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Summary

First, we give a brief introduction to finite state Markov decision processes. After that we show how to
translate a well-known problem, the mountain car problem, in terms of Markov decision process. Several
algorithms from reinforcement learning will be used to find the optimal policy. The algorithms we consider
are dynamic programming, Monte Carlo and temporal-difference learning. We also give either heuristics or
a proof of their convergence properties. Finally we apply the algorithms to the mountain car problem to see
how the algorithms perform.
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1 Introduction

Every Friday morning, Mary is dropped off at her little lamb by her mother. Mary then takes her little lamb
from the sheepfold and they go for a walk. After the walk, Mary and her little lamb play hide and seek
outside the sheepfold until Mary’s mother arrives. When the mother arrives, it is always very hard to get
the little lamb in the sheepfold, she wants to play and not to be alone. One day Mary gave the little lamb a
candy after it got in. From that day, Mary felt that the lamb actually liked the candy. Mary gave the candy
every time and the little lamb gets smoothly in its sheepfold. Now Mary does not have to say anything to
her lamb, because it gets in its sheepfold after she sees the mother’s car arriving from distance.

Apparently, Mary’s little lamb has learned to go to its sheepfold without a struggle. It has learned to
do that due to the reward, namely the candy, it gets. Its good behavior is reinforced. Such type of learning
process is called reinforcement learning. It is a broad type of learning process where there is a reinforcer
which gives reward or penalty to stimulate learning. It comes in many different varieties, from learning to
get into the sheepfold calmly for getting candies to learning how to win chess for getting money.

One possible way to deal with reinforcement learning mathematically is through Markov decision pro-
cesses. That is the route to reinforcement learning that we have taken in this report. The theory of Markov
decision processes is well-developed. Textbooks such as the ones by M. Puterman in [1] and U. Rieder et al
in [2] define Markov decision processes and show how to use it for reinforcement learning. The idea is to find
a policy that the agent in question should follow. We use the book of Sutten and Barto [3] to get algorithms
for finding, in some sense good, policies.

Although the book of Sutton and Barto is readable and clear for non-mathematicians, it lacks proofs why
the algorithms actually work. However, in other books as [4], particular algorithms as dynamic programming
are treated mathematically rigorously. There are still algorithms that are broadly used, while a rigorous
treatment of such algorithms is not easy to find. For example Q-learning with constant learning-rate is only
showed to “converge” under a strict assumption [5].

In this report we investigate what is currently known about the convergence of the most used rein-
forcement learning algorithms for finite state Markov decision processes. We focus our attention on the
algorithms discussed in the first six chapters of [3]. We discuss dynamic programming, Monte Carlo meth-
ods and temporal-difference learning. We have also chosen to consider finite state and finite action Markov
decision processes to make the question handleable in a bachelor final project.

The report is organized as follows. In Section 2 we give a definition of Markov decision processes. We
also introduce some performance measures for policies. After that we give a possible way to translate the
mountain car problem in terms of a Markov decision process. That is a decision problem where a car is
placed between two mountains and the goal is to achieve the mountaintop. To make it interesting, the car’s
engine is so weak such that the car is not able to get to the mountaintop by just moving forward. It is the
task for the driver to find out a way to swing between the two mountains and get to the mountaintop.

The mountain car problem serves also as a benchmark problem for the performance of the reinforcement
learning algorithms that we will discuss. It is chosen for its simplicity. It is at the same time not trivial,
which means that it is quite representative for reinforcement learning problems.

In Section 3 we discuss the convergence of dynamic programming, in particular, value iteration and policy
iteration. Dynamic programming algorithms are in general well-studied. In fact, they are usually included
in books on Markov decision processes. Different variants of the algorithms are proved to converge in [1]
and [6]. The convergence results that we give are mostly inspired by [6].

We discuss Monte Carlo algorithms in Section 4. We only focus on two Monte Carlo algorithms, namely
Monte Carlo exploring-starts and Monte Carlo first-visit. Convergence of algorithms with a different goal,
but similar to the Monte Carlo algorithms that we consider, is given in [7]. Also in [3], a heuristic of the
convergence of the algorithms is given. We will elaborate on both results.

Finally, in Section 5 we elaborate on the convergence of temporal-difference algorithms, in particular
two versions of Q-learning. In [5] and [8], the authors showed convergence of the Q-learning algorithm.
Moreover, there are also convergence rates known for the convergence [9]. Although the main subject in
these articles is convergence of Q-learning, the results rely on different assumptions. To understand the core
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of their argument, we gave a proof of the convergence in a simpler situation.
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2 Markov Decision Processes

Consider an autonomous agent which sees the environment at time k as being Sk. After that it performs an
action Ak, possibly randomly, according to a policy. Finally it receives a reward Rk+1. This autonomous
agent wants to maximize the rewards it gets in some sense. Informally speaking, this is the idea of a Markov
decision process.

We will now make the above description more formal. To that end, we first define what we mean when
we talk about a Markov decision process. The definition that we give here is very similar as the definition
in [2]. However the one that we give here is less general.

2.1 The mathematical framework

Definition 1. A Markov decision process (MDP) is the tuple (S,A,R, P, r) where each object is specified
as follows:

1. S is the state space. It is a finite set and is endowed with the σ-algebra 2S .

2. A is the action space. It is a finite set and is endowed with the σ-algebra 2A.

3. R ⊂ R is the reward space. It is a finite set and is endowed with the σ-algebra 2R.

4. P : 2S × S × A → [0, 1] is a mapping satisfying: for a fixed (s, a) ∈ S × A, P (·|s, a) is a probability
measure on 2S . The probability measure P (·|s, a) gives probabilities for transitions.

5. r : S → R is a measurable function. It is called the reward function; r(s) has the interpretation of the
reward for the agent after getting to state s.

Definition 2. Let (S,A,R, P, r) be a Markov decision process. Then one can define a policy π and a
distribution µ as follows:

• The policy π : 2A×S → [0, 1] is a mapping satisfying: for a fixed s ∈ S, π(·|s) is a probability measure
on 2A.

• µ is the initial distribution on S.

Definition 3. A policy π is said to be deterministic if the probability measure π(·|s) is a Dirac measure. A
policy π is said to be soft if π(a|s) > 0 for all s ∈ S and a ∈ A. The set of all policies is denoted by Π and
the set of all deterministic policies is denoted by ΠD. Also if π ∈ ΠD, then we abuse notation, and consider
π as a mapping from S to A, which maps each state s to the action a which has probability 1.

Remark 4. There are a couple of remarks that should be made.

• By P (s′|s, a) we actually mean P ({s′}|s, a) and the same is true for other probability measures.

• The probability measure P ( | ) does not always correspond to a conditional probability distribution,
even though the bar suggests otherwise.

• Given a MDP and a policy π one immediately gets a new kind of transition probability p : 2S×A×S ×
A → R which is defined as follows:

p(S ×A|s, a) :=
∑
s′∈S

P (s′|s, a)π(A|s′). (1)

These objects turn out to be very useful and therefore they will get a name, namely: state-action
transition kernels. The name will be clear later.

To a Markov decision process we can associate a Markov chain which has the interpretation of a stochastic
process describing the movement of an agent through the state space S. To that end, we first define a couple
of concepts.
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Definition 5. Let (E,G) be a measurable space with E a finite set. A function λ : G × E → R is called a
Markov kernel if:

• For each x ∈ E the mapping B 7→ λ(B, x) is a probability measure on (E,G).

• For each B ∈ G the function λ(B, ·) is a measurable function from (E,G) to (R,B).

Theorem 6. Consider a Markov kernel λ on (E,G). Let α be an initial distribution on (E,G). Then there
exists a probability space (Ω,F ,P) and a time-homogeneous Markov chain (Yk)k≥0 on that probability space
taking values in E with initial distribution α and transition probabilities from i to j given by λ(i, j).

Proof. The existence of the Markov chain given transition probabilities is a standard result in the theory of
Markov chains; it is Corollary 14 in Chapter 1 of [10].

Proposition 7. The state-action transition kernel p defined in (1) is a Markov kernel.

Proof. The proof follows from the way P and π are defined and the fact that S is a finite set. Therefore the
proof will be omitted.

It seems that we are close to applying Theorem 6, but we need to define an initial distribution on S × A
first. Define a probability measure ν on (S ×A, 2S×A) as follows:

ν(S ×A) :=
∑
s∈S

µ(s)π(A|s). (2)

where µ is the initial distribution on S. The probability measure ν will be our initial distribution on S ×A.
Now applying Theorem 6 with p being the Markov kernel and ν being the initial distribution gives us a

Markov chain (Sk, Ak)k≥0 on some measure space, say (Ω,F ,P), taking values in S ×A. With this theorem
we see that the short description in the introduction actually makes sense.

2.2 Action-value function

The Markov chain (Sk, Ak)k≥0 induces another stochastic process (r(Sk+1))k≥0 which is the reward process.
We define a sequence of random variables, namely the discounted return (Gk)k≥0, which is defined as G0 = 0
and for k ≥ 1 as follows:

Gk :=

∞∑
j=0

γjr(Sk+j). (3)

where γ ∈ (0, 1) is called the discount factor. We do not consider the case γ = 0, because it is not really
interesting. The discount factor makes sure that Gk is well-defined as a proper random variable, namely one
has

|Gk| ≤
∞∑
j=0

γj |r(Sk+j)| ≤
∞∑
j=0

γj sup
s
|r(s)| = sups |r(s)|

1− γ
<∞,

where we have used that {|r(s)| : s ∈ S} is finite which means that the supremum is attained. Since the
random variable Gk is bounded, it is also integrable, i.e. the expectation of Gk is well-defined.

The random variable Gk is the sum of the discounted rewards after the k-th time step. One needs to
say something about the expectation of Gk. One might want to answer: “What policy will maximize the
mean of Gk+1, say, given that I’m now at (Sk, Ak) = (s, a)?”.This question can be answered with the use of
a so-called action-value function (see also [3]).
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Definition 8. Consider an MDP and a policy π. Now one can define the action-value function qπ ∈ RS×A
as follows. Take an initial distribution λ on S × A such that λ(s, a) = 1 so that one gets a Markov chain
(Sk, Ak)k≥0. We then define qπ(s, a) as

qπ(s, a) := E[G1 | S0 = s,A0 = a]. (4)

The interpretation qπ(s, a) has is the expected discounted return given one is in position s and does action
a and follows policy π afterwards.

In a similar way one can define the value function vπ ∈ RS for each s ∈ S as follows:

vπ(s) := E[G1 | S0 = s]. (5)

As one might expect, qπ and vπ are related to each other. The important relations are gathered in one
lemma.

Lemma 9. The functions qπ and vπ satisfy the following relations:

(i) qπ is a non-trivial affine transformation of itself :

qπ(s, a) =
∑
s′∈S

r(s′)P (s′|s, a) + γ
∑

(s′,a′)∈S×A

qπ(s′, a′)p(s′, a′|s, a)

(ii) vπ is a non-trivial affine transformation of itself :

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

vπ(s′)P (s′|s, a)

(iii) qπ is an affine transformation of vπ:

qπ(s, a) =
∑
s′∈S

P (s′|s, a) [r(s′) + γvπ(s′)]

(iv) vπ is an affine transformation of qπ:

vπ(s) =
∑
a∈A

qπ(s, a)π(a|s)

Proof. All of the equations above can be obtained by the same method. Therefore only the proof of (i) is
given. Recall that we have a Markov chain (Sk, Ak)k≥0 which we have used to define qπ. Notice that

qπ(s, a) = E[r(S1) + γG2 | S0 = s,A0 = a]

=
∑
s′∈S

r(s′)P (s′|s, a) + γ
∑

(s′,a′)∈S×A

E[G2 | S1 = s′, A1 = a′]p(s′, a′|s, a),

where we have used the Markov property. Moreover the last summation runs over all (s′, a′) ∈ S × A such
that p(s′, a′|s, a) > 0 to make the conditional expectation well-defined. Similarly for the first summation.
Also notice that the conditional distribution of G2 given {S1 = s′, A1 = a′} is equal to the conditional
distribution Ĝ1 given {Ŝ0 = s′, Â0 = a′} where (Ŝk, Âk)k≥0 is a Markov chain induced by a different initial

distribution, namely one for which there is positive probability for the event {Ŝ0 = s′, Â0 = a′}. But the
expectation of that is qπ(s′, a′), hence

qπ(s, a) =
∑
s′∈S

r(s′)P (s′|s, a) + γ
∑

(s′,a′)∈S×A

qπ(s′, a′)p(s′, a′|s, a).
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Now we can compare different policies, but we need to have a notion to what we call the optimal policy
which will be given in the following definition.

Definition 10. A policy π is called optimal if for all policies π′

vπ′(s) ≤ vπ(s) for all s ∈ S. (6)

Although an optimal policy might not be unique, one denotes it with π∗.

