
 Eindhoven University of Technology

MASTER

MAGPIE - a Maintainable Graph Pattern Indexing Engine
towards a versatile path index for the industrial graph database

de Jong, N.

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/241e6ff0-9e49-44de-a977-dcde8ed46581

MAGPIE - a Maintainable Graph
Pattern Indexing Engine

Towards a Versatile Path Index for the Industrial Graph Database

Master’s Thesis
Database Group

Faculty of Mathematics and Computer Science
Eindhoven University of Technology

niels de jong

Academic Supervisors:
dr. G.H.L. Fletcher

dr. N. Yakovets

Industry Supervisor:
A. Averbuch

Examination Committee:
dr. G.H.L. Fletcher

dr. N. Yakovets
dr. D. Fahland

Eindhoven, March 2019

Niels de Jong: MAGPIE - a Maintainable Graph
Pattern Indexing Engine, Towards a Versatile Path Index for the Indus-
trial Graph Database, © March 2019

A B S T R A C T

Even though the benefits of using a path index for evaluating pattern
matching queries have been proven empirically by years of research,
no industrial graph database has adopted the path index as a core
feature. One of the reasons for this is the fact that the maintainabil-
ity of existing path indexing methods is not considered by previous
work. Thus, these indexing techniques are unusable for general pur-
pose database systems, which deal with changing data. This report
summarizes the design of MAGPIE, the first Maintainable Graph Pat-
tern Indexing Engine, which is tailored to be used in the industrial
graph database.

First, we identify four requirements that a path index must meet
such that it can be used in an industrial database. Given these re-
quirements, we perform a survey of existing structural indexing tech-
niques, and select the k-path index [24] as our candidate for extension.
We extend k-path indexing with two novel maintenance algorithms,
of which one exploits the B+ tree prefix-search operation to achieve
efficient index updates by avoiding expensive graph traversals. We
also introduce the concept of batching index-update translations, as
to speed up the processing of multi-update transactions.

To motivate developing a fast maintenance technique for a path in-
dex, we need insights on the frequency of updates that can create or
delete paths in a graph. To investigate this, we perform the first-ever
large-scale analysis of Cypher logs from industrial applications. In
addition to recording the number of updates, we also investigate the
structural properties of the query graphs, as well as the frequency of
sub-patterns in a single log. The latter will also act as evidence that
long patterns exist frequently for some applications, and can be eval-
uated faster by a path index. This, to our knowledge, has not been
shown by previous research.

To test the capabilities of MAGPIE, we have implemented the new
maintenance techniques as an integrated part of the Neo4j graph
database. In our experimental study, we find that (in the best case)
our new maintenance technique allows for a number of magnitudes
speed-up as opposed to traversal-based updates. From our study on
Cypher logs, we find that some log instances contain over 99% queries
that can generate path index updates. In addition, we find that many
of the logs contain long frequent sub-patterns that can be evaluated
faster by using a path index.

iii

A C K N O W L E D G E M E N T S

This thesis has been a collaborative effort between the Database Group
at Eindhoven University of Technology and Neo4j in Malmö, Sweden.
I want to thank both parties for providing the time and resources to
be able to come to a successful completion of this thesis. Working on
this project has been a unique experience and an excellent opportu-
nity to work with both academia and industry.

I would like to thank Dr. George Fletcher and Dr. Nikolay Yakovets
for their active involvement and frequent feedback during the project.
I would also like to thank Dr. Fahland for serving on my assessment
committee. I very much appreciate the time and effort put in by Dr.
Fletcher and Dr. Yakovets for meeting frequently and pointing me in
the right direction throughout the past months. It has been a great
experience working with the Database Group, who have guided me
with humour and expertise through my internship and thesis period.
A special thanks also to Max Sumrall for taking the time to share his
thoughts on this study.

I would also like to thank Alex Averbuch for his everlasting patience
and help with benchmarking the index implementation, Satia Herfert
for his help with the Neo4j parser, as well as Anton Persson for his
time explaining the Neo4j indexing infrastructure. To everyone in the
Neo4j Cypher team who has been actively involved in my project, I
would also like to give thanks for their time and effort. Last, a special
thanks to everyone else at Neo4j for providing a warm home in the
cold Swedish winter.

Last but not least I would like to thank my parents, my family, and
friends for their support throughout my thesis and my entire educa-
tion. I will never forget my time in the TU/e Common Room, where I
have shared amazing lunches, dinners and an uncountable number of
coffees over the past years with people from all corners of the world.

iv

C O N T E N T S

1 introduction 1

1.1 Use-Cases for Path Indexes 1

1.1.1 Query Evaluation 2

1.1.2 Graph Algorithms 2

1.1.3 (Regular Path) Query Planning 2

1.1.4 Special Operators 3

1.1.5 Views . 3

1.2 Context . 3

1.3 Research Question . 3

1.4 Contributions . 4

1.5 Overview of Contents 4

2 preliminaries 7

2.1 Semi-Structured Data Models 7

2.2 Property Graph Model 8

2.3 Paths & Label-Paths . 8

2.4 Pattern Matching Queries 8

2.5 Indexing . 9

2.6 Notation . 10

3 query log analysis 11

3.1 Problem Definition . 11

3.2 Related Work . 12

3.3 Data . 13

3.4 Query Log Analysis Method 14

3.4.1 Parsing . 14

3.4.2 Frequency of Updates 14

3.4.3 Query Graph Structure 15

3.4.4 Frequent Sub-Patterns 15

3.5 Results . 16

3.5.1 Frequency of Updates 17

3.5.2 Query Graph Structure 17

3.5.3 Frequent Sub-Patterns 18

3.6 Conclusion & Future Work 20

4 indexing graph structure 23

4.1 Structures to Index . 23

4.1.1 Indexing Paths 23

4.1.2 Indexing (Frequent) Sub-Graphs 23

4.1.3 Indexing Trees 24

4.1.4 Choice of Structure to Index 24

4.2 Requirements for a Path Index 24

4.3 A Survey of Path Indexing Techniques 25

4.3.1 DataGuides . 25

4.3.2 The T-Index . 26

v

vi contents

4.3.3 The D(k) Index 27

4.3.4 The GRIN Index 28

4.3.5 Language-Based Indexing 28

4.3.6 k-Path Indexing 29

4.3.7 Comparison of Techniques 30

5 maintaining a path index 33

5.1 Types of Updates . 34

5.2 Handling Updates . 35

5.3 Traversal-Based Translation (TBT) 36

5.4 Inverted Index Translation (IIT) 37

5.5 Self-Maintaining Translation (SMT) 38

5.6 Batching Indexing Maintenance 40

5.6.1 Motivation . 40

5.6.2 Batching Method 41

5.7 Comparison of Techniques 42

6 implementation 45

6.1 Index Design . 45

6.1.1 The GB+ Tree . 45

6.1.2 Key Design . 46

6.1.3 Multiple Trees for Multiple Paths 46

6.2 Index Maintenance . 46

6.2.1 Overview . 47

6.2.2 Traversal-Based Translation 48

6.2.3 Self-Maintaining Translation 48

6.2.4 Concatenating Paths 48

6.2.5 Writing Updates to Index 49

7 experimental evaluation 51

7.1 Experiments on Synthetic Data 51

7.1.1 Graph Layout . 51

7.1.2 Results . 53

7.1.3 Summary . 54

7.2 Experiments on Real Data 55

7.2.1 Experiment Design 55

7.2.2 Results . 56

8 conclusion 59

8.1 Summary . 59

8.2 Future Work . 60

a appendix a : query log data 63

a.1 Types of Queries . 64

a.2 Query Shapes . 66

a.3 Frequent Pattern Analysis 68

b appendix b : experiment results 71

b.1 Synthetic Data . 71

b.2 Real Data . 72

bibliography 73

L I S T O F F I G U R E S

Figure 1 Popular data models as ordered by their de-
gree of structure. 7

Figure 2 Distribution of the number of write queries for
the 66 query logs. 17

Figure 3 Distribution of read/write queries and custom
procedure calls for the 66 query logs. 18

Figure 4 The 66 query logs and their distributions of
query graph size. 19

Figure 5 The 66 query logs and their percentages of un-
bounded variable length query graphs. 19

Figure 6 The top 10 frequent patterns for log D30. . . . 20

Figure 7 Left: An example dataset with information about
a university department. Right: A correspond-
ing DataGuide. 25

Figure 8 A simple node and edge-labeled graph. 29

Figure 9 An example graph layout resulting in path in-
dex updates. The dashed line represents the

added/deleted edge a X−→ b. 36

Figure 10 The different sub-indexes needed to efficiently

maintain an index on paths of the shape A X−→
B Y−→ C Z−→ D. 39

Figure 11 Adding three edges to an existing graph. Here,
the dotted lines represent new edges. 40

Figure 12 Three updates in a single transaction that im-
ply an ordering on visiting edges for path in-
dex updates. 41

Figure 13 Two updates in a single transaction while main-

taining A X−→ B Y−→ C and C Y−→ B X−→ A. No
edge-at-a-time processing of update translation
is possible. 41

Figure 14 A high-level overview of the index maintenance
implementation. 47

Figure 15 An edge addition with label [:X] that creates
four new indexed paths. The traversal-based
update method will perform no unnecessary
work. 52

Figure 16 An edge addition with label [:X] that creates
1 new indexed path. The traversal-based up-
date method will do extra work, as it runs into
nodes with label (:E). 53

vii

viii List of Figures

Figure 17 A flame graph for the experiment performing
SMT on a tree with 10000 paths, where no un-
necessary traversals can be skipped. 54

Figure 18 A high-level label schema for the Geospecies
Knowledge Base RDF graph. 56

L I S T O F TA B L E S

Table 1 An overview of the notation used in this thesis. 10

Table 2 Keys for a k-path index where k = 2, for the
graph in Figure 8. 30

Table 3 An overview of the path indexing techniques
in Section 4.3. 31

Table 4 The number of indexed sub-paths needed to
update a path index using self-maintaining trans-
lations. 39

Table 5 Overview of the maintenance technique for path
updates. 42

Table 6 Results of the maintenance experiments on syn-
thetic data. 71

Table 7 Results of the maintenance experiments on real
data. The reported mean and error are over the
entire workload (100,000 queries). 72

ix

1
I N T R O D U C T I O N

Increased use of semi-structured and unstructured data have made
non-relational data stores an increasingly popular means of data stor-
age and retrieval. In particular, graph databases have seen a surge in
popularity over the last decade, largely due to their natural network-
like representation and data flexibility. Pattern matching query lan-
guages such as Cypher are often used to query graph databases. These
languages inherently require a large number of joins to be executed
on the data store, which can get computationally expensive, even
given the fact that native graph databases have been shown to out-
perform relational databases on long, pattern-matching queries [27].
To tackle this problem, we explore structural indexing as a means of
accelerating this type of queries.

Ever since the first database systems were developed, indexing has
been widely used for speeding up data retrieval. Traditionally, in-
dex structures for relational databases rely on a predefined schema
that defines the structure of the tables in the database. [16] Semi-
structured data such as graphs, however, have no explicit schema,
and therefore indexing techniques are not easily translated from a re-
lational context. [25] For this reason, indexing structural information
of a graph is a non-trivial task, especially in an industrial database
(OLTP system) where data changes dynamically over time. Even though
a variety of structural indexing techniques have been proposed in
the literature, very limited attention is given to maintenance after
addition and deletion of graph elements, consequently making exist-
ing techniques not applicable to industrial graph databases. To our
knowledge, as of yet, no industrial graph database exists that sup-
ports structural indexing as a core functionality, even though relevant
research on this type of indexing is very promising.

1.1 use-cases for path indexes

A database index speeds up data retrieval by keeping a redundant
copy of data in a specialized data structure, such as a B+ tree. In-
dexing has already been investigated extensively for labels and prop-
erties of nodes and edges, and is available in most industrial graph
database systems, such as Neo4j. To motivate the choice of adding
structural indexing as a core functionality to a graph database, we
highlight five possible use cases in the following sections.

1

2 introduction

1.1.1 Query Evaluation

A structural index can aid in evaluation of long, complex pattern
matching queries by avoiding random disk IO operations. Given that
these type of queries are at the core of graph analytics, this type of
index could make a large difference in evaluation time. One of the
problems of this category is the following query: Given a node n in
a graph, efficiently identify the set of paths p intersecting that node
that match a given pattern. An example Cypher query expressing this
is as follows:

MATCH p=(a:A)-[:X]->(:B)-[:Y]->(:C)
WHERE a.id = n
RETURN p

These type of operations can be made more efficient by using a struc-
tural index - given that our index allows for fast retrieval of all paths
originated from node a. More generally, we might also be interested
in just finding all (:A)-[:X]->(:B)-[:Y]->(:C) patterns. The index-
ing technique we select in Section 4.3.6 supports both of these opera-
tions.

1.1.2 Graph Algorithms

A structural index can additionally be used to speed up graph algo-
rithms involving many traversals. As an example, consider the PageR-
ank algorithm. Computing the PageRank of a node in a network is
dependent on the node’s neighbours, which can efficiently be done
by the use of a structural (path) index. For a higher-level PageRank,
the PageRank could even be computed by looking at a more extended
neighbourhood of a node, e.g., finding its neighbourhood with nodes
up to a distance two away.

1.1.3 (Regular Path) Query Planning

In [7], Fletcher et al. illustrate how a path index can be used to gen-
erate better execution plans for Regular Path Queries (RPQs). In the
experimental evaluation of [7], it is demonstrated that a k-path index
of all paths up to length k = 2 may already generate physical plans
that speed up execution by a number of magnitudes. In fact, there
is evidence that query planning for Cypher queries can also be im-
proved by the use of a path index: given that we have exact counts
on the number of paths of a given length two pattern, we can pro-
duce significantly better cardinality estimations as opposed to having
simple graph statistics. [13]

1.2 context 3

1.1.4 Special Operators

Some specialized graph database operations can benefit significantly
from the presence of a path index. The triadic closure operator, as
frequently used in recommendation engines, originated from the fol-
lowing principle from sociology: if A has a connection with B, and
B is connected with C, then A is likely also connected with C. The
Neo4j database contains a special operator for these type of opera-
tions, due to their frequency of appearing in query workloads. The
fact that this operator exists is a strong motivation that these types
of queries appear frequently, and are thus interesting candidates for
optimization. A path index can aid in this type of query, as a triadic
closure can be modeled as a path.

1.1.5 Views

A path index is a possible implementation of a materialized view for
chain pattern matching queries. In Chapter 3 we find that for some
query logs, over 90% of the pattern matching queries have a chain
shape, thus covering a significant part of some query workloads. The
problem of maintaining and storing the view is then translated to the
problem of maintaining and storing the index.

1.2 context

From previous research, we find that the use of a structural index can
greatly speed up query evaluation, in some cases evaluation is sped
up by a factor greater than 1000. [26] [24] The path index has, however,
never been implemented in an industrial graph database as a core
feature. We find the main reason for this is that no existing technique
has directly addressed maintenance - an essential requirement for a
database that deals with changing graphs. In addition, there is limited
empirical evidence supporting the occurrence of updates, as well as
the fact that (long) paths appear frequently in query logs. In this
thesis, both of these issues will be addressed.

1.3 research question

In our study, we aim to provide an answer to the following research
question: How can we design a structural path index suited for the
industrial graph database, such that it can efficiently be maintained?
Before we tackle this problem, we also investigate:

• Is there a need for efficient maintenance in industrial graph ap-
plications?

