined ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠. Fig. 26 

generally depicts the output (see appendix for the non-confidential figure). From this we observe: 
- Cases in cost-category 0-5 k€ for single visit cases contribute 80% to the case count and 

30% to the average case cost. 
- Cases in cost-category 0-10 k€ for single visit cases contribute 90% to the case count and 

55% to the average case cost. 

- Cases in cost-category 0-10 k€ for multiple visit cases contribute 80% to the case count 
and 45% to the average case cost. 

- Cases in cost-category 0-15 k€ for multiple visit cases contribute 90% to the case count 
and 65% to the average case cost 

 

                                                           
10  (sum-of-cost-per-category/total-count-of-single-or-multiple-visit-cases) 
11  (sum-of-cost-per-category/total-count-of-cases)multiple_visits - (sum-of-cost-per-category/total-count-of-cases)single_visits 
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Moreover, from the figure it is clear that 
lower cost intervals contribute far more 
to the overall cost difference between 
the two subsets than larger cost 
intervals. Above calculations are based 
on the SWO’s within scope where 
quantity consumed parts > 0 and 
quantity returned >= 0. The same 
average difference in cost calculation is 
performed for different combinations of 
quantity consumed > 0 or =1 and 
quantity returned >=0, >0, and =0. 
Further differentiation is made between 
different financial classifications: all  

Fig. 26 - Cumulative Contribution to extra cost per interval 

SWO’s in scope, SWO’s based on warranty entitlement or time & material entitlement. This 

breakdown is shown in Table 75 (Appendix CC). Main finding here is that entitlement type does not 

have an impact on difference cost for each combination of quantity consumed and returned, as these 

values stay relatively constant. Although ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 is the ideal financial saving per case, 

if we can predict the required part type for each case, based on logged data, another – 30% lower – 

value might be more realistic, based on the cost calculation for cases with 1 consumed part and 0 

returned parts: ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠,1𝑐𝑜𝑛,1𝑟𝑒𝑡. 

 
Section K (K.3) shows detailed report on the top 25 parts per aforementioned cost interval, along with 
information regarding its absolute frequency consumed, and % of total parts in top 25, and % of all 
parts in the cost category. An arbitrary amount of 25 top consumed parts is selected, resulting in 
coverage values of approximately between 30 and 70%, depending on the service cost interval and 
single or multiple visit subsets. Moreover, these parts are manually clustered which is subsequently 
used to create Pareto’s to visualize how each cluster of part types contributes to the total amount of 
consumed parts within a certain interval. From these pareto’s it is observed that: 

• Lowest cost-category contains low-cost parts and parts that are customer facing 
• Cost categories 5-10 and 10-15 k€ are dominated by RF coils (70%), and RF amplifiers (6%)  
• Higher cost categories also often contain RF coils. 
• Low cost parts such as DCI chassis and connector (magnet, handgrip) are consumed together 

with RF coils. 
Summary graphs for the lower cost categories are shown in the same appendix. 
 
Since, RF Coils are very dominant, a further analysis is done for cases with consumed RF Coils. Section 
K4 and K5 in 0 present the average new buy prices based on 2013-2019 data, and visualize how 
different RF coils contribute to different new buy price intervals and how often they are consumed. 
This is done as RF coils are often more expensive spare parts and are expected to be consumed in 
cases with higher service cost intervals. The hypothesis for this analysis therefore was that less 
expensive RF coils (new buy price) would be consumed in lower cost intervals, and more expensive 
ones in higher intervals. 
 
Lastly, a Technical Part Review (TPR) – analysis is performed for all RF coils observed in the top 25 
analysis. This because it is generally assumed that such parts, among others, take multiple visits to 
replace. To understand why these parts are also included in the single visit population, we look at the 
TPR process. It is assumed that parts included in TPR, per definition, will require multiple visits to 
replace. A detailed explanation is provided in Appendix DD, but a brief conclusion is that one can 
understand why RF coils are consumed in single visit cases as roughly half of our observed distinct 
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12Nc’s are not included in TPR. It therefore seems that RF coils do not always require multiple visits 
to be replaced. These RF Coils are also consumed in multiple visit cases. Knowing upfront that these 
specific RF Coils are defective, one can at least have some soft savings in terms of labor costs.  
Other RF Coils have been included in TPR just towards the end of 2017 or 2018, while being consumed 
in many cases in prior years. Once a part is added to TPR it seems to be consumed significantly less 
or not at all for single visit cases. For specific part descriptions and 12Nc’s observed in single and 
multiple visit populations, and relevant TPR information, see Appendix L.  
 
7.3.2 Model Business Impact 
Above general FVF and corresponding cost analysis can be combined with the model output,  into a 
more specified business impact based on this studies deliverable. We continue with the previous 
example of the RFC model based on RF Coils – the dominating part type in the scope’ SWO data. For 
each of the 19 classes of the multi-class prediction model, a balanced accuracy and F1 value was 
determined (Table 28). Although balanced accuracy values can be used for calculating the model 
business impact, I prefer the F1 scores per part type instead, in order to avoid a too optimistic output. 
Given balanced accuracy and F1- scores per part type (class) predicted, and the calculated savings 
based on 2013-2019 data and case count per class (Section 7.3.1), potential model-based savings can 
be determined via the following - where i equals the different RF part types (classes) ranging 1 to 19: 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝑖𝑑𝑒𝑎𝑙)𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = ∑(𝐹1𝑖 ∗ 𝐶𝑎𝑠𝑒𝐶𝑜𝑢𝑛𝑡𝑖) ∙ ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑛

𝑖=1

 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝑟𝑒𝑎𝑙𝑖𝑠𝑡𝑖𝑐)𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = ∑(𝐹1𝑖 ∗ 𝐶𝑎𝑠𝑒𝐶𝑜𝑢𝑛𝑡𝑖) ∙ ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠,1𝑐𝑜𝑛,1𝑟𝑒𝑡

𝑛

𝑖=1

 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝑠𝑜𝑓𝑡)𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = ∑(𝐹1𝑖 ∗ 𝐶𝑎𝑠𝑒𝐶𝑜𝑢𝑛𝑡𝑖) ∙ ∆𝐶𝑙𝑎𝑏𝑜𝑟

𝑛

𝑖=1

 

Potential soft savings represent savings for which a customer visit is reduced due to correct part type 
prediction and only labor cost is decreased. Potential ideal savings can be calculated based on  
∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠  (total amount that in theory could be saved in total net part cost and labor cost), 
but a more realistic saving can be obtained if correct part type is predicted and a customer case is 
solved with one part replacement and no parts to be returned (based on ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠,1𝑐𝑜𝑛,1𝑟𝑒𝑡).  
 

7.4 MARKET BASKET ANALYSIS 

The MBA script is usable for results based on different aggregates. Although this was originally 
indented for part co-dependency analysis, this is set up in such a way that it can be used for mining 1) 
on the whole dataset, 2) subset for specific parts, and 3) on part cluster level, as a complementary 
tool to the predicted part type. This section first presents the results and relevant output for all single 
visit cases, followed by a part-specific example, and closing with part cluster associations. 
 
7.4.1 Item Rule Mining – All Single Visit Cases 
The ‘R’ – package arulesViz is used as a core package for this analysis; which automatically loads other 
required packages like arules to handle and mine the associations (Hahsler et al., 2010). For 
readability purposes and the potential of extracting too detailed and extensive rules, the number of 
items per rule where limited upfront; with a minimum number of items per rule of one, and a 
maximum of five. Additionally, given the large number of spare parts, low support and confidence 
values were expected, hence the upfront cutoff value of .001. The spare part transaction data for 
single visits, indeed contains 17 136 transactions, with 2 895 distinct items. Summary statistics of the 
data set show a rather sparse set with a density just above 0.05% and an average transactions 
containing less than three items. 
Association rules are mined next; for which a more detailed general script is included in Appendix V: 

association.rules <- apriori (trallcases, parameter = 
list(sup = 0.001, conf = 0.001, minlen = 1, maxlen = 5,  target='rules')) 

summary(association.rules)  
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Testing for Chi-squared and Fisher’s Exact Test rules significance, the number of discovered rules 
reduces from 5460 to 1310. Such large amount of rules can best be visualized in a scatter plot with 
two interest measures on the axes, instead of manually checking individual rule as this is not a viable 
option. Fig. 27 depicts the scatter plot using support and confidence value on the axes with a third 
measure ‘lift’ as the color or gray level of the data points. We see that rules with high lift values tend 
to have relatively low support. The most interesting results reside on the confidence/support border. 
However, for further details and an interactive two-key plot is created. The two-key plot uses 
determined support and confidence values on the axes, while data point’ color indicates the “order”; 
corresponding to the number of items contained in a rule. Note that the maximum is “order 5”, as the 
maximum rule length was capped at five items previously. Order and support seem to have a strong 
inverse relationship, as this observation is also confirmed in the study of Seno & Karypis (2005). The 
interactive aspect added, provides the user with features to: 1) Inspect individual rules upon selecting, 
2) Inspect rule sets by selected plot region, 3) Zooming on a selected plot region, and 4) Filtering rules 
based on cutoff points. 

 

 
Fig. 27 - Significant Rules, All Single Visit Cases, Scatter Plots 

 
Fig. 29 shows the two-key plot for all observed statistically significant rules based on all single visit 
cases, along with a random user-selected example of specific rule inspection. The output presents 
one statistically significant ‘order 2’ rule where part consumption of a ‘C78x Power Module’ is followed 
by a ‘FUSE 400A’ part consumption in single visit CM cases with a confidence of 39% and lift of 85, 
based on a frequency of 55. 

 
7.4.2 Item Rule Mining – Specific Spare Part 
Above plots are not suitable when one wants to mine for a specific spare part (type) or cluster; 
although they can provide great insight in large number of rules, relatively low amount of associations 
are best inspected otherwise. Although on this aggregate individual rules (or top x) can easily be 
checked manually, parallel coordinates plots are also a great addition. Such visualizations plot 
multidimensional data separately on an x-axis with a shared y-axis. A line connecting values, in this 
case spare parts, for each dimension, represents each data point.  
 
Since, Section 7.3 revealed that RF coils should be the focus and be included in the funnel we randomly 
selected a related coil to show the MBA analysis for this item. The script allows for a specific part 
description or partial match based on user input to get relevant significant rules. The subset value 
therefore is “NVC COIL-1.5”. Specifically, we are interested to know which other spare parts tend to 
be consumed if one replaces a NVC COIL-1.5. Hence, in rule format this part functions as an 
antecedent: 𝑁𝑉𝐶 𝐶𝑂𝐼𝐿 1.5 ⇒ 𝑌, representing the left hand side (LHS). The script allows the part to 
be identified as right hand side (RHS) as well, if interested.  
 
Fig. 28 shows the parallel coordinates plot for the top 10 rules out of 42 – based on confidence – mined 
for the general associations mentioned above, taking into account Chi-squared and Fisher’s Exact 
Test rules significance. The width of the arrows represent support while the intensity of the arrow’ 
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color represents the confidence value. As the number of line crossovers can increase with a larger rule 
set, the items on the y-axis are re-ordered to minimize the number of crossovers. 
The figure shows that either the part in question can be the only item in the rule (and therefore the 
only consumed item for repairs) or other subsequent parts might be required to solve the problem at 
hand. Given the fixed lhs value, all arrows start from the same spare part. 

For further assistance, the ‘igraph’ package is used rendering an interactive graph-based 
visualization, in which vertices are annotated with item labels representing the different items, while 
edges are arrows pointing from items to rule vertices indicating LHS items and arrows from a rule to 
an item indicating RHS items. Moreover, aforementioned interest items are added, as depicted in Fig. 
30.  

From above MBA analysis, we can conclude that cases do not always have exact one part replacement 
for each SWO, since 1310 significant rules are discovered that range from an order of two up to an 
order of five. Hence, there are co-dependencies between some of the 2.8k distinct (spare) parts in the 
final data set of single visit cases, and multiple parts could be required for solving customer and MR 
system problems. The discussed data visualizations can therefore be created for specific spare parts 
as yet another complementary data source for RSE’s and FSE’s as an extend of the RCA models, to 
find out what other parts might be required if the predicted part types from Section 6, do not solve 
the problem. The predicted part might be correct, but not necessarily, enough for a specific issue; as 
the example of the NVC Coil in this section shows that Connector Handgrip parts are likely to be used 
as well during an NVC Coil replacement. Such item rule mining results, based on RCA prediction 
model’ output, therefore can aid in avoiding trial and error of part usage, and saving multiple visits 
and potentially soft and hard savings. 

Fig. 30 - Interactive Part-specific Association Graph 

Fig. 29 - Two-Key Plot sign. SingleVisit Rules, part selection Fig. 28 - Parallel Coordinates Plots 
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8 CONCLUSION 
This final section of the report addresses the conclusion of this study in which I have presented a data 
mining tool for the implementation of data-driven corrective maintenance for four different MR 
chains; as a solution to the defined problem statement and gap analysis. Based on answers to the 
research question – discussed throughout sections 4 to 7, I present whether the business problem is 
solved, along with managerial implications, and discussion. 
 

8.1 RESEARCH CONCLUSIONS 
The research questions formed the backbone of the first visit fix project, derived from the problem 
statement, project goal and gap analysis (Section 1). Firstly, an explorative research has been 
performed regarding the current process of MR maintenance, identifying possibilities for support 
within the AS-is situation with this work. The described troubleshooting process shows potential for 
a tool to be used by RSE’s when escalating a customer call to a FSE, creating a SWO and initiating an 
on-site visit for maintenance (Section 4). If potential service actions can be provided to the FSE based 
on a data-driven RCA tool, this can beneficial for handling the issue and solving the complaint in as 
few visit as possible. Aside from used multi-class classification models to this extend, visualized 
decision trees can be helpful for FSE on-site with the usual ad-hoc decision making. This has been 
supported with the identified cause and effect tree in the problem statement, needing a solution to 
deal with lack of spare parts at the moment of required on-site repair (due to lack of R/FSE diagnosis) 
and lack of problem statement at customer call (Section 1.5). Potential impact of proposed solution 
on the troubleshooting process is further elaborated in Section 8.2. 
 
Requiring input for a data-driven tool was fulfilled with the enhanced accessibility of machine data 
with the Vertica database; with the majority of MR systems in scope uploading raw machine log files 
centrally (Section 4.3). Leading towards the completion of preparation of relevant data to be used for 
the classifiers, it is discovered that various failure modes are not independent due to system design, 
as previously assumed by SME’s. Surprising insights are provided into potential dependence of error 
codes across different MR chains, with highly correlated and significant p-values (Section 5.8). 
Potential dependence was further studied with error sequence analysis, using frequent Pattern – 
Grown analysis, also as part of error clustering (Section 5.9). 
 
Based on the cleaned single visit Ingenia data set, XGBoost, Random Forest and Support Vector 
Machines modeling techniques were studied, starting a three-step RCA solution design, in which first 
the most likely part cluster is determined via multi-classification classifiers, along with variations 
based on the analysis of data re-sampling methods where required. Part clusters corresponding to 
the model’ output classes have been defined using the Jaro Wrinkler approximate string matching 
technique, based on hundreds of available parts, resulting in 15 part clusters. After a grid search 
method to determine the optimal parameters, the XGBoost models per MR Chain have been selected 
as the most effective and promising, thanks to its higher recall values (ranging from .52 – .71), 
acceptable to good F1 values (.55 – .76), very high AUC (.71 – .80), and substantial agreement Kappa 
results (.54-.69), outperforming the other considerations (Section 6 – 7). 
 
Given the predicted part cluster based on the cluster with highest probability, as a next step, the 
subset of cases is taken with part consumptions of the part cluster, resulting in a more specific part 
prediction. For this RFC perform just as well as XGBoost, providing a similar multi-class classification 
output as the previous model, but for a concrete part type. The example in Section 7.2 shows that RFC 
is able to predict a specific part, when focusing on the subset of data based on cases from the 
aforementioned predicted part cluster. F1 values range from .29 to 1.00; where 14 out of 19 specific 
parts (classes) score a F1-value of > .60. 
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To provide supportive visualizations of decision rules, instead of visualizing a RFC tree out of 
ntree=1000, a single decision tree algorithm is used for this purpose to show the relation between 
chain’ error codes, system and SWO attributes such as priority and system model, along with specific 
spare parts. Pruned decision trees performance varies as the C1 and C2 example (Section 7.2.1) score 
well on the Kappa metric (.63 and.67 respectively – substantial agreement), with even higher very 
good F1 values (.84 and .73 respectively). The C4 example performs satisfactory as well (Kappa = .58, 
F1 = .65), but the C3 example scores even lower and upon further inspection this model is very biased 
towards a particular error code and seems to over fit. C1 and C2 trees have been validated with a SME, 
although not all errors could be discussed, these trees deemed to be a very good start in visualizing 
the decision rules; not only regarding a part and error relation, but also very useful to include other 
SWO and system attributes. Unfortunately, the C4 tree could not be validated with the specific SME, 
therefore it was aimed to validate with a corresponding SPD (Section 7.2.1). 
 
Lastly, MBA can assist in generating interactive visualizations or separate statistical significant 
association rules to show part co-dependency (based on Chi-Squared and Fisher’s Exact Test, p < 
.001) for other spare parts that might be useful in addition to the predicted part – given historic 
repairs, in case other parts might still be required for the repair (Section 7.4). 
 
Based on the above findings, we can reflect on the gap analysis (Section 1, Table 3). The proposed 
three-phase solution uses the complete logged CM knowledge for Ingenia systems, based on the 
scope, to provide RCA results for on-site service actions. Although, other MR systems have been 
mentioned in this study, these where not included in the RCA but rather in the FVF analysis; however, 
the underlying methodology is applicable to other MR systems as well. 
 
The solution provides an additional source for determining and motivating CM part replacements. 
CM service actions were either implicit, based on engineer experience, or SPD’s were utilized to 
determine general service actions and tests to find the problem’s root cause. This is made explicit, 
but given potential future research, models can still be improved (Section 8.3 and 8.5). However, the 
third aspect of the gap analysis regarding analytically supporting spare part ordering for FSE’s, has 
not been fully achieved. Although the resulted trees have been validated with a corresponding test 
set of the data,  the visualized decision rules could not all be validated with FSE’s; both due to required 
and available subject matter expertise along with time constraints of the project, and improvements 
required specifically for the C3 tree.  
 
Lastly, the FVF field service metric is systemically analyzed, not only with regard to FVF rates per 
system or market, but also focus on business funnel, and potential soft and hard savings in general, 
additionally applied to proposed solution (Section 7.3, along with Appendix K, Appendix L, and 
Appendix CC, Appendix DD). This is discussed in more detail in the next section. 
 

8.2 MANAGERIAL IMPLICATIONS 
With this research, Philips Healthcare can start analyzing all historic and incoming CM activities and 
calls, with required part replacement, with the designed methodology. The analyzed FVF metrics 
shows that some of the parts usage and therefore labor cost also, might be redundant. The FVF 
analysis concludes that there is the potential to have an ideal financial saving, on average, per case 
equal to ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠, and a 30% lower value equal to ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠,1𝑐𝑜𝑛,1𝑟𝑒𝑡  

might be more realistic to achieve, taking into account cases with one consumed part and none 
returned. Looking at average total service (net part + labor) cost made across the years, we observe 
a difference of approximately 15% between single and multiple visit cases for the four (Achieva, 
Ingenia, Intera & Multiva) CM cases from the scope of this project, while this number drops to 12% 
only looking at the Ingenia subset.  
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To bridge the gap, the solution design contributes to these 
savings and improving CM case performance and can fit the 
company’s future strategy. In terms of presented part 
cluster and part type prediction models, along with 
association rule mining interactive visualizations, these can 
ideally be part of Remote Service Workspot or 
complementary as additional data sources to be used by 
RSE’s to provide concrete service actions in terms of 
required spare parts, hence repair actions to undertake. 
In terms of presented decision rules visualized, these 
contribute by aiding FSE’s on the field with additional 
decision-making information of which spare parts are 
required given the MR failure mode and context. The 
corresponding methodology can also be used to create 
different decision trees to complete missing or incomplete 
faultfinding sections in SPD’s. 
Implementing proposed solution, should not have an impact 
on the current troubleshooting process, identified in Section 
4, and presented in detail in Appendix A, in terms of changes; 
but rather help or extend current tasks. Specifically, with 
regard to ‘Remote In-Depth Analysis & Fixes’ of an RSE, 
additions to the BPMN model occur at the ‘Create SWO’-
task, and regarding “On-Site Repair” to the FSE task ‘Execute 
relevant test & repair actions’, as visualized in Fig. 31 and Fig. 32. 
Assuming the average ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠,1𝑐𝑜𝑛,1𝑟𝑒𝑡  per case is achieved, by predicting the correct 

spare part and replacing it in the first visit, each successful CM case would contribute by .11% or .03% 
to the FVF total cost difference for the Ingenia or four MR system scope, respectively. 
 
With regard to future FVF projects, the following additional conclusions were drawn during this 
study’ FVF analysis: 

 ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒,𝑦𝑒𝑎𝑟 increases approximately by 10% per year. This average additional cost per 

case increase is also consistent over the product models, and ∆𝐶𝑙𝑎𝑏𝑜𝑟,   𝑦𝑒𝑎𝑟 and 

∆𝐶𝑛𝑒𝑡 𝑝𝑎𝑟𝑡 𝑐𝑜𝑠𝑡,   𝑦𝑒𝑎𝑟 (Appendix AA). 

 Although FVF rates are improving in general over all studied MR products, these rates still vary 
significantly across different markets (Appendix K – K.1 and K.2 respectively). Performing the 
same FVF analysis for different markets, may provide insights regarding market specific (part 
replacement) behavior. As a side note, market specific analysis is also interesting regarding 
logged errors, to find area specific frequent issues. Such studies can also contribute to 
understanding why market is found to be a very important feature in data-driven CM prediction 
models (Section 7.1). 

 Lowest cost-category contains low-cost parts and parts that are customer facing. Cost categories 
5-10 and 10-15 k€ are dominated by RF coils (70%), and RF amplifiers (6%). Higher cost categories 
also often contain RF coils. Low cost parts such as DCI chassis and connector (magnet, handgrip) 
are consumed together with RF coils. 

 Given the previous, and the service cost contribution analysis to ∆𝐶𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒− 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑎𝑠𝑒𝑠: do not 

only focus on the most expensive parts, when creating models or analyzing how to further 
improve FVF. 

