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Abstract

In the last few years artificial intelligence has considerably advanced the natural language pro-
cessing (NLP) field. The graduation company is interested in seeing whether this can be used
to automate customer support. NLP has evolved to contain many tasks. Intent classification is
used to classify the intent of a sentence like ‘what is the weather in London tomorrow?’. The
intent for this sentence could be ‘get weather’. Named-entity recognition (NER) aims to extract
information from subparts of the sentence. For example, ‘London’ is a location and ‘tomorrow’ is
a date. Intents and entities are used by chatbots to understand the text written by users. This has
caused intent classification and NER to have the following practical constraints. The text should
be analysed in real-time and training data consists of a few dozen training examples. The latter
makes it an interesting problem from a machine learning perspective.

Multiple systems and services provide intent classification and NER. Accuracy of classification
differs per system. Higher accuracy means responding correctly to customer utterances more
often. Many systems claim to make the fewest mistakes during classification when comparing
their system to others. To validate this a benchmarking tool is created. This tool is aimed on
creating comparisons in such a way that users can easily run new or re-run existing evaluations.
The code can be extended to allow comparison of more datasets and systems.

To improve the accuracy of intent classification and NER, deep learning architectures for NLP
have been investigated. New accuracy records are set every few months for various NLP tasks. One
of the most promising systems at the time of writing is considered. This system, Google BERT,
uses context from both sides of some word to predict the meaning of the word. For example, the
meaning of the word ‘bank’ differs in the sentences ‘river bank’ and ‘bank account’. BERT has
shown state-of-the-art results for eleven NLP tasks. An attempt is made to apply the model to
intent classification. Compared to baseline models applied by industry, this obtained significant
increases in running time, but not in accuracy. A second attempt trained the system jointly on
intent classification and NER. BERT is well-suited for joint training, because it uses context in all
hidden layers of the network. Information from the intent classification task is used, in all layers,
for making NER predictions and vice versa. It is shown that joint training with BERT is feasible,
and can be used to lower training time when compared to separate training of BERT. Future work
is needed to see whether the improvements in accuracy are significant.
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Chapter 1

Introduction

This master thesis is the final report of the graduation project for the Computer Science and
Engineering master at Eindhoven University of Techonology (TU/e). The project is carried out at
Devhouse Spindle in Groningen. In this chapter the research questions are presented. Section 1.1
explains the context for the research problem. The problem and the research questions are dis-
cussed in Section 1.2. Resulting goals from these questions are listed in Section 1.3 as is an outline
for the rest of the thesis.

1.1 Thesis context

Spindle is interested in automatically responding to customer questions. The field working on text
interpretation is natural language processing (NLP). It is expected that automated responses to
text are feasible by recent examples in artificial intelligence. Smartphones include speech recogni-
tion, allowing users to control the device using speech [64]. For example, users can obtain inform-
ation about the weather or the age of a specific president by talking to the device. Self-driving
car technology created by Waymo “has driven over 10 million miles of real-world roads” [98]. At
the same time Google AlphaGo has learnt how to beat the best Go players in the world [37] and
another Google team is working on Duplex [62]. The goal of Duplex is to fill in missing information
from Google sites by calling people and asking for the information. Demonstrations by Google
show that it is difficult for unsuspecting humans to tell the difference between Duplex and a real
human.

Remarkable about the context is the speed in which the field evolves. Picking up a book as
recent as 2010 will not list many common practises applied nowadays. The newer NLP approaches
use deep learning (to do NLP from scratch) as introduced by Collobert et al. [21] in 2011. In 2013
vector representations for words became dense by the introduction of word2vec [70]. These dense
vectors have been “producing superior results on various NLP tasks” [105].

The fast pace of the field and the popularity of machine learning causes this thesis to be in
certain aspects unconventional. The benefit of deep learning is that everyone can reproduce and
improve results given some time and a (cloud) computer. The fast pace and machine learning
cause an atypical high amount of references to respectively arXiv publications and blogposts and
websites. It is tried to regard these sources with more than usual skepticism.

1.2 Problem description

Spindle would want to see a system that is automatically trained on various sets of a few dozen text
documents to answer customer questions. Research in NLP has focused their efforts on various
tasks. To solve the problem defined above, we require a task which is able to interpret questions
in real-time using little training data. Natural language understanding (NLU), which maps text
to its meaning [52], is working on interpretation of text. Specifically, chatbots are using intent
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CHAPTER 1. INTRODUCTION

classification to understand the intention of a user when the user utters some sentence [8, 13, 108].
The IBM sales department claims that Autodesk using chatbots cut down their resolution time
“from 1.5 days to 5.4 minutes for most inquiries” [46].

Various parties run benchmarks and use this to draw conclusions about the best performing
system. Issues can be pointed out which question the validity of these conclusions. A methodology
and three datasets for benchmarking intent classification and named-entity recognition (NER) are
created and published by Braun et al. [10]. NER aims to detect information like dates, locations
and person names from text. The paper compares accuracy for Microsoft LUIS [69], IBM Wat-
son Conversation (now Watson Assistant [3]), Api.ai (now Google DialogFlow [39]), Wit.ai [101],
Amazon Lex [63] and Rasa [8]. When knowing that the field is rapidly advancing [105] it be-
comes clear that the scores from this paper are outdated. Snips [85] show that they outperform
the competition by a large margin [23]. The competition consists of Api.ai, Wit.ai, Luis.ai and
Amazon Alexa (now Amazon Lex [63]). Their small benchmark tests the systems against 70
queries per intent on their own dataset. Snips claim to score 79% accuracy, while the second
best scores 73%. Also, via sentence examples Snips show that some named-entities are classified
incorrectly by systems other than Snips. Although the authors “guarantee transparency” about
the benchmark [24], the dataset could still be cherry-picked. DeepPavlov [13] reports another
high score for intent classification. It is based on the Snips dataset [24] and compared against
Api.ai, Watson Conversation, Microsoft LUIS, Wit.ai, Snips, Recast.ai (now SAP Conversational
AI [1]) and Amazon Lex. Their model uses embeddings trained on the DSTC2 dataset [6, 5].
DSTC2 contains communications with users or ‘calls’ [42]. The dataset includes roughly 500 dia-
logs with 7.88 turns on average in each condition for 6 conditions [42], hence about 20.000 turns
or utterances. Knowing that the focus for Snips also lies in interpretation of voice commands [85]
it is expected that the model created by DeepPavlov does not obtain state-of-the-art results for
other datasets. Botfuel [9] claims to be ‘on par’ with the competition [92]. This is based on
runs on the same datasets as Braun et al. [10]. Botfuel shows it is one procent lower than Wat-
son, equals LUIS and outperforms DialogFlow, Rasa, Snips and Recast.ai. The score for Rasa
matches the score listed by Braun et al. [10]. This means that Botfuel has compared their sys-
tem against an old version of Rasa. These observations give rise to the following research question.

RQ1. Can an open-source benchmarking tool for NLU systems and services be created?

An interesting problem from an academic point of view is increasing accuracy. The second
research question aims to do that.

RQ2. Can the classification accuracy for NLU systems and services be increased?

For the graduation company Dutch datasets would match their use-case, however the focus in
NLP research is on English datasets [14, 105]. To be able to compare our results this thesis will
also focus on English datasets. It is expected that the knowledge from answering this question
can be transferred to Dutch datasets since modern multilingual models exist [88, 89, 32]. The first
and second research question are discussed respectively in Chapter 3 and 4.

1.3 Project goal and outline

Answering RQ1 means writing code. Even if the answer is negative, it will have provided a baseline
to use when answering RQ2. The aim of the software is to be used by others, so it should be easy
to run. Software extensions should also be possible. The goal related to the first research question
is as follows.

RG1. Develop an open-source reproducible tool for benchmarking of NLU systems and ser-
vices.

2 Automatically responding to customers
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The goal related to the second research question is stated ambitiously.

RG2. Improve the accuracy of NLU systems and services.

The first research question is discussed in Chapter 3. NLP and NLU are introduced in detail
in Chapter 2, specifically in Section 2.1. The second research question is discussed in Chapter 4.
To be able to compare the introduced deep learning model with existing models one need to know
about the existing models. Well-known models in NLP are explained in Chapter 2, specifically in
Section 2.2.
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Chapter 2

Preliminaries

Both research questions are related to natural language processing, which is introduced in Sec-
tion 2.1. Deep learning forms the basis for state-of-the-art systems in the field. Well-known deep
learning models and concepts for NLP are introduced in Section 2.2.

2.1 Natural language processing

Natural language processing (NLP) aims to read text or listen to speech and extract meaningful
information from it. One deviation from this definition is natural language generation, where
text is generated. The difficulty of NLP is that humans for every word activate “a cascade of
semantically related concepts, relevant episodes, and sensory experiences” [14]. These activations
may also differ per context. For example, the activations for “I want more money.” depend on
whether the sentence is uttered by a child or employee. The field is often associated with artificial
intelligence (AI). AI is defined as “a system’s ability to correctly interpret external data, to learn
from such data, and to use those learnings to achieve specific goals and tasks through flexible
adaptation” by [54]. By this definition modern NLP approaches are AI, specifically artificial
narrow intelligence [54].

The field is divided in tasks. Some well-known tasks are:

� Translating texts between (human) languages is called machine translation.

� Question answering which is NLP on question sentences only to point to an answer in
text or generate an answer sentence.

� Classifying words or parts of sentences is done by part-of-speech tagging (for example,
nouns and verbs) and named-entity recognition (for example, dates and locations).

� Optical character recognition attempts to recognize characters in images and can use
NLP knowledge to improve accuracy.

� Finding co-references like ‘house’ and ‘it’ in the sentence “The house is white, and it is
located on a hill.” is done using coreference resolution.

� NLP is not limited to text, because it includes speech recognition which transforms speech
to text.

� Entailment classification contains examples such as “People formed a line at the end of
Pennsylvania Avenue.” which is contained in (logically implied by) “At the other end of
Pennsylvania Avenue, people began to line up for a White House tour.” [100]

� Determining whether two sentences have the same meaning is called semantic text simil-
arity.
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� Sentence classification is the broad tasks of classifying a sentence (for example, the sen-
timent or intention of user)

Intent classification, machine translation and named-entity recognition are discussed further in
Section 2.1.2 and 2.1.3.

2.1.1 Language model

To be able to explain more complex language representations using neural network architectures
we first take a look at a simple statistical language model. Language models try to capture the
grammar of a language. Capturing grammar can be done by using probabilities for sentences or
probabilities of upcoming words given a part of a sentence. It is based on the assumption that
grammatically correct sentences occur more often than incorrect sentences. The following three
tasks and examples demonstrate the usefulness of probabilities.

Task Example
Spell correction P (my car broke) > P (my car boke)
Machine translation P (the green house) > P (the house green)
Speech recognition P (the red car) > P (she read ar)

In the spell correction example it is much more likely that the third word should be ‘broke’ than
‘boke’. This is used by automatic spell checkers to correct mistakes. In machine translation
knowledge about the expected order of words is used to improve translation accuracy. The speech
recognition example shows that ambiguity introduced by phonetic similarity can be solved by
choosing the most likely phrase.

A simple approach is to use counters to calculate the sentence probabilities. This makes use
of the chain rule or ‘general product rule’. Let W denote a sentence, or equivalently, sequence of
words. For the probability of the sentence we have P (W ) = P (w1, w2, . . . , wn). The probability
of the upcoming word wi is P (wi) = P (wi | w1, w2, . . . , wi−1). Using the chain rule we can, for
three variables, state that P (w3, w2, w1) = P (w3 |w2, w1) ·P (w2 |w1) ·P (w1). This pattern scales
to any number of variables. To get the probability for the sentence ‘the car broke’ we rewrite it
as follows.

P (the car broke) = P (the) · P (car | the) · P (broke | the car)

Each term can be rewritten to a combination of counters, for example: P (broke | the car) =
count(the car) / count(broke). This does not scale well. The counters for each word and
each pair of words (each combination of two words) are feasible. However, when doing this for
combinations of four words and up the number of counters to keep track of becomes too large.

To reduce the number of counters an approximation defined by Markov is used. Markov states
that only looking at a fixed number of previous words gives an approximation. Considering only
one previous word for our example we get the following.

P (broke | the car) ≈ P (broke | car)

This is called the bigram model. When using this to generate sentences it becomes clear that
bigrams do not have enough information. Take the generated sentence “I cannot betray a trust
of them.” [59]. Each pair of sequential words is correct, while the sentence as a whole is not. To
improve this systems can be created which use n-grams, where a larger n gives a more accurate
language model. Although n-grams offer good performance for certain cases they are in practise
not able to capture long-distance dependencies in texts [68].