Remark 11. The optimal value function will be written as v∗ and it satisfies

v∗(s) = max
π

vπ(s) for all s ∈ S. (7)

and the optimal action-value function will be written as q∗ and it satisfies

q∗(s, a) = max
π

qπ(s, a) for all (s, a) ∈ S ×A. (8)

How to find such policy? Does it exist? Its existence is a standard result [1]. Finding the optimal policy is
a little bit harder than finding v∗ and q∗ as we can see from the following theorem.

Theorem 12. The functions v∗ and q∗ satisfy the so-called Bellman equations. That is, they satisfy

v∗(s) = max
a∈A

E[r(S1) + γv∗(S1) | S0 = s,A0 = a] for all s ∈ S, (9)

and

q∗(s, a) = E[r(S1) + γmax
a′

q∗(S1, a
′) | S0 = s,A0 = a] for all (s, a) ∈ S ×A. (10)

Proof. For a proof of this theorem, see for instance Section 5.4 in [1].

This theorem gives us a finite system of equations for the optimal (action-) value function. For example, the
system of equations for q∗ consists of |S × A| equations. It might still be hard to solve for them. However
these equations can help finding the solution and prove its existence through Banach fixed-point theorem.

To that end we define the operator T : RS×A → RS×A as follows, given q ∈ RS×A, we define T [q] by

T [q](s, a) = E[r(S1) + γmax
a′

q(S1, a
′) | S0 = s,A0 = a]. (11)

Clearly q∗ is a fixed point of T by the Bellman equations. Moreover we have the following Lemma.

Lemma 13. The operator T defined in (11) is a contraction with contraction constant γ with respect to
the supremum norm on RS×A (which is denoted by ‖ · ‖∞).

Proof. We start by writing the definition of the maximum norm and using the triangle inequality for integrals
afterwards. We proceed as follows:

‖Tq1 − Tq2‖∞ = γmax
s,a
|E[max

a1
q1(S1, a1)−max

a2
q2(S1, a2) | S0 = s,A0 = a]|

≤ γmax
s,a

E[|max
a1

q1(S1, a1)−max
a2

q2(S1, a2)| | S0 = s,A0 = a].

Now notice that

|max
a1

q1(S1, a1)−max
a2

q2(S1, a2)| ≤ max
s′
|max
a1

q1(s′, a1)−max
a2

q2(s′, a2)| a.s.
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Hence

‖Tq1 − Tq2‖∞ ≤ γmax
s,a

E[max
s′
|max
a1

q1(s′, a1)−max
a2

q2(s′, a2)| | S0 = s,A0 = a]

= γmax
s′
|max
a1

q1(s′, a1)−max
a2

q2(s′, a2)|.

Assume without loss of generality that maxa1 q1(s, a1) ≥ maxa2 q2(s, a2). Choose a0 ∈ A arbitrarily. Then
one has

|max
a1

q1(s, a1)−max
a2

q2(s, a2)| = max
a1

q1(s, a1)−max
a2

q2(s, a2)

= max
a1
{q1(s, a1)−max

a2
q2(s, a2)}

≤ max
a′
{q1(s, a′)− q2(s, a′)}

≤ max
a′
|q1(s, a′)− q2(s, a′)|.

Therefore

‖Tq1 − Tq2‖∞ ≤ γmax
s′

max
a′
|q1(s′, a′)− q2(s′, a′)| = γ‖q1 − q2‖∞.

We conclude T is a contraction with contraction constant γ ∈ (0, 1).

Now one gets the existence of q∗ by Banach fixed-point theorem. Once one has q∗, then an optimal policy
π∗ can be found by setting:

π∗(a|s) =

{
1 if a = argmaxa′ q∗(s, a

′),

0 otherwise.
(12)

This policy clearly satisfies qπ∗ = q∗. It is not clear yet that it is optimal with respect to the value function
as well. From part (iv) of Lemma 9, we know that for an arbitrary policy π that the following holds:

vπ(s) =
∑
a∈A

qπ(s, a)π(a|s) ≤
∑
a∈A

qπ∗(s, a)π(a|s) ≤ max
a∈A

qπ∗(s, a) =
∑
a∈A

qπ∗(s, a)π∗(a|s) = vπ∗(s). (13)

This holds for all s, hence π∗ is optimal with respect to the value function as well.
These are the definitions we need. After this the theory will be applied to a particular, rather simple,

example which illustrates the theory very well.

2.3 Mountain car problem

We will apply the theory of Markov decision processes on a very well-known problem from reinforcement
learning, the mountain car problem. There are many formulations of the problem, but they all boil down to
the same thing. In this section we give one particular formulation of the problem.

Let f : [−1, 1] → R be an even function which is sufficiently many times continuously differentiable,
strictly increasing on (0, 1] and satisfying f(0) = 0. The graph of this function is considered as a valley
between two mountains. A car is placed in the middle of the valley, namely at the point (0, 0). The goal is
to let the driver “learn” how to get to the most right-end point (1, f(1)). To make the problem interesting
the engine of the car is set to be so weak that the car cannot get to (1, f(1)) by just moving forwards.

We will not solve the problem in this general form. We consider a particular choice of the function f ,
namely f(x) = x2. The performance of the engine of the car is a parameter in terms of the maximum
acceleration of the car.
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2.3.1 Dynamics of the car

The dynamics of the car is important for finding the transition probabilities P (which turn out to be
deterministic). For example, one needs to find out where the car will be next if one presses the gas pedal.
The main focus is the dynamics on the x-axis, since the dynamics on the y-axis can be found through
y = f(x). We will use some results from physics in order to make the dynamics of the car realistic. To that
end we first assume that the car has mass m. Let β : [0,∞) → R be a function that translates the action
of the driver is making in terms of the car’s acceleration. Then one can define the vectorial force that is
coming from the car, Fβ : [0,∞)→ R2 as follows:

Fβ(t) := m
β(t)√

1 + [f ′(x(t))]2

(
1

f ′(x(t))

)
,

where x(t) is the x-position of the car at time t. For example, if the driver steps on the gas pedal to go
forward at time t then β(t) is a positive number whose magnitude corresponds with how how far the driver
is pushing down the pedal. This vectorial function Fβ and β will be used to determine the position of the
car.

Let G : [0,∞) → R2 be the gravitational force on time t and N : [0,∞) → R2 be the normal force on
time t. Clearly the following holds:

G(t) = m

(
0
−g

)
,

where g is the gravitational acceleration. Moreover N is orthogonal to Fβ , so

N(t) = m
n(t)√

1 + [f ′(x(t))]2

(
−f ′(x(t))

1

)
,

for some function n : [0,∞) → R. The net force F satisfies then F = G + N + Fβ . By Newton’s Second
Law, we have

F (t) = m

(
ẍ(t)
ÿ(t)

)
.

One has y(t) = f(x(t)), i.e. the car stays on the surface. The second derivative of y(t), is then ÿ(t) =
ẍ(t)f ′(x(t)) + (ẋ(t))2f ′′(x(t)). Notice that F = G+N +Fβ is a system of two equations where the function
n(t) is still unknown. Using the second component of the equation F = G+N + Fβ , we find

n(t) =
√

1 + [f ′(x(t))]2
[
ẍ(t)f ′(x(t)) + (ẋ(t))2f ′′(x(t)) + g

]
− β(t)f ′(x(t)).

Now we find a differential equation for x(t) using the first component of the equation F = G + N + Fβ ,
namely:

ẍ(t) =
β(t)√

1 + [f ′(x(t))]2
−
f ′(x(t))

[
g + (ẋ(t))2f ′′(x(t))

]
1 + [f ′(x(t))]2

.

Let v = ẋ then we have

d

dt

(
x(t)
v(t)

)
=

 v(t)
β(t)√

1+[f ′(x(t))]2
− f ′(x(t))[g+(v(t))2f ′′(x(t))]

1+[f ′(x(t))]2

 . (14)

This ordinary differential equation determines the exact position of the car after taking the “actions” β(t)
and starting on position x(0) with velocity v(0).
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2.3.2 MDP formulation of the problem

We see that the definition of MDP assumes a finite state space. It is convenient to describe the state of the
car in terms of (x, ẋ) with x ∈ [−1, 1]. However, the environment as described above is uncountable. The
other thing is that the variable t that is in the ODE in Equation (14) is continuous time while the MDP is
only defined for discrete time steps. So it is necessary to do some preparation work before we can construct
an MDP.
Consider the following state space:

S = {ξ0, ...., ξN} × {η0, ..., ηN}.

This set is a discretization version of the set [−1, 1] × V where V ⊂ R is the set that ẋ can take. The set
{η0, ..., ηN} is bounded and discrete version of V which will be chosen appropriately. The discretization is
done so that the distance between neighboring points is equal. We also require the point (0, 0) to be in there,
which is guaranteed by choosing N to be an even number. This discretization has two parameters, namely
N and ηN .

The actions that the driver can choose are: driving backward, staying still or driving forward; these
actions get the values −1, 0 and 1 respectively. Therefore the set of actions will be A = {−1, 0, 1}.

Now we give a procedure to find the function P . If the driver is in state Sk and chooses to do action
Ak ∈ A, then we will assume that from time step k to (k + 1) the force is constant. In terms of Fβ , that
means that β(t) ≡ βAk with β > 0. Notice the abuse of notation when we defined β as a number, it is the
constant magnitude which is a parameter. To find the next state, we solve the ODE in Equation (14) with
initial values (x(0), ẋ(0)) = Sk and get the values (x(τ), ẋ(τ)) where τ > 0. The number τ is the real time
that corresponds to the discrete time between k and (k + 1) and we will leave it as a parameter.

The remaining problem is that (x(τ), ẋ(τ)), which appears to be the next state, is not an element of S
in general. An easy way to get over this is to set:

Sn+1 = argmins∈S ‖(x(τ), ẋ(τ))− s‖2,

which is by definition an element of S. Using that, we don’t get (x(τ), ẋ(τ)) as the next state, but an element
of S that is closest to it. Actually, the formulation must be in terms of P , but it is redundant as long it is
clearly described how Sk+1 is distributed given (Sk, Ak) = (s, a).

Finally the reward must be specified. The set of rewards is R := {0, 1}. The car gets a reward of 0 all
the time except if it goes to (1, η) for all η ∈ {η0, ..., ηN}, then it is equal to 1. In other words, r(1, η) = 1
and zero otherwise. The car will be forced to go to the most right-end point by giving the largest reward if
it gets there. That is the goal and therefore for every state Sn = (1, η) the next state will be Sn+1 = (1, η),
this means that the car stays in there after achieving its goal. What could physically happen is that the car
goes down again, but that is permitted.

Now the mountain car problem is formulated in terms of MDP. What remains now is finding the optimal
policy. In the next sections we consider methods to find the optimal policy. We will apply these methods to
the mountain car problem. The parameters that will be used are given in Table 1.

Table 1: Model parameters

Parameter Value
N 20
ηN 3
β 2.5
τ 0.1
γ 0.5

With this choice of parameters, in particular β, the car can not get to the mountaintop in one run. As we
can see from Figure 1, the car can get to (x, y) = (0.27, 0.075) if the driver drives forward starting at position
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(0, 0). There are oscillations as we would expect. Also the role of τ is a little bit visible from the figure,
namely one has x(τ) = 0.0123. That means that in the first step of the MDP, the car can get to position
(x, y) = (0.0123, 1.51 · 10−4).

The car’s position starting at the bottom and driving forward

0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

t

x(
t)

Figure 1: Numerical solution of the differential equation describing the movement of the car in case that the
car starts at position (0, 0) and drives forward.

In this section we have given a formal definition of an MDP. There are two types of measure of performance
of policies which will be used throughout the whole report. After that, we have discussed an example, the
mountain car problem, in terms of an MDP. In the next sections we give various algorithms to solve for the
optimal policy. At last we apply them on the mountain car problem to test how the algorithms perform.

12



3 Dynamic Programming

There are several algorithms that assume the agent knows the dynamics of the environment plus the reward
that it will be given. That means that the agent knows the function P and r. The algorithms that we
consider are called dynamic programming. The goal, in those algorithms, is to find v∗ and the optimal policy
π∗. In the case where P and r are known functions, the Bellman equations are only unknown in v∗ (see
Theorem 12). So one could theoretically solve for v∗.

To illustrate the idea, define the operator J : RS → RS as follows:

J [v](s) = max
a∈A

{∑
s′∈S

P (s′|s, a) [r(s′) + γv(s′)]

}
. (15)

Notice that v∗ is a fixed point of J because of Theorem 12, i.e. the Bellman equations. From Proposition 14,
which is stated below, one knows that J is a contraction with parameter γ. So for an arbitrary V0 ∈ RS the
iteration Vn = JVn−1 has limit v∗ as n→∞ by the Banach fixed-point theorem.

After that one finds the optimal policy by the relation of q∗ and v∗ given in part (iii) of Lemma 9. This
algorithm is called value iteration. This is the first algorithm that we will consider.