 Lastly, the discussed RCA solution has shown that RF Coils related cases are predicted very well. 
As these part types are also found to be dominating in the FVF analysis, such models can aid in 
identifying when these parts are required for customer calls and to be solved in one visit. 
Especially, as TPR analysis suggests that these parts do not necessarily require multiple visits per 
definition, as previously assumed. 

Fig. 31 - Changes Process - SWO 

Fig. 32 - Changes Process - On-site Repair 
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8.3 LIMITATIONS 
Although we have aimed to predict a part cluster or even specific spare parts based on machine logs 
and error occurrences based on consumed parts of prior corrective maintenance cases, it should be 
noted that only parts and errors are analyzed that have been recorded. Many different errors can 
theoretically be logged by faults that occur in different subsystems (Appendix G) but this analysis is 
based on those that have actually been registered within a predefined timeframe (Section 5.5). The 
same holds for consumed spare parts, the researcher is aware of the many different distinct 12Nc’s, 
but only those present in the subset of single visit cases are taken into account. If part consumption 
or error logging has not been properly recorded (as deemed possible from Appendix P), this will have 
gone unnoticed in previous sections. Assumed that the different MR chains and log data thereof are 
identifiable causes of the SWO’s, the researcher is unaware of other (external) factors or sporadic part 
failures having contributed to SWO’s. 
 
Given project time constraints and the very computationally intensive task of analyzing all logged 
errors within a two week period of a case open date, it was decided to focus on whether a certain 
error has been logged or not. Hence, an array of errors occurred in a MR system, corresponding to 
the one up for maintenance in a SWO; consist of errors that have occurred at least once (Section 5.5). 
As a result, error importance and weight could not be determined at this stage, by looking at how 
often certain failures have been registered and therefore might me more important than others.  
 
Moreover, all occurred errors have been taken into account, as domain knowledge was missing in 
identifying all failure modes that actually require part replacements. Some failures might just need 
on-site system or part adjustment instead of resulting in a part replacement. This information also 
was not available for all errors in scope in different data sources, such as service procedure 
documents. 
 
Lastly, the data-driven aspect of the research is currently limited to historical maintenance and 
machine, with the potential in using newly available (remote) data from June 22th, 2019 onwards. 
Ideally, the tool would be based on up-to-date information, including regularly newly introduced 
12Nc’s, system models, and potential for contribute to error and part class imbalance issues of the 
current data set. 
 

8.4 SCIENTIFIC RELEVANCE 
Along with the exploratory nature of the project for Philips, it was also exploratory with regard to 
scientific knowledge. The RCA domain is dominated by knowledge-driven methods such as 5 why’s, 
fishbone diagram or even semi-quantitative approached with use of machine learning methods 
(Section 2), again based on FSE’s expertise. Which does raise questions regarding RCA completeness, 
accuracy and bias, given the various spare- and interacting parts, and failure modes of a MRI system. 
This study has successfully shown that root causes can be identified to MR failure modes, although 
many future research possibilities lie ahead to achieve better performing prediction models and 
decision trees as performance for different optimized models does vary.  
Based on generated error log files, and service work orders data – both regarding logged consumed 
parts and customer’ system information - the study provides a methodology to assist in deriving 
meaningful failure associations in this domain. A completely data-driven RCA to assist both remote 
service engineers as well as field service engineers for on-site maintenance. Based on the deficiencies 
discussed in this theoretical background and the fact that the application of data exploration 
approaches is under-reported in the maintenance and imaging health devices literature, the need for 
a data-oriented approach for root cause analysis was imperative; for which this study serves as a proof 
of concept. 
However, to further improve scientific contribution, additional upcoming classification techniques 
such as ‘LightGBM’ and ‘CatBoost’ can be applied to study their performance for RCA and 
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improvement potential compared to more known methods used in this project. Additionally, per the 
researcher’s knowledge, market basket analysis based on the Apriori algorithm has been used to 
analyze spare part consumption and use as complementary tool for statistically significant 
associations for specific part usage. A technique often used in marketing, bioinformatics, education 
or sales, not implemented for (imaging devices) CM maintenance (Chen et al., 2004; Kaur & Kang, 
2016; Weng & Liu, 2004). 
 

8.5 FUTURE RESEARCH 
To further strengthen the study’ results, various directions for future research are provided; of which 
some reflect directly on the study limitations.  
First, although all SWO data has been used given the project scope and data cleaning restrictions over 
an almost seven year period, this was not the case actual error data for potential root cause. Mainly 
because time constraints, and already focusing on the four MR chains at hand; which would result in 
enough complexity, an important assumption is made indirectly with this decision. Only looking at 
error data from four chains, means that one assumes that a SWO root cause lies within one of these 
chains. SWO data nor other data sources elaborate on what exactly was the problem of a customer 
complaint. Hence, for additional research other chains should be included or a methodology is 
needed to identify cases with spare part consumptions that under no circumstance can be related to 
one of the chains and therefore excluded cases from the data set(s). This challenge was also apparent 
given the model assessment phase where part clusters were included and predicted in test sets that 
likely cannot be the root cause of certain chains, based on various SME discussions. 
 
Regarding the errors themselves, only errors that have occurred in a two week period before each 
case open date have been taken into account. This was decided with the project team, but still 
remains an arbitrary number. A longer period, hence more potential errors, might provide other 
model results. Another way of making sure more of the potential errors are included in the data set(s), 
is to expand the presented methodology to other MR systems, besides the current scope of Ingenia 
systems. Or, include error / fault descriptions – provided by customers or engineers – as this study 
focused on (predefined) logged numerical or string based error codes. Fault descriptions require 
intensive text mining techniques and dealing with multiple language-related issues as there is no 
standardized way of input. The latter has explicitly been decided on not to include in this study at all 
by the project team. 
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APPENDICES 
Appendix A MR TROUBLESHOOTING PROCESS 

 
Fig. 33 - MR Troubleshooting Process (complete) 
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MR Troubleshooting Process (1/2)
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MR Troubleshooting Process (2/2)  
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Appendix B R SCRIPT - DATA UNDERSTANDING 
 
# DATA UNDERSTANDING, SPC, LABOR, FVF EXTRACTED DATA 
# A. (Arash) Shahrestani 
 
# LOAD REQUIRED PACKAGES 
library(MASS) 
library(ggplot2) 
library(readxl) 
library(dplyr) 
library(moments) 
library(writexl) 
library(robustbase) 
library(tidyverse) 
library(extrafont) 
font_import()           # Importing fonts, writing font table & fontmap might take a few minutes. 
# Solely for aesthetics, not necessary to take into account, change script accordingly. 
loadfonts(device="win") # Register fonts for Windows bitmap output 
fonts()                 # Overview of available fonts. 
library("ggpubr") 
 
#Read Extracted CaseBased Data 
New_FilteredData_v2_1_sheet <- read_excel("C:/xxx.xlsx") 
View(New_FilteredData_v2_1_sheet) 
df2 <- New_FilteredData_v2_1_sheet 
 
sapply(df2, mean, na.rm=TRUE) 
df2$NumberVisits <- as.integer(df2$NumberVisits) 
 
# STRIP CHARTS 
windowsFonts(corbel = windowsFont("Corbel"))  
stripchart(df$NumberVisits ~ df$`System Type`, family = "corbel", font = 1, font.lab = 1, font.axis = 3, 
           main="Number of Visits strip chart per System Type", 
           xlab="System Type", 
           ylab="Number of Visits", 
           col="dodgerblue4", 
           cex= 0.5, 
           group.names=c("Achieva","Ingenia","Intera","Multiva"), 
           vertical=TRUE, 
           method = "jitter", 
           las = 1, 
           pch=16) 
meanVisits = tapply(df$NumberVisits,df$`System Type`,mean) 
segments(x0 = c(1,2,3,4) - 0.17,  
         y0 = meanVisits,  
         x1 = c(1,2,3,4) + 0.17,  
         y1 = meanVisits, lwd = 3, 
         col= "red") 
 
windowsFonts(corbel = windowsFont("Corbel"))  
stripchart(df$NumberVisits ~ df$Year, 
           main="Number of Visits strip chart per Year", family = "corbel", font = 1, font.lab = 1, 
font.axis = 3, 
           xlab="Year", 
           ylab="Number of Visits", 
           col="dodgerblue4", 
           group.names=c("2012","2013","2014","2015","2016","2017","2018","2019"), 
           vertical=TRUE, 
           cex= 0.5, 
           method = "jitter", 
           las = 1, 
           pch=16) 
meanVisits = tapply(df$NumberVisits,df$`System Type`,mean) 
segments(x0 = c(1,2,3,4,5,6,7,8) - 0.17,  
         y0 = meanVisits,  
         x1 = c(1,2,3,4,5,6,7,8) + 0.17,  
         y1 = meanVisits, lwd = 3, 
         col= "red")  
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Appendix C LABOR ACTIVITIES 
 

Table 30 – Labor Activity Explanation, per Labor Category 

Labor Cost Category & Codes Explanation 

Total Travel Cost  

TRAV Travel Time 

TRVL Travel Time International 

Total Corrective Maintenance Cost  

CMAI Corrective Maintenance 

DIAG Diagnostics 

FILL Filling 

MONI System Observation 

RPCL Repair Center Labor 

RTST Regulatory Testing 

SWSU Software Support 

Total Remote Cost   

APAS Remote Application Support 

RMSE Remote Service 

TESU Technical Support during Corrective Maintenance 

Total Installation Cost  

BCKO Backorder Installation 

DEIN Equipment De-Installation 

IN01 Transport / Unpacking / Mounting 

IN02 Installation 

IN03 Setting to Work 

IN04 Performance Check 

IN05 Installation Hand-Over 

LOCA 
Installation Local Addition/n-PMS; additional, non-default, option for client’ 
system 

PRCO Project Coordination 

REIN Equipment Reinstallation 

SIRE Site Readiness Activity 

UPGR Installing Upgrade 

UTRA User Training 

Total Application Cost  

APSE On-site Application Support 

BTRA Product Service Biomed      
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Appendix D ENTITY RELATION DIAGRAM 

 
Fig. 34 - Entity Relation Diagram 
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Appendix E DATA TRANSFORMATION VBA’S & SQL 
 
Transforming Part12Nc’s and Material Descriptions from record based to casebased: 
Function MYVLOOKUP(pValue As String, pWorkRng As Range, pIndex As Long) 
Dim rng As Range 
Dim xResult As String 
xResult = "" 
For Each rng In pWorkRng 
    If rng = pValue Then 
        xResult = xResult & ";" & " " & rng.Offset(0, pIndex - 1) 
    End If 
Next 
MYVLOOKUP = xResult 
End Function  
 
Additionally, an extra column has been introduced, ‘#12Nc per Case’, counting the number of parts 
used for a distinct case based on the output per case of the VBA code above: 

=(LEN(C2)) - LEN(SUBSTITUTE(C2," ",""))  
 
Average Part Cost Prices from Vertica 
SELECT DISTINCT "Development"."SPC_part_price"."Part12Nc", 
AVG("Development"."SPC_part_price"."InternalPriceAop"), COUNT ("Development"."SPC_part_price"."Part12Nc") 
AS FrequencyInPartPriceTable, "Development"."SPC_swo_material"."CaseNumber"  
 
Sum AopCurrency per Casenumber in Vertica 
SUM("Development"."SPC_swo_material"."AmountAopCurrency"), COUNT 
("Development"."SPC_swo_material"."CaseNumber") AS FrequencyInSWOMaterialTable  
 

Snippet Labor Cost Calculation in Vertica 
,sum(CASE WHEN "Development"."SPC_swo_labor"."ActivityCode" IN ( 'TRAV','TRVL') THEN 
"Development"."SPC_swo_labor"."Duration" * 100 ELSE 0 END) AS totaltravelcosts 
,sum(CASE WHEN "Development"."SPC_swo_labor"."ActivityCode" IN 
('CMAI','DIAG','FILL','MONI','RPCL','RTST','SWSU') THEN "Development"."SPC_swo_labor"."Duration" * 100 
ELSE 0 END) AS totalcmcosts 
,sum(CASE WHEN "Development"."SPC_swo_labor"."ActivityCode" IN ('APAS','RMSE','TESU') THEN 
"Development"."SPC_swo_labor"."Duration" * 100 ELSE 0 END) AS totalremotecosts 
,sum(CASE WHEN "Development"."SPC_swo_labor"."ActivityCode" IN 
('BCKO','DEIN','IN01','IN02','IN03','IN04','IN05','LOCA','PRCO','REIN','SIRE','UPGR','UTRA') THEN 
"Development"."SPC_swo_labor"."Duration" * 100 ELSE 0 END) AS totalinstallationcosts 
,sum(CASE WHEN "Development"."SPC_swo_labor"."ActivityCode" IN ('APSE','BTRA') THEN 
"Development"."SPC_swo_labor"."Duration" * 100 ELSE 0 END) AS totalapplicationcosts  
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Appendix F R SCRIPT - OUTLIER IDENTIFICATION 
# Required Packages 
library(MASS) 
library(ggplot2) 
library(readxl) 
library(dplyr) 
library(moments) 
library(writexl) 
library(robustbase) 
library(tidyverse) 
library(extrafont) 
library("ggpubr") 
font_import() # Importing fonts, writing font table & fontmap might take a few minutes. 
# Solely for aesthetics, not necessary to take into account, change script accordingly. 
loadfonts(device = "win") # Register fonts for Windows bitmap output 
fonts() # Overview of available fonts. 
 
# import data 
New_FilteredData_v2_1_sheet <- read_excel("C:/xxx/New_FilteredData_v2_1_sheet.xlsx") 
View(New_FilteredData_v2_1_sheet) 
df2 <- New_FilteredData_v2_1_sheet 
 
# Filter negative total costs, if applicable 
df <- df2 %>% filter(df2$`Total sumaop + labor` >= 0) 
 
# Skewness & Kurtosis Calculation 
skewness(df$`Total sumaop + labor`) 
kurtosis(df$`Total sumaop + labor`) 
 
# Histrogram Pre Transformation 
windowsFonts(corbel = windowsFont("Corbel")) 
hist(df$`Total sumaop + labor`, breaks = 10000, xlim = range(0:30000), main = "Histogram Total Cost all 
Systems 2012-2019 ", xlab = "Total Cost (Net Part + Labor)", col = "cornsilk1", freq = TRUE, family = 
"corbel", font = 1, font.lab = 1, font.axis = 3) 
 
# Histrogram Post Transformation 
hist(log(df$`Total sumaop + labor`), main = "Histogram log-transformed Total Cost", xlab = "log(Net Part + 
Labor Cost)", xlim = c(0, 15), ylim = c(0, 0.30), col = "cornsilk1", freq = FALSE, family = "corbel", font 
= 1, font.lab = 1, font.axis = 3) 
curve(dnorm(x, mean = mean(log(df$`Total sumaop + labor`)), sd = sd(log(df$`Total sumaop + labor`))), add 
= TRUE, col = "dodgerblue4", lwd = 2) 
 
# Histogram - Compare distributions Total Cost (Labor + Part) 
# Righ Skewed Data, Hence Log Transform 
# Three similar histograms, different amount of breaks 
windowsFonts(corbel = windowsFont("Corbel")) 
hist(log(df$`Total sumaop + labor`), main = "Histogram log-transformed Total Cost", xlab = "log(Net Part + 
Labor Cost)", xlim = c(0, 15), ylim = c(0, 0.30), breaks = 25, col = "cornsilk1", freq = FALSE, family = 
"corbel", font = 1, font.lab = 1, font.axis = 3) 
curve(dnorm(x, mean = mean(log(df$`Total sumaop + labor`)), sd = sd(log(df$`Total sumaop + labor`))), add 
= TRUE, col = "dodgerblue4", lwd = 2) 
 
windowsFonts(corbel = windowsFont("Corbel")) 
hist(log(df$`Total sumaop + labor`[df$FirstVisitFix == 0]), main = "Histogram log-transformed Total Cost, 
FVF=False", xlab = "log(Net Part + Labor Cost)", xlim = c(2.5, 15), ylim = c(0, 0.40), breaks = 25, col = 
"cornsilk1", freq = FALSE, family = "corbel", font = 1, font.lab = 1, font.axis = 3) 
curve(dnorm(x, mean = mean(log(df$`Total sumaop + labor`[df$FirstVisitFix == 0])), sd = sd(log(df$`Total 
sumaop + labor`[df$FirstVisitFix == 0]))), add = TRUE, col = "dodgerblue4", lwd = 2) 
 
windowsFonts(corbel = windowsFont("Corbel")) 
hist(log(df$`Total sumaop + labor`[df$FirstVisitFix == 1]), main = "Histogram log-transformed Total Cost, 
FVF=True", xlab = "log(Net Part + Labor Cost)", xlim = c(0, 15), ylim = c(0, 0.30), breaks = 25, col = 
"cornsilk1", freq = FALSE, family = "corbel", font = 1, font.lab = 1, font.axis = 3) 
curve(dnorm(x, mean = mean(log(df$`Total sumaop + labor`[df$FirstVisitFix == 1])), sd = sd(log(df$`Total 
sumaop + labor`[df$FirstVisitFix == 1]))), add = TRUE, col = "dodgerblue4", lwd = 2) 
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# Boxplots 
# Boxplot First Visit Fix Single/Multiple visit, non-transformed data 
par(family = "Corbel") 
boxplot((df$`Total sumaop + labor`) ~ df$FirstVisitFix, 
  xlab = "First Visit Fix", ylab = "Total Cost", 
  main = "Overall FVF ~ Total Cost per Year", 
  font = 1, 
  font.lab = 3, 
  font.axis = 6, 
  names = c("FVF Multiple Visit", "FVF Single Visit"), 
  horizontal = FALSE, 
  col = "ivory", 
  whisklty = 2, 
  outcol = "darkred", 
  staplelty = 6, 
  pch = 3, 
  cex = 0.4 
) 
 
# Boxplot First Visit Fix Single/Multiple visit, log-transformed data 
par(family = "Corbel") 
boxplot(log(df$`Total sumaop + labor`) ~ df$FirstVisitFix, 
  xlab = "First Visit Fix", ylab = "Total Cost,  log-transformed", 
  ylim = c(0, 15), 
  main = "Overall FVF ~ Total Cost per Year", 
  font = 1, 
  font.lab = 3, 
  font.axis = 6, 
  names = c("FVF Multiple Visit", "FVF Single Visit"), 
  horizontal = FALSE, 
  col = "ivory", 
  whisklty = 2, 
  outcol = "darkred", 
  staplelty = 6, 
  pch = 3, 
  cex = 0.4 
) 
 
# Boxplot Collection - Total Cost per Year for Single and Multiple Visits, all data 
par(family = "Corbel") 
boxplot(log(df$`Total sumaop + labor`) ~ df$FirstVisitFix * df$Year, 
  xlab = "Year", ylab = "Log Total (Net Part + Labor) Cost", 
  ylim = c(2, 15), 
  main = "Boxplots for Multiple and Single Visits per Year", 
  font = 1, 
  font.lab = 3, 
  font.axis = 6, 
  names = c("2012", "2012", "2013", "2013", "2014", "2014", "2015", "2015", "2016", "2016", "2017", 
"2017", "2018", "2018", "2019", "2019"), 
  horizontal = FALSE, 
  col = "ivory", 
  whisklty = 2, 
  outcol = "red", 
  staplelty = 6, 
  pch = 3, 
  cex = 0.4 
) 
 
# Additional Boxplot for Single and Multiple visit separately. 
par(family = "Corbel") 
boxplot(log(df$`Total sumaop + labor`[df$FirstVisitFix == "0"]) ~ df$Year[df$FirstVisitFix == "0"], xlab = 
"Year (Multiple Visits)", ylab = "Total (Net Part + Labor) Cost", ylim = c(0, 15), main = "Multiple Visits 
per year ~ Total Cost", pch = 3, cex = 0.4) 
par(family = "Corbel") 
boxplot(log(df$`Total sumaop + labor`[df$FirstVisitFix == "1"]) ~ df$Year[df$FirstVisitFix == "1"], xlab = 
"Year (Single Visits)", ylab = "Total (Net Part + Labor) Cost", ylim = c(0, 12), main = "Single Visits per 
year ~ Total Cost", pch = 3, cex = 0.4) 
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# Welch's t-tests 
t.test((df$TotalLaborCost[df$FirstVisitFix == "0"]), (df$TotalLaborCost[df$FirstVisitFix == "1"])) 
t.test(log(df$`Total sumaop + labor`[df$FirstVisitFix == "0"]), (log(df$`Total sumaop + 
labor`[df$FirstVisitFix == "1"]))) 
 
## CONCLUSION TWO-SAMPLE T-TEST OF EQUAL MEANS: 
# FOR FVF FALSE (0) MEAN: 2.72209 
# FOR FVF TRUE (1) MEAN: 1.00000 
# t = 303.54, df= 77632, p-value <2.2e-16 
# 95% CI: 1.710970, 1.733209 
# Field service engineers who spend multiple visits per case, on average, spend significantly more on cost 
than those that do not. 
 
