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Abstract
The main conclusion in this report is that there are possibilities of random walks on a ladder graph

which are transient to the left, but for which both layers of the random walk are transient to the
right. In this report we will start giving a short introduction and some theorems. After that we will

go into random walks in random environments (RWRE) in one dimension. We will explain the
random environment, give some applications of RWRE’s and give and prove the criteria for

recurrence and transience of an RWRE in one dimension. In the end we will explain random walks
on a ladder graph and show an example of a random walk on a ladder graph which is transient to
the left, but for which both layers are transient to the right. Although the behaviour of recurrence

and transience of random walks on a ladder graph is more complicated than the behaviour of
recurrence and transience of RWRE’s in one dimension, we will see that the criteria for recurrence

and transience of RWRE’s in one dimension are useful in understanding the behaviour of
recurrence and transience in our given example of a random walk on a ladder graph.
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1 Introduction to Random Walks

1.1 Stochastic Processes
Most sciences are not completely black and white at all. In these sciences there has to be space for
some randomness instead. Examples of these sciences are economics, psychology, physics, chemistry
and biology. In order to bring this randomness stochastic processes have been introduced. Stochastic
processes can be defined as followed [4].

Definition 1.1.1 (Stochastic Processes). A stochastic process X is a family of random variables {Xt, t ∈ T},
indexed by a set T, for which in a discrete-time process T = {0, 1, 2, ...}.

The random variables of which a stochastic process contains evolve in a random, but prescribed,
manner and are, therefore, useful for these studies. In this report one category of stochastic processes
will be discussed in detail: random walks. Random walks describe a certain path in space, consisting
of random steps. The idea of a random walk is that for a starting point x, there is a chance ω of going
to the right (from x to x + 1) and a chance 1−ω of going to the left (from x to x− 1). A random walk
(Xn)n is called recurrent if the following holds:

lim sup
n→∞

Xn = +∞, Pω-a.s. and lim inf
n→∞

Xn = −∞, Pω-a.s.

In these equations Xn gives the position of the random walk after n steps.
A recurrent random walk reaches its starting position infinitely many times with probability 1.
A random walk is called transient if, given enough time, every finite set of the state space will be left
forever. In one dimension the only possibility for this is that the random walk goes to the left or to
the right. A random walk is transient to the right if

lim
n→∞

Xn = +∞, Pω-a.s.

and a random walk is transient to the left if

lim
n→∞

Xn = −∞, Pω-a.s.

Note that this is about the convergence of random variables, so the limits are almost sure (a.s.) lim-
its. As random walks are also part of Markov processes, which form a subcategory of stochastic
processes, we will look at these Markov processes in the next paragraph.

1.2 Markov Processes
A Markov process is a stochastic process with the property that it only depends on the state attained
in the previous time step. This property of a Markov process is called the Markov property. It refers
to the memorylessness of a Markov process. A Markov process can be defined as the following [4].

Definition 1.2.1 (Markov Process). A stochastic process X is a Markov process if it satisfies the Markov
property, defined as:

P(Xn = s|X0 = x0, X1 = x1, ..., Xn−1 = xn−1) = P(Xn = s|Xn−1 = xn−1)

for all s, x0, ..., xn−1 ∈ Ω for Ω a countable set such that P (X0 = x0, ..., Xn−1 = xn−1) > 0. The set Ω is
called the state space of the random walk.

In the next paragraph we will give some theorems which will be used in this report.
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1.3 Important Theorems
In this paragraph some general theorems will be mentioned. These theorems will return later on in
this report [4].

Theorem 1.3.1 (Law of Total Probability). Let B1, B2, ..., Bn be a partition of the sample space Ω such that
P(Bi) > 0 for all i. Then

P(A) =
n

∑
i=1

P(A|Bi) ·P(Bi).

Theorem 1.3.2 (Continuity of Probability Measure). Let A1, A2, ... be an increasing sequence of events,
such that A1 ⊆ A2 ⊆ A3 ⊆ ... Then

For A =
∞⋃

i=1

Ai : P(A) = lim
i→∞

P(Ai).

Similarly, let B1, B2, ... be a decreasing sequence of events, so that B1 ⊇ B2 ⊇ B3 ⊇ ... Then

For B =
∞⋂

i=1

Bi : P(B) = lim
i→∞

P(Bi).

Theorem 1.3.3 (Law of Large Numbers). Let X1, X2, ... be a sequence of independent identically distributed
(i.i.d.) random variables with finite means E[Xi] = µ. Then

1
n

n

∑
i=1

Xi −−−→n→∞
µ, Pω-a.s.

Theorem 1.3.4 (Central Limit Theorem). Let X1, X2, ... be a sequence of i.i.d. random variables with finite

means µ and finite non-zero variance σ2 and define Sn such that Sn =
n
∑

i=1
Xi. Then

Sn − nµ√
nσ2

D−−−→
n→∞

N (0, 1).

Theorem 1.3.5 (Law of the Iterated Logarithm [5]). Let X1, X2, ... be a sequence of i.i.d. random variables

with E[Xi] = 0 and V(Xi) = 1. Let Sn =
n
∑

i=1
Xn. Then

lim sup
n→∞

Sn√
2n log (log (n))

= 1, Pω-a.s. and lim inf
n→∞

Sn√
2n log (log (n))

= −1, Pω-a.s.

In the next paragraph we will explain simple random walks.

1.4 Simple Random Walks

A simple random walk (Xn)n has a chance of going to the right of ω and a chance of going to the left
of 1−ω. In a simple random walk the value of this ω does not differ per point, so ω is the same for
each node on the random walk. For ω = 1

2 a simple random walk is recurrent and

lim sup
n→∞

Xn = +∞, Pω-a.s. and lim inf
n→∞

Xn = −∞, Pω-a.s.

A simple random walk with ω = 1
2 is called symmetric.
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For ω > 1
2 a simple random walk is transient to the right and

lim
n→∞

Xn = +∞, Pω-a.s.

and for ω < 1
2 is transient to the left and

lim
n→∞

Xn = −∞, Pω-a.s.

Simple random walks are too restrictive for the subjects of this report, so we will not go deeper into
this topic. In the next chapter we will explain random walks in random environments (RWRE’s) in
one dimension. This seems to be the solution for problems for which simple random walks are too
restrictive. We will explain a random environment, give some applications of RWRE’s and give the
criteria for recurrence and transience of an RWRE in one dimension.

Later in this report we will use these criteria in order to fulfill the main goal of this report, namely
understanding the behaviour of recurrence and transience of a random walk on a ladder graph. This
will be explained in chapter 4.
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2 Random Walks in Random Environments in One Dimension

2.1 A Random Environment
From now on in this report when we talk about random walks, we will mean random walks in
random environments (RWRE’s), unless stated otherwise. For a function f : X → R we know for
x ∈ X, x random, that f (x) is a random variable as well. At first we will define an environment [8].

Definition 2.1.1 (Environment). An environment is an element ω = {ωx}x∈Z, for which it is possible to
construct a Markov chain (Xn)n≥0 for n a natural number. The state space Ω of ω will be equal to

Ω = [0, 1]Z.