2.1.2 Machine translation

Machine translation became known to the public by introduction of Google Translate in 2006.
The system was based on a statistical language model (as explained in Section 2.1.1) and not on
a rule-based model. Rule-based means formulating linguistic rules which is “a difficult job and
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requires a linguistically trained staff” [90]. In an attempt to visualise the progress made in the
field we consider one example translation through time as recorded by Manning and Socher [68].
This ‘one sentence benchmark’ contains one Chinese to English example which is compared with
Google Translate output. The correct translation for the example is:

In 1519, six hundred Spaniards landed in Mexico to conquer the Aztec Empire with a popula-
tion of a few million. They lost two thirds of their soldiers in the first clash.

Google Translate returned the following translations.

2009 1519 600 Spaniards landed in Mexico, millions of people to conquer the Aztec empire, the
first two-thirds of soldiers against their loss.

2011 1519 600 Spaniards landed in Mexico, millions of people to conquer the Aztec empire, the
initial loss of soldiers, two thirds of their encounters.

2013 1519 600 Spaniards landed in Mexico to conquer the Aztec empire, hundreds of millions of
people, the initial confrontation loss of soldiers two-thirds.

2015 1519 600 Spaniards landed in Mexico, millions of people to conquer the Aztec empire, the
first two-thirds of the loss of soldiers they clash.

2017 In 1519, 600 Spaniards landed in Mexico, to conquer the millions of people of the Aztec
empire, the first confrontation they killed two-thirds.

One important concept in machine translation is alignment. Alignment refers to the fact that
words in different languages tend to be located at similar parts in the sentence. Consider the
sentences

“well i think if we can make it at eight on both days”

and

“ja ich denke wenn wir das hinkriegen an beiden tagen acht uhr”.

The first five words of the sentences are perfectly aligned. The last five words of the sentences are
not. Alignment is visualised in Figure 2.1. Non-perfect alignment can also be observed from the
fact that the number of words in English sentence is higher.

Figure 2.1: Word alignment for a German-English sentence pair [96, Figure 1].
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2.1.3 Natural language understanding

Conversational agent or dialogue systems aim to communicate with humans using natural lan-
guage. Consensus is not clear on whether a chatbot is synonymous to conversational agent. Some
argue it is [47], and some argue that conversational agents are more sophisticated that bots which
can chat. This thesis will consider the words to be synonymous. Conversational agents can be
used to replace graphical user interfaces [11] or to act as a social companion [35, 108]. Interpret-
ing user utterances gives rise to a new tasks, often denoted as natural language understanding
(NLU) [48, 10, 104]. NLU extracts information from user sentences. The meaning for the entire
sentence, or the intention of the user when uttering a sentence, is defined as the intent. Inform-
ation from one or more sequential words is defined as named-entities (for example, dates and
locations). Consider the following sentence:

“I would like to book a ticket to London tomorrow.”

In this sentence the intent of the user is to book a ticket. Often the chatbot needs to know more
than just the intent. For this book ticket example the system needs to know the destination of
the user and when the user wants to arrive. Named-entity recognition (NER) can be used to find
this information. A named-entity classifier can be trained to classify London as a destination and
tomorrow as a date. Most systems allow entities to be defined by examples and regular expressions.
The examples can be used for keyword matching by a simple system. More sophisticated systems
use machine learning and language knowledge to not only find exact (keyword) matches, but also
texts similar to the examples.

2.1.4 F score

A common way to calculate system performance for NLU is the F score, or specifically the F1

score. It is based on the confusion matrix, see Table 2.1.

Class \ Recognized as Positive as Negative
Positive tp fn
Negative fp tn

Table 2.1: Confusion matrix for binary classification [86, Table 1].

The confusion matrix can be used to define precision π and recall (or sensitivity) ρ as [86].

π =
tp

tp+ fp
, ρ =

tp

tp+ fn

Then, the F score is defined as [26]

Fβ =
(β2 + 1)πρ

β2π + ρ

where β = 1 to obtain the F1 score.
The metric has evolved to be used for three different averages, namely micro, macro and

weighted.

� Let y be the set of predicted (sample, label) pairs,

� ŷ be the set of true or gold standard (sample, label) pairs,

� L the set of labels,

� yl the subset of y with label l, or formally: yl := { (s, l′) ∈ y | l′ = l },

� P (A,B) :=
|A ∩B|
|A|

,
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� R(A,B) :=
|A ∩B|
|B|

(where R(A,B) := 0 and P (A,B) := 0 for B = ∅), and

� Fβ(A,B) := (1 + β2)
P (A,B)×R(A,B)

β2P (A,B) +R(A,B)
.

Then the metrics are defined as [84]:

Fβ−micro = Fβ(y, ŷ)

Fβ−macro =
1

|L|
∑
l∈L Fβ(yl, ŷl)

Fβ−weighted =
1∑

l∈L |ŷl|
∑
l∈L |ŷl|Fβ(yl, ŷl)

In this thesis the implementation by Scikit-learn version 0.20.0 [82] is used where possible.

2.2 Deep learning

As with many computer science subfields deep learning has outperformed manual feature engin-
eering on many NLP tasks. For the last few years the best performing NLP systems have been
neural networks [105]. This section will provide a basic overview of the most important model
architectures for NLP.

2.2.1 Vanishing gradient problem

The vanishing gradient problem, as recognized by Hochreiter et al. [45], is one of the main issues
for training neural networks. The backpropagation algorithm updates the weights in the network
by sending information from the output layer in the direction of the input layer. The problem
relates to vanishing and exploding updates to weights in the layers further from the output layer.
These extreme updates are caused by the backpropagation algorithm. Consider some weight w
which is near the input layer of some network. This weight is updated by the following partial
derivative w = d1 · d2 · . . . · di. Here i corresponds to the number of layers in the network. These
partial derivatives dx can become small (0 ≤ dx < 1) or large (1 � dx). Typically the learning
rate has an order of magnitude of 1e-3. When one derivative is small the weight update when
multiplied by learning rate might become very small. Conversely when one derivative is big the
update might become very big. Since the weight is near the input layer, i is big. Thus, the chance
that weights further away from the output layer vanish or explode increase by increment of i.
Exploding gradients can be solved by putting a threshold on the update [70]. Vanishing gradients
are more difficult since it is unknown whether an update is small due to vanishing gradients or
due to the fact that the weight should not be changed according to the loss function. Effectively
the vanishing gradient problem causes layers which are have a long distance from the output layer
to stop learning.

2.2.2 Recurrent neural networks

A recurrent neural network (RNN) is an extension on neural networks which allows the network
to have memory. This is effective for problems where the data is sequential. In a RNN the
information from the state of the network is passed to the next state, see Figure 2.2. This state
contains information from previous states, we call this a ‘summary’, denoted W in the image. On
the right side the model is unfolded in time. The unfolded representation shows the states of the
network and the flow of information for three consecutive points in time. To know its history the
neural network in current state st obtains the summary W from the previous state st−1. Suppose
we are training a RNN in an unsupervised way. Hence, the model trains on unlabeled real-world

Automatically responding to customers 9



CHAPTER 2. PRELIMINARIES

Figure 2.2: Recurrent neural network unfolded in time [61, Figure 5].

Figure 2.3: RNN Encoder-decoder [17, Figure
1].

Figure 2.4: GRU hidden activation func-
tion [17, Figure 2].

texts. For each step it is asked to predict the output word ot based only on all k previous words
xt−1, xt−2, . . . , xt−k. The prediction is compared to the correct word, if these are not equal the loss
is backpropagated. The backpropagation is then able to ‘change history’ to improve prediction
accuracy.

The benefit of this architecture over n-grams, as presented in Section 2.1.1, is that the inform-
ation is compressed inside the neural network. Also, there is a certain sense of importance since
the weights are not uniformly updated for all previous states (words). Take, for example, ‘the car,
which is green, broke’. For this sentence the word ‘broke’ can more easily be predicted based on
‘the car’ than on ‘which is green’. It is found that RNNs are able to capture this importance [68].

In practice RNNs are not using the complete history. The cause for this are vanishing gradients.
“In practise gradients vanish and simple RNNs become like 7-grams for most words” [68].

2.2.3 Gated recurrent units and LSTMs

Basic RNNs do not yet provide a way to translate languages. Machine translation requires to
convert some sentence from a source language to a target language. To this end a RNN encoder-
decoder has been proposed by Cho et al. [17].

Similar to the basic RNN the decoder at some time has access to only the previous state, see
figure 2.3. The encoder takes the source sentence of variable length T and maps it to a fixed
length vector. The decoder in turn maps the fixed length vector to the target sentence of length
T ′. To do this the network reads all words x1, x2, . . . , xT until an end of line token is received. At
that point the entire sentence is captured in the hidden state C. The decoder starts generating
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words y1, y2, . . . , yT ′ based on the previous decoder states and C. This is visualised by the arrows.
The authors of the paper recognize that this approach has the same limitations as the basic
RNN. Typically words in translation sentence pairs are aligned, as described in Section 2.1.2. For
example, when generating the first word y1 the algorithm mainly needs info from x1, but has
more recently seen the next words in the sequence x2, x3, · · · , xT ′ . Vanishing gradients will cause
the network to forget its far history, so based on the 7-grams claim RNNs are only effective for
translating sentences shorter than 7 words. To solve this the authors [17] have introduced gates to
RNNs. To improve this gated recurrent architectures such as long short-term memory networks
(LSTMs) [44] and gated recurrent units (GRUs) [17] have been developed.

GRUs have gates which automatically learn to open and close for some hidden state. This can
be visualised by looking at the information which is passed through the states. The information
is captured in a matrix. In a RNN the information in the entire matrix is updated in each step.
GRUs learn to read and write more selectively, see figure 2.5. For some point in time the update
consist of reading a specific subset and writing a specific subset of the matrix. In effect the
network learns to look only at the word it needs [68]. For example when translating a sentence
from German to English it will look at the verb in German to come up with the verb in English.
Writing, in effect, lets the model allocate specific parts in the matrix for specific parts of speech
(for example, nouns and verbs).

Figure 2.5: Simplistic visualisation for updating the hidden state in a GRU.

LSTMs [44] are similar to GRUs. An LSTM does not only contain update and reset gates but
also uses a internal memory state. In practise LSTMs take longer to converge than GRUs [19],
but remember around 100 words where GRUs remember around 40 words [68].

2.2.4 Bidirectional recurrent neural networks

All recurrent architectures described above use only the information on the left of some word to
predict it. Take for example the following sentences containing the polyseme ‘drinking’.

Peter was drinking after a workout.

Peter was drinking excessively.

The meaning of the word ‘drinking’ changes after reading the next words in the sentence. To take
this into account bidirectional recurrent neural networks (BRNN) have been developed by Schuster
and Paliwal [80]. A BRNN contains two separate RNNs as depicted in figure 2.6. The paper only
considers RNNs, but the method can be applied to gated recurrent models as well [76]. One RNN
goes through elements of the sequence from left to right and the other in the reverse direction.
Training can be done by showing the network all words except for one. Both networks learn to
predict the next word given a sequence of words. Calculating the loss is done by taking the average
of the predictions of both RNNs. To reduce required computational power one simplification is
used. Suppose we want to learn from the word at location k, xk, and stepped through many states
to reach sk−1 and s′k+1. Here we let the model make a prediction for yk. Then we update the
weights and, assuming we go forward, now want to learn from xk+1. The RNN in state sk−1 takes
one step forward, but the RNN in state s′k+1 has to restart from the last word in the sequence. To
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solve this both RNNs make one prediction for each word and the answers of both for the entire
sequence are batched and used to update the weights.

Figure 2.6: Bidirectional RNN [74].

2.2.5 Convolutional neural networks

Convolutional neural networks (CNNs) [60] are an extension to vanilla neural networks which
allow the model to exploit spatial locality. This makes the networks highly successful for image
classification. During image classification CNNs learn a hierarchical representation of the input,
according to Conneau et al. [22]. The authors claim that such an hierarchical representation would
have benefits for NLP over sequential models. One of the benefits is that the depth of the tokens,
which can be chosen as words but also characters, varies for the tokens in the sentence. In CNNs
this depth would be constant, which mitigates the problem of forgetting tokens seen in a less
recent past.

A review by Young et al. [105] argues that CNNs are suited for specific NLP tasks, but when
data is scarce they are not effective. Foundational problems with CNNs are that they are unable
to model long-distance contextual information and to preserve sequential order [105]. The former
implies that CNNs are not well suited for question answering tasks such as SQuAD [78].

