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Abstract

Identifying duplicate questions in online forums and communities is of utmost impor-
tance for ensuring a high-quality user experience. Natural language allows for many dif-
ferent ways to formulate the same question, which makes the task of duplicate question
detection very challenging. Deep learning solutions have become the state-of-the-art,
especially as larger datasets have become available for research.

The problem of identifying duplicate questions when data is scarce has been largely
overlooked. The process of labeling data is expensive and time-consuming, as a high-
quality dataset requires multiple experts to label the questions and vote on the ground
truth. Hence, it is desired that the new techniques are able to learn as much as possible
from smaller training sets and have a good performance on unseen pairs of questions.
Most of the approaches proposed in literature rely on large amounts of labeled data to
train their deep learning models, which is not likely to be possible in a real-life scenario.

In this thesis, we propose four components that aim to improve the classification results
and conduct extensive experiments on three state-of-the-art models to understand their
impact. The results show that by combining pre-trained word and sentence embeddings,
we can already improve the performance of the classifiers. In addition, simple data
augmentation techniques, such as reversing question order, can be effective as well. We
show that by training the models on a related dataset and fine-tuning it on the smaller
samples, sentence encoding models will benefit the most, in comparison to sentence
interaction models. Finally, we attempt to create a hybrid solution by ensembling the
deep learning models, choosing the best performing text representation and augmenting
the dataset. While this solution outperforms all our baselines on all our reduced training
samples where the pairs of questions are short and have a high word overlap, it is less
effective on the dataset with long questions and little overlap.





Zusammenfassung

Die Identifizierung doppelter Fragen in Online-Foren und Communities ist von größter
Bedeutung für die Sicherstellung einer qualitativ hochwertigen Benutzererfahrung. Die
natürliche Sprache ermöglicht viele verschiedene Möglichkeiten, die gleiche Frage zu for-
mulieren, was die Aufgabe der Erkennung doppelter Fragen sehr schwierig macht. Deep-
Learning-Lösungen sind zum Stand der Technik geworden, zumal größere Datensätze für
die Forschung verfügbar geworden sind.

Das Problem der Identifizierung doppelter Fragen bei knappen Daten wurde weitge-
hend übersehen. Der Prozess der Kennzeichnung von Daten ist teuer und zeitaufwendig,
da ein hochwertiger Datensatz mehrere Experten erfordert, um die Fragen zu kennzeich-
nen und über die Grundwahrheit abzustimmen. Daher ist es wünschenswert, dass die
neuen Techniken in der Lage sind, so viel wie möglich von kleineren Trainingsmengen
zu lernen und eine gute Leistung bei zuvor nicht gesehenen Fragenpaaren zu erbringen.
Die meisten der in der Literatur vorgeschlagenen Ansätze beruhen auf großen Mengen
annotierter Daten, um ihre Modelle des tiefen Lernens zu trainieren, was in einem realen
Szenario wahrscheinlich nicht möglich ist.

In dieser Arbeit schlagen wir vier Komponenten vor, die darauf abzielen, die Klassi-
fikationsergebnisse zu verbessern und umfangreiche Experimente an drei modernen Mod-
ellen durchzuführen, um deren Auswirkungen zu verstehen. Die Ergebnisse zeigen, dass
wir durch die Kombination von vortrainierten Wort- und Satzeinbettungen bereits die
Leistung der Klassifikatoren verbessern können. Darüber hinaus können auch einfache
Datenergänzungstechniken, wie z.B. die Umkehrung der Wortreihenfolge in einer Frage,
effektiv sein. Wir zeigen, dass durch das Training der Modelle auf einen verwandten
Datensatz und die Feinabstimmung auf die kleineren Stichproben die Satzkodierungsmod-
elle im Vergleich zu Satz- Interaktionsmodellen am meisten profitieren werden. Schließlich
versuchen wir, eine hybride Lösung zu schaffen, indem wir die Deep-Learning-Modelle
zusammenführen, die leistungsfähigste Textdarstellung auswählen und den Datensatz
erweitern. Während diese Läsung alle unsere Baselines bei allen unseren reduzierten
Trainingsstichproben übertrifft, bei denen die Fragenpaare kurz sind und sich hohe
Wortüberschneidungen ergeben, ist sie im Datensatz mit langen Fragen und geringen
Überschneidungen weniger effektiv.
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1 Introduction

Natural Language Processing has witnessed a surge in advances in recent years, with
researchers proposing impressive breakthroughs in the area of text classification. Text
classification has attracted a lot of attention because of its immediate applicability to
everyday life and products, changing the way people interact with technology. As ma-
chines become able to understand language, humans gain the advantage of being able
to translate, extract information and detect duplicate texts faster.

The problem of detecting duplicates in the area of natural language processing is of
utmost importance for online user forums. By online user forums we refer to question-
and-answer (Q&A) websites, which in recent years have become increasingly popular,
creating a safe space for Internet users to share their knowledge with other users. The
reason why these websites are so appreciated is because all the actors involved in them
have the opportunity to learn by having their questions answered or by engaging in
an information exchange with other (possibly) expert users. Thus, it becomes critical
that the content on these platforms is of high-quality and questions are answered in an
efficient manner.

Detecting duplicate questions as soon as they are posted is a major task in the mainte-
nance and curation of Q&A communities, such as Quora 1 and Stack Exchange 2. These
websites usually contain vast amounts of information and, more often than not, users
will find themselves overwhelmed when having a particular query in mind. Having each
question asked only once, first of all, brings the advantage of time efficiency for the users
as they do not need to wait minutes or hours to have their questions answered; second,
offers improved user experience through decluttering of the platform of redundant ques-
tions; finally, avoids a fragmented knowledge base by having all the answers collected
under a single canonical question [Addair, 2017]. Hence, in case the same question has
been asked several times before with a different phrasing, it is preferred to have these
duplicate questions merged or removed.

Detecting duplicate questions is challenging, mainly because of the volatility of nat-
ural language and way the same meaning can be expressed with many different words.
A system that is able to perform this task needs to thoroughly understand complex
natural language issues such as semantics and grammar. There have been several valu-
able efforts towards accurately detecting duplicate questions. These efforts range from
measuring the overlap of words between two questions to using machine learning and
deep learning techniques that learn to differentiate between what is duplicate and what
is non-duplicate.

1https://www.quora.com/
2https://stackexchange.com/
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Most of the recent advancements use complex deep learning architectures as their main
approach to detect duplicate questions and are based on the assumption that there is
plentiful of labeled data available ([Wang et al., 2017], [Gong et al., 2017], [Kim et al.,
2018]). There is a lack of understanding how deep learning approaches behave and how
their performance varies in the use case of small labeled datasets. The main problem
is that with limited datasets deep learning classifiers might not be able to generalize
well on unseen data. We need to identify what text representation is suitable so that as
much meaning as possible can be extracted from the data at hand and which techniques
are appropriate for enhancing datasets or the performance of the classifiers in order to
reduce overfitting.

This thesis proposes a solution which combines several components for text represen-
tation, data augmentation, transfer learning and ensembling. We study how state-of-
the-art deep learning models perform in a setting where data is limited using two well
known datasets and evaluate our proposed solution.

1.1 Purpose

This project analyzes the performance of state-of-the-art deep learning models in a
setting where labeled data is scarce. It is expected to understand which strategies can be
used to deal with the problem of small datasets and what is the best text representation
that would contribute to correctly identifying duplicate questions. Specifically, in this
thesis we aim to answer the following questions:

• What is the behavior of deep learning models when they are dealing with limited
datasets for duplicate question detection?

• What is the contribution of text representation, data augmentation, transfer learn-
ing and ensembling in correctly identifying duplicate questions when data is scarce?

1.2 Problem

This thesis addresses the problem of duplicate question detection. Our purpose is to
contribute to the ongoing development of techniques suitable for this task, by studying
existing deep learning techniques and architectures and combining them to create an
improved solution for the scenario when labeled training data is scarce. We use the
same definition for duplicate questions, as the one provided by Bogdanova et al. who
state that ”two questions are semantically equivalent if they can adequately be answered
by the exact same answer” [Bogdanova et al., 2015] .

The problem of identifying duplicate questions generalizes to a classification problem.
The goal of classification is to map unseen inputs to one of the available classes. In
our case, we need to determine whether a given pair of questions, is duplicate or non-
duplicate. More formally:

f(q1, q2)→ 0/1

2 Master Thesis, TU Berlin, 2018
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where f is a function learned by a model and 0 or 1 are the possible classes that we
can assign the pair, where 0 is non-duplicate and 1 is duplicate. As there are only two
possible classes or categories this is a binary classification problem, which can be solved
through supervised means.

Paraphrasing is a complex language phenomena as it offers many ways to express
the same meaning. Paraphrases can be identified on 24 different levels of granularity
and they can be classified into four categories [Vila et al., 2014]. We discuss the most
important ones, which we also encounter in our datasets and we use questions from
Quora dataset 3 as reference:

1. Morphology-based changes refer to paraphrases that differ based on way words
are formed. The discrepancy may occur on inflectional or derivational level. For
example:

a1.What is the best story you have?
a2.What are some of your best stories?

b1.What are some tips for plucking eyebrows?
b2.How should I pluck my eyebrows ?

2. Lexicon-based changes are changes that occur at word level (spelling changes,
synthetic substitutions and opposite-polarity substitutions). For example:

c1.How do I build an online directory ?
c2.What is the best way to build an online directory?

d1.Why is India not getting Olympic medals?
d2.What is the valid reason for India only getting a few medals in the Olympics?

3. Structural-based changes denote changes to the pattern of the sentence such
as alternation. For example:

e1.How do I hack a mobile phone remotely?
e2.How can I remotely hack a mobile phone?

4. Semantics-based changes refer to sentences that use different words for the
same meaning, like in the example below:

f1.How do I lose weight faster?
f2.How do I reduce weight rapidly?

g1.How I can improve my English communication?
g2.How I can speak English fluently?

As examples (a-g) show, paraphrases ca be obtained in many different ways and the
boundaries between paraphrase categories are not that strict. When identifying whether

3https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

Master Thesis, TU Berlin, 2018 3
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a pair of questions are duplicates, we study whether or not they are asking for the same
thing. Establishing the relationship between the two questions can be quite subjective
and the absolute ground truth can be hard to find as that would require getting in touch
with the original author of the question and confirming their intention. Thus, we can
assume that datasets available for the study of duplicate question detection contain a
reasonable amount of unintentional noise. This is also one of the reasons why creating
and manually labeling a high-quality dataset is very expensive: it would require a few
experts to separately read and label each question and then find a method to vote and
agree on a final label.

Recent work on detecting duplicates has focused on developing sophisticated deep
learning architectures (see Chapter 3) and training them on large datasets in order to
achieve good performance. The use case where labeled data is not always abundant has
been neglected, with most researchers assuming large training datasets for developing
their techniques.

To the best of our knowledge there is not much research that analyzes how deep
learning models would perform in a setting with scarce data for duplicate question
detection. Examples (a-g) show just a few of the different ways to paraphrase questions,
which further builds our case for models that should be able to generalize well from
seeing just a few examples from the paraphrase spectrum. Furthermore, there is no
clear understanding regarding the current performance of state-of-the-art models with
limited datasets and how they would improve with the help of different techniques for
enhancing existing data and classifiers.

1.3 Contributions

This thesis describes an approach to combine different techniques for improving the
classification results for duplicate questions in a setting with limited data. We conduct
extensive experiments on four components that we propose for mitigating the challenge
of scarce training data. Specifically, we analyze the impact of using different text repre-
sentation, data augmentation, transfer learning and ensembling techniques. In addition,
we create a hybrid solution where we ensemble our best performing deep learning models
trained with the most promising text representation and data augmentation techniques.
While this solution improves the baselines by a small margin on one of our datasets, the
results suggest that the approaches need more data and better labels in order to improve
significantly.

1.4 Outline

In Chapter 2, we introduce relevant theory and background in the area of deep learn-
ing and natural language processing. In addition, we present neural networks architec-
tures typically used for natural language processing and techniques for obtaining word
embeddings. Chapter 3 introduces related deep learning models commonly used for
identifying duplicate questions. Furthermore, we present three similar natural language
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processing problems and the field of duplicate detection in general. In Chapter 4 we
explain each component of the solution. We detail the different strategies employed for
text representation, data augmentation, transfer learning and ensembling. We provide
in Chapter 5 an overview of the datasets used and discuss implementation details of
the experimental framework. Furthermore, we analyze the results obtained from the
experimental phase and offer an extensive discussion on the assumptions made. Finally,
in Chapter 6 we summarize our work and draw the conclusions. Furthermore, we
introduce ideas for future work.
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2 Theoretical Background

Researchers have been working on solving the problem of identifying duplicate pairs
through numerous methods, ranging from rule-based techniques to heavy feature engi-
neering and machine learning. Considering the recent advances in Deep Learning(DL),
especially in the area of natural language processing(NLP), we propose a solution that
leverages the newer technologies in this field. The aim of this section is to provide the
theoretical context behind DL, focusing on its application for NLP. First, we introduce
terms and concepts related to DL, together with the intuition behind them. Second,
we introduce architectures which are used both by state-of-the-art approaches and our
work: recurrent neural networks, long-short term memory networks, gated recurrent
unit networks, bidirectional and siamese networks and attention mechanism. Finally we
present the concept of word embeddings and describe algorithms that are related to our
work such as GloVe [Pennington et al., 2014], FastText [Bojanowski et al., 2016] and
Universal Sentence Encoder [Cer et al., 2018].

2.1 Introduction to Deep Learning

This section briefly introduces the concept of Deep Learning and motivates why we chose
techniques from this field for performing Duplicate Question Detection (DQD).

Machine Learning (ML) is a broad field that encompasses techniques and ap-
proaches used to extract patterns from the data given as input. The representation of
data fed into a ML algorithm plays a major role, as it affects the algorithm’s ability to
efficiently extract signals and make decisions. Thus, it is important to carefully select
the information included in such a representation. Formally, the representation is com-
posed of multiple features extracted from raw data. The process of creating new features
requires good and intuitive understanding of the data at hand, becoming incrementally
time-consuming with the sophistication of the new features. Thus, the biggest challenge
of handcrafted features is deciding which features are important and relevant to the
problem [Goodfellow et al., 2016].

Representation learning undertakes the task of discovering a useful set of features
by means of ML techniques. Basically, it aims to make this process automatic [Goodfel-
low et al., 2016]. Thus, it cuts some of the human effort and time required to engineer
features for complicated problems, ensuring improved performance. As Goodfellow et al.
explain in their book, Deep Learning (DL) solves the main problem of representation
learning, which is ”extracting high-level, abstract features”. Specifically, DL algorithms
extend machine learning approaches by learning to represent more sophisticated concepts
based on simpler ones (e.g. learn to represent an image of a house by first representing
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corners and contours). As Goodfellow et al. explain:

’Deep learning is a particular kind of machine learning that achieves great
power and flexibility by representing the world as a nested hierarchy of con-
cepts, with each concept defined in relation to simpler concepts, and more
abstract representations computed in terms of less abstract ones.’

The recent success of DL algorithms is mainly due to the better performing com-
puter hardware, which enables the efficient processing of the data. What is more, DL
techniques have been delivering promising results on unstructured data such as text.
Traditionally, most solutions to NLP problems consist of carefully handcrafted features
and representations. This approach is cost-intensive both effort and time wise, while the
feature set is still possibly incomplete. This is where DL comes into play, taking over
the task of feature engineering. Modeling the relationship of a pair of questions and
identifying whether or not they are duplicates, is inherently a complex NLP problem
which requires a model to have a good understanding of syntax and semantics. These
reasons indicate DL techniques as an efficient and effective solution to tackling the DQD
problem. The rest of this thesis is concerned with leveraging the ability of DL to learn
from text data in order to advance the study of DQD.

2.2 Neural Networks

This section introduces the main concepts related to neural networks. Neural networks
have been around since the 1940s and could initially handle only one hidden layer. But
with the development of technologies and hardware it became possible to build deeper,
more effective architectures, which leads to deep learning as we know it today. This
makes the study of neural networks in our context an interesting starting point, before
diving deeper into concepts related to NLP.

2.2.1 Brief History

Initially, neural networks were inspired by how the biological brain works, which is why
deep learning was also called artificial neural networks (ANNs) [Goodfellow et al.,
2016]. In biology, a neuron is the cell that receives, processes and transmits information
to other neurons through connections called synapses [neu, 2018]. On the other hand,
artificial neurons are defined as computational units (usually mathematical functions)
that take one or more inputs and generate an output.