4 introduction

• How often can a path index be utilized for a given application,
and which paths are worth indexing?

To motivate that our solution can be used in an industrial database,
we implement MAGPIE as an integrated part of Neo4j. With this,
we can experimentally investigate the performance of the index in
terms of maintainability. To investigate the frequency of updates and
frequent query patterns, we investigate 66 Cypher query logs as used
by six of Neo4j’s customers.

1.4 contributions

This report provides a thorough investigation of the maintenance of
path indexes and the use of path indexing in general. We make three
main contributions by our research:

• We perform a theoretical and empirical evaluation of two novel
methods to efficiently translate graph updates to index updates.
One of the methods, which we call Self-Maintaining Translation
(SMT), allows us to avoid expensive graph traversals by using
shorter paths as present in the index.

• We provide an implementation of the new approach as an inte-
grated part of the Neo4j database engine, supporting the claim
that MAGPIE can be implemented in an industrial graph database.
Neo4j is, at the time of writing this paper, the world’s leading
graph database according to the DB-engines ranking 1, and is an
excellent candidate for a demonstration of an implementation
for a maintainable path indexing technique. Our experimental
evaluation shows that SMT can provide a large speed-up as op-
posed to a straightforward traversal-based translation.

• By analyzing a wide variety of query logs, we discover oppor-
tunities for using a path index by investigating the structure
of Cypher queries. In addition, we investigate the frequency of
queries that can trigger a path index update. We developed an
analysis script that parses and processes the Cypher queries
as present in the Neo4j log files in order to extract the query
graphs, and performs post-processing on these query graphs to
discover frequent patterns. To our knowledge, we are the first
to perform such an analysis on Cypher queries.

1.5 overview of contents

Chapter 2 summarizes preliminary knowledge for the remainder of
the thesis, as well as provides an overview of the used notation and

1 https://db-engines.com/en/ranking/graph%20dbms

1.5 overview of contents 5

abbreviations. Chapter 3 describes our query workload analysis on
Cypher logs, as well as discusses the results in relation to the afore-
mentioned research questions. Chapter 4 contains a discussion of
different structural indexing techniques, as well as a survey of the
state-of-the-art in path indexing. Chapter 5 goes into detail on the
challenges that are introduced when building a maintainable path
index and introduces a number of novel solutions for this type of
maintenance. Next, Chapter 6 describes implementation specifics for
embedded our new techniques into the Neo4j codebase. Chapter 7

describes a number of experiments to empirically evaluate the new
maintenance techniques, and finally, Chapter 8 presents concluding
remarks and future work.

2
P R E L I M I N A R I E S

First, we provide a short introduction to the landscape of databases
for semi-structured and unstructured data and show where graphs fit
into the bigger picture of these types of data stores. Then, we provide
the reader with an overview of concepts inherent to graph databases,
including nodes, edges, and paths. We introduce the concept of index-
ing to accelerate query evaluation, and discuss existing techniques for
indexing graph structures. Lastly, we provide a concise overview of
the notation used in this report.

2.1 semi-structured data models

Since the introduction of relational databases in the early 1970’s [6],
many types of data stores have been proposed to fit the needs for
different shapes of data. Non-relational data stores (often dubbed
NoSQL stores) come in many forms and can be sorted in order of
structural strictness as in Figure 1. In their 2011 paper, Strauch et al.
provide a similar ordering, even though graphs are not present in
their overview [22].

In general, less structured data provides more flexibility, but limits op-
timizations derived from the data’s structural properties. Thus, struc-
tural indexing is a problem that is fundamentally different based on
the structure of the underlying data store. Even though a large va-
riety of indexing techniques exist for hierarchical data such as XML
and JSON stores, indexing techniques for graphs are far less common,
as discussed in Chapter 4.

Relational

XML, JSON

Graph

Tuple Store

Key-Value Store

Object Database

Full-Text Store
Unstructured

Structured

Semi-
Structured

Figure 1: Popular data models as ordered by their degree of structure.

7

8 preliminaries

2.2 property graph model

Even though a variety of data models exist for graph-shaped data, the
(labeled) property graph model is most frequently by graph databases
[21]. This model, which allows for the augmentation of nodes and
edges with a set of properties, has proven effective for many indus-
trial applications. The property graph model as used by Neo4j has
a specific set of semantics that should be taken into consideration
when developing optimization techniques for graph querying. The
most important constraints are the following:

• A node may have zero or more labels.

• An edge must have exactly one label.

• A path, as defined in Neo4j, cannot contain the same edge twice.
It can, however, contain the same node twice.

2.3 paths & label-paths

A path in a graph is defined as a fixed-length ordered sequence of
nodes and edges. We define the length of a path to be the number of
edges contained in a path. A label path is a sequence of node labels
and edge labels, similar to a pattern. Given a graph, a label path will
have a set of matching paths - paths that have the exact same sequence
of labels. If any of the labels in a label path are unspecified, this will
match with any node (or edge) regardless of its labels. In addition, a
node will be matched in a label path even if the label path does not
specify all of the labels. That is, if a node has two labels, A and B, the
node can appear in label paths that contain either A or B.

2.4 pattern matching queries

As of the time of writing this thesis, no standardized language ex-
ists for querying graphs. The declarative Cypher, SparQL and PGQL
languages are popular due to their SQL-like syntax and are there-
fore used frequently by commercial graph databases. Section 1.1.1
provides an example of a pattern matching query in Cypher, where
a pattern is expressed using a label path. The set of patterns inside
a single query can also be represented in a graph format - this is
referred to as a query graph. Query graphs can also contain variable
length patterns, which are denoted by the Kleene star (*). As an exam-
ple, the Cypher pattern (:A)-[:X*]-(:B) will match all paths from
A nodes to B nodes that are a sequence of X edges, regardless of its
length.

2.5 indexing 9

2.5 indexing

Database indexing is a widely used technique to speed up the eval-
uation of queries in databases. By having fast access to a redundant
copy of some of the data, expensive read-operations to the underly-
ing data structure can be avoided or minimized. Indexing has been
investigated for many different shapes of data and ranges from sim-
ple, single property indexes to structural indexing as discussed in
Chapter 4. Specialized data structures, such as the B+ tree, have been
extensively researched to fit common operations such as reading and
writing the index. Hash-based indexing has also been investigated
thoroughly, and continues to be used, even for graph patterns [20].
Recently, with the rise in popularity of AI and deep-learning solu-
tions, self-learned index structures have also been proposed [15]. In
our study, we do not go in-depth on the design of index structures
themselves, but rather on how to effectively use existing techniques
to achieve efficient maintenance.

10 preliminaries

2.6 notation

The table below summarizes the different notations as used in the
remainder of this report. In some cases, mostly relating to the Cypher
log analysis, we will used Cypher notation. A concise overview of the
Cypher notation can be found on the Neo4j website.1

Graph G(V, E)
A graph is defined as a set of

nodes V, and a set of edges E.

Nodes a ∈ V

Nodes are denoted by the

lowercase letters a, b, c...

a is sometimes refered to as

the ID of a node.

Edges a x−→ b ∈ E

an edge x from

node a to node b.

Edges are denoted by the

lowercase letters x, y, z, q...

Path a x−→ b
y−→ c

A path is a sequence of

connected nodes and edges.

Labels L(a) = A
the label of node a is A.

Labels are denoted by

uppercase letters.

Label-Paths A X−→ B

A X−→ B refers to the set

of all edges a x−→ b,

where L(a) = A, L(b) = B

and L(x) = X.

Path Shape
shape(a x−→ b)

= A X−→ B

The shape of a individual path

p is the label path with

matching labels to the given path.

Var. Length Label-Path A 99K B
Denotes all paths from a node

with label A to a node with

label B of unspecified length.

Set of Labels L(V) and L(E)
These denote the sets of all

node and edge labels,

respectively.

Table 1: An overview of the notation used in this thesis.

1 https://neo4j.com/docs/cypher-refcard/current/

3
Q U E RY L O G A N A LY S I S

In recent years, an increasing amount of work has been done on the
topic of understanding the structure of semi-structured data. Under-
standing how people interact with semi-structured data stores, on the
other hand, has only recently received attention, even though it has
a lot to offer. Considering our topic of path indexing, understanding
logs is especially important. Developing elaborate path indexing tech-
niques only becomes useful if they can be used to evaluate queries
that contain these paths. In this chapter we answer exactly this ques-
tion: can a path index be of use for evaluating real-world database
queries? If so, how can we determine which paths appear frequently
in queries, and are they the most valuable to index? As we are also in-
terested in maintaining these indexes, it is also useful to gain insights
into the frequency of update queries that can potentially create new
paths.

To answer these questions, we performed an extensive study on real-
world Cypher query logs from Neo4j customers. Section 3.1 goes in
more detail on the exact artefacts we want to extract from these logs.
Section 3.2 summarizes related work on the analysis of graph queries.
Section 3.3 elaborates on the investigated query logs. Section 3.4 de-
scribes the procedure of reading, parsing and processing the query
logs to extract the interesting information. Sections 3.5 and 3.6 sum-
marize the findings from the logs and makes some concluding re-
marks.

3.1 problem definition

Even though research on the analysis of graph queries exists, no such
analysis has ever been done on Cypher queries in particular. In ad-
dition, little is known about the occurrence of frequent subpatterns
in query graphs, which play an essential part in selecting the right
paths to index. In the following sections, we describe the results of an
analysis of 66 datasets used by six of Neo4j’s customers. By analyzing
over five million queries, we answer the following questions:

• What query graph shapes are common for real-world Cypher
queries? How often do large query graphs appear?

• How can we extract frequent patterns from Cypher queries?
What can these patterns tell us about which paths are interest-
ing to index?

11

12 query log analysis

• How often do updates occur which may create or delete paths?

We perform this analysis by means of a script that handles the end-to-
end processing from query logs to summary data about the structure
of the workload. The script is written in Java and uses Scala to hook
into the Neo4j parser. The source code for this script is available open-
source.1

3.2 related work

Understanding query logs for graph-shaped data has seen relatively
little attention in academia. Most of the current research has been
focused on SparQL logs, likely due to a large amount of open data
containing SparQL queries. In this section, we summarize relevant
findings from these studies and indicate what information is missing
for our purposes.

To our knowledge, Möller et al. were the first to analyze large SparQL
query logs. [17]. Their 2010 study focused mainly on the agents used
to do the queries, as well as the frequency of queries over time. Some
attention is given to the number of triple patterns as present in the
SparQL queries, which prove to be highly variable depending on the
dataset. Still, for all investigated datasets, more than 99% had less
than four triple patterns per query (with two of the datasets even
having as many as 99% single-pattern queries). The shapes and struc-
ture of the queries are not investigated in [17], and neither is the
frequency of updates.

A 2011 study by Gallego et al. went in-depth on some of the miss-
ing information from the Möller study. This study focused mainly
on understanding the frequencies of joins and patterns in real-world
SparQL queries [2]. Gallego found that most of the 3 million ana-
lyzed DBPedia queries are relatively short and do not contain many
triple patterns. The two query workloads examined contain 66.41%
and 97.25% queries with a single pattern respectively. Interestingly,
almost all (>99.9%) of the observed queries with more than two joins
have an (almost) star-shaped structure. Star-patterns are common for
the RDF data structure, as all properties of a node are expressed us-
ing triples, which materialize as edges in the graph. In the property
graph model, these type of star-shaped structures can be replaced by
property fields on the nodes and edges in the graph, and will likely
appear less often.

In the same year, Picalausa and Vansummeren also performed a study
on SparQL queries from a DBPedia endpoint. [19] The types of queries

1 https://github.com/nielsdejong/neo4j-log-parser

3.3 data 13

(SELECT, ASK, CONSTRUCT and DESCRIBE), the number of operators and
structural properties of the data were thoroughly documented by Pi-
calausa and Vansummeren, as well as the number of queries that con-
tain combinations of operators. Even though the size and shape of the
queries was not directly addressed, the time complexity of evaluating
the queries was induced from structural properties of the query. Pi-
calausa and Vansummeren found that many of the analyzed queries
can be evaluated in polynomial time.

In 2017, Bonifati et al. perform an analytical study on roughly 180

million SparQL queries. [3] In their study, a number of open data sets
from DBPedia, WikiData and a number of other open data sources,
were analyzed. The study contains a summary of a wide range of
query graph properties such as the number of triples per query, the
distribution of operators and even a detailed structural analysis. Boni-
fati et al. summarized the number of chain queries, trees, star queries
as well as the treewidth of the analyzed queries. As opposed to the
study by Gallego, Bonifati et al. found many more complex (long)
SparQL queries, as well as discovered that for the analyzed datasets
more than 90% of the queries are chain-shaped. Unfortunately, the
analysis did not contain an investigation into frequent sub-patterns,
nor the frequency of updates.

Even though previous research provides an insight into the shape
and size of graph queries, we find the following to be missing:

1. No research has been done into Cypher queries as used in an in-
dustrial database setting. Given that SparQL and Cypher are de-
signed for different data models, the shapes of Cypher queries
may be entirely different.

2. Little is known about the frequency of updates, and its relation
to the number of read-only queries.

3. To learn about frequently occurring label-paths, we need to ex-
amine frequent query patterns, which have not been investi-
gated by previous research.

3.3 data

Our experiments were performed on 66 query logs from different
Neo4j customers, totalling 5,249,471 queries. The datasets range not
only in size (from 24 to 1.5 million queries) but also in contents, as the
data comes from a variety of industries: telecom, consultancy, travel,
banking, computer hardware and analytics. For confidentiality rea-
sons, we do not disclose any details about the contents of the logs.
For the remainder of this chapter, we refer to the logs by a number
ranging from D1 to D66.

14 query log analysis

3.4 query log analysis method

This section describes the design of a query log analyzer for Cypher
queries that extract structural information from query graphs. We
summarize the entire log analysis procedure, from parsing Cypher to
extracting patterns, and ultimately mining frequent sub-patterns. The
results are discussed in the next section.

3.4.1 Parsing

An essential part of our query analysis is examining the structure of
the Cypher query graphs. As the Neo4j logs only contain the Cypher
string, the parser is required to parse the queries in the logs to extract
query patterns from the graph. In the remainder of this chapter, query
patterns are referred to as a collection of label-path blocks, which have
the following shape: (a:L1)-[t:T *i..j]->(b:L2). Here, a and b are node
identifiers, t is an edge identifier, L1 and L2 are sets of allowed node
labels, T is a set of allowed edge labels, and i and j are the minimum
and maximum number of T edges to match, respectively.

The task of the query parser is to convert a Cypher string into aFor confidentiality
reasons, we

anonymize the
names of nodes and

edges in the query
graph, as well as

label names.

set of blocks, which can be fit together to form a query graph. As
Cypher supports nested queries, we are required to iterate over all
nested queries and add these to the set of blocks. Our implementa-
tion hooks into the Neo4j parsing module to accomplish this, as to
avoid having to write a standalone parser. The output from the Neo4j
parsing module is used by the remainder of the analysis.

3.4.2 Frequency of Updates

To determine whether a query performs updates, we check whether
the Cypher query contains any of these statements: ’CREATE’, ’SET’,
’MERGE’, ’DELETE’ or ’REMOVE’. In the Cypher language, these are the
only five statements that are able to modify nodes, edges, and their
labels.