Thereafter we discuss another algorithm, which is called policy iteration. It uses the fact that there exists
a deterministic optimal policy. One also knows that there are |A||S| deterministic policies. So the idea is to
use the fact that there is only a finite set of policies that should be considered and the Bellman equations.

For a policy π ∈ ΠD we define the operator Jπ : RS → RS as follows for each s ∈ S:

Jπ[v](s) =
∑
s′∈S

P (s′|s, π(s)) [r(s′) + γv(s′)] . (16)

Notice that we use π as a mapping from S to A. By the second part of Lemma 9 we deduce that for a
deterministic policy π, the value function vπ is a fixed point of Jπ. This fact plays an important role for
what will come later. The next proposition summarizes the important properties of the operator J and Jπ.

Proposition 14. Consider the operators J and Jπ defined in (15) and (16) respectively. Then both operators
are:

(i) monotone, i.e. for v ≤ w one has Jv ≤ Jw and Jπv ≤ Jπw.

(ii) a contraction with contraction constant γ with respect to the supremum norm on RS . In particular,
the operators are continuous.

Proof. The proof will be given only for the operator J . For (i), let v ≤ w be given. Then using that P is
a non-negative function and γ ≥ 0, one concludes γv(s′)P (s′|s, a) ≤ γw(s′)P (s′|s, a). Summing over s′ ∈ S
one gets γ

∑
s′ v(s′)P (s′|s, a) ≤ γ

∑
s′ w(s′)P (s′|s, a). Adding

∑
s′ r(s

′)P (s′|s, a) and taking the maximum
over a ∈ A on both sides yields the desired inequality: Jv ≤ Jw.

For (ii) one needs to remark that |maxx f(x)−maxy g(y)| ≤ maxx |f(x)− g(x)|, which is proven in the
proof of Lemma 13. Using the previous observation, we can write

‖Jv − Jw‖∞ = max
s∈S

∣∣∣∣∣max
a∈A

{∑
s′∈S

P (s′|s, a) [r(s′) + γv(s′)]

}
−max
a′∈A

{∑
s′′∈S

P (s′′|s, a) [r(s′′) + γw(s′′)]

}∣∣∣∣∣
≤ γmax

s∈S
max
a∈A

∣∣∣∣∣∑
s′∈S

(v(s′)− w(s′))P (s′|s, a)

∣∣∣∣∣ .
Using the triangle inequality one gets

‖Jv − Jw‖∞ ≤ γmax
s∈S

max
a∈A

∑
s′∈S
|v(s′)− w(s′)|P (s′|s, a).
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We take the maximum of |v(s′)− w(s′)| to get it out from the sum and we proceed as follows:

‖Jv − Jw‖∞ ≤ γmax
s∈S

max
a∈A

max
s′′∈S

∑
s′∈S
|v(s′′)− w(s′′)|P (s′|s, a)

≤ γmax
s∈S

max
a∈A

max
s′′∈S

|v(s′′)− w(s′′)|
∑
s′∈S

P (s′|s, a)

= γ‖v − w‖∞ · 1.

This proves that J is a contraction. Similar arguments can be used for Jπ.

3.1 Value iteration

Value iteration is an algorithm that is very accurate in the sense that one can know exactly how accurate
the approximation is depending on the number of iterations. Therefore we use this algorithm as a baseline
for all other algorithms in the mountain car problem. The algorithm, as taken from [3], is shown below.

Initialization:
V (s) ∈ R arbitrarily for all s ∈ S. Take θ > 0 small (measure for accuracy) and set ∆ = θ

Value iteration:
repeat

for s ∈ S do
v ← V (s)
V (s)← maxa

∑
s′∈S P (s′|s, a) [r(s′) + γV (s′)]

∆← max{∆, |v − V (s)|}
end

until ∆ < θ

Policy Output:
π(s)← argmaxa

∑
s′∈S P (s′|s, a) [r(s′) + γV (s′)] for all s ∈ S

Algorithm 1: Value iteration

Remark 15. Such algorithm can also be used to find vπ for some policy π. We have to consider the
recurrence relation Vn+1 = JπVn. The results that we will see holds also for this iteration. We do not
discuss this in full detail, but we will use it in Section 4.3 and Section 5.3 to compare policies.

First of all it is clear that this algorithm terminates due to the Banach fixed-point theorem, since the
value iteration is just a fixed-point iteration. Now we discuss the convergence properties of this algorithm.
Mathematically, the algorithm is basically given by Vn+1 = JVn where n runs in each step of value iteration.

The next lemma tells us that if a value function vπ for a policy π ∈ ΠD is really close to v∗, then it is
the optimal value function itself. This result is especially due to the fact that ΠD is a finite set.

Lemma 16. There exists ζ > 0, such that for every policy π ∈ ΠD satisfying

‖vπ − v∗‖∞ < ζ, (17)

implies that π is an optimal policy.

Proof. Notice that there are a finite number of policies π ∈ ΠD. Now let C∗ := {π ∈ ΠD | vπ 6= v∗}. Since
there exists an optimal policy π∗ ∈ ΠD, one knows that C∗ 6= ΠD. If C∗ = ∅ we are done. On the other
hand, if C∗ 6= ∅, then minπ∈C∗ ‖vπ − v∗‖∞ > 0 for being a minimum over a set with finite elements which
are all positive. Take ζ = minπ∈C∗ ‖vπ − v∗‖∞ > 0. Then every π ∈ ΠD satisfying ‖vπ − v∗‖∞ < ζ must be
not in C∗ meaning that vπ = v∗.
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Now we introduce a theorem which tells us how far the true value is from the real value. The theorem tells
us that we indeed get an approximation of the optimal value function using the algorithm.

Theorem 17. If the value iteration terminates at time step n with approximation Vn and policy π, then

‖Vn − v∗‖∞ ≤
γ

1− γ
θ, (18)

and

‖vπ − v∗‖∞ ≤
2γ2θ

(1− γ)2
. (19)

Moreover, if θ < ζ (1−γ)2
2γ2 , where ζ > 0 satisfies the conditions of Lemma 16, then the policy π is optimal.

Proof. Notice that using the fact that J is contraction by Proposition 14, we get

‖Vn − v∗‖∞ = ‖JVn−1 − Jv∗‖∞
≤ γ‖Vn−1 − v∗‖∞
≤ γ‖Vn−1 − Vn + Vn − v∗‖∞
≤ γ‖Vn−1 − Vn‖∞ + γ‖Vn − v∗‖∞.

If the algorithm terminates at time step n, then we must have ‖Vn − Vn−1‖∞ ≤ θ, hence

‖Vn − v∗‖∞ ≤
γθ

1− γ
,

proving the first inequality.
For the second inequality, first we notice that π is chosen greedily with respect to Vn which implies that

JπVn = JVn. The rest of the proof is basically applying the triangle inequality several times. We proceed
as follows:

‖vπ − v∗‖∞ = ‖Jπvπ − JπVn + JVn − Jv∗‖∞
≤ ‖Jπvπ − JπVn‖∞ + ‖JVn − Jv∗‖∞
≤ γ‖vπ − Vn‖∞ + γ‖Vn − v∗‖∞
≤ γ‖vπ − v∗‖∞ + γ‖v∗ − Vn‖∞ + γ‖Vn − v∗‖∞

≤ γ‖vπ − v∗‖∞ +
2γ2θ

1− γ
.

Taking ‖vπ−v∗‖∞ to the left-hand side finishes the proof of the inequality. Finally the fact that π is optimal
under the additional condition on θ is a result from Lemma 16.

The same technique can be used to obtain a bound depending on n. At the n-th iteration one has

‖Vn − v∗‖∞ ≤
γn

1− γ
‖V1 − V0‖∞. (20)

This tells us how many iterations we need to get a desired accuracy. This is the reason we have chosen this
algorithm as a baseline. We can know how many iterations we need to get a good approximation beforehand.

3.2 Policy iteration

A pseudocode for the policy iteration algorithm, as shown in [3], is given below.
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Initialization:
V (s) ∈ R and π(s) ∈ A arbitrarily for all s ∈ S. Take θ > 0 small and set ∆ = θ

Policy Evaluation (PE):
repeat

for s ∈ S do
v ← V (s)
V (s)←

∑
s′∈S P (s′|s, π(s)) [r(s′) + γV (s′)]

∆← max{∆, |v − V (s)|}
end

until ∆ < θ

Policy Improvement (PI):
policy-stable← true
for s ∈ S do

old-action← a(s)
π(s)← argmaxa

∑
s′∈S P (s′|s, a) [r(s′) + γV (s′)]

if old-action 6= π(s) then
policy-stable ← false

end

end
if policy-stable then

return V and π
else

go to Policy Evaluation
end

Algorithm 2: Policy iteration

It might seem that the algorithm must terminate somewhere, but in fact there are many subtleties. It might
be the case that the algorithm switches between two or more optimal policies all the time so that it never
terminates [3]. That is easily fixed by adding additional flags. In other words by making use of the history of
the sequence of policies, but those cases make the algorithm a little bit complicated. Therefore we decided to
leave it out. If one adds a code which keeps track of the history of the policies then the algorithm terminates,
since the set ΠD is finite.

First we show that, if the algorithm terminates, possibly with additional flags, then it gives an approx-
imation of v∗ with an approximation of its corresponding optimal policy π∗. Secondly, we show that the
algorithm gives policies which get better than the previous ones with respect to the value function. After
that, we show that the algorithm actually gives an exact value of v∗ and π∗, if we would run the algorithm
without the termination code, i.e. for infinitely long time. The termination code is the code that lets the
algorithm terminate, in other words, the line where it says “if policy-stable then...”.

Before going into the properties of the algorithm, we need a mathematical formulation of the algorithm.
We start with π0 and V0 and get then the following recursion. In each step of policy evaluation, abbreviated
by PE, we get Vn+1 and πn+1, i.e. the index increases. The same will happen in each step of policy
improvement, abbreviated by PI. Indeed having Vn and πn, we get the following in the next step, one either
does PE: {

Vn+1 = JπnVn,

πn+1 = πn.
(21)
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or does PI and sets for each s ∈ S:{
πn+1(s) = argmaxa

∑
s′∈S P (s′|s, a) [r(s′) + γVn(s′)] ,

Vn+1(s) = Vn(s).
(22)

Notice that each PE loop terminates after we have found an n such that ‖Vn − Vn−1‖∞ < θ. But is such n
guaranteed to exist? Yes, notice that during PE there is only one policy that will be followed, say π, then
the recursion given for Vn converges to the fixed point of Jπ. That implies that Vn is a Cauchy sequence
proving that the difference between two values gets arbitrarily small. This immediately implies that the
algorithm switches between PE and PI for infinitely many times, if run without the termination code.

The following proposition gives a bound on the difference of the approximate value function and the
exact value function.

Proposition 18. Let time step n be the index of the last step in a PE loop, then one has

‖Vn − vπn‖∞ ≤
θγ

1− γ
. (23)

Proof. We know that n was the last index that we have got. Since we were in a PE loop at the last step, we
know that πn = πn−1. Hence one has vπn

= vπn−1
which leads to:

‖Vn − vπn
‖∞ = ‖Jπn−1Vn−1 − Jπn−1vπn−1

‖∞
≤ γ‖Vn−1 − vπn−1

‖∞
≤ γ‖Vn−1 − Vn + Vn − vπn

‖∞
≤ γ‖Vn−1 − Vn‖∞ + γ‖Vn − vπn

‖∞
≤ γθ + γ‖Vn − vπn

‖∞.

Hence

‖Vn − vπn
‖∞ ≤

θγ

1− γ
.

One can always choose V0 such that V0 ≤ Jπ0V0. Let e : S → R such that e(s) = 1 for all s ∈ S. Now we
set V0 = −βe for β large enough. Because one has

Jπ0V0 = Jπ0 [−βe] = −γβe = −βe+ (1− γ)βe = V0 + (1− γ)βe.

For β → ∞ one has: (1− γ)βe(s) → ∞ meaning that for β large enough (1− γ)βe(s) ≥ 0. Hence for such
β one gets Jπ0V0 ≥ V0. From now on, we assume that V0 satisfies V0 ≤ Jπ0V0. It makes the proof of the
results that will be mentioned later easier, although it turns out that it is not always needed.

Before we get into the important theorems, we first introduce a couple of lemmas.

Lemma 19. If V0 ≤ Jπ0V0, then for all n ∈ N one has Vn ≤ Vn+1 ≤ Jπn+1Vn+1.

Proof. The proof is inspired by a proof in [6] where the author uses it to prove a convergence property of a
more general policy iteration algorithm. That being said, we prove it by induction. Let n ∈ N and assume
that Vn ≤ JπnVn holds. Then we show that Vn ≤ Vn+1 ≤ Jπn+1Vn+1 holds.

There are two cases, either the next step, i.e. the next index n+ 1, is PE or PI.