McCulloch and Pits designed an initial version of the neuron as a linear model in 1943,
aiming to replicate brain function [McCulloch and Pitts, 1943]:

f(x,w) = x1w1 + x2w2 + ...+ xnwn

where x1, ..., xn are the input values and w1, ..., w2 is a set of hand-chosen weights.
Based on the linear model, a label y would be assigned. Inspired by their work, Rosen-
blatt created the perceptron which became the first model able to learn the set of weights
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w1, ..., wn [Rosenblatt, 1958]. The perceptron gave promising results, but could only clas-
sify linear patterns, which is a major shortcoming when dealing with real-world data. A
few years later the multilayer perceptron (MLP) or feedforward network [Good-
fellow et al., 2016] came as a breakthrough, as it became obvious that two or more layers
could capture more complicated patterns than a single layer perceptron. A feedforward
network is modeled as a directed acyclic graph, where each neuron in a layer has directed
connections to the neurons in the following layer. Networks may contain feedback loops,
which feed the outputs back into the model. In this case, they are called recurrent
neural networks and they perform highly on NLP problems. These type of networks
and techniques associated with them will be our main focus as they are able to deal
well with long sequences of text data. The reason behind their promising results for
text-based data is further explained in Section 2.3.1.

2.2.2 Components of an artificial neuron

A simple artificial neural network (ANN) consists of input layer, hidden layer and output
layer, where the values of the hidden layer are used as inputs for the output layer. A
network with several layers is known as a deep neural network. Data flows through the
neurons of the layers with each neuron transforming the input it receives and forwarding
it to the next layer. The neurons share the same characteristics irrespective of the layer
they are part of.

The main components of an artificial neuron include inputs, weights, activation func-
tion and output(s). On the high-level, the inputs are multiplied by weights, then an
activation function is applied to the result and finally, another function computes the
output. The components of an artificial neuron are [Bangal, 2009]:

• Weights are defined as adaptive coefficients, whose values are changed during
the learning process. Each input of a neuron is multiplied by a relative weighting
factor, which decides the impact it will have further in the computation.

• Summation function helps combine the input and weights in different ways,
before passing the result to the activation function. Denote the input as x =
[x1, x2, ...xn] and weight vector as W = [w1, w2, ...wn]. Thus, the summation func-
tion could be defined as the dot product between these two vectors:

xTW = x1 · w1 + x2 · w2 + ...+ xn · wn

In addition, the summation function could instead compute the minimum, maxi-
mum, product etc. depending on the designated network architecture. To gener-
alize, the simplest form of an artificial neuron is a linear function which computes
the weighted sum of inputs, to which, optionally, bias can be added:

y =
∑

xi · wi + b
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• The activation function transforms the result of the summation function (usu-
ally) in a non-linear way. If the function is linear, it would simply make the output
proportional to the input. We define the activation function as g:

y = g(
∑

xi · wi + b)

The most common non-linear functions used as activation functions include:

sigmoid function : σ(x) =
1

1 + e−x

rectified linear unit (ReLU) : ReLU(x) = max(x, 0)

hyperbolic tangent : tanh(x) =
ex − e−x

ex + e−x

• The output is usually the result of an activation function.

2.2.3 Gradient based learning

This section introduces important concepts for designing and efficiently using neural
networks, such as loss function and gradient descent. As discussed in the previous
section, the weight W and bias b vectors are parameters to be learned on the training
set. The purpose of a loss (sometimes called objective or cost) function is to help with
learning these parameters. A loss function assesses the inconsistency between the
predicted labels(ŷ) and the ground truth labels (y), thus computing the error over the
training set. We aim to minimize the error as a function of weights and biases. This
can be defined as an optimization problem, usually solved via gradient based-methods
(gradient descent or gradient ascent, depending on whether we are looking for local
minimum or maximum).

We define L(ŷ, y) as a loss function, which associates a positive real number to the
pair of predicted label ŷ and true label y. This real number measures the error that the
network makes on the data. Ideally the loss is 0 as we want ŷ = y. There are different
ways to compute the loss of a neural network and each method will output a different
value for the same prediction, thus having an impact on the performance of the model.
We evaluate our deep learning models on the basis of the cross-entropy loss function:

• cross-entropy - shows the difference between the original distribution and the
output distribution given by the model, where yi is the ground truth and ŷi is the
actual prediction:

L(ŷ, y) = −
∑
i

yi log ŷi
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Mathematically speaking, the gradient of the loss function is the partial derivative
with respect to its parameters, measuring how much the output of a function changes
if the parameters are varied [LeCun et al., 1998]. When we train a model via gradient
descent, the trainable parameters w are updated through the following operation:

wi = wi − λ
∂L(w)

∂wi

where L(w) is the loss function, λ is a scalar constant in the simplest case (also known
as the learning rate). The learning rate determines how big the steps that the gradient
takes in the direction of the minimum will be. This will be reflected in how fast or slow
the gradient moves towards the optimal weights. It is important that the value of this
parameter is set correctly, as a too high value runs the risk of missing the optimum,
while a too small one runs the risk of getting stuck in a local minimum. The value for
learning rate can be manually tuned by trying out different values, before satisfactory
results are reached.

In order to adjust trainable parameters the update described above is performed as
part of an algorithm called backpropagation [Rumelhart et al., 1986]. The algorithm
has two phases, namely propagation and weight update: a forward pass is performed
on the data and the loss is computed for the predicted labels; finally the errors are
backpropagated layer by layer backwards and the parameters are modified accordingly.

Performing Gradient Descent (also known as Batch Gradient Descent) on very
big datasets can be quite costly as the model weights are updated only after all training
examples have been evaluated, in one big step. In practice, Stochastic Gradient De-
scent (SGD) is preferred as it entails calculating weight updates on subsets of training
data, called mini-batches. The number of examples in a mini-batch is a hyperparameter
to be determined based on experimental results. As setting the learning rate can be
problematic, SGD was extended to use adaptive learning rates, where the learning rate
is higher in the first iterations to ensure larger changes, only fine-tuning the weights in
the end. Such techniques include Momentum [Qian, 1999], AdaGrad [Duchi et al., 2011],
Adam [Kinga and Adam, 2015] etc. The choice of optimizer depends on the dataset at
hand and it is usually decided experimentally.

Hyperparameter tuning is a time consuming process, as many different combinations
of parameters are typically tried through Grid Search, before finally picking the best
options. For the models included in this work, we mainly pick the parameters specified
in the original paper. Further details are provided in Section 5.2.2 on how we choose
these values.

2.2.4 Overfitting

Neural networks are able to learn complicated non-linear functions to fit any training
set. On the downside, this may lead to overfitting where the neural network learns the
training data so well that it is unable to generalize on new, unseen data. This problem
can especially occur on datasets with a small amount of data to learn from.
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In order to prevent the model from overfitting, it is recommended to evaluate it on a
separate development set and stop the training once the model stops improving. Typi-
cally, if the loss is not decreasing, or on the contrary, it started increasing, then it means
that the training needs to be stopped. This can be done through a technique called
Early Stopping [Finnoff et al., 1993], which we also apply in our work.

Common techniques to stop overfiting include generating more data (i.e. data augmen-
tation), regularization or Dropout [Srivastava et al., 2014]. Data augmentation entails
finding appropriate ways to create new data that would help the classifier generalize bet-
ter. We propose and evaluate as part of our solution some techniques to be applied to
duplicate question detection which we describe in Section 4.3. Dropout deletes a number
of units from the activations it is applied to, forcing the neural network to adapt. It
bears the risk of losing some information and it is normally applied only during training.
As for regularization, L1 and L2 regularization are commonly used for preventing the
learnable weights to grow too much. These last two techniques are also used in our
architectures, according to the original papers or tuning to the datasets.

2.3 Deep Learning for Natural Language processing

In this section we will review the main types of neural networks that will be used and
discussed in this thesis. Text data is a special case of unstructured data and requires DL
architectures that can deal with its peculiarities, in order to obtain good results. The
main issues tackled by the models discussed in the next sections are the variability of text
sequences and the understanding of context surrounding words. For DQD, understanding
context is of utmost importance such that subtle differences and similarities between
pairs of questions can be perceived by a DL model. The length of questions is also
important as it is natural for users to express their queries with varying amounts of
words and details.

2.3.1 Recurrent Neural Networks

Sequential data (such as text, speech, video) has complex temporal dependencies and a
lot of hidden information. For example, the sentence ”The cat has four ...” has a missing
word, which humans can easily infer from the context. However, it can pose a tough
challenge for a model to correctly guess that the word is ”legs”, unless it can take into
consideration recent information (such as ”cat”) and connect it to the current context
(”four”).

Recurrent Neural Networks (or RNNs) [Rumelhart et al., 1986] were created in
the 1980s to tackle these kind of problems, but like much of the deep learning models,
they didn’t get traction until recent years because of hardware capabilities. They are a
group of neural networks that specialize in processing sequences of values x1, x2, ..., xn.
RNNs are able to scale to longer sequences and handle sequences of variable length
[Goodfellow et al., 2016]. For example, after processing the words from the example
above, a RNN would be able to understand that ”legs” would follow in the context of
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”cat” and ”four”.

In feedforward networks (see Section 2.2.1), information can flow only forward i.e.
there are no cycles or feedback loops. In contrast, RNNs have loops and allow for the
information from the past to be used in the future. This is important in NLP problems,
as the meaning of words is affected by previous words. For example, the meaning of
”book” changes drastically from the context of ”read a book” to ”book a hotel”. Thus,
we need to be able to summarize the past and use it as input in the current state of the
model.

Figure 2.1 depicts a visualization of the way RNNs work. In the first instance, an input
xt is passed through a cell A and outputs a value ht. The loop allows the information
to persist and to be passed from one state to the next one. In this cycle, every new
input is concatenated to the output of the previous step, before the network can process
it. The loop in the RNN can be represented by multiple copies of the same network,
an idea which is called unrolling. Hence, the RNN becomes a multilayer network where
parameters are shared across layers.

Figure 2.1: Unrolled recurrent neural network. Source: [Olah, 2015]

RNNs function on the basis of a chain reaction. All previous hidden states contribute
to computing the current-time step ht and this continues until all inputs of a sequence
have been processed. Mathematically, we can formulate this as a recurrence equation,
where we assume we have input x at time step t, and in order to compute the state ht we
need to take into account what happened at time step t− 1 with state h. This renders
the following recurrent equation, where θ are the trainable parameters:

ht = f(ht−1, xt; θ)

In practice, RNNs struggles with long-term dependencies, especially as the gap be-
tween words grows. Even though RNNs might be able to understand that ”legs” follow
”A cat has four...” as in our first example, it will struggle with long-term dependencies.
For example, if we have a sentence that says ”I live in Berlin [...] This city is the capital
of ...” in which the recent context talks about a country but is not explanatory enough,
RNNs would not be able to connect it to the context from further back. This is mainly
because this type of networks involves composition on the same function multiple times,
which can result in non-linear behavior. Thus, when doing backpropagation through
time (essentially backpropagation on an unrolled RNN) the weights are multiplied many
times and can end up vanishing (they become really small) or exploding (they become
really big).
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The solution to the vanishing gradient led to the introduction of the gated mecha-
nism in the Long Short Term Memory networks. Although RNNs constitute the starting
point in processing text data, this new type of networks are much more suited for the
task of measuring text similarity and identifying duplicate questions, as we discuss in
the next Section.

2.3.2 Long Short Term Memory Networks

Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] networks
are a variation of recurrent neural networks that are able to deal well with long-term
dependencies. Simply put, they are designed to be able to identify that the word is
”Germany” in the previous example (”I live in Berlin [...] This city is the capital of ...”).
The authors introduced in their paper an innovative gating mechanism that ensures
a constant error flow through the special internal units, thus avoiding the long-term
dependency problem. LTSM networks are explicitly designed to remember information
for longer sequences and so they excel in dealing with various NLP problems, where the
sequences can become quite lengthy and the meaning highly depends on the context
(like in the case of DQD).

The key idea behind LSTMs is the memory which is stored in an internal state.
There are three gates that constitute the gating mechanism: input gate, forget gate
and output gate; their role is to decide which information should be included, added or
removed from the memory. Simply put, a gate is made of a sigmoid layer and element-
wise multiplication. It is in charge of deciding how much information can pass through
it, regulating the amount of data. If the gate is closed (sigmoid returns a value close
to zero) irrelevant inputs and noise do not enter the cell. The memory cell learns over
time which information is important based on the weights it learns during the training
procedure.

Each LSTM cell has a memory cell, an input gate, a forget gate and an output gate.
All gates have the same dimension (the dimension of the hidden state) but each regulates
a different kind of data:

• the input gate controls the newly computed state.

• the forget gate controls the previous state.

• the output gate controls the exposure of the internal state to the external network
(higher layers).

For identifying duplicate questions, LSTMs are typically used to map the pair of ques-
tions to the same vector space given by the number of hidden units. This transformation
is also known as encoding [Kalchbrenner and Blunsom, 2013]. The simplest way to pro-
ceed from here is to compute a similarity metric between the pair of questions and their
new representations. Usually, more complicated transformations are applied to the new
vector representations, as we will discuss in Chapter 3.
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LSTMs have been successfully used in a number of different tasks including: handwrit-
ing recognition [Graves et al., 2009], speech recognition [Graves et al., 2013], machine
translation [Luong et al., 2014]. In the area of DQD, several models that achieve state-
of-the-art use LSTM to encode sentences ([Kim et al., 2018], [Gong et al., 2017], [Chen
et al., 2016]). These models are discussed in 3.1.

2.3.3 Gated Recurrent Unit

Cho et al. introduced a simpler variant of the LSTM in 2014 [Cho et al., 2014]. This
new type of network is called Gated Recurrent Unit (GRU) and proposes a gating
mechanism similar to LSTM, but instead of three gates it requires just an update gate
and a reset gate. The reset gate is trained to ignore irrelevant information and thus
decides what to forget from the past. This means that when the gate is closed i.e.
sigmoid is close to 0, the hidden state is reset with the current input only, effectively
disregarding the previous hidden state. The update gate decides how much of the past
information is passed to the future.

As LSTM and GRU are based on similar ideas, it is interesting to compare them
and understand their differences. Chung et al. perform a thorough evaluation in their
paper on the tasks of polyphonic music modeling and speech signal modeling [Chung
et al., 2014]. From their experiments, it was clear that both the LSTM and GRU
units outperformed the more traditional RNN. In terms of performance, it was not clear
whether GRU was better than LSTM or the other way around, as they both produced
similar results. In terms of efficiency, GRU trained faster and used less resources. On the
other hand, Jozefowicz et. al. found that by adding a bias of 1 to the forget gate of the
LSTM, results in better performance over GRU for tasks like arithmetic computation,
XML modeling and language modeling [Jozefowicz et al., 2015].

GRUs have shown promising results in machine translation ([Firat et al., 2016], [Chung
et al., 2016]). Similarly to LSTM, GRU is used to encode sentences. In Section 3.1.1,
one of the models discussed uses GRU in their neural network architecture and obtains
promising results. We also included this model in our experimental framework, which is
presented in Chapter 5.

2.3.4 Bidirectional recurrent neural networks architectures

In this section, we will briefly introduce a variation brought to recurrent neural networks
(and not only) in order to enhance the information it extracts. This approach is often
seen in the models tackling pairs of sentences, like in the case of DQD.

We introduce the concept of bidirectional RNN [Schuster and Paliwal, 1997]. The
typical unidirectional RNN has one hidden layer, as illustrated in Section 2.3.1. When
applying it on text data, it can either be run from left to right (order of tokens would be
a, b, c, ...) or right to left (order of tokens would be c, b, a...). Thus, it can only preserve
information from the past or the future, i.e. the tokens it has already seen. On the
other hand, a bidirectional RNN adds another hidden layer. Now the model can preserve
information from both the past and the future, extending the properties of a simple RNN.
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A bidirectional RNN consists of a forward pass and a backward pass, with the outputs
from the two different passes not connected to each other. The forward pass (from

left to right) will produce the hidden states (
−→
h 1,
−→
h 2, ...,

−→
h T ), while the backward pass

(from right to left) will encode the reverse sequence as (
←−
h 1,
←−
h 2, ...,

←−
h T ). The resulting

hidden state will be of the form hi = [
←−
h T

i

−→
h T

i ]T , as the outputs are combined through
concatenation. What is more, any type of recurrent cell (RNN, LSTM or GRU) can be
used for processing the input data in a bidirectional manner. In Section 3.1.2 we present
some models for which this bidirectional encoding is essential for their performance.
Furthermore, one of the models included in our framework uses BiLSTM to encode the
pairs of questions. We discuss this model in Section 3.1.2 and Chapter 5.

2.3.5 Siamese Neural Network

The Siamese Neural Network architecture was proposed by Bromley et al. [Bromley
et al., 1994] for solving the signature verification task and has been proven very successful
in tackling the modeling of sentence pairs. It consists of two identical subnetworks (i.e.
they have the same configuration in terms of weights, parameters etc.) each receiving a
different input. Hence, each input is separately encoded and if they are of the same type
(both text for examples) the resulting vectors are easier to compare or further process. In
most cases, the results generated by the subnetworks are then used together by another
block, which produces the final output. They have been proven efficient in identifying
relationships between inputs, especially in problems like paraphrase identification (which
is further discussed in Section 3.1.2) and question answering [Yin et al., 2015]. We
included a model in our framework which uses this type of architecture for finding
similarity between a pair of questions. This model is introduced in Section 3.1.1, with
implementation details discussed in Chapter 5.