• ’CREATE’ and ’DELETE’ statements should always be considered
updates that can create or delete new paths for indexed label-
paths.

• ’SET’ and ’REMOVE’ statements can sometimes be considered up-
dates that influence paths in the index. In Cypher, these state-
ments can either modify labels or properties, but only label
modifications can cause updates in our path index, as we do
not index paths with properties. By utilizing the Cypher parser,
we extract only the ’SET’ and ’REMOVE’ statements that modify
labels.

3.4 query log analysis method 15

• ’MERGE’ is a special case of an updating statement, as it either
matches a pattern or creates the pattern if it does not exist. As
Neo4j’s query logs do not capture whether any writes have been
made to the graph store, we cannot be sure whether MERGE state-
ments have caused any updates. In the discussed of our results,
we categorize these types of queries as an update query.

Neo4j’s Cypher supports another statement that can potentially per-
form updates to the graph. The ’CALL’ clause can be used to call cus-
tom procedures as an extension to Neo4j. These procedures can per-
form any operation on the graph, including updates. In most cases,
however, this is unknown. In our study, we do not consider ’CALL’
queries as updating queries.

Missing Patterns

In some cases, the logs do not contain the patterns that have been
traversed during query execution. If no edge labels are specified in
a query pattern, all edges connected to a certain node need to be
traversed, regardless of label, which will not appear in the logs. An-
other example of these missing patterns is caused by the DETACH
DELETE operator in Neo4j. This operator deletes a node along with
the edges connected to it. The labels of these edges are not specified
in the Cypher query, and therefore not present in the query logs, even
though they will have to be traversed in order to process the update.

3.4.3 Query Graph Structure

As a first step towards structural analysis, we examine the shape of
the query graphs similar to the work of Bonifati et al. [3] Here, we
only consider the read and write queries, and ignore queries that per-
form a custom procedure. First, we transform the parsed blocks into
a graph format, such that we can identify which blocks are connected.
Using a simple implementation of a breadth-first search, we can eas-
ily determine whether a query graph is a chain, has loops, is a tree,
or even a forest. If a query graph contains a Kleene star (*), we mark
it as an unbounded variable length pattern in our analysis (var_len).
Appendix A.2 provides a summary of the query graph structure of
each of the analyzed logs.

3.4.4 Frequent Sub-Patterns

To identify which exact patterns could be indexed to speed up query
evaluation, (linear) frequent sub-patterns are extracted from the query
graphs. Simply looking at the size of query graphs is insufficient
to give insights on where path indexes are applicable, instead, we
should identify which patterns are frequent enough to be stored to

16 query log analysis

index. Thus, we extract the frequent sub-patterns from the query
graphs in a query log, as well as the number of times they appear.
Given that the number of sub-patterns scales exponentially in the sizeSub-pattern

extraction can be
accelerated, for

example by the use
of the Apriori

algorithm.

of the query graph, we extract only the patterns up to length five, es-
pecially since some of the queries contain unbounded variable length
patterns. Let Vq be the set of nodes in the query graph q. Let P0 be a
set containing a single zero-length path. That is, for any path P, con-
catenation with P0 returns the same path: P0 ∪ P = P. Then, let F(P)
be a mapping from sub-patterns to a frequency value. Algorithm 1

contains the procedure used for frequent sub-pattern extraction up
to length 5.

Algorithm 1 Extract linear frequent sub-patterns up to length n

1: P ← ∅
2: F ← ∅
3: for each v ∈ Vg do
4: extract_fsp(P0, v, 5)

return F
5: function extract_fsp(Pin, v, n)
6: if n = 0 then
7: return Pin

8: Pnew ← ∅
9: for each b ∈ BlocksConnectedTo(v) do

10: for each Pin ∈ Pin do
11: P← Pin ∪ b
12: F(P)← F(P) + 1
13: Pnew ← Pnew ∪ P
14: return Pin ∪ extract_fsp(Pnew, b.other, n− 1)

In Algorithm 1, subroutine BlocksConnectedTo(v) returns all edges
connected to a node v in the query graph, including permutations
with unspecified node labels. Consider a query graph with a single
Cypher pattern (a:A)-[x:X]->(b:B). Then, BlocksConnectedTo(a)
will return not only (:A)-[:X]->(:B), but also patterns ()-[:X]->(:B),
(:A)-[:X]->() and ()-[:X]->(). These are patterns that could also
be indexed, and can also appear by themselves in query graphs, as-
query graphs do not always contain labeled nodes. The implementa-
tion of Algorithm 1 also considers variable length patterns as a special
case, but this was omitted for ease of understanding.

3.5 results

This section summarizes the results gathered by the log analysis as
described in the previous section. Here, we highlight a number of
interesting cases in relation to the research questions as specified in

3.5 results 17

Section 3.1. The complete list of aggregated results can be found in
Appendix A.

3.5.1 Frequency of Updates

Appendix A.1 lists for each of the logs the number of read-only, write
and custom procedure queries. We additionally record the number of
unique queries as observed in the logs. Figure 2 contains a plot of the
distribution of read/write queries for the analyzed logs. Even though
59 out of 66 logs contain only 0-10% write queries, there are also logs
with a large number of mutating queries. An example of this is D15,
which contains 99.8% write queries. There appears to be no direct
relation between write queries and custom procedure calls. Figure 3

shows the distribution of normal read/write Cypher queries and the
number of custom procedure calls. Log D4 is an example of a log that
is largely dominated by custom procedure calls (99.9%) and contains
very few actual Cypher queries. Custom procedure calls are common
throughout all logs, 10 out of 66 logs contain more than 50% of these
queries. In terms of the number of unique queries, there are also large
differences. D3 has 425811 queries of which 127 unique, and D15
has 918556 queries, of which almost all queries are unique. Our log
analysis thus shows highly heterogeneous data. To able to handle
applications that perform many data mutations, we must ensure a
highly efficient solution to deal with regular update queries.

Figure 2: Distribution of the number of write queries for the 66 query logs.

3.5.2 Query Graph Structure

From Appendix A.2 we find the same degree of data heterogeneity in
query shapes and in query types. Figure 4 contains a plot the distribu-

18 query log analysis

Figure 3: Distribution of read/write queries and custom procedure calls for
the 66 query logs.

tions in query graph size for the 66 datasets. From the appendix, we
find that logs D15 and D26 contain almost exclusively query graphs
of size zero and one, and are thus less interesting candidates for us-
ing a path index. Log D12 however could be especially interesting
to apply a path index to, as it contains over 95% query graphs with
an unbounded variable length pattern. Log D57 contains 30% queries
with an unbounded variable length pattern, but also contains 7% up-
dating queries. Even though a path index could be of use to speed up
query evaluation for the queries in this log, index maintenance can
also be expensive, due to the high frequency of updates. This log is a
good example where a path index can potentially be useful, but only
if it can be maintained efficiently. D57 also proves that applications
with frequent updates and applications with complex query graphs
are not necessarily disjoint.
Figure 5 shows that variable length patterns are common in the query
logs, with three of the logs containing exclusively queries with an
unspecified-length pattern. These types of patterns can benefit from
a specific shape of path index, where one or zero node labels are
specified. Consider a query pattern (:A)-[:X*]->(:B), which can be
partially evaluated by reading an index on path
(:A)-[:X]->()-[:X]->()-[:X]->()-[:X]->(), bootstrapping the eval-
uation. In our frequent sub-pattern analysis, we should therefore also
consider this shape of patterns.

3.5.3 Frequent Sub-Patterns

To discover which patterns could be valuable to index, we use the
frequent patterns as extracted by Algorithm 1. The result of this algo-

3.5 results 19

Figure 4: The 66 query logs and their distributions of query graph size.

Figure 5: The 66 query logs and their percentages of unbounded variable
length query graphs.

rithm is the appearing sub-patterns together with their frequencies.
The frequency can be seen as a basic predictor for which paths to
index. If a subpattern is observed frequently, the indexed path can The relation between

the executing times
of (parts of) frequent
patterns is discussed
as future work.

be frequently used to aid query evaluation. From the study by Sum-
rall [24], we find that indexes on length one paths can already speed
up query evaluation, but we are mainly interested in longer paths,
which provide the more interesting use-cases for path indexing. For
this reason, we also distinguish between different lengths of frequent
patterns.

Figure 6 contains the top 10 frequent patterns for log D30 as pro-
duced by the frequent sub-pattern extraction algorithm. For this log,
with a total of 3579 Cypher queries, we find pattern (:K)-[:K]->(:J)

20 query log analysis

appears 3666 times - on average, more than once per query. This pat-
tern, as well as ()-[:K]-(:J)-[:K]->(:J) are thus great candidates
for indexing. Appendix A.3 summarizes, for each log, the number of

Figure 6: The top 10 frequent patterns for log D30.

frequent patterns that appear often. For this, we count the number of
frequent patterns whose counts are more than 10% of the total num-
ber of queries in the log. Even though this is an arbitrary number, it
acts as a heuristic to determine how useful an index on a sub-pattern
can be. In the future, given that we know the relative speed-up pro-
duced by indexing a pattern, a better heuristic can be used. By distin-
guishing between different lengths of frequent patterns, we can also
investigate whether long frequent patterns also appear regularly.

From Appendix A.3 we learn that many of the logs contain frequent
patterns that can be indexed. 32 out of the considered logs contain
frequent patterns of length two or greater that appear more than
10% of the total number of queries. 26 of the logs contain even a
length 5 frequent pattern that is an interesting indexing candidate. It
is important to take into account that these counts include permu-
tations of patterns that contain unspecified node labels. The pattern
(:J)-[:P]->(:O)-[:R]->(:N)-[:O]->(:M)-[:S]->(:P)-[:Q]->(:I)
is contained in D30 for a total of 458 times, but there are also 127 dif-
ferent permutations of this pattern which do not specify node labels
that could be indexed. The total count as reflected in the appendix is
thus 128.

3.6 conclusion & future work

From the results as discussed in Section 3.5 we conclude that there
is strong evidence that path indexing can be applied to a number of
industrial applications. Due to the fact that there are many patterns
of length two or greater that appear frequently in many of the ana-
lyzed logs, there are many queries which could have been evaluated
faster given that these patterns were indexed. In addition, we have
discovered that seven of our logs contain over 10% mutating queries.

3.6 conclusion & future work 21

For these applications, a path index can only be effectively used if we
can maintain it with minimal overhead. Thus, an investigation into
maintenance methods can be of significant value.

As future work, we would like to investigate how the length and size
of a query graph correspond to the execution time of the query. In the
analyzed logs, we only know the total execution time of a query, thus
it is hard to say which joins are most expensive. Given that we can
identify the most expensive patterns to evaluate, along with a good
estimate of maintenance cost for each indexed path, we can more
accurately predict which of the paths are affordable to index.

4
I N D E X I N G G R A P H S T R U C T U R E

The increased use of graph-shaped data has resulted in the birth
of a completely new class of indexing techniques, vastly different
from those used in relational databases or those used for tree-shaped
data. With the introduction of these new data stores and query lan-
guages, existing techniques cannot directly be translated to a graph
context [25]. As querying graphs is done by specifying patterns, our
index should naturally resemble and be designed to support pattern-
matching queries. In this chapter, we explore the landscape of struc-
tural indexing methods for semi-structured data.

Section 4.1 introduces three types of structural indexing, as well as
provides a motivation for the choice of indexing paths as opposed to
other substructures. In Section 4.2, we define four requirements that a
path-index must fulfil to be able to be used in an industrial database.
Next, Section 4.3 provides an analysis of existing literature on path
indexing techniques with respect to these four requirements.

4.1 structures to index

First, we briefly summarize the types of graph structures that can
be indexed. We refrain from the discussion of basic indexes, such as
node and edge indexes, as well as indexes for (composite) properties.
Instead, we focus on indexing structural properties of the graph.

4.1.1 Indexing Paths

The simplest, non-trivial graph structure to index is a path. Recall that Patterns with
reversed edges
(A X−→ B Y←− C) also
appear frequently in
the Cypher query
logs investigated in
Chapter 3.

a path is defined as an ordered sequence of directed edges. Given
that we want to index paths in a directed graph, there should be a

possibility to index patterns with reversed edges, e.g. A X−→ B Y←− C.
The largest advantage of indexing only paths is that they are easier
to process and store due to their linear shape. Most of the existing
literature on structural indexes focuses on paths.

4.1.2 Indexing (Frequent) Sub-Graphs

One may find that just storing simple paths cannot express enough
information about the real structure of a graph - detailed structural
information is lost [28]. In graphs that contain many sub-graphs of the
same shape, such as chemical or biological networks, it may be more

23

24 indexing graph structure

effective to index frequently occurring sub-graphs instead of paths
- consider indexing 100 different sub-graphs as opposed to millions
of different paths. Indexing sub-graphs, however, introduces many
challenges. Given a graph, which sub-graphs do we index? What is
the largest substructure size we want to store? How can we store these
sub-graphs in an efficient manner? Unfortunately, these questions are
only very briefly discussed in the current state-of-the-art on structural
indexing.

4.1.3 Indexing Trees

A third option for structural indexing is the indexing of tree-shaped
patterns. In [29], Zhang et al. claim that tree structure indexes can
preserve almost as much structural information as a sub-graph index.
Yet, to our knowledge, very limited research on tree indexes for graph-
shaped data exists.

4.1.4 Choice of Structure to Index

We select paths as the best candidate for structural graph indexing
for the following reasons:

1. Path indexes have been most extensively studied as opposed to
other graph structures, and a variety of different algorithms for
the construction of path indexes exist. In addition, an implemen-
tation of the k-path index has already been shown to decrease
query evaluation time by a number of magnitudes [24].

2. The linear structure of paths allows for the use of efficient stor-
age techniques on well-established data-structures such as the
B+ tree.

3. Maintenance of more complex graph structures may get com-
plicated quickly. In [28], it is mentioned that frequent substruc-
tures may need to be recomputed after a number of graph
updates, given that the internal graph structure has possibly
changed too much. For dynamic graph databases, this could
potentially pose a problem in terms of efficiency.

4.2 requirements for a path index

We define four requirements that an index must meet for it be usable
in an industrial database setting. These requirements are as follows:

• Construction Time - We should be able to quickly construct the
index from an existing graph.

• Memory Usage- The index should not consume too much mem-
ory when stored on disk.

4.3 a survey of path indexing techniques 25

• Maintenance Time - The index should be efficiently maintained
as our graph changes over time.

• Query Evaluation Time - The index should speed up the eval-
uation of pattern matching queries significantly.

In our survey of existing path indexing techniques, these metrics play
an important role when selecting our indexing technique. Although
not measurable, a fifth requirement often set by industrial databases
is to be ACID compliant - the data in the index should still be valid
after unexpected errors. In Chapter 6, we show how we integrate
our path index into a generation-aware B+ tree implementation that
ensures ACID compliance.

4.3 a survey of path indexing techniques

We now provide an overview of path indexing techniques for graph-
shaped data. In this section, we summarize the contents of a wide
variety of indexing methods by selecting techniques that are funda-
mentally different in underlying mechanisms and supporting data
structures. To provide an overview of the complete landscape of ex-
isting work, we list techniques based on five concepts: state automata,
bi-simulation, center-nodes, language expressivity, and paths. Ulti-
mately, we provide a concise summary of the discussed techniques,
highlighting the strengths and weaknesses of each approach.