For ω ∈ Ω (fixed) we define the probability distribution Px
ω of a random walk (Xn)n in the environ-

ment ω by:

Px
ω(X0 = x) = 1 and Px

ω(Xn+1 = z|Xn = y) =


ωy for z = y + 1,
1−ωy for z = y− 1,
0 otherwise.

Now define also a probability distribution P on Ω. Then the environment ω ∈ Ω becomes random
as well. From now on there is a random environment and the random walk (Xn)n has become a
random walk in a random environment. Next we will show a transition model of a random walk in
a random environment and afterwards an example [8].

Figure 1: Transition model of a random walk in a random environment.

Example 2.1.1. For ωx i.i.d., a random walk (Xn)n with probability distribution P with

P
(

ωx =
3
4

)
= p and P

(
ωx =

1
3

)
= 1− p for some p ∈ (0, 1).

has a random environment. Here the value of ωx is not the same in every node on the random walk.

So in a random walk in a random environment the value of ω depends on the position x in the ran-
dom walk. Because random walks in this report often start at x = 0, from now on we will use the
notation of Pω for P0

ω.

For any fixed event G for the random walk Px
ω(G) is a [0, 1]−valued random variable, since ω is

random. The distribution Pω for a fixed environment is called the quenched law of the RWRE [8].
Thus, we can define another probability measure Px on (Xn)n by Px(·) = EP[Px

ω(·)]. The distribution
P is called the averaged/annealed law for the RWRE.

In the next paragraph we will have a look at applications of RWRE’s and after that we will give
a theorem that describes the criteria for recurrence and transience of RWRE’s in one dimension.
Before giving this theorem we have to make the following two assumptions in order to avoid degen-
eracy complications and to make the proof easier [8]:

(a) The distribution P is such that {ωx}x is an i.i.d. sequence and

(b) There has to exist a c > 0 such that P(ωx ∈ [c, 1− c]) = 1.

4



2.2 Applications of Random Walks in Random Environments
In this paragraph we will elaborate on applications for which random walks in random environ-
ments can be useful or even necessary.

An important application for random walks in random environments nowadays is in modeling the
stock indices of different nations and/or companies [2]. But, because stock indices are never below
0, the exponential of an RWRE is used in order to model stock indices. In the picture below the stock
market of the USA (NASDAQ) is given from 1970 until 2012.

Figure 2: Stock market of the USA (NASDAQ) from 1970 until 20121.

Random walks in random environments have been proposed as a model for DNA replication around
the seventies [10].
Random walks in random environments have an application in understanding and modeling how
the diffusion behaviour of a biomolecule is affected by other moving macromolecules, organelles,
and so on, inside a living cell [3].
Random walks in random environments are used as a method to model the movement of electrons
in physics [7].

1"Nasdaq Composite.png" by Jashuah is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported li-
cense.
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2.3 Recurrence and Transience
Now that we have explained random walks in random environments, in this paragraph we will give
criteria for recurrence and transience of an RWRE. As said in the introduction (paragraph 1.1), there
are three possibilities with respect to recurrence and transience of an RWRE (Xn)n:

(a) Transience to the right. In this case:

lim
n→∞

Xn = +∞, Pω-a.s., for P almost all ω.

(b) Transience to the left. In this case:

lim
n→∞

Xn = −∞, Pω-a.s., for P almost all ω.

(c) Recurrence. In this case:

lim sup
n→∞

Xn = +∞, Pω-a.s. and lim inf
n→∞

Xn = −∞, Pω-a.s., for P almost all ω.

In Solomon’s seminal paper on RWRE [9], Solomon gave an explicit criterion for recurrence or tran-
sience. Examples which are not part of (a), (b) or (c) do not occur in this theorem, due to the two
assumptions discussed in the end of paragraph 2.1. An example of a random walk which is neither
recurrent nor transient is the following.

Example 2.3.1 (Random walk in random environment neither recurrent nor transient). Define a ran-
dom walk (Xn)n consisting of the following three types of nodes:

(i) Type A with P (ωx = 1) = 1
10 ,

(ii) Type B with P (ωx = 0) = 1
10 ,

(iii) Type C with P
(

ωx = 1
2

)
= 8

10 .

This random walk (Xn)n is neither recurrent nor transient. It is not transient to the left, because nodes of Type
A will act as boundaries for going to the left, and it is not transient to the right, because nodes of Type B will
act as boundaries for going to the right.
Nevertheless, lim sup

n→∞
Xn and lim inf

n→∞
Xn will be finite, because of the same fact that nodes of Type A will act

as boundaries for going to the left and nodes of Type B will act as boundaries for going to the right. The random
walk will neither reach nodes left of the first node of Type A it finds in the left of its starting position nor nodes
right of the first node of Type B it finds in the right of its starting position, so the random walk is also not
recurrent. The random walk might look like the following:

Figure 3: Example which is neither recurrent nor transient.

The random walk in example 2.3.1 does not meet assumption (b) in paragraph 2.1 that there has to
exist a c > 0 such that P(ωx ∈ [c, 1− c]) = 1. We made these assumptions so that we do not have to
take examples such as this, which are neither recurrent nor transient, into account in the criteria for
recurrence and transience we will give in this paragraph.

In his paper Solomon states that the recurrence or transience of random walks in random environ-
ments is determined by the quantity of EP[log(ρx)], with ρx = 1−ωx

ωx
, for x ∈ Z.

The theorem is the following [9].
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Theorem 2.3.1. Make sure that the assumptions from the paragraph 2.1 hold true. Then for a random walk
(Xn)n, for ρx = 1−ωx

ωx
, x ∈ Z the following holds:

(a) EP[log(ρx)] < 0 =⇒ lim
n→∞

Xn = +∞, Pω-a.s., for P almost all ω, so the random walk is transient to
the right,

(b) EP[log(ρx)] > 0 =⇒ lim
n→∞

Xn = −∞, Pω-a.s., for P almost all ω, so the random walk is transient to
the left and

(c) EP[log(ρx)] = 0 =⇒ lim sup
n→∞

Xn = +∞, Pω-a.s. and lim inf
n→∞

Xn = −∞, Pω-a.s., for P almost all ω,

so the random walk is recurrent.

At first we will show that this theorem also holds for simple random walks. For simple random
walks ωx = ω and ρx = 1−ω

ω .

(a) A simple random walk with ω > 1
2 is transient to the right. This is in line with the theorem,

because for ω > 1
2 :

ρx =
1−ω

ω
< 1 and therefore EP[log(ρx)] < 0.

(b) A simple random walk with ω < 1
2 is transient to the left. This is in line with the theorem,

because for ω < 1
2 :

ρx =
1−ω

ω
> 1 and therefore EP[log(ρx)] > 0.

(c) A simple random walk with ω = 1
2 is recurrent. This is in line with the theorem, because for

ω = 1
2 :

ρx =
1−ω

ω
= 1 and therefore EP[log(ρx)] = 0.

So, despite the fact that the recurrence and transience of simple random walks is easier than the
recurrence and transience of RWRE’s, it is also possible to find the recurrence and transience of
simple random walks with theorem 2.3.1.
Next the proof of the theorem will be given. In this proof we will use the lecture notes on random
walks in random environments of Jonathan Peterson [8].

Proof. We will start this proof by defining some new concepts.