2.3.6 Attention mechanism

In this section we introduce the concept of attention [Bahdanau et al., 2014] which plays
an important role in identifying the relationship of a pair of sentences and is widely used
for tasks related to textual similarity, including DQD. This technique was created as an
extension to the encoder-decoder architecture [Kalchbrenner and Blunsom, 2013], which
struggled with squeezing long sequences of text into a fixed-length vector.

Briefly, the encoder-decoder architecture consists of a pair of neural networks, an
encoder and a decoder, combined to work as a whole. In a typical setting, the encoder is
responsible for mapping the input sequence to a vector with fixed dimensionality, while
the decoder extracts the output sequence from this encoding.

The intuition behind the attention mechanism is that one fixed-length context
vector is not sophisticated enough for storing all the information of a (long) sentence.
Accordingly, multiple context vectors are computed, one for each word of the sentence,
each containing information about the whole sentence but with a focus on the words
surrounding the target word. This allows for a richer encoding. When decoding the sen-
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tence, the model now ”chooses adaptively” the vectors to use by soft-searching significant
information.

When we talk about hard alignment we refer to the more traditional alignment
model in which one word from a source sentence precisely corresponds to a word from
the target sentence. In contrast, soft alignment finds the link between any words from
the source and target sentence which have a semantic or syntactic relationship with each
other. For example, in a hard-alignment setting the model would ”pay attention to the
first word”, while in soft-alignment setting it would ”pay attention 60% to the first word,
20% to the second, 20% to the third”.

Attention can be used in many different tasks. For example, it has shown promising
results for image captioning [Vinyals et al., 2015], question answering [Sukhbaatar et al.,
2015] and sentiment analysis [Kumar et al., 2016]. Two of the deep learning models that
we use in our experimental framework efficiently use this mechanism to detect duplicate
questions. These models are first introduced in Section 3.1.2 and further discussed in
Chapter 5.

2.4 Word Embeddings

In this section we describe the role of word embeddings in dealing with text data. We
cover how algorithms like Word2Vec [Mikolov et al., 2013b], GloVe [Pennington et al.,
2014], FastText[Bojanowski et al., 2016] and Universal Sentence Encoder [Cer et al.,
2018] transform words and characters to vector representation. This is necessary because
machine learning models, including the neural networks in our framework, cannot process
raw, unstructured text data.

2.4.1 Encoding textual data

Text data is typically raw and unstructured and needs to be processed before being fed
to a classifier. There are two main ways to achieve this, specifically one-hot encoding
and dense embedding vectors [Goldberg, 2017]:

1. One-hot vectors is a method for encoding categorical data (such as words) in
a vector space model (for example bag-of-words) and it involves adding a new
dimension to this new vector for each feature. To be more specific, each unique
word in the vocabulary can be considered a feature and its presence will be marked
by 1 or absence will be marked by 0. For example, assume we have a document
with a vocabulary of 50,000 distinct words. When we use one-hot encoding on
a sentence, each word in a sentence will be represented by a 50,000 dimensional
vector where the position that corresponds to the word is marked with 1 and the
rest are 0.

2. Dense embedding vectors represent words as real numbers in a lower dimen-
sional space. For example, instead of representing a word as a 50, 000 dimensional
vector, it will instead be represented by a 100 or 200 dimensional vector of real
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numbers. Thus, dense embedding vectors are learned representations, where words
which have the same meaning should have a similar representation. Moving from
sparse to dense features, has had major computational benefits, making processing
data and training DL models with text data much faster.

The task of DQD deals with textual datasets of reasonable size, where the context in
which words appear and their meaning is important. For this reason we opt for using
dense embedding vectors over one-hot vectors. There are multiple ways of generating
these embedding vectors and we discuss these different methods in the following sections.

2.4.2 Using pre-trained embeddings

This section presents how the idea of using pre-trained embeddings has become widespread
and we discuss the most important characteristics of embeddings that were conceived
in this journey, focusing on word2vec. After the introduction of this technique, the field
of word embeddings truly boomed, leading to the creation of the word embeddings that
we use in this thesis.

Bengio et al. introduced word embeddings in 2003 [Bengio et al., 2003]. Their ini-
tial approach was to learn word vector representations as part of the architecture of a
language model. Their model consists of an embedding layer, multiples intermediate
layers and one softmax layer. By learning distributed word representation and the prob-
ability of word sequences from these representations, the model predicts the next word
in a sequence.

The idea of using pre-trained embeddings came from Collobert and Weston in 2008
[Collobert and Weston, 2008]. The embeddings that they created display one of the most
important characteristics of word embeddings, which is grouping together similar words
in the vector space. They created the embeddings by training their language model on
a large database and used them to initialize the lookup table of the multi-task training
procedure. The procedure aims to learn multiple tasks at the same time, by following a
few simple steps in a loop: a task is selected together with a sample of its training data
and the neural network weights are updated based on this task. The lookup table (i.e.
embedding matrix) is shared among the tasks.

Research in the area of word embeddings was significantly pushed forward by Mikolov
et al., when they introduced word2vec [Mikolov et al., 2013b]. Similarly to Collobert
and Weston, the team started with a neural language model which they adjusted to be
more efficient and generate higher quality embedding vectors. In the course of two pa-
pers, the authors propose two architectures for learning word embeddings and methods
to improve training speed and accuracy. The architectures have different context repre-
sentations and different learning objectives. They are based on language models which
randomly initialize all the word vectors, with continuous-bag-of-words (CBOW)
predicting the word using its context, while skip-gram does the opposite, predicting
the context based on the word. As the models do not contain any non-linear hidden
layer, they are computationally less expensive. The main goal behind the two archi-
tectures was ”to introduce techniques that can be used for learning high-quality word
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vectors from huge data sets with billions of words” [Mikolov et al., 2013a].

When analyzing the results of their architectures, the authors observe that their em-
beddings are able to capture complex semantic relationships. With simple algebraic
operations (such as addition), the vector of one word can be obtained based on its rela-
tionship with other words. The example that the authors give is that of the relationship
between the pairs of words ’big’-’biggest’ and ’small’-’smallest’. The word vector for
’smallest’ can be obtained in the following way:

X = vector(’biggest’) - vector(’big’) + vector(’small’)

The word vector closest to X based on cosine distance, will be the vector for ’smallest’.
With more data, even more sophisticated relationships such as country-capital can be
captured (e.g. Germany-Berlin, Romania-Bucharest). The embeddings have a high
dimensional representation (between 50 and 300 dimensions), which when reduced to
two dimensional space (for example through Principal Component Analysis), would look
like in Figure 2.2.

Figure 2.2: Relationship between country and capital cities two dimensional space
[Mikolov et al., 2013a].

Word2Vec is an important milestone for NLP research and has created the context
for designing new and improved word embeddings. In the course of this thesis, we
experimented with newer pre-trained embeddings, including GloVe [Pennington et al.,
2014], and FastText [Bojanowski et al., 2016], as well as the Universal Sentence Encoder
(USE) [Cer et al., 2018] for sentence embeddings. We describe these embeddings in
Sections 2.4.3 to 2.4.5
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2.4.3 GLOVE embeddings

In this section we introduce GloVe [Pennington et al., 2014] embeddings which we use
in our experimental framework as text representation for configuring the baseline. The
use of these embeddings is also wide-spread in the deep learning literature for duplicate
question detection, most researchers reporting their results with GloVe ([Wang et al.,
2017], [Gong et al., 2017] [Kim et al., 2018]).

In 2014 Pennington et al. introduced GloVe: Global Vectors for Word Representation.
The authors aimed both to capture meaning in vector space, as well as leverage the power
of global statistics, instead of just the local context. Word2Vec takes into consideration
only local context (the window of n words surrounding the target word), failing to
recognize if two words occur together simply because one of them is very common (like
’the’) or there is connection between the words. Thus, GloVe combines the two main
approaches for learning word vectors: 1) global matrix factorization methods, such as
Latent Semantic Analysis (LSA)[Deerwester et al., 1990] and 2) local context window
methods, such as Skip-Gram [Mikolov et al., 2013a]. LSA learns significant statistical
information, but is not able to capture the underlying vector-space structure. Skip-Gram
does the opposite, missing out on the potential of global statistics.

GloVe builds a co-occurrence matrix using a fixed windows size. This leads to local
context being taken into account. The co-occurrence of two words is the number of times
they appear in the same window. The authors prove that the ratio of the co-occurrence
probabilities of the two words (instead of simply the co-occurrence probabilities) contains
valuable information and aim to encode this aspects in their vectors. The model is trained
on global co-occurrence counts of words and minimizes a weighted least-squares error,
producing a word vector space with meaningful substructure.

The authors also show that GloVe produces better embeddings, faster than Word2Vec.
GloVe and Word2Vec have since been proved to have roughly the same performance on
downstream tasks. In our work, we evaluate how GloVe text representation compares
to newer approaches to word embeddings. In addition, we use GloVe in evaluating the
baseline and in the experiments where we assess the performance of different components
of our solution.

2.4.4 Fast Text embeddings

FastText is an efficient NLP library introduced by Facebook AI researchers in 2016 [Bo-
janowski et al., 2016], an extension of the Word2Vec research. Their main goal was to
improve upon the continuous skip-gram model [Mikolov et al., 2013a] by taking into
consideration subword information. Simply put, their new approach involves learning
word representations as the sum of character n-grams learned vectors. We include Fast-
Text word embeddings as possible text representation in our experimental framework,
as subword information is supposed to alleviate the problem of noisy data and help with
rare words.

In order to capture internal word information, words are represented as bag-of-character
n-grams, where n ranges from 3 to 6. The reason behind the size of the n-grams lies be-
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hind the fact that these lengths can capture valuable information, ranging from suffixes
to longer roots. As an example, assume we have the word ”where” and n = 3. Thus
the word can be represented as: < wh,whe, her, ere, re, where >. As we can notice the
full sequence is also included, which means that a representation for the whole word is
also learned. For each n-gram found from the training corpus a vector representation
is learned. Finally, the word is represented as the sum of vector representations of its
n-grams.

FastText provides the following advantages over word2vec:

• it is able to deal well with out-of-vocabulary words (words that do not appear in the
training corpus). These words are split into n-grams and their vector representation
is averaged. This method works, because even if a word as whole may not be
present in the vocabulary of the embeddings, it is quite possible that the n-grams
that compose it have already been encountered.

• it performs well on creating better vector representations for words that occur
rarely in a training corpus (such as disease names, technical terms etc.). The reason
is same as above: the word can be split into n-grams and their representation is
averaged.

Thus, FastText has the advantage of creating a meaningful representation for rare
and out-of-vocabulary words, instead of initializing their vectors with zeros or random
numbers. We want to leverage this information in our experiments, especially since
we have not found many papers reporting the use of FastText pre-trained embeddings.
Considering that in Q&A users might make spelling mistakes (making data quite noisy)
it will be interesting to assess how these embeddings perform.

2.4.5 Sentence Embeddings

Word embeddings have been the norm for many deep learning NLP tasks, paving the
way to the idea of Universal Embeddings (pre-trained embeddings that can be used in
a wide range of downstream tasks). These methods perform a shallow form of transfer
learning, while recent research in the area of embedding sentences has shown promising
results and stronger transfer ability between different tasks [Conneau et al., 2017].

Pre-trained sentence embeddings follow the line of work on word embeddings, as pre-
vious success on word-level data motivated the idea of generating embeddings for longer
pieces of text (such as sentences or paragraphs). We will briefly describe some of the
initial approaches, before discussing the Universal Sentence Encoder [Cer et al., 2018]
created by Google.

The trivial way to obtain sentence representations is by averaging the word vectors of
the sentences. However, this approach had an overall poor performance demonstrating
the need for more sophisticated techniques. Thus, the traditional average was replaced
by a weighted average and its modification by principal component analysis (PCA)
[Arora et al., 2016]. Authors claimed a 10% to 30% improvement in performance for
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sentence similarity tasks, leading to the establishment of a strong baseline. The weighting
procedure is called smooth inverse frequency. A further improvement in performance is
brought by the work of Rücklé et. al [Rücklé et al., 2018]: they propose the concept of
p-mean word embeddings and concatenate different types of such vectors which contain
syntactic, semantic or sentiment information. P-mean stands for power mean which
is a natural generalization of the arithmetic mean [Hardy et al., 1988]. This method
outperforms the previous baseline.

Cer et al. introduce the Universal Sentence Encoder [Cer et al., 2018] in early 2018.
The team from Google creates two architectures aiming at generating a fix-sized sentence
encoding, each with a different goal in mind: high accuracy at the expense of increased
complexity or high efficiency at the cost of (a slightly decreased) accuracy. The two
models are:

• Transformer Encoder. This sentence encoding model leverages the encoder
from Transformer architecture introduced by Vaswani et at. [Vaswani et al., 2017].
The key component of the Transformer is the Multi-attention head, which helps
the model ”attend” to the relevant information. Basically, the model computes
multiple attention weighted sums, learning ”context aware representations” [Cer
et al., 2018].

• Deep Averaging Network (DAN). This technique computes the average of the
input embeddings of words and bi-grams and passes the results through a feedfor-
ward deep neural network. The output of the DNN is the sentence embeddings.
This approach is simpler and requires less complexity and resource consumption.

The output of both networks is a 512 dimensional vector, representing the sentence
embedding. The Universal Sentence Encoder is trained jointly in an unsupervised man-
ner with a large corpus of text and in a supervised manner on the SNLI [Bowman et al.,
2015] dataset (similar to InferSent [Conneau et al., 2017]). The experiments presented in
the paper prove that sentence embeddings outperform the word embeddings, although
no comparison between other baselines or previous work is discussed. The DAN pre-
trained model that generates sentence embeddings is published so that it can be used in
further research.

We are interested in the impact that the Universal Sentence Encoder can provide in the
context of duplicate question detection. The deep learning networks that we have chosen
for our framework model the relationship between the word embeddings belonging to the
question pair, which is why we incorporate the embeddings generated by the Universal
Sentence Encoder as an additional feature before the classification layer.

2.4.6 Evaluation of word and sentence embeddings

In this section we discuss our choice of word and sentence embeddings and present a
brief comparison between them.

In terms of word embeddings our choice consists of GloVe and FastText. GloVe
was picked because it is the embedding of choice in all the models that were included in
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our experimental framework, thus enabling a direct comparison of our approaches with
the original papers. FastText was included mainly for its ability to deal with out-of-
vocabulary (OOV) and rare words, especially because our datasets are collected from
real-life Q&A forums and misspellings are common. In terms of sentence embeddings,
we have opted for the Universal Sentence Encoder (USE) due to the ease of integrating
it within our framework. We used the pre-trained embeddings generated by DAN archi-
tecture. Moreover, what makes USE interesting to us is that it was shown to perform
well on semantic relatedness and textual similarity tasks [Perone et al., 2018].

Perone et. al present an empirical evaluation of the most important advances in
sentence embeddings [Perone et al., 2018]. Among state-of-the-art techniques such as
p-mean, USE they also include word embeddings (Word2Vec, GloVe, FastText) and
average them in order to obtain sentence embeddings. Inspired by this paper, we present
Table 2.1, which shows an overview of the embeddings that we choose for our work.

Name Training Methods Embedding Size

FastText (BoW, Common Crawl) Unsupervised 300

GloVe (BoW, Common Crawl) Unsupervised 300

USE (Transformer) Unsupervised + Supervised 512

Table 2.1: High-level comparison of embeddings. The table summarizes the training
methods used and the size of the resulting pre-trained embeddings.

2.5 Summary

In this chapter we have introduced necessary theoretical background information, de-
scribing the most important concepts related to Deep Learning in the context of Natural
Language Processing. We have briefly discussed how a basic neural network works and
what training in the context of DL means. Special emphasis was put on architectures
that are relevant to this work and on the word embeddings chosen for the experiments.
Specifically, our deep learning models include LSTM layers, GRU layers, attention mech-
anism, bidirectional and siamese networks. Furthermore, as discussed in Section 2.4.6,
we use GloVe, FastText and Universal Sentence Encoder for text representation.

We aim to solve the problem of duplicate question detection with Deep Learning. The
main advantage of this technology is its ability to learn from unstructured data and
extract abstract features from raw text. In contrast, it can be sensitive to lack of data
and we propose solutions to this problem in Chapter 4.
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3 Related Work

The development of deep learning techniques for duplicate question detection has been
an intensive area of research in recent years, especially since the public release of Quora
Duplicate Questions Dataset 1 in 2017 and launch of the equivalent Kaggle competition
2, which challenges its users to solve this natural language processing problem. There
have been many encouraging results, which we will overview in the following sections.