2.2.6 ELMo

Word embeddings generated by well-known models such as Word2vec [70] and GloVe [75] do
not take context into account when determining word representations. For ELMo “each token is
assigned a representation that is a function of the entire input sentence” [76]. This is done by using
a bidirectional LSTM. Word embeddings are used only to map words to vector representations.
To improve accuracy further, compared to traditional embeddings, the authors advise to use ‘the
deep internals of the network’ [76]. These internals can be used for downstream models, also
known as transfer learning. For example, the authors show that word sense disambiguation tasks
are captured by higher level LSTM states. Part-of-speech tagging or named entity recognition are
captured by lower level states. ELMo is not the first system to use context, but was obtaining
state-of-the-art empirical results on multiple non-trivial tasks at the time of publication. Another
reason for the good results is that the system is character based. Word based systems cannot
generate an embedding for a word they have not seen during training (out-of-vocabulary tokens).
In character based systems morphological clues can be used to guess the meaning of the out-of-
vocabulary words. The system has quickly become very popular. Reasons for this seem to be
the high accuracy, that the system generalizes well, and that it is integrated into the AllenNLP
open-source NLP library created by Gardner et al. [36].

2.2.7 Transformers

The main issue in the recurrent approaches is that distant information needs to pass through all
the intermediate states. In the basic RNN for each state all the information is updated, causing
less recent information to gradually disappear. Gated recurrent architectures (GRUs and LSTMs)
reduce this problem by being more selective when viewing or changing information. Transformer
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networks allow the model to look at previous inputs instead of previous states [95]. For example,
suppose we are translating ‘impounded’ in the following sentence pair from the WMT’14 English-
German dataset.

The motorcycle was seized and impounded for three months.

Das Motorrad wurde sichergestellt und für drei Monate beschlagnahmt.

Suppose the system has correctly predicted the German sentence up to and including ‘Monate’.
The next step is to predict ‘beschlagnahmt’. To do this the system needs mainly information
about the word ‘impounded’. Gated recurrent architectures learn to look at the previous state
in such a way that the attention is focused on ‘impounded’. This requires the information of the
word to not been overwritten during execution.

Transformers evade this overwriting problem by allowing the system to see all d previous words,
where d is 1024 for the biggest model. The only thing the transformer then needs to learn is where
to focus its attention. The information of all the previous words is stored in an array of word
vectors (a tensor). To apply focus to parts of this tensor the model learns to put a mask over the
tensor. In the mask hidden items are multiplied by infinity [95]. One drawback of this architecture
is the required computational power. Suppose we only need one word from the d previous words.
The mask will hide d − 1 words. This still requires to multiply the masked word vectors by
infinity. Google argues that this is not really an issue since matrix multiplication code is highly
optimized and graphic processing units (GPUs) and tensor processing units (TPUs) exist. So,
the model can relate any dependency in constant time when the range is lower than d. This in
contrast to recurrent layers which are in linear time. When the sequence length is greater than d,
computations will require more than linear time [95].

Another benefit of the transformers are that self-attention visualisations can more easily be
done than in recurrent architectures. By self-attention the authors refer to attention that is used
to generate context aware word representations. An example of a tranformer model correctly
applying coreference resolution is shown in figure 2.7.

Figure 2.7: Example of transformer encoder self-attention distribution [93].
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Chapter 3

Benchmarking

This chapter aims to answer the first research question. The goal is to create a reproducible
benchmark tool, simply called bench. Datasets used by the benchmark tool are described in
Section 3.1. The benchmarked systems are described in Section 3.2. bench is described in
Section 3.3 as are results obtained by running the benchmarks. It has been observed that bench
needs further requirements to be more useful, these requirements are described in Section 3.4.
Notes on using the tool are presented in Appendix 3.3.

3.1 Datasets

Trained models are considered black boxes at the time of writing. To verify performance of a
model data is required. This is fed to the model and results are measured. This section will
describe the datasets used for benchmarking.

3.1.1 Format

The dataset format needs to be able to specify a sentence annotation and subsentence annotation.
One often used dataset for subsentence, or token, classification is CoNLL-2003 [91]. It uses the
NER task definition as described by Chinchor et al. [16]. The definition uses tags to specify
entities, for example:

<B_ENAMEX TYPE="PERSON">bill<E_ENAMEX> and <B_ENAMEX TYPE="PERSON">

susan jones<E_ENAMEX>

Note that this constraints the text since angled brackets (‘<’, ‘>’) cannot be used without escaping
the brackets. A less verbose and non text constraining annotation standard is the BIO2 annotation
standard. The origin is unclear, but adaptation is done by at least Stanford as seen in the GloVe
paper [75]. Here sentences are annotated as follows.

I B-Person

and O

John B-Person

Doe I-Person

worked O

yesterday B-Date

. O

where B, I and O respectively mean begin, intermediate and ‘empty’ annotation. Note that other
annotations, like part-of-speech tagging, are possible by adding another column of tokens. A
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benefit of this annotation is that measuring performance can be done by looking at each token
annotation separately. In a tag example like above it is unclear how cases where the classifier
is partly correct should be solved. Suppose only ‘susan’ is classified as person and not her last
name ‘jones’. Metrics now have to decide how to handle this partially correct situation. In the
BIO2 annotation standard token classifications can only be correct or incorrect. One drawback is
that the standard is not easy to read for humans. A more readable format is the Rasa Markdown
format. Here it constraints the text by using square (‘[’, ‘]’) and round bracket (‘(’, ‘)’) symbols
to denote annotations. For example:

[I](person) and [John Doe](person) worked [yesterday](date).

Unlike BIO2 this standard does not easily allow to also specify other annotations, for example part
of speech tagging. One could argue that the readability of a Markdown format and the versatility
of the BIO standard show that there is no single best approach.

A combination of sentence annotations and token annotations is not supported by the standards
described above. For BIO one could track the sentence annotations in a separate file or put it
before or after the sentence. The former adds duplicate information while the latter makes the
file incompatible with the standard. For Rasa one could change it to a tab separated file and put
the Markdown and sentence annotation in separate columns. This is very readable and compact,
but means transforming the multi-token annotations to separate token annotations for easier
validation. Datasets which combine sentence annotations with token annotations seem to take
yet another approach. They use json to store any information they have. These formats should
allow for easier parsing, but can not easily be read by humans. For example one dataset annotates
entities as as follows.

"entities": [{

"entity": "StationDest",

"start": 4,

"stop": 4,

"text": "marienplatz"

}]

This entity belongs to the sentence “i want to go marienplatz”. ‘start’ and ‘stop’ here assume the
sentence to be tokenized using a WordPunctTokenizer [7] having regexp \w+|[^\w\s]+. Drawbacks
are that the entity text is duplicated and that the datasets are hard to read for humans. The
sentences have to be manually tokenized for verification and the number of lines of the dataset is
an order of magnitude higher than the Markdown format.

3.1.2 Available datasets

Three datasets for intent classification and entity recognition are created and made publicly avail-
able by Braun et al. [10]. The paper and its Github version use different names, this thesis will stick
to WebApplications, AskUbuntu and Chatbot. WebApplications and AskUbuntu are obtained by
pulling questions from StackExchange1. For example, they respectively contain “How can I delete
my [Hunch](WebService) account?” and “How to install a [Brother MFC-5890CN](Printer) net-
work printer?”. Intents for these examples are respectively ‘Delete Account’ and ‘Setup Printer’.
StackExchange datasets are labeled using Amazon Mechanical Turk. The Chatbot dataset is
based on a Telegram chatbot in production use. This dataset contains sentences like “when is the
[next](Criterion) [train](Vehicle) in [muncher freiheit](StationStart)?” having intent ‘Departure-
Time’. Labeling for Chatbot is done by the authors of the paper.

Snips [85] is a company which provides software to locally run a voice assistant. They have
shared some of the data generated by their users as well as results for their benchmarks [24]. The

1https://stackexchange.com
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Dataset Train Test Intents Entities
WebApplications 30 54 7 1
AskUbuntu 53 109 4 3
Chatbot 100 106 2 5
Snips2017 2100 700 7 unknown

Table 3.1: Number of labeled train and test sentences and unique intents and entities per dataset

incentive for sharing these datasets seems to be showing that their system performs better than
other systems. Two datasets have been published by Snips. The thesis has only used the 2017
version and not the 2016 version. The 2017 version will from now on be referred to as Snips2017.
Sentences in this dataset are typically short. They utter some command to the system, for example
for the intent ‘PlayMusic’: “i want to listen to [Say It Again](track) by [Blackstratblues](artist)”.

Full datasets can be inspected at Github2. Summary statistics for these datasets are listed in
Table 3.1. In this table ‘None’ is not counted as an intent. The reason for specifying this is that
falling back to null or some intent during unsure predictions result in different scores for most
metrics. F1 score calculations, for example, do not ignore nulls or ‘None’, but instead consider
them as a separate group. Information about the unique number of entities for Snips2017 is not
specified by the dataset authors.

3.2 Systems

Two open-source systems and some cloud services are considered for the benchmark. The open-
source systems are described in Section 3.2.1 and 3.2.2. Cloud services are described in Sec-
tion 3.2.3.

3.2.1 Rasa

Rasa [8] is an open-source system allowing users to build conversational agents. The systems
consists of two parts, namely rasa nlu and rasa core. The former classifies sentences and
subsentences. To train the system users can specify (hierarchical) intents, synonyms and regular
expressions. Hierarchical intents is a recent addition which allows the system to extract multiple
intents from a sentence. For example, it can extract ‘hi+book ticket’ from “Good morning. Can
I order a ticket to London please?”. Regular expressions can, for example, be used to detect
numbers and dates in fixed formatting. The system is actively used in production. As a result the
code is well documented and stable.

rasa core aims to handle dialogue management. This is an extension on the classifiers of
rasa nlu which aims to understand text in context. Also, it can be used to specify conversation
flow. This part remains one of the most difficult problems for conversational agents. Humans
tend to switch rapidly between topics in conversations. For example, suppose one ticket order
conversation flow contains six questions to be answered by the customer. Customers expect to
be able to switch topic during each one of these questions and then return to the flow. Enabling
this behaviour via state machines or flowcharts is cumbersome, because the number of transitions
grows quickly. One of the Rasa solutions is applying machine learning to let developers train
dialog flows interactively.

Rasa can be used via the API or via the ‘Python API’. The Python API is the most efficient.
Here users install rasa nlu in their programming environment and call functions directly. De-
pending on the used configuration a selection of dependencies have to be installed. The regular
API advises use a Docker container. This is less efficient, but more modular and does not require
to install dependencies. Containers are published to Docker Hub by Rasa. Users can pull these
for free and use the newest stable configuration of choice.

2https://github.com/rikhuijzer/nlu_datasets
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Configurations are defined as a pipeline. Pipelines specify what components should be applied
to sentences and in what order. Typical pipelines contain at least a tokenizer followed by some
classifier. Pipelines are meant to be modified easily and are specified using configuration files.
In practise default pipelines often suffice for end-users. A back-end refers to the used intent
classifier in some pipeline, for example ‘tensorflow’. Three back-ends are offered by Rasa via
Docker Hub, namely rasa-mitie, rasa-spacy and rasa-tensorflow. rasa-mitie is the oldest
and depreciated. Training MITIE (https://github.com/mit-nlp/MITIE) takes at least a few
minutes for small datasets. This is caused by the fact that it is tuning hyperparameters during
training. On two different computers used for this thesis the MITIE Docker Hub image occasionally
hangs on various datasets. rasa-spacy is the successor of MITIE and based on spaCy [87]. In
2015 spaCy was in the top 1% for accuracy and the fastest syntactic parser [18]. spaCy (and by
that rasa-spacy) uses a language model to parse text. It includes seven language models for
which English, Spanish and French include word vectors. The multilingual model supports only
named entities. Unlike the other two back-ends rasa-tensorflow is not based on a pre-trained
language model. This is like classifying sentences in an unfamiliar language (say Chinese) after
only seeing some examples. Rasa advises to use this back-end when training data contains more
than 1000 training examples. The benefit of rasa-tensorflow is that the back-end is language
independent and can handle domain specific data and hierarchical intents.

3.2.2 DeepPavlov

DeepPavlov [13] is similar to Rasa. Unlike Rasa, DeepPavlov aims to aid researchers in develop-
ment of new techniques for conversational agents. Being a newer system than Rasa and aimed
at researchers the system is not yet production ready. The system does only provide a Python
API, requiring Python 3.6. One claimed benefit of the system is that they do not export ma-
chine learning components from other systems. A reason why the system is not well suited for
production is that pipelines can download information. This means that a generic Docker needs
to download many megabytes of data for each time the Docker is started. Manually defining new
Dockers holding this information is possible, but does require some knowledge about Docker and
some time to set it up. For users who want to use only a few training examples pre-trained models
are necessary. DeepPavlov by default includes DSTC 2, Wikipedia, Reddit, RuWiki+Lenta and
ELMo embeddings.