# Compute the Mahalanobis distances. Present graphically. 
LognTotalCost <- log(df$`Total sumaop + labor`) # New variable logtransformed 
LognNrVis <- log(df$NumberVisits) # New variable logtransformed Nr of employees 
Combined2 <- cbind(LognNrVis, LognTotalCost) # Combine both new variables to matrix 
 
meanData2 <- colMeans(Combined2) # Mean of logtransformed 
S2 <- cov(Combined2) # covariancematrix of logtransformed 
MD2 <- mahalanobis(Combined2, meanData2, S2) # Calculating mahalanobis distance 
boxplot(MD2, main = "Mahalanobis distance") # Boxplot MD distance 
plot(Combined2, main = "Multivariate outliers") # Plot 
 
max(MD2) 
which.max(MD2) 
Combined2[which.max(MD2), ] 
df <- cbind(df, Combined2, MD2) 
 
## Q,Q Plot Normality Check 
qqnorm((LognTotalCost), main = "Normal Q-Q Plot logtransformed Total Cost", family = "corbel", font = 1, 
font.lab = 1, font.axis = 3) # Check for normality 
qqline(LognTotalCost, col = "dodgerblue4", lwd = 2) # draw line 
 
## Post Transformation Skewness & Kurtosis (Normality) Check 
skewness(log(df$`Total sumaop + labor`)) 
kurtosis(log(df$`Total sumaop + labor`)) 
 
# Export Outlier MD Calculation as .XLSX File 
write_xlsx(x = df, path = "C:/xxx/RStudioOutput.xlsx", col_names = TRUE)  
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Appendix G ERROR AND PART TYPE RE-LABELING PER CHAIN 
 

[Appendix unavailable due to confidential content]  
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Appendix H MS EXCEL, VBA SCRIPT FOR ERROR IDENTIFICATION 
 
H1. Multiple string values concatenation, given multiple conditions 
Function ConcatenateIf(CriteriaRange As Range, Condition As Variant, TimeRange As Range, TimeCondition1 As 
Variant, TimeCondition2 As Variant, ConcatenateRange As Range, Optional Separator As String = ",") As 
Variant 
 
Dim xResult As String 
On Error Resume Next 
If CriteriaRange.Count <> ConcatenateRange.Count Then 
    ConcatenateIf = CVErr(xlErrRef) 
    Exit Function 
End If 
For i = 1 To CriteriaRange.Count 
    If CriteriaRange.Cells(i).Value = Condition And TimeRange.Cells(i).Value >= TimeCondition1 And 
TimeRange.Cells(i).Value <= TimeCondition2 Then 
        xResult = xResult & Separator & " " & ConcatenateRange.Cells(i).Value 
    End If 
Next i 
If xResult <> "" Then 
    xResult = VBA.Mid(xResult, VBA.Len(Separator) + 1) 
End If 
ConcatenateIf = xResult 
End Function  
 
 
H2. Identify unique fault (string) codes; remove duplicates from concatenation 
Function RemoveDuplicateFaultCodes(txt As String, Optional delim As String = " ") As String 
    Dim x 
    With CreateObject("Scripting.Dictionary") 
        .CompareMode = vbTextCompare 
        For Each x In Split(txt, delim) 
            If Trim(x) <> "" And Not .exists(Trim(x)) Then .Add Trim(x), Nothing 
        Next 
        If .Count > 0 Then RemoveDuplicateFaultCodes = Join(.keys, delim) 
    End With 
End Function  
 
 
H3. Alphabetical fault code sorter within a cell (Adapted from Excel Forum (2012)) 
Function SortWithinCell(CelltoSort As Range, DelimitingCharacter As String, IncludeSpaces As Boolean) As 
String 
CelltoSortString = WorksheetFunction.Substitute(CelltoSort.Value, " ", "") 
MyArray = Split(CelltoSortString, DelimitingCharacter) 
    For N = 0 To UBound(MyArray) 
        For M = 1 To UBound(MyArray) 
             
                If MyArray(M) < MyArray(M - 1) Then 
                    TempValue = MyArray(M) 
                    MyArray(M) = MyArray(M - 1) 
                    MyArray(M - 1) = TempValue 
                End If 
        Next M 
    Next N 
For N = 0 To UBound(MyArray) 
    SortWithinCell = SortWithinCell & MyArray(N) & DelimitingCharacter 
Next N 
SortWithinCell = Left(SortWithinCell, Len(SortWithinCell) - 1) 
If IncludeSpaces = True Then SortWithinCell = WorksheetFunction.Substitute(SortWithinCell, ",", ", ") 
End Function  
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Appendix I R SCRIPT – STATISTICAL SIGNIFICANCE 
 
library(styler) 
library(effsize) 
 
# STATISTICAL SIGNIFICANCE  w/ SOME MD/q>3 VALUES EXLUDED, ONLY 123 VISITS 
 
# SIGNIFICANTIE CHECK OUTLIER DATASET ONLY 123 VISITS 
dfOnly123Visit <- read_excel("C:/xxx.xlsx", 
  sheet = "FilteredData+Copy+Interval.Tab5" 
) 
View(dfOnly123Visit) 
dfOnly123Visitv <- df%>% filter(df$NumberVisits<4) 
 
hist(log(dfOnly123Visit$`Total sumaop + labor`), main = "Log transformed TotalCost", xlab = 
"Logtransformed TotalCost", xlim = c(0,15)) # log transformed histogram 
boxplot(log(dfOnly123Visit$`Total sumaop + labor`) ~ dfOnly123Visit$FirstVisitFix, xlab = "First Visit 
Fix", ylab = "Total Cost") 
 
 
# SPLIT DATA SET IN SUBSETS PER YEAR 
dfOnly123Visit2013 <- dfOnly123Visit %>% filter(dfOnly123Visit$Year == 2013) 
dfOnly123Visit2014 <- dfOnly123Visit %>% filter(dfOnly123Visit$Year == 2014) 
dfOnly123Visit2015 <- dfOnly123Visit %>% filter(dfOnly123Visit$Year == 2015) 
dfOnly123Visit2016 <- dfOnly123Visit %>% filter(dfOnly123Visit$Year == 2016) 
dfOnly123Visit2017 <- dfOnly123Visit %>% filter(dfOnly123Visit$Year == 2017) 
dfOnly123Visit2018 <- dfOnly123Visit %>% filter(dfOnly123Visit$Year == 2018) 
dfOnly123Visit2019 <- dfOnly123Visit %>% filter(dfOnly123Visit$Year == 2019) 
 
 
# WELCH’ T_TEST FOR EACH YEAR ON LOG-TRANSFORMED DATA 
t.test(log(dfOnly123Visit2013$`Total sumaop + labor`[dfOnly123Visit2013$FirstVisitFix == "0"]), 
(log(dfOnly123Visit2013$`Total sumaop + labor`[dfOnly123Visit2013$FirstVisitFix == "1"]))) 
t.test(log(dfOnly123Visit2014$`Total sumaop + labor`[dfOnly123Visit2014$FirstVisitFix == "0"]), 
(log(dfOnly123Visit2014$`Total sumaop + labor`[dfOnly123Visit2014$FirstVisitFix == "1"]))) 
t.test(log(dfOnly123Visit2015$`Total sumaop + labor`[dfOnly123Visit2015$FirstVisitFix == "0"]), 
(log(dfOnly123Visit2015$`Total sumaop + labor`[dfOnly123Visit2015$FirstVisitFix == "1"]))) 
t.test(log(dfOnly123Visit2016$`Total sumaop + labor`[dfOnly123Visit2016$FirstVisitFix == "0"]), 
(log(dfOnly123Visit2016$`Total sumaop + labor`[dfOnly123Visit2016$FirstVisitFix == "1"]))) 
t.test(log(dfOnly123Visit2017$`Total sumaop + labor`[dfOnly123Visit2017$FirstVisitFix == "0"]), 
(log(dfOnly123Visit2017$`Total sumaop + labor`[dfOnly123Visit2017$FirstVisitFix == "1"]))) 
t.test(log(dfOnly123Visit2018$`Total sumaop + labor`[dfOnly123Visit2018$FirstVisitFix == "0"]), 
(log(dfOnly123Visit2018$`Total sumaop + labor`[dfOnly123Visit2018$FirstVisitFix == "1"]))) 
t.test(log(dfOnly123Visit2019$`Total sumaop + labor`[dfOnly123Visit2019$FirstVisitFix == "0"]), 
(log(dfOnly123Visit2019$`Total sumaop + labor`[dfOnly123Visit2019$FirstVisitFix == "1"]))) 
 
t.test(log(dfOnly123Visit$`Total sumaop + labor`[dfOnly123Visit$FirstVisitFix == "0"]), 
(log(dfOnly123Visit$`Total sumaop + labor`[dfOnly123Visit$FirstVisitFix == "1"]))) 
 
 
# ST DEV CALCULATIONS OF TOTAL COST FOR SINGLE/MULTIPLE VISITS PER YEAR, TRANSFORMED DATASET 
# FOR EACH SINGLE AND MULITPLE VISIT VALUE PER YEAR, USE THE FOLLOWING CODE 
# WHERE sdlog201XY: X: 3-9 (YEAR), Y: 0 OR 1 (FVF SINGLE (1) OR MULITIPLE (0) VISITS) 
 
sdlog201X0 <- sd(log(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == "0"])) 
sdlog201X1 <- sd(log(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == "1"])) 
 
# CONFIDENCE INTERVALS 95-% BASED ON NORM. DISTR LOG TRANSF. 
# FOR EACH SINGLE AND MULITPLE VISIT VALUE PER YEAR, USE THE FOLLOWING CODE 
# WHERE X: 3-9 (YEAR) 
# FORUMLA: MEAN +- z*(stDev/sqrt(N)) 
 
z <- 1.96 # GIVEN Z-VALUE FOR CI FORMULA, BASED ON 95% CI. 
 
# 201X: ORDER OUTPUT: 0 (Multiple) Upperbound, 0 Lowerbound, 1 (Single) Upperbound, 1 Lowerbound  
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mean(log(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == "0"])) + z * 
(sdlog201X0 / (sqrt(NROW(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == 
"0"]))))  #UPPERBOUND MULTIPLE VISIT 
mean(log(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == "0"])) - z * 
(sdlog201X0 / (sqrt(NROW(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == 
"0"]))))  #LOWERBOUND MULTIPLE VISIT 
mean(log(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == "1"])) + z * 
(sdlog201X1 / (sqrt(NROW(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == 
"1"]))))  #UPPERBOUND SINGLE VISIT 
mean(log(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == "1"])) - z * 
(sdlog201X1 / (sqrt(NROW(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == 
"1"]))))  #LOWERBOUND SINGLE VISIT 
 
 
# CALCULATE EFFECT SIZE COHENS D, ADDITIONAL STAT SIGN. 
# PERFORM LINE OF CODE BELOW FOR ALL YEARS SEPARATELY. 
# WHERE X: 3-9 (YEARS) 
 
cohen.d(log(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == "0"]), 
(log(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == "1"])), pooled = TRUE, 
paired = FALSE, na.rm = FALSE, hedges.correction = FALSE, conf.level = 0.95, noncentral = FALSE) 
 
 
# CALCULATE EFFECT SIZE HEDGES G, ADDITIONAL STAT SIGN. 
# PERFORM LINE OF CODE BELOW FOR ALL YEARS SEPARATELY. 
# WHERE X: 3-9 (YEARS) 
 
cohen.d(log(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == "0"]), 
(log(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix == "1"])), pooled = TRUE, 
paired = FALSE, na.rm = FALSE, hedges.correction = TRUE, conf.level = 0.95, noncentral = FALSE)  
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Appendix J R SCRIPT & OUTPUT – BCA BOOTSTRAPPED CI 
# Estimate the BCa 95% - Confidence Interval based on Total Cost for Single and Multiple Visits 
# Directly from the non – transformed data. Log transformation or normality check not needed due 
# to the nature of the method used. Any skew is also taken into account and bias corrected. 
# Additionally plot histogram of the data subset. 
# Bootstrap CI based on 10000 bootstrap replicates; X: 3-9 based on the year ranging from 2013 to 2019. 
library(boot) 
 
# 201X Multiple Visit 
Mboot201X0 = boot(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix=="0"], 
             function(x,i) mean(x[i]),  
             R=10000) 
mean(Mboot201X0$t[,1]) 
boot.ci(Mboot201X0, 
        conf = 0.95,  
        type = c("norm","bca") ) 
Mboot201X0 
hist(Mboot201X0$t[,1], 
     col = "darkgray") 
 
# 201X Single Visit 
Mboot201X1 = boot(dfOnly123Visit201X$`Total sumaop + labor`[dfOnly123Visit201X$FirstVisitFix=="1"], 
                  function(x,i) mean(x[i]),  
                  R=10000) 
mean(Mboot201X1$t[,1]) 
boot.ci(Mboot201X1, 
        conf = 0.95,  
        type = c("norm","bca") ) 
Mboot201X1 
hist(Mboot201X1$t[,1], 
     col = "darkgray") 
# Output:  

 

[Tables below unavailable due to confidential content] 
Table 31 – Statistical Significance ‘Total CM Cost’ - 3 

Year 
BCa - 95% - 

CI, Multiple Visits 
Mean Bias Standard Error 

2013     

2014     

2015     

2016     

2017     

2018     

2019     

 
Table 32 – Statistical Significance ‘Total CM Cost’ - 4 

Year 
BCa - 95% - 

CI, Single Visits 
Mean Bias Standard Error 

2013     

2014     

2015     

2016     

2017     

2018     

2019     
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Appendix K FVF FIELD METRIC ANALYSIS 
 
[Appendix unavailable due to confidential content] 
 
K.1 - First Visit Fix Rates per MR Product Group  
K.2 - Market Based CM Cases with Parts – FVF Performance  
K.3 - Top 25 – Item Frequency per Cost Interval per Single & Multiple Visit Cases, 

and Clustered Pareto’s   
K.4 - Top 25 – Chain 2 Subset – Average New Buy (Part) Price Calculation 
K.5 - Top 25 – Chain 2 New Buy Price Analysis
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Appendix L TECHNICAL PARTS REVIEW – FVF FIELD METRIC ANALYSIS ~ CHAIN 2 COIL 
 
[Appendix unavailable due to confidential content] 
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Appendix M R SCRIPT –  ERROR CODE CORRELATION 
library(readxl) 
library(ggplot2) 
library(lubridate) 
library(RColorBrewer) 
library(GGally) 
library(corrplot) 
library(graphics) 
library(questionr) 
library(htmlTable) 
library(xtable) 
library(Hmisc) 
 
# import 
ErrChain12wk <- read.transactions('C:/XXX.csv', format = 'basket', sep=';') 
ErrChain22wk <- read.transactions('C:/XXX.csv', format = 'basket', sep=';') 
ErrChain32wk <- read.transactions('C:/XXX.csv', format = 'basket', sep=';') 
 
summary(ErrChain12wk) 
summary(ErrChain22wk) 
summary(ErrChain32wk) 
ErrChain12wk  
ErrChain22wk  
ErrChain32wk  
#sep how items are separated, using ';' 
 
# Chain 1 Errors ItemFrequencyPlot 
windowsFonts(corbel = windowsFont("Corbel"))  
itemFrequencyPlot(ErrChain12wk,topN=10,type="absolute",col=brewer.pal(8,'Pastel2'), main="Absolute Error 
Frequency Plot", ylim=c(0,30), xlim=c(0,20)) 
# Contingency Table 
tblChain1 <- crossTable(ErrChain12wk, sort =TRUE) 
tblChain1 [1:9,1:9] 
 
# Chain 2 Errors ItemFrequencyPlot 
windowsFonts(corbel = windowsFont("Corbel"))  
itemFrequencyPlot(ErrChaing22wk,topN=69,type="relative",col=brewer.pal(8,'Pastel2'), main="Relative Error 
Frequency Plot", ylim=c(0,0.3), xlim=c(0,70)) 
# Contingency Table 
tblChain2 <- crossTable(ErrRF2wk, sort =TRUE) 
tblChain2 [1:69,1:69] 
 
# Chain 3 Errors ItemFrequencyPlot 
windowsFonts(corbel = windowsFont("Corbel"))  
itemFrequencyPlot(ErrChain32wk,topN=52,type="relative",col=brewer.pal(8,'Pastel2'), main="Relative Error 
Frequency Plot", ylim=c(0,0.85), xlim=c(0,60)) 
# Contingency Table 
tblChain3 <- crossTable(ErrChain32wk, sort =TRUE) 
tblChain3 [1:52,1:52] 
 
 
# Chain 1 Correlation 
chisq.residuals(tblChain1, digits = 2, std = TRUE, raw = FALSE) 
mosaicplot(tblChain1, shade = TRUE, las=2, 
           main = "Chain 1 Errors") 
cor(tblChain1) 
ggcorr(tblChain1, label=TRUE, label_alpha=TRUE) 
ggcorr(tblChain1) 
 
 
# Chain 2 Correlation 
chisq.residuals(tblChain2, digits = 2, std = TRUE, raw = FALSE) 
mosaicplot(tblChain2, shade = TRUE, las=2, 
           main = "Chain 2 Errors") 
cor(tblChain2) 
ggcorr(tblChain2, label=TRUE, label_alpha=TRUE) 
ggcorr(tblChain2)  
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# Chain 3 Correlation 
chisq.residuals(tblChain3, digits = 2, std = TRUE, raw = FALSE) 
mosaicplot(tblChain3, shade = TRUE, las=2, 
           main = "Chain 3 Errors") 
cor(tblChain3) 
ggcorr(tblChain3, label=TRUE, label_alpha=TRUE) 
ggcorr(tblChain3) 
 
## Elegant correlation table using xtable R package, Improve output of above cor(x) tables 
Chain1CorrRound <-round(cor(tblChain1),2) 
Chain2CorrRound <-round(cor(tblChain2),2) 
Chain3CorrRound <-round(cor(tblChain3),2) 
 
# - x : is the correlation matrix, - diag : if TRUE the diagonal are not included in the result 
lower.tri(Chain1CorrRound, diag = FALSE) 
upper.tri(Chain1CorrRound, diag = FALSE) 
lower.tri(Chain2CorrRound, diag = FALSE) 
upper.tri(Chain2CorrRound, diag = FALSE) 
lower.tri(Chain3CorrRound, diag = FALSE) 
upper.tri(Chain3CorrRound, diag = FALSE) 
 
#Hide lower triangle – Chain 1 
lowerChain1<- Chain1CorrRound 
lowerChain1 [lower.tri(Chain1CorrRound, diag=FALSE)]<-"" 
lowerChain1<-as.data.frame(lowerChain1) 
lowerChain1 
#Hide lower triangle – Chain 2 
lowerChain2<- Chain2CorrRound 
lowerChain2 [lower.tri(Chain2CorrRound, diag=FALSE)]<-"" 
lowerChain2<-as.data.frame(lowerChain2) 
lowerChain2 
#Hide lower triangle – Chain 3 
lowerChain3<- Chain3CorrRound 
lowerChain3 [lower.tri(Chain3CorrRound, diag=FALSE)]<-"" 
lowerChain3<-as.data.frame(lowerChain3) 
lowerChain3 
 
tableChain1 <- xtable(lowerChain1) 
htmlTable(tableChain1) 
tableChain12<- xtable(lowerChain2) 
htmlTable(tableChain2) 
tableChain13<- xtable(lowerChain3) 
htmlTable(tableChain1)  
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Appendix N ERROR CODE CORRELATION MATRIX 
 
Table 33 - C1T01 Pearson Correlation Matrix 

C1T01 E27 E29 E17 E20 E22 E23 E24 E25 

E27  -0.02 -0.03 0.37** -0.02 -0.02 -0.02 0.65**** 

E29   0.71**** -0.03 -0.02 -0.02 -0.02 -0.04 

E17    -0.04 -0.02 -0.02 -0.02 -0.04 

E20     -0.03 -0.03 -0.03 0.86**** 

E22      -0.02 -0.02 -0.03 

E23       -0.02 -0.03 

E24        -0.03 

E25         

p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) 

 
 
Table 34 - C1T05 Pearson Correlation Matrix 

C1T05  E54 E60   
E54   1.00****   
E60    

  
p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) 
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Table 35 - C1T07 Pearson Correlation Matrix 

C1T07 E08 E40 E14 E54 E16 E12 E45 E38 E01 E10 E55 E59 E15 E35 E36 E60 E03 E37 E50 E53 

E13 0.03 0.13 -0.02 -0.02 -0.02 0.19 0.11 -0.02 -0.02 -0.02 -0.02 -0.03 -0.01 -0.03 -0.02 -0.03 -0.02 -0.03 -0.02 -0.02 

E08  -0.02 0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.02 -0.02 -0.03 -0.02 -0.03 -0.02 -0.02 

E40   -0.02 -0.02 0.16 0.11 -0.01 -0.02 -0.02 -0.02 -0.02 -0.03 
0.60 
**** 

-0.03 -0.02 -0.03 -0.02 -0.03 -0.02 -0.02 

E14    -0.02 -0.02 -0.02 -0.02 0.17 -0.02 -0.02 -0.02 -0.03 -0.03 
0.46 
*** 

-0.02 -0.03 -0.02 -0.03 -0.02 -0.02 

E54     -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

E16      -0.01 -0.02 -0.03 -0.02 -0.02 -0.02 -0.04 
0.72 

**** 
-0.03 -0.02 -0.03 -0.02 -0.03 -0.02 -0.02 

E12       0.00 -0.03 -0.02 -0.02 -0.02 -0.04 0.02 -0.03 -0.02 -0.03 -0.02 -0.03 -0.02 -0.02 

E45        -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.02 -0.03 -0.02 -0.03 -0.02 -0.02 

E38         -0.02 -0.02 -0.02 -0.03 -0.04 0.05 -0.02 -0.03 -0.02 -0.03 -0.02 -0.02 

E01          -0.02 -0.02 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

E10           -0.02 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

E55            -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

E59             -0.05 -0.04 -0.03 
0.94 
**** 

-0.03 
0.75 

**** 
-0.03 -0.03 

E15              -0.04 -0.03 -0.04 -0.03 -0.04 -0.03 -0.03 

E35               -0.02 -0.03 -0.02 -0.03 -0.02 -0.02 

E36                -0.02 -0.02 -0.02 -0.02 -0.02 

E60                 -0.02 
0.48 
*** 

-0.02 -0.02 

E03                  -0.02 -0.02 -0.02 

E37                   -0.02 -0.02 

E50                    -0.02 

E53                     

p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) 
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Table 36 - C1T08 Pearson Correlation Matrix 

C1T08 E13 E08 E14 E12 E01 E54 E18 E16 E55 E15 E45 E10 E69 E38 E59 E68 E35 E49 E53 

E40 0.12 0.01 0.01 0.23 0.23 0.00 -0.02 0.06 0.13 0.02 0.04 -0.02 -0.02 0.15 0.07 -0.02 -0.02 0.15 -0.02 

E13  0.03 0.02 0.21 0.03 0.02 0.00 0.04 0.06 -0.02 0.09 -0.02 -0.02 0.07 0.15 -0.02 0.08 0.15 0.09 

E08   0.00 -0.03 0.04 0.00 0.01 0.03 -0.02 -0.02 -0.02 -0.02 0.06 0.06 -0.02 -0.02 0.08 -0.03 -0.02 

E14    -0.03 -0.02 0.03 -0.02 -0.02 -0.02 -0.02 0.04 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 

E12     0.40** 0.08 -0.03 0.26* 0.10 0.08 -0.01 -0.03 0.06 0.02 0.01 0.07 -0.02 0.70**** -0.02 

E01      -0.01 0.01 0.10 0.01 -0.01 -0.02 0.04 -0.01 0.10 -0.01 -0.01 -0.02 0.12 -0.03 

E54       -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.28* -0.02 

E18        -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.08 -0.02 -0.02 0.10 -0.03 -0.02 