The main purpose of this chapter is to discuss related work. First, we report on
state-of-the-art solutions for DQD; second, we introduce three similar NLP problems
and discuss how they are related to the task at hand; finally, we describe the problem
of duplicate detection in general. In the last section of this chapter, we discuss how this
research is positioned in the literature. We also briefly present techniques used in the
literature to improve the performance of different models and experiments that pushed
the study of DQD forward.

3.1 State-of-the-art in DQD

In this section, we detail several state-of-the-art approaches and discuss how they com-
pare to each other. The focus is on deep learning models, which can be classified into two
main categories based on how the pairs of sentences are handled: sentence encoding
and sentence interaction.

3.1.1 Sentence Encoding

Yu et al. define sentence encoding as a framework in which the model learns a pair
of fixed-size representations for the input sentences and generally uses a comparison
function to combine the vectors into a unified representation ([Yu et al., 2018]). The
two sentences are encoded independently of each other. The main advantage of this
technique is that parameters are shared across the network, consequently making the
model easier to train. There are a number of works that can be classified into this
category and their approaches consist of Siamese neural networks (see Section 2.3.5 )
which use convolution neural networks (CNN), LSTM, GRU or RNN cells to encode
both sentences.

Bogdanova et al. are one of the first to tackle specifically the problem of DQD and
propose a sentence encoding neural solution [Bogdanova et al., 2015]. Their Deep
Convolutional Neural Network (DCNN) transforms words into embeddings and

1Details about dataset release: https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
2Competition details: https://www.kaggle.com/c/quora-question-pairs
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constructs distributed vector representations for questions, which are scored using a
similarity metric. They also explore the impact of domain-specific word embeddings
and training set size. Their results show that CNN performs better than traditional
methods based on Jaccard coefficient and SVM, especially on pre-trained in-domain
data. They experiment with datasets from AskUbuntu and MetaExchange forums. The
authors claim a 92% accuracy, fact which is verified by a reproducibility study [Silva
et al., 2018]. The latter found that in the original work of Bogdanova et al., there was
an error in the preparation of the data: specifically, they noticed that the questions
contained a clue in the form of the string ”Possible duplicate” plus a link to the question
that is a duplicate. As the model is supposed to learn what duplicate questions look
like, the authors claim that this error was at the basis of the 20% jump in accuracy,
obtaining instead 73.4% with the same network. Furthermore, Silva et al. propose a
hybrid DCNN which achieves 79% accuracy on AskUbuntu dataset.

Homma et al. developed Siamese GRU) and Siamese RNN (see Sections 2.3.3
2.3.1) architectures and experimented with different distance metrics on Quora dataset
[Homma et al., 2017]. They showed that, based on only 10-15 words of a sentence, a
GRU neural network is able to extract the majority of semantic meaning and created a
technique for data augmentation which achieved promising results in reducing overfitting.
Their best result was an accuracy of 84.95% with a network with two hidden layers and
GRU cells for encoding the sentence pairs on the augmented dataset. The framework
described in Chapter 5 implements this architecture and aims at reproducing this paper’s
best result. Implementation details are described in the corresponding Section 5.2.2.

3.1.2 Sentence Interaction

Sentence interaction [Yu et al., 2018] (also loosely referred as ’compare-aggregate frame-
work’ [Wang and Jiang, 2016]) aims at capturing the interaction between the input
sentences. In general, these methods compare vector representations on a more granular
level (for example words and phrases) and aggregate these results to output the pre-
diction. The motivation behind this kind of approach is that a single, fixed-size vector,
used for encoding a sentence, is not able to fully learn the complex patterns of a text
sequence and important information may be lost.

The Decomposable Attention (DecAtt) model[Parikh et al., 2016] achieved state-
of-the-art results on Natural Language Inference (NLI) problem (SNLI dataset, [Bowman
et al., 2015]) when it was introduced. It is one of the first models to use attention
mechanism (see Section 2.3.6) for soft-aligning the elements of the two sentences. The
soft-alignment matrix is used to obtain the aligned subphrases, which will be compared.
The vectors obtained from the comparison phase are aggregated through summation
and used to obtain the prediction. The advantages of this approach is that it uses an
order of magnitude fewer parameters than the other models it is compared to and it does
not need to take into account word order, rendering this model very efficient. We have
incorporated this model in our solution framework, mainly because of its simplicity and
effectiveness, but also because this model is actively used up to date. Engineers from
Quora experimented with this model for detecting duplicate questions posted on the

26 Master Thesis, TU Berlin, 2018



Andrada Maria Pumnea Advancing DQD with Deep Learning

website and obtained an accuracy of 86% with word embeddings pre-trained on Quora’s
text corpus. Furthermore, the winning team in the Kaggle Quora Competition included
this model in their approaches. Thus, we find it relevant to our work. Implementation
details are provided in Section 5.2.2.

The Enhanced Sequential Inference Model(ESIM) [Chen et al., 2016] achieved
state-of-the-art results soon after DecAtt on the NLI problem. It surpassed the accuracy
of DecAtt (86.3%) reaching 88.6% on SNLI dataset. This model is related to DecAtt,
bringing some improvements. It uses a BiLSTM (see Sections 2.3.4, 2.3.2) to encode the
input sentences, an attention layer, a local inference layer with subtraction and element-
wise product of aligned sub-phrases, a BiLSTM inference composition layer, a pooling
operation and, finally, an output layer. The aim of the authors was to enhance sequential
inference models and capture richer information. This model is often used as baseline
in other works ([Peters et al., 2018]) and it was also employed by the winners of Kaggle
Quora Competition, along with DecAtt. Because of these reasons, we incorporate it in
our framework. Further implementation details are provided in Section 5.2.2.

Wang et. al. achieved state-of-the-art results on DQD problem, with an accuracy of
88% on Quora dataset, from their Bilateral Multi-Perspective Matching model
(BiMPM) [Wang et al., 2017]. Their model encodes and matches the two sentences
bidirectionally (P against Q and Q against P) from multiple perspectives. The authors
devise four methods for matching each time-step of P against all time-steps of Q and the
other way around. The matching results are then aggregated with a BiLSTM in a fixed-
length vector and the prediction is made based on this vector. The authors compare
this technique to their previous work in the field and show that it outperforms Siamese
CNN and Siamese LSTM by a large margin. The approach is tested on three different
NLP problems, including Natural Language Inference, Answer Sentence Selection (what
we refer to as Question Answering or QA in Section 3.2) and Paraphrase Identification
(PI). This work is relevant to us because the authors release a training, development,
test data split, which is used in most papers that came out after this one. We also adopt
this data split in our experiments, thus having a good frame of reference for comparing
results.

Another model, called Densely Interactive Inference Network (DIIN) produces
improved results on NLI and paraphrase identification problem [Gong et al., 2017].
They introduce the concept of interaction tensor, which is an extension of multi-head
attention [Vaswani et al., 2017]. This interaction tensor is able to capture rich semantic
information by ”building word-by-word dimension-wise alignment”. For the paraphrase
identification problem, the authors report an accuracy of 89.06% for simple DIIN and
88.9% for ensemble DIIN.

More recently, the Densely-connected Recurrent and Co-attentive neural Net-
work (DRCN) model has achieved a new state-of-the-art performance on five different
datasets [Kim et al., 2018], in the field of NLI, PI and QA. Their proposed architecture
leverages the power of deep RNNs, which are better at learning information from longer
sequences. The attention mechanism is used to retain co-attentive feature information
through the whole network (from the first layer to the last one). The paper reports an
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accuracy of 90.15% for the simple DRCN model and 91.30% for ensemble DRCN on
Quora dataset.

3.2 Natural Language Sentence Matching

Natural Language Sentence Matching (NLSM) [Wang et al., 2017] is the problem
of identifying the relationship between two (or more) input sentences. Thus, modeling
a pair of sentences is fundamental to many NLP tasks, with application to real-world
use cases (such as online forums, community question answering websites and chatbots).
Paraphrase Identification (PI), Natural Language Inference (NLI), Question Answering
(QA) are some of the problems that fit in the category of NLSM. In terms of deep learning
approaches, the trend has been to design architectures that are able to generalize well
and tackle more than just one sentence pair modeling task, as we see in Section 3.1.

Paraphrase Identification is the task of checking whether two sentences are para-
phrases i.e. they express the same meaning. Paraphrases can be seen as the equivalent
of lexical synonyms, but at sentence level, which means that both sentences must be true
under the same conditions. The release of Microsoft Research Paraphrase Corpus
(MSRP) [Dolan and Brockett, 2005] has been a major step forward in this area as it
enabled researchers to train and test their models on a standard corpora. Duplicate
Question Detection is a subproblem of this category as it entails identifying whether two
questions are looking for the same answer [Bogdanova et al., 2015]. Duplicate questions
are harder to identify than duplicate declarative statements [Rodrigues et al., 2018] .
Table 3.1 shows some examples of paraphrase and not paraphrase sentences from MSRP
dataset, with varying degree of word overlap.

Sentence 1 Sentence 2 Label

Charles O. Prince, 53, was named
as Mr. Weill’s successor.

Mr. Weill’s longtime confidant,
Charles O. Prince, 53, was named

as his successor.
Paraphrase

The euro rose above US1.18, the
highest price since its January 1999

launch.

The euro rose above 1.18the
highest level since its launch in

January 1999.
Paraphrase

The Gerontology Research Group
said Slough was born on DATE,

making her NUMBER years old at
the time of her death.

”Mrs. Slough” is the oldest living
American as of the time she died,

L. Stephen Coles, Executive
Director of the Gerontology

Research Group, said DATE.

Not Paraphrase

Table 3.1: Examples of MSRP dataset [Dolan and Brockett, 2005].

There has been extensive work on the problem of Natural Language Inference
(NLI), especially since the release of Stanford Natural Language Inference (SNLI) Cor-
pus [Bowman et al., 2015]. The corpus contains 570k pairs of English sentences, which
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were manually labeled as entailment, contradiction or neutral. Correctly identifying the
label is challenging as it requires a very good understanding of the context and the abil-
ity to logically reason between a premise sentence and a hypothesis sentence. To clarify,
the main task in this case is to figure out whether the hypothesis can be inferred from
the premise. NLI is closely related to PI, mainly because paraphrases can be seen as a
special case of symmetrical entailment. In the case of entailment, one sentence is true
in the context of the other, but the reverse does not hold. For example, assume we have
the following sentences from the work of Parikh et al.: ”Bob is in his room, but because
of the thunder and lightning outside, he cannot sleep.” and ”Bob is awake.” Clearly, the
second sentence follows the first one, but the opposite does not hold, as just by looking
at the second sentence we do not know why Bob is awake. If the second sentence was
”Bob is awake because of the storm” then the relationship between the two sentences
would be symmetrical and they would be paraphrases. Table 3.2 shows some examples
of Premise and Hypothesis sentences and their label.

Premise Hypothesis Label

A soccer game with multiple males
playing.

Some men are playing a sport. Entailment

A man inspects the uniform of a
figure in some East Asian country.

The man is sleeping Contradiction

An older and younger man smiling.
Two men are smiling and laughing

at the cats playing on the floor
Neutral

A black race car starts up in front
of a crowd of people.

A man is driving down a lonely
road.

Contradiction

Table 3.2: Examples from SNLI dataset [Bowman et al., 2015].

Question Answering and Information Retrieval (QA) or Answer Sentence Se-
lection [Yang et al., 2015] is defined as the task of ranking candidate answers for a
question based on how well they answer the question. The relevance between question-
answer pairs can be determined by their similarity [Wang et al., 2016], similarly to PI.
One challenge that arises in a QA setting is that there may be very little word overlap
between query-answer pairs, what is also known as lexical chasm [Berger et al., 2000].
Efficiently solving this NLP problem is important for maintaining the quality of Q&A
websites as thousands of questions and thousands of (more or less vague) answers are
posted everyday. In a real world scenario this is a two-step task: first identifying whether
this question has been asked (i.e. detecting duplicate questions), second, ranking the
available answers based on their correctness and relevance. Table 3.3 shows an example
of a question and a set of candidate answers. On some Q&A websites users have the
possibility to vote for the best answer, but this might not always be the most appropriate
one as users might choose to vote a funny/unrelated answer to a question.

In general, all these problems (PI, NLI, QA) can be solved in a similar way to DQD, by
converting the text data in a numerical, vector-based representation and afterwards ap-
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Question Sentence Label

Q1. How are glacier caves formed?
D1-0. A partly submerged glacier
cave on Perito Moreno Glacier.

0

D1-1. The ice facade is
approximately 60 m high

0

D1-2. Ice formations in the Titlis
glacier cave.

0

D1-3. A glacier cave is a cave
formed within the ice of a glacier.

1

Table 3.3: Example from WikiQA dataset [Yang et al., 2015]. Answer D1-3 has label 1
which means this is the correct answer.

plying different operations and transformation strategies for adding or removing features
for identifying similarity and semantic relationship, before finally outputting a predic-
tion. Models such as BiMPM [Wang et al., 2017], DIIN [Gong et al., 2017], DRCN [Kim
et al., 2018] address multiple of these tasks at the same time, with DRCN achieving the
overall state-of-the-art.

3.3 Duplicate Detection

The problem of duplicate entries that refer to the same real world entity has existed
for decades, especially in databases. Different names are attributed to it, from record
matching, name matching to duplicate detection. Elmagarmid et al. refer to it as dupli-
cate record detection and define it as ”the process of identifying different or multiple
records that refer to one unique real-world entity or object” [Elmagarmid et al., 2007] .

The first step in detecting duplicate records in a database is to prepare the data,
so that comparison is easier to pursue. The steps to achieve more usable data include
parsing, transformation (data type conversion) and standardization (formatting fields in
a standard way).

Once the records are easier to use and manipulate, techniques for measuring similarity
can be applied. According to Elmagarmid et al., the methods can be categorized in the
following way:

• Field matching. These techniques are based on string comparison and aim to fix
different kinds of errors. In this category we have character-based similarity met-
rics [Jaro, 1980], token-based similarity metrics [Gravano et al., 2003], phonetic
similarity metrics [Philips, 2000].

• Probabilistic matching models. These techniques encompass probabilistic and
supervised machine learning methods. Approaches include different Bayesian mod-
els ([Winkler, 2002], [Verykios and Moustakides, 2004]).
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• Supervised and semi-supervised learning. Algorithms such as CART and
SVM perform well on matching duplicate records from multiple fields ([Cochinwala
et al., 2001], [Bilenko et al., 2003]).

• Active-Learning-Based Techniques These techniques are used to identify pairs
of duplicates which are more challenging to correctly classify, but would help the
algorithm generalize better [Sarawagi and Bhamidipaty, 2002].

• Unsupervised Learning. When there is not enough good training data available,
methods such as clustering perform well on detecting duplicate records ([Raviku-
mar and Cohen, 2004]).

More recent techniques and toolkits include DuDe, Magellan, and JedAI. DuDe [Drais-
bach and Naumann, 2010] is an extensible toolkit for duplicate detection, which supports
multiple data sources (e.g. relational databases, CSV files) and similarity measures.
Magellan [Konda et al., 2016] is an entity matching system that covers the whole record
linkage pipeline (blocking, matching, exploring, cleaning, debugging, sampling, labeling,
estimating accuracy) and can be easily integrated with other Python packages. JedAI
[Papadakis et al., 2018] is a fast deduplication tool that can handle both structured and
semi-structured data.

Overall, duplicate record detection is related to duplicate question detection on a high
level, but the techniques are not suitable. One of the main reasons behind this is the
complexity of natural language compared to structured data which can be found in a
database, thus requiring more sophisticated approaches.

3.4 Positioning of our work

The problem of duplicate question detection has been consistently studied in the re-
cent years, with solutions relying on feature engineering and classic machine learning
algorithms ([Kozareva and Montoyo, 2006]) or advanced deep learning architectures.
An overview of the models discussed in Section 3.1.1 and Section 3.1.2 is presented in
Table 3.4, similarly to the comparison done by Lan and Xu [Lan and Xu, 2018]. We
have also included our best performing solution in this table. All these models, except
SiameseGRU, used the same train/dev/test split of Quora dataset, provided by the
creators of BIMPM model [Wang et al., 2017], which makes their results comparable.
DecAtt, ESIM and SiameseGRU have been included in our experimental frame-
work, so that both sentence encoding and sentence interaction approaches are covered,
but also because these models showed promising results and as still relevant today. We
will discuss the implementation of the framework with state-of-the-art deep learning
models in Section 5.2.2.