3.2.3 Cloud services

Cloud service providers and various small companies (start-ups) provide APIs for conversational
agents. Functionality differs per provider, but in the basis they all offer the same features. Naming
conventions do not seem to exists. (For example, Rasa calls intent classification training examples
utterances, while Google Dialogflow calls them training phrases.) Via the web interface or API
examples can be sent to a server and the system can be configured. Configurations specify the
example utterances, dialog flows, how to classify entities (used for slot filling) and input language.
At some point the server will use the provided examples to train the model. This takes a few
seconds. An extension on the intent classification and slot filling described above is using knowledge
bases. When looking at IBM Watson a document needs to be uploaded and annotated by humans.
This is an example of a structured knowledge base.

In the period that IBM Watson [3] won the Jeopardy quiz [43] a lot of math and reasoning
was required to create NLP systems. Nowadays, training a competitive neural network for natural
language processing is relatively easy. It takes a PhD candidate a few months [68]. This results
in a lot of companies providing natural language processing services. An in-depth analysis of all
services is left out. The following is a non-exhaustive list. Some offer full conversational agent
capabilities, while others focus on natural language understanding.

Watson Assistant (https://www.ibm.com) is a conversational agent by IBM.

Dialogflow (https://dialogflow.com) is a conversational agent by Google.
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Lex (https://aws.amazon.com/lex) is a variant created by Amazon.

LUIS (https://www.luis.ai) is the conversational agent created by Microsoft.

wit.ai (https://wit.ai) can be used for chatbots and is acquired by Facebook. The system is
free to use, but Wit is allowed to use the data sent to their servers.

Deep Text (https://deeptext.ir) provides sentiment analysis, text classification, named-entity
recognition and more.

Lexalytics (https://www.lexalytics.com) provides categorization, named entity recognition,
sentiment analysis and more.

Pat (https://pat.ai) has as goal to humanize AI and provides some conversational agent ser-
vices.

kore.ai (https://kore.ai) focus lies on intent classification and entity extraction with as goal
to replace graphical user interfaces with chatbots.

Sixteen more are listed by Dale [25].

3.3 Tool and results

The benchmarking tool is called bench and available on Github3. Its goal is to be a reproducible
benchmarking tool for intent classification and named-entity recognition. Reproducible means
that anyone can clone and run the code to reproduce the results presented in this thesis. The
code is written in Python, since it is the default choice for machine learning. Python is conceived
as a object-oriented language. Over time it has included more and more functional programming
ideas. The code in this project will aim to be adhering to functional programming. Reasons are
pedagogic value, improved modularity, expressiveness, ease of testing, and brevity. Some general
notes on functional programming in Python are listed in Appendix B.

The functional programming constraints for the project are that we do not define any new
classes. Specifically, we do not use the class keyword. Exceptions being NamedTuples and Enums.
The code prefers returning iterators over collections, the reason for this is explained in Appendix C.
A final remark is about the imports. When importing, an attempt is made to explicitly import
using ‘from <module> import <class>’. When more implicit imports are used ‘import <module>’
this is can have multiple causes. It is either caused by the appearance of circular imports, by the
fact that some names are too common or to avoid reader confusion. An example for the latter
are the types defined in src.typ. The names are quite generic and could cause name clashing or
confusion when imported explicitly.

3.3.1 Overview

Since the code does not contain classes, the high-level overview is simply a tree-like structure. This
is analogous with a book, where subsections are contained in sections and sections are contained
in chapters. In the code small functions are called by larger functions and these larger functions
are called by even larger functions. For an overview this idea can be generalized to modules. An
overview for the modules of bench is roughly as follows. The ‘.py’ suffix is omitted for all elements
in the tree. Tests are also omitted.

� bench

– src.utils

– src.typ

3https://github.com/rikhuijzer/bench
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– src.dataset

* src.datasets.corpora

* src.datasets.snips

– src.system

* src.systems.amazon lex

* src.systems.deeppavlov

* src.systems.dialogflow

* src.systems.mock

* src.systems.rasa

* src.systems.watson

– src.evaluate

* src.results

Some generic functions are listed in src.utils and used through the entire project. The
project makes use of type hints as introduced in Python 2.7. All NamedTuples or ‘types’ are
defined in src.typ. An overview of the most important types is depicted in Figure 3.1. These
types also contains enumerables or ‘Enums’. These are used in cases where function behaviour
depends on some parameter having a fixed set of options. Alternatively one could use strings
for these cases depending on user-preference. Notable is the usage of System, and by that the
usage of Corpus, in Query, SystemCorpus, Classification and F1Score. This is caused
by the fact that external systems (for example, DialogFlow) have a certain state which needs to
be passed through many functions. This state could be that the system has not yet seen the
dataset, resulting in Corpus.EMPTY, or the system has trained on AskUbuntu, which results
in Corpus.ASKUBUNTU. In, for example, Classification this is used to let some evaluation
function know context for an input sentence. This context includes from what dataset the sentence
came and what system has classified the sentence.

SystemCorpus

System-
Corpus

Query

Response

Classi-
fication

F1Score

CSVStatsCSVIntent CSVEntity CSV

Figure 3.1: Overview of most important type classes (NamedTuples and Enums) and their relations
in bench. Here a line from A to B means that B is a type which includes A (B extends A).

The real work of the project is done by src.dataset, src.system and src.evaluate, as
shown in Figure 3.2. ‘Dataset’ takes input files and converts them to an internal representa-
tion as defined by src.typ. Input files here denote the original dataset files as created by the
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dataset publishers. For the internal representation a Rasa Message4 is used. The benefit of
this is that it avoids defining the same structure and that it can be used in combination with
Rasa code. For example, src.dataset.convert message to annotated str uses Rasa code
to print the internal data representation as a sentence in Markdown format (Section 3.1.1). Next,
the data reaches src.system. Here it is passed to the system under consideration, either in
training or prediction mode. For the predictions this is done by finding out which function can
convert src.typ.Query to src.typ.Response. When, for example, Rasa is under considera-
tion the function src.systems.rasa.get response is called. DeepPavlov would be handled by
src.systems.deeppavlov.get response. PyCharm is known to have the best type inference
for Python. The IDE is not yet able to infer function type for a function mapping, even when
all functions have the same input and output type. A workaround is to manually define the type
of the function returned by the mapping as func: Callable[[tp.Query], tp.Response] = · · · .
src.evaluate takes all responses tp.Response evaluates the performance of the system under
consideration. Printing F1 score is a matter of three functions and about a dozen lines of code. At
one point more advanced logging has been included which is responsible for the other 12 functions
and 110 lines of code.

src.dataset

dataset

src.system system

src.
evaluate

F1 score

Figure 3.2: Diagram showing the dataflow in bench.

3.3.2 Benchmark results

This section presents the benchmark results for intent classification using F1 scoring with micro
averaging. F1 formulas are listed in Section 2.1.4. An explanation for the differences in averages
for the F1 score is presented in Section 3.4.2. Here micro F1 scores are used to allow comparing
results with Braun et al. [10]. The results are listed in Table 3.2.

4rasa nlu.training data.message.Message
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System Source AskUbuntu Chatbot WebApplications
Rasa:0.5-mitie see Table D.1 0.862 0.981 0.746
Microsoft LUIS see Table D.3 0.899 0.981 0.814
Watson Conversation (2017) see Table D.2 0.917 0.972 0.831
Rasa:0.13.7-mitie bench 0.881 0.763
Rasa:0.13.8-spacy bench 0.853 0.981 0.627
Watson Conversation (2018) bench 0.881 0.934 0.831

Table 3.2: Micro F1 scores for intent classification. One score is missing due to a bug in bench.

The paper remarks that “For our two corpora, LUIS showed the best results, however, the
open source alternative RASA could achieve similar results” [10]. When considering only intents
this does not hold. Watson Conversation has very similar results, and in fact slightly higher scores
on two out of three datasets. The MITIE back-end outperforms the spaCy back-end in terms of
accuracy. This would not support the choice of Rasa to depreciate MITIE. It is expected to be
caused by the facts that training MITIE takes more time than spaCy and MITIE tends to freeze
during training. Interesting to see is that the accuracy for Watson Conversation has dropped. The
cause can only be guessed since IBM does not provide information about the Watson back-end.
It could be that the calculations for bench and the paper differ. Alternatively it could be that
the back-end for Watson has changed. The datasets under consideration are small, so it might be
that Watson has chosen a back-end better suited for large datasets. Note that IBM is aimed at
large companies. These companies have the resources for creating lots of training examples.

3.4 Observations

bench requires some further improvements, as explained in Section 3.4.1. Tool design was guided
by the methodology as presented by Braun et al. [10]. Section 3.4.2 points out some observations
which could improve the the proposed methodology.

3.4.1 Benchmarking system

While developing the benchmarking system, it is observed that the current implementation requires
further work. The observations are as follows. Few datasets are publicly available. Current
datasets are either small (AskUbuntu, Chatbot, WebApplications) or domain specific (Snips2017).
Rasa, for example, uses “a dozen different datasets” [71] for verification. One possible explanation
for not sharing these datasets is the sensitive nature of natural language. Another is that they
simply not share it to have a competitive advantage. We also observe that dependencies require the
product to be continuously maintained. The dependencies are mainly in the form of APIs. APIs
are meant to be used by software and will therefore not change often. However, eventually they
will change or stop functioning. So, eventually the benchmarking software needs to be updated.
Another problem is that the services which offer APIs are not free to use. For each system to be
evaluated we need a separate API key. The owner of the benchmarking tool can decide to offer
paid keys or let users set keys manually. The former might be possible by negotiations with NLU
service providers which are incentivized by selling their product. The latter requires users to have
an account for each service. A closed-source solution is Intento5. One can send data to the site
via their API and they will run a benchmark on various services for a given task. Their ‘catalog’
contains machine translation, intent detection, sentiment analysis, text classification, dictionaries,
image tagging, optical character recognition and speech-to-text. The final observation for bench
is as follows. When choosing a system not only the performance matters. One reason for this is
that accuracies are volatile. If companies would base their decision solely on ‘the highest accuracy’
then they would need to change system each month. Since companies can not spend their time

5https://inten.to
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constantly switching systems they should also take other factors into account. These factors can
include pricing, memory usage, classification speed, privacy (whether open-source) and in-house
API preferences.

In summary, we define the following requirements.

� The tool should be continuously maintained,

� offer an API key for each service, or let users add their own keys,

� report more information than just accuracy statistics,

� report evaluation statistics over multiple training runs, and

� include bigger and more varied datasets.

3.4.2 Methodology

Creating a benchmarking tool has resulted in more insight into intent classification. This helped
in identifying improvements for the methodology proposed by Braun et al. [10]. As discussed in
Section 3.1.2 falling back to ‘None’ or a random intent changes F1 score. In the paper Chatbot
does not have a ‘None’ intent, while WebApplications and AskUbuntu do. Furthermore, drawn
conclusions about some system being more accurate than others seems insubstantial. The con-
clusion that accuracy of some system depends on the domain seems convincing, but is poorly
grounded. Reason for this is that both conclusions are based on the F1 score.

In this paper, the F1 score is calculated using micro F1 score. Such a score does not take
classes of different size, so called class imbalances, into account. This is combined with a situation
where intents and entities are given the same weight. For WebApplications there are in total 74
labeled intents and 151 labeled entities. AskUbuntu contains 128 labeled intents and 123 labeled
entities. So, when using micro F1 on AskUbuntu the score is based somewhat equally on intents
and entities. For WebApplications the score is based for about one thirds on intents and two
thirds on entities. This could mean that some system has scored significantly better that others
simply because it labels entities in WebApplications particularly well. Another observation is that
users interested in either intent or entity classification are not well informed. Better seems to be
using macro or weighted F1 and reporting separate intent and entity scores. Macro averaging (and
by that weighted averaging) is better suited to “get a sense of effectiveness on small classes”[81].
Rasa, for example, uses the weighted average in their evaluation according to their code on Github.

Another reason for caution with regard to the presented F1 scores is the probabilistic nature of
neural networks. Although inference (classification) is deterministic, training is not. During train-
ing models often start with random weights. Random initializations can move into different local
minima for the same training data. This could change the inference results. During benchmarking
this effect has been observed for Rasa using the spaCy back-end. According to a mail from the
main author Rasa 0.5 with the MITIE back-end is used for the results described in the paper. The
MITIE back-end has not shown to change accuracy after re-training the model. Microsoft LUIS
and Google Dialogflow also did not show a change in accuracy after re-training. So, it could be
that all the systems in the benchmark were deterministic. Still, the problem of not considering
the possibility of changing accuracy persists for the methodology.
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Improving accuracy

The goal is to improve the classification accuracy for natural language understanding, specifically
intent classification. A search is conducted in Section 4.1 to find ways to improve the accuracy.
BERT is deemed to be the most promising and is discussed in Section 4.2. The section about
BERT describes the model and how it is implemented for this thesis. Accuracy scores for BERT
are listed in Section 4.3 and compared to a baseline.