E16         -0.01 -0.01 -0.02 -0.03 0.18 -0.02 -0.02 0.09 -0.02 0.07 -0.02 

E55          0.13 -0.01 -0.03 -0.03 0.11 -0.01 -0.02 -0.02 0.03 -0.02 

E15           -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 0.01 -0.02 

E45            -0.02 -0.03 -0.02 -0.01 -0.03 -0.02 -0.02 -0.01 

E10             -0.03 -0.03 -0.03 -0.02 -0.02 -0.04 -0.02 

E69              -0.03 -0.03 0.15 -0.02 0.00 -0.03 

E38               -0.01 -0.03 -0.01 -0.01 -0.02 

E59                -0.03 -0.01 0.00 -0.01 

E68                 -0.03 0.01 -0.02 

E35                  -0.03 -0.01 

E49                   -0.02 

 

(C1T08 related table continued on the next page.) 
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C1T08 E02 E11 E03 E19 E42 E50 E65 E70 

E40 -0.02 -0.03 0.35** 0.00 -0.02 -0.02 -0.02 -0.02 

E13 -0.02 -0.03 0.00 0.39** -0.02 -0.02 -0.02 -0.02 

E08 -0.02 -0.02 -0.03 -0.02 0.40** -0.02 -0.02 -0.02 

E14 -0.02 -0.02 -0.03 -0.02 -0.03 -0.02 -0.02 -0.02 

E12 -0.03 -0.04 0.48*** 0.03 0.03 -0.03 -0.03 -0.03 

E01 -0.03 -0.03 0.48*** -0.03 0.40** -0.03 -0.03 -0.03 

E54 -0.02 -0.03 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 

E18 -0.02 -0.02 -0.03 -0.02 -0.01 -0.02 -0.02 -0.02 

E16 -0.03 -0.03 0.44*** -0.02 0.00 -0.03 -0.03 -0.03 

E55 -0.02 -0.03 0.03 -0.01 -0.04 -0.02 -0.02 -0.02 

E15 -0.02 -0.03 0.00 -0.03 -0.03 -0.02 -0.02 -0.02 

E45 -0.02 -0.03 -0.03 0.01 -0.03 -0.02 -0.02 -0.02 

E10 -0.02 0.35** -0.02 -0.03 -0.01 -0.02 -0.02 -0.02 

E69 -0.02 -0.03 0.03 -0.04 -0.01 -0.02 -0.02 -0.02 

E38 -0.03 -0.03 0.03 -0.01 0.02 -0.03 -0.03 -0.03 

E59 -0.02 -0.03 -0.02 0.52**** -0.04 -0.02 -0.02 -0.02 

E68 -0.02 -0.03 0.01 -0.04 -0.04 -0.02 -0.02 -0.02 

E35 -0.02 -0.03 -0.05 0.00 0.00 -0.02 -0.02 -0.02 

E49 -0.03 -0.04 0.21 0.01 -0.05 -0.03 -0.03 -0.03 

E53 -0.02 -0.02 -0.04 0.02 -0.03 -0.02 -0.02 -0.02 

E02  -0.02 -0.04 -0.03 -0.03 -0.02 -0.02 -0.02 

E11   -0.05 -0.04 -0.04 -0.02 -0.02 -0.02 

E03    -0.06 0.09 -0.04 -0.04 -0.04 

E19     -0.05 -0.03 -0.03 -0.03 

E42      -0.03 -0.03 -0.03 

E50       -0.02 -0.02 

E65        -0.02 

E70         

p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) 
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Table 37 - C2T16 Pearson Correlation Matrix 

C2T16 E54 E103 E100 E47 E101 E97 E56 E99 E48 E50 E71 E96 E53 E63 E57 

E54  0.09 0.10 0.19 0.19 0.09 0.04 0.39*** 0.19 0.07 0.15 0.34** 0.53**** 0.40*** -0.02 

E103   -0.01 0.10 0.00 -0.01 -0.01 0.14 0.00 0.08 0.27* 0.13 0.02 0.01 -0.02 

E100    0.00 0.00 -0.01 -0.01 0.02 -0.01 -0.01 -0.01 0.02 0.03 0.02 -0.02 

E47     0.08 0.00 0.07 0.08 0.66**** 0.00 0.27* 0.05 0.31* 0.06 -0.02 

E101      0.00 -0.01 0.06 0.03 0.00 0.01 0.05 0.09 0.06 -0.02 

E97       0.20 0.02 -0.01 -0.01 -0.01 0.01 0.02 0.01 -0.02 

E56        -0.01 0.01 -0.02 -0.01 -0.01 0.01 -0.01 -0.02 

E99         0.27* 0.02 0.08 0.12 0.20 0.13 -0.02 

E48          -0.01 0.35** 0.04 0.36** 0.07 -0.03 

E50           0.01 0.02 0.01 0.01 -0.02 

E71            0.06 0.11 0.03 -0.03 

E96             0.15 0.11 -0.02 

E53              0.80**** -0.03 

E63               -0.02 

Table 38 - C2T15 Pearson Correlation Matrix 

C2T15 E116 E101 E87 E110 E85 E83 E102 E115 E91 E88 E117 E99 E89 E92 E90 E82 

E116  0.03 0.05 -0.02 -0.01 0.02 -0.01 -0.02 -0.02 -0.01 -0.02 -0.02 0.24 -0.02 -0.02 -0.02 
E101   0.09 0.19 0.64**** 0.33** 0.30* 0.05 0.02 0.15 -0.02 0.50**** -0.02 0.01 0.00 -0.02 

E87    0.16 0.01 0.27* 0.47**** -0.02 0.15 -0.01 -0.03 0.02 -0.01 0.63**** 0.33** -0.02 

E110     0.05 0.24* 0.06 -0.02 0.60**** 0.00 -0.03 0.04 -0.03 0.27* 0.00 -0.02 
E85      0.23 0.10 0.01 -0.01 0.06 -0.03 0.22 -0.03 -0.03 -0.03 -0.02 

E83       0.34** -0.02 0.49**** 0.01 -0.03 0.10 -0.03 0.31** 0.04 -0.03 

E102        -0.01 0.06 0.01 -0.03 0.28* -0.03 0.38** 0.38** -0.03 

E115         -0.03 -0.01 0.24* 0.23 -0.02 -0.04 -0.03 -0.02 

E91          -0.03 -0.03 -0.05 -0.03 0.40*** -0.01 -0.03 

E88           -0.02 0.06 -0.02 -0.04 -0.03 -0.02 

E117            0.00 -0.02 -0.04 -0.03 -0.02 

E99             -0.03 -0.02 0.01 -0.02 

E89              -0.04 -0.03 -0.02 

E92               0.19 -0.03 

E90                -0.02 

p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) 
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Table 39 - C2T05 Pearson Correlation Matrix 

C2T05 E20 E15 E28 E16 E06 E09 E11 E19 E08 E22 E30 E12 E40 E31 E44 E39 E21 E13 E38 E41 E17 E14 E42 

E20  0.17 0.09 0.10 0.10 0.11 0.05 0.01 0.16 0.07 0.09 0.04 -0.04 0.08 0.06 -0.03 0.07 0.12 -0.03 0.00 -0.02 -0.02 -0.02 

E15   0.04 
0.41 
*** 

0.04 0.12 0.06 0.06 0.00 0.23 -0.01 0.04 -0.04 0.25* 0.20 -0.03 -0.02 -0.02 -0.04 -0.02 -0.02 -0.02 -0.02 

E28    0.06 0.03 0.12 -0.02 0.07 0.12 -0.02 
0.51 
**** 

0.04 0.12 -0.02 0.14 0.08 -0.03 0.29* 0.28* 
0.71 
**** 

-0.02 -0.02 -0.02 

E16     0.01 0.17 0.09 -0.01 0.02 0.02 0.04 -0.01 -0.05 0.03 0.01 -0.03 -0.04 -0.03 -0.04 0.00 -0.02 -0.03 -0.02 

E06      0.04 -0.02 0.13 -0.01 0.09 0.00 0.05 0.06 0.19 0.17 -0.02 -0.01 0.00 -0.01 0.00 -0.02 0.00 -0.02 

E09       0.02 0.09 0.04 -0.01 0.20 -0.02 -0.02 0.00 0.01 -0.03 -0.03 0.00 0.00 0.04 -0.02 0.00 -0.02 

E11        -0.03 0.23 0.04 -0.02 0.29* 0.04 -0.02 -0.03 -0.03 -0.01 -0.04 -0.05 -0.03 -0.02 -0.03 -0.02 

E19         -0.03 0.27* 0.09 -0.02 
0.64 
**** 

0.36 
** 

0.62 
**** 

0.04 0.16 
0.43 
*** 

0.55 
**** 

0.01 -0.03 
0.67 
**** 

-0.03 

E08          -0.03 0.11 0.18 0.06 -0.03 -0.03 -0.02 -0.02 0.01 -0.01 0.05 -0.02 -0.03 -0.02 

E22           -0.04 0.17 0.29* 
0.45 
*** 

0.51 
**** 

0.28* 
0.64 
**** 

0.22 0.07 -0.05 -0.03 0.07 -0.03 

E30            -0.01 0.14 -0.03 0.15 0.02 -0.03 
0.32 
** 

0.30* 
0.31 
** 

-0.03 -0.01 -0.03 

E12             0.00 0.01 0.00 0.00 0.15 -0.02 -0.05 0.01 -0.03 -0.04 -0.03 

E40              0.13 
0.48 
**** 

0.47 
**** 

0.50 
**** 

0.56 
**** 

0.60 
**** 

0.05 -0.04 0.31* -0.04 

E31               0.60 
**** 

0.00 0.10 0.13 0.11 -0.05 -0.03 0.14 -0.03 

E44                0.05 0.17 
0.58 
**** 

0.58 
**** 

0.05 -0.04 0.27* -0.04 

E39                 0.49 
**** 

0.09 0.06 0.04 -0.03 -0.04 -0.03 

E21                  0.13 0.06 -0.04 -0.03 0.03 -0.03 

E13                   0.77 
**** 

0.16 -0.04 0.16 -0.04 

E38                    0.16 -0.04 0.26* -0.04 

E41                     -0.02 -0.03 -0.02 

E17                      -0.02 -0.01 

E14                       -0.02 

E42                        

p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) 

 
Table 40 - C2T18 Pearon Correlation Matrix 

C2T18 E01 E02 E03    
E01  1.00**** -0.02    
E02   -0.02    
E03    

   
p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) 
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Table 41 - C3T1 Pearon Correlation Matrix 

C3T1 E22 E21 E09 E14 E12 E19 E13 E17 E07 E23 E20 E05 E15 E18 E01 E02 E28 E29 

E22  0.02 
-
0.02 

-
0.05 

-0.03 
-
0.04 

-0.04 -0.04 0.11 0.06 -0.04 -0.03 -0.05 -0.04 -0.07 -0.09 -0.04 -0.04 

E21   -
0.01 

-
0.05 

-0.01 
-
0.04 

-0.05 -0.05 0.15 0.72**** -0.04 -0.03 -0.05 -0.04 -0.08 -0.08 -0.04 -0.04 

E09    -
0.05 

0.00 
-
0.05 

-0.05 -0.06 0.08 0.03 -0.05 -0.03 -0.06 -0.05 -0.09 -0.11 -0.05 -0.05 

E14     0.44** 
-
0.05 

0.86**** -0.06 -0.08 -0.08 -0.05 -0.04 0.39** -0.05 0.46*** -0.19 -0.05 -0.05 

E12      -
0.08 

0.21 -0.09 0.13 0.05 -0.08 -0.06 
0.65 
**** 

-0.08 
0.59 
**** 

-0.16 -0.08 -0.08 

E19       -0.04 0.53**** -0.06 -0.06 0.39** -0.03 -0.05 0.12 -0.08 -0.15 -0.04 -0.04 

E13        -0.05 -0.07 -0.07 -0.04 -0.03 0.42** -0.04 0.21 -0.16 -0.04 -0.04 

E17         -0.07 -0.08 0.39** -0.03 -0.06 0.73**** -0.09 -0.18 -0.05 -0.05 

E07          0.46*** -0.06 -0.04 -0.08 -0.06 -0.12 0.07 -0.06 -0.06 

E23           -0.06 -0.04 -0.08 -0.06 -0.12 -0.03 -0.06 -0.06 

E20            -0.03 -0.05 0.10 -0.08 -0.16 -0.04 -0.04 

E05             -0.04 -0.03 -0.06 -0.11 -0.03 -0.03 

E15              -0.05 0.22 -0.20 -0.05 -0.05 

E18               -0.08 -0.15 -0.04 -0.04 

E01                -0.31* -0.08 -0.08 

E02                 -0.16 -0.16 

E28                  1.00**** 

E29                   

p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) 

 
Table 42 - C3T2, T3, T4, T6 - Pearson Correlation Matrices 

C3T2 E05 E06 E03   C3T6 E61 E63 E62       
E05  0.45*** 0.01   E61  0.92**** 0.71****       
E06   0.45***   E63   0.82****       
E03    

  E62    
      

p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*)  
 

C3T3 E60      C3T4  E59      
E60 -      E59 -      
p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) 
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Table 43 - C3T5 Pearson Correlation Matrix 

C3T5 E30 E53 E54 E51 E36 E46 E47 E37 E40 E48 E35 E39 E41 E42 E43 E44 E45 E49 E52 E38 

E30  0.46 
*** 

0.59 
**** 

0.21 0.07 0.14 0.07 0.07 0.09 0.09 0.09 0.09 0.09 0.09 0. 09 0.09 0.09 0.09 0.09 -0.04 

E53   0.73 
**** 

0.18 0.13 0.19 0.13 0.14 0.16 0.16 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 -0.05 

E54    0.23 0.17 0.24 0.17 0.18 0.20 0.20 0.21 0.21 0.21 0. 21 0. 21 0. 21 0. 21 0. 21 0. 21 -0.06 

E51     0.79 
**** 

0.77 
**** 

0.79 
**** 

0.82 
**** 

0.86 
**** 

0.86 
**** 

0.87 
**** 

0.87 
**** 

0.87 
**** 

0.87 
**** 

0.87 
**** 

0.87 
**** 

0.87 
**** 

0.87 
**** 

0.87 
**** 

0.02 

E36      0.80 
**** 

0.84 
**** 

0.87 
**** 

0.91 
**** 

0.91 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.04 

E46       0.80 
**** 

0.82 
**** 

0.86 
**** 

0.86 
**** 

0.88 
**** 

0.88 
**** 

0.88 
**** 

0.88 
**** 

0.88 
**** 

0.88 
**** 

0.88 
**** 

0.88 
**** 

0.88 
**** 

0.02 

E47        0.87 
**** 

0.91 
**** 

0.91 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.92 
**** 

0.04 

E37         0.94 
**** 

0.94 
**** 

0.95 
**** 

0.95 
**** 

0.95 
**** 

0.95 
**** 

0.95 
**** 

0.95 
**** 

0.95 
**** 

0.95 
**** 

0.95 
**** 

0.35* 

E40          0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.05 

E48           0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.99 
**** 

0.05 

E35            1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

0.06 

E39             1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

0.06 

E41              1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

0.06 

E42               1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

0.06 

E43                1.00 
**** 

1.00 
**** 

1.00 
**** 

1.00 
**** 

0.06 

E44                 1.00 
**** 

1.00 
**** 

1.00 
**** 

0.06 

E45                  1.00 
**** 

1.00 
**** 

0.06 

E49                   1.00 
**** 

0.06 

E52                    0.06 

E38                     

p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) 
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Table 44 - C4T01 Pearson Correlation Matrix 

C4T01 E34 E06 E28 E26 E08 E01 E04 E22 E25 E17 E41 E10 E02 

E44 0.62**** 0.62**** 0.57*** 0.55*** 0.58*** 0.59**** 0.43** 0.60**** 0.46** 0.52*** 0.67**** 0.44** 0.53*** 

E13 0.63**** 0.64**** 0.59**** 0.58*** 0.63**** 0.61**** 0.48** 0.68**** 0.54*** 0.59**** 0.67**** 0.51*** 0.58*** 

E43 0.66**** 0.65**** 0.57*** 0.57*** 0.65**** 0.59**** 0.47** 0.63**** 0.48** 0.53*** 0.64**** 0.40* 0.50** 

E30 0.57*** 0.66**** 0.59**** 0.50** 0.60**** 0.57*** 0.47** 0.58**** 0.55*** 0.55*** 0.59**** 0.48** 0.55*** 

E20 0.59**** 0.57*** 0.51*** 0.43** 0.55*** 0.63**** 0.41** 0.55*** 0.50** 0.58**** 0.50** 0.41** 0.56*** 

E16 0.62**** 0.64**** 0.60**** 0.54*** 0.61**** 0.57*** 0.60**** 0.62**** 0.55*** 0.55*** 0.62**** 0.55*** 0.56*** 

E21 0.59**** 0.56*** 0.50** 0.42** 0.54*** 0.62**** 0.36* 0.53*** 0.52*** 0.59**** 0.50** 0.39* 0.54*** 

E03 0.60**** 0.59**** 0.57*** 0.55*** 0.58*** 0.60**** 0.46** 0.61**** 0.54*** 0.56*** 0.57*** 0.47** 0.50** 

E29 0.62**** 0.61**** 0.59**** 0.60**** 0.63**** 0.60**** 0.49** 0.65**** 0.53*** 0.57*** 0.63**** 0.58*** 0.55*** 

E33 0.60**** 0.61**** 0.56*** 0.53*** 0.62**** 0.53*** 0.44** 0.55*** 0.42** 0.48** 0.63**** 0.43** 0.45** 

E46 0.49** 0.47** 0.43** 0.42** 0.48** 0.44** 0.32* 0.46** 0.31 0.33* 0.52*** 0.35* 0.27 

E09 0.60**** 0.61**** 0.61**** 0.61**** 0.62**** 0.62**** 0.45** 0.66**** 0.59**** 0.62**** 0.62**** 0.50** 0.54*** 

E32 0.60**** 0.59**** 0.57*** 0.62**** 0.60**** 0.63**** 0.45** 0.62**** 0.55*** 0.58*** 0.55*** 0.53*** 0.55*** 

E39 0.59**** 0.59**** 0.57*** 0.55*** 0.59**** 0.55*** 0.45** 0.58*** 0.47** 0.48** 0.64**** 0.44** 0.44** 

E34  0.57*** 0.57*** 0.49** 0.58**** 0.50** 0.42** 0.55*** 0.44** 0.48** 0.55*** 0.41* 0.49** 

E06   0.54*** 0.54*** 0.59**** 0.53*** 0.45** 0.57*** 0.47** 0.53*** 0.56*** 0.47** 0.49** 

E28    0.54*** 0.55*** 0.57*** 0.50** 0.57*** 0.60**** 0.63**** 0.49** 0.64**** 0.62**** 

E26     0.53*** 0.63**** 0.45** 0.61**** 0.59**** 0.65**** 0.49** 0.64**** 0.56*** 

E08      0.55*** 0.46** 0.56*** 0.49** 0.64**** 0.50** 0.46** 0.50** 

E01       0.44** 0.61**** 0.70**** 0.75**** 0.45** 0.71**** 0.70**** 

E04        0.38* 0.45** 0.42** 0.39* 0.45** 0.43** 

E22         0.57*** 0.71**** 0.53*** 0.54*** 0.60**** 

E25          0.80**** 0.36* 0.79**** 0.85**** 

E17           0.39* 0.75**** 0.79**** 

E41            0.33* 0.34* 

E10             0.81**** 

p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) 

 
(C4T01 related table continued on the next page.) 
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C4T01 E14 E19 E15 E47 E12 E18 E11 E07 E23 E24 E40 E36 

E44 0.44** 0.49** 0.42** 0.57*** 0.29 0.27 0.23 0.33* 0.18 
0.61 
**** 

0.33* 0.50** 

E13 0.48** 
0.61 

**** 
0.50** 

0.66 
**** 

0.39* 0.38* 0.34* 0.48** 0.29 
0.53 
*** 

0.56 
*** 

0.53 
*** 

E43 0.43** 0.50** 0.37* 
0.63 
**** 

0.30 0.28 0.19 0.35* 0.18 
0.64 
**** 

0.26 
0.56 
*** 

E30 0.50** 0.55*** 0.50** 
0.58 
**** 

0.44** 0.37* 0.31 0.41** 0.35* 
0.57 
*** 

0.33* 0.56*** 

E20 0.42** 0.48** 0.35* 0.49** 0.30 0.30 0.15 0.28 0.25 
0.69 
**** 

0.36* 0.34* 

E16 0.57*** 0.53*** 0.46** 0.54*** 0.42** 0.39* 0.33* 0.48** 0.30 
0.51 
** 

0.24 0.40* 

E21 0.42** 0.43** 0.35* 0.44** 0.30 0.28 0.18 0.33* 0.19 
0.61 
**** 

0.26 0.34* 

E03 0.44** 0.45** 0.44** 
0.60 
**** 

0.41** 0.34* 0.27 0.40* 0.16 
0.58 
**** 

0.26 
0.63 
**** 

E29 0.53*** 0.57*** 0.50** 
0.59 
**** 

0.42** 0.40* 0.37* 0.49** 0.30 
0.58 
*** 

0.26 
0.64 
**** 

E33 0.46** 0.46** 0.32* 
0.60 
**** 

0.26 0.22 0.13 0.36* 0.16 
0.51 
*** 

0.23 0.42** 

E46 0.24 0.35* 0.23 0.41* 0.13 0.09 0.01 0.29 0.11 
0.60 
**** 

0.34* 0.32* 

E09 0.50** 
0.62 
**** 

0.50** 0.58*** 0.43** 0.46** 0.38* 0.45** 0.31 
0.59 
**** 

0.25 
0.64 
**** 

E32 0.56*** 0.55*** 0.43** 0.54*** 0.44** 0.42** 0.30 0.47** 0.39* 
0.72 

**** 
0.19 0.41** 

E39 0.49** 0.48** 0.38* 0.56*** 0.29 0.28 0.24 0.36* 0.26 
0.58 
**** 

0.20 
0.64 
**** 

E34 0.40* 0.46** 0.38* 0.54*** 0.28 0.22 0.15 0.25 0.27 
0.63 
**** 

0.21 0.42** 

E06 0.47** 0.55*** 0.44** 0.52*** 0.32* 0.34* 0.25 0.43** 0.30 0.50** 0.38* 0.45** 

E28 
0.58 
**** 

0.53*** 0.56*** 0.50** 0.54*** 0.51*** 0.47** 0.50** 
0.44 
** 

0.54 
*** 

0.17 0.42** 

E26 0.52*** 
0.59 
**** 

0.52*** 0.45** 0.51*** 
0.53 
*** 

0.48** 0.56*** 
0.43 
** 

0.45** 0.14 0.43** 

E08 0.55*** 
0.61 

**** 
0.47** 0.51*** 0.41** 0.37* 0.27 0.32* 0.39* 0.51*** 0.19 0.45** 
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E01 
0.60 
**** 