4.3.1 DataGuides

1

2 3 4

Research
Group

Research
Group Administration

5 6 7 8 9 10 11

Professor Partner
Phone_nr

PhD student Phone_nr
Address

12

13 14

15 16 17 18 19

Professor

Administration

Address

Phone_nr
Phone_nr

PhD student

Partner

Professor

Research
Group

18

Figure 7: Left: An example dataset with information about a university de-
partment. Right: A corresponding DataGuide.

To our knowledge, the use of DataGuides [11] as proposed by Gold-
man & Widom is one of the first indexing techniques that captures in-
formation about semi-structural data. In [11], a DataGuide is defined
as a structural summary of the label-paths appearing in a tree or

26 indexing graph structure

graph dataset, which can be used for a variety of use-cases, includ-
ing a path index. The DataGuide is based on the concept of a state
automaton - it embeds the allowed transitions (edges) that can be
made from a given state (set of nodes). Figure 7 provides an exam-
ple of a DataGuide for a database containing information about a
department of a university. By the definition of a DataGuide, we find
that a path in the original graph always corresponds to a path in
the DataGuide on the right. Note, however, this DataGuide could be
simplified, e.g., node 13 and 14 could be merged into one node. This
results in node 7 and 10 in the original graph being indistinguishable
by the DataGuide, and as such this new DataGuide would not be
usable as a path index. In [11], the original DataGuide as in Figure
7 is called a Strong DataGuide, which implies a one-to-one mapping
between nodes in the source graph and nodes in the DataGuide. For
this very reason, only strong DataGuides can be used as a path index.

In [11], Goldman & Widom show that strong DataGuides can be ef-
ficiently constructed from a given tree. For most of the experiments
conducted on constructing DataGuides, the size of the DataGuide is
significantly smaller than the original dataset, but Goldman & Widom
do note that the size of a DataGuide for non tree-shaped data is worst-
case exponential in the size of the graph. Maintenance of DataGuides
is also addressed in detail, and a number of algorithms are proposed
to update a DataGuide on edge insertion and deletion. Goldman &
Widom find that maintenance for tree-structured data can be done
with reasonable speed, but graph-shaped data may require a large
number of sub-DataGuides to be re-evaluated. No experimental eval-
uation of incremental updates is performed in [11], but it appears that
the provided algorithms are not easily applied to (dense) graph data.

4.3.2 The T-Index

The 1999 paper "Index Structures for Path Expressions" by Milo and
Suciu introduces a path index for regular path queries (RPQs) on
rooted graphs, called the T-Index (Template-Index) [16]. The T-Index
is a generalization of two other indexing structures as described in
[16], called the 1-Index and the 2-Index, which are constructed in a
similar fashion. The T-Index, in particular, allows for construction of
an index of all RPQs of a certain shape (or template). For example,
a T-Index can be created for all paths that contain a person owning
a house: () 99K person owns−−→ house 99K (). Construction of the 1-, 2-
or T-index is based on the following idea: Given that two nodes in
a graph are in the same equivalence class with respect to a query
language L, these nodes are indistinguishable by that language. Con-
cretely, this implies that these nodes are either both present in the
result of a query, or both missing in the result. Thus, if we can effi-

4.3 a survey of path indexing techniques 27

ciently compute the equivalence classes of nodes with respect to L,
we can use these as an index. The T-index is constructed by comput-
ing an approximation of a language equivalence relation of a graph,
called a bi-simulation. Given that two nodes a and b are in the approx-
imation relation ≈, we know that a ≈ b =⇒ a ≡ b, where ≡ is
the equivalence relation of L. Constructing a bi-simulation is shown
to be possible in O(|E| log |V|) time, as opposed to constructing an
equivalence relation, which is a PSPACE problem [18].

The storage space required for a T-index is not discussed in [16], this
naturally depends on the degree of the generality of the index tem-
plates. Maintenance is very briefly mentioned, a possible algorithm
for incremental T-index updates is referenced in the conclusion of
[16]. This algorithm and its supporting data structure is described
in [4], and involves constructing a mapping from every node in a
graph to all the paths that originate from that node, similar to an in-
verted index. This additional data structure will naturally also need to
be stored and maintained. Finally, deletion is only possible in linear
time for directed acyclic graphs.

4.3.3 The D(k) Index

The D(k) Index as proposed by Chen et al. is another simulation-
based indexing technique, designed to allow for efficient updates on
graph changes. [5] In addition, the D(k) index is adaptive - the index
can be adapted based on query workloads. The foundations of the
D(k) index and the T-index as discussed in the previous section are
similar, both are generalizations of the 1-index as described in [16].
Essential to the D(k) index is the concept of local similarity, a local
similarity value is assigned to each node in the index (simulation)
graph. Local similarities are determined by graph updates and de-
termine for each node in the index graph, the maximum length k of
paths starting from that node that can be retrieved using the index.
To ensure that infrequently queried paths are no longer stored in the
index, the local similarity values slowly decrease by a process called
demoting. Similarly, the promoting process increases the local simi-
larity values for the index nodes. The authors of [5] suggest that both
promoting and demoting should be done periodically, but leave the
exact specifications of when to execute these processes as future work.

As the D(k) index is based on the A(k) index [14], the size of the
D(k) index can never exceed the size of the data graph. Construction
can be done efficiently in O(|E| · k) time, where k is the maximum
length of paths in the index. Index updates are empirically shown
to be significantly faster than those on the A(k) index. The evalua-
tion time of queries is also much lower than the A(k) index, even

28 indexing graph structure

though the updating process could potentially influence evaluation
performance. Unfortunately, the algorithms for the construction and
updating heavily rely on the fact that our graph is rooted, which is
not the case for our data model as described in Section 2.2.

4.3.4 The GRIN Index

While not directly storing paths, the GRIN Index as described by
Udrea et al. in [26] can be used to evaluate path queries in RDF data.
The GRIN Index is based on the concept of centrality of nodes - a
number of nodes are chosen as "center" nodes, and these are associ-
ated with the local neighbourhood of nodes appearing close to the
center. Then, given that our query evaluation engine runs into a cen-
ter node, we can efficiently retrieve its direct neighbourhood nodes
and their distances from the center node.

Udrea et al. provide a concise summary of the experimental perfor-
mance of the GRIN index with respect to construction time, size and
query evaluation time. Theoretical bounds on size are not discussed,
however. An empirical study shows that GRIN performs better than
three other RDF indexes, which were at the time state-of-the-art. Un-
fortunately, maintenance is not discussed, but a number of issues
will likely come into play when considering maintenance. The most
straightforward is that the centrality of a node can change over time.
In [26], an inter-cluster distance measure is used to define centrality,
but this distance is expensive to re-compute on every graph update.

4.3.5 Language-Based Indexing

A 2018 survey by Fletcher and Theobald [10] provides an overview of
structural indexing based on query language expressivity. Given that
two entities in a graph are indistinguishable given a query language
L, they are structurally equivalent in terms of L. Thus, the elements are
either both present in the result of a query, or both absent. An index
based on this principle can thus group these structurally equivalent
elements together, and return them efficiently.

There is a close link between indistinguishability in terms of a query
language and bi-simulation [9], and it has been shown that for many
fragments of a language, indistinguishability is decidable in polyno-
mial time. In 2009, Fletcher et al. published a study that links the
concepts of language indistinguishability and indexing XML data, by
investigating for which XPath expressions structural indexes can be
utilized. [8] This paper provides a theoretical ground for the P(k)-
index, which based on partitions of upward paths in an XML tree.
The investigation of a data structure that supports efficient operations

4.3 a survey of path indexing techniques 29

for this type of indexing is left as future work. Even though there
are many promising opportunities for applying language-based in-
dexing to practical applications, structural (graph) indexing has only
received limited attention in academia.

4.3.6 k-Path Indexing

The k-path index, as described by Sumrall in [24], is to our knowledge
the first path index designed for the property graph model. By using
a B+ tree with keys that contain a label-path and a path identifier,
path queries can be evaluated a number of magnitudes faster than by
directly using the graph store. Figure 8 shows an example property
graph, and Table 2 contains the index keys for some paths of length
two. The design of the index keys in [24] is based on the fact that a
path can be identified by (at least) the ids of the edges in the path.
This key design allows for prefix-searching the B+ tree, given that the
keys are sorted. Then, without specifying the entire key, we can re-

trieve all paths of the shape A X−→ B Y−→ C.

The empirical study in [24] has shown that the k-path index can
greatly decrease query evaluation time. In addition, there is a pos-
sibility for compression of the keys in the B+ tree, reducing the total
memory consumed by the k-path index. Experiments on workload-
driven indexing have also been performed in [24], which additionally
reduce memory consumption. The B+ tree data structure allows for
the efficient construction of the k-path index due to its bulk-loading
capabilities. As discussed later, the basic k-path indexing method as
described by Sumrall is not suited for incremental maintenance, espe-
cially for updates that generate many (long) paths.

(1:A) (2:B)

(3:C)

(4:C)

(5:C)

[:X] [:Y]

[:Y]

[:Y]

Figure 8: A simple node and edge-labeled graph.

30 indexing graph structure

N_LBL E_LBL N_LBL E_LBL N_LBL NODE_ID NODE_ID NODE_ID

A X B Y C 1 2 3

A X B Y C 1 2 4

A X B Y C 1 2 5

Table 2: Keys for a k-path index where k = 2, for the graph in Figure 8.

4.3.7 Comparison of Techniques

We have investigated six structural indexing methods for graph-shaped
data, based on five conceptual ideas: state automata, bi-simulation,
center-nodes, language expressivity, and paths. Table 3 summarizes
how each technique performs on the metrics of construction time,
size of the index (|I|), ease of maintenance and query evaluation
speed. We make the following observations when comparing these
techniques:

• The original DataGuides was mainly designed to be used for
tree-shaped object databases, and most of the operations can
only be done on graphs with no or minimal cycles. Even though
graphs are supported, operations on a DataGuide can take expo-
nential time if an update triggers rebuilding of a large number
of sub-DataGuides.

• Language-based structural indexing shows promising opportu-
nities, however, there is limited empirical evidence of its effec-
tivity. In addition, further investigations into efficient data struc-
tures that support this type of indexing are yet to be done.

• The T-Index and the D(k) Index are designed to be used on
rooted graphs, where all nodes are reachable from a designated
root node. In our data model as described in Section 2.2, we
cannot make this assumption.

• Upper bounds for the retrieval of data from an index are not
discussed in detail in any of the surveyed techniques. However,
we know that DataGuides, the T-Index and the D(k) index all
have a graph as the internal index representation. Thus, in the
worst case, the entire index graph needs to be examined, we
denote this as |I|. The GRIN Index is shaped like a balanced bi-
nary search tree, which requires log |I| comparisons. The k-path
index is based on the B+ tree, which requires logB |I| compar-
isons, where B is the order of the B+ tree.

In conclusion, from Table 3, we learn that none of the existing tech-
niques are suited for maintainability of non-rooted graphs. For all of
the discussed approaches, graph updates result in a traversal of the
stored data graph which can potentially be very expensive, due to

4.3 a survey of path indexing techniques 31

random IO operations both in the index representation and the origi- Language-based
structural indexing
was omitted from
Table 3, due to
limited information
about the time
complexity of the
indexing operations.

nal graph. The k path index, however, has the advantage of utilizing
the venerable B+ tree data structure, as well as shows promising re-
sults in terms of the experimental evaluation. As the full k-path index
is very expensive to construct and store, we choose the workload-
driven k-path index as a viable candidate for an industrial path index.

Table 3: An overview of the path indexing techniques in Section 4.3.

Technique Construction Size Updates Retrieval

DataGuides[a] EXP(|E|+ |V|) EXP(|E|+ |V|) EXP(|E|+ |V|) O(|I|)
T-Index[a] O(|E| log |V|) Unknown O(|E|+ |V|)[b] O(|I|)
D(k) Index[a] O(|E| · k) O(|E|+ |V|) O(|E|+ |V|) O(|I|)
GRIN Index O(|E|4 log |E|) Unknown Unknown log2 |I|
k-Path Index[c] O(|E|k) O(|E|k) O(|E|k−1) logB |I|.

[a] DataGuides, the T- and D(k)-index are designed for rooted graphs.
[b] The T-Index can be updated in linear time if there is an additional
inverted index mapping all nodes and edges to their paths. (In practice,
such an inverted index is extremely hard to maintain and store)
[c] This corresponds to the complete, non workload-driven k-path index.

5
M A I N TA I N I N G A PAT H I N D E X

As opposed to simple node, edge, or property indexes, path indexes
are not trivial to maintain. Even in a small graph, a single edge can
already be part of thousands of paths, even when only indexing paths
up to length two. This results in a serious maintenance problem:

example Consider maintaining an index on all length two paths.
Let n be a node with degree D. Given that we add a new edge e to
n, we need to add D new paths in our index, as we need to examine
all combinations of e and existing edges attached to n. Then, a large
number of entries in the index structure need to be updated.

This example introduces one of the issues related to maintenance of
path indexes: apart from the cost of updating the index structure,
there is another costly factor: identifying which paths are created by
the addition/deletion of graph elements. We call this translation from
graph updates to path updates. Then, we can divide the index main-
tenance process into two parts:

1. Translating node and edge updates to path updates.

2. Updating index data structures, i.e., writing to a B+ tree.

Even though these two steps are inherent to all path indexing meth-
ods, this chapter will introduce a number of maintenance techniques
for the k-path index in particular. Recall from Chapter 4 that few
indexing techniques consider handling graph updates as a design
choice, as such, research into index maintenance is limited. In this
chapter, we do not consider ourselves with index-implementation spe-
cific updates, e.g., the balancing of a B+ tree. Instead, we focus on how
to translate graph modifications into index updates efficiently.

In Section 5.1 we list the types of updates of interest for path index
maintenance. Section 5.2 dissects the maintenance process in detail.
In Section 5.3, we describe the most straightforward method of con-
verting graph updates to paths, as well as the problems introduced by
this approach. Section 5.4 introduces the inverted index as a means
of speeding up a translation, but we find that this method also in-
troduces some problems. In Section 5.5, we show how we perform
translations efficiently by means of Self-Maintaining Translation which
exploit a property of the B+ tree data structure. Next, in Section 5.6,
we discuss batching graph updates together, such that translations

33

34 maintaining a path index

can be performed more efficiently for transactions with multiple up-
dates. In fact, we show that batching is required to be able to handle
multi-update transactions. Section 5.7 recaps the advantages and dis-
advantages of each method.

5.1 types of updates

Recall from the property graph model as defined in Section 2.2 that
a node may have 0 to n labels, and an edge always has a single label.
We distinguish between six types of updates to this type of graph:

1. Node Insertion - node insertions do not need to be considered
when maintaining the path index. Naturally, when a new node
is added to the graph, it is completely disconnected from any
other component. Only after edges are inserted that connect to
a node, new paths are created in the graph.

2. Node Deletion - node deletion does additionally not influence
the paths in a graph. This is due to the fact that a connected
node can only be deleted together with its edges.

3. Node Label Changes - A node label change on node n could
possibly result in new paths behind created in the graph. On
such a change, we must:

• For all removed labels, delete the existing paths going
through n from the index.

• For all added labels, index the new paths going through n.

4. Edge Insertion - Consider that we are adding an edge x from
node a to b. Then, we should add to the index all new paths
created that contain this edge x. Thus, starting from nodes a
and b, we explore the graph to identify the paths x is contained
in.