For a fixed environment ω, we define the potential V of the environment as followed:

V(k) =



k−1
∑

i=0
log(ρi) for k ≥ 1,

0 for k = 0,

−
−1
∑

i=k
log(ρi) for k ≤ −1.

Since the environment is i.i.d. due to the assumptions made in paragraph 2.1 the law of large numbers
(Theorem 1.3.3) tells us that

V(i) ∼ EP[log(ρx)] · i as i→ ±∞.
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The hitting time Tx of the point x is the first moment in time at which the random walk hits the point
x. For x ∈ Z define the hitting time Tx as followed:

Tx = inf{n ≥ 0 : Xn = x}.

Choose a and b such that 0 ≤ a < b and choose the function g such that

g(x) = Px
ω(Ta < Tb).

The goal is to find an explicit function h for which

h(x) = g(x) for all x ∈ Z.

Next we are going to show that for

h(x) =

b
∑

i=x+1
eV(i)

x
∑

i=a+1
eV(i) +

b
∑

i=x+1
eV(i)

we have found this explicit function h. We will show that this is the only possibility of h using the
maximum principle.

For the function g(x) the following two points should hold:

(i) (1) g(a) = 1. This is because in g(a) the random walk starts in the point a, so the hitting time
of the point a is 0 and is always less than the hitting time of the point b, because a 6= b.

(2) g(b) = 0. This is because in g(b) the random walk starts in the point b, so the hitting time
of the point b is 0 and is always less than the hitting time of the point a, because a 6= b.

(ii) Because of the law of total probability (Theorem 1.3.1):

ωx · g(x + 1) + (1−ωx) · g(x− 1) = g(x).

Now we will check if these points also hold for the function h:

(i) (1) h(a) = 1:

h(a) =

b
∑

i=a+1
eV(i)

a
∑

i=a+1
eV(i) +

b
∑

i=a+1
eV(i)

= 1, because
a

∑
i=a+1

eV(i) = 0 and
b

∑
i=a+1

eV(i) 6= 0 and

(2) h(b) = 0:

h(b) =

b
∑

i=b+1
eV(i)

b
∑

i=a+1
eV(i) +

b
∑

i=b+1
eV(i)

= 0, because
b

∑
i=b+1

eV(i) = 0 and
b

∑
i=a+1

eV(i) 6= 0.
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(ii) ωx · h(x + 1) + (1−ωx) · h(x− 1) = h(x):

ωx · h(x + 1) + (1−ωx) · h(x− 1)

=ωx ·

b
∑

i=x+2
eV(i)

x+1
∑

i=a+1
eV(i) +

b
∑

i=x+2
eV(i)

+ (1−ωx) ·

b
∑

i=x
eV(i)

x−1
∑

i=a+1
eV(i) +

b
∑

i=x
eV(i)

= ωx ·

b
∑

i=x+2
eV(i)

b
∑

i=a+1
eV(i)

+ (1−ωx) ·

b
∑

i=x
eV(i)

b
∑

i=a+1
eV(i)

=

ωx ·
b
∑

i=x+2
eV(i) + (1−ωx) ·

b
∑

i=x
eV(i)

b
∑

i=a+1
eV(i)

=

ωx ·
b
∑

i=x+2
eV(i) + (1−ωx) ·

(
x+1
∑

i=x
eV(i) +

b
∑

i=x+2
eV(i)

)
x
∑

i=a+1
eV(i) +

b
∑

i=x+1
eV(i)

=

b
∑

i=x+2
eV(i) + (1−ωx) ·

x+1
∑

i=x
eV(i)

x
∑

i=a+1
eV(i) +

b
∑

i=x+1
eV(i)

.

From now on the denominator will be the same, so we will just discuss the calculations in the
numerator. Because

V(i) =
i−1

∑
j=0

log(ρj) for i ≥ 1

we know that

b

∑
i=x+2

eV(i) + (1−ωx) ·
x+1

∑
i=x

eV(i)

=
b

∑
i=x+2

eV(i) + (1−ωx) ·
x+1

∑
i=x

e

i−1
∑

j=0
log(ρj)

=
b

∑
i=x+2

eV(i) + (1−ωx) ·
x+1

∑
i=x

i−1

∏
j=0

1−ωj

ωj

=
b

∑
i=x+2

eV(i) + (1−ωx) ·
((

1−ω0

ω0

)
·
(

1−ω1

ω1

)
· ...
(

1−ωx−1

ωx−1

)
+

(
1−ω0

ω0

)
·
(

1−ω1

ω1

)
· ...
(

1−ωx

ωx

))

=
b

∑
i=x+2

eV(i) +

(
1−ω0

ω0

)
·
(

1−ω1

ω1

)
· ...
(

1−ωx

ωx

)
·ωx +

(
1−ω0

ω0

)
·
(

1−ω1

ω1

)
· ...
(

1−ωx

ωx

)
· (1−ωx)

=
b

∑
i=x+2

eV(i) +

(
1−ω0

ω0

)
·
(

1−ω1

ω1

)
· ...
(

1−ωx

ωx

)
=

b

∑
i=x+2

eV(i) +
x

∏
j=0

1−ωj

ωj
.

1−ωj
ωj

is the definition of ρj, so

b

∑
i=x+2

eV(i) +
x

∏
j=0

1−ωj

ωj

=
b

∑
i=x+2

eV(i) +
x

∏
j=0

ρj =
b

∑
i=x+2

eV(i) + e

x
∑

j=0
log(ρj)

=
b

∑
i=x+2

eV(i) + eV(x+1) =
b

∑
i=x+1

eV(i)
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When adding the denominator again the following happens:

b
∑

i=x+2
eV(i) + (1−ωx) ·

x+1
∑

i=x
eV(i)

x
∑

i=a+1
eV(i) +

b
∑

i=x+1
eV(i)

=

b
∑

i=x+1
eV(i)

x
∑

i=a+1
eV(i) +

b
∑

i=x+1
eV(i)

= h(x)

So h and g satisfy:

(i) g(a) = h(a) = 1 and g(b) = h(b) = 0 and

(ii) ωx · h(x + 1) + (1−ωx) · h(x− 1) = h(x) and ωx · g(x + 1) + (1−ωx) · g(x− 1) = g(x).

We claim that this means that g = h.

In order to prove this we will look at the function d, defined as the difference between h and g.

d(a) = h(a)− g(a) = 1− 1 = 0 and d(b) = h(b)− g(b) = 0− 0 = 0

and also

ωx · d(x + 1) + (1−ωx) · d(x− 1)
=ωx · (h(x + 1)− g(x + 1)) + (1−ωx) · (h(x− 1)− g(x− 1))
=(ωx · g(x + 1) + (1−ωx) · g(x− 1)) + (ωx · h(x + 1) + (1−ωx) · h(x− 1))
=h(x)− g(x) = d(x)

From the last we conclude that

min{d(x− 1), d(x + 1)} ≤ d(x) ≤ max{d(x− 1), d(x + 1)}

and therefore also that d(x) is between d(x − 1) and d(x + 1). But because d(a) = d(b) = 0, this
means that d(x) = 0 for all x ∈ Z.

So
h(x) = g(x) for all x ∈ Z

and therefore

Px
ω(Ta < Tb) =

b
∑

i=x+1
eV(i)

x
∑

i=a+1
eV(i) +

b
∑

i=x+1
eV(i)

for all x ∈ Z.