As discussed in the previous sections, the trend in solving the DQD problem (and other
similar NLP problems) has been to devise improved and more sophisticated architectures
to tackle the challenge of semantic equivalence. For this purpose different strategies for
encoding and representing sentences have been created, different ideas for capturing
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Approach Sentence Encoder
Interaction &

Attention
Aggregation & Classification

DRCN [Kim
et al., 2018]

BiLSTM

RNN + soft
alignment +

concatenation +
autoencoder

maxpooling + MLP

DIIN [Gong
et al., 2017]

highway network
+ self-attention

dot product +
DenseNet [Huang

et al., 2017]
maxpooling + MLP

BiMPM [Wang
et al., 2017]

BiLSTM
multi-perspective

matching
BiLSTM + MLP

DecAtt [Parikh
et al., 2016]

-
soft alignment +

dot product
summation + MLP

ESIM [Chen
et al., 2016]

BiLSTM before
and after
attention

soft alignment +
dot product +

subtraction
average and max pooling + MLP

SiameseGRU
[Homma et al.,

2017]
GRU -

dot product + squared difference +
MLP

SiameseLSTM
[Wang et al.,

2017]
LSTM - cosine similarity + MLP

SiameseCNN
[Wang et al.,

2017]
CNN - cosine similarity + MLP

DecAtt + ESIM + USE sentence embeddings + data augmentation (our solution)

Table 3.4: Summary and comparison of models based on accuracy. MLP stands for
Multi-layer Perceptron (see Section 2.2.1 for reference)

interaction have been tested and different variants of attention have been implemented
as discussed in Section 3.1.

Other researchers have conducted experiments to understand different aspects of DQD,
by using already existing architectures (DCNN [Bogdanova et al., 2015]). For example,
Saedi et al. studied the impact of the training set size on the performance of different
models, in the context of duplicate question [Saedi et al., 2017]. They concluded that
traditional methods, such as Jaccard coefficient, perform better on smaller training sets,
while more complex deep learning techniques (such as DCNN [Bogdanova et al., 2015])
are superior on sufficiently large datasets. The research of Rodrigues et al. is also inter-
esting, as they explore the impact of training sets which consist of generic-domain, well-
edited questions versus narrow-domain, poorly formulated questions [Rodrigues et al.,
2017]. They also focus on the problem of transfer learning, concluding that there is
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a negative impact on accuracy when the algorithms are trained on data from multiple
domains and then applied to a narrow domain.

The solution presented in this work, in Chapter 4, studies different approaches for
text representation, data augmentation, transfer learning and ensembling that can be
applied to improve the performance of deep learning architectures in the area of DQD.
For this reason, the experimental framework includes three well-performing models and
different strategies to enhance their performance. We study how smaller samples of
competitive DQD datasets with different characteristics behave with these models and
new components.
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4 Solution

In this chapter, we describe the limitations encountered in the study of DQD and our
proposed approaches to solve these issues. The main problem that we are aiming to solve
is that of limited labeled training data typically available for research or production use
in the area of DQD. In this case, manually labeling data requires tremendous human
effort for reading and annotating pairs of questions (normally by more than one per-
son) in order to obtain a high quality dataset. The alternative would be a sophisticated
sampling technique/machine learning model that automatically labels data, including
training data. Unfortunately, this approach carries the risk of creating a noisy dataset,
which would require manual validation. Either way, the process is expensive and time-
consuming. Thus, the challenge becomes either to find suitable methods for enhancing
available data or to identify which techniques empower classifiers to efficiently learn from
less data. First, we motivate the need for techniques for smaller datasets and the prob-
lems that need to be addressed in this setting. Next, we introduce the solutions that we
undertake in this thesis. We propose to solve the problem of reduced amounts of train-
ing data through finding suitable text representation for questions, data augmentation,
transfer learning and ensembling. With these approaches, we aim to build a model that
requires less training data for achieving good performance.

4.1 Foundations

The main limitation of the models and techniques proposed so far and described in
Chapter 3 is that they assume an unrealistic scenario, where labeled training data is
abundant. Current solutions have mainly competed against each other in increasing
accuracy on big datasets by designing sophisticated architectures that are data hungry
and often result in overfitting smaller datasets.

Unfortunately real-life applications deal with noisy and limited datasets, sometimes
targeted to a specific domain and with a distinct vocabulary. The effect of using different
DL models on datasets with this kind of characteristics has not been thoroughly studied.
Hence, the users who dispose of a small training sample and want to create a system
that can detect duplicate questions will find themselves at a loss in the myriad of tools
and techniques available, none of them tailored for their use case. Thus the goal of our
research becomes:

• Study techniques that enable DL models to efficiently learn from limited training
sets by enhancing available data and models.

In order to solve the main problem of limited data for DQD and answer the research



Advancing DQD with Deep Learning Andrada Maria Pumnea

questions formulated in Chapter 1 we formulate four different subproblems and their
inherent research questions.

The first problem that we aim to solve is concerned with determining which text
representation is the most robust to limited training sets. We propose evaluating state-
of-the-art word embeddings and sentence embeddings and identifying which are most
suitable for detecting duplicate questions. This leads to our first research question:

1. Which text representation is the most beneficial for identifying duplicate questions
from a small sample size?

The second problem refers to the tendency of DL models to overfit small datasets which
poses the challenge of how to generate more training data. We propose several data aug-
mentation techniques that can create new data and help the models generalize better.
The second research question that we address is:

2. How can we generate new training data such that the DL models are able to gen-
eralize better?

The third problem addresses the situation where a bigger, related dataset is available and
our target dataset is small. We introduce two ways to transfer information between the
two datasets, so that the learning process does not begin from scratch. This approach
covers the scenario in which we have a big dataset from a different domain available
and less data from our target domain. The third research question can be formulated as
follows:

3. How can transfer learning help when there is not enough training data available?

Finally, the last problem refers to the strengths and weaknesses of our DL models and
the different perspectives that they tackle (sentence encoding and sentence interaction).
We propose to ensemble them by stacking, such that the different knowledge that they
gained through training can be leveraged. Thus, we aim to answer the final question:

4. How can ensembling help in better detecting duplicate questions using a small dataset?

Our proposed solution uses a default setting which includes three state-of-the-art deep
learning models. We chose not to design a new DL architecture, but instead to find
methods that can be used on top of these models, in order to consistently improve their
performance. We believe such an empirical study is necessary because there is a wide
range of techniques available which have been assessed on increasingly big datasets, over-
seeing the fact that in some fields text data is still limited. What is more, there is no
unified framework that evaluates these techniques and can determine whether they are
dataset agnostic or dataset specific.
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4.2 Text Representation

To the best of our knowledge the existing solutions in the area of DQD lack a detailed
analysis of how using different pre-trained word and sentence embeddings affect the
performance of the classifiers. This makes it difficult to have a general understanding
of the real impact the available pre-trained embeddings have on the final classification
result. The goal of this section is to outline the problems related to text representation
and the proposed methods consisting of two pre-trained word embeddings, combined
with sentence embeddings.

The works described in Chapter 3 mainly use Glove [Pennington et al., 2014] word
embeddings for initializing the embedding layer in their architectures. As explained
in Section 2.4.3, GloVe builds word vectors based on the idea that if words appear in
the same contexts they tend to have the same meaning. GloVe has limitations when it
comes to how it deals with rare or out-of-vocabulary words, providing no embedding for
them. As datasets tend to be noisy, especially in online user forums where misspellings
occur and users might coin new terms or ask very technical questions, this is a disad-
vantage. For example, in the question ”How do i get nvidia gt650m working?” taken
from AskUbuntu dataset (see Section 5.1.2), GloVe would only find word embeddings
for ”how”, ”do”, ”i”, ”get”, ”working”, which makes the initial sentence lose some its
important details.

There are novel approaches that address the shortcomings of GloVe. FastText [Bo-
janowski et al., 2016] is trained in an unsupervised manner, and learns representations
for n-gram units and then sums them to get the word vector. Hence, it has the advan-
tage of better dealing with rare and out-of-vocabulary words (see Section 2.4.4). On the
other hand, the recently released Universal Sentence Encoder (USE) [Cer et al., 2018]
is trained both in a supervised and unsupervised manner and builds fixed-size sentence
embeddings( Section 2.4.5), claiming to outperform word embeddings. We summarize
these new techniques in Table 4.1.

There has not been much research into how these newer technologies can benefit the
study of DQD. We propose a comparative analysis between them, treating the sentence
embeddings as a feature to be concatenated to the word representation. The reason
behind this is that the architectures that we chose to work with in our experimental
framework focus on the words, which are lost when we obtain the sentence representation.

We experiment with both GloVe and FastText to build the embedding matrix and
then concatenating the USE sentence embeddings to the word representations. We will
have four possible scenarios for text representation: GloVe, FastText, GloVe and USE,
FastText and USE. Typically two sentences that are similar in terms of semantics will
have similar encoding and thus sentence embeddings should act as a strong feature in
classification. We show that an additional feature from the USE brings a small boost in
the performance of deep learning models. Based on this experiment we can answer the
question Which text representation is the most beneficial for identifying duplicate ques-
tions from a small sample size? by claiming that GloVe and FastText are competitive
with each other, while an additional feature from USE is beneficial.
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Pre-trained embedding Description Dimension

GloVe [Pennington et al.,
2014]

It contains 2.2M word vectors
trained on Common Crawl.

300

FastText [Grave et al., 2018]

It contains 2M word vectors
trained with subword infomation
on Wikipedia 2017 and Common
Crawl.

300

Universal Sentence Encoder
[Cer et al., 2018]

Trained in an unsupervised way
with data from Wikipedia, web
news, web question-answer pages
and discussion forums. Addition-
ally, trained in a supervised way
with SNLI corpus.

512

Table 4.1: Description of pre-trained word and sentence embeddings used in this re-
search. FastText also takes into account the morphology of words by adding
sub-word information to build the embeddings. Universal Sentence Encoder
is a model that transfers the knowledge learned from big corpora of data to
encoding the sentences it is fed.

4.3 Data Augmentation

Generating additional data in a meaningful way, to help classifiers generalize better, is
challenging. This is a necessary step especially when only small datasets are available
for training and the models are data hungry, tending to overfit the available data. In the
context of image processing, typical data augmentation techniques include flipping and
rotating images or removing some pixels, as essentially these methods do not change the
original image. This is not possible in NLP, as adding or removing words or changing
the order of words in a sentence might modify its whole meaning and end up introducing
noise. In the context of DQD, we propose three methods that create varying amounts
of new data and one method to add perturbation to the word embedding matrix.

4.3.1 Reverse Questions Augmentation

The first method of creating new data is inspired by the work Homma et al. and it
entails reversing the order of questions. With this method we basically double the size
of the original dataset, while maintaining the initial distribution of labels. The authors
claim that this method is promising for siamese networks with asymmetrical operations
such as subtraction [Homma et al., 2017], so it is be interesting to see how sentence
interaction models are influenced by this augmentation technique. Table 4.2 illustrates
an example of this rather simple technique. We show that this technique improves the
performance of our models on limited amounts of data, where the questions have high
word overlap, by a small margin.
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ID Question 1 Question 2 Label

1 How do you properly tie ice skates?
How can I tie my ice skate

shoelaces properly?
Duplicate

2
How can I tie my ice skate

shoelaces properly?
How do you properly tie ice skates? Duplicate

Table 4.2: Example of reversing question order data augmentation technique. The first
pair is the original one and the second pair is added as augmentation by
reversing the order of questions.

4.3.2 Thesaurus Augmentation

The second method involves using an external resource such as WordNet1 for finding
synonyms for words in a given sentence and replacing them. Wordnet [Miller, 1995] ”is a
large lexical database of English, where nouns, verbs, adjectives and adverbs are grouped
into sets of cognitive synonyms (synsets), each expressing a distinct concept”. Replacing
words with their synonyms is also known under the name of Thesaurus augmentation
[Zhang and LeCun, 2015]. If a word does not have synonyms we leave it unchanged. This
technique doubles the size of the original dataset. It is promising because it adds variety
to the original dataset and exposes the neural network to new words. Nonetheless, this
method bears the risk of introducing unwanted noise in the dataset, as very rarely words
have exact synonyms. Table 4.3 continues the example from above, this time in the
context of replacing synonyms. While this method is promising, we show that it does
not give consistent results.

ID Question 1 Question 2 Label

1 How do you properly tie ice skates?
How can I tie my ice skate

shoelaces properly?
Duplicate

2
How do you in good order tie ice

skate?
How can I tie my ice skate shoelace

decent?
Duplicate

Table 4.3: Example of Thesaurus-based data augmentation technique. The first pair is
the original one and the second pair is added as augmentation by replacing
word with their synonyms. As we can notice, the replacement can sometimes
sound quite unnatural, and even perturb the original label.

4.3.3 Heuristic Augmentation

We propose a a third method that entails sampling the available dataset based on a
defined heuristic for word overlap and adding that sample again, but in reverse order.
The assumption behind this idea is that we can help the model put more focus on

1https://wordnet.princeton.edu/
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certain types of questions, selected based on that heuristic. In this method we are
mostly interested in ambiguous pairs of questions, that could hypothetically make the
classifiers more robust to real-life scenarios. We define a scoring metric for measuring
word overlap: the ratio between the number of unique words that the two questions have
in common and the total unique words. For this metric we take the lemma of the word
and ignore the stop words. We want our models to be able to correctly classify pairs
of questions that have a big share of vocabulary in common, but in fact have different
intents (so non-duplicates). Furthermore, models should be able to detect complex
paraphrases, where there is little word overlap but the questions are actually asking for
the same thing. We establish a threshold for word overlap in these two cases and add
these pairs again, in reverse order. An example of such ambiguous pairs of questions is
shown in Table 4.4. We show that, even though this technique is not suited for data
augmentation, it provides a good way to test the lexical knowledge of our models, as
questions with high overlap are generally challenging to be correctly classified.

ID Question 1 Question 2 Label

1
What was the immediate cause of

the First World War ?
What were the causes of the First

World War ?
Non-Duplicate

2
Is it true goats will eat anything ?

How do they do it ?
What is the reason why goats are

able to eat everything ?
Duplicate

Table 4.4: Example of sentences chosen based on word overlap heuristic. The first pair
has high word overlap, but is in fact non-duplicate, while the second pair has
low word overlap and is duplicate.

4.3.4 Gaussian Embedding Perturbation

Finally, the fourth strategy addresses the continuous space of word embeddings, instead
of the discrete space of words. Following the work of Zhang et al., we modify the
word embedding layer by adding small amounts of random Gaussian noise to it [Zhang
and Yang, 2018]. This method, also known as word embedding perturbation has shown
potential for sentence classification, which makes it interesting to try in our use case.
We transform the embedding layer Xemb with e sampled from the Gaussian distribution:

Xemb = Xemb � e, e ∼ N(I, σ2I)

This experiment shows us that this type of augmentation makes sentence encoding
models more robust to noise, while the results vary for sentence interaction models.

To summarize, our experiment with data augmentation techniques encapsulates three
methods that augment the dataset in the discrete space of words and one method that
deals with the continuous space of word embeddings. The results of this experiment
help us answer the question How can we generate new data such that the DL models are
able to generalize better? by stating that adding the questions in reverse is a promising

40 Master Thesis, TU Berlin, 2018



Andrada Maria Pumnea Advancing DQD with Deep Learning

technique and fine-tuning the amount of Gaussian noise added to the embedding matrix
can make models more robust. Overall, these methods only marginally improve the
baseline, which suggests that more data needs to be generated for better improvements.

4.4 Transfer Learning

Deep learning models typically require large amounts of data in order to generalize well
on unseen samples. These high quality datasets are not always easily available, which is
also the use case we are exploring in this thesis. On the other hand, when a bigger, similar
dataset is available, this problem can be mitigated through a technique called transfer
learning. We propose two different methods for applying this technique to DQD. The
basic idea for employing transfer learning methods is to take advantage of the weights
learned by a DL model and apply them to a different dataset. This means using a model
trained to solve a problem, on a related problem, which is efficient computational- and
time-wise. Overall, transfer learning has the potential to make classification easier.We
perform transfer learning for two reasons:

1. It is an effective technique for identifying models that are able to generalize well
on related problems, thus saving resources.

2. When data from a domain is scarce, the model can be trained on a similar dataset
and then applied to the target dataset (also known as domain adaptation).

The usage of pre-trained word embeddings is a transfer learning technique itself, as
it entails gaining knowledge of semantics, syntax and context from a large corpus of
text, before applying them to a specific task. The embeddings can then be used in a
diverse range of NLP problems, including DQD. On the other hand, this approach can
be quite shallow as embeddings are only loaded in the first layer of a network, while
nowadays networks typically consist of many layers. From this point on, it depends
on the architecture to learn as much as possible from the embeddings assigned to it.
In more recent works, researchers are focusing on transferring entire models between
different tasks ([Howard and Ruder, 2018], [Radford et al., 2018]). The most important
advance in this sense is the concept of pre-training an entire language model, which has
been overwhelmingly efficient in transferring knowledge between NLP tasks [Howard
and Ruder, 2018]. This is mainly because the pre-trained language model has a deep
understanding of grammar, semantics and other NLP issues. The idea has been further
improved by building a task-agnostic pre-trained language model [Radford et al., 2018].