• PE is done next. One has Vn+1 = JπnVn, hence Vn ≤ Vn+1. During a PE loop, the policy will be
kept fixed, i.e. πn = πn+1, hence Jπn+1Vn+1 = JπnVn+1. Also one has JπnVn ≤ JπnVn+1 by the
monotonicity of Jπn . These imply that Vn+1 = JπnVn ≤ JπnVn+1 = Jπn+1Vn+1. This proves the
claim for the case PE is done next.
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• PI is done next. One has Vn+1 = Vn in this step. Notice that for each s ∈ S we have

Jπn [Vn](s) =
∑
s′∈S

P (s′|s, πn(s)) [r(s′) + γVn(s′)]

≤ max
a∈A

{∑
s′∈S

P (s′|s, a) [r(s′) + γVn(s′)]

}
= J [Vn](s),

implying JπnVn ≤ JVn. Finally notice that the policy πn+1 is found such that JVn = Jπn+1Vn. Now
together with the induction hypothesis, we conclude: Vn+1 = Vn ≤ JπnVn ≤ JVn = Jπn+1Vn =
Jπn+1Vn+1.

We have proved the claim in both cases.

As a consequence, the estimated value function is always bounded by the true value function.

Corollary 20. If V0 ≤ Jπ0V0, then Vn ≤ vπn
for all n ∈ N.

Proof. Let n ∈ N, then Vn ≤ Vn+m for m ≥ 0. Assume one would never get in the PI loop after time step
n, then that would mean that πn+m = πn is constant for m ≥ 0. Then one knows that Vn+m → vπn due to
the PE loop and Banach fixed-point theorem.

It is important to notice that the previous lemma does not say that the policies get better. It only says that
the approximations of the value function gets better. But do the policies get better? In other words, do the
value functions of the policies πn satisfy vπn

≤ vπn+1
? One would question whether that is true, since the

approximate value functions Vn are a little bit close to their true value vπn . That is the case, but in order
to have such result we need to get the approximate value functions Vn close to vπn by choosing the accuracy
parameter θ small enough. That is summarized in the next theorem.

Before we get into the formulation of the theorem, we define the set C as follows:

C := {(s, π, π′) ∈ S ×ΠD ×ΠD | vπ(s) 6= vπ′(s)}. (24)

If this set is empty, then we do not need an algorithm to find the optimal policy, because all policies are
optimal. However if this set is not empty, then it is a finite set for being a subset of the finite set S×ΠD×ΠD.
That means that for all (s, π, π′) ∈ C, one has |vπ(s) − vπ′(s)| > 0, so the minimum of such quantities is
strictly positive. That leads to the definition of the constant θ0 > 0:

θ0 :=
1− γ
γ

min
(s,π,π′)∈C

|vπ(s)− vπ′(s)|. (25)

Theorem 21. If V0 ≤ Jπ0 and θ < θ0, then the policy iteration gives a sequence of policies πn that get
better with the time step, i.e. vπn

≤ vπn+1
for all n ∈ N.

Proof. Notice that during PE the policies remain the same. However, if one gets in the PI loop in step n+1,
then πn might be different from πn+1. So assume that the (n + 1)-th step is a policy iteration step. Now
we prove by contradiction. Assume that for some s ∈ S, one has vπn

(s) > vπn+1
(s). Notice that one has

Vn ≤ Vn+1 ≤ Vn+2 ≤ vπn+2
= vπn+1

, because of the fact πn+1 = πn+2 by the PE step that comes after the
PI step and Lemma 19. Now one has

Vn(s) ≤ vπn+1
(s)

Vn(s)− vπn
(s) ≤ vπn+1

(s)− vπn
(s).

Using Proposition 18, one gets

− θγ

1− γ
≤ Vn(s)− vπn

(s).
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That implies

0 < vπn
(s)− vπn+1

(s) ≤ θγ

1− γ
. (26)

By construction (s, πn, πn+1) ∈ C, hence

|vπn(s)− vπn+1(s)| < min
(s′,π,π′)∈C

|vπ(s′)− vπ′(s′)|. (27)

This is clearly a contradiction. Therefore the conclusion: vπn ≤ vπn+1 .

Now we can formulate a theorem which roughly says that if a policy is obtained twice in the policy it-
eration algorithm, then that policy is very close to the optimal policy. Under some conditions we know
that the policies improve, so getting one policy twice would intuitively mean that there is no possibility for
improvement.

Theorem 22. If θ < θ0 and the initialization of the algorithm satisfies V0 ≤ Jπ0V0, then if a policy is
obtained for the second time in time step n, then the following hold:

‖vπn
− v∗‖∞ ≤

2γ2θ

(1− γ)2
, (28)

and

‖Vn − v∗‖∞ ≤
γ(1 + γ)θ

(1− γ)2
. (29)

In particular, if θ < min{ζ (1−γ)2
2γ2 , θ0}, where ζ > 0 is from Lemma 16, then the policy πn is optimal.

Proof. The assumption in the theorem says that there exists m < n such that vπm
= vπn

. But from
Theorem 21 one knows vπm ≤ vπm+1 ≤ ... ≤ vπn = vπm . Hence vπn−1 = vπn . Now one gets

‖vπn
− v∗‖∞ = ‖vπn

− Jvπn
+ Jvπn

− v∗‖∞
= ‖vπn−1

− Jvπn−1
+ Jvπn

− Jv∗‖∞
≤ ‖vπn−1

− Jvπn−1
‖∞ + ‖Jvπn

− Jv∗‖∞
≤ ‖vπn−1

− Jvπn−1
‖∞ + γ‖vπn

− v∗‖∞.

We conclude

‖vπn
− v∗‖∞ ≤

1

1− γ
‖vπn−1

− Jvπn−1
‖∞. (30)

Notice that we defined πn to be the policy satisfying JVn−1 = JπnVn−1. Now one can bound the remaining
terms as follows:

‖vπn−1 − Jvπn−1‖∞ = ‖vπn−1 − JπnVn−1 + JVn−1 − Jvπn−1‖∞
≤ ‖vπn−1 − JπnVn−1‖∞ + ‖JVn−1 − Jvπn−1‖∞
= ‖vπn − JπnVn−1‖∞ + ‖JVn−1 − Jvπn−1‖∞
≤ ‖Jπnvπn − JπnVn−1‖∞ + ‖JVn−1 − Jvπn−1‖∞
≤ γ‖vπn − Vn−1‖∞ + γ‖Vn−1 − vπn−1‖∞
= γ‖vπn−1 − Vn−1‖∞ + γ‖Vn−1 − vπn−1‖∞
= 2γ‖Vn−1 − vπn−1‖∞.
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In time step n− 1, then the PE loop was finished, hence using Proposition 18 one gets

‖vπn
− v∗‖∞ ≤

1

1− γ
‖vπn−1

− Jvπn−1
‖∞ ≤

2γ

1− γ
‖Vn−1 − vπn−1

‖∞ =
2γ2θ

(1− γ)2
. (31)

Now if θ < min{ζ (1−γ)2ζ
2γ2 , θ0}, then one has ‖vπn

− v∗‖∞ < ζ. The claim that πn is optimal follows from
Lemma 16. For the second inequality, we first notice that Vn = Vn−1 due to the PI step, hence

‖Vn − v∗‖∞ = ‖Vn−1 − v∗‖∞ ≤ ‖Vn−1 − vπn−1
‖∞ + ‖vπn

− v∗‖ ≤
θγ

1− γ
+

2γ2θ

(1− γ)2
=
γ(1 + γ)θ

(1− γ)2
. (32)

From this theorem we understand that if the policy iteration terminates, either by seeing the same policy
in a row, or by recording which policies we have seen before, then the algorithm has terminated for “a good
reason” (as long as θ is small enough of course).

From the previous results, we see that the approximation can be arbitrarily close to the true values by
choosing the “right” value for θ. However, there is a stronger result which states that the value function
approximate Vn gets close to v∗ as we run the algorithm for an infinite number of steps, i.e. without the
termination code.

Theorem 23. Consider a policy iteration algorithm without the termination code. If θ < min{ζ (1−γ)2
2γ2 , θ0}

and the initialization satisfies V0 ≤ Jπ0V0, then one has limn→∞ Vn = v∗ in (S, ‖ ·‖∞). Moreover there exists
some K such that for all n > K, the policy πn is optimal.

Remark 24. Before going to the proof, let us give some remarks.

• The condition V0 ≤ Jπ0V0 and θ < min{ζ (1−γ)2
2γ2 , θ0} is not needed for the result as it can be seen in

[4]. However, these conditions make the proof a little bit less technical. That means that we should
not have to worry much about the initialization in practice.

• The statement that we get an optimal policy, does not mean that the policy that we get is constant,
i.e. πn = πn+1 for all n > K. Rather, it might switch between multiple optimal policies all the time.

• In the case that there is only one deterministic optimal policy, this theorem says that the policy
iteration algorithm as given in the pseudocode terminates at some point.

Proof. This proof is mainly due to [6]. Notice that by Corollary 20, we have Vn ≤ vπn
. But then we conclude

Vn ≤ v∗ for all n ∈ N. Moreover for each s ∈ S one has Vn(s) ≤ Vn+1(s) ≤ v∗(s) by Lemma 19. An increasing
sequence which is bounded from above has a limit, so V (s) := limn→∞ Vn(s) exists. Since S is finite, this
pointwise convergence can be improved to uniform convergence. So limn→∞ Vn = V . Since the operator J
is continuous, we get limn→∞ JVn = JV . The limiting V satisfies

Vn ≤ V ≤ JV. (33)

One has V ≤ JV , but if we prove V = JV then we are done. Assume indirectly that there is some s ∈ S such
that V (s) < J [V ](s). Since J is continuous there is some n∗ such that for n∗ < n one has V (s) < J [Vn](s).
Now we take n′ > n∗ such that at time step n′ PI is done. That means that we have a policy πn′ such
that Jπn′Vn′−1 = JVn′−1. Then at time step n′ + 1 we get in a PE loop and get Vn′+1 = Jπn′Vn. Due to
monotonicity one has Jπn′Vn′−1 ≤ Jπn′Vn′ , hence

Vn′+1(s) ≥ Jπn′ [Vn′−1](s) = J [Vn′−1](s) > V (s). (34)

This inequality contradicts (33). So we must have V (s) = J [V ](s) for all s ∈ S meaning that V is the fixed
point of J . The fixed point is unique, so

lim
n→∞

Vn = V = v∗.
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For the second part notice that ζ − θγ
1−γ > 0 by the choice of θ. Moreover there exists n0 > 0 such that for

n > n0 one has ‖Vn − v∗‖∞ < ζ − θγ
1−γ . There exists K > n0 such that at time index K we are in the last

step of a PE loop. Therefore using Proposition 18 one gets

‖vπK
− v∗‖∞ ≤ ‖vπK

− VK‖∞ + ‖VK − v∗‖∞ <
θγ

1− γ
+ ζ − θγ

1− γ
= ζ. (35)

So the policy πK must be optimal by Lemma 16. One also knows that vπK
≤ vπn for all n > K by

Theorem 21. That means that the policy πn is optimal for all n > K.

The policy iteration algorithm is in general good to use. However, it does not always terminate as it is given
in the pseudocode. Moreover adding additional flags to make sure that the algorithm terminates, may need
a very large memory to store the history of the policies. Also there is no estimation for the right value of θ.
However, by the last theorem, we know that the choice of θ is not a big issue, since running the algorithm
for long enough also gives a good approximation.

3.3 Results

As mentioned in the beginning, we want to use the value iteration as a baseline. It is indeed the case that we
cannot run the algorithm for infinitely long time, but we can make the error as small as machine precision.

From Theorem 17 and Theorem 22 we know that the approximate optimal value function is 2θγ2

(1−γ)2 away

from the optimal value function. With the parameters chosen, that quantity is equal to 2θ (see Table 1 for
the parameters). Therefor θ = 10−16 is a convenient choice. This choice holds for both algorithms, namely
value iteration and policy iteration.

The initial function V0 is the zero function. Notice that since the reward function takes the values 0 and
1, we may conclude that V0 ≤ Jπ0V0 is satisfied for all initial policies π0. We have chosen the initial policy
π0 to be the always-go-forward policy.

The number of iterations needed in value iteration is 56, while the number of iterations in policy iteration
is 80 and 7 for PE and PI respectively. The policy iteration that we have used is without keeping track of the
complete history of policies. In [3], it is claimed that policy iteration is usually faster than value iteration.
Our result is not a contradiction anyways, but one would question why in this specific case we get something
unusual. It might be the case that there are multiple policies which are optimal and at one point one of
them is chosen twice in a row.

Denote VV I and VPI for the approximate value functions obtained from value iteration and policy iteration
respectively. Since there are many values of order 10−17 and values of order 1, it is very hard to make a good
visualization of the approximate value functions in terms of a contour plot for instance. A standard way
to fix such problem is by taking the logarithm of the functions, so we consider log VV I and log VPI instead.
The advantage of the logarithm is the fact it is strictly monotone increasing. Contour plots of log VV I and
log VPI can be seen in Figure 2 and Figure 3 respectively. The use of contour plot is convenient since we
need two components to describe the state space S in this particular example, namely the x-position and
the x-velocity.