Now we will discuss the three possibilities of recurrence and transience.
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2.3.1 Transience to the right

In this part we will prove that for EP[log(ρx)] < 0 the random walk (Xn)n is transient to the right
and

lim
n→∞

Xn = +∞, Pω-a.s., for P almost all ω.

In order to prove this we have to show that for Ep[log(ρx)] < 0

lim sup
n→∞

Xn = +∞, Pω-a.s. and lim inf
n→∞

Xn = +∞, Pω-a.s., for P almost all ω.

When these statements are proven, we know that the random walk is transient to the right.

lim sup
n→∞

Xn = +∞,Pω-a.s.:

In this part we want to prove that the probability of all points b > 0 of being hit eventually is equal
to 1, Pω-a.s., for P almost all ω. The probability of a point b > 0 of being hit eventually is equal to
Pω(Tb < ∞), so the probability of all points b > 0 of being hit eventually is, due to the continuity of
probability measure (Theorem 1.3.2), equal to

Pω

(⋂
b>0

{Tb < ∞}
)

= lim
b→∞

Pω(Tb < ∞).

This probability is equal to the probability that there exists a point a < 0 such that this point b will
be hit before a, so

lim
b→∞

Pω(Tb < ∞) = lim
b→∞

Pω

(⋃
a<0
{Tb < Ta}

)
.

Due to the continuity of probability measure (Theorem 1.3.2):

lim
b→∞

Pω

(⋃
a<0
{Tb < Ta}

)

= lim
b→∞

1− Pω

(⋂
a<0
{Ta < Tb}

)
= lim

b→∞

(
lim

a→−∞
1− Pω(Ta < Tb)

)

= lim
b→∞

 lim
a→−∞

1−

b
∑

i=1
eV(i)

0
∑

i=a+1
eV(i) +

b
∑

i=1
eV(i)


 = lim

b→∞

 lim
a→−∞

0
∑

i=a+1
eV(i)

0
∑

i=a+1
eV(i) +

b
∑

i=1
eV(i)

 = 1, Pω-a.s., because

0
∑

i=a+1
eV(i) −−−−→

a→−∞
+∞, Pω-a.s. and

b
∑

i=1
eV(i) is finite for all b, b a fixed integer.

0
∑

i=a+1
eV(i) −−−−→

a→−∞
+∞, Pω-a.s., because of the following:

For i ≤ −1: V(i) = −
−1
∑
j=i

log(ρj), and for i = 0: V(i) = 0.

The law of large numbers (Theorem 1.3.3) tells us that:

1
−i

V(−i) = − 1
−i

−1

∑
j=i

log(ρj) −−−→
i→−∞

−EP[log(ρx)] > δ, Pω-a.s. for some δ > 0.
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So there is an M < 0 such that for i < M: V(i) > −iδ > 0. So

0

∑
i=a+1

eV(i) =
M

∑
i=a+1

eV(i) +
0

∑
i=M+1

eV(i) >
M

∑
i=a+1

e−iδ +
0

∑
i=M+1

eV(i) −−−−→
a→−∞

+∞, Pω-a.s.,

because
0
∑

i=M+1
eV(i) is finite for all M < 0, M fixed, and lim

a→−∞

M
∑

i=a+1
e−iδ = +∞, Pω-a.s., for all M < 0,

M fixed, because
M
∑

i=a+1
e−iδ =

M
∑

i=a+1
(e−δ)i is a geometric sum with e−δ > 1 for δ < 0.

So
lim sup

n→∞
Xn = +∞, Pω-a.s., for P almost all ω.

lim inf
n→∞

Xn = +∞,Pω-a.s.:

This part of the proof works by contradiction. Assume

lim sup
n→∞

Xn = +∞, Pω-a.s., but lim inf
n→∞

Xn 6= +∞, Pω-a.s., for P almost all ω.

Then with positive probability there is an x which is hit infinitely often, Pω-a.s. When hitting this
x there is a positive probability of going one step to the left, so to the point x − 1. In other words
1 − ωx > 0. So the point x − 1 is hit infinitely often as well, Pω-a.s. In the same way the points
x− 2, ..., x− n are a.s. hit infinitely often.

So if
lim sup

n→∞
Xn = +∞, Pω-a.s., but lim inf

n→∞
Xn 6= +∞, Pω-a.s., for P almost all ω,

then all points are hit infinitely often and Pω (Ta < ∞) > 0, no matter how far a is chosen under 0.

But the probability of a point a < 0 of being hit eventually is equal to Pω(Ta < ∞), so the prob-
ability of all points a < 0 of being hit eventually is, due to the continuity of probability measure
(Theorem 1.3.2), equal to

Pω

(⋂
a<0
{Ta < ∞}

)
= lim

a→−∞
Pω(Ta < ∞).

This probability is equal to the probability that there exists a point b > 0 such that this point a will
be hit before b, so

lim
a→−∞

Pω(Ta < ∞) = lim
a→−∞

Pω

(⋃
b>0

{Ta < Tb}
)

.
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Due to the continuity of probability measure (Theorem 1.3.2):

lim
a→−∞

Pω

(⋃
b>0

{Ta < Tb}
)

= lim
a→−∞

(
lim
b→∞

Pω(Ta < Tb)

)
= lim

a→−∞

 lim
b→∞

b
∑

i=1
eV(i)

0
∑

i=a+1
eV(i) +

b
∑

i=1
eV(i)



= lim
a→−∞

∞
∑

i=1
eV(i)

0
∑

i=a+1
eV(i) +

∞
∑

i=1
eV(i)

= 0, Pω-a.s., because

0
∑

i=a+1
eV(i) −−−−→

a→−∞
+∞ and

∞
∑

i=1
eV(i) is finite for EP[log(ρx)] < 0.

The fact that
0
∑

i=a+1
eV(i) −−−−→

a→−∞
+∞ has been proven in the part lim sup

n→∞
Xn = +∞, Pω-a.s. in this

paragraph.

We can show that
∞
∑

i=1
eV(i) is finite for EP[log(ρx)] < 0 with the law of large numbers (Theorem 1.3.3).

For i ≥ 1 : V(i) =
i−1
∑

j=0
log(ρj). The law of large numbers tells us that

1
i

V(i) =
1
i

i−1

∑
j=0

log(ρj) −−→
i→∞

EP[log(ρx)] < δ, Pω-a.s. for some δ < 0.

So there is an M > 0, such that for i > M: V(i) < iδ < 0. So

∞

∑
i=1

eV(i) =
M

∑
i=1

eV(i) +
∞

∑
i=M+1

eV(i) <
M

∑
i=1

eV(i) +
∞

∑
i=M+1

eiδis finite,

because
M
∑

i=1
eV(i) is finite for all M > 0, M fixed, and

∞
∑

i=M+1
eiδ =

∞
∑

i=M+1
(eδ)i is finite as well for all

M > 0, M fixed, because it is a geometric sum with eδ < 1 for δ < 0.

The fact that

lim
a→−∞

Pω(Ta < ∞) = lim
a→−∞

∞
∑

i=1
eV(i)

0
∑

i=a+1
eV(i) +

∞
∑

i=1
eV(i)

= 0, Pω-a.s.

is a contradiction to the fact that for all a we showed that Pω (Ta < ∞) > 0, no matter how far a is
chosen under 0.