The models in our experimental framework are specialized in modeling the relationship
between pairs of sentences. Hence, they are not task agnostic because they require that
the data they are fed is a pair of sentences. For example, these models cannot be applied
to sentiment analysis task, where the inputs are typically paragraphs. It is interesting
to explore the models’ ability to transfer information between related tasks and datasets
in this more specific setting.
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We propose to apply transfer learning in two different ways: first method consists of
fully training and tuning a model on a dataset and evaluating on a different dataset;
second method corresponds to pre-training the layers of the model on a dataset and fine-
tuning and evaluating it on a new dataset. Both methods will be tried in two different
situations: 1) when dealing with the same task, but a different word distribution and
domanin; 2) when dealing with a different, but somehow related task. Theoretically, the
pre-training and fine-tuning method is expected to perform better, potentially from less
data, as the model does not need to learn everything from scratch. We show that this
is true for the sentence encoding model, which definitely benefits from large amounts of
information learned in the previous task. On the other hand, entire model transfer is
not successful in this context. This effectively answers the question How can transfer
learning help when there is not enough training data available?

4.5 Ensembling

The architectures applied to the problem of DQD are typically tackling the pairs of
questions from two different perspectives: sentence encoding and sentence interaction
(see Section 3.1), each with its own downsides. We propose to reduce the number of
errors made by the models by ensembling them. The most popular ways to ensemble
models are:

• Bagging. Build several models of the same type using different subsamples of the
same training set. Reduces variance.

• Boosting. Build several models of the same type, where each model focuses on the
error made by the previous one. Reduces bias.

• Stacking. Build several models of different types and average their predictions for
increasing their overall predicting power.

Sentence encoding models have a tendency to generalize better across different datasets,
but because of their simplicity they sometimes lack the ability to understand contexts.
On the other hand, sentence interaction models pay more attention to the relationship
between words in a sentence and when the sentences have a high overlap, they are left
with very few keywords to focus on [Lan and Xu, 2018]. Tables 4.5 and 4.6 show some
examples of errors made only by sentence interaction, respectively only by sentence
encoding models.

In order to improve the performance of our models, it would be better to leverage the
knowledge each model gained separately by training and use it to make better predic-
tions. Our approach consists of creating an ensemble that includes the three models we
proposed in the experimental framework. We show that the ensembles perform better
than any individual model. On the other hand, the best performing ensemble contains
only the sentence interaction models, as the sentence encoding model underperforms in
comparison to them by a large margin. This answers the question How can ensembling
help in better detecting duplicate questions from a small dataset?
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ID Question 1 Question 2 Label

1 Is Deadpool overrated? Why is Deadpool overrated? Duplicate

2 Why do people believe in karma?
Why do some people not believe in

Karma?
Non-Duplicate

Table 4.5: Example of questions mislabeled by Sentence Interaction models. The sen-
tences have high overlap, which makes it harder for the models to understand
the differences. The questions were correctly labeled by the Sentence Encod-
ing model.

ID Question 1 Question 2 Label

1
Is it possible that Donald Trump

has a mental problem ?
Is Donald Trump mentally stable ? Duplicate

2 Why does it rain so heavy ?
Why does the road become bad

after a heavy rain ?
Non-Duplicate

Table 4.6: Example of questions mislabeled by the Sentence Encoding model. In this
case the model does not perceive the different contexts and synonyms. The
questions were correctly labeled by Sentence Interaction models.

4.6 Summary

In this section we have introduced the problems we identified in the study of DQD and
proposed a series of solutions with which we attempt to solve them. We focus on small
datasets and aim to find appropriate text representation, data augmentation, transfer
learning and ensembling techniques to further advance the study of DQD.
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5 Evaluation

This chapter describes the implementation of the experimental framework and the ex-
periments conducted to evaluate the solutions proposed in Chapter 4. We begin with
describing the datasets and then elaborate on the implementation and considerations
made during this step. Our main focus is on advancing duplicate question detection in
the context of limited training datasets. We present the setup of our experiments and
analyze their results, commencing a discussion on how they fit in the current research
of the NLP community. We run several experiments, each one addressing one of the
proposed solutions, with the goal to study the contribution of each one for the final clas-
sification results. We will use two different datasets for identifying duplicate questions
from which we sample smaller datasets. We use F1-score as evaluation metric. We also
present the tools that we used in the development of our framework.

5.1 Datasets

We use two publicly available datasets for our analysis: Quora1 and AskUbuntu 2. Both
datasets have a similar format, with a pair of questions and a binary label denoting
whether they are duplicate or non-duplicate. The datasets have different characteristics,
and one of the important contrasts stems from their vocabulary: Quora is a general-
purpose dataset, with questions asked about a diverse range of fields, while AskUbuntu
is a dataset on technical questions. To better understand what they have in common
and how they diverge, we conduct a data analysis on both datasets, which we present
in Sections 5.1.1 and 5.1.2.

5.1.1 Quora

The Quora question pair dataset was released in 2017 to enable research on semantic
equivalence. The dataset contains over 404, 000 pairs of English questions on different
subjects such as technology, culture, philosophy and sometimes contains mathematical
symbols and special characters from other languages. The questions were annotated by
human experts. So the labels are expected to be subjective and might not be 100%
accurate. Nonetheless, it is not clear how the labeling process was organized, in terms
of how many experts participated and how the final label was chosen.

We present an overview of the main properties of the dataset from a high-level analysis.
The dataset presents imbalance, having more non-duplicates: only 37% of the questions

1https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
2https://askubuntu.com/
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are labeled as duplicate. In addition, approximatively 67% of the total amount of ques-
tions are unique. On the other hand, some of the questions are paired to themselves,
and while looking at these questions we see the first instance of noise present in the
dataset: we find a small number of questions which even though have the same text,
they are labeled as non-duplicate as in Table 5.1. As there are only a few pairs like this,
the training process should not be affected.

ID Question 1 Question 2 Label

1 Do you think I have OCD Do you think I have OCD? Non-Duplicate

2
What is the answer to this ”IQ”

test question?
What is the answer to this IQ test

question?
Non-Duplicate

Table 5.1: Example of pairs of questions that have the same text but are labeled as
non-duplicate.

In terms of vocabulary, the dataset contains 95, 595 unique words. On average, the
sentences have about 60 characters with a standard deviation of 31 characters. These
characters add up to approximatively 11 words per question. The sentence length in
terms of words is highly skewed to the right, with some sentences reaching over 200
words, as we can see in Figure 5.1. The questions contain approximatively 4.22 stop
words (i.e. most common words in a language, such as ”the”, ”a”, ”and”, ”but” etc.)
and most of them, as we expected, begin in an interrogative way with one of the words:
”What”, ”How”, ”Why”, ”Is”, ”Which”, ”Can” and ”Who”.

Figure 5.1: Histogram representing the number of words in Quora dataset. The mean
number of words is 11.06, with a standard deviation of 5.89. The maximum
number of words is 237.

We measure the mean lexical overlap by lemmatizing each pair of questions and find-
ing the ratio between the number of unique words in common and the total amount of
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unique words. In general, the pairs in this dataset have a high overlap of 45%, which in-
dicates that many questions are not complex paraphrases, but instead fit in the following
categories from Section 1.2:

• Morphology changes: ”What does manipulation mean?” and ”What does ma-
nipulation means?”

• Structural changes: ”Why is creativity important?” and ”Why creativity is
important?”

• Lexicon changes: ”What can make Physics easy to learn?” and ”How can you
make physics easy to learn?”

On average, duplicate pairs have an overlap of 56% while non-duplicates overlap by
36%. Figure 5.2 shows that questions with very low overlap are more likely to be non-
duplicate, while both duplicates and non-duplicates can have high overlap.

Figure 5.2: Histogram representing the label distribution according to word overlap score
for Quora dataset. The brown region is where the two distributions overlap.

To make our results comparable to the literature, we used the data split created and
released by the authors of BiMPM model [Wang et al., 2017]. The development set
and the test set each contain a balanced sample of 10, 000 pairs of questions and the
remaining questions are used as the training set. From this point on, when we talk about
Quora training, dev or test set we refer to this dataset partition. We will specifically
refer to this training set as Quora Full.

The focus of our research is on detecting duplicate questions by training on smaller
sample sizes. For this reason, we randomly sample six datasets from the training set.
We will refer to these training sets as Quora 5k, Quora 10k, Quora 15k, Quora 20k,
Quora 25k, Quora 30k (based on how many pairs of questions are contained in each).
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5.1.2 AskUbuntu

This section introduces the main characteristics of our second dataset, to which we will
refer as AskUbuntu. AskUbuntu3 is one of the Stack Exchange 4 sub-forums, addressed
to the community of Ubuntu operating system. This dataset was released as part of the
reproduction study conducted by Silva et al. on the work of Bogdanova et al. ([Silva
et al., 2018], [Bogdanova et al., 2015]). It contains in total almost 31, 000 labeled pairs
of questions, thus being a lot smaller than the original Quora dataset. The dataset was
obtained after preprocessing the Stack Exchange data dump5 from September 2014. The
authors provide a script for preparing the dataset by removing images, URLs and code
snippets. On all Stack Exchange forums, moderators are able to mark a new question
as duplicate of an older one and after five similar votes the question is officially marked
as duplicate and linked to the older one. Thus, duplicate questions in the data dump
are linked, enabling the authors to label them accordingly.

AskUnbuntu is designed to be balanced, with 50% duplicate questions and 50% non-
duplicate questions. In this dataset approximatively 80% of the questions appear only
once. A question is typically formed from a title and body as shown in Table 5.2.

Question 1 Question 2

Title: How do I install Ubuntu? Title: How can I install 12.04.2?

Body:I would like to see a full
how-to on how to install Ubuntu.

Body: I have never installed an
OS before. I upgraded to 13.04 and
it has been a total disaster. I now

want to go back to 12.04.2, but will
have to install it totally. I tried

following the instructions, but the
computer doesn’t do anything that
instructions tell me to do. I have

downloaded it to a flash drive, but
there seems to be no starting point

that I can identify. Where do I
start? Also, is it possible to

download it directly from the hard
drive, or does it have to be from an

external source? Thank you.

Table 5.2: Example of questions marked as duplicate in AskUbuntu dataset.

Questions in this dataset tend to be a lot longer, as some users typically use the body
of the questions to thoroughly explain their query. Figure 5.3 shows that the word count
distribution is highly skewed to the left with questions having on average 87 words and

3https://askubuntu.com/
4https://stackexchange.com/
5https://archive.org/details/stackexchange
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standard deviation of 76 words. This indicates that the length of the texts varies a lot.
With a closer look, we see that the majority of the questions have between 30 and 80
words. On average, the questions can have up to 41 stop words. This leads us to believe
that the technical problem that a user is dealing with can be determined based on just
a few keywords.

Figure 5.3: Histogram representing the number of words in AskUbuntu dataset. The
mean number of words is 87.52, with a standard deviation of 76.08. The
maximum number of words is 3804.

In terms of vocabulary, the dataset contains 52, 067 unique words. As expected, many
terms are technical, such as ”Ubuntu”, ”Windows”, ”install”, ”boot”, ”error”, ”USB”,
”sudo”. Questions in this dataset tend to begin with ”How”, ”What”, ”Ubuntu”, ”Is”,
”Can”, ”Why”, ”My” which is slightly different from how users of Quora behave. Fur-
thermore, the titles of the questions are not always formulated as questions, sometimes
they are a short summary of the problem the user is trying to solve (”Unable to install
java on my ubuntu”), followed by a question in the body of the query.

We compute lexical word overlap and plot the distribution of labels according to this
score. Figure 5.4 shows that the pairs of questions in this dataset have little overlap,
irrespective of their label. Duplicate questions tend to have more overlap (on average
27%) as compared to non-duplicates (on average 19%), but overall the pairs display
few words in common. This shows us that questions from this dataset are complex
paraphrases, where users express the same meaning with different words. One factor
that we need to consider in this case is that typically in technical Q&A website users
might have slightly different problems, which can be solved with the same fix. This
means that it is not surprising that the questions have less overlap.

Silva et al. provide a train/dev/test data split which we also use[Silva et al., 2018].
The training set has 24, 000 pairs of questions, while development set has 1, 000 and test
set has 6, 000. We sample four smaller datasets from the training set such that they
have approximatively 37% duplicates each. We make the dataset imbalanced so that
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Figure 5.4: Histogram representing the label distribution according to word overlap score
for AskUbuntu dataset. The brown region is where the two distributions
overlap.

it better reflects a real-life scenario. We will denote these datasets as AskUbuntu 5k,
AskUbuntu 10k, AskUbuntu 15k, AskUbuntu 19k, based on how many pairs of questions
each contains.

Our deep learning models and techniques behave differently on these two datasets as
they have quite different characteristics (see Section 5.3). Our assumptions is that the
models perform better with the longer texts from AskUbuntu, because they are able
to extract more meaning from the key words. Furthermore, AskUbuntu has a richer
vocabulary than Quora, having more than half the number of unique words that Quora
has, even though it is 15 times smaller. We summarize the different properties of the
datasets in Table 5.3.

5.2 Framework Implementation

This section describes the general setup of the framework that was implemented with
the goal of advancing the study of duplicate question detection. We also present the
assumptions and considerations that we take into account. The code for the experiments
is available at: https://github.com/andra-pumnea/Thesis.

5.2.1 Preprocessing

In this section we discuss the steps we use for transforming the datasets into input suit-
able for neural networks. Both datasets have the same scheme, consisting of question1,
question2 and label. Preprocessing begins with reading the text for question 1 and ques-
tion 2 from the file, along with the label (1 for duplicate, 0 for non-duplicate). There
are different ways in which text can be preprocessed before being fed to an algorithm,
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Dataset Vocabulary size Avg Length (words) Word Overlap Train Dev Test

Quora 5k 10,436 12.78 52.6% 5k 10k 10k

Quora 10k 25,145 12.70 52.7% 10k 10k 10k

Quora 15k 18,421 12.70 52.8% 15k 10k 10k

Quora 20k 21,531 12.73 52.8% 20k 10k 10k

Quora 25k 24,292 12.74 52.6% 25k 10k 10k

Quora 30k 26,536 12.73 52.6% 30k 10k 10k

Quora Full 95,595 11.06 45% 380k 10k 10k

AskUbuntu 5k 20,912 89.82 22.5% 5k 1k 6k

AskUbuntu 10k 30,387 89.70 22.2% 10k 1k 6k

AskUbuntu 15k 37,589 89.90 22.2% 15k 1k 6k

AskUbuntu 20k 42,539 89.79 22.2% 19k 1k 6k

AskUbuntu Full 52,067 87.52 23% 24k 1k 6k

Table 5.3: General descriptions of the datasets used in this work.

which mainly consists of removing special characters, lowercasing, removing stop words,
generating n-grams, lemmatization and stemming. The main purpose of these steps is
to remove noise i.e. elements that do not add meaning to sentences.

We have opted for removing all special characters [ ! ” # % & ( ) * + , - . / : ; <=
>? @ [ ] ˆ { } ] as they do not contribute to the context of a sentence. For example,
some simple counts on Quora dataset showed us that 99.87% of questions contain the
question mark symbol, while other symbols such as full stop appear 6.39% and a small
number of questions (less than 1%) contain math and programming symbols such as <,
>, = etc. We also lowercase all the text.

We choose not to remove stop words as this might alter the meaning of a sentence.
For example, the relationship between the duplicates in Table 5.4 becomes ambiguous
after removing stop words with the NLTK toolkit 6:

Original Stop words removed

Q1.
Why do people not like Donald
trump running for president?

Why, people, like, Donald, trump,
running, president, ?

Q2.
Why are people so against Donald

Trump running for president ?

Why, people, Donald, Trump,
running, president, ?

Table 5.4: Examples of sentences losing initial meaning after stop word removal.

Lemmatization is the process of returning a word to its base or dictionary form, while
stemming removes the suffix of a word. As we want to retain as much as possible of the
initial meaning of a sentence, we do not apply neither of these techniques to our datasets.

6https://www.nltk.org/
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None of the works described in Section 3.1 utilize this step either and we consider it is
for a good reason.

After the cleaning step, each sentence goes through a tokenization process, in which
it is split in individual words based on blank spaces. We create a dictionary (also known
as word index) in which each unique word is assigned an index. This dictionary is used
to replace every word in a sentence with its index, thus obtaining word vectors. For
example, the question becomes the vector:

Input: [how, do, i, get, funding, for, my, web, based, startup, idea]

Output:[4, 9, 5, 30, 1655, 14, 17, 259, 505, 546, 429]

The same dictionary can be used for mapping the vectors back to sentences.

The embedding layer requires that all vectors have the same length, which is initially
not the case as sentences naturally vary in length. There are two ways to obtain such
vectors: truncating sentences that are too long and padding sentences that are too short.
Sequence length is a parameter to be determined. [Homma et al., 2017] suggests picking
a sequence length of 30 words for Quora dataset, such that more information can be
captured from longer sequences. Instead, we chose a sequence length of 40 words per
sentence, mainly because we wanted to truncate as few sentences as possible in Quora
dataset. As AskUbuntu sentences are longer, we chose a sequence length of 60 words.
When a question has fewer than 40, respectively 60 words, it is padded with 0, which
means that the rest of the vector is filled up with 0, either before the word indices or
after. A smaller sequence size would help reduce training time. Continuing the example
above, after padding it would look like this:

Input: [4, 9, 5, 30, 1655, 14, 17, 259, 505, 546, 429]

Output:[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,
9, 5, 30, 1655, 14, 17, 259, 505, 546, 429, ]

These resulting vectors are passed as input to the neural network.