4.1 Search

The field of NLP is rapidly evolving due to the introduction of deep learning [14]. Systems which
obtain state of the art (SOTA) accuracy are often surpassed within a few months. A recent example
of this is ELMo [76] as published in March 2018 which has been surpassed [105] by BERT [32]
in October 2018. A search is conducted to improve the accuracy of the existing systems. The
research for this part has not been systematic. The method for finding an improvement is based
on coming up with ‘novel’ approaches to improve accuracy. After having such an ‘novel’ approach
the literature is consulted. This search method relies on the assumption that papers have done
their research and will provide proper related work. This section will explain the considered ideas
and related literature.

4.1.1 Duplicate finding

A large part of communications with customers consist of answering questions. Some questions
will be duplicates, or in other words, some questions will have been asked and answered before.
Finding duplicate questions is the same as finding clusters in the data. Another approach could
be based on template responses used by customer support teams. A classifier could be trained to
come up with these template responses.

Another approach to find duplicates is using semantic text similarity. It is is a NLP tasks
focusing on finding sentences (or texts) having the same meaning and a recurring task in the
SemEval workshop. Systems in this field obtain impressive results, however it would not help
with the chosen task of intent classification. Also, intent classification and NER extract more
information from the sentence than only finding whether there is a similar sentence.

4.1.2 Using data

According to Warden [97] it is more effective to get more training data than to apply better models
and algorithms. For conversational agents in company settings it is easy to get raw data. This
shifts the problem to applying to automatic data wrangling. Learning automatically from users is
applied by some Microsoft chatbots. Microsoft Tay famously started to learn offensive language
from users and has been shut down as a result. In China Microsoft has had a more successful
release of XiaoIce. XiaoIce is optimized for “long-term user engagement” [108]. Engagement is
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achieved by establishing an emotional connection with the user. This system which is created by
a research lab and being used by 660 million users does not automatically use the data to learn.
The authors manually optimize the engagement of the system. From this it is concluded that
reinforcement learning and automatic data wrangling are not yet feasible approaches to increase
accuracy.

4.1.3 Kaggle

Kaggle1 is a well-known site in the machine learning domain. On this site a framework exists where
datasets can be published. The site, along other things, shows statistics, a comments section and
a scoreboard. It is famous for hosting ‘competitions’, where the person or team obtaining the
highest accuracy for some task gets price money from the dataset hoster. Kaggle provides a way
for machine learning enthusiasts to communicate. People who obtain top 20 high scores on difficult
tasks tend to explain their pipeline in a blogpost. Research papers tend to focus on designing the
best deep learning architectures. The Kaggle explanations are valuable sources for learning how
to get the most out of the architectures.

One such post [57] uses three embeddings, namely Glove, FastText and Paragram. The author
argues that “there is a good chance that they [the embeddings] capture different type of information
from the data”. This method is called boosting. Predictions from the embeddings are combined
by taking the average score. A threshold is set to remove answers where the model is unsure.
This method could be used to improve performance for natural language understanding. Running
three systems in parallel does increase the training time, but the difference is not too large. It
would be interesting to test whether averaging can be replaced by a more involved calculation.
Meta-algorithms such as boosting, bagging and stacking are not investigated further since the
improvement is expected to be insignificant.

4.1.4 Meta-learning

Meta-learning is “is the science of systematically observing how different machine learning ap-
proaches perform on a wide range of learning tasks, and then learning from this experience, or
meta-data, to learn new tasks much faster than otherwise possible” Vanschoren [94]. Few-shot
learning aims to learn useful representations from a few examples. In practise most intent clas-
sification systems use few examples, so few-shot learning is interesting to the research question.
This was also concluded by the IBM T. J. Watson Research Center [106]. The authors show that
their system outperforms other few-shot learning approaches. They do not compare their system
against natural language understanding solutions and conclude that their research should be ap-
plied to other few-shot learning tasks. This implies that natural language understanding specific
systems obtain higher accuracies. Automatically tuning hyperparameters as done in TensorFlow’s
AutoML is based on the work by Andrychowicz et al. [2]. Industry claim that AutoML obtains
95% of the accuracy of hand-tuning hyperparameters. Another problem is that it does not scale
well [49]. Transfer learning approaches like MAML [34] and Reptile [72] could be useful for intent
classification as well. Different domains require different models. Reptile seems interesting to be
used to train a model on one domain and then be able to easily switch the model to other domains.
This would introduce a lot of complexity in the code. More convenient would be using a model
which works on all domains.

4.1.5 Embeddings

Embeddings capture knowledge about language and use that for downstream tasks. There appears
to be a consensus about the timeline of embeddings evolution. GloVe [75] was superseded by
FastText [50]. The Facebook FastText embedding is aimed to be quick, allowing it to be used as
a baseline. With 157 languages (https://fasttext.cc/) it is a mutli-lingual model. Another

1https://www.kaggle.com
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state-of-the-art and easy to implement embedding is the universal sentence encoder [15]. The word
‘universal’ denotes that the system has used a supervised training task which has been chosen such
that the embeddings generalize to downstream tasks. Not only Google, but also Microsoft research
is working on multi-task learning [89]. These embeddings are not enough to improve on existing
systems, since Rasa is using the universal sentence encoder [99]. One step further would be to let
the model decide what embedding it wants to use [56]. A caveat is the fact that one then needs
to implement multiple embeddings (even when the model decides that only one embedding should
be used).

4.2 BERT

At the start of October 2018 Google published their NLP model called Bidirectional Encoder
Representations from Transformers (BERT) [32]. The authors show it is able to score state-of-
the-art (SOTA) results for eleven NLP tasks. A comparison by Young et al. [105] shows ELMo [76]
outperforms various SOTA models on six distinct non-trivial NLP tasks. The comparison [105]
continues by showing that BERT gets higher accuracy scores than ELMo for all six tasks. This by
transitivity means that BERT obtains the highest accuracy scores at the time of writing. BERT
being SOTA is also supported by a maintained scoreboard for the Stanford Question Answering
(SQuAD) dataset [79].

4.2.1 Model description

Results are obtained for a wide range of tasks presented by various datasets. These tasks include
entailment classification, semantic text similarity, sentence classification and question answering.

The paper describes three reasons for the good results on the GLUE, MultiNLI and SQuAD
datasets. One being that they pre-train the model and let users fine-tune it on their downstream
task [32]. Fine-tuning starts with a model for which all the layers are initialized based upon a
pre-trained model [41]. Then the output layer is replaced by a task specific output layer, hence
the number of labels equals the classes in the downstream dataset [41]. This can also be denoted
as transfer learning [20]. The output layer uses dropout during training as described in the
create model function in run classifier.py [30]. Basically, pre-training learns a language
model which is used for the downstream task. Another is that transformer models parallelize
better than recurrent architectures [95]. This allowed the BERT researchers to train a model
having 340 million parameters (BERTLARGE). Lastly, the model is presented as being ‘deeply
bidirectional’. The bidirectionality allows the model to use context from both sides to determine
the meaning of a word. Deep bidirectionality denotes that the model uses left and right context
in all layers of the model. This is visualised and compared to ELMo [76] and OpenAI GPT [77]
in Figure 4.1.

Figure 4.1: Comparison of flow of information in the layers of various recent pre-training model
architectures [32, Figure 1]. Note that “only BERT representations are jointly conditioned on
both left and right context in all layers” [32].
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BERTBASE BERTLARGE BERTLARGE, second run

Figure 4.2: TensorBoard visualisation or ‘summaries’ for fine-tuning pre-trained models on
AskUbuntu. Here the horizontal axis denotes the number of steps. Accuracy and loss for the
model trained on the test set is evaluated at fixed steps on the evaluation set. The plots show
that BERT is in some cases able to converge to a correct local minimum after 100 steps (3200
examples shown to model). The scores in these images should not be compared to the scores in
Section 3.3.2 since the metrics and the data split differ.

Another benefit of BERT is that they provide a wide range of pre-trained models. The basic
models presented in the BERT paper are BERTBASE and BERTLARGE. BERTBASE is “chosen to
have an identical model size as OpenAI GPT for comparison purposes” [32]. BERTLARGE obtains
higher accuracy on most tasks and has 340 million parameters in total. Compared to BERTBASE

this is an increase from 110 million to 340 million parameters. The BERT Github repository [28]
lists some more models, namely uncased and cased variants for BERTBASE and BERTLARGE.
In general uncased models suffice, but for certain tasks (for example, NER) performance can be
increased by using a cased model [28]. Also, they provide BERTMULTILINGUAL and BERTCHINESE.
The multilingual model is trained on the 100 languages having the most Wikipedia pages [31].

4.2.2 Training

From now on training is used to denote fine-tuning of the model. Training the general language
model on some downstream task is presented as being inexpensive [28]. Relative to the pre-training
it is. Experiments show that fine-tuning with default hyperparameters will run out of RAM on
a 16 GB RAM machine. Lowering the batch size reduces the memory usage, but running a few
training steps still takes at least a few hours.

To train the model on some tasks it is advised to run “a few epochs” [28]. Based on the example
code provided by Google researchers the number of epochs is 3 and the number of training examples
is about 1000 [4]. So, it is advised to show the system 3000 examples. For our smaller datasets of
around 50 examples this means running 3000/50 = 60 epochs. When measuring the training time
in steps it means running 3000/16 ≈ 188 steps for a batch size of 16. Preliminary experiments
on the AskUbuntu dataset (having 53 training examples) with a batch size of 32 confirm this
estimate, see Figure 4.2. The images show that the system does not converge smoothly, and can
even have a sudden drop in performance. One possible explanation for the performance drop is
that the model moved into an non-generalizing local minimum.

The results are interesting because it shows that the model is able to learn something even
for a dataset with only tens of training examples. Training the model for 5 steps or 80 examples
takes at least a few hours on a modern computer. Interpolation suggests that training 188 steps
will take at least 36 hours. This is impractical when doing experiments.
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According to the paper the benefit of the Transformer models is that they are highly paralleliz-
able. Training BERT consist mainly of matrix multiplications [27]. These can be done quickly and
efficiently on graphic processing units (GPUs) and tensor processing units (TPUs). The latter are
ASICs created by Google specifically to do machine learning inference [51] and contain 64 GB of
RAM [28]. When using the TensorFlow implementation of BERT, GPUs with 16 GB of RAM are
required [28]. GPU optimizations are available in the PyTorch implementation provided by Wolf
et al. [102], but PyTorch does not support TPUs at the time of writing. Prices for these GPUs
are at least a few thousand euros, which means most users and companies resort to cloud services.
Google Colab Google [38] provides free access to a GPU and TPU instance. Code which uses
Google Colab for BERT is based on an example implementation provided by Google [4].

Using Colab is a compromise between usability and costs. The costs are limited to the use of
some storage in a Google Cloud Bucket. Usability is hindered by the usual constraints of online
Jupyter Notebook editors, for example no unittests, no autocomplete and poor Git integration.
To overcome these issues most of the code is written and tested locally and pushed to a Github
repository called improv, see Appendix E. In the Colab the code is then pulled from the repository
and main functions are called. Using Colab has benefits as well. Hyperparameters and output
are visible in one document and can easily be modified in the Notebook, this eases verification.
Reproducibility is possible by opening the Notebook and running all cells. The first cell will ask to
link the Colab to a Google account, make sure this account has access to a Google Cloud Bucket.

The plots in Figure 4.2 are created using the default TensorFlow visualisation tool TensorBoard.
Generating these plots can be done by specifying a model and metrics using the TensorFlow
Estimator API. The plots will not be generated for the rest of the runs for reasons explained
in Section E.2. For the rest of this document all results are for the BERTLARGE model since
BERTBASE is only created for a fair comparison with OpenAI GPT [32].

4.2.3 Joint training

One reason why neural networks are obtaining the best results for many fields is because networks
are now deep. Deep networks have more layers and can therefore learn more complex tasks.
One application of this is adding a larger portion of the pipeline to the model. For example,
the code by Keller and Bocklisch [55] for the default pipeline for rasa-spacy, as introduced in
Section 3.2.1, contains the following steps. In these steps a featurizer denotes a system component
which transforms text to vector representations [12].