So
lim inf

n→∞
Xn = +∞, Pω-a.s., for P almost all ω.
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So, because for EP[log(ρx)] < 0

lim sup
n→∞

Xn = +∞, Pω-a.s. and lim inf
n→∞

Xn = +∞, Pω-a.s., for P almost all ω,

also
lim

n→∞
Xn = +∞, Pω-a.s., for P almost all ω

and therefore the random walk (Xn)n is transient to the right.

2.3.2 Transience to the left

In this part we will prove that for EP[log(ρx)] > 0 the random walk (Xn)n is transient to the left and

lim
n→∞

Xn = −∞, Pω-a.s., for P almost all ω.

In order to prove this we have to show that for EP[log(ρx)] > 0

lim inf
n→∞

Xn = −∞, Pω-a.s. and lim sup
n→∞

Xn = −∞, Pω-a.s., for P almost all ω.

When these statements are proven, we know that the random walk is transient to the left. Because
some steps of this proof are similar to the steps of the proof of transience to the right in para-
graph 2.3.1, these steps will be left out.

lim inf
n→∞

Xn = −∞,Pω-a.s.:

In this part we want to prove that the probability of all points a < 0 of being hit eventually is
equal to 1, Pω-a.s., for P almost all ω. The probability of a point a < 0 of being hit eventually is
equal to Pω(Ta < ∞). In a similar way as in the part lim inf

n→∞
Xn = +∞, Pω-a.s. in paragraph 2.3.1, the

probability of all points a < 0 of being hit eventually is, due to the continuity of probability measure
(Theorem 1.3.2), equal to

lim
a→−∞

Pω (Ta < ∞)

= lim
a→−∞

(
lim
b→∞

Pω (Ta < Tb)

)
= lim

a→−∞

 lim
b→∞

b
∑

i=1
eV(i)

0
∑

i=a+1
eV(i) +

b
∑

i=1
eV(i)


=1, Pω-a.s., because

b
∑

i=1
eV(i) −−−→

b→∞
+∞, Pω-a.s. and

0
∑

i=a+1
eV(i) is finite for all a, a a fixed integer.

The proof of
b
∑

i=1
eV(i) −−−→

b→∞
+∞, Pω-a.s. is the similar to the proof that

0
∑

i=a+1
eV(i) −−−−→

a→−∞
+∞, Pω-a.s.

in paragraph 2.3.1, but in here V(i) =
i−1
∑

j=0
eV(i), because i ≥ 1.

So
lim inf

n→∞
Xn = −∞, Pω-a.s., for P almost all ω.
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lim sup
n→∞

Xn = −∞,Pω-a.s.:

This part of the proof works by contradiction. Assume

lim inf
n→∞

Xn = −∞, Pω-a.s., but lim sup
n→∞

Xn 6= −∞, Pω-a.s., for P almost all ω.

Then with positive probability there is an x which is hit infinitely often, Pω-a.s. When hitting this
x there is a positive probability of going one step to the right, so to the point x + 1. In other
words ωx > 0. So the point x + 1 is hit infinitely often as well, Pω-a.s. In the same way the points
x + 2, ..., x + n are a.s. hit infinitely often.

So if
lim inf

n→∞
Xn = −∞, Pω-a.s., but lim sup

n→∞
Xn 6= −∞, Pω-a.s., for P almost all ω,

then all points are hit infinitely often and Pω (Tb < ∞) > 0, no matter how far b is chosen above 0.

But the probability of a point b > 0 of being hit eventually is equal to Pω (Tb < ∞), so, in a simi-
lar way as in the part lim sup

n→∞
Xn = +∞, Pω-a.s. in paragraph 2.3.1, the probability of all points b > 0

of being hit eventually is, due to the continuity of probability measure (Theorem 1.3.2), equal to

lim
b→∞

Pω (Tb < ∞) =

= lim
b→∞

(
1− lim

a→−∞
Pω(Ta < Tb)

)
= lim

b→∞

 lim
a→−∞

0
∑

i=a+1
eV(i)

0
∑

i=a+1
eV(i) +

b
∑

i=1
eV(i)



= lim
b→∞

0
∑

i=−∞
eV(i)

0
∑

i=−∞
eV(i) +

b
∑

i=1
eV(i)

= 0, Pω-a.s., because

b
∑

i=1
eV(i) −−−→

b→∞
+∞ and

0
∑

i=−∞
eV(i) is finite for EP[log(ρx)] > 0.

The proof that
0
∑

i=−∞
eV(i) is finite for EP[log(ρx)] > 0 is similar to the proof that

∞
∑

i=1
eV(i) is finite

for EP[log(ρx)] < 0 in paragraph 2.3.1 and the proof of
b
∑

i=1
eV(i) −−−→

b→∞
+∞ is similar to the proof that

0
∑

i=a+1
eV(i) −−−−→

a→−∞
+∞, Pω-a.s. in paragraph 2.3.1, but in here V(i) =

i−1
∑

j=0
, because i ≥ 1.

The fact that

lim
b→∞

0
∑

i=−∞
eV(i)

0
∑

i=−∞
eV(i) +

b
∑

i=1
eV(i)

= 0, Pω-a.s.

is a contradiction to the fact that for all b we showed that Pω(Tb < ∞) > 0, no matter how far b is
chosen above 0.

So
lim sup

n→∞
Xn = −∞, Pω-a.s., for P almost all ω.
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So, because for EP[log(ρx)] > 0

lim inf
n→∞

Xn = −∞, Pω-a.s. and lim sup
n→∞

Xn = −∞, Pω-a.s., for P almost all ω,

also
lim

n→∞
Xn = −∞, Pω-a.s., for P almost all ω

and therefore the random walk (Xn)n is transient to the left.

2.3.3 Recurrence

In this part we will prove that for EP[log(ρx)] = 0 the random walk (Xn)n is recurrent and

lim inf
n→∞

Xn = −∞, Pω-a.s. and lim sup
n→∞

Xn = +∞, Pω-a.s., for P almost all ω.

It is important to keep in mind that

V(i) = −
−1

∑
j=i

log(ρj) = −
|i|

∑
j=1

log(ρ−j) for i < 0

is of the form

V(n) =
n

∑
j=1

Yj with n = |i| and Yj = − log
(
ρ−j
)

.

Yj is i.i.d. for every j, because ρj is i.i.d. for every j.

Now we are going to use the law of the iterated logarithm (Theorem 1.3.5), which is actually in
between the law of large numbers (Theorem 1.3.3) and the central limit theorem (Theorem 1.3.4).

For using the law of the iterated logarithm on a sequence of i.i.d. random variables {Xi} the fol-
lowing two things should hold:

(a) E[Xi] = 0

(b) V(Xi) = 1

For Yj = − log
(
ρ−j
)

the point (a) has been met:

E[Yj] = EP[log
(
ρj
)
] = 0.

In order to make the point (b) hold, we should rescale Yj by dividing it by the square root of the
variance of Yj. After doing that both point (a) and point (b) have been met:

E

 Yj√
V
(
Yj
)
 = E[Yj] = 0 and V

 Yj√
V
(
Yj
)
 = 1.