5.2.2 Deep Learning Models

This section describes the models used in our work together with their implementation
details and the configuration of the baseline. The experimental framework contains three
deep learning models, which were previously outlined in Section 3.1, namely: Siamese
GRU [Homma et al., 2017], DecAtt [Parikh et al., 2016] and ESIM [Chen et al., 2016].
On the high-level the models are similar: they take word embeddings as input, then
they generate a representation for the questions which is used for outputting a label.
Their main difference stands in the way the representation is obtained. The goal of
our first experiment that we perform is to establish the baseline and we will refer to it
as Experiment 1: Baseline configuration. Results of this experiment are presented in
Section 5.3.1.
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We replicate the Siamese GRU model based on the original paper, aiming to re-
produce the authors’ results on the GRU, 2-layer similarity network. We encode each
sentence using a shared GRU layer and obtain h1 and h2 representations. Then, the
following concatenated vector v is fed to the two-layer feedforward network:

v = [h1 h2 (h1 − h2)2 h1 � h2]

In this vector we concatenate the encoded representations h1 and h2, their squared
difference and their dot product. We set the hidden layer size to 250 neurons as suggested
in the paper and add a dropout of 0.01 between the dense layers, to reduce overfitting.
Our best results on Quora Full dataset is 83.33% accuracy, as compared to 84.95%
reported in the paper. The small difference might stem from the different train/dev/test
split that the authors used: they used the same test set, but split the remaining non-test
data into 85% training and 15% development set.

The DecAtt and ESIM models were used by the winning team in the Kaggle Quora
Question Pairs Competition7. The winning team released the code8 of their interpreta-
tion of the papers, which we used in our framework. In their interpretation DecAtt has
a small variation, which includes performing subtraction when obtaining the represen-
tation of the questions, which we keep. The models are already tuned to the problem
of DQD, so we did not do any further hyperparameter tuning. For evaluating the per-
formance of the models, we trained and tested them on the original dataset (SNLI
[Bowman et al., 2015]). DecAtt achieved an accuracy of 84.9%, as compared to 86.3%
in the original paper, while ESIM achieved 89.1% versus 88%. The reproduction of Lan
et al. obtained 85.6%, respectively 87% [Lan and Xu, 2018] on the same dataset, so
we consider our models’ performance acceptable, considering they are already tuned to
Quora dataset. Finally, we compare the results our models obtain on Quora dataset
to the ones obtained by the reproduction mentioned above: we obtain 85.32% versus
their 84.5% for DecAtt and 85.91% versus 85% for ESIM. This further confirms that our
models are working as expected. The differences might stem from the fact that we used
different deep learning toolkits, as we used Keras with Tensorflow backend, while the
other papers reported Pytorch or Theano. In addition, neural networks are stochastic,
so they are non-deterministic, which means that identical results would be very hard to
achieve.

The networks are trained with Adam [Kinga and Adam, 2015] optimizer and a learning
rate of 0.001 to minimize binary cross-entropy loss. We use GloVe embeddings, with 300
dimensions for our initial tests, in order to assess the quality of the implementations
and have a fair comparison with the original work. The input is processed in batches of
50. We train the networks for at most 50 epochs and use the Early Stopping technique
(see Section 2.2.4). If the network does not improve over the course of three epochs, it
automatically stops before reaching 50 epochs.

The baseline against which we will compare the different strategies will consist of
these three neural networks and will use GloVe embeddings for the embedding layer.

7https://www.kaggle.com/c/quora-question-pairs
8https://www.kaggle.com/lamdang/dl-models
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Depending on the complexity of the network and the size of the dataset, each network
takes a different amount of time to train. On average, on the full Quora dataset Siamese
GRU takes approximatively 2 hours to train, DecAtt takes approximatively 50 min and
ESIM takes approximatively 12 hours. Table 5.5 depicts how we configure the baseline.

Setup

Model
- SiameseGRU
- DecAtt
- ESIM

Dataset
- Quora (5k, 10k, 15k, 20k, 25k, 30k)
- AskUbuntu (5k, 10k, 15k, 19k)

Word embedding GloVe

Table 5.5: Experiment 1: Baseline configuration.

5.2.3 Word and Sentence Embeddings

This section describes the different strategies for generating and using embeddings. In
our approach we use both word embeddings and sentence embeddings. We will refer
to the experiment that evaluates this strategy as Experiment 2: Effect of pre-trained
embeddings and present its results in Section 5.3.2. The sentence embeddings will be
incorporated in the neural networks as an additional feature to the word embeddings.

For a deep learning model to be able to learn from text data we need to create a
word embedding matrix. In order to obtain this matrix we use the GloVe and FastText
(see Sections 2.4.3 and 2.4.4) pre-trained word vectors, which we load into memory. We
explain how to obtain the word embedding matrix from GloVe vectors, with a small
difference for FastText.

The embedding matrix, which will be passed to the embedding layer, requires two
parameters: the number of unique words it should contain and the dimension of the
vectors. As our largest dataset is Quora (whose training set has in total approximatively
85, 000 unique words), we decided on picking the 80, 000 most frequent words to add to
the embedding matrix. In case the dataset has less than 80, 000, we initialize the rest of
the matrix with zero vectors in order to be able to perform transfer learning (see Section
5.2.5). The dimension of each word vector will be 300.

We retrieve the word vector from GloVe file and add it to the matrix based on the
index assigned in the dictionary to that word. The words which were not found in
the word embedding file are initialized to a vector of zeros. This is not ideal, but the
alternative would be to initialize the vector with random numbers, which might give
unwanted meaning to that word in the vector space. In contrast, when we compute the
embeddings with FastText, in case the word does not have any known embeddings, it
is decomposed in n-grams. The embeddings for respective n-grams are retrieved and
added to the embedding matrix. Only in the case when the n-grams do not have any
embeddings, the word vector is left as 0.
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For sentence embeddings we use the Universal Sentence Encoder (USE) (see Section
2.4.5). The model is provided through tensorflow hub library and requires that the
sentences are fed to it in the form of strings, no tokenization necessary. After passing
through this model, each sentence will be represented by a 512 dimensional vector. Each
new sentence vector goes through a fully connected layer with 256 neurons, reducing the
size of the initial sentence vector to half. We compute cosine distance as a measure of
similarity between the sentence vectors and finally concatenate the distance vector to
the representation of the questions obtained after the transformations that each model
applies to the word embeddings. Initially, we tried computing the cosine distance be-
tween the two 512 dimensional vectors, but using a fully connected layer yielded better
results and proved faster.

We evaluate the behavior of the different word embeddings on our datasets and sub-
samples, as well as their combination with information from sentence embeddings. The
papers cited in Section 3.1 report using GloVe as their embedding of choice, so we aim
to explore whether newer approaches address the limitations of GloVe. Table 5.6 sum-
marizes the setup of this experiment.

Setup

Model
- SiameseGRU
- DecAtt
- ESIM

Dataset
- Quora (5k, 10k, 15k, 20k, 25k, 30k)
- AskUbuntu (5k, 10k, 15k, 19k)

Word Embeddings

- GloVe
- GloVE+USE
- FastText
- FastText+USE

Table 5.6: Experiment 2: Effect of embeddings.

5.2.4 Data Augmentation

We refer to the experiment that evaluates data augmentation techniques as Experiment
3: Effect of Data Augmentation and report the results in Section 5.3.3.

First of all, we perform a simple form of what is called word embedding perturbation
[Zhang and Yang, 2018]. As explained in Section 4.3, we add a small amount of noise
sampled from the Gaussian distribution to the word embedding layer. We experiment
with three values of noise {0.01, 0.05, 0.1}. We apply Gaussian noise directly on the
embedding layer and for this we use the Gaussian Layer provided by Keras 9.

Second of all, we generate new question pairs using three methods: reversing the or-
der of questions, replacing words with their synonyms in each question and selecting

9https://keras.io/
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a number of pairs of questions based on a heuristic and adding them in reverse or-
der. An overview of these techniques was presented in Section 4.3, here we discuss the
technicalities involved in applying these methods.

The first two methods would effectively double the initial dataset, maintaining the
initial distribution of labels. For the third method we sample the training set based on the
score of word overlap which we described in Section 5.2.3. With this method, the label
distribution changes slightly in favor of duplicate questions, based on the characteristics
of the corresponding training set. We extract all questions that have word overlap higher
than 0.6 and all questions that are duplicate but have at most 0.4 word overlap. The
number of questions extracted for each dataset is presented in Table 5.7. As expected,
AskUbuntu dataset has a lot less questions with high overlap compared to Quora. On
the other hand, it has more questions that have low overlap and are labeled as duplicate
(i.e. complex paraphrases).

Dataset Initial size
Questions with
overlap >0.6

Duplicates with
overlap <0.4

Total

Quora 5k 5,000 1,475 820 7,295

Quora 10k 10,000 2,973 649 13,622

Quora 15k 15,000 4,452 1,614 21,066

AskUbuntu 5k 5,000 18 1,764 6,782

AskUbuntu 10k 10,000 28 3,541 13,569

AskUbuntu 15k 15,000 40 3,535 18,575

Table 5.7: General description of the datasets augmented based on heuristics method.

We evaluate the behavior of our models with these new enhanced training datasets.
In order to be able to compare to our baseline, we opt for GloVe embeddings and keep
them fixed through the experiment. Table 5.8 depicts the setting of this experiment.

Setup

Model
- SiameseGRU
- DecAtt
- ESIM

Dataset
- Quora (5k, 10k, 15k)
- AskUbuntu (5k, 10k, 15k)

Word embedding GloVe

Data Augmentation

- Gaussian Noise = {0.01, 0.05, 0.1}
- Reverse-based
- Thesaurus-based
- Heuristic-based

Table 5.8: Experiment 3: Effect of data augmentation.
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5.2.5 Transfer Learning

Two experiments emerge in the transfer learning setup: Experiment 4: Effect of entire
model transfer and Experiment 5: Effect of pre-training and fine-tuning. We apply
transfer learning in two different ways: first method consists of fully training and tuning
a model on a dataset and evaluating on a different dataset; second method corresponds
to pre-training the layers of the model on a dataset and fine-tuning and evaluating it on
a new dataset.

The first approach consists of simply training and tuning all the parameters of a model
on a dataset and testing it on a different dataset. In this setting, we simply load the
previously trained model and evaluate it on the test set of the target dataset. This
way the results are directly comparable with training the model entirely on the target
dataset. In this context, we are interested in how the models behave in two different
situations:

• When dealing with the same task, but a different word distribution and
domain. In this case, we train the model on the bigger Quora dataset (Quora Full)
and evaluate it on the smaller AskUbuntu samples. AskUbuntu is a more domain
specific dataset, encompassing a wide range of technical terms (see Section 5.1.2),
while Quora is more noisy and general (see Section 5.1.1). As the relationship
between pairs from both datasets are the same (duplicate, non-duplicate), it is
relevant to observe how semantics related knowledge is transferred between them.

• When dealing with a different, but somehow related task. In this case we
train the models on the SNLI dataset and test it on Quora test set. As explained in
Section 3.2, NLI is related to DQD because a paraphrase relationship can be con-
sidered a symmetrical entailment relationship. We have chosen the SNLI dataset
on the basis of the research conducted by Conneau et al.: they claim this dataset
is useful when learning universal embeddings because of its complex semantics and
high amount of labeled data [Conneau et al., 2017]. Thus, we are interested in how
our models can generalize on the problem of DQD from learning this related task.

The second approach is similar to the first one. We load the previously trained models
and experiment with not freezing the layers and freezing the weights of all the layers,
except the last layer, the one that performs the classification. Hence, the model goes
through another training process, where it is tuned on the target dataset. When the
layers are frozen (meaning they remain unchanged during this process), only the weights
in the last layer are updated. Otherwise, the weights on all the layers are updated. This
way, the model leverages the knowledge learned from the previous dataset and does not
begin from scratch. We will evaluate this technique in the same two settings discussed
above: we tune the model trained on SNLI dataset on Quora samples and the model
trained on Quora Full on AskUbutnu samples. Similarly to the other experiments, we
use GloVe embeddings and all our models. Table 5.9 summarizes this setup.
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Setup

Model
- SiameseGRU
- DecAtt
- ESIM

Dataset
- Quora (5k, 10k, 15k, 20k, 25k, 30k)
- AskUbuntu (5k, 10k, 15k, 19k)

Word embedding GloVe

Transfer Learning

- Quora+AskUbuntu (test set)
- SNLI+Quora (test set)
- SNLI+ Quora (5k, 10k, 15k, 20k, 25k, 30k)
- Quora+AskUbuntu (5k, 10k, 15k, 19k)

Table 5.9: Experiment 5: Effect of transfer learning. By transfer learning we refer both
to entire model transfer and pre-training and fine-tuning.

5.2.6 Ensembling

The experiment which evaluates ensembling is called Experiment 6: Effect of ensembling.
As discussed in Secion 3.1, there are two main types of approaches when it comes to
DQD (sentence encoding and sentence interaction) each with its own strength [Yu et al.,
2018]: learning separate representations for the questions and then combining them,
respectively, modeling their interaction and making an abstraction on this output. As
we have included both types of models in our framework, we are interested in leveraging
the different perspectives that they tackle and resort to stacking them.

In this approach we create a new model that combines the predictions of our models.
We perform simple averaging of the outputs of the models involved in the ensemble and
expect that this will work better than any individual model. For each neural network
we will load the saved weights of the best performing model. This type of ensembling
does not need training because performing the averaging operation does not require any
parameters. On the other hand, this leads to increased prediction and evaluation times,
which can be an impediment in a real-life scenario.

To evaluate the performance of ensembling we will stack the three models together
and assess them on our chosen datasets. Furthermore, we will also experiment with pairs
of models and check how their prediction power behaves in this setting. The setup is
summarized in Table 5.10.

5.2.7 Tools

The implementation of the framework and data analysis scripts were done in Python
3.6 programming language. For the deep learning models we used Keras [Chollet, 2015]
library with Tensorflow backend. Table 5.11 describes the infrastructure used for training
the neural network and running the experiments.
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Setup

Model
- SiameseGRU
- DecAtt
- ESIM

Dataset
- Quora (5k, 10k, 15k, 20k, 25k, 30k)
- AskUbuntu (5k, 10k, 15k, 19k)

Word embedding GloVe

Ensemble

- SiameseGRU+DecAtt
- SiameseGRU+ESIM
- DectATT+ESIM
- SiameseGRU+DecAtt+ESIM

Table 5.10: Experiment 6: Effect of ensembling.

Operating System RAM GPU

Ubuntu 16.04 4 GB NVIDIA GTX 980

Table 5.11: Hardware configuration for the GPU server. All the experiments using neural
networks were deployed using this configuration.

5.3 Results and Discussion

In this section we present and discuss our main findings from each experiment. First
we present the results of the baseline, followed by discussing how each component (text
representation, data augmentation, transfer learning and ensembling) affects it.

All the results that we present are in terms of F1-score. We chose this metric because
of the imbalance that the datasets present, as this would provide a more clear estimate
of the performance of the models and proposed components. For each experiment the
model is run three times and we report the average of F1-score. The reason behind this
is the randomness in neural networks, which leads to slightly different results every time.

5.3.1 Baseline Results

This section presents the results of Experiment 1: Baseline Configuration. In Table 5.12
we report the F1-scores of our three deep learning models after training on the different
subsamples of Quora dataset. We can see that all of them give reasonable results in this
setting. The two sentence interaction models (DecAtt and ESIM) achieve a high F1-score
throughout the entire experiment, while SiameseGRU considerably under-performs in
comparison to them (the score is up to 10% lower). A possible explanation for this is that
SiameseGRU is more sensitive to the noise present in the dataset (and would need more
data in order to generalize better), while DecAtt and ESIM are more robust because of
the attention mechanism that helps them focus on the keywords and identify subphrases
that are similar. We see that as we increase the random samples by 5, 000 questions
the results increase by approximatively 7% for SiameseGRU and approximatively 6% for
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DecAtt and ESIM. Another interesting aspect is that even though ESIM uses BiLSTM to
better capture information in the two sentences (instead of a simple feedforward network
like in DecAtt), this does not change much in the overall performace of the model on
Quora dataset. On the other hand, DecAtt is more desirable to be used because of its
training speed.

Quora

Model 5k 10k 15k 20k 25k 30k

SiameseGRU 0.6201 0.6421 0.6664 0.6778 0.6758 0.6985

DecAtt 0.7145 0.7454 0.7732 0.7728 0.7691 0.7893

ESIM 0.7229 0.728 0.7418 0.774 0.7729 0.7833

Table 5.12: Results from running the baselines on Quora subsamples ranging from 5,000
pairs of questions to 30,000 pairs of questions.