The reason why the logarithm of the value function looks like it does, is rather tricky. Several factors play
a role. First of all a good understanding of the ordinary differential equations in Equation (14) is needed.
Secondly, one has to take the rounding into account. At last, one has to be aware of the fact that each
step in the MDP corresponds to a real time τ , which we have chosen to be 0.1. The second and last facts
may mean that the car in some cases stays at the same x-position (or x-velocity) a couple of times, if the
driver takes a particular action which is not necessarily staying still. For instance, the low values of the value
function around the points (x, ẋ) = (0.5, 1.5) might be very unintuitive at first glance. However, one thing
that is happening there is that the car is stuck at one position. It is clear that the engine of the car is really
weak from Figure 1. So, there is a kind of “fight” between the gravity and the fairly fast driving car. The
rounding compromises both by rolling the situation back as it was when it started.

21



The figures look very much the same, in fact, one has

‖VV I − VPI‖∞ ≈ 2.78 · 10−17. (36)

This is as small as machine precision. We may consider the two value functions equal.

The logarithm of the value function obtained by value iteration algorithm
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Figure 2: Contour plot of log VV I

The logarithm of the value function obtained by policy iteration algorithm
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Figure 3: Contour plot of log VPI
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Let πV I and πPI be the deterministic policies we have obtained from value iteration and policy iteration
respectively. If we define ρ as

ρ :=
|{s ∈ S | πV I(s) = πPI(s)}|

|S|
, (37)

then we get

ρ =
433

441
≈ 0.98.

So the policies are not the same, although they are both very likely to be optimal. The policies can be seen
in Figure 4. If we look closely, we see where the difference lie. Using these figures, one can see how the driver
should act in each state (x, ẋ). With both policies one can get to the right mountaintop in 16 movements
using the policies obtained.

The policies obtained by dynamic programming algorithms
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(a) Value iteration
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(b) Policy iteration

Figure 4: The policies from dynamic programming. The legend: red=“forward”, white=“stay still” and
cyan=“backward”

Although it seems that the driver should always drive backwards, that is not actually the case. The
reason for that is explained as follows. When taking the argmax, always the first argument is chosen if there
is a tie. Since the first argument is driver backwards, driving backwards is chosen if there is a tie.

To actually see what is going on, we had implemented another argmax-function which gives the largest
argument, namely driving forwards, if there is a tie. If we compare both implementations we can see where
the type of action is actually relevant (see Figure 5). There are on two states where one should stay still,
those states are given with arrows.

We see that the action that the driver should start with is driving backwards, since the action at that
state is relevant. The policy is actually a little bit logic now. Now we see that if the driver is going forwards
with high velocity, then he should keep going. The policy is a little bit chaotic, but that is due to the
rounding and all other factors that we have mentioned that play a role.

As we can see both algorithms are performing well. Value iteration seems to outperform policy iteration
in this particular case. We also conclude that we may see that the policies are machine-precise optimal.
However, the policies are not the same. We have also seen that the policy iteration terminated without
having to add additional flags. In the next part we give a small discussion on results obtained on finer
discretization of the state space.
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The policy obtained by value iteration highlighting relevant actions

-1.0 -0.5 0.0 0.5 1.0
-3

-2

-1

0

1

2

3

x

ẋ

Figure 5: The policy obtained by value iteration highlighting where the type of action is relevant. The
legend: red=“forward”, white=“stay still” and cyan=“backward”

3.3.1 Finer grid

This subsection is intended to get some understanding about how the car is moving towards its goal. We have
taken a finer grid here, namely N = 300. We use value iteration to get the approximations. We immediately
get a problem with the implementation. Because β = 2.5 suddenly does not work anymore; the car can not
get to the mountaintop. That is actually very unintuitive. The only logical way to explain that is that when
β = 2.5 and N = 20 there are large errors due to the rounding. In particular, that causes the car to go up,
while it would never be able to go up if the rounding was not so large.

The logarithm of the value function obtained on a fine grid

Figure 6: Contour plot of logarithm of the value function on a fine grid
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Anyways, we have taken β = 4.5 since values below 4 did not work as well. The logarithm of the value
function can be seen in Figure 6. It is very similar to what we have seen in Figure 2. We have explained
that there were probably something going on with the rounding, but it seems that there are more serious
problems. When β = 2.5 did not work well, we should have known that there is something deep happening
here which we can not explain.

To obtain the optimal policy, we have again checked if there is a tie between going backwards or going
forwards. The actions that were chosen without ties are highlighted. The policy can be seen in Figure 7.
Surprisingly, this looks like the one in Figure 5 in some sense. It is not clear why there are ties between
states where one should go backwards following the pattern.

The actions that should be taken according to the optimal policy

Figure 7: Highlighted policy. The legend: red=“forward”, yellow/white=“stay still” and cyan=“backward”

We were tending to keep the discussion whether the policy or the value function is understandable short.
We should notice that it is nice to understand what is actually going on, but that is not really what we
are using the mountain car problem for. For us it is enough that the car cannot get to the mountaintop by
just going forwards for the case N = 20, because then we can check whether the algorithms work. This last
part of the results is not relevant for the rest of the report. However, it is included to make an attempt for
understanding the mountain car problem better.
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4 Monte Carlo

In this section we provide another algorithm to solve for the optimal policy. The algorithms that we will
consider here are the Monte Carlo algorithms. These algorithms might be more advantageous than the
previous algorithms, since we do not need to assume the complete knowledge of the environment. In many
practical situations, one does not know the environment dynamics.

However this algorithm’s convergence properties are different compared to the dynamic programming
algorithms, because its convergence is an open problem [11]. Therefore this section has a heuristic flavor
rather than a formal flavor.

First we give a little motivation of the algorithm. We first show how to approximate qπ(s, a) using the
Monte Carlo algorithm. Such algorithm is shown to converge in [7] under the condition that we have a
finite horizon decision task with no discounting, i.e. γ = 1. A finite horizon task means that the interaction
terminates after some fixed time [3]. In particular, that means that the return is a finite sum of rewards
which makes the analysis a bit easier. Since we do not have γ = 1 nor a finite horizon task, that result does
not apply for our setting.

However, the same idea from [7] can be used to show why a similar result might hold. The idea is to
approximate qπ(s, a) as follows. Let us first construct n independent Markov chains {(Sk,i, Ak,i)k}ni=1 with
initial distribution ν such that ν(s, a) = 1 and policy π. With each of these Markov chains one gets a
discounted return G1 which is defined in Equation (3). So we get a sequence of i.i.d. random variables
G1,1, ..., G1,n of discounted returns. Now by the strong law of large numbers one gets

lim
n→∞

1

n

n∑
i=1

G1,i = E[G1,1] a.s. (38)

For an event B occurring with probability 1 one has E[ · | B] = E[ · ]. That means that E[G1,1] = E[G1,1 |
S0 = s,A0 = a] = qπ(s, a). Therefore we conclude

lim
n→∞

1

n

n∑
i=1

G1,i = qπ(s, a) a.s. (39)

In a simulation, we can get realizations of r(Sk,i, Ak,i), but we can only get a finite number of them. That
means that we must estimate qπ(s, a) through the following quantity:

Ĝi =

N∑
k=0

γkr(Sk+1,i),

with N ∈ N. These random variables can get quite close to G1,i, namely we have the following upper bound
for their difference:

|Ĝi −G1,i| ≤
∞∑

k=N+1

γk|r(Sk+1,i)| ≤ sup
s′
|r(s′)|γ

N+1

1− γ
, (40)

which can be made arbitrarily small by taking N large enough.
We simulate n Markov chains ending at time step N and consider the quantity

1

n

n∑
i=1

Ĝi

as an estimate for qπ(s, a). By the Strong Law of Large Numbers, we get the following:

lim
n→∞

1

n

n∑
i=1

Ĝi = q̂π(s, a) a.s.,
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for some function q̂π ∈ RS×A. Then we have

|qπ(s, a)− q̂π(s, a)| = lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

G0,i −
1

n

n∑
i=1

Ĝi

∣∣∣∣∣ ≤ lim
n→∞

1

n

n∑
i=1

∣∣∣Ĝi −G0,i

∣∣∣ ≤ sup
s′
|r(s′)|γ

N+1

1− γ
.

This says roughly that if we simulate a large number of Markov chains ending at time step N , then we can
get a fairly good estimate for qπ(s, a). This is the underlying idea of Monte Carlo algorithms. One sees that
we must repeat the whole simulation for each (s, a) ∈ S × A. Here is where Monte Carlo extends the idea
described above by splitting the random variable Ĝi in several pieces. We omit more details on that.

The previous paragraphs made a heuristic argument how one could estimate qπ(s, a). However, it did not
give arguments for finding the optimal policy. The idea is choosing π greedily with respect to the current
estimate of qπ. More on this will be seen later.

We consider two algorithms. The first is called Monte Carlo exploring-starts (ES) and the other one
is called Monte Carlo first-visit. Both rely on different assumptions which will be explained in the next
subsections. However, both have the same goal, namely to find an approximation for q∗. As we know, from
q∗ we can deduce an optimal policy π∗.

4.1 Monte Carlo exploring-starts

For this algorithm one assumes that the MDP might start anywhere. In particular, one assumes that the
initial distribution µ is uniform on S. That explains the name exploring starts.

That assumption is actually not satisfied in the mountain car problem, but one could see this algorithm
as the same problem where one is teaching the driver how to drive from an arbitrary point to the right-
end point. After all, it is an algorithm for which we want to investigate its performance through a simple
example.

The algorithm will be described in a pseudocode as given in [3] and then a motivation of the algorithm
will be given.

Initialization:
π(s) ∈ A (arbitrarily), for all s ∈ S
Q(s, a) ∈ R (arbitrarily), for all s ∈ S, a ∈ A
Returns(s, a)← empty list, for all s ∈ S, a ∈ A

Monte Carlo ES:
Loop for each episode:

Choose S0 ∈ S and A0 ∈ A such that all pairs have positive probability
Generate an episode from S0, A0, following π : S0, A0, r(S1), ..., ST−1, AT−1, r(ST )
G← 0
Loop for each step of episode, t = T − 1, T − 2, ..., 0:

G← γG+ r(St+1)
if the pair St, At does not appear in S0, A0, S1, A1, ..., St−1, At−1 then

Append G to Returns(St, At)
Q(St, At)← average(Returns(St, At))
π(St)← argmaxaQ(St, a)

end

EndLoop

EndLoop
Algorithm 3: Monte Carlo ES
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A simple heuristic for why this algorithm might be reasonable relies on a theorem called policy improvement
theorem which is stated below [3].

Theorem 25. Let π, π′ ∈ ΠD. If for all s ∈ S one has

qπ(s, π′(s)) ≥ vπ(s), (41)

then the policy π′ is as good as, or better than, the policy π, i.e. vπ ≤ vπ′ .

Proof. The proof can be obtained by iteratively applying the third part of Lemma 9. The full proof can be
found in [3].

Now we show that taking the new policy greedily with respect to the action-value function will eventually
lead to convergence to the optimal policy, if the action-value function is calculated exactly. Unfortunately
that is not the case in the algorithm.

Assume that in each step of the algorithm one finds qπk
exactly, where πk+1 is found as follows:

πk+1(s) = argmax
a∈A

qπk
(s, a). (42)

Therefore we have

qπk
(s, πk+1(s)) = qπk

(s, argmax
a∈A

qπk
(s, a))

= max
a∈A

qπk
(s, a)

≥ qπk
(s, πk(s)).

Notice that by part (iv) of Lemma 9, we get

vπk
(s) = qπk

(s, πk(s)). (43)

Together with the previous observation, this implies

qπk
(s, πk+1(s)) ≥ vπk

(s). (44)

Applying the previous theorem to conclude that πk+1 is better or at least as good as πk. Now we have a
sequence of policies such that vπk

≤ vπk+1
. If vπk

= vπk+1
for some k, then that means, using part of (iii) of

Lemma 9, that

vπk+1
(s) = max

a∈A
qπk

(s, a)

= max
a∈A

∑
s′∈S

P (s′|s, a)[r(s′) + γvπk
(s)]

= max
a∈A

∑
s′∈S

P (s′|s, a)[r(s′) + γvπk+1
(s).

Hence vπk+1
satisfies the Bellman equations, which implies that vπk+1

= v∗ and that πk+1 is optimal. If
vπk
6= vπk+1

, then there is s ∈ S such that vπk
(s) < vπk+1

(s). There are a finite number of deterministic
policies, so at some point we get the optimal policy.