Now the law of the iterated logarithm tells us that

lim sup
n→∞

1√
2n log(log(n))

·

n
∑

j=1
Yj√

V(Yj)
= 1, Pω-a.s.
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Since V(n) =
n−1
∑

j=0
Yj for n ≥ 1 also

lim sup
n→∞

1√
2n log(log(n))

V(n)√
V(Yj)

= 1, Pω-a.s.

From this we can see that infinitely many of the values V(1), V(2), ... are positive, so in particular

infinitely many of the values eV(1), eV(2), ... are larger than 1. So
∞
∑

i=1
eV(i) is infinite.

The law of the iterated logarithm also tells us that

lim inf
n→∞

1√
2n log(log(n))

·

n
∑

j=1
Yj√

V(Yj)
= −1, Pω-a.s.

From this we can conclude that
n
∑

j=1
Yj is negative infinitely often and, since V(−n) = −

n
∑

j=1
Yj for

n ≥ 1, we can see that infinitely many of the values V(−1), V(−2), ... are positive, so in particular

infinitely many of the values eV(−1), eV(−2), ... are larger than 1. So
∞
∑

i=1
eV(−i) is infinite as well.

Now we will prove that

lim inf
n→∞

Xn = −∞, Pω-a.s. and lim sup
n→∞

Xn = +∞, Pω-a.s., for P almost all ω.

After having proven these statements, we have proven that a random walk is recurrent for Ep[log(ρx)] =
0.

lim inf
n→∞

Xn = −∞,Pω-a.s.:

As already shown in paragraph 2.3.2:

Pω

(
lim inf

n→∞
Xn = −∞

)
= lim

a→−∞
Pω (Ta < ∞) = lim

a→−∞

(
lim
b→∞

Pω(Ta < Tb)

)

= lim
a→−∞

 lim
b→∞

b
∑

i=1
eV(i)

0
∑

i=a+1
eV(i) +

b
∑

i=1
eV(i)

 = lim
a→−∞

∞
∑

i=1
eV(i)

0
∑

i=a+1
eV(i) +

∞
∑

i=1
eV(i)

= 1, Pω-a.s., because

∞
∑

i=1
eV(i) is infinite, so for each a

∞
∑

i=1
eV(i)

0
∑

i=a+1
eV(i) +

∞
∑

i=1
eV(i)

= 1

and therefore also

lim
a→−∞

∞
∑

i=1
eV(i)

0
∑

i=a+1
eV(i) +

∞
∑

i=1
eV(i)

= 1.
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So
lim inf

n→∞
= −∞, Pω-a.s., for P almost all ω.

lim sup
n→∞

Xn = +∞,Pω -a.s.:

As already shown in paragraph 2.3.1:

Pω

(
lim sup

n→∞
Xn = +∞

)
= lim

b→∞
Pω (Tb < ∞) = lim

b→∞

(
lim

a→−∞
1− Pω (Ta < Tb)

)

= lim
b→∞

 lim
a→−∞

0
∑

i=a+1
eV(i)

0
∑

i=a+1
eV(i) +

b
∑

i=1
eV(i)

 = lim
b→∞

0
∑

i=−∞
eV(i)

0
∑

i=−∞
eV(i) +

b
∑

i=1
eV(i)

= 1, Pω-a.s., because

0
∑

i=−∞
eV(i) is infinite and

b
∑

i=1
eV(i) is finite for all b, b a fixed integer.

0
∑

i=−∞
eV(i) is infinite, because

0
∑

i=−∞
eV(i) =

∞
∑

i=0
eV(−i), which is infinite.

So
lim sup

n→∞
= +∞, Pω-a.s., for P almost all ω.

So for E[Yi] = EP[log(ρi)] = 0

lim sup
n→∞

= +∞, Pω-a.s. and lim inf
n→∞

= −∞, Pω-a.s., for P almost all ω

and therefore the random walk (Xn)n is recurrent.
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2.4 Application Theorem 2.3.1

To finish this chapter we are going to apply Theorem 2.3.1 to the random walk (Xn)n in Example 2.1.1.
(Xn)n has been defined such that

P
(

ωx =
3
4

)
= p and P

(
ωx =

1
3

)
= 1− p for some p ∈ (0, 1).

In order to describe the behaviour of recurrence and transience of (Xn)n we should calculate EP[log (ρx)]:

EP[log (ρx)]

= log

(
1− 3

4
3
4

)
· p +

(
1− 1

3
1
3

)
· (1− p)

= log
(

1
3

)
· p + log (2) · (1− p) = − log (3) · p + log (2) · (1− p)

So the random walk (Xn)n:

• is transient to the right, and therefore lim
n→∞

Xn = +∞, Pω-a.s., for P almost all ω, if

EP[log (ρx)] = − log (3) · p + log (2) · (1− p) < 0, which is the case for p >
log(2)
log(6)

.

• is transient to the left, and therefore lim
n→∞

Xn = −∞, Pω-a.s., for P almost all ω, if

EP[log (ρx)] = − log (3) · p + log (2) · (1− p) > 0, which is the case for p <
log(2)
log(6)

.

• is recurrent, and therefore lim sup
n→∞

Xn = +∞ and lim inf
n→∞

Xn = −∞, Pω-a.s., for P almost all ω, if

EP[log (ρx)] = − log (3) · p + log (2) · (1− p) = 0, which is the case for p =
log(2)
log(6)

.
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3 Random Walk on a Ladder graph

Theorem 2.3.1 seems to be useful for the main purpose of this report, which is understanding the
behaviour recurrence and transience of a random walk on a ladder graph. In this chapter I have used
articles of Erwin Bolthausen and Ilya Goldscheid in the magazine Communications in Mathematical
Physics [1], in which the necessary and sufficient conditions for the behaviour of recurrence and
transience on a strip are mentioned, and of Michael S. Keane and Silke W.W. Rolles in the magazine
Acta Mathematica Hungarica [6], in which is proven that the process of recurrence and transience of
a directed-edge-reinforced random walk is equivalent to a random walk in a random environment.
Now at first we will explain the idea of a random walk on a ladder graph.

3.1 Introduction to a Random Walk on a Ladder Graph
In a random walk on a ladder graph two random walks in one dimension are linked to each other,
which makes it possible to switch between the layers of these random walks.
We define a random walk on a ladder graph (Zn)n such that

Zn = (Xn, Yn) ∈ Z× {0, 1},

with Xn ∈ Z as the horizontal position of the random walk and Yn ∈ {0, 1} as the vertical position
of the random walk. In a random walk on a ladder graph the horizontal position Xn is comparable
with the Xn in a random walk in one dimension and for Yn we define that Yn = 0 means the top layer
and Yn = 1 the bottom layer. The state space Ω of a random walk on a ladder graph will be defined
as:

Ω = [0, 1]Z×{0,1}.

The next image might give a better idea of what a ladder graph looks like.

Figure 4: Ladder graph.
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In this report the probability distribution of a random walk on a ladder graph will be given by P(x,y)
ω

with x ∈ Z as the horizontal coordinate in the ladder graph and y ∈ {0, 1} the vertical coordinate,
for which the case y = 0 means the top layer of the ladder graph and y = 1 means the bottom layer.
In the same way from now on we will define ω as ω = ω(x,y). In a certain point (x, 0) on the ladder
graph, there are three possibilities:

(i) Switching to the other layer. For both the top layer (y = 0) and the bottom layer (y = 1) we
define the probability for this by γ.