5. Edge Deletion - deleting an edge x will result in all paths con-
taining x to be removed from an index.

6. Edge Label Changes - An edge label change could result in both
additions and deletions. Considering the property graph model
in 2.2 which states that an edge has exactly one label, an edge
label change can be seen as deletion of an edge followed by an
addition.

In Section 5.2 we focus on the two most complex type of updates,
edge additions and deletions. Later, we show that the algorithm to
handle node label changes is a simplified version of the edge-update
algorithm.

5.2 handling updates 35

5.2 handling updates

Considering edge insertions and deletions, the following must be

done to maintain a path index when inserting/deleting edge a X−→ b:

1. Find the set of paths Pin ending in a.

2. Find the set of paths Pout starting from b.

3. Concatenate all paths in Pin with a X−→ b and Pout, and insert/re-
move these paths from the index data structure.

A similar method can be applied to node label changes. In this case,
we simply find all paths P originating from node n and join them
with each other. Concatenating incoming and outgoing paths is still
required for processing deletions, this is the most efficient method to
identify the paths a deleted edge is contained in. When we are deal-
ing with a k-length path index, the paths incoming into a and b are
naturally length-bounded by length k− 1.

Algorithm 2 describes the translation procedure in a simplified man-
ner. This algorithm uses subroutines PathsComingInto and
PathsComingOutOf that return a list of paths coming into or out of a
specified node. Concatenation is denoted by using the ’union’ symbol
(∪). An actual implementation of this algorithm should also take into
account that we only get the right paths incoming and outgoing into
a certain edge, as we are only interested in paths that are stored in our
index. In addition, nodes with multiple labels should be considered.

Algorithm 2 Translate a single edge update on a X−→ b to path updates

1: P ← {}
2: Pin ← PathsComingInto(a X−→ b)
3: Pout ← PathsComingOutOf(a X−→ b)
4: for each Pin ∈ Pin do
5: for each Pout ∈ Pout do
6: P ← P ∪ (Pin ∪ (a X−→ b) ∪ Pout)

7: return P

We now list three techniques for finding all paths starting/ending
from a given node - different alternatives for the PathsComingInto
subroutine. We propose three methods to solve this problem: TBT
(Traversal-Based Translation), IIT (Inverted Index Translation), and
SMT (Self-Maintaining Translation), each come with their individual
benefits and costs. In addition, we discuss the possibility of batching
index updates to increase maintenance speed.

36 maintaining a path index

5.3 traversal-based translation (tbt)

In Sections 5.3, 5.4
and 5.5 we consider
adding/removing a

single edge. Section
5.6 discusses
multi-update

transactions in more
detail.

First, we discuss index maintenance directly accessing the graph store.
That is, whenever an edge is added to/removed from the graph, we
perform a local search to find the paths the edge is contained in. Con-
sider the following example:

example Consider maintaining a forward k-path index on a graph,

where we add/remove an edge a X−→ b. Figure 9 shows a part of this
graph. After this update, we are required to modify our index, such

that all new paths (of length ≤ k) of the shape () 99K a X−→ b 99K () are
added, or old paths are deleted. This can be accomplished by running
a local search of depth (at most) k − 1 starting from node a, storing
the set of paths Pin ending in node a. We call this traversal-based
translation (TBT). A similar search should be done from node b, stor-
ing the set of paths Pout. Then, we concatenate every path in Pin with

edge a X−→ b and then all paths in Pout. On edge insertion, these paths
should be added to the index, and on deletion, these paths should be
removed from the index. Naturally, we ensure that the total length
of the newly generated paths is at most k. In practice, this means an
incoming path pin into a and an outgoing path pout from b are only
concatenated when |pin|+ |pout|+ 1 ≤ k.

a:A b:B

Figure 9: An example graph layout resulting in path index updates. The

dashed line represents the added/deleted edge a X−→ b.

The largest advantage of TBT is that updating the index can be done
only using only the data in the graph, no additional data is required.
In addition, if the local-search is implemented through a pruning BFS,
we can avoid some unnecessary traversals. The following main issues
can, however, be identified with this approach:

• The number of edges traversed in the graph by TBT is expo-
nential in k. More precisely, O(|Dmax|k−1), where Dmax is the
maximum degree in the graph. Additionally, there are unavoid-
able unnecessary traversals that need to be performed. In the

5.4 inverted index translation (iit) 37

experimental evaluation of Chapter 7, we provide an example
with these kinds of unnecessary traversals.

• Running a local-search (BFS) on the graph may result in many
random IO operations to read graph information from disk,
which can get expensive.

• For each insertion and deletion in a transaction, we require two
calls to the PathsComingInto subroutine, even though several
new edges can be added to a single node in a transaction. This
problem is further discussed in Section 5.6, where we discuss
batching index updates and reusing the output from the sub-
routines.

In the next two sections, we describe how local-searches can be avoided
by using either an inverted index or by using existing information
stored in the k-path index.

5.4 inverted index translation (iit)

A possible means of avoiding local searches in the graph is by using
an inverted index. An inverted index can be seen as a reversed k-path
index: instead of mapping paths to nodes, we store for every node the
paths this node is a part of. This idea is very similar to the proposed
solution to T-Index maintenance, as discussed in Section 4.3.2. With
this inverted index, it is simple to find all paths ending in or starting
from a given node. Nevertheless, such an inverted index introduces a
number of new issues:

• The inverted index needs to be stored. Consider again that a
single node can be a part of thousands of paths, even for small
k-values. Then, storing an inverted index on all nodes in the
graph will take up a large amount of memory.

• The inverted index needs to be constructed and maintained, cre-
ating a huge overhead for such a supporting data structure.

Alternatively, we can also consider a partial inverted index. It might
be interesting to index only nodes with high degrees or nodes that
appear in many paths. Then, for these nodes, we can use the inverted
index, and for the lower-degree nodes, use a simple local search. Such
an inverted index can even be maintained based on query workloads
- we only construct an inverted index for nodes that are queried fre-
quently. Yet, this is very expensive to maintain, defeating the purpose
of efficient path index maintenance. Using an inverted index as a sep-
arate supporting data structure is therefore not a good choice.

38 maintaining a path index

5.5 self-maintaining translation (smt)

A third solution to finding paths ending in a node is using the infor-
mation present in the index itself. This method, which we call self-
maintaining translation, borrows its name from a self-maintaining
view. A self-maintaining view, as described in [12], is a materialized
view that does not require access to the underlying data tables in or-
der to stay updated. Instead, given a query and its own contents, it
updates the data in the view. Similarly, given that we need to update
an index entry for a path P of length i, can we use the fact that we
already store P’s sub-paths of length i− 1 in our index? Then, which
sub-paths of P should be present in the index? Consider the previous
example again:

example Again, we update the index entry for all paths of the

shape () 99K a X−→ b 99K (), when a new edge a X−→ b is added to
a graph. Rather than exploring the local neighbourhoods of depth
(at most) k − 1 starting from node a and b, we consult our index to
find the set of paths Pin that end in a and b. This requires the index
to contain all sub-paths of the lengths at most k − 1. Similarly, we

concatenate every path in Pin with a X−→ b and then Pout, and add/re-
move these to/from the index. Using this method allows the index
to be maintained without accessing the graph store, avoiding a local
search like a BFS. Note this is only possible due to the fact that we
can prefix-search the B+ tree the paths are contained in, by specifying
only part of the search key.

To elaborate on the method of using sub-paths to accomplish self-
maintaining translations, we introduce a concrete example. Consider
adding a new edge [y:Y]. between node (b:B) and node (c:C). We
need to perform the following steps when updating an index on
(:A)-[:X]->(:B)-[:Y]->(:C)-[:Z]->(:D):

1. Pin ← read from the index all (:B)<-[:X]-(:A) coming from
node b.

2. Pin ← read from the index all (:C)-[:Z]->(:D) coming from
node c.

3. Add to (:A)-[:X]->(:B)-[:Y]->(:C)-[:Z]->(:D), for all p1 ∈
Pin and p2 ∈ Pout: p1 ∪ y ∪ p2.

Figure 10 illustrates for (:A)-[:X]->(:B)-[:Y]->(:C)-[:Z]->(:D)
which shorter indexed paths need to be available for reading sub-
paths using SMT. Note that, depending on which edge in the path we
are updating, different sub-indexes will need to be searched. Table 4

summarizes the total number of indexed sub-paths needed to update

5.5 self-maintaining translation (smt) 39

(:A)-[:X]->(:B)-[:Y]->(:C)-[:Z]->(:D)

⋈[:X]

(:B)-[:Y]->(:C)-[:Z]->(:D)(:A)

(:C)<-[:Y]-(:B)

⋈[:Y] ⋈[:Z]

⋈[:Y]

(:C)-[:Z]->(:D)(:B) (:D)

⋈[:Z]

(:C)-[:Z]->(:D)(:B)<-[:X]-(:A) (:C)<-[:Y]-(:B)<-[:X]-(:A) (:D)

(:B)-(:Y)->(:C)

⋈[:Y]

(:B)<-[:X]-(:A)(:C) (:A)

⋈[:X]

Figure 10: The different sub-indexes needed to efficiently maintain an index

on paths of the shape A X−→ B Y−→ C Z−→ D.

a k-path index of a given length. From this table, we make the obser-
vation that we need n(n − 1) sub-indexes to be present in order to Naturally, there is a

trade-off between
storing longer
indexed paths
directly or
combining several
shorter indexed
paths during
evaluation time. In
Chapter 8, we
discuss this further.

update an index of length n. This property also allows us to update
the indexes in a structured manner - we start from the shortest k = 1
indexes, and work our way up towards longer paths, as discussed in
the next section.

k=1 k=2 k=3 k=4 k=5 k=6 k=7

#(1-label paths) needed 2 4 6 8 10 12

#(2-label paths) needed 2 4 6 8 10

#(3-label paths) needed 2 4 6 8

#(4-label paths) needed 2 4 6

#(5-label paths) needed 2 4

#(6-label paths) needed 2

#Total 0 2 6 12 20 30 42

Table 4: The number of indexed sub-paths needed to update a path index
using self-maintaining translations.

40 maintaining a path index

5.6 batching indexing maintenance

Rather than directly translating index updates for every single node
or edge update in a transaction, index updates can also be batched.
We motivate the choice of batching translation by two examples as
described in the next section.

5.6.1 Motivation

Consider the existing graph in Figure 11. Now, we add three new
edges in the same database transaction, such that the edges have the
same label Z, and share a common starting node c. Given that we

maintain a path index on paths of the shape A X−→ B Y−→ C Z−→ D, a
clever maintenance algorithm should only find the incoming paths
into node c once, and use this information to update the path index.
Batching translations can solve this issue, by only performing the sub-
path retrieval once for a given node.

C

D1

B

A1

A2

A3

D2

D3

X

X

X

Y

Z

Z

Z

Figure 11: Adding three edges to an existing graph. Here, the dotted lines
represent new edges.

Batching can also resolve issues inherent to self-maintaining transla-
tion. Consider the problem of maintaining an index on paths of the

shape A X−→ B Y−→ C. Now, we add three edges to a graph during a
single transaction. Figure 12 illustrates this example. If we are to use
self-maintaining translation as described in Section 5.5, this will re-

quire use to also index paths B Y−→ C and B X←− A. In fact, we require
the index to be up to date on these two sub-paths before we can update

A X−→ B Y−→ C, thus implying an ordering on handling edge updates -
processing added y edges before the added x edge. There are also sce-
narios where edge-at-a-time index update translations are impossible.

Consider maintaining the indexes A X−→ B Y−→ C and C Y−→ B X−→ A after
a transaction with two edge insertions as shown in Figure 13. Here,
there is no ordering possible where both indexed paths can be main-
tained when considering the edges one-at-a-time. Instead, we should
consider edge updates length-at-a-time.

5.6 batching indexing maintenance 41

C

BA X

Y

C

Y

Figure 12: Three updates in a single transaction that imply an ordering on
visiting edges for path index updates.

Figure 13: Two updates in a single transaction while maintaining A X−→ B Y−→
C and C Y−→ B X−→ A. No edge-at-a-time processing of update
translation is possible.

5.6.2 Batching Method

We propose a batching method that solves the ordering problem in-
troduced in the previous section, as well as avoids redundant execu-
tions of the PathsComingInto subroutine. To solve the update order-
ing problem, recall one of the properties of self-maintaining updates:
An index on paths of length n can be maintained given that we have
an up-to-date index on sub-paths of length at most n − 1. Thus, as
opposed to translating updates edge-at-a-time, we should collect in-
dex updates incrementally based on path length. Given that writing
to the index mid-transaction can potentially be expensive, we collect
the updated sub-paths of lengths ≤ n in a cache. This cache can then
be used to perform self-maintaining translations for longer paths in
the same transaction.

Algorithm 3 shows how such a cache can be utilized while process-
ing path updates incrementally by length. Here, we let U be the set
of edge updates (additions/removals) in a single transaction. An el-
ement u ∈ U represents the addition or deletion of a single edge

a X−→ b). The main differences between this algorithm and Algorithm
2 are:

• The use of cache C allows us to get a set of paths PT that were
created in the same transaction. Once a new path is concate-
nated together, we add it to this cache.

• Length-wise processing of updates. Given that we only want
generate updated paths of length i, we ensure that the total

length of (Pin ∪ (a X−→ b) ∪ Pout) equals i.

42 maintaining a path index

Reads graph store Multi-update transactions

TBT + Single Update Yes No

SMT + Single Update No No

TBT + Batch Yes Yes

SMT + Batch No Yes

Table 5: Overview of the maintenance technique for path updates.

• We use different variations of the PathsComingInto and the
PathsComingOutOf subroutines that return only paths of a given
length.

Algorithm 3 Batch translation of edge updates U to path updates

1: P ← {}
2: C ← {}
3: for i = 1 to max_length do
4: for each u ∈ U do
5: for in_length = 0 to i do
6: out_length = i− in_length− 1
7: Pin ← PathsComingInto(u, in_length)
8: Pin ← Pin ∪ C(u, in_length)
9: Pout ← PathsComingOutOf(u, out_length)

10: Pout ← Pout ∪ C(u, out_length)
11: for each Pin ∈ Pin do
12: for each Pout ∈ Pout do
13: Pnew = (Pin ∪ u ∪ Pout)

14: P ← P ∪ Pnew

15: C(start_node(Pnew), i) = Pnew

16: C(end_node(Pnew), i) = invert(Pnew)

17: return P

5.7 comparison of techniques

Table 5 summarizes the four combinations of techniques that can be
used for path index maintenance. Batch translation is a requirement
for almost all transactions that contain more than one update. Only in
the cases where the updates are completely disconnected in the graph,
single update translation will still work correctly. A small advantage
of these type of updates is that using the cache C can be avoided, pos-
sibly creating a small advantage in terms of running time.

Much more interesting is the difference in performance between traver-
sal based translation (TBT) and self-maintaining translation (SMT)

5.7 comparison of techniques 43

in different scenarios. Chapter 7 will investigate these differences in
both the worst- and best-case settings for both translation methods. In
all cases, when selecting a preferred translation method, the perfor-
mance overhead of maintaining n · (n− 1) sub-path indexes for SMT
should also be taken into consideration, which becomes significant
for long indexed paths.