Surely, this says not much about the convergence about the actual algorithm. However it shows that
one might expect that this algorithm is somehow reasonable. First heuristics of the estimation of the action
value were given. After that we have seen that the updating rule for the policy does actually make sense in
the case that every calculation is done exactly.
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4.2 Monte Carlo first-visit

Here, one has the assumption that there is an arbitrary initial distribution for the MDP. That is what is
going on in the mountain car problem, the car starts at position x = 0 with velocity ·x = 0. That gives the
initial distribution µ(0, 0) = 1 for example. However that immediately causes a problem, since that might
cause the Markov chain (Sk, Ak)k≥0 to never visit some pairs (s, a). For these pairs (s, a) one can not find
an estimation of qπ(s, a).

If we find a soft policy, i.e. a policy which has nonzero probability for every action, then there is a
possibility for more exploration. That means that more pairs (s, a) in S ×A can be encountered. That leads
to the use of the ε-greedy policies in the following algorithm, that is a policy which satisfies π(a|s) = ε/|A|
for all actions a, but the one that maximizes the approximate action-value function. This algorithm is also
from [3] and it is given below.

Initialization:
Algorithm parameter small ε > 0
π ← an arbitrary ε−soft policy
Q(s, a) ∈ R (arbitrarily), for all s ∈ S, a ∈ A
Returns(s, a)← empty list, for all s ∈ S, a ∈ A

Monte Carlo first-visit:
Loop for each episode:

Choose S0 ∈ S as the initial state and A0 ∈ A following policy π
Generate an episode following π : S0, A0, r(S1), ..., ST−1, AT−1, r(ST )
G← 0
Loop for each step of episode, t = T − 1, T − 2, ..., 0:

G← γG+ r(St+1)
if the pair St, At does not appear in S0, A0, S1, A1, ..., St−1, At−1 then

Append G to Returns(St, At)
Q(St, At)← average(Returns(St, At))
A∗ ← argmaxaQ(St, a)

π(a|St)←

{
1− ε+ ε

|A| if a = A∗

ε
|A| if a 6= A∗

end

EndLoop

EndLoop
Algorithm 4: Monte Carlo first-visit

In the same way one can show that this algorithm gives a policy which is optimal among all ε-greedy
policies, if one calculates the action-value function in each step exactly [3]. However, that does not mean
that it converges to an optimal policy.

The Monte Carlo algorithms that we have considered have many issues in practice. For instance, we
don’t know for how many episodes we should run the algorithm. Since its convergence property is still an
open problem, it is difficult to know how the algorithm behaves with respect to the number of episodes.

4.3 Results

It is important to notice that every time we run the algorithm, we might get different results. Indeed,
because we are in fact simulating a Markov chain each time which is random. Due to time limitations, we
have chosen to run both algorithms 50 times each. In each simulation we have taken 10000 episodes which
last 55 time steps. Furthermore the initialization used can be seen below (see Table 2).
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Table 2: Initialization for Monte Carlo

Quantity Exploring starts First visit
ε NA 0.3
Q0 zero-function zero-function
π0 always-go-forward uniform measure on A

Before giving the results, we give a remark about an issue.

Remark 26. Consider an MDP with state space S and an initial distribution µ. Take a soft policy π.
It might be the case that the induced Markov chain (Sk, Ak)k≥0 never takes particular values in S × A.
However, there exists another state space S ′ such that (Sk, Ak)k≥0 takes all values in S ′ ×A.

The remark only says that theoretically we might get such S ′. However, in practice, it is hard to find such
S ′. In this particular example, we have constructed the transitions using the results from physics. To find
which transitions are possible leads to a problem which is not in the scope of this report.

We can at least know from Monte Carlo first-visit which states belong to S ′. Since Monte Carlo exploring-
starts can get to any pair (s, a) ∈ S ×A, it is not fair to compare the values of the approximate action-value
function Q(s, a) for all (s, a) ∈ S ×A. For that reason and since we run the simulation for 50 times, which is
not even so many to make statistical statements, we have decided to make only statements about the states
(s, a) ∈ S ×A which are visited in all of the simulations.

4.3.1 Notational conventions

We define notations for the concepts we were just talking about. For algorithm X, define the following set:

SX := {s ∈ S | s is visited in algorithm X in all simulations}. (45)

Also we use the following notation for norm:

‖f − g‖(SX ,∞) := sup
x∈SX

|f(x)− g(x)|. (46)

If we write the norm without the subscript SX then we mean the norm over the whole set S, and usually it
is clear from the context.

We have mentioned in Section 3 that we use value iteration as a baseline. Therefore when we are talking
about error, we usually mean the error compared to the value function from value iteration, namely VV I .
For algorithm X, we define the absolute error as the function |VX(s) − VV I(s)| having domain SX . The
maximum absolute error is then

‖VX − VV I‖(SX ,∞).

Moreover the relative error is defined as the mapping on SX

s 7→
∣∣∣∣VX(s)− VV I(s)

VV I(s)

∣∣∣∣ . (47)

Fortunately VV I(s) 6= 0 for all s ∈ S, which means that the relative error is well-defined. The maximum
relative error is then the maximum over SX .

In each simulation we get a policy. We make the ε-greedy policies deterministic such that it gives
probability 1 for the action it gave the highest probability to. That makes sense, because if an ε-greedy
policy gives a high probability for some action then that means that action maximizes the approximate action-

value function. But then we could perform that action all the time as well. We use the notation π
(j)
X for the

policy that we have obtained with algorithm X at the j-th simulation. In our case we have j ∈ {1, 2, ...50}.
Moreover we can get an approximation for the value function of the policy π

(j)
X . The method that we have
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used is described in Remark 15 and it gives us a very accurate value function approximation if we choose

θ = 10−16. We denote the value functions we obtain by V
(j)
X .

We useX = ES for Monte Carlo exploring-starts andX = FV for Monte Carlo first-visit. The cardinality
for the states visited are given in Table 3. Fortunately, we have enough points to compare the approximate
value functions with each other.

Table 3: The size of the states visited in all Monte Carlo simulations

Quantity Cardinality Proportion of total

SES 430 97.5%

SFV 290 65.8%

SES ∩ SFV 287 65.1%

4.3.2 Value function approximation

Recall that we have an approximation for v∗ by the value iteration algorithm, while we have an approximation
for q∗ here. We want to compare the results, so it seems convenient to use the formula maxa∈A q∗(s, a) =
v∗(s) to translate the action-value function into a value function. That means that the algorithms give an
approximation of v∗ as well. Let us denote VES and VFV for the value function we obtain by Monte Carlo
exploring-starts and Monte Carlo first-visit respectively. A contour plot of the logarithm value function can
be seen in Figure 8 and Figure 9. Notice, when comparing both results, that the legends are a bit different.

The logarithm of the value function obtained by Monte Carlo exploring-starts
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Figure 8: Contour plot of log VES
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The logarithm of the value function obtained by Monte Carlo first-visit
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Figure 9: Contour plot of log VFV

The white color in the corners is due to the fact that not all states are visited. The only corner that is not
white is the north-east corner. The reason for the last observation is that the algorithm finds a way to get to
the goal, namely the points (1, η) ∈ S with η is positive meaning the car is driving fast to the right direction.
Probably, in each simulation the driver finds out that it has to go backward and slide with high speed to get
to the right-end point of the parabola (i.e. the mountain).

It is not easy to see the difference of the approximate value functions obtained here and the value function
VV I by looking at the plots. We can see the errors with respect to the baseline value function VV I in Table 4.
It is clear from Table 4 that Monte Carlo exploring-starts is performing much better Monte Carlo first-visit.

It seems that both algorithms give quite accurate approximations based on the absolute errors. However,
the relative errors are rather large. Since the discount factor γ = 1

2 , we know that the value function is
between 0 and 2. Furthermore, the value function is really close to zero for most of the arguments since the
the return decays exponentially. Therefore small absolute errors yield large relative errors.

Table 4: Absolute and relative error of Monte Carlo algorithms

Absolute error Relative error
Algorithm Mean Maximum Mean Maximum
Exploring starts 1.49 · 10−4 0.0260 0.0361 0.501
First visit 0.00595 0.0770 0.654 0.984

4.3.3 Optimality of policy

We check whether a policy from the algorithm is optimal. Therefore we consider how far V
(j)
ES or V

(j)
FV are

from VV I . If the maximum absolute difference is small enough, i.e. as small as machine precision, we consider
the policy that belongs to the approximate value function optimal. We get the following bounds:

2.78 · 10−17 ≤ ‖V (j)
ES − VV I‖(SES ,∞) ≤ 0.0313, (48)

and

1.22 · 10−4 ≤ ‖V (j)
FV − VV I‖(SFV ,∞) ≤ 0.250. (49)
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Both upper and lower bound are attained. The mean absolute error is 0.00181 and 0.0174. It is clear that
none of the policies of Monte Carlo first-visit might be considered as optimal.

If we consider the error in the whole domain S, then we see that the maximum absolute error is less
than 10−16 for 17 policies obtained from Monte Carlo exploring-starts. We consider these policies optimal.
However, the maximum absolute error in the whole domain for Monte Carlo first-visit is equal to 2.00 for
all policies. That is remarkable, but the reason is the following. If one starts at a state which leads to the
right-end point of the parabola after one step, then the return in such case is

∞∑
i=0

γi · 1 =

∞∑
i=0

(
1

2

)i
= 2.

But we knew that Monte Carlo first-visit did not always succeed to get to all states of the form (1, η) ∈ S.
The policies do not give the right choice of action which leads to missing the return which would be equal
to 2. That means that none of the policies from Monte Carlo first-visit are optimal.

Table 5: The number of steps needed to get to the goal using the policies from Monte Carlo algorithms

Number of steps needed to get to the right-end point
Algorithm Minimum (frequency) Mean Maximum (frequency)
Exploring starts 16 (48) 16.14 22 (1)
First visit 16 (40) 17.12 23 (1)

Although it seems that the policies from Monte Carlo first-visit are bad, they perform well giving the
mountain car starts still at position x = 0. We can see from Table 5 that on average the car needs 16.14
steps and 17.12 using the policies from Monte Carlo exploring-starts and Monte Carlo first-visit respectively.

4.3.4 Convergence speed

We have run a special simulation to determine the convergence speed with respect to the number of episodes.
In that simulation only a few values are stored to speed up the running time. We have run 50 simulations with
40000 episodes. We again considered the errors compared with VV I in 2-norm over the set SES ∩ SFV . We
see that the Monte Carlo exploring-starts converges much faster than Monte Carlo first-visit from Figure 10.
It is not clear whether the error in Monte Carlo first-visit gets close to zero, since it seems to get very flat
after the 30000-th episode.

However, that is not strange after all. We know from the discussion in Section 4.2 that the action-
value function converges to an action-value function optimal among all ε-greedy action-value functions if
the action-value function is calculated exactly in each Monte Carlo step. Even if that is true, since we have
an approximation of the action-value function in each step, we can not expect the final approximation to
be close to the optimal action-value function. There is no guarantee that there exists an optimal ε-greedy
policy. What the figure below shows might be an illustration of what we have just mentioned.

The results that we have seen suggest that Monte Carlo exploring-starts is much better than Monte Carlo
first-visit. That is indeed what one would expect. The main reason for that is the fact that one visits almost
all pairs (s, a) in Monte Carlo exploring-starts. In both algorithms the driver seems to learn how to get to
the mountaintop which was the actual goal. However, the driver does not always succeed to do it optimally,
namely in 16 movements.

Also it is important to keep Remark 26 in mind, namely the possibility that the Markov chain (Sk, Ak)k≥0
being not able to get to every pair (s, a) ∈ S × A starting from a particular position. That is especially
applicable for Monte Carlo first-visit. Comparing that algorithm with Monte Carlo exploring-starts or with
value iteration might not be fair. That is also confirmed in the results that we have seen. Monte Carlo
first-visit performs pretty well if we only consider the errors for the states that it has visited, namely the
errors on SFV .
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Convergence speed of Monte Carlo algorithms
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Figure 10: Convergence speed of Monte Carlo algorithms with respect to the number of episodes
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5 Temporal-Difference Learning

Temporal-difference learning stands for a whole class of algorithms. However, we only discuss two of them
here. The names might differ in literature, but we call them Q-learning and Q-learning with learning policies.
As Monte Carlo, there is no need to know the dynamics of the MDP. The algorithms are intended for finding
q∗ which explains the name Q-learning.

5.1 Q-learning

The Q-learning algorithm finds q∗ using an arbitrary soft. For the algorithm, one needs to have episodes,
which might end after a fixed time of steps or by observing a particular state. The algorithm, as taken from
[5], is shown below.