1. Tokenization which splits texts up in tokens.

2. Regular expression based intent and entity featurizer (for example able to featurize phone
numbers),

3. Intent featurizer based on spaCy [87].

4. Stanford Named Entity Recognizer based on conditional random fields [33].

5. NER synonym detection.

6. Intent classification based on scikit-learn [83].

For this pipeline the Stanford Named Entity Recognizer and scikit-learn classify separately.
Preferably one would have one model which could learn to do the entire pipeline, also known as
an end-to-end model. End-to-end models have two benefits. Firstly, an end-to-end model avoids
feature engineering and data pre-processing [67]. Secondly, end-to-end models can obtain higher
accuracies because (semi-)optimal features are found automatically.

That the combination improves independent models has been shown by Ma et al. [66] and Zhang
et al. [107]. The results for the former are obtained by using a LSTM network. The latter
introduces an algorithm to combine hidden states from an LSTM. They show this for the more
general problem of sequential labeling and classification. Intuitively the improvement was to be
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Single sentence classification Single sentence tagging

Figure 4.3: Two of the four single sentence tasks presented in the BERT publication [32, Figure
3].

expected for the following reason. Suppose we are trying to classify a dataset which contains the
sentence:

“I would like to book a ticket to London tomorrow.”

The sentence has intent ‘BookFlight’. Training the model could be simplified by providing the
sentence classifier with:

“I would like to book a ticket to <location> <date>.”

Now the model does not have to learn to classify sentences while also learning that London is
a location and that tomorrow is a date.

Note that an end-to-end model is preferred over two separate models. At the time of writing
NER classifiers do not obtain perfect accuracy. This means that some classifications will be
incorrect. The example from above could instead be converted to:

“I would like to book a <date> to <location> tomorrow.”

This could make the intent classifier drop in accuracy. In an ideal end-to-end model incorrect
NER classifications would be less of an issue. The model would learn to ignore the named entity
recognition if it would not increase accuracy.

4.2.4 BERT joint training

That joint training BERT is possible can be observed from Figure 4.3.
Let A = A1, A2, · · · , An denote the layer which is depicted below C, T1, · · · , Tn, and let B =

B1, B2, · · · , Bn denote the layer below A. Let s denote the number of tokens for some input
sentence. By default the max sequence length for the model is set to 128. For each sentence the
sequence length is padded to this max sequence length. When predicting a ‘class label’ C will only
be based on A1 which is based on B1, B2, · · · , Bs. A2, A3, · · · , An are not used. When predicting
entities only A2, A3, · · · , As are used. It seems that a joint model is possible by providing the
model with a combination of these two. Consider the NER as a base model and suppose we add
some input to C. Now when predicting C the model is expected to learn to look at input from A.
For this it can use entity information from A2, A3, · · · , As. To also learn non-trivial patterns in
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non-entity words in the sentence it can use A2, A3, · · · , An. Typically sentences are much shorter
than 128 tokens so enough space should be available in A2, A3, · · · , An. To allow for more space
the max sequence length can be increased, this will increase training and inference time.

To do this the input for the model has been changed from:

text: ['how', 'do', 'i', 'disable', 'the', 'spam', 'filter', 'in', 'gmail', '?']

true: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-WebService', 'O']

to

text: ['INTENT', 'how', 'do', 'i', 'disable', 'the', 'spam', 'filter', 'in',

'gmail', '?']

true: ['FilterSpam', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-WebService', 'O']

where ‘text’ is passed to C, T1, · · · , Ts and ‘true’ to E[CLS], E1, · · · , En during training. The
BERT tokenizer splits words which are not listed in the vocabulary corresponding to a pre-trained
model. INTENT is capitalized to force it to be out-of-vocabulary, it is converted by BERT to
[UNK]. The goal of this is to avoid overriding the default interpretation the pre-trained model has
for ‘intent’ (or any other uncased token we choose).

The NER loss function can be applied to the joint training without change. This is counter-
intuitive because input examples have one position for the class C and s positions for the entities
T1, T2, · · · , Ts. Typically sentences have around 10 tokens after tokenization. So, the loss is based
on around one intent position and ten entities. This means that the model will learn entity recog-
nition much quicker than intent classification. For situations where the model is able to learn the
entities this is not expected to affect the performance of the intent classification significantly. It is
expected that the only significant difference of this change is in the difficulty of the loss function.

4.3 Results

Experiments are conducted on the AskUbuntu, Webapplications, Chatbot and SNIPS2017 dataset
as introduced in Section 3.1.2. Comparisons are made for a fixed number of steps (or equivalently
epochs). The reason for this is that intermediate results are not easily reported for the BERT
model as explained in Section 4.2.2. The number of steps to be used for training is based on a
guess on what should be enough. Validating whether the model should have been trained for more
epochs can be done by looking at the loss reported in Appendix F for different number of steps.
For each dataset various runs for BERT are executed. During one run only intents are shown to
the system and accuracy is measured for intents. Another run only shows entities and measures
intents. A third run shows the system intents and entities and measures both. These methods
are denoted as separate or joint. It is expected that the joint training increases accuracy for both
intent and entity classifications. The reason for this is that the model sees more varied data and
hence should be able to more easily find a good internal representation of the data. Results are
listed in Table 4.1. Further experiments on the near zero score on Snips2017 separate intent are
located in Section E.3.

Note that separate training consists of two runs, and hence ran twice as many epochs. This
seems fair, since intent or entity improvements which require twice as many training steps are not
interesting for expensive models such as BERT. As a baseline Rasa 0.13.8 with the Spacy pipeline
is used. At the time of writing only intent classification is implemented using the benchmark code,
so entity scores are missing. Omitting scores for other systems has been deliberate. The table
is merely meant to support that joint training is feasible. A final remark is that the scores have
been rounded to two decimals. The number of epochs is calculated by taking number of training
steps times training batch size and dividing by number of training examples. The training time
for 600 steps is around 10 minutes, for 6000 steps it is around 20 minutes. The reason for the
relatively small increase in training time is that most time is spent on training preparations and
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transferring model checkpoints between TPU and cloud storage.

Dataset Steps Batch size Epochs Method Intent Entity
WebApps Rasa 0.67± 0.04

600 (twice) 32 640 (twice) separate 0.72± 0.03 0.81± 0.01
600 32 640 joint 0.76± 0.07 0.82± 0.01

AskUbuntu Rasa 0.84± 0.00
600 (twice) 32 362 (twice) separate 0.82± 0.05 0.81± 0.01
600 32 362 joint 0.87± 0.01 0.83± 0.00

Chatbot Rasa 0.98± 0.00
600 (twice) 32 192 (twice) separate 0.84± 0.21 0.76± 0.00
600 32 192 joint 0.98± 0.00 0.79± 0.00

Snips2017 Rasa 0.99± 0.00
6000 (twice) 32 91 (twice) separate 0.04± 0.00 0.84± 0.00
6000 32 91 joint 0.98± 0.02 0.86± 0.00

Table 4.1: Weighted F1 accuracy scores (mean ± standard deviation, over three runs) for separate
and joint training on four datasets. The NER accuracy calculation is based on the FullToken-
izer [29]. Details are listed in Appendix F.

From the results it can be concluded that joint training is feasible. Joint training increases
the named-entity recognition accuracy for each dataset. For intent classification joint training
significantly increases accuracy compared to separate training. Compared to the rasa-spacy
baseline it performs better or similar on all the small datasets (WebApplications, AskUbuntu,
Chatbot). The accuracy is slightly lower for Snips2017. The model accuracy will be near zero
when training on intents separately for SNIPS2017 and the model accuracy will vary for Chatbot.
For Snips2017 it has been found that lowering the step size does not solve this problem, as listed
in Table F.4. One reason for the poor performance on intent classification only is expected to
be that the model get stuck in an incorrect local minimum. This might be explained by the fact
that joint training examples are more varied. A typical sentence contains 12 tokens. Then a joint
training batch of size 32 will contain about 3 tokens related to intents and 29 related to entities.
For an intent training batch of size 32 it will contain 32 tokens related to intents. Hence, the data
for the joint training is much more complex. This seems to indicate that the joint training forces
the model to learn a more complex representation.

An important thing to note about the results is that the datasets are very small. One would
expect that the large BERT model is better suited for datasets which contain more training
examples. Furthermore, the experiments are based on a basic implementation. For intent the
model as defined by Devlin [28] is used. For named-entity recognition and joint training the model
by Kaiyinzhou [53] is used. Not only the batch size but also other hyperparameters can be tuned
for better results. Training has used a fixed number of steps or epochs. It might be that more
epochs give higher accuracies. On the other hand it might also be that less epochs correspond
to similar accuracies in less training time. Other interesting hyperparameters are max seq length
and learning rate. Lowering the former to the expected maximum number of tokens in sentences
reduces training and inference time.

Observe that joint training generalizes to sequential labeling and sentence classification. In
other words, any combination of tasks where sentences are classified as well as parts of the sentence
and these tasks are correlated. The tasks, of course, are expected to be correlated for any real-
world NLP dataset. Also, it seems that joint training can be used for multiple sequential labeling
tasks (for example, NER and part-of-speech tagging) combined with a sentence classification task.
Further work is needed to validate this.
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4.4 Implementation improvements

The current implementation is a proof-of-concept. The loss function for joint training needs to be
reconsidered. Currently the importance of intent and all named-entities is the same, meaning one
error in a intent or in a named-entity weights the same. It might be better for the model to have a
higher importance for the intents, since the intent contains information about the entire sentence.
Further tests are needed to see whether the increase in accuracy is significant. Comparing NER
with a baseline is currently not possible using bench since the F1 score calculation is based on
the tokenizer used by BERT. The BERT tokenizer (FullTokenizer) is based on the vocabulary
file corresponding to the pre-trained BERT model. So, when trying to compare the score with, for
example, Rasa one has to use the same tokenizer and vocabulary file to calculate the Rasa score.
Better would be to use a more standard tokenizer as provided by NLTK [7]. Another thing needed
to determine the significance of the accuracy improvements is more and more varied datasets. No
dataset of around a few hundred distinct training examples has been evaluated, while this seems
realistic for production use-cases. One could merge AskUbuntu, WebApplications and Chatbot,
but this would be an unrealistic dataset. It would be a dataset where two thirds is related to
software questions and one third is related to public transport information. Tests should also
be conducted using the other models such as BERTMULTILINGUAL and BERTBASE (cased). The
authors [32] use English models to get SOTA results, this suggests that BERTMULTILINGUAL

performs worse. It is unknown how big the difference between the two is. Another improvement
would be setting up fine-tuning such that TensorBoard visualisations (like Figure 4.2) are possible.
This allows users to get a better insight into the model training. Lastly, the code is in need of
refactoring and validation. For example, the NER code has a distinction between X and O. O is
used by the BIO annotation standard and X is used for padding (since the sentence is shorter than
the maximum sequence length). The model in its current implementation does use X to classify
tokens. Accuracy can be improved by simply converting all X in the output to O.

Less important improvements are using conditional code to fix I-entity statements appearing
without a B-entity. This constraint is enforced by the BIO annotation standard, where ‘inter-
mediate’ statements are preceded by ‘begin’ statements. Also, for production use it might be
beneficial to do some hyperparameter tuning.
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Conclusions

Recent well-known artificial intelligence (AI) examples, such as Apple Siri, suggest that difficult
natural language processing (NLP) tasks can be automated. The graduation company is inter-
ested to see whether this can be used to automate customer support. To this end various NLP
tasks have been considered. Eventually it is decided that intent classification and named-entity
recognition are an interesting combination of tasks for the graduation company. This combination
of tasks is called natural language understanding (NLU) and often used in chatbots to respond to
users in real-time. While reading about this task it was found that various parties run benchmarks
and draw conclusions. For each party an issue which affects the validity is found. This gives rise
to the following research question and goal.

RQ1. Can an open-source benchmarking tool for NLU systems and services be created?

RG1. Develop an open-source reproducible tool for benchmarking of NLU systems and ser-
vices.

The answer for the first research question is that it is possible. However, stronger requirements
are needed to make the tool more useful. The tool is required to be continuously maintained to
adapt to changing APIs for NLU services and software. It would require to offer an API key, or
let users add their own keys. Furthermore it should offer better metrics. Deciding on a product
depends not only on accuracy, but also depends on at least pricing, memory usage and running
time. The system should include more metrics to reflect these properties. Currently the accuracy
metric is based on the last run. Training is probabilistic, meaning that accuracy may vary for
each training run. Reporting only the last run can lead to incorrect conclusions, so the program
should execute multiple runs and summarize the results. Lastly, the used datasets are small or
domain specific. More and bigger datasets would allow for more statistical powerful conclusions.

Next, the tool (and knowledge obtained by creating the tool) is used to work on the following
research question and goal.