(ii) Going to the right, which is the point (x + 1, 0). The probability for this is

ω(x,0) · (1− γ) .

(iii) Going to the left, which is the point (x− 1, 0). The probability for this is(
1−ω(x,0)

)
· (1− γ) .

In the next paragraph we will discuss an example of a random walk on a ladder graph, which might
give us insight in the behaviour of recurrence and transience of random walks on a ladder graph.

3.2 Example, Random Walk on a Ladder Graph

Assume a random walk on a ladder graph (Zn)n with just the following two types of nodes on either
the top layer (y = 0) or the bottom layer (y = 1):

(i) Type A with
ω(x,y) = 1− ε with probability p.

(ii) Type B with

ω(x,y) =
1
4

with probability 1− p.

In this example we will only look at values of ε and p of:

0 < ε <
1
4

and 0 < p < 1.

We are going to show that there are values of ε, p and γ, such that both layers of the random walk
(Zn)n themselves are transient to the right, but that the random walk (Zn)n is transient to the left.
The idea is that for ε close to 0 nodes of Type A will act as boundaries for going to the left for both
layers of the random walk, but, because a random walk on a ladder graph has a third possibility in
switching between the layers, in the random walk on the ladder graph it will be able to “jump over”
these boundaries.
In order to show this we will look at the four scenarios on the next page which can occur for two
nodes above each other with the same horizontal coordinate x.
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(a) A in top and bottom layer. (b) B in top and bottom layer.

(c) A in top layer and B in bottom layer. (d) B in top layer and A in bottom Layer.

Figure 5: Four scenarios for two nodes above each other with the same horizontal coordinate x.

For these scenarios we will look for a worst-case estimate, ω̃x, for which

(i) P(x,0)
ω (The first horizontal step is to the right) ≤ ω̃x and

(ii) P(x,1)
ω (The first horizontal step is to the right) ≤ ω̃x.

Define H such that H is the value of n for which the horizontal coordinate changes for the first time.

H = inf{n : Xn 6= X0}.

When going to the right at first XH = x + 1 and when going to the left at first XH = x − 1. This
happens in the top layer for YH = 0 and in the bottom layer for YH = 1.

In scenario 5a with nodes of Type A in both the top layer and the bottom layer, when starting in
the top layer:

P(x,0)
ω (going to the right) = P(x,0)

ω (XH = x + 1)

=P(x,0)
ω (XH = x + 1|YH = 1) · P(x,0)

ω (YH = 1) + P(x,0)
ω (XH = x + 1|YH = 0) · P(x,0)

ω (YH = 0)

=(1− ε) · P(x,0)
ω (YH = 1) + (1− ε) · P(x,0)

ω (YH = 0) = 1− ε

=P(x,1)
ω (XH = x + 1) = P(x,1)

ω (going to the right),

because both layers contain a node of Type A. So for a node of Type A in the top layer and a node of
Type A in the bottom layer the chance of going to the right when starting in the top layer is equal to
the chance of going to the right when starting in the bottom layer.
So for the worst-case estimate of scenario 5a we choose

ω̃x = 1− ε.
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In scenario 5b with nodes of Type B in both the top layer and the bottom layer, when starting in the
top layer:

P(x,0)
ω (going to the right) = P(x,0)

ω (XH = x + 1)

=P(x,0)
ω (XH = x + 1|YH = 1) · P(x,0)

ω (YH = 1) + P(x,0)
ω (XH = x + 1|YH = 0) · P(x,0)

ω (YH = 0)

=
1
4
· P(x,0)

ω (YH = 1) +
1
4
· P(x,0)

ω (YH = 0) =
1
4

=P(x,1)
ω (XH = x + 1) = P(x,1)

ω (going to the right),

because both layers contain a node of Type B. So for a node of Type B in the top layer and a node of
Type B in the bottom layer the chance of going to the right when starting in the top layer is equal to
the chance of going to the right when starting in the bottom layer, such as in scenario 5a
So for the worst-case estimate of scenario 5b we choose

ω̃x =
1
4

.

Scenario 5c with a node of Type A in the top layer and a node of Type B in the bottom layer and
scenario 5d with a node of Type B in the top layer and a node of Type A in the bottom layer are more
complicated, because in these scenarios the chance of going to the right when starting in the top
layer is not equal to the chance of going to the right when starting in the bottom layer. Nevertheless,
scenario 5c is similar to scenario 5d.

In scenario 5c with a node of Type A in the top layer and a node of Type B in the bottom layer,
when starting in the top layer the chance that the random walk switches coordinates horizontally for
the first time in the top layer is:

P(x,0)
ω (YH = 0) = (1− γ) ·

∞

∑
i=0

γ2i =
1

1 + γ

and the chance that the random walk switches coordinates horizontally for the first time in the bot-
tom layer is:

P(x,0)
ω (YH = 1) = (1− γ) ·

∞

∑
i=0

γ2i+1 =
γ

1 + γ
.

So when starting in the top layer:

P(x,0)
ω (going to the right) = P(x,0)

ω (XH = x + 1)

=P(x,0)
ω (XH = x + 1|YH = 0) · P(x,0)

ω (YH = 0) + P(x,0)
ω (XH = x + 1|YH = 1) · P(x,0)

ω (YH = 1)

=(1− ε) · 1
1 + γ

+
1
4
· γ

1 + γ
=

1− ε

1 + γ
+

γ

4 (1 + γ)
.

When starting in the bottom layer in scenario 5c the chance that the random walk switches coordi-
nates horizontally for the first time in the top layer is:

P(x,1)
ω (YH = 0) = (1− γ) ·

∞

∑
i=0

γ2i+1 =
γ

1 + γ

and the chance that the random walk switches coordinates horizontally for the first time in the bot-
tom layer is:

P(x,1)
ω (YH = 1) = (1− γ) ·

∞

∑
i=0

γ2i =
1

1 + γ
.
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So when starting in the bottom layer:

P(x,1)
ω (going to the right) = P(x,1)

ω (XH = x + 1)

=P(x,1)
ω (XH = x + 1|YH = 1) · P(x,1)

ω (YH = 1) + P(x,1)
ω (XH = x + 1|YH = 0) · P(x,1)

ω (YH = 0)

=
1
4
· 1

1 + γ
+ (1− ε) · γ

1 + γ
=

1
4(1 + γ)

+
(1− ε) · γ
(1 + γ)

.

Interesting in scenario 5c is that

P(x,0)
ω (going to the right) 6= P(x,1)

ω (going to the right).

But we can explain that

P(x,0)
ω (going to the right) ≥ P(x,1)

ω (going to the right), because

in P(x,1)
ω (going to the right) the first point that the random walk finds is a node of Type B, while in

P(x,0)
ω (going to the right) the first point that the random walk finds is a node of Type A. The chance

of going to the right for a node of Type A is bigger than for a node of Type B.
So for the worst-case estimate ω̃x of scenario 5c we choose

ω̃x = P(x,0)
ω (going to the right) =

1− ε

1 + γ
+

γ

4(1 + γ)
.