Initialization:
Q(s, a) for all (s, a) ∈ S ×A arbitrarily
π(s|a) > 0 for all (s, a) ∈ S ×A arbitrarily
Step size α ∈ (0, 1)

Q-learning:
Loop for each episode:

Initialize S
Loop for each step of episode until S is terminal

Choose A from S using π
Take action A, observe r(S′), S′

Q(S,A)← Q(S,A) + α[r(S′) + γmaxaQ(S′, a)−Q(S,A)]
S ← S′

EndLoop

EndLoop

Algorithm 5: Q-learning

It is clear from the algorithm that we are simulating a Markov chain (Sk, Ak)k≥0. That Markov chain induces
a sequence of estimates of some action-value function which appears to be an approximation for q∗. Let us
call that sequence (Qk)k≥0 where Q0 is the arbitrary initialization. The index k increases at the second loop
in the algorithm (independently of which episode). The sequence (Qk)k≥0 is a sequence of random variables,
more precisely Qk are RS×A-valued random variables. The update rule for Qk(s, a) is as follows:

Qk+1(s, a) =

{
(1− α)Qk(s, a) + α [r(Sk+1) + γmaxa′ Qk(Sk+1, a

′)] if (s, a) = (Sk, Ak),

Qk(s, a) if (s, a) 6= (Sk, Ak).
(50)

The updating rule for Qk can be written more “compactly”. To that end we first define αk as a RS×A-valued
random variable as follows:

αk(s, a) := α1(s,a)=(Sk,Ak). (51)

and then one can write

Qk+1(s, a) = (1− αk(s, a))Qk(s, a) + αk(s, a)
[
r(Sk+1) + γmax

a′
Qk(Sk+1, a

′)
]
. (52)

Let us abuse the notation for q∗ such that q∗(s, a) is a degenerate random variable living on the same space
as Qk which satisfies T [q∗] = q∗ a.s.. Then one can define a sequence which measures how far Qk is from q∗,
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namely εk which is also a RS×A-valued random variable and is defined as follows:

εk(s, a) := Qk(s, a)− q∗(s, a). (53)

Notice that we have many stochastic processes which are all completely determined by the stochastic process
(Sk, Ak)k≥0.

This algorithm is shown in several ways to be reasonable for estimating q∗. For instance in [5], it is
shown that for all δ > 0 there exists α > 0 and Kδ such that for all k > Kδ one has E[‖εk‖∞] < δ under
some conditions. This means that the error can be made arbitrary close to zero by choosing α appropriately.
However the author assumed that there is some number L ∈ N such that in L time steps on average every
pair (s, a) ∈ S × A is visited at least once. It is very difficult to tell if such assumption is satisfied in an
MDP. A good thing about the author’s approach is that he finds an upper bound for E[‖εk‖∞] in terms of
k.

Also in [8] a stronger type of convergence is proved, namely Qk → q∗ a.s. That is proved under the
assumption that α is non-constant, but rather a nonnegative decreasing sequence, αk (not to be confused
with αk(s, a) as defined above) which satisfies

∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞. (54)

It is clear that such condition can never be satisfied with constant α. This result is actually very promising,
since implementing the algorithm with such sequence αk is not difficult. An example for such sequence is
( 1
k )k≥1.

In this report, we prove a stronger notation of convergence, in particular Qk → q∗ a.s. with constant
α, in return for additional assumptions on the MDP. These assumptions might be rather restrictive, but
they make the proof easier and they are satisfied for a big class of problems. Even if some of them are not
satisfied, then sometimes there are ways to go around them (see for instance Remark 26 to go around the
last assumption).

Assumptions 1.

• The probability measure P (·|s, a) is degenerate, i.e. there is some y(s, a) ∈ S such that P (y(s, a)|s, a) =
1.

• The policy π (which does not depend on k) has the property π(a|s) > 0 for all a ∈ A.

• For all s, s′ ∈ S there exists i > 1, s1, ..., si ∈ S and a1, ..., ai−1 ∈ A such that:

– s1 = s, si = s′,

–
∏i
j=2 P (sj | sj−1, aj−1) > 0.

Proposition 27. With the last two assumptions in assumptions 1, the Markov Chain (Sk, Ak)k≥0 is irre-
ducible.

Proof. In order to prove that, let (s, a), (s′, a′) ∈ S × A be given. There exists i > 1, s1, ..., si ∈ S and

a1, ..., ai−1 ∈ A such that: s1 = s, si = s′ and
∏i
j=2 P (sj | sj−1, aj−1) > 0. Let ai be just an arbitrary

action, then

i∏
j=2

p(sj , aj | sj−1, aj−1) =

i∏
j=2

P (sj | sj−1, aj−1)π(aj | sj) =

 i∏
j=2

P (sj | sj−1, aj−1)

 i∏
j=2

π(aj | sj)

 > 0,

since we have a product of positive terms.
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Recall the operator T defined in Equation (11),

T [q](s, a) = E[r(S1) + γmax
a′

q(S1, a
′) | S0 = s,A0 = a]. (55)

By Assumptions 1 the Bellman equations (Theorem 12) boil down to

q∗(s, a) = r(y(s, a)) + γmax
a′

q∗(y(s, a), a′) for all (s, a) ∈ S ×A. (56)

In that case the operator T becomes:

T [q](s, a) = r(y(s, a)) + γmax
a′

q(y(s, a), a′), (57)

and, most importantly, the update rule for Qk becomes:

Qk+1(s, a) = (1− αk(s, a))Qk(s, a) + αk(s, a)T [Qk](s, a). (58)

This is the reason why the proof of the convergence that we will give actually works out perfectly. We
introduce some important results before getting to the main proof.

Lemma 28. There exists a real number M such that ‖εk‖∞ ≤M a.s..

Proof. The lemma can be proved by proving a similar bound for ‖Qk‖∞ by induction on k. Boundedness of
‖Qk‖∞ implies the boundedness of ‖εk‖∞, since ‖εk‖∞ ≤ ‖Qk‖∞ + ‖q∗‖∞. The complete proof is left out
since it is not very illuminating, but the full details can be found in [12].

Unfortunately, this lemma does not say about how small M is. However, the fact that the error is bounded
is useful as we will see later.

Now we define the following sequence of random variables (Xk)k recursively as follows:
X0 = 0,

X1 = inf{j ∈ N | ∀(s,a)∈S×A : ∃i≤j : (Si, Ai) = (s, a)},
Xk+1 = inf{j ∈ N | ∀(s,a)∈S×A : ∃i≤j : (Si+1+Xk

, Ai+1+Xk
) = (s, a)}.

(59)

The interpretation of Xk is explained as follows: Xk+1 − Xk is the number of steps that is needed to see
each pair (s, a) ∈ S × A at least once for the (k + 1)-th time. The Xk’s are called the k-th cover time of a
Markov chain.

Proposition 29. The random variables Xk defined above satisfy |S × A| ≤ Xk < ∞ almost surely for all
k ∈ N.

Proof. The first inequality is trivial. For the second inequality, we define the following random variables:

Ys,a := inf{j ∈ N | (Sj , Aj) = (s, a)}. (60)

Now notice that

{X1 > x} ⊂
⋃

(s,a)∈S×A

{Ys,a > x}.

Since the Markov chain (Sk, Ak) is irreducible taking values in a finite space, we know that the Markov chain
is positive recurrent [13]. Since Ys,a is the hitting time for (s, a) it means that it is finite a.s. This means

lim
x→∞

P(Ys,a > x) = P(Ys,a =∞) = 0.

37



Therefore

P(X1 =∞) = lim
x→∞

P(X1 > x)

≤ lim
x→∞

∑
(s,a)∈S×A

P(Ys,a > x)

=
∑

(s,a)∈S×A

lim
x→∞

P(Ys,a > x) = 0.

We have used the fact that S × A is finite to interchange the limit and summation. That means in other
words X1 <∞ a.s.. We proceed by induction, so assume Xk <∞ a.s., then we have

P(Xk+1 > x) =

∞∑
m=0

P(Xk+1 > x | Xk = m)P(Xk = m)

=

∞∑
m=0

P(inf{j ∈ N | ∀(s,a)∈S×A : ∃i≤j : (Si+1+m, Ai+1+m) = (s, a)} > x)P(Xk = m).

We define some more random variables

Y ms,a := inf{j ∈ N | (Sj+1+m, Aj+1+m) = (s, a)}.

One has Y ms,a <∞ a.s., since this is also a hitting time for the shifted Markov chain (Sk+m+1, Ak+m+1)k≥0.
This implies

lim
x→∞

P(inf{j ∈ N | (Sj+1+m, Aj+1+m) = (s, a)} > x) ≤ lim
x→∞

∑
(s,a)∈S×A

P(Y ms,a > x) = 0.

Hence using the Dominated Convergence Theorem we get

lim
x→∞

P(Xk+1 > x) = lim
x→∞

∞∑
m=0

P(inf{j ∈ N | ∀(s,a)∈S×A : ∃i≤j : (Si+1+m, Ai+1+m) = (s, a)} > x)P(Xk = m)

=

∞∑
m=0

lim
x→∞

P(inf{j ∈ N | ∀(s,a)∈S×A : ∃i≤j : (Si+1+m, Ai+1+m) = (s, a)} > x)P(Xk = m)

= 0,

proving P(Xk+1 =∞) = 0, i.e. Xk+1 <∞ a.s..

Now we have the important tools for proving the important theorem, we may finally introduce it.

Theorem 30. With the Assumptions 1, the error made in Q-learning will vanish a.s., formally ‖εk‖∞ → 0
a.s.. Moreover E[‖εk‖p∞]→ 0 for p ≥ 1, which means that ‖εk‖∞ → 0 in Lp.

Proof. First we derive a recurrence relation for εk:

εk+1(s, a) = Qk+1(s, a)− q∗(s, a)

= (1− αk(s, a))Qk(s, a) + αk(s, a)T [Qk](s, a)− q∗(s, a)

= (1− αk(s, a))Qk(s, a) + αk(s, a)T [Qk](s, a)− (1− αk(s, a) + αk(s, a))q∗(s, a)

= (1− αk(s, a))(Qk(s, a)− q∗(s, a)) + αk(s, a)(T [Qk](s, a)− q∗(s, a))

= (1− αk(s, a))εk(s, a) + αk(s, a)(T [Qk](s, a)− T [q∗](s, a)).
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Taking absolute value of each side and using the triangle inequality afterwards, we get

|εk+1(s, a)| ≤ (1− αk(s, a))|εk(s, a)|+ αk(s, a)|T [Qk](s, a)− T [q∗](s, a)|
≤ (1− αk(s, a))‖εk‖∞ + αk(s, a)‖TQk − Tq∗‖∞
≤ (1− αk(s, a))‖εk‖∞ + γαk(s, a)‖Qk − q∗‖∞
= (1− αk(s, a))‖εk‖∞ + γαk(s, a)‖εk‖∞
= (1− αk(s, a)(1− γ))‖εk‖∞.

This implies the somehow weaker inequality ‖εk+1‖∞ ≤ ‖εk‖∞. Now εk(Sk, Ak) is again a stochastic process,
and in particular it satisfies

|εk+1(Sk, Ak)| ≤ c‖εk‖∞. (61)

where c := 1 − α(1 − γ) < 1, since αk(Sk, Ak) = α by definition. Now define τn :=
∑n
k=1Xk, where Xk is

defined in Equation (59). Using Proposition 29 we get n|S × A| ≤ τn < ∞ a.s., since τn is a finite sum of
almost surely finite random variables. Hence τn →∞ a.s.. We have by the definition of Xk

‖ετn+1
‖∞ ≤ c‖ετn‖∞ ≤ ... ≤ cn‖ετ1‖∞ ≤ cnM, (62)

where the last bound is from Lemma 28. This implies ‖ετn‖∞ → 0 almost surely as n→∞.
Now we want to emphasize the fact that ‖εk‖∞ is a sequence of random variables on (Ω,F ,P), the same

probability space as the Markov chain (Sk, Ak) lives. So for each outcome ω ∈ Ω we write ‖εk(ω)‖∞ and
this is not to be confused with the other arguments that εk has as a function on S ×A. Also notice that the
random variables τn are random variables on (Ω,F ,P).

There is a set B ∈ F such that P(B) = 1 and for all ω ∈ B one has ‖εk+1(ω)‖∞ ≤ ‖εk(ω)‖∞ and
‖ετn(ω)(ω)‖∞ → 0. There is a set C ∈ F such that P(C) = 1 and τn(ω)→∞. Notice that P(B∩C) = 1. Let
ω ∈ B∩C, then ‖ετn(ω)(ω)‖∞ → 0. By definition τn(ω) is strictly increasing. Thus, we can take kn := τn(ω)
so that ‖εkn(ω)‖∞ is a subsequence of ‖εk(ω)‖∞ which converges to zero. But ‖εk(ω)‖∞ is just a sequence
of numbers, which is decreasing and nonnegative, i.e. bounded from below. From analysis, we know that
it converges. However we know that there is a subsequence that converges to 0. So the whole sequence
‖εk(ω)‖∞ must converge to 0 as well. Since this holds for all ω ∈ B ∩ C, we conclude ‖εk‖∞ → 0 almost
surely.