0.56*** 0.57*** 0.45** 
0.59 
**** 

0.62 
**** 

0.49** 
0.63 
**** 

0.51 
*** 

0.59 
**** 

0.17 0.40* 

E04 0.45** 0.53*** 0.40* 0.37* 0.41** 0.45** 0.33* 0.27 0.45** 0.33* 0.08 0.33* 

E22 0.51*** 
0.60 
**** 

0.49** 0.55*** 0.47** 0.44** 0.39* 
0.65 
**** 

0.29 0.50** 0.38* 0.48** 

E25 
0.74 

**** 
0.58*** 

0.81 
**** 

0.33* 
0.88 
**** 

0.81 
**** 

0.77 
**** 

0.69 
**** 

0.68 
**** 

0.39* 0.06 0.36* 

E17 
0.66 
**** 

0.71 
**** 

0.68 
**** 

0.43** 
0.72 

**** 
0.70 

**** 
0.63 
**** 

0.67 
**** 

0.60 
**** 

0.43** 0.12 0.38* 

E41 0.35* 0.46** 0.29 0.51*** 0.19 0.14 0.13 0.25 0.11 0.49** 0.26 0.50** 

E10 
0.75 

**** 
0.57*** 

0.78 
**** 

0.32* 
0.82 
**** 

0.81 
**** 

0.78 
**** 

0.76 
**** 

0.71 
**** 

0.34* 0.07 0.28 

E02 
0.78 

**** 
0.57*** 

0.77 
**** 

0.37* 
0.81 
**** 

0.80 
**** 

0.73 
**** 

0.65 
**** 

0.66 
**** 

0.40* 0.12 0.29 

E14  0.54*** 
0.77 

**** 
0.29 

0.78 
**** 

0.72 
**** 

0.75 
**** 

0.63 
**** 

0.68 
**** 

0.32* 0.01 0.29 

E19   0.55*** 0.42** 0.55*** 0.57*** 0.48** 0.41* 
0.62 
**** 

0.37* 0.17 
0.60 
**** 

E15    0.24 
0.87 

**** 
0.83 

**** 
0.84 
**** 

0.66 
**** 

0.72 
**** 

0.24 0.06 0.31 

E47     0.17 0.15 0.09 0.24 0.06 0.47** 0.26 0.49** 

E12      0.92 
**** 

0.89 
**** 

0.68 
**** 

0.80 
**** 

0.19 -0.05 0.24 

E18       0.87 
**** 

0.69 
**** 

0.79 
**** 

0.17 -0.04 0.23 

E11        0.68 
**** 

0.75 
**** 

0.04 -0.07 0.22 

E07         0.43 
** 

0.23 0.26 0.22 

E23          0.14 -0.09 0.12 

E24           0.19 0.41** 

p < .0001 (****); p < .001 (***), p < .01 (**), p < .05 (*) 
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Appendix O FREQUENT PATTERN – GROWTH OUTPUT 
Frequent Pattern (FP) Graphs of Chain 3 and Chain 4 are shown in the figures below, which show the 
frequent error patterns of respective chains based on the final data set of single visit cases. These 
overviews validate the Pearson correlation calculations between distinct errors within chains. More 
detailed output, in terms of metrics, are provided in the corresponding section in the report, while 
the figures below only show the confidence values per found association. No error – sequence 
patterns were found for Chain 1 and Chain 2. 
 
=== Run information === Relation:     *error matrix .csv file* Instances:    10518 *number of cases* Attributes:   
200 *number of distinct errors* === Associator model (full set) === FPGrowth found 16 rules (displaying top 16) 
 

 
Fig. 35 - FP Growth Graph, Chain 4 - Single Visit Observed Errors (n=16 rules) (re-labeled) 

 

 
Fig. 36 - FP Growth Graph, Chain 3 - Single Visit Observed Errors (n=16 rules) (re-labeled) 
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Appendix P ERROR DISTRIBUTION & LOGFILE AVAILABILITY 
From the Section 5.9 we know about error’ behavior; if different errors are correlated, or independent 
from each other, and how to cluster certain errors. However, error distribution is also important; if 
any out of the ordinary happens with the amount of distinct errors over time. This section focusses 
on the failures per chain over time, and what potential causes can be for striking observations. 
 
Error Distribution – Failures over time 
Table 45 includes the number of cases within the scope of the project per chain along with the amount 
of distinct chain related errors occurred per year. Again, note that the distinct errors are observed 
over a two-week period before any case open date. In terms of absolute numbers nothing strange 
can be observed, only that the total number of distinct errors increases slightly for chain 1, almost 
doubles for chain 2, and increases drastically for the remaining two chains. However, this seems to 
be in line with (similar factor) increase in number of cases for corresponding chain. Normalizing this 
data and determining the average number of distinct errors per case, provides a more interesting 
insight. The first three chains have a (relative) steady average over time (1.1, 1.2, and 1.6 respectively), 
but the last chain has a sudden factor two increase for the years 2016 and 2017. This is a surprising 
observation and needs further investigation. Two potential factors contributing to more observed 
(distinct) errors have been identified together with SME’s, based on our data sources: 1) Log File 
Availability, and 2) Software Release related causes; which will be the focus of the next section. 
 

Table 45 - Case, Distinct Error Count, and Avg. Errors per Chain ~ Year 

  
Count of Cases with Chain X Errors 

(Number of Occurred Chain X Errors) 
[Avg. #Distinct Chain X Errors per Case] 

  Chain 1 Chain 2 Chain 3 Chain 4 

2013 2.1% (2.2%) [1.1] 1.1% (1.2%) [1.3] 1.5% (1.5%) [1.5] 3.6% (2.3%) [1.4] 

2014 12% (12%) [1.1] 5.6% (6.8%) [1.2] 7.5% (7.8%) [1.6] 8.7% (5.9%) [1.4] 

2015 0.8% (0.8%) [1.1] 16% (15%) [1.1] 12% (11%) [1.5] 12% (7.2%) [1.3] 

2016 24% (24%) [1.1] 30% (29%) [1.1] 19% (19%) [1.5] 30% (36%) [2.5] 

2017 29% (27%) [1.1] 25% (26%) [1.2] 29% (30%) [1.6] 39% (44%) [2.4] 

2018 24% (28%) [1.1] 16% (17%) [1.2] 23% (22%) [1.6] 5.6% (4%) [1.5] 

2019 7.7% (7%) [1.1] 5.7% (4.9%) [1.2] 8% (8.2%) [1.6] 1.2% (0.9%) [1.6] 

Total 100% (100%) 100% (100%) 100% (100%) 100% (100%) 

 
Logfile Availability 
In order to determine the log file availability 

per case (and corresponding) system, using 

Vertica table "MR_etl5_dailylog", the number 

of daily logs are counted during the same two-

week period in which error data was analyzed. 

As we are interested how complete the error 

data is, we only want to know the amount of 

days with uploaded log files. This is 

important, as MR systems can upload 

multiple log files per day. Hence, for each case 

and system log file availability rate is 

determined based on a maximum of 14 days 

(Fig. 37).  Fig. 37 - Timeline Analyzed LogFileAvailability 
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Unfortunately, daily log and error data in 
Vertica have different data sources. For an 
unknown reason, daily log data is not 
always pushed to or pulled from the 
corresponding table, appearing that no log 
files have been registered for a certain day, 
while in fact error data has been retrieved 
for those days (originated from another 
data source). Resulting in only 16k of 17k 
cases in the final dataset having daily log 
related data available, hence further 
conclusions are based on a more than 
acceptable 94.00% of total log file 
availability. Most of the cases have 100% 
daily log count, as data has been logged 
for all fourteen days (Fig. 38). Overall, 
average daily log count equals 89.22%. 
Detailed numbers, per country and 
market, are available in 0. 
 
Based on these numbers, an increase in 
logged (distinct) errors can potentially be 
explained by the overall increased log file 
availability (of 5-10%) in the years 2016 
and 2017, and (significant) increases of 
these numbers for certain markets. A clear 
negative trend is observed in average 
missing daily log files overall, with only (on 
average) 1 day with missing data for these 
years. To understand which markets 
specifically contribute to the (factor 2) 
increase of average distinct errors per 
case, see 0 for specifics. 
 
As a second contributing factor, it is 
hypothesized that the sudden increase in 
average number of chain 4 errors is due to 
software releases; introduced or installed 
at the time of errors observed. This 
analysis is based on 12k out of 17k cases as 
historic release numbers per SRN over 
time are only available in 
“MR_etl5_dailylog”, which only contains 
release information from 2016-2019. 
“ISDA_medical_view” is explicitly not 
used, as it only provides the latest/current 
release version for each system. This data 
is preprocessed and aggregated such that 
‘service packs’ are not considered, along 
with a few cases with two or more 
observed 

 
 

 
 

 
 

 
Fig. 38 - Log file Availability - Error Codes 
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For the years of 2016 and 2017, v4.1, v5.1, and to some extend v5.2 were dominant in the software 
distribution over MR systems in our dataset (while having the highest average number of errors on 
case-basis), while higher releases and amount of corresponding cases were (almost) nonexistent is 
this time-period. More recently (2018-2019), the amount of chain 4 errors and cases drastically 
decreases, while newer releases are introduced and corresponding errors occur, as depicted in Fig. 
38. Although we can conclude that software release can be a contributing factor to increased average 
error in 2016-2017, nothing explicit can be said about the average amount of distinct errors per case, 
per year, for each release. On aggregate, this stays relatively constant over time. 

  

 

Fig. 39 - Errors per Software Release 
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Average Number of Distinct PATSUP Errors / Case, 
based on a two-week period before CaseOpenDate

releases within the analyzed time period (6%), 
and consolidated region-specific releases 
which are labeled with a different release, but 
effectively the same as another release 
number. Fig. 39 shows a decrease in average 
distinct chain 4 errors per case, as new software 
releases are introduced; a decline from 2.89 to 
1.25. Also within a release, a decline is observed 
as new versions or service packs are released. 
Since these releases are mostly Ingenia related 
we could conclude, that new software results in 
fewer chain 4 errors per case. 
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Appendix Q LOG FILE AVAILABILITY PER MARKET & COUNTRY 
 
[Appendix unavailable due to confidential content] 
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Appendix R AVERAGE DISTINCT C4 ERROR PER CASE, PER MARKET 
 

 
[Appendix unavailable due to confidential content] 
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Appendix S FINAL PART CLUSTERS & CLASS IMBALANCE 
Table 46 - PartCluster (Class) Distribution per Data(sub)set 

Defined Part Cluster New Label 

# Single Cases in Final Dataset 

All Cases 
Chain 1 
Cases 

Chain 2 
Cases 

Chain 3 
Cases 

Chain 4 
Cases 

 PartCluster1 144 8 17 23 54 

 PartCluster10 686 38 81 107 302 

 PartCluster11 283 4 101 26 60 

 PartCluster12 348 17 53 49 146 

 PartCluster13 295 19 35 44 132 

 PartCluster14 101 3 11 14 47 

 PartCluster15 585 27 71 91 280 

 PartCluster2 446 64 59 52 165 

 PartCluster3 483 23 48 82 223 

 PartCluster4 702 52 106 95 316 

 PartCluster5 671 22 66 92 357 

 PartCluster6 363 18 56 56 164 

 PartCluster7 27 - 3 3 13 

 PartCluster8 94 1 8 30 19 

 PartCluster9 1724 84 228 251 786 

      

 

 

Fig. 40 - Class Imbalance per Chain subset 
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Appendix T R SCRIPT – RANDOM FOREST 
library(UBL) 
library(DMwR) 
library(caret) 
library(randomForest) 
library(forcats) 
library(pacman) 
library(party) 
 
# General script for one of the data subsets for cases with errors of a specific chain 
dataRFC1ErrorsNewClust <- read.csv("C:/…/XXX.csv", header = TRUE) 
str(dataRFC1ErrorsNewClust) 
dataRFC1ErrorsNewClust$parts <- as.factor(dataRFC1ErrorsNewClust$parts) 
dataRFC1ErrorsNewClust$SystemModel <- as.factor(dataRFC1ErrorsNewClust$SystemModel) 
dataRFC1ErrorsNewClust$Priority <- as.factor(dataRFC1ErrorsNewClust$Priority) 
dataRFC1ErrorsNewClust$IntervalTotalCost <- 
as.factor(dataRFC1ErrorsNewClust$IntervalTotalCost) 
dataRFC1ErrorsNewClust$Market <- as.factor(dataRFC1ErrorsNewClust$Market) 
dataRFC1ErrorsNewClust$EntitlementType <- as.factor(dataRFC1ErrorsNewClust$EntitlementType) 
 
# Data Partition 
set.seed(33) 
ind3 <- sample(2, nrow(dataRFC1ErrorsNewClust), replace=TRUE, prob = c(0.7, 0.3)) 
trainRFC1ErrorNew <- dataRFC1ErrorsNewClust[ind3==1,] 
testRFC1ErrorNew <- dataRFC1ErrorsNewClust[ind3==2,] 
table(trainRFC1ErrorNew$parts) 
trainC1_smote <- SMOTE(parts~., trainRFC1ErrorNew, k=5, perc.over = 6500, perc.under = 7000) 
summary(trainC1_smote$parts) 
summary(trainRFC1ErrorNew$parts) 
trainC1_upSAM <- upSample(trainRFC1ErrorNew, trainRFC1ErrorNew$parts) 
summary(trainC1_upSAM$parts) 
summary(trainRFC1ErrorNew$parts) 
trainC1_underSAM <- downSample(trainRFC1ErrorNew, trainRFC1ErrorNew$parts) 
summary(trainC1_underSAM) 
 
trainRFC1New <- droplevels(trainRFC1ErrorNew) 
trainRFC1New$parts <- factor(trainRFC1ErrorNew$parts) 
str(trainRFC1New) 
trainRFC1NewSMOTE <- droplevels(trainC1_smote) 
trainRFC1NewSMOTE$parts <- factor(trainRFC1NewSMOTE$parts) 
str(trainRFC1NewSMOTE) 
trainRFC1NewUPSAM <- droplevels(trainC1_upSAM) 
trainRFC1NewUPSAM$parts <- factor(trainRFC1NewUPSAM$parts) 
str(trainRFC1NewUPSAM) 
trainC1_upSAM 
trainRFC1NewUPSAM2 <- trainRFC1NewUPSAM[,-60] 
trainRFC1NewDOWNSAM <- droplevels(trainC1_underSAM) 
trainRFC1NewDOWNSAM$parts <- factor(trainRFC1NewDOWNSAM$parts) 
str(trainRFC1NewDOWNSAM) 
trainRFC1NewDOWNSAM2 <- trainRFC1NewDOWNSAM[,-60] 
str(trainRFC1NewDOWNSAM2) 
 
# Train Models 
rf_C1chainnew <- randomForest(parts~., data=trainRFC1New, ntree = 1000) 
print(rf_C1chainnew) 
attributes(rf_C1chainnew) 
rf_C1chainnewSMOTE <- randomForest(parts~., data=trainRFC1NewSMOTE, ntree = 1000,  
na.action=na.roughfix) 
print(rf_C1chainnewSMOTE) 
attributes(rf_C1chainnewSMOTE)  
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rf_C1chainnewUPSAM2 <- randomForest(parts~., data=trainRFC1NewUPSAM2, ntree = 1000) 
print(rf_C1chainnewUPSAM2) 
attributes(rf_C1chainnewUPSAM2) 
 
# Prediction & Confusion Matrix - train data 
p3 <- predict(rf_C1chainnew, trainRFC1New) 
p7 <- predict(rf_C1chainnewSMOTE, trainRFC1NewSMOTE) 
p9 <- predict(rf_C1chainnewUPSAM2, trainRFC1NewUPSAM2) 
confusionMatrix(p3, trainRFC1New$parts) 
confusionMatrix(p7, trainRFC1NewSMOTE$parts) 
confusionMatrix(p9, trainRFC1NewUPSAM2$parts) 
 
# Prediction & Confusion Matrix - test data 
testRFC1ErrorNew2 <-droplevels(testRFC1ErrorNew) 
testRFC1ErrorNew2 <- factor(testRFC1ErrorNew2$parts) 
testRFC1ErrorNew2Smote <- droplevels(testRFC1ErrorNew) 
testRFC1ErrorNew2Smote <- factor(testRFC1ErrorNew2$parts) 
testRFC1ErrorNew2Smote <-factor(testRFC1ErrorNew2Smote$parts, 
levels=levels(trainRFC1NewSMOTE$parts)) 
# […] CHECK OCCURING VALUES OR CLASSES PER VARIABLE VIA 
table(testRFC1ErrorNew2Smote$parts) 
# […] 
table(trainRFC1NewSMOTE$Market) 
 
# CHECK LEVEL DIFFERENCE OR BETWEEN TRAIN & TEST SET AND FIX ACCORDINGLY, BELOW EXAMPLES 
levels(testRFC1ErrorNew2Smote$parts) <- c(levels(testRFC1ErrorNew2Smote$parts), 
"PartCluster1", "PartCluster8") 
levels(testRFC1ErrorNew2Smote$SystemModel) <- factor(testRFC1ErrorNew2Smote$SystemModel, 
levels=levels(trainRFC1NewSMOTE$SystemModel)) 
levels(testRFC1ErrorNew2Smote$IntervalTotalCost) <- 
c(levels(testRFC1ErrorNew2Smote$IntervalTotalCost), "7") 
levels(testRFC1ErrorNew2Smote$IntervalTotalCost) <- 
factor(testRFC1ErrorNew2Smote$IntervalTotalCost, 
levels=levels(trainRFC1NewSMOTE$IntervalTotalCost)) 
levels(testRFC1ErrorNew2Smote$Market) <- c(levels(testRFC1ErrorNew2Smote$Market), "6", "8") 
# […] SAME LEVEL CHECK OF FACTOR VARIABLES AS ABOVE 
testRFC1ErrorNew2UPSAM <- droplevels(testRFC1ErrorNew) 
testRFC1ErrorNew2UPSAM <- factor(testRFC1ErrorNew2UPSAM$parts) 
 
p4 <- predict(rf_C1chainnew, testRFC1ErrorNew) 
CMC1 <- confusionMatrix(p4, testRFC1ErrorNew$parts) 
p8 <- predict(rf_C1chainnewSMOTE, testRFC1ErrorNew2Smote) 
CMC1SMOTE <- confusionMatrix(p8, testRFC1ErrorNew2Smote$parts) 
p9 <- predict(rf_C1chainnewUPSAM2, testRFC1ErrorNew2UPSAM) 
CMC1UP <- confusionMatrix(p9, testRFC1ErrorNew2UPSAM$parts) 
as.matrix(CMC1SMOTE, what = "overall") 
as.matrix(CMC1SMOTE, what = "classes") 
 
# Error rate of Random Forest 
plot(rf_C1chainnew)  # IDEM: / plot(rf_C1chainnewSMOTE)  / plot(rf_C1chainnewUPSAM2) 
 
# Feature Importaince Plot - Vairable Gain 
varImpPlot(rf_C1chainnewUPSAM2, sort = T, n.var=20,main="Variable Importance Random Forest C1 
Upsampling") 
varImpPlot(rf_C1chainnewSMOTE, sort = T, n.var=20,main="Variable Importance Random Forest C1 
SMOTE") 
varImpPlot(rf_C1chainnew, sort = T, n.var=20,main="Variable Importance Random Forest C1") 
 
ctree_model <-  ctree(parts ~ ., data = trainRFC1NewSMOTECTREE5) 
plot(ctree_model, main="Conditional Inference Tree C1 data")   
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Appendix U R SCRIPT – XGBOOST 
 
library(keras) 
library(tensorflow) 
library(xgboost) 
library(ade4) 
library(readr) 
library(stringr) 
library(caret) 
library(car) 
library(data.table) 
library(onehot) 
library(dplyr) 
library(MLmetrics) 
library(mltest) 
library(DiagrammeR) 
 
# General script for one of the data subsets for cases with errors of a specific chain 
casesC1 <- read.csv("C:/…/XXX.csv", header = TRUE) 
features = colnames(casesC1) 
set.seed(456) 
casesC1$parts<-as.factor(casesC1$parts) 
summary(casesC1) 
 
trainC1 <- casesC1 
trainObsC1 <- sample(nrow(trainC1), .7*nrow(trainC1), replace = FALSE) 
testObsC1 <- sample(nrow(trainC1), .3*nrow(trainC1), replace = FALSE) 
train_datC1 <- trainC1[trainObsC1,] 
test_datC1 <- trainC1[testObsC1,] 
train_labsC1 <- as.numeric(train_datC1$parts)-1 
test_labsC1 <- as.numeric(test_datC1$parts)-1 
 
new_trainC1 <- model.matrix(~. +0, data=train_datC1[,-1]) 
new_testC1 <- model.matrix(~. +0, data=trainC1[testObsC1, -1]) 
xgb_trainC1 <- xgb.DMatrix(data=new_trainC1, label=train_labsC1) 
xgb_testC1 <- xgb.DMatrix(data=new_testC1, label=test_labsC1) 
 
numberOfClassesC1 <- length(unique(casesC1$parts)) 
numberOfClassesC1 
paramsC1 <- list(booster="gbtree", objective ="multi:softprob", num_class=numberOfClassesC1, 
eval_metric="mlogloss", eta=0.03, silent = 1) 
xgbcvC1 <- xgb.cv(params=paramsC1, data=xgb_trainC1, nrounds=500, nfold=10, showsd=TRUE, 
stratified=TRUE, print_every_n=10, early_stop_round=10, maximize=FALSE, prediction=TRUE) 
 
plot(xgbcvC1$evaluation_log$train_mlogloss_mean, main = "Train Log Loss - Mean per XGBoost 
Model", xlab="Number of Rounds", ylab="Log Loss Value", type="l", col="blue", ylim=c(0.2,3)) 
lines(#mlogloss evaluation plots for other chains/datasubsets 
legend("topright", legend = c("C1 (Cases w/ C1 Errors)","C2 (Cases w/ C2 Errors)","C3 (Cases 
w/ C3 Errors)","C4 (Cases with C4 Errors)","AllChains"), 
col=c("blue","red","green","orange","purple"), lty=1:2, cex=0.9) 
 
classification_errorC1 <- function(conf_matC1) { 
  conf_matC1=as.matrix(conf_matC1) 
  errorC1 = 1-sum(diag(conf_matC1))/sum(conf_matC1) 
  return(errorC1) 
} 
xgb_train_predsC1 <- data.frame(xgbcvC1$pred) %>% mutate(max = max.col(., ties.method="last"), 
label = train_labsC1 + 1) 
head(xgb_train_predsC1)  
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xgb_conf_matC1 <- table(true = (train_labsC1 + 1), pred=xgb_train_predsC1$max) 
cat("XGB  Training C1 Classification Error Rate", classification_errorC1(xgb_conf_matC1), 
"\n") 
xgb_conf_mat_C1_2 <- 
confusionMatrix(factor(xgb_train_predsC1$label,levels=1:14),factor(xgb_train_predsC1$max, 
levels=1:14), mode = "everything") 
print(xgb_conf_mat_C1_2) 
 
xgb_modelC1 <- xgb.train(params = paramsC1, data = xgb_trainC1, nrounds = 1000) 
xgb_test_predsC1 <- predict(xgb_modelC1, newdata = xgb_testC1) 
 
xgb_test_outC1 <- matrix(xgb_test_predsC1, nrow = 15, ncol = length(xgb_test_predsC1) / 15) 
%>%  
  t() %>% 
  data.frame() %>% 
  mutate(max = max.col(., ties.method = "last"), label = test_labsC1 + 1) 
 
xgb_test_confC1 <- table(true = test_labsC1 + 1, pred = xgb_test_outC1$max) 
xgb_test_confC1 
cat("XGB Validation C1 Classification Error Rate:", classification_errorC1(xgb_test_confC1), 
"\n") 
 
xgb_test_confC1_2 <- confusionMatrix(factor(xgb_test_outC1$label,levels=1:15), 
factor(xgb_test_outC1$max,levels=1:15),mode = "everything") 
print(xgb_test_confC1_2) 
Accuracy(xgb_test_outC1$label, xgb_test_outC1$max) 
mlTestC1 <- ml_test(xgb_test_outC1$max, xgb_test_outC1$label, output.as.table = TRUE) 
min(mlTestC1$#SELECT REQUIRED METRIC) 
max(mlTestC1$#SELECT REQUIRED METRIC) 
mean(mlTestC1$#SELECT REQUIRED METRIC) 
 
bstC1 <-xgb_modelC1 
xgb.plot.tree(model = bstC1, trees = 0, show_node_id = TRUE)        
importance_matrixC1 <- xgb.importance(NULL, model=bstC1,trees = seq(from=1, length.out=100)) 
xgb.plot.importance(importance_matrixC1, top_n = 20)  
 

 
Fig. 41 - Log Loss Training Set XGBoost Models 
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Appendix V R SCRIPT – SUPPORT VECTOR MACHINES 
library(caTools) 
library(e1071) 
library(xlsx) 
library(gdata) 
library(recipes) 
library(caret) 
 
datasetC1SVM = read.csv('C:/xxx.csv') 
# [...] 
 