6
I M P L E M E N TAT I O N

This chapter describes the implementation of MAGPIE as an embed-
ded part of the Neo4j graph database. Section 6.1 summarizes how
we have implemented the k-path index as designed by Sumrall in [24]
into the existing Neo4j indexing data structures. Section 6.2 adds how
the proposed solutions for path index maintenance have been added
to the transaction processing pipeline. Both TBT and SMT were imple-
mented into Neo4j, as to benchmark the performance of both trans-
lation methods in different scenarios. Evaluating both methods pro-
vides insights into which method is most effective in a given setting.
As using a path index during query evaluation was not integrated
into the Neo4j query planner, TBT is used as a baseline to measure
maintenance time. Evaluation of TBT and SMT against query work-
loads with both reads and writes is discussed as future work.

6.1 index design

To demonstrate that our newly proposed path indexing technique can
be used in an industrial database, we have constructed a prototype
path index integrated into the Neo4j database. We exploited the ex-
isting infrastructure for node, edge and property indexes in Neo4j,
and built the path index on top of the existing GB+ tree native in-
dex. The next subsections elaborate on the design choices made in
our implementation.

6.1.1 The GB+ Tree

The design of the GB+ tree (Generation-aware B+ tree) as imple-
mented in the Neo4j database is inspired by the work of Sullivan
and Olson in [23], which describes the design of a B+ with efficient
recoverability. The GB+ tree is lock-free as well as recoverable, thus
an excellent choice for a recoverable database. The GB+ tree’s internal
nodes are categorized into three groups: stable, unstable and crashed.
Once an edit is made to a node in the tree, the node is copied to a new,
unstable generation. Edits will be made in such an unstable genera-
tion, which will be marked stable when the updates are completed.
Given that the database crashes during updates, the tree will be recov-
ered to its latest stable generation. On the API surface, the GB+ tree
is used just like a B+ tree, thus k-path indexing can be implemented
without any extra work.

45

46 implementation

6.1.2 Key Design

Recall that a path in a graph can be uniquely identified by at least
the identifiers of the edges along the path. Given that we want to
exploit the prefix-search property of the B+ tree for maintenance as
in Section 5.5, we are also required to store the ID of the first node
in the path. Although not needed, we also store the identifiers of the
other nodes in the path. During query evaluation, these could also be
needed, and if not stored in the index, additional information must
still be read from the graph store.

6.1.3 Multiple Trees for Multiple Paths

In Neo4j, every index is stored in a different instance of a B+ tree.
Even though the k-path index can be used to store multiple label-
paths in the same B+ tree, we opted to store every indexed path in a
different tree. This design choice was made for the following reasons:

• Storing each label-path in a different tree ensures that a tree
is directly linked to a given label-path, which fits the Neo4j
indexing architecture. Also, no additional data structures are
required to keep track of which paths are indexed.

• When the decision is made to no longer index a given label path,
we can delete the entire tree in memory as opposed to executing
a large number of delete operations, which is significantly faster.
Similarly, bulk-loading can be done if we decide to index a new
label-path.

• Storing all indexed paths in a single tree may be disadvanta-
geous to infrequently appearing patterns. A larger B+ tree can
result in longer lookup times, which also result in slower write
operations to the tree.

6.2 index maintenance

Recall from Chapter 5 that we divide the index maintenance process
into two steps:

1. Translation from entity updates to path updates.

2. Updating the index data structures (i.e., writing to the B+ tree)

In the last chapter, we proposed two translation methods to imple-
ment: TBT (Traversal-based translation) and SMT (Self-maintaining
translation). This translation in itself can also be subdivided into two
parts:

6.2 index maintenance 47

1a. Given an updated entity, collect the sets of paths Pin and Pout

connected to that entity. This can be done either by prefix-searching
the index of a shorter path or by traversing the graph.

1b. Concatenating the sets together. In the case of an added edge

a X−→ b, the newly generated paths are Pin ∪ (a X−→ b) ∪ Pout.

Section 6.2.1 provides a high-level overview of the MAGPIE imple-
mentation in Neo4j. It is important to mention that bulk-loading of
the index (index construction) was not implemented in the prototype
due to time constraints. In [24], this was accomplished with promis-
ing results, proving that such a construction method is viable for path
indexes. For this reason, we have decided to focus solely on the main-
tenance of the indexes.

Figure 14: A high-level overview of the index maintenance implementation.

6.2.1 Overview

Figure 14 contains a schematic overview of the path index mainte-
nance pipeline as implemented in Neo4j. The components in this fig-
ure have the following tasks:

• OnlineIndexUpdates - the main class responsible for index main-
tenance. An IndexMap object is used to retrieve the relevant
indexes to update, based on a set of update commands.

• EntityUpdates - the class that converts commands to a set of
logical index updates for Neo4j’s property indexes. (This corre-
sponds the translation step as described in Section 5.2)

• EntityPathIndexUpdates - the class that converts commands to
logical index updates for the path indexes by implementing Al-
gorithm 2. The class BatchEntityPathIndexUpdates (not in this
diagram) performs the same functionality but allows for multi-
update database transactions, as described in Algorithm 3.

48 implementation

• PathIndexSubPathReader - the interface responsible for step 1a
of the maintenance process. This interface is implemented by
two classes that perform TBT and SMT.

• IndexBatchTransactionApplier - writes logical index updates to
the B+ trees, corresponding to step 2 of the maintenance pro-
cess.

6.2.2 Traversal-Based Translation

The implementation of TBT executes a pruning breath-first search
starting from a specified node, recording all paths up to a given depth.
Two optimizations were made to the implementation:

• Pruning - When executing the translation step, we are only in-
terested in a limited number of label-paths originating from a
given node. For example, given that we only maintain an in-

dex on A X−→ B Y−→ C, and an edge a X−→ b is added, we are

only interested in finding all B Y−→ C edges attached to b. Given
that we have the prefixes of the label-paths we want to find, we
can prune the BFS when we encounter irrelevant edge labels.
Unfortunately, unnecessary traversals can never be completely
avoided, as discussed later in Chapter 7.

• Dense Node Optimization - Given that we encounter a dense
node in the traversal, we can use Neo4j’s dense node optimiza-
tion to avoid unnecessary traversals. In Neo4j, if a node has 50

or more edges, it is considered dense and contains references to
relationship group records. These records allow us to get edges
attached to a node by a specific label, as opposed to reading all
edge records from disk one-by-one.

6.2.3 Self-Maintaining Translation

The implementation of the Self-Maintaining Translation method uses
only the indexes to discover paths coming into a node. We then do not
only avoid many random read operations from disk, but also avoid
unnecessary traversals.

6.2.4 Concatenating Paths

In [24], it was
shown that indexing

all k-paths is
infeasible for any

k ≥ 2. For this
reason, we default to
indexing only some

of the k paths.

Algorithm 2 in Section 5.2 describes the basic logic behind a single
update translation. This algorithm maps a list of entity updates to a
set of materialized path entries for our B+ tree. To implement Algo-
rithm 2 into Neo4j, there are a few other adjustments that need to be
made:

6.2 index maintenance 49

• We need to take into account Neo4j path semantics. This se-
mantics dictate that a path cannot contain the same edge twice,
which should be checked before adding the new path to the in-
dex. That is, if Pin and Pout contain the same edge, we do not
add this path entry to the index being maintained.

• A check whether the path Pin ∪ (a X−→ b)∪ Pout is one of the paths
we want to index. If this specific label path is not in the list of
specified indexes, we should skip this combination.

• If applicable, we also index the inverted version of Pin ∪ (a X−→
b) ∪ Pout. That is, if the newly added edge is part of an indexed
label path with a backward X edge, we must also add the in-
verted path to our index.

When batching entity updates in a single translation, we do not only
gather the sets of paths Pin and Pout before the concatenation step,
but also generate updates incrementally by path length. Algorithm 3

in Chapter 5 describes the batch update process. When implementing
the batch update translation, we take into the same considerations as
when implementing single entity updates.

6.2.5 Writing Updates to Index

The IndexBatchTransactionApplier class is responsible for converting
logical index updates into B+ tree updates that can be written to disk.
Similar to the translation step, these updates are also batched to im-
prove performance.

7
E X P E R I M E N TA L E VA L U AT I O N

To test the effectiveness of our new index maintenance methods as
implemented in MAGPIE, we designed two experiments that mea-
sure maintenance time. The synthetic, controlled experiment in Sec-
tion 7.1 investigates how TBT and SMT perform in different graph
layouts. Here, we generate the graph layouts with high data locality,
favoring traversal-based translation. Data locality is thus not variable,
such that we can investigate the shape of the graphs in detail. The
first experiment aims to measure maintenance time in the following
scenarios:

1. The best case for traversal-based updates. This is when TBT
does not read any unnecessary information. The difference in
maintenance speed is thus determined by the time it takes to
read from the data structures (reading the graph store versus
reading the B+ tree).

2. This worst case for traversal-based updates, when TBT is re-
quired to do unnecessary traversals that cannot be avoided.

The experiment in Section 7.2 measures the speed of path index main-
tenance on a real data graph, given a realistic query workload. We
measure the effect of using TBT or SMT given a workload that cre-
ates edges given a preferential attachment placement model.

7.1 experiments on synthetic data

In our first experiment, we want to measure the impact of a single
edge addition to a graph. This experiment is executed for transac-
tions that create different numbers of paths, as to measure if one of
the methods performs better in large updating transactions. All exper-
iments are repeatedly executed, as to minimize and measure the error
in the latency measurements. We influence the following parameters:

• The translation method to use (TBT or SMT).

• The number of paths generated by the update.

• The number of unnecessary traversals performed by TBT.

7.1.1 Graph Layout

The graph used by the synthetic experiment consists of 10 discon-
nected trees. Every one of these trees is a balanced tree of depth two,

51

52 experimental evaluation

where every non-leaf node has the same amount of children. We also
add a disconnected node a with label A next to every tree. To measure
maintenance time, we add an edge with label X between the a and
the root of each tree (b), creating new paths in the graph. After the
edge is added and the transaction is completed, we delete the edge
to return to the initial state of the graph. This allows us to repeat the
experiment with the same instance of the graph.

We use two different graph layouts to perform the experiment. Fig-
ures 15 and 16 show the shapes of these trees for the two layouts.
Before the update, we also require an up-to-date index on label-path
(:B)-[:Y]->(:C)-[:Z]->(:D), as this is required for self-maintaining
translation. The underlying motivation for the choice for these graph
layouts is as follows:

• Both tree-structures will require the traversal-based translation
method to read all edges from the graph store. The TBT method
will need to traverse the (:C)-[:Z]->(:E) edges before discov-
ering that these edges are irrelevant for the index update - node
label E is not contained in the path index. The self-maintaining
translation will not have this problem, and thus be in an advan-
tage.

• Using 10 trees will allow us to cycle the trees and add/delete
edges from different trees in one instance of the experiment.
This does not only disable the database from doing unwanted
optimizations (for example, cancelling out addition and dele-
tion of the same edge), but also allows us to scale the size of
the total graph without increasing the complexity of the experi-
ment.

:A :B

:C

:C

:D

:D

:D

:D

[:X]

[:Z]
[:Z]

[:Z]
[:Z]

[:Y]

[:Y]

Figure 15: An edge addition with label [:X] that creates four new indexed
paths. The traversal-based update method will perform no unnec-
essary work.

Due to the fact that the graph is restored to its original state after
each execution of the experiment, the time measured corresponds to
the time taken to add and delete an edge (two updates in a single

7.1 experiments on synthetic data 53

:A :B

:C

:C

:D

:E

:E

:E

[:X]

[:Z]
[:Z]

[:Z]
[:Z]

[:Y]

[:Y]

Figure 16: An edge addition with label [:X] that creates 1 new indexed path.
The traversal-based update method will do extra work, as it runs
into nodes with label (:E).

translation). The maintenance time for maintaining after an edge up-
date is thus half the measured value.

Our experiments were performed on a virtual machine with 64 gi-
gabytes of RAM and 8 virtual CPUs. By running these experiments
as part of the Neo4j benchmarking suite, we are able to execute the ex-
periments repeatedly in a controlled environment and acquire more
accurate results.

7.1.2 Results

The results of the experiments on synthetic data are listed in Ap-
pendix B.1. Recall that the measured time in milliseconds is the time In the experiments

that cause TBT to
perform extra
traversals,
unnecessarily
traversed paths are
not stored in the
sub-index used by
SMT. For this
reason, the memory
usage of SMT is
significantly smaller.

taken to execute the entire database transaction, of which mainte-
nance is a part. The results thus explain how different translation
methods influence the entirety of the transaction, not the cost of trans-
lation by itself. Appendix B.1 contains the mean running time in mil-
liseconds for each of the experiment settings, as well as the error rate.
For small path index updates, there is little difference between the
performance of TBT and SMT. When adding a single path, SMT is
slightly outperformed by TBT (2.73% slower), but when adding 100
edges, SMT is 39.75% faster. The experiment that requires TBT to do
extra traversals provides a slightly larger advantage to SMT, perform-
ing 47.61% faster.

The experiments with 10, 000 and 250, 000 paths, however, introduce
large differences. Even in the cases where SMT and TBT process the
same amounts of paths (no extra traversals), SMT is roughly 2.5 times
faster than TBT. When SMT is able to avoid traversals, it outperforms
TBT by a factor 47 and 1118 respectively. Given that more edge traver-
sals can be avoided by self-maintaining translation, a higher relative
speed-up in maintenance time can be achieved.

54 experimental evaluation

Figure 17 contains a flame graph for one of the experiments, which
clearly the distinct phases in the maintenance process as described in
Chapter 5. The flame graph is based on sampling stack traces to deter-
mine how much time is spent on each part of the code. In Figure 17,
flame A corresponds to updating the B+ tree, flame B to the path con-
catenation step, and flame C to the translation. For this experiment,
translation is a significant part of the updating process (roughly 25%).
Writing to the B+ tree however, occupies over 50% of the time. Even
though many optimizations can be made to translation, updating the
B+ tree is also a time-consuming factor in this experiment. In other
scenarios, e.g. the case where TBT does many unnecessary traversals,
the translation step will take up a much larger part of the mainte-
nance process, and writing to a B+ tree will be much less expensive.
In the future, analyzing flame-graphs in different contexts may pro-
vide more fine-grained data on the specific maintenance steps’ costs.

Figure 17: A flame graph for the experiment performing SMT on a tree with
10000 paths, where no unnecessary traversals can be skipped.

7.1.3 Summary

From our synthetic data experiment, we find that SMT outperforms
TBT in almost all scenarios, except for when a very small amount of
paths is traversed. This is likely due to the fact that the B+ tree allows
for faster reads than the graph store, even when the data has high
locality. For larger path counts, given that SMT can avoid unneces-
sary traversals, the speed-up becomes very visible. In the experiment
with 250, 000 edges, using SMT results in a speedup of a factor > 1000.
Even though this may seem like a large number of paths, these scenar-
ios could be common in real data. Given that a graph has an average
degree of 500, a depth-two traversal will already visit 250, 000 edges.
If a depth three traversal is needed, a graph with an average degree of
63 will already visit over 250, 000 edges on average. Self-maintaining
translation thus becomes increasingly useful based on the length of

7.2 experiments on real data 55

the path indexed, as well as in scenarios where the node degrees are
high (for example, in dense clusters). Given that SMT can skip traver-
sals that are unavoidable for TBT, an additional large speed-up can
be achieved.

We have also introduced flame graphs as a technique for further fine-
grained analysis of maintenance time. Even though a detailed flame
graph analysis is out of scope for our current study, they could as-
sist in further experiments, as well as debugging and optimizing the
implementation of the maintenance algorithms.