RQ2. Can the classification accuracy for NLU systems and services be increased?

RG2. Improve the accuracy of NLU systems and services.

The search for improvement has considered increasing the amount of training data and using
new meta-learning algorithms and embeddings. A recent model called Google BERT [32] is ex-
pected to be the most likely candidate for increasing accuracy. The model provides a pre-trained
checkpoint which has ‘learned’ about language by reading large amounts of text. The pre-trained
checkpoint can then be fine-tuned on some specific NLP task using transfer learning. It is a big
model, meaning that fine-tuning takes around 1,5 days on a modern computer and a few minutes
on a high-end GPU. Experiments on intent classification datasets show non-significant improve-
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ments in accuracy. To improve accuracy further the model has been jointly trained on intent
classification and named-entity recognition. The benefit is that named-entity information can be
used to determine the intent and vice versa. The Google model is a good candidate for jointly
training because it, unlike other recent models, uses left and right context in all layers of the net-
work. BERT has obtained state-of-the-art results in a wide range of tasks including named-entity
recognition. These two facts imply that jointly training BERT should obtain state-of-the-art res-
ults on the joint intent classification and NER task. Basic experiments are conducted in which
training BERT separately is compared to training it jointly. The experiments show that jointly
training is possible and compared to separate training obtains higher accuracies for intent classi-
fication and NER while requiring fewer training steps. Compared to a baseline the intent accuracy
is equal or higher for datasets with around 100 training examples. Future work is needed to see
whether the model implementation can be improved and whether the improvements in accuracy
are significant.
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Appendix A

bench usage

Installation is similar to other Python projects. Pull the code and in a terminal set the current
working directory to the project folder. Install the required pip packages by running the following
command.

pip install -r requirements.txt

If one wants to check accuracy for an open-source system then run the following command.

docker-compose up

docker-compose will read ‘docker-compose.yml’ and use that information to spin up various
Docker containers. All dockers listed in the file are available from Docker Hub. This avoids having
to build Dockers manually. DeepPavlov has been removed from the configuration file, since it was
found to be unstable, see Section 3.2.2.

After the set-up the program can be executed by running ‘bench.py’. To change on which
system the benchmarking occurs, replace the first parameter in the get system corpus call.
The prefix is used to determine which system is being tested. Possible prefix options are ‘mock’,
‘rasa’, ‘deeppavlov’, ‘lex’ and ‘dialogflow’. Rasa and DeepPavlov will use the complete string to
find a matching port from ‘docker-compose.yml’. So, based on the Docker configuration one can
also specify ‘rasa-tensorflow’, ‘rasa-spacy’ or ‘rasa-mitie’. The corpus (dataset) to run the bench on
is specified by an enumerable, see src.typ.Corpus for possible options. When running the script
in a modern IDE autocomplete will suggest the possible corpora. Slightly more convenient would
be to have the script take input arguments using sys.argv. After setting the two parameters the
script can be executed and will display all predictions as well as micro, macro and weighted F1

scores. The predictions and F1 scores will also be written to files, see the ‘results’ folder.
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Notes on functional programming
in Python

Python is not a pure functional language. However more and more constructs of functional pro-
gramming are being added to the language each year. This appendix will explain some functional
ideas used in the code, as presented by Lott [65]. Higher-order functions take or return functions,
this is used to replace the factory design pattern as explained in Section B.1. Keeping track of
state without a class results in function signatures to contain many parameters, these can be
handled by using NamedTuples, see Section B.2. Another benefit of classes is that data can be
stored, used for example in caching. A convenient solution for caching is described in Section B.3.
Collections of data are typically transformed via loops. Here each loop will transform the entire
collection and move to the next transformation. Lazy evaluation, as described in Section B.4, uses
a more efficient way.

B.1 Mapping to functions

In code we often have a function which calls other functions depending on some conditionals. For
example in ‘system.py‘ the factory design pattern is replaced by a more functional design. In this
design ‘system.py‘ behaves like a super and delegates the work based on what system we currently
interested in. We give an example for two systems. The delegation could be done via conditional
statements.

if 'mock' in system.name:

response = src.systems.mock.get_response(tp.Query(system, message.text))

elif 'rasa' in system.name:

response = src.systems.rasa.get_response(tp.Query(system, message.text))

elif ...

This introduces a lot of code duplication. Therefore a dict is created.

get_intent_systems = {

'mock': src.systems.mock.get_response,

'rasa': src.systems.rasa.get_response,

...

}

Now we can just get the correct function from the dict and call it.

func: Callable[[tp.Query], tp.Response] =

get_substring_match(get_intent_systems, system.name)

query = tp.Query(system, message.text)

response = func(query)

46 Automatically responding to customers



APPENDIX B. NOTES ON FUNCTIONAL PROGRAMMING IN PYTHON

Note that get substring match() implements the substring matching used in the condi-
tional code (if ’mock’ in system.name:). Since the code can return any of the functions
contained in the mapping they should all have the same signature and output. The used IDE
(PyCharm 2018.2.4) is not able to check this. Therefore, functions from the mapping func get a
type hint. This allows the IDE to check types again and it allows developers to see what signature
should be used for all the functions in the mapping.

B.2 NamedTuple

Pure functions by definition cannot rely on information stored somewhere in the system. We
provide one example from the code where this created a problem and how this can be solved using
NamedTuples.

The benchmarking tools communicates with a system called Rasa. Rasa starts in a default,
untrained, state. To measure its performance we train Rasa and then send many sentences to
the system. In general one prefers to functions should be as generic as possible. It makes sense
to have one function which takes some sentence, sends it to Rasa to be classified and returns all
information from the response. To avoid re-training Rasa for each system we have to remember
whether Rasa is already trained. Passing a flag ’retrain’ to the system is insufficient, since the
function does not know where Rasa should train on. To make it all work we need the following
parameters:

� sentence: The sentence text.

� sentence corpus: The corpus the sentence is taken from.

� system name: Used to call the function which can train the specific system we are interested
in.

� system knowledge: Used in combination with sentence corpus to determine whether
we need to re-train.

� system data: In specific cases even more information is needed.

re-training the system to check whether its outputs differ.
When this function has decided to train the system the system knowledge changes. So as

output we need to return “
Since Python 3.5 a NamedTuple with type hints is available.
To allow for better type checking and reduce the number of function parameters use is made

of typing.NamedTuples.

B.3 Function caching

Functions can be cached using functools.lru cache. This is mainly used for reducing the
number of filesystem operations. A typical example is as follows. Suppose we write some text to
a file iteratively by calling write multiple times. Since we try to avoid storing a state write
does not know whether the file already exists. To solve we can do two things. The first option is
passing parameters telling the function whether the file already exists. This is cumbersome, since
this state needs to be passed through all the functions to the function which is calling the loop over
write. This can be done directly by calling write or indirectly by calling some other function.
The second option is defining a function to create a file if it does not yet exists create file. We
call this function every time write is called. This does mean that the filesystem is accessed to
check the folder each time write is called. To avoid all those filesystem operations create file
can be decorated using functools.lru cache. Now on all but the first calls to create file
just query memory.
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There is one caveat with this using function caching. Make sure to not try to mimic state. In
other words the program should not change behaviour if the cache is removed. Reason for this
is that any state introduced via the cache is similar to creating functions with side-effects but
without all the constructs from object-oriented programming.

B.4 Lazy evaluation

By default Python is not interested in performance and advises to use a list for every collection.
However, lists are mutable and therefore not suitable for hashing. Since hashing is not possible
any function taking lists as input is not suitable for function caching.

Also, in many cases the list might not be the final structure we need. Consider the following
use cases where the output of type list is used:

� Only unique values are required, so the list is casted to a set.

� Only whether some value satisfies P is required.

� The x first elements are required.

� Only the values satisfying x are required.

� Only an output which is transformed is required.

Considering all these use cases it makes more sense to return an iterator by default instead of
a collection. One practical example for the bench project which supports this notion is using an
iterator on classification requests.

Suppose we want to measure the performance of some cloud service. Suppose we wrote some
code which takes a sentence from some corpus and performs the following operations on this
sentence:

1. Send the sentence to some cloud service.

2. Transforms the response to the pieces of information we need.

3. Store this information.

Suppose one of the last two operations contains a mistake causing the program to crash. When
not using an iterator all sentences will have been sent to the cloud service after the first operation.
Since the post-processing did not succeed we did not obtain results and need to redo this operation.
In effect the programming error caused us to waste about as many API calls as there are sentences
in the corpus we are testing. This is a problem since the API calls cost money and take time to
execute.

To solve this use lazy evaluation. For example, functions supporting lazy evaluation in Py-
thon are map, filter, reduce and any. Another benefit for using iterators is that it improves
modularity and, once used to the paradigm, readability. Take the following typical Python code.

my_list = []

for item in some_iterable:

updated_item = g(f(item))

my_list.append(updated_item)

In this code some iterable is read and the transformation f and g are applied to each item in
the iterable. The same code can be rewritten to use map as follows.

def transform(item: SomeType) -> OtherType:

return g(f(item))

my_iterable = map(transform, some_iterable)
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Lazy evaluation demonstration

This appendix demonstrates the effect of using iterators instead of regular collections. The code
demonstrates this by processing some fictional raw materials to a chair. The first is function called
ford is similar to a Ford factory around 1915. Here each part of the assembly line just keeps
producing items as long as there is input coming in. After a while the other parts of the assembly
line start processing the items and discover a fault in the items. One problem of this way of
working is that the factory now has a pile of incorrect items in their stock.

The second function called toyota is similar to a Toyota factory after 1960. Here just-in-time
(JIT) manufacturing is used as developed by Toyota [73]. Each item is processed only when the
next step in the process makes a request for this item.

C.1 Benefits

Using JIT makes sense in computer programs for the following reasons. It saves memory. In each
step in the process we only store one intermediate result instead of all intermediate results.

It can detect bugs earlier. Suppose you got a combination of processing steps, lets call them f
and g and you apply them to 100 items. In f we send some object to a system and get a response.
In h we store the response of this API call. Suppose there is a bug in h, lets say the file name
is incorrect. Suppose this is not covered in the tests and we decide to run our program to get
all the results we want. Using an approach similar to ford the program crashes after doing 100
executions of f and g. This means that the program executed 100 API calls. Using toyota the
program crashes after just one API call. Here ford has in essence wasted 99 API calls.

It does not make assumptions for the caller. Suppose some function k returns an iterable and
is called by l. The function l can now decide how it wants to use the iterable. For example it can
be casted to unique values via set or it can partly be evaluated by using any.

C.2 Code

from typing import List, NamedTuple

""" See README.md """

Wood = NamedTuple('Wood', [('id', int)])

Chair = NamedTuple('Chair', [('id', int)])

materials = [Wood(0), Wood(1), Wood(2)]

def ford():
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""" Processing all the items at once and going to the next step. """

def remove_faulty(items: List[Wood]) -> List[Wood]:

out = []

for material in items:

print('inspecting {}'.format(material))

if material.id != 1:

out.append(material)

return out

def process(items: List[Wood]) -> List[Chair]:

out = []

for material in items:

print('processing {}'.format(material))

out.append(Chair(material.id))

return out

filtered = remove_faulty(materials)

processed = process(filtered)

print('Result of ford(): {}'.format(processed))

def toyota():

""" Processing all the items one by one. """

def is_not_faulty(material: Wood) -> bool:

print('inspecting {}'.format(material))

return material.id != 1

def process(material: Wood) -> Chair:

print('processing {}'.format(material))

return Chair(material.id)

filtered = filter(is_not_faulty, materials)

processed = list(map(process, filtered))

print('Result of toyota(): {}'.format(processed))

if __name__ == '__main__':

ford()

print()

toyota()

C.3 Output

The output for the program is as follows.

inspecting Wood(id=0)

inspecting Wood(id=1)

inspecting Wood(id=2)

processing Wood(id=0)

processing Wood(id=2)

Result of ford(): [Chair(id=0), Chair(id=2)]

inspecting Wood(id=0)
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processing Wood(id=0)

inspecting Wood(id=1)

inspecting Wood(id=2)

processing Wood(id=2)

Result of toyota(): [Chair(id=0), Chair(id=2)]

This demonstrates that iterator elements are only executed when called.
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Intent F1 score calculations

The F1 score calculation by [10] uses micro averaging. For two reasons this appendix focuses these
calculations on intent only. The first reason is that these results are compared against benchmarks
from the bench project in Section 3.3.2. Secondly, micro averages could be skewed when the
number of intents and entities differ, as described in Section 3.4.2. It is interesting to compare
the differences. This appendix lists calculations for Rasa in Table D.1, Watson Conversation in
Table D.2 and Microsoft LUIS in Table D.3.