# General script below based on one model, for a specific chain. 
# Applicable for other subsets as well, to create the other SVM models, either lineary or 
poly. 
 
## LINEAR SVM ## 
## C1 SVM & PARAMETER TUNED 
## Split dataset into two parts: 70% for training and 30% for testing  
set.seed(234) 
splitC1SVM = sample.split(datasetC1SVM$parts, SplitRatio = 0.70) 
training_setC1SVM = subset(datasetC1SVM, splitC1SVM == TRUE) 
test_setC1SVM = subset(datasetC1SVM, splitC1SVM == FALSE)  
yC1SVM <- test_setC1SVM$parts 
test_setC1SVM 
 
## Create SVM Model with training dataset  
modelC1SVM <- svm(training_setC1SVM$parts ~ ., data = training_setC1SVM, type = 'C-
classification',kernel = 'linear',scale=FALSE, probability=TRUE, cross=10, gamma=0.1) 
print(modelC1SVM) 
summary (modelC1SVM) 
 
## Use model to predict the test dataset for accuracy of model  
predC1SVM <- predict(modelC1SVM,test_setC1SVM) 
table(predC1SVM, yC1SVM) 
 
## Compute decision values and probabilities  
predC1SVM <- predict(modelC1SVM, test_setC1SVM, decision.values = TRUE, probability = TRUE) 
attr(predC1SVM, "probabilities") 
 
CMC1SVM = table(test_setC1SVM[,1],predC1SVM) 
CMC1SVM 
confusionMatrix(CMC1SVM) 
 
## Parameter Tuning for SVM, Grid, based on Cost and Gamma variables 
## New model performance is determined based on the best model and input variables 
linear.tuneC1 <- tune.svm(parts~., data=training_setC1SVM, type = 'C-classification', 
kernel="linear", scale=FALSE, probability=TRUE, cross=10, cost=c(0.001, 0.01, 0.1, 0.5, 1), 
gamma=c(0, 0.1, 0.2, 0.3, 0.4, 0.5)) 
summary(linear.tuneC1) 
best.linearC1 <- linear.tuneC1$best.model 
tune.testC1 <- predict(best.linearC1, newdata=test_setC1SVM) 
CMC1SVM_tuned <- table(tune.testC1, test_setC1SVM$parts) 
confusionMatrix(CMC1SVM_tuned) 
 
## POLY SVM ## 
## Similar script as above, change kernel to ‘polynomial’.  
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Appendix W R SCRIPT – MARKET BASKET ANALYSIS, ASSOCIATION MINING 
 
library(arules) 
library(arulesViz) 
library(tidyverse) 
library(readxl) 
library(knitr) 
library(ggplot2) 
library(lubridate) 
library(plyr) 
library(dplyr) 
library(extrafont) 
font_import()            
loadfonts(device="win") 
 
#read excel into R dataframe 
UsedParts12Nc <- read_excel('C:/XXX.xlsx') 
 
# Pre-processing 
# Complete cases(data) will return a logical vector indicating which rows have no missing values. 
UsedParts12Nc2 <- UsedParts12Nc[complete.cases(UsedParts12Nc), ] 
# Mutate function from dplyr package. It is used to edit or add new columns to dataframe. 
# Here Description column is being converted to factor column. 
# as.factor converts column to factor column. %>% is an operator with which you may pipe values 
# to another function or expression 
UsedParts12Nc %>% mutate(MaterialDescription = as.factor(MaterialDescription)) 
UsedParts12Nc %>% mutate(Part12Nc = as.factor(Part12Nc)) 
UsedParts12Nc %>% mutate(Country = as.factor(Country)) 
 
# Converts character data to date. Store CMDate as date in new variable 
UsedParts12Nc$Date <- as.Date(UsedParts12Nc$Date) 
# IF NEEDED, Extract time from CMDate and store in another variable 
CMDate<- format(UsedParts12Nc$Date,"%mm:%dd:%yyy") 
# Convert and edit CaseNumber into numeric 
CaseNumber <- as.numeric(as.character(UsedParts12Nc$CaseNumber)) 
 
# Bind new columns CMDate and CaseNumber into dataframe retail 
cbind(UsedParts12Nc,CMDate) 
cbind(UsedParts12Nc,CaseNumber) 
# get a glimpse of your data 
glimpse(UsedParts12Nc) 
 
# Transform data from single format to basket data 
library(plyr) 
transactionData <- ddply(UsedParts12Nc,c("CaseNumber"), 
                         function(df1)paste(df1$MaterialDescription, 
                                            collapse = ";")) 
transactionData2 <- ddply(UsedParts12Nc,c("CaseNumber"), 
                          function(df1)paste(df1$Part12Nc, 
                                             collapse = ";")) 
# The R function paste() concatenates vectors to character and separated results using 
# collapse=[ optional character string ]. Here ';' is used 
 
# As CaseNumber will not be of any use in the rule mining, set to NULL. 
# Set column CaseNumber of dataframe transactionData   
transactionData2$CaseNumber <- NULL 
#Rename column to Part Description 
colnames(transactionData2) <- c("Part Description") 
#Show Dataframe transactionData 
transactionData2  #Basket Data 
write.csv(transactionData2,"C:/XXX/MaterialDescripton_Basket_Data.csv", quote = FALSE, row.names = FALSE) 
 
# [...]  
# IF Data needs to be imported, via: 
transactionsImport <- read.transactions('C:/XXX.csv', format = 'basket', sep=';') 
# Inspect 
transactionsImport 
summary(transactionsImport)   
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# Density tells the percentage of non-zero cells in a sparse matrix. 
# The total number of items that are purchased divided by a possible number of items in that matrix. 
# Calculate how many items were purchased by using density: transactions x items x density 
 
# Element describes: 
# How many transactions there have been for 1-itemset, for 2-itemset etc. 
# First row: number of items, second row: the number of transactions. 
# e.g. 120197 transactions for 1 item, 36710 transactions with two items, etc. 
 
# [...] 
 
# Absolute/Relative Frequency Plot 
# Create an item frequency plot for the top X items, for a specific dataset 
if (!require("RColorBrewer")) { 
  # install color package of R 
  install.packages("RColorBrewer") 
  #include library RColorBrewer 
  library(RColorBrewer) 
} 
windowsFonts(corbel = windowsFont("Corbel"))  
a <- 
itemFrequencyPlot(transactionsImportSubset,topN=X,xlim=c(0,17),ylim=c(0,1.0),type="relative",col=brewer.pa
l(8,'Pastel2'),main="Relative Frequency Plot X, ...", cex.lab=1.2, cex.axis=1.1, cex.main=1.1, 
cex.sub=1.3) 
tblX <- crossTable(transactionsImportSubset, sort=TRUE) 
tblX[1:11,1:11] 
tableX <- xtable(tblX[1:11,1:11]) 
htmlTable(tableX) 
diag(as.matrix(tableX[,])) 
FrequencyX <- diag(as.matrix(tableX[,])) 
barlabels(a,FrequencyX, pos=3, prop=1.1, cex=1.0, border=FALSE, xpad=0, ypad=0, 
bg=ifelse(match(par("bg"),"transparent",0),"transparent",par("bg"))) 
 
# [...] 
 
# Contingency Table 
tbl <- crossTable(transactionsImport, sort =TRUE) 
tbl[1:11,1:11] 
crosstableX <- crossTable(transactionsImport, sort =TRUE) 
diagcrosstableX <- diag(crosstableX) 
diagcrosstableX 
write.xlsx((diagcrosstableX), file = "XXX.xlsx") 
 
# Shows number of occasions when these items were purchased together. 
# Items sorted by frequency of purchase (note decreasing counts diagonal) 
crossTable(transactionsImport, measure='lift',sort=T)[1:11,1:11] 
crossTable(transactionsImport, measure='chi') 
# low p-value would exclude possibility that lift less than 1 is due to chance. 
# If absolute it will plot numeric frequencies of each item independently. 
# If relative it will plot how many times these items have appeared as compared to others. 
 
# [...] 
 
# APRIORI ALGORITHM 
association.rulesfinal <- apriori(transactionsImport, parameter = list(supp=0.0001, 
conf=0.0001,minlen=1,maxlen=5, target='rules')) 
summary(association.rulesfinal) 
inspect(association.rulesfinal[1:200]) 
subsetvalue <- "NVC COIL-1.5" 
association.rulesfinal_subsetlhs <- subset(association.rulesfinal,(lhs %pin% c(subsetvalue))) 
association.rulesfinal_subsetrhs <- subset(association.rulesfinal,(rhs %pin% c(subsetvalue))) 
summary(association.rulesfinal_subsetlhs) 
summary(association.rulesfinal_subsetrhs) 
inspect(association.rulesfinal_subsetlhs, by='lift', decrease=T) 
inspect(association.rulesfinal_subsetrhs, by='lift', decrease=T) 
 
windowsFonts(corbel = windowsFont("Corbel"))  
itemFrequencyPlot(transactionsImport,(subset=items %in% (subsetvalue)),topN=30, 
type="relative",col=brewer.pal(8,'Pastel2'),main="Relative Item Frequency Plot, Subset")  
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# In case there is a suspicion for spurious correlation: ChiSquared test 
quality(association.rulesfinal)$chi <- interestMeasure(association.rulesfinal, measure='chi', 
significance=T, transactionsImport) 
inspect(sort(association.rulesfinal, by='lift', decreasing = T)[1:30]) 
inspect(subset(association.rulesfinal, subset=items %in% (subsetvalue) & confidence >.01), by='lift', 
decreasing=T) 
inspect(subset(association.rulesfinal, subset=items %pin% ("subsetvalue") & confidence >.01), by='lift', 
decreasing=T) 
subsetfinal <-inspect(subset(association.rulesfinal, subset=items %pin% (subsetvalue) & confidence >.001), 
by='lift', decreasing=T) 
 
shorter.association.rulesfinal <- apriori(transactionsImport, parameter = list(supp=0.001, 
conf=0.1,maxlen=10)) 
summary(shorter.association.rulesfinal) 
inspect(shorter.association.rulesfinal[1:30]) 
 
shorter.association.rulesfinallhs <- apriori(transactionsImport, parameter = list(supp=0.001, 
conf=0.1,maxlen=10)) 
summary(shorter.association.rulesfinallhs) 
inspect(shorter.association.rulesfinallhs[1:30]) 
 
shorter.association.rulesfinalrhs <- apriori(transactionsImport, parameter = list(supp=0.001, 
conf=0.1,maxlen=10)) 
summary(shorter.association.rulesfinalrhs) 
inspect(shorter.association.rulesfinalrhs[1:30]) 
 
# [...] 
 
# Filter rules with confidence greater than X% 
subRules<-association.rulesfinal[quality(association.rulesfinal)$confidence>0.001] 
subRules3<-association.rulesfinal_subsetlhs[quality(association.rulesfinal_subsetlhs)$confidence>0.01] 
subRules5<-association.rulesfinal_subsetrhs[quality(association.rulesfinal_subsetrhs)$confidence>0.01] 
summary(subRules) 
summary(subRules3) 
# NOTE: subRules = complete data set, subRules 3 & 5 = LHS & RHS (resp.) given specific part subset 
 
# Plot SubRules 
plot(subRules, jitter=0, main="Scatter Plot Rules") 
plot(subRules, jitter=0, interactive = TRUE) 
plot(subRules, measure = c("support", "lift"), shading = "confidence", jitter=0, main="Scatter Plot X") 
 
plot(subRules,method="two-key plot",jitter=0) 
plot(subRules,method="two-key plot",jitter=0, interactive=TRUE) 
 
# Check for Rule significant, as discussed in report based on Fisher Exact Test. 
is.significant(subRules,transactionsImport, method='fisher', adjust='bonferroni') 
inspect(subRules[is.significant(subRules,transactionsImport, method='fisher', adjust='bonferroni')]) 
subRules9 <- (subRules[is.significant(subRules,transactionsImport, method='fisher', adjust='bonferroni')]) 
 
plot(subRules9, jitter=0, main="Scatter Plot X, Significant") 
plot(subRules9, jitter=0) 
plot(subRules9, measure = c("support", "lift"), shading = "confidence", jitter=0, main="Scatter Plot X, 
Significant") 
plot(subRules9,method="two-key plot",jitter=0, main="Two-Key Plot X, Significant") 
plot(subRules9,method="two-key plot",jitter=0, interactive=TRUE) 
 
# Also check for significance for lhs and rhs subsetvalue subsets and assign new subRules name 
quality(subRules6)$chi <- interestMeasure(subRules6, measure='chi', significance=T, transactionsImport) 
inspect(sort(subRules6, by='lift', decreasing = T)[1:10]) 
 
is.significant(subRules4,transactionsImport, method='fisher', adjust='bonferroni') 
inspect(subRules4[is.significant(subRules4,transactionsImport, method='fisher', adjust='bonferroni')]) 
subRules42 <- (subRules4[is.significant(subRules4,transactionsImport, method='fisher', 
adjust='bonferroni')]) 
 
subRules44 <- (subRules43[is.significant(subRules43,transactionsImport, method='fisher', 
adjust='bonferroni')]) 
summary(subRules44) 
inspect(subRules44)  
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is.significant(subRules6,transactionsImport, method='fisher', adjust='bonferroni') 
inspect(subRules6[is.significant(subRules4,transactionsImport, method='fisher', adjust='bonferroni')]) 
subRules62 <- (subRules6[is.significant(subRules4,transactionsImport, method='fisher', 
adjust='bonferroni')]) 
 
# Plot lhs and rhs Rules 
plot(subRules3, jitter=0) 
plot(subRules3,method="two-key plot",jitter=0) 
 
plot(subRules5, jitter=0) 
plot(subRules5,method="two-key plot",jitter=0) 
 
# Filter top 20 rules with highest lift 
subRules2<-head(subRules, n=20, by="confidence") 
plot(subRules2, method="paracoord") 
plot(subRules2, method = "graph",  engine = "htmlwidget") 
library(arulesViz) 
plot(subRules2,method="graph",engine='interactive',shading=NA) 
 
subRules4<-head(subRules3, n=20, by="confidence") 
plot(subRules42, method="paracoord", reorder=TRUE) 
plot(subRules42, method = "graph",  engine = "htmlwidget") 
library(arulesViz) 
plot(subRules4,method="graph",engine='interactive',shading=NA) 
inspect(subRules3) 
 
subRules6<-head(subRules5, n=20, by="confidence") 
plot(subRules6, method="paracoord", reorder=TRUE) 
plot(subRules6, method = "graph",  engine = "htmlwidget") 
library(arulesViz) 
plot(subRules6,method="graph",engine='interactive',shading=NA) 
 
# Grouped matrix plot 
plot(subRules4, method="grouped") 
sel <- plot(subRules6, method="grouped", interactive=TRUE)  
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Appendix X EXAMPLE OUTPUT OPTIMIZED XGBOOST MODEL – CHAIN 2 
The following figure shows part of the multi-classification model output, obtained from the XGBoost prediction model for Chain 2 with the 15 different part 
clusters, based on the test set data. The labels in the figure represent the different clusters, ranging from X1 to X15. The model outputs a predicted part 
cluster based on the class with the highest probability (max) and compares this to the actual class (label). The revised parameters of the XGBoost model are: 
rounds = 1000, max-depth = 6, colsample_bytree = 0, eta = 0.01, gamma = 0. 
For example, given the following input: 

# ConsumedParts SystemModel Priority Market EntitlementType CxTyEz … C2T05E09 … C2T05E15 … C2T05E20 

10 PartCluster9 2 5 7 1 0 … 1 … 1 … 1 

The following prediction is made: 
# X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 max label 

10 0.0001 0.1131 0.0000 0.0001 0.0002 0.0001 0.0276 0.0033 0.8134 0.0321 0.0009 0.0087 0.0002 0.0000 0.0002 9 9 

Snippet model output: 
Table 47 - XGBoost Output Example 

# X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 max label 

1 0.0105 0.3386 0.0004 0.3088 0.0141 0.0015 0.0031 0.0004 0.0003 0.0082 0.0063 0.0006 0.0001 0.0008 0.3063 2 15 

2 0.0002 0.0019 0.7229 0.0001 0.0287 0.0014 0.0009 0.0002 0.0008 0.0003 0.0016 0.0002 0.0006 0.0004 0.2398 3 3 

3 0.0003 0.0029 0.0010 0.0014 0.0004 0.0010 0.0001 0.0001 0.0076 0.0003 0.0031 0.0021 0.0002 0.0002 0.9790 15 15 

4 0.0005 0.0069 0.0003 0.0008 0.0003 0.0042 0.4356 0.0063 0.4261 0.0268 0.0273 0.0638 0.0002 0.0003 0.0006 7 9 

5 0.0002 0.8648 0.0000 0.0999 0.0004 0.0001 0.0014 0.0003 0.0007 0.0259 0.0025 0.0016 0.0000 0.0003 0.0019 2 2 

6 0.0005 0.0057 0.0026 0.0007 0.0012 0.0167 0.0937 0.0031 0.0803 0.2622 0.4842 0.0469 0.0001 0.0001 0.0020 11 10 

7 0.0002 0.1213 0.0008 0.2347 0.0075 0.0004 0.0002 0.0024 0.0009 0.0179 0.0008 0.0200 0.0002 0.0003 0.5925 15 15 

8 0.0003 0.0001 0.2561 0.0010 0.0761 0.0016 0.0003 0.0023 0.0002 0.0009 0.0002 0.0015 0.0001 0.0001 0.6593 15 15 

9 0.0018 0.0034 0.0002 0.0034 0.0035 0.0056 0.3484 0.1433 0.0026 0.1088 0.0215 0.3421 0.0002 0.0037 0.0115 7 1 

10 0.0001 0.1131 0.0000 0.0001 0.0002 0.0001 0.0276 0.0033 0.8134 0.0321 0.0009 0.0087 0.0002 0.0000 0.0002 9 9 

11 0.0001 0.0003 0.8851 0.0001 0.0007 0.0001 0.0002 0.0002 0.0013 0.0014 0.0059 0.0004 0.0002 0.0000 0.1041 3 3 

12 0.0003 0.0002 0.0008 0.0000 0.0115 0.0001 0.0000 0.0001 0.0011 0.0000 0.0001 0.0002 0.0001 0.0038 0.9816 15 3 

13 0.0005 0.1664 0.0001 0.0006 0.0001 0.0063 0.5484 0.0352 0.0767 0.1433 0.0151 0.0069 0.0001 0.0001 0.0002 7 2 

14 0.0001 0.0017 0.0000 0.0003 0.0001 0.0004 0.0385 0.0089 0.8601 0.0015 0.0004 0.0873 0.0000 0.0001 0.0007 9 9 

15 0.0013 0.0133 0.0015 0.1672 0.1824 0.0003 0.0115 0.0123 0.0001 0.1867 0.0177 0.2062 0.0031 0.0039 0.1925 12 12 

16 0.0002 0.0054 0.0000 0.0008 0.0002 0.0234 0.2959 0.0224 0.3411 0.2731 0.0081 0.0278 0.0013 0.0001 0.0001 9 9 

17 0.0309 0.7535 0.0011 0.1173 0.0023 0.0014 0.0032 0.0039 0.0200 0.0308 0.0275 0.0007 0.0004 0.0013 0.0056 2 2 

18 0.0753 0.0011 0.0006 0.0003 0.0001 0.0013 0.0019 0.8534 0.0048 0.0426 0.0016 0.0126 0.0014 0.0029 0.0002 8 8 

19 0.7624 0.0002 0.0000 0.0002 0.0001 0.0023 0.0030 0.0199 0.0042 0.1809 0.0121 0.0136 0.0006 0.0001 0.0004 1 1 



129 

Appendix Y FINAL MODEL VISUALIZATION & FEATURE IMPORTANCE 
 
Y.1 XGBoost – Feature Importance - Cover 

 
Fig. 42 - Feature Importance XGBoost Models - Cover 

 

Y.2 Decision Rule Visualization – Pruned Decision Trees: 

 
Chain 1 – Part Cluster 2 

 
Fig. 43 - Decision Tree C1, PC2 
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Chain 2 – Part Cluster 7, 9, 11 – Alternative View 

 
Decision Tree C2, PC7,9,11 Alternative 

 
Chain 3 – Part Cluster 15 
As discussed in corresponding section in the results chapter, while validating the model results, a SME 
elaborated on Part Cluster 1 being the cluster with spare parts that would be expected for chain 3 
maintenance cases. From model results it was clear that this part cluster was very underrepresented 
in the model’ dataset and seems to perform relatively poorly contrary to acceptable performance 
metrics. Validation with RSE’s showed that parts often used for this chain come from other clusters, 
as maintenance for such cases often does not require to replace the whole unit, but separate 
components suffice as well. Hence, the decision tree for part cluster 15 is displayed here based on 
chain 3 data set, instead of part cluster 1.  