Finally ‖εk‖p∞ ≤Mp, so that by the Bounded Convergence Theorem one gets E[‖εk‖p∞]→ 0.

This theorem assures that the algorithm, if run for infinitely long time, i.e. with infinitely many episodes,
we eventually get an exact value for q∗. This means that if we run the algorithm for long enough we get
Qk ≈ q∗.

It is unfortunate that it is not easy to get a useful bound on the error in terms of k. With our approach,
that would mean that we need to find bounds for cover times of a Markov chain which does not appear to
be easy for a general Markov chain. The reason for that is that we are fully relying on the random times
τn. For instance in [14], many kind of useful upper bounds is given, but most of them hold for reversible
Markov chains. Such assumption is hardly satisfied in the Markov chain we have got from an MDP.

Moreover the convergence speed is dependent on the choice of the initial policy π. Since the distribution
of the Markov chain (Sk, Ak)k≥0 is dependent on π by construction. That means of course that τn is also
different for different policies. The good choice for π is of course hard to get, but intuitively the uniform
policy on A might be on the less risky side.

We did not say anything about how we must pick the policy yet. In Q-learning, where we stop at time
step k, we can get an approximation of the optimal policy by setting:

π(s) = argmax
a

Qk(s, a). (63)

Since we have Qk ≈ q∗ we expect to have π ≈ π∗, since π∗(s) = argmaxa q∗(s, a).
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5.2 Q-learning with learning policies

The second temporal-difference learning method that we discuss is the same algorithm, but now we update
the policy throughout the algorithm. We make the policy greedy with respect to the approximation of q∗ at
each time step.

It is good to notice that the algorithm that we will consider is called off-policy TD(0) control in [3].
However, the pseudocode that they have given is ambiguous, it might be interpreted in several ways. It can
be interpreted as Q-learning which is previously discussed or as the one we have given in the box below.

Initialization:
Q(s, a) for all (s, a) ∈ S ×A arbitrarily
π(s|a) > 0 for all (s, a) ∈ S ×A arbitrarily
Step size α ∈ (0, 1), small ε > 0

Q-learning:
Loop for each episode:

Initialize S
Loop for each step of episode until S is terminal

Choose A from S using π
Take action A, observe r(S′), S′

Q(S,A)← Q(S,A) + α[r(S′) + γmaxaQ(S′, a)−Q(S,A)]
A∗ ← argmaxaQ(S, a)

π(a|S)←

{
1− ε+ ε

|A| if a = A∗

ε
|A| if a 6= A∗

S ← S′

EndLoop

EndLoop

Algorithm 6: Q-learning with learning policies

The only difference with Q-learning is that the policy gets updated in each step in an episode. The policy
is sent towards the optimal policy throughout the algorithm. Intuitively this means that the approximation
of q∗ converges faster. We omit many details on this algorithm, since it is very technical. It is also hard to
find literature about this algorithm.

However, there is a very similar algorithm. It is exactly the same as the previous one, but where it says
maxaQ(S′, a) is changed to Q(S′, A′) where A′ is the action taken under the policy π given the agent is
in state S′. This algorithm is called SARSA(0) and it is also discussed in [3]. The SARSA(0) algorithm
is worth mentioning, since it is shown to converge to qπ where π is the optimal policy among all ε-greedy
policies [15].

The convergence of SARSA(0) can be improved by putting extra conditions on the parameters of the
algorithm. The extra conditions give us almost sure convergence of Qk to q∗ [15]. The α must be a sequence
satisfying Equation (54). Moreover ε should be a decreasing sequence of functions on S that satisfies some
conditions. For example, εk(s) = c/nk(s) where 0 < c < 1 and nk(s) is the number that state s is visited
until time step k is a good choice. The policies also converge to an optimal policy which happens to be
deterministic since εk → 0.

Unfortunately, we do not discuss SARSA(0) in the results although it is similar to Q-learning with
learning policies. The further performance of Q-learning with learning polices will be discussed through the
results we will obtain.
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5.3 Results

We consider a similar approach as we have done in Section 4.3. We have again run 50 simulations with 10000
episodes each to make the results comparable to what we have seen Section 4.3. The initializations we have
used are given in the table below.

Table 6: Initialization for Q-learning

Quantity without learning policies with learning policies
α 0.5 0.5
ε 0.3 0.3
Q0 zero-function zero-function
π0 uniform measure on A uniform measure on A

Recall the notations introduced in Section 4.3.1. We use the symbol QL for Q-learning and QLP for
Q-learning with learning policies as subscripts. The size of the states visited can be seen in Table 7. The
proportion of states visited is less than the proportion we have seen from the Monte Carlo algorithms. Monte
Carlo exploring-starts is actually an exception since it is possible there to see all states. The proportions are
quite close to each other if we leave Monte Carlo exploring-starts out. At last, the high proportion obtained
by Q-learning is due to the fact that the policy remains uniform throughout the simulation. That leads to
more exploration.

Table 7: The size of the states visited in all Q-learning simulations

Quantity Cardinality Proportion of total

SQL 342 77.6%

SQLP 257 58.3%

SQL ∩ SQLP 249 56.5%

5.3.1 Value function approximation

We know that we can get an approximation for the value function once we have an approximation for the
action-value function. So we get two approximate value functions from the simulations, namely VQL and
VQLP . The logarithm of the approximate value functions can be seen in Figure 11 and Figure 12. We see
that the Q-learning algorithm gives a good approximation for the value function, since it is close to Figure 2
on the positions where it is not white.

As usual we compare the results with the value function from value iteration, VV I . The errors are given
in Table 8. It seems that Q-learning is performing slightly better than Q-learning with learning policies.
These numbers may also suggest that both algorithms are better than Monte Carlo first-visit, since it had
a maximum relative error of 0.984.

However, the absolute errors of both Q-learning algorithms are larger than the errors in Monte Carlo.
The absolute errors are quite large, since the Q-learning algorithm seems to converge slower than Monte
Carlo algorithms. The convergence speed will be discussed later.

Table 8: Absolute and relative error of Q-learning algorithms

Absolute error Relative error
Algorithm Mean Maximum Mean Maximum
without learning policies 0.00538 0.114 0.0570 0.631
with learning policies 0.0179 0.125 0.372 0.874
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The logarithm of the value function obtained by Q-learning
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Figure 11: Contour plot of log VQL

The logarithm of the value function obtained by Q-learning with learning policies
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Figure 12: Contour plot of log VQLP

5.3.2 Optimality of policy

It is remarkable that all policies of the Q-learning algorithm are optimal (machine-precision sense). We know

from Section 4.3.1 that we can get very accurate value functions V
(j)
QL of the j-th simulation’s policy. Those

have maximum absolute difference of order 10−17. In other words all policies obtained from Q-learning give
an optimal value function. It is immediate that the number of steps the car needs is 16.

Unfortunately, the Q-learning with learning policies performs very badly. First of all, following five of the
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obtained policies do not succeed to let the car get to the mountaintop in less than 9999 steps (see Table 9).
Only 19 of the policies can do it in 16 steps. One also has

‖V (j)
QLP − VV I‖∞ = 2.00 for all j = 1, ..., 50. (64)

A possible explanation for such phenomenon is already given in Section 4.3 for Monte Carlo first-visit. We
conclude that none of the policies obtained from Q-learning with learning policies are optimal.

Table 9: The number of steps needed to get to the goal using the policies from Q-learning algorithms

Number of steps needed to get to the right-end point
Algorithm Minimum (frequency) Mean Maximum (frequency)
without learning policies 16 (50) 16 16 (50)
with learning policies 16 (19) NA <9999 (5)

5.3.3 Convergence speed

We have run 50 simulation with 40000 episodes. We compare the convergence speed of Monte Carlo al-
gorithms with temporal-difference algorithms. We considered the 2-norm of the difference of each value
function and the value function from value iteration. We first considered the 2-norm on the whole state
space S. The results can be seen in Figure 13. We immediately see that Monte Carlo exploring-starts out-
performs all other algorithms as we could expect. We also see that both Monte Carlo algorithms outperform
the temporal-difference learning algorithms.

Furthermore, we see that all algorithms but Monte Carlo exploring-starts, get flatter after the episode
20000. That is due to the hypothesis that the fixed initial state of the Markov chain (Sk, Ak)k≥0 does not
communicate with all states in S×A. In other words, we do not know whether the Markov chain (Sk, Ak)k≥0
is irreducible. The value function of the states that can not be visited from the fixed initial state does not
get an approximation. That explains why the error in all algorithms but Monte Carlo exploring-starts do
not get below some value, which appears to be around 8.24. It should also be clear that the figure is not
contradicting Theorem 30.

Convergence speed of Monte Carlo and temporal-difference algorithms
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Figure 13: Convergence speed of the Monte Carlo and temporal-difference learning with respect to the
number of episodes
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It is indeed not very fair to consider the error over the whole state space S. Now we focus on the set of
states s ∈ S that are visited in all algorithms, i.e. the set SES ∩ SFV ∩ SQL ∩ SQLP . We call that set the
overlap set. The cardinality of that set is 301, that is 68.3% of the whole state space. We get another picture
of the convergence of the algorithms (see Figure 14). Both Monte Carlo algorithms start decaying fast in
the beginning compared to the temporal-difference learning algorithms. However, the temporal-difference
learning algorithms catch up with Monte Carlo first-visit eventually.

As we have seen in Section 4.3 it is not strange that the error of Monte Carlo first-visit does not vanish,
because the algorithm is very likely to give a value function of a policy which is only optimal among ε-greedy
policies. Something similar might be happening to Q-learning with learning policies (see discussion after the
pseudocode of Q-learning with learning policies), although the graph suggests it is decaying.

Finally, recall Remark 26 where we said, avoiding extra notations and technical details, that there is a
state space S ′ ⊂ S, such that the Markov chain (Sk, Ak)k≥0 on S ′ × S is irreducible. Since SQL ⊂ S ′, we
actually have an illustration of Theorem 30 in Figure 14. Of course, that observation should be taken with
grain of salt, although it can be written more formally.

Convergence speed on the overlapping set

0 10000 20000 30000 40000
0.0

0.2

0.4

0.6

0.8

Number of episodes

E
rr
or
in
2-
no
rm

MC ES

MC FV

QL

QLP

Figure 14: Convergence speed of the Monte Carlo and temporal-difference learning with respect to the
number of episodes where only the values in the overlap set SES ∩ SFV ∩ SQL ∩ SQLP is considered

We see that among the temporal-difference algorithms the Q-learning outperforms the Q-learning with
learning policies. When we compare the temporal-difference algorithms with Monte Carlo algorithms, it
seems that Monte Carlo algorithms are better in approximating the value function. The Monte Carlo
algorithms give a good approximation overall. But when we only compare how each algorithms performs in
the overlap domain, then we see that temporal-difference algorithms catch up with Monte Carlo first-visit.

The policies we have obtained by Q-learning were all optimal. However, some policies from Q-learning
with learning policies failed badly. The car did not succeed to get to the goal in less than 9999 steps. Com-
paring the policies, we conclude that Q-learning is better than Monte Carlo algorithms and that Q-learning
with learning policies is the worst among all those algorithms. This might indicate that the interpretation
we had about the Q-learning with learning policies as written in [3] was actually wrong. Now it also makes
sense why it was hard to find literature about that algorithm.
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6 Conclusion

We have investigated what is currently known about the convergence properties of some of the most used
reinforcement learning algorithms. The dynamic programming algorithms, value iteration and policy it-
eration, converge. The convergence proofs that we have given were relying on a less general definition of
Markov decision processes. However the proofs can be easily generalized. We have shown that the dynamic
programming algorithms in [3] actually terminate. Furthermore both algorithms give an approximation of
the optimal value function with an approximation of an optimal policy which can be made arbitrarily close
to the exact values. Combining the results obtained in this report with the results in [6] make clear that
dynamic programming has very strong convergence properties.

We have also shown that Q-learning converges under extra assumptions on the Markov chain. We have
obtained a stronger type of convergence than the type mentioned in [5]. Unfortunately, we could not make
similar statements about Q-learning with learning policies, since it was hard to analyze. It might be the case
that the interpretation we had about that algorithm was incorrect as discussed in the results. However, an
algorithm which is similar to it converges which means that Q-learning with learning policies might actually
converge.

Unfortunately, we conclude that it is still not known whether Monte Carlo algorithms converge. However,
we have seen that all algorithm perform well on the mountain car problem. That means that there is hope
for showing the convergence of Monte Carlo algorithms as they are or maybe under extra assumptions.

6.1 Further research

As a next step, I would investigate the performance of reinforcement learning algorithms for Markov deci-
sion processes with uncountable state space. These problems come with many additional challenges. The
definitions become more subtle. Moreover the algorithms we have mentioned can not be used for an infinite
state space MDP. Finally, one needs to do more work in the implementation. For instance, if the state space
consists of possible camera images, then those images need some preparation work in order to use them as
an element from the state space. This leads to many mathematical challenges.
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