Because scenario 5d is similar to scenario 5c, except for the fact that the layers have been turned
around, for scenario 5d we choose the worst-case estimate equal to the worst-case estimate of sce-
nario 5c. So for the worst-case estimate ω̃x of scenario 5d we choose

ω̃x =
1− ε

1 + γ
+

γ

4(1 + γ)
.

The worst-case estimates are summarized in the following table:

Scenario 5a Scenario 5b Scenario 5c and 5d
Worst-case estimate ω̃x 1− ε 1

4
1−ε
1+γ + γ

4(1+γ)

Probability of occuring p2 (1− p)2 2p(1− p)

It is important to realize that we can see the random walk on a ladder graph (Zn)n with only nodes of
Type A and Type B as a random walk in one dimension with nodes corresponding to the worst-case
scenarios from the last table. The explanation for this will follow.

Consider a random walk in one dimension (Z̃n)n with:

ω̃x =


1− ε in a node of Type C occuring with probability p2,
1
4 in a node of Type D occuring with probability (1− p)2,
1−ε
1+γ + γ

4(1+γ)
in a node of Type E occuring with probability 2p(1− p).

The chance of going to the right for a point on (Zn)n is always less than or equal to the chance of go-
ing to the right for the corresponding point on (Z̃n)n, and therefore the chance of going to the left for
a point on (Zn)n is always larger than or equal to the chance of going to the left for the corresponding
point on (Z̃n)n.
So if (Z̃n)n is transient to the left, Pω-a.s., then for sure (Zn)n is transient to the left, Pω-a.s.

24



Now we can use this in order to find values of ε, p or γ for which (Zn)n is transient to the left,
but for which both layers of (Zn)n are transient to the right. We will do this with theorem 2.3.1.
For ρx = 1−ωx

ωx
in order to find the behaviour of recurrence and transience of a random walk in one

dimension we should calculate Ep[log(ρx)]. For both layers of (Zn)n:

EP[log(ρx)] = log

(
1− 1

4
1
4

)
· (1− p) + log

(
1− (1− ε)

1− ε

)
· p = log(3) · (1− p) + log

(
ε

1− ε

)
· p.

The layers of (Zn)n are transient to the right for Ep[log(ρx)] < 0.

For ρ̃x = 1−ω̃x
ω̃x

for (Z̃n)n:

Ep[log(ρ̃x)]

= log

(
1− 1

4
1
4

)
· (1− p)2 + log

(
1− (1− ε)

1− ε

)
· p2 + log

1−
(

1−ε
1+γ + γ

4(1+γ)

)
1−ε
1+γ + γ

4(1+γ)

 · 2p(1− p)

= log(3) · (1− p)2 + log
(

ε

1− ε

)
· p2 + log

1−
(

1−ε
1+γ + γ

4(1+γ)

)
1−ε
1+γ + γ

4(1+γ)

 · 2p(1− p).

(Zn)n is transient to the left if (Z̃n)n is transient to the left. This is the case for Ep[log(ρ̃x)] > 0.

So in order to find a solution for which (Zn)n is transient to the left, when both layers of (Zn)n
are transient to the right, we should solve the following inequalities:

(i) For both the top layer and the bottom layer of (Zn)n itself:

EP[log(ρx)] = log

(
1− 1

4
1
4

)
· (1− p)+ log

(
1− (1− ε)

1− ε

)
· p = log(3) · (1− p)+ log

(
ε

1− ε

)
· p < 0.

(ii) For (Z̃n)n:

Ep[log(ρ̃x)] = log(3) · (1− p)2 + log
(

ε

1− ε

)
· p2 + log

1−
(

1−ε
1+γ + γ

4(1+γ)

)
1−ε
1+γ + γ

4(1+γ)

 · 2p(1− p) > 0.

In solving these inequalities we have found that there are combinations of ε, p and γ for which they
hold. There are more solutions, but one solution for which the inequalities hold is when choosing for
ε, p and γ:

ε = 0.01, p = 0.2 and γ = 0.99.
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For these choices of ε, p and γ:

(i)
EP[log(ρx)]

= log

(
1− 1

4
1
4

)
· (1− p) + log

(
1− (1− ε)

1− ε

)
· p = log(3) · (1− p) + log

(
ε

1− ε

)
· p

=− 0.0401341 < 0 and

(ii)
Ep[log(ρ̃x)]

= log(3) · (1− p)2 + log
(

ε

1− ε

)
· p2 + log

1−
(

1−ε
1+γ + γ

4(1+γ)

)
1−ε
1+γ + γ

4(1+γ)

 · 2p(1− p)

=0.360124 > 0.

So now we have showed that there are possibilities of random walks on a ladder graph for which
both layers of the random walk are transient to the right, but the random walk on the ladder graph
is transient to the left. As we mentioned before there are more possible solutions for this problem.
For these solutions the following should hold:

• ε should be small, such that nodes of Type A act as boundaries for going to the left in one
dimension, but ε can not be too small, because in that case (Zn)n itself also becomes transient
to the right.

• p should be small, such that nodes of Type A do not occur too many times. In that case (Zn)n
is not transient to the left. But p should also not be too small, because in that case there are not
enough nodes of Type A in order to make that the layers of (Zn)n themselves are transient to
the right.

• γ should be large enough, such that in (Zn)n it is possible to jump over the nodes of type A.
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4 Conclusion

Random walks on a ladder graph are more complicated than random walks in random environ-
ments in one dimension, which are more complicated than simple random walks. In paragraph 1.4
we have seen that simple random walks are transient to the right for ω > 1

2 , transient to the left for
ω < 1

2 and recurrent for ω = 1
2 . The behaviour of recurrence and transience of random walks in

random environments in one dimension is more difficult than in simple random walks. Criteria for
recurrence and transience of a random walk in a random environment in one dimension are given in
theorem 2.3.1. And the behaviour of recurrence and transience of random walks on a ladder graph
is more complicated than both in simple random walks and random walks in random environments
in one dimension. A possibility to find recurrence and transience, which works for some examples
of random walks on a ladder graph, is to bring it back to one dimension as we did in paragraph 3.2.

The main conclusion of this report is that there are examples for which a random walk on a ladder
graph is transient to the left, when both layers of this random walk on the ladder graph themselves
are transient to the right. The idea of the example mentioned in paragraph 3.2 is that it is possible
to “jump over” points that act as boundaries for going to the left, because in a random walk on a
ladder graph, in addition to going to the left or to the right, a third possibility occurs in switching to
the other layer.
In this example we found that, for some choices of ε, p and γ, one possibility of a random walk on
a ladder graph for which both layers themselves are transient to the right, but the random walk on
the ladder graph is transient to the left, is a random walk of which both layers contain of nodes of
Type A with ω(x,y) = 1− ε with probability p and Type B with ω(x,y) = 1

4 with probability 1− p.
Both layers of this random walk are transient to the right for sure, because nodes of Type A will act
as boundaries for going to the left when choosing ε small enough, but for the random walk on the
ladder graph transience to the right is not a certainty for all ε, p and γ. It is possible to bring the ran-
dom walk on the ladder graph back to a random walk in one dimension, using worst-case estimates,
and to use Theorem 2.3.1 to check the transience (or recurrence).
One combination of possible values of ε, p and γ for which the random walk on the ladder graph is
transient to the left is for

ε = 0.01, p = 0.2 and γ = 0.99.
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