 
Fig. 44 - Decision Tree C3, PC15 
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Fig. 45 - Decision Tree C2, PC7,9,11 
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Fig. 46 - Decision Tree C4, PC5
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Chain 4 – Part Cluster 5 – Alternative View 

 
Decision Tree C4, PC5 Alternative 
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Y.3 Decision Rule Visualization – Decision Tree, Feature Importance 
 

 

 
Above feature importance graphs are generated for the decision trees presented in X.2. Hence the 
feature importance for C1, C2, C3, and C4 (subset) cases are based Part Cluster 2, (7, 9, 11), 15, and 5 
respectively.  

Fig. 47 - Decision Trees, Feature Importance 
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Appendix Z PART CLUSTER, MARKET ANALYSIS 
For the purpose of illustrating that not all part clusters (PC’s) are consumed in all markets, as part of the XGBoost – Feature Importance, below an overview is given where 
‘x’ indicates that (spare) parts from PC’s have been consumed during cases from a specific market. Some PC’s are consumed significantly more often than other PC’s in 
markets; an interesting observation for future analysis regarding replacement behavior and machine usage. For this overview, confidential consumptions numbers suffice.  

Table 48 - Part Cluster usage per Market 

Data subset Part Cluster (PC) 
Market (M) 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 

Chain 1 Cases 

PC 1 x  x      x x x    
PC 2 x x x x x x x  x x x x  x 

PC 3 x x x x x x x x x  x x  x 

PC 4 x x x x x  x  x x x   x 

PC 5 x x x x x  x x x x x x  x 

PC 6   x x x x x  x  x   x 

PC 7               
PC 8   x            
PC 9 x x x x x x x x x x x x  x 

PC 10 x x x x  x x  x x x x  x 

PC 11 x  x    x       x 

PC 12  x x  x  x x x x x   x 

PC 13 x x x  x x x  x x x    
PC 14   x   x         
PC 15 x x   x x   x   x x x x   x 

Chain 2 Cases 

PC 1 x x x   x       x   x       

PC 2 x x x x x  x  x  x x  x 

PC 3 x x x  x x x  x x x x x x 

PC 4 x x x x x x x x x x x x  x 

PC 5 x x x x x x  x x x x x  x 

PC 6 x x x x  x x x x  x x   
PC 7   x      x   x   
PC 8   x x      x  x x  
PC 9 x x x x x x x x x x x x  x 

PC 10 x x x x x x x  x x x x x x 

PC 11 x x x x x x x x x x x x x x 

PC 12 x x x x x x x x x x x x  x 

PC 13 x x x x   x x x  x    
PC 14   x x x  x  x  x    
PC 15 x x x x x x x   x x x x   x 
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Data subset Part Cluster (PC) 
Market (M) 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 

Chain 3 
Cases 

PC 1 x x x x         x x x x     

PC 2 x x x  x  x  x  x x  x 

PC 3 x x x x x  x x x x x x x x 

PC 4 x  x x x x x x x x x x  x 

PC 5 x x x x x x x x x x x x x x 

PC 6 x x x x x x x x x x x  x x 

PC 7   x      x      
PC 8 x  x  x  x x x x x x   
PC 9 x x x x x x x x x x x x x x 

PC 10 x x x x x x x x x x x x  x 

PC 11 x x x x   x  x   x   
PC 12 x x x x x x x  x  x x x  
PC 13 x x x x x  x  x x x x   
PC 14   x x x x x  x  x    
PC 15 x x x x x x x x x   x x   x 

Chain 4 
Cases 

PC 1 x x x x x  x x x x x x x x 

PC 2 x x x x x x x x x x x x x x 

PC 3 x x x x x x x x x x x x x x 

PC 4 x x x x x x x x x x x x  x 

PC 5 x x x x x x x x x x x x x x 

PC 6 x x x x x x x  x x x x x x 

PC 7  x x x     x  x   x 

PC 8 x x x     x x  x    
PC 9 x x x x x x x x x x x x x x 

PC 10 x x x x x x x x x x x x  x 

PC 11 x x x x x  x  x  x   x 

PC 12 x x x x x x x x x x x x  x 

PC 13 x x x x x x x x x  x x  x 

PC 14 x x x x  x x x x  x   x 

PC 15 x x x x x x x x x x x x x x 
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Appendix AA CONFUSION MATRICES XGBOOST 
This appendix includes the confusion matrices for the created XGBoost models for part clusters (PC) for the four different chains. 
* represent specific classes that are not included in the test set for the corresponding XGBoost model, due to random splitting the dataset. 

Table 49 - Chain 1, test.confusion.matrix XGBoost 
Reference: 

Prediction: 
PC1 PC2 PC3 PC4 PC5 PC6 * PC7 PC8 PC9  PC10 PC11 PC12 PC13 * PC14 PC15 

Part Cluster 1 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 
Part Cluster 2 0 13 0 1 0 0 0 1 0 1 0 0 0 0 0 
Part Cluster 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
Part Cluster 4 0 0 0 2 0 0 0 1 0 0 0 0 0 3 0 
Part Cluster 5 0 0 0 0 4 0 0 2 0 0 0 2 0 2 0 
Part Cluster 6 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Part Cluster 7 0 1 0 1 0 0 3 0 0 0 0 0 0 0 0 
Part Cluster 8 0 0 0 0 0 0 0 15 0 1 0 0 0 0 0 
Part Cluster 9 0 1 0 0 0 0 0 0 5 0 0 0 0 1 0 
Part Cluster 10 1 0 0 0 0 0 0 0 0 13 0 0 0 0 0 
Part Cluster 11 0 0 0 0 0 0 2 0 0 4 7 0 0 0 0 
Part Cluster 12 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 
Part Cluster 13 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Part Cluster 14 1 1 0 0 0 0 0 1 0 0 0 0 0 17 0 
Part Cluster 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 

 
Table 50 - Chain 2, test.confusion.matrix XGBoost 

Reference: 
Prediction: 

PC1 PC2 PC3 PC4 PC5 PC6 * PC7 PC8 PC9  PC10 PC11 PC12 PC13 * PC14 PC15 

Part Cluster 1 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
Part Cluster 2 1 22 0 0 0 0 3 1 2 0 0 0 0 0 1 
Part Cluster 3 0 0 27 0 0 0 0 0 0 0 0 1 0 0 4 
Part Cluster 4 0 1 0 8 0 0 0 0 0 0 0 1 0 0 1 
Part Cluster 5 0 1 0 0 4 0 0 0 0 1 0 0 0 0 0 
Part Cluster 6 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Part Cluster 7 0 0 0 0 0 0 15 0 0 4 0 0 0 0 1 
Part Cluster 8 0 0 0 0 0 0 1 12 0 1 0 0 0 0 1 
Part Cluster 9 0 0 1 0 0 0 2 2 12 0 0 0 0 0 0 
Part Cluster 10 0 1 0 0 1 0 3 0 0 15 0 0 0 0 0 
Part Cluster 11 0 0 0 0 0 0 3 1 0 2 10 0 0 0 0 
Part Cluster 12 0 0 0 0 0 0 0 0 0 2 1 12 0 0 0 
Part Cluster 13 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Part Cluster 14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Part Cluster 15 0 4 4 1 2 0 0 0 0 2 0 2 0 0 61 
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Table 51 - Chain 3, test.confusion.matrix XGBoost 
Reference: 

Prediction: 
PC1 PC2 PC3 PC4 PC5 PC6 * PC7 PC8 PC9  PC10 PC11 PC12 PC13 * PC14 PC15 

Part Cluster 1 2 0 0 0 0 0 0 0 0 0 0 1 0 0 2 
Part Cluster 2 0 22 0 2 1 0 0 1 0 0 1 0 0 0 2 
Part Cluster 3 0 0 0 4 0 0 0 0 0 0 0 0 0 0 2 
Part Cluster 4 0 2 0 7 0 0 1 0 0 0 0 1 0 1 5 
Part Cluster 5 1 1 0 0 3 0 0 0 0 0 0 0 0 0 3 
Part Cluster 6 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Part Cluster 7 0 1 0 0 0 0 15 1 2 1 1 0 0 0 0 
Part Cluster 8 0 1 0 0 0 0 4 8 3 1 0 0 0 0 1 
Part Cluster 9 1 1 0 0 0 0 2 0 16 0 1 1 0 0 2 
Part Cluster 10 0 2 0 0 0 0 5 0 3 15 4 0 0 0 2 
Part Cluster 11 0 0 0 0 0 0 3 0 2 0 13 0 0 0 4 
Part Cluster 12 0 4 0 1 0 0 2 0 4 3 1 6 0 0 2 
Part Cluster 13 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Part Cluster 14 0 0 0 0 0 0 1 0 0 1 0 1 0 7 0 
Part Cluster 15 0 3 2 3 0 0 0 0 0 1 0 0 0 0 64 

 

Table 52 - Chain 4, test.confusion.matrix XGBoost 
Reference: 

Prediction: 
PC1 PC2 PC3 PC4 PC5 PC6 * PC7 PC8 PC9  PC10 PC11 PC12 PC13 * PC14 PC15 

Part Cluster 1 7 1 0 1 0 0 2 0 3 3 0 0 0 0 4 
Part Cluster 2 0 55 0 2 0 0 8 0 4 5 2 2 0 1 7 
Part Cluster 3 0 0 7 0 0 0 0 0 0 0 0 0 0 0 16 
Part Cluster 4 0 7 0 23 0 0 0 1 0 0 1 3 0 0 10 
Part Cluster 5 1 3 0 1 21 0 1 1 0 0 0 0 0 0 5 
Part Cluster 6 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Part Cluster 7 2 2 0 2 0 0 37 3 10 12 9 1 0 0 3 
Part Cluster 8 0 0 0 0 0 0 3 25 7 9 9 1 0 0 3 
Part Cluster 9 1 1 0 0 0 0 11 2 39 13 4 0 0 0 2 
Part Cluster 10 4 12 0 0 0 0 9 2 7 58 9 3 0 0 4 
Part Cluster 11 2 2 0 0 1 0 7 1 10 16 46 4 0 0 3 
Part Cluster 12 0 3 0 1 1 0 3 0 3 2 3 23 0 0 2 
Part Cluster 13 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Part Cluster 14 0 0 0 0 0 0 1 0 0 2 0 1 0 6 0 
Part Cluster 15 1 4 5 5 5 0 2 0 0 0 4 1 0 0 214 
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Appendix BB CONFUSION MATRICES DECISION TREES 
This appendix includes the confusion matrices for the created decision trees to visualize the decision rules for part clusters (best predicted or expected) for 
the four different chains. Training sets were either re-sampled based on up sampling or not based on the (too imbalanced) class (part) distribution in the 
data subset. Below the tables represent the confusion matrices for the test sets, for which it is indicated whether the created model was based on a re-
sampled data set or not. Although SMOTE re-sampling was also discussed in the modeling and results section of the report, SMOTE was not used here, due 
to – in some cases – low amount of cases per class were even lowering the amount of observation per class due to under sampling of dominant classes would 
not be beneficial. 
To re-iterate, based on optimal CP-value: for pruned Chain 1 to 4 models respectively, the CP, Kappa, xError and xStd values are: 
Chain 1: 0.01; 0.63; 0.75; 0.07  |  Chain 2: 0.011; 0.67; 0.36; 0.01  |  Chain 3: 0.02; 0.42; 0.59; 0.04  |  Chain 4: 0.014; 0.58; 0.56; 0.01  
* represent specific part classes that are not included in the test set for the corresponding decision tree, due to random splitting the dataset. 

Table 53 - Chain 1, Part Cluster 2, test.confusion.matrix 

 C2118 
PowerModule 

C21x 
AxisController 

C781 
PowerSupply 

C787 Switch 
C78x 

OutputFilter 
C78x 

PowerModule 
C78x 

ToolsAndCables 
Cable IGC1 

  C2118 PowerModule 7 7 0 0 0 0 0 0 0 

  C21x AxisController * 0 0 0 0 0 0 0 0 0 

  C781 PowerSupply 0 0 7 7 0 4 0 0 0 

  C787 Switch * 0 0 0 0 0 0 0 0 0 

  C78x OutputFilter 0 0 0 0 7 2 0 0 0 

  C78x PowerModule * 0 0 0 0 0 0 0 0 0 

  C78x ToolsAndCables 0 0 0 0 0 0 7 0 0 

  Cable 0 0 0 0 0 0 0 7 0 

  IGC1 0 0 0 0 0 1 0 0 7 

Table 54 - Chain 3, Part Cluster 15, test.confusion.matrix 
 ActiveDriverUnit BoreLight Cable MCOM Other PhantomSet SFB_FEPSU UIH_Assy UIM 

  ActiveDriverUnit 20 4 10 0 0 1 0 0 4 

  BoreLight * 0 0 0 0 0 0 0 0 0 

  Cable 0 2 10 0 0 0 5 0 0 

  MCOM 0 3 0 7 0 0 0 0 0 

  Other 0 5 0 13 20 9 4 10 12 

  PhantomSet 0 6 0 0 0 10 0 0 4 

  SFB_FEPSU 0 0 0 0 0 0 10 0 0 

  UIH_Assy 0 0 0 0 0 0 1 10 0 

  UIM * 0 0 0 0 0 0 0 0 0 
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Table 55 - Chain 2, Part Cluster 7,9,11, test.confusion,matrix.upsampling 

 Anterio
r Coil 

Base 
Coil 

Body 
Coil 

Breast 
Coil 

Circu-
lator 

Coil 
Assem-

bly 

Extern
al Coil 

Flex 
Coil 

Foot 
Ankle 

Coil 

Head 
Coil 

Head 
Neck 
Coil 

Head 
Neck 
Spine 
Coil 

Knee 
Coil 

NVC 
Coil 

PHC QBC 
RF 

Ampl-
ifier 

Shoul
der 
Coil 

Wrist 
Coil 

Anterior 
Coil * 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BaseCoil * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Body Coil 0 0 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Breast Coil 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Circulator 0 0 0 0 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Coil 
Assembly 

22 25 0 0 0 88 0 39 0 4 0 0 0 0 0 0 0 8 0 

External 
Coil 

0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 

Flex Coil * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Foot 
AnkleCoil 

0 0 0 0 0 0 0 0 88 0 0 0 5 0 0 0 1 0 0 

Head Coil 1 0 0 0 0 0 0 0 0 24 0 0 18 23 0 0 5 0 0 

Head 
NeckCoil 

7 10 0 0 0 0 0 8 0 8 76 0 0 0 0 0 0 0 0 

HeadNeck 
SpineCoil 

8 0 0 0 0 0 0 9 4 21 5 69 13 0 0 0 2 0 0 

Knee Coil 3 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 5 0 0 

NVC Coil 0 0 0 0 0 0 0 0 0 0 0 0 0 38 0 0 0 0 0 

PHC 11 0 0 0 0 0 0 0 0 6 0 0 4 0 79 0 4 9 0 

QBC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88 0 0 0 

RF 
Amplifier 

0 0 0 0 0 0 38 0 0 0 0 0 0 0 0 0 59 0 0 

Shoulder 
Coil 

40 56 0 0 0 0 0 34 0 43 0 0 15 27 0 0 13 73 0 

Wrist Coil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 92 
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Table 56 - Chain 4, Part Cluster 5, test.confusion,matrix.upsampling (1/3) 

 Alignment 
Set 

Chassis 
Parts 

Connector 
Block 

Connector 
Handgrip 

Connector 
Magnet 

Cover 
DCI_Chassis 

Handgrip 
DCI_Chassis 

Magnet 
DCI_ 

HousingPins 
Fan 

Holdback 
Actuator 

  AlignmentSet 47 0 0 0 0 2 4 2 0 0 0 

  ChassisParts 0 43 13 3 6 7 0 14 0 0 10 

  ConnectorBlock * 0 0 0 0 0 0 0 0 0 0 0 

  ConnectorHandgrip * 0 0 0 0 0 0 0 0 0 0 0 

  ConnectorMagnet * 0 0 0 0 0 0 0 0 0 0 0 

  Cover * 0 0 0 0 0 0 0 0 0 0 0 

  DCI_ChassisHandgrip * 0 0 0 0 0 0 0 0 0 0 0 

  DCI_ChassisMagnet * 0 0 0 0 0 0 0 0 0 0 0 

  DCI_HousingPins 0 0 0 11 4 11 0 1 18 0 16 

  Fan 0 0 8 8 0 0 0 1 0 53 0 

  HoldbackActuator 0 0 0 0 0 0 0 0 0 0 16 

  HomeSwitchAssy 0 0 0 0 0 0 0 2 0 0 0 

  HorizontalEncoder 0 0 0 0 0 2 0 0 0 0 0 

  HorizontalMotorAssy 0 0 0 0 1 1 0 1 0 0 0 
  LCC 0 0 0 0 3 0 0 2 0 0 0 

  LiftingJack 0 0 0 3 0 0 5 0 0 0 0 

  Microswitch 0 0 0 2 8 5 8 11 11 0 11 

  PICU3KB 0 0 11 20 11 10 3 7 24 0 0 

  PLC_Extension 0 0 0 6 6 7 28 10 0 0 0 

  PSControlUnit * 0 0 0 0 0 0 0 0 0 0 0 

  PSU * 0 0 0 0 0 0 0 0 0 0 0 

  SafetyRelay 0 0 0 0 0 0 0 0 0 0 0 

  SBM * 0 0 0 0 0 0 0 0 0 0 0 

  ServoAmplifier 0 0 0 0 0 0 0 0 0 0 0 

  Stop&Go * 0 0 0 0 0 0 0 0 0 0 0 

  StretcherSet 0 0 0 0 0 0 0 0 0 0 0 

  TableTop 0 0 0 0 0 0 0 0 0 0 0 

  Trolley * 0 0 0 0 0 0 0 0 0 0 0 

  Ventilation 0 0 0 0 2 1 0 0 0 0 0 

  VerticalActuator 0 0 21 0 9 3 5 2 0 0 0 
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Table 57 - Chain 4, Part Cluster 5, test.confusion.matrix.upsampling (2/3) 

 Home 
SwitchAssy 

Horizontal 
Encoder 

Horizontal 
MotorAssy 

LCC 
Lifting 

Jack 
Microswitch PICU3KB PLC_Extension 

PSControl 
Unit 

PSU 
Safety 
Relay 

  AlignmentSet 0 0 0 0 0 0 0 0 0 0 0 

  ChassisParts 0 9 0 0 0 0 0 0 0 26 0 

  ConnectorBlock * 0 0 0 0 0 0 0 0 0 0 0 

  ConnectorHandgrip * 0 0 0 0 0 0 0 0 0 0 0 

  ConnectorMagnet * 0 0 0 0 0 0 0 0 0 0 0 

  Cover * 0 0 0 0 0 0 0 0 0 0 0 

  DCI_ChassisHandgrip * 0 0 0 0 0 0 0 0 0 0 0 

  DCI_ChassisMagnet * 0 0 0 0 0 0 0 0 0 0 0 

  DCI_HousingPins 0 0 0 0 0 0 0 0 0 0 0 

  Fan 0 0 0 0 0 0 0 0 0 0 0 

  HoldbackActuator 0 0 0 0 0 0 0 0 0 0 0 

  HomeSwitchAssy 53 0 0 0 0 0 0 0 12 0 0 

  HorizontalEncoder 0 24 0 0 0 0 0 0 0 3 0 

  HorizontalMotorAssy 0 0 41 0 0 0 0 0 0 0 0 

  LCC 0 0 0 53 0 0 0 0 15 1 0 

  LiftingJack 0 0 0 0 53 0 0 0 0 3 0 

  Microswitch 0 0 0 0 0 53 0 0 0 9 0 

  PICU3KB 0 0 0 0 0 0 46 12 15 4 0 

  PLC_Extension 0 20 0 0 0 0 0 41 0 3 0 

  PSControlUnit * 0 0 0 0 0 0 0 0 0 0 0 

  PSU * 0 0 0 0 0 0 0 0 0 0 0 

  SafetyRelay 0 0 0 0 0 0 0 0 0 0 37 

  SBM * 0 0 0 0 0 0 0 0 0 0 0 

  ServoAmplifier 0 0 0 0 0 0 0 0 0 0 0 

  Stop&Go * 0 0 0 0 0 0 0 0 0 0 0 

  StretcherSet 0 0 0 0 0 0 0 0 0 4 0 

  TableTop 0 0 0 0 0 0 0 0 0 0 0 

  Trolley * 0 0 0 0 0 0 0 0 0 0 0 

  Ventilation 0 0 0 0 0 0 0 0 0 0 0 

  VerticalActuator 0 0 0 0 0 0 0 0 11 0 0 
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Table 58 - Chain 4, Part Cluster 5, test.confusion.matrix.upsampling (3/3) 

 
SBM 

Servo 
Amplifier 

Stop & Go Stretcher Set Table Top Trolley Ventilation Vertical Actuator 

  AlignmentSet 7 0 0 0 0 0 0 0 

  ChassisParts 10 0 4 0 0 6 4 0 

  ConnectorBlock * 0 0 0 0 0 0 0 0 

  ConnectorHandgrip * 0 0 0 0 0 0 0 0 

  ConnectorMagnet * 0 0 0 0 0 0 0 0 

  Cover * 0 0 0 0 0 0 0 0 

  DCI_ChassisHandgrip * 0 0 0 0 0 0 0 0 

  DCI_ChassisMagnet * 0 0 0 0 0 0 0 0 

  DCI_HousingPins 9 0 2 0 0 3 0 0 

  Fan 4 0 0 0 0 0 2 0 

  HoldbackActuator 0 0 0 0 0 0 0 0 

  HomeSwitchAssy 0 0 8 0 0 7 11 0 

  HorizontalEncoder 0 0 20 0 0 0 0 0 

  HorizontalMotorAssy 9 0 0 0 0 10 13 0 

  LCC 0 0 0 0 0 0 0 0 

  LiftingJack 0 0 6 0 0 0 0 0 

  Microswitch 4 28 1 0 0 7 0 0 

  PICU3KB 3 0 7 30 0 6 6 0 

  PLC_Extension 10 0 5 0 0 4 6 0 

  PSControlUnit * 0 0 0 0 0 0 0 0 

  PSU * 0 0 0 0 0 0 0 0 

  SafetyRelay 0 0 0 0 0 0 0 0 

  SBM * 0 0 0 0 0 0 0 0 

  ServoAmplifier 0 25 0 0 0 0 0 0 

  Stop&Go * 0 0 0 0 0 0 0 0 

  StretcherSet 0 0 0 23 0 0 0 0 

  TableTop 0 0 0 0 53 0 0 0 

  Trolley * 0 0 0 0 0 0 0 0 

  Ventilation 0 0 0 0 0 0 18 0 

  VerticalActuator 0 0 0 0 0 12 0 50 
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Appendix CC BUSINESS IMPACT – FVF COST ANALYSIS 
 
[Appendix unavailable due to confidential content] 
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Appendix DD BUSINESS IMPACT – TPR ANALYSIS 
From the figures based on top 25 most frequent consumed (clustered) items it is striking that RF coils 
are dominating the different service cost intervals. Especially when it is generally assumed that such 
parts, among others, take multiple visits to replace. To understand why these parts are also included 
in the single visit population, we will look at the Technical Parts Review (TPR) process. It is assumed 
that parts included in TPR, per definition, will require multiple visits to replace. 
 