7.2 experiments on real data

To evaluate the performance of TBT and SMT on real data graphs,
we measure the cost of maintenance on an open RDF dataset. The
Geospecies Knowledge Base [30] RDF dataset was used for our experi-
ments. With roughly 1.8 million triples, this graph contains aggregate
information of the taxonomy of the animal kingdom and geological
data. After conversion of the data to the property graph format, the
data set contains 106 node labels and 95 edge labels. Figure 18 con-
tains a high-level schema of the relations between the most important
node and edge labels in the dataset.

7.2.1 Experiment Design

In order to effectively measure the cost of maintaining indexes for
this dataset, we select a number of interesting patterns to index. As
indexing all possible patterns is infeasible for the amount of node and
edge labels in the dataset, we limit ourselves to a few patterns that
could be interesting for a real application:

• Indexing first, second and third-degree topics for species, fami-
lies, orders, classes, phyla, and kingdoms.

• Indexing the first degree topics for species, families, orders, classes,
phyla, and kingdoms that are expected in a given geolocation.
(This corresponds to a length two/three path-index)

We also ensure that the required sub-paths for SMT are present in
the index. Next, we simulate a query workload by adding and re-
moving edges to/from the graph. By using the Barabási–Albert (BA)
model [1], we are able to generate a scale-free network, simulating a
real query workload. Given a graph, a new edge is connected to an
existing node i with probability pi:

pi =
ki

∑v∈V kv

56 experimental evaluation

Species

Kingdom

Geo
Location Expected In

Not Expected In

Family

topic

inKingdom

Taxonomy

closeMatch

Order

inOrder

Class

inClass

Phylum

inPhylum

inOrder

inFamily

inClass

inPhylum
inKingdom

topic

topic

topic

topic

topic

Figure 18: A high-level label schema for the Geospecies Knowledge Base
RDF graph.

Here, ki is the degree of a node i, and V is the set of nodes in the
graph. This probability models preferential attachment - the fact that
dense nodes are more likely to form relationships than more isolated
(less dense) nodes. Using the BA model, we generate a fixed-size
workload of 50000 edge additions and 50000 edge deletions and mea-
sure the execution time on two copies of the Geospecies Knowledge
Base, using TBT or SMT. Our workload consists of (:X)-[:TOPIC]->(:X)
edges, where X is the label of the node that the edge is attached to.

7.2.2 Results

Appendix B.2 contains the results of the experiments of executing
the generated query workloads on the Geospecies Knowledge Base
graph. By executing the experiments with fifteen repetitions, we col-
lect the mean execution time in milliseconds. On average, using SMT
has generated a 2.1 times speed-up compared to TBT.

Even though the experiments indicate that using SMT generates a
speed-up, there is no clear evidence that data locality on disk influ-

7.2 experiments on real data 57

ences the results. Given that the Geospecies dataset is small enough to
fit in main memory, the real impact of random IO operations caused
by graph traversals is hard to predict. In Section 8.2, we further dis-
cuss the possibility of executing experiments on data graphs that are
too large for main memory, thus forcing the occurrence of random IO
operations.

8
C O N C L U S I O N

This chapter summarizes the most interesting findings from our study,
as well as gives some concluding remarks. Section 8.1 outlines the
results of the analyses on path index maintenance and query logs.
Section 8.2 elaborates on opportunities relating to the structural anal-
ysis of Cypher logs, and concludes with possibilities for future work
regarding path index maintenance and the use of path indexing in
general.

8.1 summary

We implemented and evaluated MAGPIE, the first maintainable path
indexing method for the industrial graph database. To showcase its
applicability to a real graph database, we implemented k-path index-
ing into the Neo4j indexing architecture, as well as added k-path in-
dex maintenance as an integrated part of the Neo4j query processing
pipeline.

To investigate the value of path indexing for real-world applications,
we performed the first-ever large-scale structural analysis on Cypher
query logs. Our analysis of query logs has shown empirical evidence
that a path index can aid in query evaluation, as many of our query
logs contain (long) frequent patterns that can be indexed. We have
also shown that some of these query logs contain frequent updates
that can create or delete paths, motivating the need for a maintain-
able path index.

By an in-depth study of the maintenance process, we have divided
path index maintenance into two phases: update translation and writ-
ing to index data structures. Our experiment on synthetic data has
shown that we are able to decrease maintenance time by a number
of magnitudes by self-maintaining translation, reading from existing k-
path indexes on shorter sub-paths. In the worst case, self-maintaining
translation performs only slightly worse than traversal-based transla-
tion. Our experiment on real graph data has also shown that SMT can
cut down maintenance time significantly if we are using a preferential
attachment workload model.

59

60 conclusion

8.2 future work

Both our query log analysis and our study of index maintenance have
many interesting possibilities for future work. The following topics
are of interesting to look into in relation to the query log analysis:

• Further investigation into the cost of evaluation query patterns.
To be able to accurately decide which sub-patterns are worth in-
dexing, we should be able to identify which parts of the query
are the most expensive. This is not currently visible in the Neo4j
log files, as the logs contain only the total execution time of the
query. The value of indexing a sub-pattern naturally does not
only depend on the frequency of the pattern, but also the rel-
ative speed-up that indexing the pattern produces. To estimate
this speed-up, both an estimate for evaluating the pattern with
and without indexing is needed, which can be based on ob-
served execution times.

• A natural next step of our research is to look into developing an
adaptive path index. Given a certain budget based on the cost of
maintenance and the relative speed-up the index can deliver, we
select an optimal set of patterns to index. With this, steps can
be made to lead up to the development of a workload-driven
index advisor for path indexes.

On the topic of path index maintenance, there are many opportunities
for future work:

• Indexing label-paths in combination with properties. Given that
some of the indexed label-paths may not be very selective, it can
be interesting to index properties in combination with paths.
This can prevent expensive filtering on a property value after
utilizing a path index due to the large number of intermediate
results.

• Directly investigate how data locality in the graph store influ-
ences the maintenance cost. By running experiments on graphs
that do not fit in main memory the true effect of data locality
can be better measured. Given that graph traversals could in-
volve many random IO operations, traversal-based translation
will likely become increasingly more expensive as the data is
scattered over pages that are far away on disk.

• Investigating concurrency. Given that an industrial graph database
should be able to handle concurrent querying, we should inves-
tigate how the index update translation behaves during concur-
rent updates. Locking and other synchronization mechanisms
could potentially be needed during the update translation pro-
cedure.

8.2 future work 61

• Evaluation of SMT and TBT on real query workloads that con-
tain both reads and writes. This can provide a baseline: com-
paring the usage of a path index with maintenance versus not
using a path index in query evaluation. To accomplish this, the
query planner should be aware of existing path indexes, which
can then be utilized as part of query evaluation. These kinds
of experiments can give insights into the problem of adaptive
indexing and accurate estimation of the speed-up a path index
can produce.

• Hybrid approaches of traversal-based translation and self- main-
taining translation. When adding a new edge, there is a possibil-
ity of using SMT to gather some of the incoming paths, and TBT
to gather other paths. Using hybrid approaches can decrease the
number of sub-patterns that need to be indexed, cutting down
the storage space used by the indexes. In addition, the extra
work required to maintain the shorter path indexes can be elim-
inated.

A
A P P E N D I X A : Q U E RY L O G D ATA

This appendix contains summaries of the analysis on the query log
data as described in Chapter 3. Appendix A.1 contains the counts of
the types of queries that are present (read-only, write, and custom
procedure calls), as well as the number of unique queries per log. For
each log, we add a four-letter code denoting the industry the log origi-
nated from: (BANK = banking, TELE = telecom, CONS = consultancy,
ANAL = analytics, COMP = computer hardware, TRVL = travel).

Appendix A.2 contains counts of query shapes for each of the query
logs. In this table, we only consider the read and write queries and
not the custom procedure calls. We identify between counts of chain
queries, tree queries, forests and query graphs with loops. This sum-
mary also contains the number of queries that have a graph size of
zero (no patterns), one edge, or variable length patterns.

Appendix A.3 contains a summary of the frequent patterns extracted
from the query logs. Again, we only consider read/write queries, not
the custom procedure calls. We denote a pattern as ’frequent’ if the
total occurrence is at least 10% of the query log size. Even though
this threshold is arbitrary, appearing so frequently should be a good
indicator that the pattern is worth indexing. We distinguish between
five lengths of frequent sub-patterns, ranging from a single edge to
five edges. Logs D8, D14, D24, D25, D29, D32, D43, D54, D63, and
D66 were omitted from the results as they had under one hundred
actual Cypher queries.