Corpus Intent True + False - False + Prec- Recall F1

ision score

Chatbot
DepartureTime 34 1 1 0.971
FindConnection 70 1 1 0.986 0.986 0.986
Σ 104 2 2 0.981 0.981 0.981

WebApps

ChangePassword 4 2 0 1 0.667 0.8
DeleteAccount 9 1 5 0.643 0.9 0.75
DownloadVideo 0 0 1 0
ExportData 0 3 0 0
FilterSpam 13 1 0 1 0.929 0.963
FindAlternative 15 1 8 0.652 0.938 0.769
None 0 4 1 0 0
SyncAccounts 3 3 0 1 0.5 0.667
Σ 44 15 15 0.746 0.746 0.746

AskUbuntu

MakeUpdate 34 3 2 0.944 0.919 0.931
SetupPrinter 13 0 2 0.867 1 0.929
ShutdownComputer 14 0 6 0.7 1 0.824
SRecommendation 33 7 4 0.892 0.825 0.857
None 0 5 1 0 0
Σ 94 15 15 0.862 0.862 0.862

Table D.1: Rasa micro F1 score calculation.
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Corpus Intent True + False - False + Prec- Recall F1

ision score

Chatbot
DepartureTime 33 2 1 0.971 0.943 0.957
FindConnection 70 1 2 0.972 0.986 0.979
Σ 103 3 3 0.972 0.972 0.972

WebApps

ChangePassword 5 1 0 1 0.833 0.909
DeleteAccount 9 1 3 0.75 0.9 0.818
DownloadVideo 0 0 1 0
ExportData 2 1 2 0.5 0.667 0.572
FilterSpam 13 1 2 0.867 0.929 0.897
FindAlternative 15 1 1 0.938 0.938 0.938
None 0 4 1 0 0
SyncAccounts 5 1 0 1 0.833 0.909
Σ 49 10 10 0.831 0.831 0.831

AskUbuntu

MakeUpdate 37 0 4 0.902 1 0.948
SetupPrinter 13 0 1 0.929 1 0.963
ShutdownComputer 14 0 1 0.929 1 0.963
SRecommendation 35 5 3 0.921 0.875 0.897
None 1 4 1 0.5 0.2 0.286
Σ 100 9 9 0.917 0.917 0.917

Table D.2: IBM Watson Conversation micro F1 score calculation.

Corpus Intent True + False - False + Prec- Recall F1

ision score

Chatbot
DepartureTime 34 1 1 0.971 0.971 0.971
FindConnection 70 1 1 0.986 0.986 0.986
Σ 104 2 2 0.981 0.981 0.981

WebApps

ChangePassword 3 3 0 1 0.5 0.667
DeleteAccount 8 2 0 1 0.8 0.889
DownloadVideo 0 0 0
ExportData 3 0 1 0.75 1 0.857
FilterSpam 12 2 0 1 0.857 0.923
FindAlternative 14 2 2 0.875 0.875 0.875
None 3 1 8 0.273 0.75 0.4
SyncAccounts 5 1 0 1 0.833 0.909
Σ 48 11 11 0.814 0.814 0.814

AskUbuntu

MakeUpdate 36 1 4 0.9 0.973 0.935
SetupPrinter 12 1 2 0.857 0.923 0.935
ShutdownComputer 14 0 0 1 1 1
SRecommendation 36 4 5 0.878 0.9 0.889
None 0 5 0 0
Σ 98 11 11 0.899 0.899 0.899

Table D.3: Microsoft LUIS micro F1 score calculation.
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improv

The project aimed to improve accuracy is called improv and available on Github (https://
github.com/rikhuijzer/improv). One warning for people interested in reading or using this
code is that it is in need of refactoring. The code is cloned from the Google BERT code, built on
the Google TensorFlow library, as provided by the researchers [28].

Alternatively, code is available for the PyTorch library [103]. The PyTorch implementation is
under active development unlike the TensorFlow implementation and includes more functionality.
Features include Multi-GPU, distributed and 16-bits training. These allow the model to be trained
more easily on GPUs by reducing and distributing the memory used by the model. BERT contains
various models including BERTBASE and BERTLARGE. Since Google Colab does not provide a
multi-GPU set-up, we need to use a TPU. This is not yet supported by PyTorch [103].

E.1 Usage

The improv code can partially be executed on a local system. However, training the model
requires at least one enterprise grade GPU. This is discussed in Section 4.2.2. GPUs and TPUs
are provided for free by Google Colab [38]. Using this code means importing one of IPython
Notebooks from the improv repository in Colab. Hyperparameters can be set in the Notebook
after which the code can be executed. The Notebook require a Google Account combined with a
paid Google Cloud Bucket. The Bucket is used to store the trained checkpoints created by training
the model. Newer runs listed in the ‘runs’ folder in the Github repository depend on improv,
nlu datasets and rasa nlu. The dependencies list the used version in the Notebook. When
errors occur make sure that the correct versions are cloned or installed.

E.2 TPU and the Estimator API

Visualisation of the training is supported by TensorFlow’s module called TensorBoard. It allows
users to define metrics in the model definition which are used by TensorBoard to generate advanced
plots. The plots contain not only the metrics (for example, accuracy and loss), but also timestamps
for each point and sliders to set area to plot. TensorBoard is included in the default models for
TensorFlow and included in the Estimator API. The Estimator API is a class which can be used
to define a model. One has to create an input fn and model fn which respectively define data
import and the model. Training is then simply a matter of calling estimator.train(input fn,
...). Evaluation and prediction are similar.

Unfortunately, this is not supported for TPUs: “TensorBoard summaries [as shown in Fig-
ure 4.2] are a great way to inside your model. A minimal set of basic summaries are automatically
recorded by the TPUEstimator, to event files in the model dir. Custom summaries, however,
are currently unsupported when training on a Cloud TPU.” [40].
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Two reasons for not supporting TensorBoard summaries in TPUs are likely. Firstly, it seems
that the TPUs are mainly used for inference [58]. Secondly, the TPUs are a type of application-
specific integrated circuit (ASIC) meaning that TensorBoard summaries are omitted due to tech-
nically issues.

E.3 Additional experiment

In Section 4.3 the intent accuracy score for Snips2017 is near zero for runs using batch size 8
and 32. During the run on batch size 8 the loss on the test set was 0.07 at step 10001. When
comparing this to loss scores in other runs this suggests that the accuracy is not near zero. The loss
is in between 1 and 5 for step 2000, 3000, · · · , 6000. This leads to the hypothesis that the model
is training too much. Three runs using the same hyperparameters, but reduced to 1000 steps2

indicate that the hypothesis is false. It seems that the model found a suitable local minimum by
chance.

1https://github.com/rikhuijzer/improv/blob/master/runs/snips2017/2018-12-20snipsintentbatchsize8.

ipynb
2https://github.com/rikhuijzer/improv/tree/master/runs/2019-01-23snips
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Appendix F

Runs

In Section 4.3 the results for the Google BERT runs are summarized. The runs on which the
summary is based are listed in this appendix. For WebApplications, AskUbuntu, Chatbot and
Snips2017 see respectively Table F.1, F.2, F.3 and F.4.

Batch
Method size Run Loss Intent Entity
Rasa 1 0.674
Rasa 2 0.722
Rasa 3 0.625

200 400 600 600 600
steps steps steps steps steps

intent 32 1 5.66 · 10−5 1.11 · 10−4 8.00 · 10−5 0.682
intent 32 2 6.15 · 10−5 4.88 · 10−5 3.85 · 10−5 0.742
intent 32 3 1.13 · 10−4 7.04 · 10−5 5.21 · 10−5 0.734

ner 32 1 3.21 · 10−4 2.34 · 10−4 1.20 · 10−4 0.815
ner 32 2 3.31 · 10−4 1.76 · 10−4 1.31 · 10−4 0.815
ner 32 3 4.43 · 10−4 1.94 · 10−4 1.39 · 10−4 0.793

joint 32 1 1.03 · 101 3.47 · 10−4 2.12 · 10−4 0.668 0.826
joint 32 2 3.20 · 10−3 1.11 · 10−3 8.23 · 10−4 0.761 0.816
joint 32 3 6.10 · 10−4 3.92 · 10−4 2.57 · 10−4 0.839 0.829

Table F.1: Training loss, intent classification score and NER score for WebApplications. Loss is
determined using the training set. Both scores are weighted F1 as determined using the evaluation
set. Source: https://github.com/rikhuijzer/improv/tree/master/runs/webapplications.
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APPENDIX F. RUNS

Batch
Method size Run Loss Intent Entity
Rasa 1 0.834
Rasa 2 0.833
Rasa 3 0.843

200 400 600 600 600
steps steps steps steps steps

intent 32 1 3.51 · 10−5 6.02 · 10−5 1.93 · 10−5 0.813
intent 32 2 2.17 · 10−4 8.67 · 10−5 1.49 · 10−5 0.752
intent 32 3 2.88 · 10−5 3.54 · 10−5 3.28 · 10−5 0.881

ner 32 1 1.37 · 10−3 2.82 · 10−4 2.69 · 10−4 0.805
ner 32 2 9.02 · 100 2.75 · 10−4 3.07 · 10−4 0.802
ner 32 3 9.17 · 10−4 2.16 · 10−4 1.74 · 10−4 0.816

joint 32 1 7.62 · 10−3 8.80 · 10−4 7.58 · 10−4 0.892 0.830
joint 32 2 1.32 · 101 4.47 · 10−3 2.05 · 10−3 0.859 0.824
joint 32 3 1.01 · 10−3 3.71 · 10−4 1.40 · 10−3 0.870 0.825

Table F.2: Training loss, intent classification score and NER score for AskUbuntu. Loss is de-
termined using the training set. Both scores are weighted F1 as determined using the evaluation
set. Source: https://github.com/rikhuijzer/improv/tree/master/runs/askubuntu.

Batch
Method size Run Loss Intent Entity
Rasa 1 0.981
Rasa 2 0.981
Rasa 3 0.981

200 400 600 600 600
steps steps steps steps steps

intent 32 1 4.65 · 10−6 1.10 · 10−6 1.61 · 10−6 0.991
intent 32 2 1.30 · 10−5 1.36 · 10−5 8.11 · 10−6 0.991
intent 32 3 9.38 · 10−1 7.96 · 10−1 5.97 · 10−1 0.537

ner 32 1 2.01 · 10−3 8.56 · 10−4 1.45 · 100 0.755
ner 32 2 1.03 · 10−3 3.65 · 10−4 3.78 · 10−4 0.759
ner 32 3 6.48 · 10−4 2.91 · 10−4 2.64 · 10−4 0.760

joint 32 1 1.46 · 10−3 4.12 · 10−4 5.07 · 10−4 0.990 0.791
joint 32 2 2.25 · 10−3 6.31 · 10−4 2.93 · 10−4 0.991 0.787
joint 32 3 2.92 · 100 1.25 · 10−3 1.06 · 10−3 0.971 0.783

Table F.3: Training loss, intent classification score and NER score for Chatbot. Loss is determined
using the training set. Both scores are weighted F1 as determined using the evaluation set. Source:
https://github.com/rikhuijzer/improv/tree/master/runs/chatbot.
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APPENDIX F. RUNS

Batch
Method size Run Loss Intent Entity
Rasa 1 0.991
Rasa 2 0.990
Rasa 3 0.990

2000 4000 6000 6000 6000
steps steps steps steps steps

intent 8 1 2.07 · 10−1 7.80 · 10−2 2.06 · 100 0.036
intent 8 2 6.14 · 10−1 1.65 · 100 1.92 · 100 0.036
intent 8 3 3.27 · 100 4.60 · 10−1 2.37 · 100 0.036

1000 1500 1500 1500
steps steps steps steps

intent 32 1 1.93 · 101 2.25 · 101 0.036
intent 32 2 2.05 · 100 1.98 · 100 0.036
intent 32 3 2.12 · 100 2.05 · 100 0.036

ner 32 1 5.75 · 100 5.95 · 100 0.843
ner 32 2 1.72 · 10−3 1.47 · 10−3 0.843
ner 32 3 1.21 · 10−3 1.48 · 10−3 0.840

joint 32 1 2.47 · 10−3 1.17 · 100 0.979 0.859
joint 32 2 5.50 · 100 1.17 · 100 0.955 0.861
joint 32 3 3.64 · 10−3 3.08 · 10−3 0.996 0.861

Table F.4: Training loss, intent classification score and NER score for Snips2017. Loss is determ-
ined using the training set. Both scores are weighted F1 as determined using the evaluation set.
Source: https://github.com/rikhuijzer/improv/tree/master/runs/snips2017.
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