Focusing on the dominating category of RF coils, we observe that x (100%) distinct coils have been 
consumed for single and multiple visit cases over the years, of which all appear at least once in the 
former subset, while only 72.1% appear in multiple visit cases. Comparing this list with parts that are 
included in the TPR process, it is observed that only 51% registered in the TPR list. Again, 100% of 
these have been consumed in single visit cases, and 63.6% required multiple field visits. 
Unfortunately, there is no distinction in 12Nc’s used for both subsets, and therefore we cannot 
conclude that certain coils are replaced with one visit while others require more time and effort. 
Although, initially being surprised by a lot of RF coils present in single visit cases, it would seem 
plausible, as approximately half are not found in the TPR process. 
 
Since the FVF analysis spans across multiple years (2013 – 2019), it is also useful to find out when the 
other parts have been added to TPR and if this inclusion has had any impact on the number of visits 
for these 12Nc’s; which can further explain our striking observation. Unfortunately, data sources 
regarding TPR are not complete and accurate, even though – at the time of writing – the latest version 
has been used. Of the 51% 12Nc’s, 27.3% are listed under TPR but have no available date-related 
information and another 31.8% only have a registered month and day of the month, but no 
corresponding year of addition to TPR; meaning that further conclusions are based on the remaining 
40.9% of 12Nc’s. 
 
All these parts have been added to TPR either at the end of 2017 or 2018, whilst already being 
consumed during cases since 2013. We can clearly see that no parts have been consumed for three of 
those in single visit cases over the next few years, after their exact “added to TPR”-date. However, 
they are used in multiple visit cases. Unfortunately this is not the case for the remaining six 12Nc’s, 
as they still are required for single visit cases before and after the TPR date, but a (significant) 
decrease can be observed in part frequency and amount of single visit cases (per year) for these, after 
the TPR date. 
 
Aiming to understand why RF coils are also included in single visit cases, a careful conclusion can be 
drawn, based on a TPR analysis. Assuming that spare parts included in the TPR process, per definition, 
require multiple visits, we can understand why RF coils are consumed in single visit cases as roughly 
half of observed distinct 12Nc’s are not included in TPR. Other that are have been includes just 
towards the end of 2017 or 2018, while being consumed in many cases in prior years. Once a part is 
added to TPR it seems to be consumed significantly less or not at all for single visit cases.  
For specific part descriptions and 12Nc’s observed in single and multiple visit populations, and 
relevant TPR information, see Appendix L. Additionally, this appendix also includes the distribution 
of RF Coils – as dominating part type in the above analysis – over the different service cost intervals. 
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Appendix EE LITERATURE REVIEW 
 

Table 59 - Literature Review - Summary (1/2) 

ID Author(s) Title Year 
Data 

Driven 
Root Cause - 
Qualitative 

Root Cause - 
Quantitative 

Error 
(codes) 

Failure 
Mode 

ServiceActions 
/ Parts 

Association 
Maintenance 

Field 

1 Wu, Liu & Ding A method of aircraft unit fault diagnosis 2003 X     X  ~ 

2 
Vinodh & 
Santhosh 

Application of FMEA to an automotive leaf 
spring manufacturing organization 

2011   X  X   ~ 

3 
Dorsch, Yasin & 
Czuchry 

Application of root cause analysis in a 
service delivery operational environment 

1997  X   X    

4 

Chemweno, 
Pintelon, Van 
Horenbeek & 
Muchiri 

Development of a risk assessment selection 
methodology for asset maintenance 
decision making: Ananalytic network 
process (ANP) approach 

2015  X X     X 

5 

Chemweno, 
Morag, 
Sheikhalishahi, 
Pintelon, Muchiri 
& Wakiru 

Development of a novel methodology for 
root cause analysis and selection of 
maintenance strategy for a thermal power 
plant: A data exploration approach 

2016 X X X  X ~  X 

6 
Zhu, Liyanage & 
Jeeves 

Data-driven failure analysis of emergency 
shutdown systems in oil and gas industry 

2018 X  X  X   Oil and gas 

7 
Shaker, Shahin & 
Jahanyan 

Developing a two-phase QFD for improving 
FMEA: an integrative approach 

2019   X  X   Steel industry 

8 
Lorenzi & 
Ferreira 

Failure mapping using FMEA and A3 in 
engineering to order product development 

2017   X  X   Automation 
comp. 

9 
Shahin, Labib, 
Emami & 
Karbasian 

Improving Decision-Making Grid based on 
interdependence among failures with a case 
study in the steel industry 

2018   X  X   X (Steel 
industry) 

10 
Braglia, Frosolini 
& Montanari 

Fuzzy criticality assessment model for 
failure modes and effects analysis 

2002   X  X   Manufacturing 
systems 

11 Braglia  
MAFMA: multi-attribute failure mode 
analysis 

2000   X  X ~  Refrigerator 
manufacturing. 

12 
Adhikary, Bose, 
Bose & Mitra 

Multi criteria FMECA for coal-fired thermal 
power plants using COPRAS-G 

2013   X  X 

for a few pars, 
general failure 
mode and cause 
listed 

  
Coal-fired 

thermal power 
plant 

13 
Sharma, Kumar 
& Kumar 

Modeling and analysing system failure 
behaviour using RCA, FMEA and NHPPP 
models 

2007  X X  X   X 

14 
Sanctis, 
Paciarotti & Di 
Giovine 

Integration between RCM and RAM: a case 
study 

2015   X  X   Offshore 
industry 

15 
Mohideen & 
Ramachandran 

Strategic approach to breakdown 
matinenance on construction plant - UAE 
perspective 

2012  X X X X ~  Construction 
plant 
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16 
Sharma, Kumar 
& Kumar 

Systematic failure mode effect analysis 
(FMEA) using fuzzy linguistic modelling 

2005 X  X  X    

17 

Zawawy, 
Kontogianmis, 
Mylopoulos & 
Mankovskii 

Requirements-Driven Root Cause Analysis 
Using Markov Logic Networks 

2012 X  X ~    Loan 
Application 

18 Mathur 
Data Mining of Aviation Data for Advancing 
Health Management 

2002 X  X  ~ ~  Aviation 

19 
Gusmão, Silva, 
Poleto, Silva & 
Costa 

Cybersecurity risk analysis model using fault 
tree analysis and fuzzy decision theory 

2018   X  ~   Cybersecurity 

20 
Kang, Sun & 
Soares 

Fault Tree Analysis of floating offshore wind 
turbines 

2019 ~  X X X   Offshore Wind 
Power 

21 
Sipos, Fradkin, 
Moerchen, Wang 

Log-based Predictive Maintenance 2014 X   X  ~  
Siemens 
Medical 
Scanner 

22 Okoh & Mehnen 
Predictive Maintenance Modelling for 
Through-Life Engineering Services 

2017 X     ~  X 

23 
Lokrantz, 
Gustavsson & 
Jirstrand 

Root Cause Analysis of failuers and quality 
deviations in manufacturing using machine 
learning 

2018 ~  X    X X 

24 
Boutora & 
Bentarzi 

Ferroresonance Study Using False Trip Root 
Cause Analysis 

2019   X  X   
Emerging and 

Renewable 
Energy 

25 
Soewardi & 
Wulandari 

Analysis of Machine Maintenance Processes 
by using FMEA Method in the Sugar 
Industry 

2019  -  X  X 
~ (gen pred main 
service actions) 

 
Sugar Industry, 

Machine 
Maintenance 

26 
Rezvanizaniani, 
Dempsey & Lee 

An Effective Predictive Maintenance 
Approach based on Historical Maintenance 
Data using a Probabilistic Risk Assessment: 
PHM14 Data Challenge 

2014 X       X 

27 
Zadry, Saputra, 
Tabri, Meilani & 
Rahmayanti 

Failure Modes and Effects Analysis (FMEA) 
for evaluation of a sugarcane machine 
failure 

2018  X   X 
~ (gen pred main 
service actions) 

 
Sugar Industry, 

Machine 
Maintenance 

28 
Zhao, Liu, Hu & 
Yan 

Anomaly detection and fault analysis of 
wind turbine components based on deep 
learning network 

2018 X       
Renewable 

Energy (Wind 
Turbines) 

29 
Majumder, 
Sengupta, Jain & 
Bhaduri 

Fault Detection Engine in Intelligent 
Predictive Analytics Platform for DCIM 

2016 X  X  X X X 

Airline flight 
check-in - Data 

Center 
Infrastructure 
Management 

30 
Gutschi, Furian, 
Suschnigg & 
Neubacher 

Log-based predictive maintenance in 
discrete parts manufacturing 

2019 X       Milling 
machines 

31 
Patil, Patil, Ravi 
& Naik 

Predictive Modeling for Corrective 
Maintenance of Imaging devices from 
Machine Logs 

2017 X       
Medical 

Imaging Device 
Maintenance 
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Table 60 - Literature Review - Summary (2/2) 

ID Aim Result 

1 
Aircraft unit fault diagnosis. Historic data, identify and classify faulty components. And determine fault 

frequency and probability of fault occurrence.  

Supervised learning, Artificial neural network. Propose new method for fault probability of components, of which 

an aircraft unit is comprised, is generated by the adjusted SOM and fuzzy logic. 

2 
Report the application of failure mode and effect analysis (FMEA) to an automotive leaf spring 

manufacturing organization. 

Quality of leaf springs produced also has been improved by an improved FMEA. Failure mode > potential effect > 

possible cause (description) > generic recommended action 

3 
Integrates a framework for the implementation of  root cause analysis method to obtain a conceptual 

framework for an effective service delivery system 
Cause-and-effect diagram for the voicemail investigation based on failure modes 

4 

Propose a selection methodology for risk assessment techniques in the maintenance decision making 

domain. Generic selection criteria for the FMEA, FTA and BN are derived, prioritized based on 

AnalyticNetworkProcess 

General guideline for selecting appropriate techniques, as output selection of failure qual/semi quan root cause 

analysis method. 

5 

To propose novel data exploration methodology for root cause analysis is proposed which consists of 

four steps: 1) data collection and standardization step; 2) data exploration framework incorporating 

multivariate and cluster analysis; 3) causal mapping; and 4) maintenance strategy selection. 

Cluster analysis (hierarchical, kmeans, fuzzy) for failrue associations. Per group/clustur of failure modes, 

determined if failure is critical, fixed by modifying component or failure is measurable. Additionally optional 

selection for strategies of fixing (FBM, CBM, or DOM) Methodology is comparedwith two conventional qualitative 

root cause analysis techniques – Ishikawa cause-and-effect diagram, and the ‘5-whys’ analysis. 

6 
Develop a logical data-driven approach to enhance the understanding and detectability of ESD system 

failures 

Proposed method to identify potential causes for failure modes. promotes a data-driven practice to implement 

failure analysis of ESD systems on different taxonomy levels. The study defines critical data sources and explains 

how they are used in the data-driven approach with an industry case. It is concluded that the understanding of 

failure mechanisms and the complex dependencies between different components and parts are helpful and even 

critical in the diagnosis of root failure causes in addition to data analysis. 

7 

To propose an integrative approach for improving failure modes and effects analysis: First phase of 

QFD: prioritizing failure modes based on failure effects, Second phase of QFD: prioritizing failure 

causes based onfailure modes 

 

8 
To improve the failure analysis and troubleshooting process in engineering to order (ETO) product 

development, and reduce the amount of parts with failures. 
Feasibility of the proposed method for both failure analysis and knowledge generation. 

9 

Decision-Making Grid (DMG) is used for determining maintenance tactics and is associated with the 

reliability and risk management of assets. PURPOSE: improve DMG by recognizing interdependence 

among failures. USING: Fault Tree Analysis and Reliability Block Diagram have been applied for 

improving DMG 

Creation of FTA model and corresponding RBD diagram, compute new mean time to repair and frequency. Plot 

each failure mode on DMG canvas. Result suggestion of FTM, DOM or CBM strategy. 

10 
A tool for reliability and failure mode analysis based on an advanced version of the popular failure mode 

effects and criticality analysis (FMECA) procedure. 

Probability distribution of the judgement given by maintenance experts is the output based on fuzzification. 

Paper provides these figures for the FMECA parameters (chance to failure, severity of its failure effect and chance 

of being undetected) for a potential cause. 

11 
Develop a new tool for reliability and failure mode analysis by integrating the conventional aspects of 

the popular failure mode and criticality analysis (FMECA) procedure with economic considerations 

OUTPUT: raking list of potential causes for a failure for predefined FMEA criteria (chance failure, severity, 

expected cost and chance not detected)  |  Multi-attribute failure model analysis (MAFMA) appears to be a 

powerful tool for performing a complete criticality analysis on prioritising failures identified in a reliability study 

for corrective actions. MAFMA makes it possible to obtain a ranking of failure causes which includes several type 

of information (failure rate, non-detection, severity, expected cost for each fault). In particular, the use of an AHP-

based approach for the multi-attribute analysis provides a framework with interesting characteristics for the 

selection process of the most critical cause of failure. 

12 
Present a multi criterion failure mode effect and criticality analysis for coal-fired thermal power plants 

using uncertain data as well as substituting the traditional risk priority number estimation method 
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13 
To analyze system failure behavior more consistently and plan suitable maintenance actions 

accordingly. 

In-depth analysis of a system using RCA and FMEA helps to create a knowledge base to deal with problems 

related to process/product unreliability. From the results, it is observed that NHPPP models adequately analyse 

time-dependent rate of occurrence of failures. Thus, assisting the maintenance analyst in development of 

suitable  aintenance strategy by properly understanding the mechanism of failure (through modeling of failure 

data); adopting adequate aging management actions (such as predictive or periodic testing) to predict or detect 

the degradation of components; and performing cost analysis 

14  Establishing the failure mode belonging to each item and its effect on the system. All that allows us to calculate 

the items criticality that has been useful for the best maintenance strategy selection. 

15 
To develop a systematic strategic approach to handle corrective maintenance onto the 

failures/breakdowns of construction equipment. 

Based on discussions, maintenance crew knowledge, breakdown codes were created using cause-effect 

methods. With FMEA methods, tables are created with fault description and potential sub codes and general 

solutions for predefined codes. Final: Fault tree with failures and separate tree for break down codes 

16 
To permit the system safety and reliability analysts to evaluate the criticality or risk associated with 

item failure modes. 

Paper integrates the use of fuzzy logic and expert database with FMEA and may prove helpful to system safety 

and reliability analysts while conducting failure mode and effect analysis to prioritize failures for taking corrective 

or remedial actions. 

17 
Aimed to adopt a hybrid approach based on modeling the diagnostic knowledge as goal trees and on 

a probabilistic reasoning methodology based on Markov Logic Networks (MLNs). 

Data-driven RCA method using markov-logic networks, which provides ranked diagnoses, is described. SQL is 

used to extract data that is used and the output is a list of possible RCF ranked on their probability calculated by 

the underlying logic. 

18 

Regarding diagnostics support, corrective (on-condition) maintenance, paper presents an idea to 

among others (such as system health and status analysis) assisting in 

fault-isolation and troubleshooting, and prognostics supports condition-based preventive 

maintenance by anticipating failures and recommending preemptive/preventive maintenance 

prior to catastrophic system failure. Paper actually uses system data (log files) for system health and 

status, and mentions it is usefull for fault isolation as well but this is still a vision.  

Their database application currently includes the management of diagnostic models and the service of diagnostic 

and health status information to the onboard and ground-based fault isolation and troubleshooting tools. 

However, updating of such parameters using mined output of historical data collected from various fleets would 

greatly contribute to efficient maintenance by reducing time to troubleshoot and repair and improving 

availability - but not implemented or presented, just as a vision. 

19 

Proposes a model that integrates fault tree analysis, decision theory and fuzzy theory to (i) ascertain 

the current causes of cyberattack prevention failures and (ii) determine the vulnerability of a given 

cybersecurity system 

Research shows that fault tree analysis and fuzzy decision theory complement each other, and were relevant to 

providing an effective definition of the causes of possible accident scenarios and a fuzzy assessment of potential 

accidents regarding cybersecurity risks 

20 
Fault Tree Analysis method is adopted for both qualitative and quantitative evaluation of semi-

submersible floating offshore wind turbine failure characteristics 

Output: not root cause in terms of maintenance, but failure probabilities for different failure modes/system 

failures. Analyzed based on a set of (incomplete in terms of system completeness) generic failure information. 

Calculated results are generally in conformity with statistical data, indicating that most of the failures are caused 

by several basic factors. 

21 

Data-driven approach based on multiple-instance learning for predicting equipment failures by mining 

equipment event logs which, while usually not designed for predicting failures, contain rich operational 

information. 

 

22 

The analysis of the modelling uses synthetic data validated by industry domain experts. Develop a 

predictive maintenance strategy applicable to system reliability in the manufacturing, aerospace gas 

turbine, and other domains relative to concurrent system operations. The goal of this paper is to model 

and simulate an engine assembly in order to predict the number of parts expected to fail at a given 

inspection time. 

 

23 

Propose a machine learning framework using Bayesian networks to model the causal relationships 

between manufacturing stages using expert knowledge, and demonstrate the usefulness of the 

framework on two simulated manufacturing processes. 

The main findings are how knowledge from equipment experts can be used to pose a manufacturing process as 

a Bayesian network and in particular, how knowledge about links in this network as well as measurement nodes 

may improve the model. Next steps in the development of the framework will be to try it on a problem where we 

have continuous data and to use it for real world applications. 
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24 
Root Cause Analysis (RCA) based on fault tree analysis has been used to identify root cause of the 

ferroresonance. 

The quantitative analysis of the improved model shows An increase of about 30% of the security, which implies 

an appreciable enhancement of the reliability of the considered protection system. The use of the RCA in the 

ferroresonance study is a revolution in the predictive maintenance. This new fault diagnostic model opens the 

door for other researches based on the use of new methods like RCA, applied in many other fields. 

25 

Study aimed to investigate the potential failure of manufacturing process to provide some 

recommendations for improvement. Failure Mode and Effect Analysis (FMEA) method was applied to 

analyze the situation, Logic Tree Analysis (LTA) was implemented to classify the types of improvement  

 

26 
Main objective is to develop a model based on first two years data set (training) and determine the high 

risk and low risk times of failure for each individual asset for the third year. 

The paper presents the method in three main steps: the first step is to recognize the PM pattern based on time 

and type of maintenance activity via the training data. The second step is to determine the high-risk time intervals 

based on PM times by checking the frequency of the failures at specific times between each PM. The third step is 

to predict the high risk time intervals in the testing data using the information acquired from the training data 

27 

Evaluate the causes of failure in the use of sugarcane machine that have been designed in the previous 

studies. FMEA approach anticipated the failures at the design stage, so that a more reliable and 

ergonomic design can be produced for future sugarcane machine.  

Study found that capacity issues are the priority problems that cause the machine failure. Then, this study 

proposed some actions to reduce the risk priority number (RPN) on 12 failures, using cause/effect diagram. 

28 

To achieve anomaly detection and fault analysis of wind turbine components, this paper proposes a 

deep learning method based on a deep auto-encoder (DAE) network using operational supervisory 

control and data acquisition (SCADA) data of wind turbines. 

Method can be implemented for early warning of fault components and the effectiveness of the proposed 

method was verified by some reported failure cases of wind turbine components. 

29 
Novel, complete architecture of an intelligent predictive analytics platform, Fault Engine, for huge 

device network connected with electrical/information flow. 

Fault Engine leverages log-data from concerned devices available in the device chain and employs a Markov 

Process based Failure Model to predict whether the failure is permanent or transient hence raising alarm with 

proper severity. It also indicates the recovery probability at any given time stamp after the failure has occurred. 

And, identifies possible the root cause devices in a situation of failure based on probability. 

30 
Data-driven approach for estimating the probability of machine breakdown during specified time 

interval in the future. 
Machines failures can be reliably predicted up to 168 hours in advance using random forest machine learning. 

31 
Predict failures in turn resulting in reduced machine downtime, improved customer satisfaction and 

cost savings for the OEMs. Novelty also lies in the Health Domain. 
Solution predicts component failure up to 14 days in advance of the actual failure 

 



151 

 