63

64 appendix a : query log data

a.1 types of queries

name industry total total_unique total_read total_write total_custom

D1 TELE 152635 101 130556 0 22079

D2 TELE 3158 40 3156 0 2

D3 CONS 425811 127 305 11 425506

D4 TELE 122562 180 99816 9 22746

D5 TELE 29726 79 23012 0 6714

D6 TELE 2838 104 2838 0 0

D7 TELE 15410 206 15033 0 377

D8 BANK 36 17 36 7 0

D9 ANAL 15683 7707 15430 0 253

D10 TELE 2804 7 2804 0 0

D11 TELE 102213 127 83250 0 18963

D12 TELE 14861 36 14861 0 0

D13 TELE 32382 269 31409 14 973

D14 TELE 76 3 3 0 73

D15 CONS 918556 916341 917076 916935 1480

D16 TELE 16654 236 16650 0 4

D17 TELE 36698 107 34634 211 2064

D18 TELE 18865 267 12547 10 6318

D19 COMP 567511 32556 543944 454981 247

D20 TELE 19642 236 19642 0 0

D21 BANK 1352 75 1351 21 1

D22 TELE 20040 189 19873 4 167

D23 BANK 4744 140 4695 0 49

D24 TELE 78 9 14 0 64

D25 TELE 99 2 8 0 91

D26 TELE 4406 89 4158 0 248

D27 CONS 1528104 1102571 1247851 1223419 280253

D28 TELE 8324 179 8324 0 0

D29 BANK 26 11 26 0 0

D30 TRVL 11364 3466 3579 3309 7785

D31 TELE 1495 21 716 0 779

D32 TELE 24 3 2 0 22

D33 TELE 21855 326 18706 21 3149

D34 TELE 7454 189 7069 101 385

A.1 types of queries 65

name industry total total_unique total_read total_write total_custom

D35 TELE 29229 115 29226 0 3

D36 TELE 262 13 187 0 75

D37 BANK 12084 480 12025 94 59

D38 TELE 4476 65 4476 0 0

D39 TELE 9792 270 9234 0 558

D40 TELE 552 15 219 0 333

D41 TELE 955 40 922 0 33

D42 TELE 4415 93 4167 0 248

D43 TELE 98 11 17 0 81

D44 TELE 9622 117 9622 0 0

D45 CONS 149861 146366 146632 146449 3229

D46 TELE 34723 212 33508 12 1215

D47 TELE 615 30 546 0 69

D48 TELE 49567 66 46772 300 2795

D49 TELE 5631 31 5628 0 3

D50 TELE 37286 59 37168 0 118

D51 TELE 1862 68 1529 3 333

D52 TELE 21385 58 21327 0 58

D53 TELE 2075 70 1643 0 432

D54 BANK 46 15 45 0 1

D55 TELE 16336 121 15965 0 371

D56 TELE 1526 39 1450 1 76

D57 TELE 119220 313 84991 8325 34229

D58 TELE 29721 78 23007 0 6714

D59 TELE 57124 148 56924 0 200

D60 TELE 2809 191 2808 0 1

D61 TELE 148623 217 108301 25 40322

D62 TELE 575 38 541 1 34

D63 TELE 75 5 3 0 72

D64 TELE 8597 108 7875 7 722

D65 CONS 374714 131117 313115 197044 61599

D66 TELE 41 5 41 0 0

66 appendix a : query log data

a.2 query shapes

name total_read 0_edges 1_edge chain tree forest loops var_len

D1 130556 123635 511 6921 6921 6921 0 6297

D2 3156 141 0 3015 3015 3015 0 882

D3 304 136 110 144 113 115 53 0

D4 99816 85744 560 14072 14072 14072 0 11961

D5 23012 21809 1183 1203 1203 1203 0 19

D6 2838 332 4 2505 2506 2506 0 1259

D7 15033 13605 43 1428 1428 1428 0 1370

D8 36 1 1 26 29 32 3 0

D9 15430 6 5916 15424 5916 7245 8179 0

D10 2804 2618 0 186 186 186 0 186

D11 83250 77454 738 5796 5796 5796 0 5048

D12 14861 400 0 14461 14461 14461 0 14461

D13 31408 25970 58 5432 5426 5426 12 1435

D14 3 0 0 3 3 3 0 3

D15 917076 114 916839 916890 916920 916920 42 0

D16 16650 11294 190 5356 5356 5356 0 5166

D17 34634 33964 28 670 670 670 0 642

D18 12547 5402 595 7145 7145 7145 0 6550

D19 567254 132133 433822 435028 435056 435060 61 0

D20 19642 1585 2 18057 18057 18057 0 766

D21 1351 0 3 1321 1295 1333 18 0

D22 19873 4896 11895 14977 14977 14977 0 2845

D23 4695 0 22 4651 4559 4695 0 0

D24 14 14 0 0 0 0 0 0

D25 8 0 0 8 8 8 0 8

D26 4158 3408 711 750 750 750 0 39

D27 1247850 107264 1140189 1140472 1140434 1140435 151 0

D28 8324 2652 45 5672 5672 5672 0 5495

D29 26 1 1 19 25 25 0 0

D30 3579 34 510 3545 3333 3333 212 0

D31 716 41 0 675 675 675 0 567

D32 2 0 0 2 2 2 0 2

D33 18706 5124 220 13582 13582 13582 0 13220

A.2 query shapes 67

name total_read 0_edges 1_edge chain tree forest loops var_len

D34 7069 2506 1552 4563 4563 4563 0 2824

D35 29226 25273 12 3953 3953 3953 0 3940

D36 187 184 0 3 3 3 0 0

D37 12025 2 18 11869 11598 11965 58 0

D38 4476 2414 13 2062 2062 2062 0 2022

D39 9234 8826 36 408 408 408 0 363

D40 219 5 0 214 214 214 0 214

D41 922 474 0 448 448 448 0 325

D42 4167 3417 711 750 750 750 0 39

D43 16 5 2 11 11 11 0 9

D44 9622 461 36 9161 9161 9161 0 9004

D45 146631 279 146286 146314 146292 146294 58 0

D46 33508 5379 18452 28129 28129 28129 0 9176

D47 546 113 0 433 433 433 0 91

D48 46772 46066 24 706 706 706 0 680

D49 5628 3873 1679 1755 1755 1755 0 1

D50 37168 35730 969 1438 1438 1438 0 137

D51 1529 1026 0 503 503 503 0 489

D52 21327 21127 21 200 200 200 0 179

D53 1643 1381 1 262 262 262 0 230

D54 45 1 1 37 39 44 0 0

D55 15965 15199 21 766 766 766 0 733

D56 1450 1243 0 207 207 207 0 200

D57 84991 47554 541 37437 37437 37437 0 36139

D58 23007 21804 1183 1203 1203 1203 0 19

D59 56924 56631 234 293 293 293 0 59

D60 2808 348 10 2460 2460 2460 0 1257

D61 108301 89832 184 18469 18469 18469 0 18200

D62 541 532 6 9 9 9 0 3

D63 3 0 2 3 3 3 0 1

D64 7875 7582 269 293 293 293 0 24

D65 313115 96098 216904 216977 216981 216989 28 0

D66 41 22 0 19 19 19 0 19

68 appendix a : query log data

a.3 frequent pattern analysis

name query_total |E| = 1 |E| = 2 |E| = 3 |E| = 4 |E| = 5

D1 130556 0 0 0 0 0

D2 3156 8 9 19 34 7

D3 304 52 16 0 0 0

D4 99816 4 4 4 4 4

D5 23012 0 0 0 0 0

D6 2838 7 6 16 32 6

D7 15033 0 0 0 0 0

D9 15430 8 12 0 0 0

D10 2804 0 0 0 0 0

D11 83250 0 0 0 0 0

D12 14861 8 8 8 8 8

D13 31408 4 4 0 0 0

D15 917076 8 0 0 0 0

D16 16650 4 4 4 4 4

D17 34634 0 0 0 0 0

D18 12547 8 8 8 8 8

D19 567254 4 0 0 0 0

D20 19642 8 7 14 26 13

D21 1351 1 28 8 8 0

D22 19873 8 4 4 4 4

D23 4695 9 36 12 12 0

D26 4158 2 0 0 0 0

D27 1247850 16 0 0 0 0

D28 8324 12 12 12 12 12

D30 3579 72 112 96 128 128

D31 716 6 4 4 5 4

D33 18706 12 12 12 12 12

D34 7069 6 4 4 4 4

D35 29226 4 4 4 4 4

D36 187 0 0 0 0 0

A.3 frequent pattern analysis 69

name query_total |E| = 1 |E| = 2 |E| = 3 |E| = 4 |E| = 5

D37 12025 15 28 12 12 0

D38 4476 4 4 4 4 4

D39 9234 0 0 0 0 0

D40 219 8 8 8 8 8

D41 922 10 8 10 11 8

D42 4167 2 0 0 0 0

D44 9622 12 12 12 12 12

D45 146631 8 0 0 0 0

D46 33508 12 8 8 8 8

D47 546 9 16 20 25 16

D48 46772 0 0 0 0 0

D49 5628 2 0 0 0 0

D50 37168 0 0 0 0 0

D51 1529 8 8 8 8 8

D52 21327 0 0 0 0 0

D53 1643 4 4 4 4 4

D55 15965 0 0 0 0 0

D56 1450 4 4 4 4 4

D57 84991 4 4 4 4 4

D58 23007 0 0 0 0 0

D59 56924 0 0 0 0 0

D60 2808 7 4 12 23 4

D61 108301 4 4 4 4 4

D62 541 0 0 0 0 0

D64 7875 0 0 0 0 0

D65 313115 16 0 0 0 0

B
A P P E N D I X B : E X P E R I M E N T R E S U LT S

b.1 synthetic data

The table below contains the results of the experiments on the per-
formance of traversal-based translation (TBT) and self-maintaining
translation (SMT). We record the time taken to complete a database
transaction with two edge updates and the subsequent index updat-
ing. In one of the trees in the layout, an edge is deleted, and in an-
other tree, an edge is added. The measurements thus represent the
time in milliseconds required for the complete transaction, which con-
tains translation for two disjoint updates. Each of the experiments was
performed repeatedly, as such, we record both the mean and error
(p=0.999) of the running time in milliseconds. The total size of the
index (memory) is also reported. Note that for TBT, the size of the
index is always 55.3KB (The size of a single empty index in Neo4j).

paths extra_t method running time db size index size speed-up

1 no TBT 0.234 ± 0.00050 170.5 KB 53.3KB

1 no SMT 0.241 ± 0.00051 170.5 KB +102.3KB 97.27%

1 yes TBT 0.232 ± 0.00051 170.5 KB 53.3KB

1 yes SMT 0.239 ± 0.00055 170.5 KB +102.3KB 97.12%

100 no TBT 0.558 ± 0.00134 249,9 kB 53.3KB

100 no SMT 0.399 ± 0.00104 249,9 kB +200.7KB 139.76%

100 yes TBT 0.352 ± 0.00103 249,9 kB 53.3KB

100 yes SMT 0.239 ± 0.00051 249,9 kB +102.3KB 147.61%

10000 no TBT 37.449 ± 0.14707 9.9MB 53.3KB

10000 no SMT 14.342 ± 0.14810 9.9MB +19.57MB 261.12%

10000 yes TBT 10.996 ± 0.03813 9.9MB 53.3KB

10000 yes SMT 0.235 ± 0.00046 9.9MB +102.3KB 4675.15%

250000 no TBT 939.862 ± 33.21771 223.9MB 53.3KB

250000 no SMT 407.528 ± 26.69770 223.9MB +439.6MB 230.62%

250000 yes TBT 276.098 ± 7.06853 223.9MB 53.3KB

250000 yes SMT 0.247 ± 0.00946 223.9MB +102.3KB 111808.51%

Table 6: Results of the maintenance experiments on synthetic data.

71

72 appendix b : experiment results

b.2 real data

method running time db size index size speed-up

TBT 342917.347 ± 667.45 ms 684.1 MB 65.75 MB

SMT 163584.567 ± 25508.817 ms 684.1 MB 91.37 MB 209.63%

Table 7: Results of the maintenance experiments on real data. The reported
mean and error are over the entire workload (100,000 queries).

B I B L I O G R A P H Y

[1] Réka Albert and Albert-László Barabási. “Statistical mechanics
of complex networks.” In: Reviews of modern physics 74.1 (2002),
p. 47.

[2] Mario Arias, Javier D. Fernández, Miguel A. Martínez-Prieto,
and Pablo de la Fuente. “An empirical study of real-world SPARQL
queries.” In: arXiv preprint arXiv:1103.5043 (2011).

[3] Angela Bonifati, Wim Martens, and Thomas Timm. “An analyt-
ical study of large SPARQL query logs.” In: Proceedings of the
VLDB Endowment 11.2 (2017), pp. 149–161.

[4] Adam L. Buchsbaum, Paris C. Kanellakis, and Jeffrey Scott Vit-
ter. “A data structure for arc insertion and regular path find-
ing.” In: Annals of Mathematics and Artificial Intelligence 3.2-4
(1991), pp. 187–210.

[5] Qun Chen, Andrew Lim, and Kian Win Ong. “D (k)-index:
An adaptive structural summary for graph-structured data.”
In: Proceedings of the 2003 ACM SIGMOD international conference
on Management of data. ACM. 2003, pp. 134–144.

[6] Edgar F. Codd. “A relational model of data for large shared
data banks.” In: Communications of the ACM 13.6 (1970), pp. 377–
387.

[7] George H.L. Fletcher, Jeroen Peters, and Alexandra Poulovas-
silis. “Efficient regular path query evaluation using path in-
dexes.” In: 19th International Conference on Extending Database
Technology (EDBT) (2016).

[8] George HL Fletcher, Dirk Van Gucht, Yuqing Wu, Marc Gyssens,
Sofía Brenes, and Jan Paredaens. “A methodology for coupling
fragments of XPath with structural indexes for XML documents.”
In: Information Systems 34.7 (2009), pp. 657–670.

[9] George HL Fletcher, Marc Gyssens, Dirk Leinders, Jan Van den
Bussche, Dirk Van Gucht, and Stijn Vansummeren. “Similarity
and bisimilarity notions appropriate for characterizing indistin-
guishability in fragments of the calculus of relations.” In: Jour-
nal of Logic and Computation 25.3 (2015), pp. 549–580.

[10] George Fletcher and Martin Theobald. “Indexing for Graph
Query Evaluation.” In: Encyclopedia of Big Data Technologies. Ed.
by Sherif Sakr and Albert Zomaya. Cham: Springer Interna-
tional Publishing, 2018, pp. 1–9. isbn: 978-3-319-63962-8. doi:
10.1007/978-3-319-63962-8_212-1. url: https://doi.org/
10.1007/978-3-319-63962-8_212-1.

73

https://doi.org/10.1007/978-3-319-63962-8_212-1
https://doi.org/10.1007/978-3-319-63962-8_212-1
https://doi.org/10.1007/978-3-319-63962-8_212-1

74 Bibliography

[11] Roy Goldman and Jennifer Widom. DataGuides: Enabling query
formulation and optimization in semistructured databases. 1997.

[12] Ashish Gupta, Inderpal Singh Mumick, et al. “Maintenance of
materialized views: Problems, techniques, and applications.”
In: IEEE Data Eng. Bull. 18.2 (1995), pp. 3–18.

[13] N. de Jong. Correlation-Aware Cardinality Estimation for Cypher
Queries. 2018. url: https://nielsdejong.nl/projects/graph/
BGCE.pdf.

[14] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon, and Ehud
Gudes. “Exploiting local similarity for indexing paths in graph-
structured data.” In: Data Engineering, 2002. Proceedings. 18th
International Conference on. IEEE. 2002, pp. 129–140.

[15] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis
Polyzotis. “The case for learned index structures.” In: Proceed-
ings of the 2018 International Conference on Management of Data.
ACM. 2018, pp. 489–504.

[16] Tova Milo and Dan Suciu. “Index structures for path expres-
sions.” In: International Conference on Database Theory. Springer.
1999, pp. 277–295.

[17] Knud Möller, Michael Hausenblas, Richard Cyganiak, and Siegfried
Handschuh. “Learning from linked open data usage: Patterns
& metrics.” In: Web Science Conference (2010).

[18] Robert Paige and Robert E. Tarjan. “Three partition refinement
algorithms.” In: SIAM Journal on Computing 16.6 (1987), pp. 973–
989.

[19] Francois Picalausa and Stijn Vansummeren. “What are real SPARQL
queries like?” In: Proceedings of the International Workshop on Se-
mantic Web Information Management. ACM. 2011, p. 7.

[20] Jaroslav Pokornỳ, Michal Valenta, and Jaroslav Ramba. “Graph
Patterns Indexes: their Storage and Retrieval.” In: Proceedings
of the 20th International Conference on Information Integration and
Web-based Applications & Services. ACM. 2018, pp. 221–225.

[21] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases:
new opportunities for connected data. " O’Reilly Media, Inc.", 2015.

[22] Christof Strauch, Ultra-Large Scale Sites, and Walter Kriha. “NoSQL
databases.” In: Lecture Notes, Stuttgart Media University 20 (2011).

[23] Mark Sullivan and Michael Olson. “An index implementation
supporting fast recovery for the POSTGRES storage system.”
In: 1992 Eighth International Conference on Data Engineering. IEEE.
1992, pp. 293–300.

https://nielsdejong.nl/projects/graph/BGCE.pdf
https://nielsdejong.nl/projects/graph/BGCE.pdf

Bibliography 75

[24] Jonathan M. Sumrall, George H.L. Fletcher, Alexandra Poulo-
vassilis, Johan Svensson, Magnus Vejlstrup, Chris Vest, and Jim
Webber. “Investigations on path indexing for graph databases.”
In: European Conference on Parallel Processing. Springer. 2016, pp. 532

–544.

[25] Martin Svoboda and Irena Mlỳnková. “Linked data indexing
methods: a survey.” In: OTM Confederated International Confer-
ences" On the Move to Meaningful Internet Systems". Springer.
2011, pp. 474–483.

[26] Octavian Udrea, Andrea Pugliese, and VS Subrahmanian. “GRIN:
A graph based RDF index.” In: AAAI. Vol. 1. 2007, pp. 1465–
1470.

[27] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan,
Yixin Chen, and Dawn Wilkins. “A comparison of a graph database
and a relational database: a data provenance perspective.” In:
Proceedings of the 48th annual Southeast regional conference. ACM.
2010, p. 42.

[28] Xifeng Yan, Philip S. Yu, and Jiawei Han. “Graph indexing: a
frequent structure-based approach.” In: Proceedings of the 2004
ACM SIGMOD international conference on Management of data.
ACM. 2004, pp. 335–346.

[29] Shijie Zhang, Meng Hu, and Jiong Yang. “Treepi: A novel graph
indexing method.” In: Data Engineering, 2007. ICDE 2007. IEEE
23rd International Conference on. IEEE. 2007, pp. 966–975.

[30] Peter J. deVries. GeoSpecies Knowledge Base. 2013. url: http://
lod.geospecies.org/.

http://lod.geospecies.org/
http://lod.geospecies.org/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Use-Cases for Path Indexes
	1.1.1 Query Evaluation
	1.1.2 Graph Algorithms
	1.1.3 (Regular Path) Query Planning
	1.1.4 Special Operators
	1.1.5 Views

	1.2 Context
	1.3 Research Question
	1.4 Contributions
	1.5 Overview of Contents

	2 Preliminaries
	2.1 Semi-Structured Data Models
	2.2 Property Graph Model
	2.3 Paths & Label-Paths
	2.4 Pattern Matching Queries
	2.5 Indexing
	2.6 Notation

	3 Query Log Analysis
	3.1 Problem Definition
	3.2 Related Work
	3.3 Data
	3.4 Query Log Analysis Method
	3.4.1 Parsing
	3.4.2 Frequency of Updates
	3.4.3 Query Graph Structure
	3.4.4 Frequent Sub-Patterns

	3.5 Results
	3.5.1 Frequency of Updates
	3.5.2 Query Graph Structure
	3.5.3 Frequent Sub-Patterns

	3.6 Conclusion & Future Work

	4 Indexing Graph Structure
	4.1 Structures to Index
	4.1.1 Indexing Paths
	4.1.2 Indexing (Frequent) Sub-Graphs
	4.1.3 Indexing Trees
	4.1.4 Choice of Structure to Index

	4.2 Requirements for a Path Index
	4.3 A Survey of Path Indexing Techniques
	4.3.1 DataGuides
	4.3.2 The T-Index
	4.3.3 The D(k) Index
	4.3.4 The GRIN Index
	4.3.5 Language-Based Indexing
	4.3.6 k-Path Indexing
	4.3.7 Comparison of Techniques

	5 Maintaining a Path Index
	5.1 Types of Updates
	5.2 Handling Updates
	5.3 Traversal-Based Translation (TBT)
	5.4 Inverted Index Translation (IIT)
	5.5 Self-Maintaining Translation (SMT)
	5.6 Batching Indexing Maintenance
	5.6.1 Motivation
	5.6.2 Batching Method

	5.7 Comparison of Techniques

	6 Implementation
	6.1 Index Design
	6.1.1 The GB+ Tree
	6.1.2 Key Design
	6.1.3 Multiple Trees for Multiple Paths

	6.2 Index Maintenance
	6.2.1 Overview
	6.2.2 Traversal-Based Translation
	6.2.3 Self-Maintaining Translation
	6.2.4 Concatenating Paths
	6.2.5 Writing Updates to Index

	7 Experimental Evaluation
	7.1 Experiments on Synthetic Data
	7.1.1 Graph Layout
	7.1.2 Results
	7.1.3 Summary

	7.2 Experiments on Real Data
	7.2.1 Experiment Design
	7.2.2 Results

	8 Conclusion
	8.1 Summary
	8.2 Future Work

	A Appendix A: Query Log Data
	A.1 Types of Queries
	A.2 Query Shapes
	A.3 Frequent Pattern Analysis

	B Appendix B: Experiment Results
	B.1 Synthetic Data
	B.2 Real Data

	Bibliography