In Table 5.13 we show the results on AskUbuntu dataset. The models show the
same trend as on Quora dataset: DecAtt and ESIM outperform SiameseGRU by a
large margin. Interestingly, the F1-scores are considerably higher compared to Quora
dataset. We believe there are two reasons for this: first, the question length is higher
(the majority of questions have 60 words each, while Quora has on average 11 words, up
to a maximum 40 words) which makes it easier for the models to capture more meaning
from the text and extract essential features; second, the labels in the dataset are less
noisy (we explained the labeling procedure in Section 5.1.2). Furthermore, the fact that
there is less word overlap between the pairs of questions seems to be beneficial, because
in this case the sentence interaction models do not need to find the small details that
are different (like in the case of Quora duplicate questions). On the other hand, we
notice that the training with DecAtt on the AskUbuntu samples is less stable than the
other two models and there is higher variation between the three runs, with standard
deviation up to 5% as compared to at most 2%.

In order to better understand the results, we experiment with different question
lengths, as this is one of the main factors that differentiates between our datasets.
We pick the AskUbuntu dataset with 5, 000 questions and we experiment with ques-
tion lengths ranging from 10 words to 60 words, increasing in steps of 10. Figure 5.5
depicts the results of this experiment. When the questions have lengths of 10 (simi-
larly to Quora dataset which on average has 11 words per question), DecAtt reaches an
F1-score of approximatively 70.76% (which is close to the performance of Quora 5k).
On the other hand, as the question length increases, the results of the network show
much higher standard deviation. One possible reason behind this is exploding gradient
(see Section 2.3.1), which can make the network unable to learn long-term temporal
relations. We hypothesize that the use of BiLSTM helps stabilize ESIM as compared to
the feedforward network used by DecAtt, which is why ESIM gives more stable results
throughout the training process. Based on this observation, we decide not to use DecAtt
in our evaluation for AskUbuntu dataset, as the results are not reliable enough.
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Figure 5.5: Boxplot showing the behaviour of DecAtt on the AskUbuntu 5k dataset, with
varying question length. We can notice that as the question length increases,
the results of the network becomes less stable.

AkUbuntu

Model 5k 10k 15k 20k

SiameseGRU 0.7155 0.7328 0.7290 0.7590

DecAtt 0.8476 0.813 0.7864 0.8928

ESIM 0.8727 0.8946 0.9024 0.9089

Table 5.13: Results from running the baselines on Askbuntu subsamples ranging from
5,000 pairs of questions to 20,000 pairs of questions.

Figure 5.6 visualizes the evolution of the results with the increase of training set
size. The curves of the sentence interaction models are almost parallel to SiameseGRU.
From this section, we can conclude that the content of the questions is less important
for performing duplicate question detection, as the models are able to deal well with
technical terms in AskUbuntu dataset. Factors such as size of the dataset, level of noise
(both in labels and in text) and question length contribute more to the classification
results. Hoogeveen reaches a similar conclusion in her [Hoogeveen, 2018].

5.3.2 Effect of text representation

In thise section we discuss how each each model is affected by the different text repre-
sentations. Every question is represented as discussed in Section 4.2, either with Glove
or FastText pre-trained embeddings and an additional feature of sentence embeddings
from Universal Sentence Encoder (USE). In Table 5.14, we present the number of unique
words contained in each Quora sample, along with the number of words not represented
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(a) Quora Baseline. (b) AskUbuntu Baseline.

Figure 5.6: Experiment 1: Baseline results.

in Glove and FastText. On average, 6.4% of the vocabulary of the samples is not con-
tained in GloVe embeddings and 6.9% is not contained in FastText. With GloVe, these
embeddings are initialized to a zero vector while with FastText they are initialized to
the sum of their pre-trained n-grams.

Dataset 5k 10k 15k 20k 25k 30k

Words in index 10,436 15,228 18,421 21,531 24,292 26,536

Glove Null Embeddings 421 775 1,124 1,464 1,895 2,287

FastText Null Embeddings 458 836 1,186 1,631 2,039 2,420

Table 5.14: Count of words in index and null embeddings for each sample from Quora
samples.

Table 5.15 presents the number of unique words for AskUbuntu samples, as well as
the number of words that were not found in GloVe or FastText pre-trained embeddings.
On average 27.6% of the vocabulary of this dataset is not found in GloVe and 31.01%
is not found in FastText. We can see that the number of words without a pre-trained
embedding is much higher in comparison with Quora samples. The kind of words that
neither of text representations have are about libraries, hardware components and other
technical terms (for example ”lib80211”, ”guake”, ”f9d527c70255”). In this case, GloVe
helps with filtering unnecessary descriptions and misspellings, likely clearing noise. On
the other hand, FastText will create an embedding for these words based on their n-
grams, which in some cases might be useful.

The results of this experiment on Quora samples are illustrated in Figure 5.7 and
they show that the different text representations perform similarly. The results indicate
that the siamese network benefits from FastText and USE as the size of the dataset
increases. In fact, on the smallest sample (Quora 5k), the baseline using GloVe is clearly
outperformed by all other embeddings. This behavior can be explained by the fact that
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Dataset 5k 10k 15k 19k

Words in index 20,912 30,387 37,589 42,539

Glove Null Embeddings 4,541 8,010 11,367 13,709

FastText Null Embeddings 5,074 9,082 12,730 15,322

Table 5.15: Count of words in index and null embeddings for each sample from
AskUbuntu samples.

the siamese network needs more data in order to generalize better and thus benefits
from having embeddings for all words in the sample, unlike when using GloVe. The
results also show that adding an extra feature from USE helps improve the classification
results. Figure 5.8b depicts the behavior of DecAtt with the different text representa-
tions. With this model, there is a bigger gap between the representations, as compared
to SiameseGRU and ESIM. The results show that Glove, both with or without USE,
clearly outperforms both versions of FastText in combination with this model. Figure
5.7c illustrates the performance of ESIM with the different text representations. The
results show that GloVe is highly competitive with FastText and Glove + USE. We also
notice that ESIM seems more robust to the type of pre-trained embedding used, and is
able to extract useful information from all text representations. On the other hand, for
the smallest samples (Quora 5k) Glove remains the best performing text representation.

Figure 5.8 shows the results on AskUbuntu samples. The text representations show
the same trend as on Quora dataset, with USE improving the baseline by a small margin.
This is surprising, because we expected that FastText will be slightly more beneficial on
this dataset considering the technical terms which might not be found in the pre-trained
embeddings and would need to be computed as the sum of their n-grams. Generally,
both Glove and FastText give a similar performance.

Based on these results we cannot conclude which of the pre-trained embeddings would
be more suitable for the task of identifying duplicate questions. GloVe seems to have
a more similar vocabulary to Quora and AskUbuntu based on Tables 5.14, 5.15, with
the subword information from FastText not making much of a difference overall. On
the other hand, the results show that using an additional feature from USE can bring
improvements in the classification results. Better ways to incorporate the sentence em-
beddings exceed the scope of this thesis (e.g. use different distance metrics), but would
constitute an interesting study area. Moreover, the experiment shows that the choice
of pre-trained embeddings is model dependent, as the siamese network benefits from
having embeddings for the all words, but for the two sentence interaction models there
is no consistent result. Surprisingly, the pattern in performance looks more similar in
SiameseGRU and ESIM, compared to DecAtt. We believe this is because both Siame-
seGRU and ESIM use recurrent neural networks (GRU, respectively BiLSTM), unlike
DecAtt which mostly makes use of mathematical computations to build the question
representation. Another important factor is that the SiameseGRU network updates the
embedding matrix during training, fine-tuning the weights to the datasets, which likely
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(a) SiameseGRU. (b) DecAtt.

(c) ESIM.

Figure 5.7: Results of Experiment 2: Text Representation on Quora samples. The differ-
ent text representations are highly competitive, with USE achieving a slightly
improved performance.

leads to a similar performance of all text representation techniques.

It would be interesting to experiment with more deep learning models in the same
setting in order to clarify if one of the embeddings has a consistent performance. For
now, we can state that using sentence embeddings from USE is definitely worth taking
into consideration when dealing with the task of identifying duplicate questions from
small data samples, while Glove and FastText give competitive results.

5.3.3 Effect of data augmentation

We focus on the three smallest samples from Quora and AskUbuntu, ranging from 5k
to 15k pairs of questions. We apply the techniques discussed in Section 4.3, namely
reverse questions, thesaurus augmentation, heuristic augmentation and noise embedding
perturbation from Gaussian distribution.

Figure 5.9 illustrates the results of this experiment on Quora dataset. SiameseGRU
baseline benefits from almost all proposed data augmentation techniques across the dif-
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(a) SiameseGRU.

(b) DecAtt.

Figure 5.8: Results of Experiment 2: Text Representation on AskUbuntu samples. Sim-
ilarly to Quora the only improvement is brought by USE.

ferent samples. DecAtt also benefits from the techniques for the smallest Quora sample,
but this effect is alleviated as the sample size increases. ESIM displays the opposite
behavior, with the baseline giving a good performance on the smallest sample size(only
slightly exceeded by the reverse order technique) and being consistently outperformed
by different augmentation techniques as the size increases.

The results show that a simple data augmentation technique, such as reversing ques-
tion order, can be effective in improving the performance of neural networks on general
datasets like Quora. As all models include subtraction in the way they build the ques-
tion representation, the vectors for a pair of questions and its reverse will be different
because subtraction is not a symmetric operation. Thus, the models will have more
data to learn from. Homma et al. also observe this effect in their experiments with data
augmentation, but in their case they only try it on the siamese network [Homma et al.,
2017]. On the other hand, Thesaurus-based augmentation becomes effective as the size
of the sample increases. In the case of the smallest Quora sample (5k) it gives worse
results than the baseline which shows the impact of unintentional noise from replacing

Master Thesis, TU Berlin, 2018 65



Advancing DQD with Deep Learning Andrada Maria Pumnea

(a) SiameseGRU.

(b) DecAtt.

(c) ESIM.

Figure 5.9: Results of Experiment 3: Data Augmentation on Quora samples.
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words with their synonyms (which are rarely exact) when data is scarce. In contrast, as
the size of the sample increases (10k, 15k) the models become more robust. A different
approach to this would be to replace the word with its synonym based on the closest
word embedding, instead of using an external knowledge base like WordNet.

The results suggest that the augmentation method using a heuristic to create more
data is the least effective. Overall, this technique creates up to 40% more data, slightly
reducing the initial imbalance in the data, as the 5k, 10k and 15k samples now have
39.12%, 43.32%, respectively 38.05% duplicates instead of 36 − 37%. It benefits the
smallest sample, but does not provide consistent results for the samples with more data.
More data clearly helps the models give better performance on the 5k sample, but seems
to add more noise to larger samples. This may be because this technique increases the
mean lexical overlap of the samples and the models do not have the lexical knowledge
to better understand these ambiguous pairs of questions. Glockner et. al show that
sentences with very high overlap can ”break” models like ESIM and DecAtt [Glockner
et al., 2018]. This is also reflected in our results, with the samples augmented by this
method performing worse for DecAtt and ESIM on Quora 10k and 15k samples.

In terms of word embedding perturbation, by adding various amounts of noise to the
embedding matrix we do not see major improvements on the baseline. Overall, the
results indicate that this approach is not useful for DQD on datasets with high word
overlap like Quora, considering that by applying small changes to the embedding matrix
we might change the meaning of a word, and indirectly, the meaning of the sentence.
This can occur especially if the pair of questions have a lot of words in common and
by adding random noise to their embedding, the same word will have slightly different
embeddings. However, we see an improvement on the SiameseGRU baseline, which is
surprising considering that we expected this model to be more sensitive to noise. It still
underperforms compared to DecAtt and ESIM, but it achieves up to 0.05 higher F1-score
compared to the baseline. This indicates that with further fine-tuning the amount of
noise to be added this technique can be useful for sentence encoding models.

Figure 5.11 illustrates the result of this experiment on AskUbuntu dataset. Over-
all, ESIM is not influenced much by the different techniques, achieving high F1-scores
throughout the entire experiment. SiameseGRU is affected by some of the techniques,
but the overall improvement is relatively small (at most 0.03 when applying {0.01}
Gaussian noise to AskUbuntu 5k and {0.05} Gaussian noise to AskUbuntu 15k). We
observe that reversing the order of questions is less consistent for this dataset (outper-
forming only the ESIM baseline on 5k and 10k samples), while the datasets augmented
with questions that had their words replaced with synonyms slightly outperforms all the
baselines. One possible explanation for why the models are more robust to Thesaurus
augmentation in this setting, is that the questions on AskUbuntu are technical and tech-
nical words typically do not have multiple meanings (i.e. polysemy). This means that
less words are replaced by synonyms because a lot of the terms refer to specific aspects
of Ubuntu OS and do not have synonyms, but also because sentences contain on average
approximatively 40 stop words, which also do not typically have synonyms.

Similarly to Quora results, the heuristic based method is not improving the results,
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(a) SiameseGRU.

(b) ESIM.

Figure 5.10: Results of Experiment 3: Data Augmentation on AskUbuntu samples.
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although ESIM is more robust to it than on Quora dataset. This is likely because, as
Table 5.7 shows, most of the added questions have low overlap. Surprisingly, adding
Gaussian noise to the embedding matrix is less disruptive for ESIM on this dataset,
compared to Quora. The most notable effect of Gaussian noise can be observed on the
SiameseGRU model, similarly to what we have seen on Quora samples, confirming that
this type of noise can be beneficial for sentence encoding models. Overall, this method
seems more robust for this dataset, probably because of the low word overlap. Adding
{0.1} Gaussian noise renders the most consistent results, marginally improving both
models on all samples.

From this section we can conclude that a simple technique such as reversing the order
of questions is slightly more beneficial, especially for models that build the question
representation using asymmetrical operations (such as subtraction). Thesaurus based
augmentation is also useful, but it mostly depends on how robust the model is to noise
in the sentences and how general/technical the words in the dataset are. Heuristic
augmentation is a good technique to test the lexical knowledge of the model, but not for
creating new data for better classification results. Finally, word embedding perturbation,
with varying amounts of Gaussian noise, is the promising on the sentence encoding
model. The results also suggest that Gaussian noise is more robust when the pair
of questions have a low word overlap. Generally, the improvements are small, which
indicates that the models even more data for better performance.

5.3.4 Effect of transfer learning

As explained in Section 4.4, we explore two strategies for transfer learning: entire model
transfer and pre-training and fine-tuning a model. These strategies are tried in two
different situations, specifically, knowledge transfer between similar datasets but different
problems and knowledge transfer between the same problem and different datasets.

The results show that entire model transfer does not work well for the models that
we have included in our framework. When we train the model on Quora Full and
test it on AskUbuntu test set (no training data required in this scenario), all the models
achieve very poor F1-score for duplicates: SiameseGRU identifies 0.09 duplicates, DecAtt
identifies 0.02 duplicates and ESIM identifies 0.03 duplicates. This is because the two
datasets have very different characteristics, even though they address the same problem.
The most likely cause for this is that the models learn from Quora dataset that duplicate
questions have high word overlap (see Section 5.1.1), which is not the case for AskUbuntu
questions. On the other hand, when we transfer the models learned on the SNLI dataset
to Quora, we notice that the results are better than before, with SiameseGRU identifying
0.50 duplicates, DecAtt identifying 0.36 duplicates and ESIM identifying 0.32 duplicates.
This is because both SNLI and Quora have similar characteristics in terms of word
overlap and sentence length. Overall, the results show that this method does not work
well for identifying duplicate questions.

Figure 5.11a illustrates the effect of pre-training the models on SNLI dataset and fine-
tuning on Quora dataset. We have experimented both with not freezing the weights of
the model and freezing everything except the classification layers and we noticed that
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(a) Pre-training on SNLI dataset and fine-tuning on
Quora.

(b) Pre-training on Quora dataset and fine-tuning on
AskUbuntu.

Figure 5.11: Results of Experiment 5: Pre-training and fine-tuning.

the most promising performance was achieved by allowing all weights to be updated.
We also experiment with different learning rates and find that keeping the same value as
when training the models (0.001) is more beneficial. The results show that SiameseGRU
benefits the most from this technique, with the transfered model outperforming the
baseline SiameseGRU on all samples. Quora 5k is 0.06 better in this case. On the other
hand, ESIM and DecAtt baselines remain the best performing models overall. This
shows that sentence encoding models are more robust across datasets and can effectively
leverage the knowledge learned on a similar training task. Moreover, this also shows
the clear advantage training on more data brings for siamese models. The lower results
of the transfered DecAtt and ESIM is most likely because they would require more
training data in order to substantially improve. This is probably because the interaction
between sentences from SNLI dataset is slightly different than the interaction between
duplicate questions (as explained in Section 3.2) and these models are more sensitive to
this change.

Furthermore, we observe the same trend when we pre-train the model on Quora dataset
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and fine-tune on AskUbuntu samples. Figure 5.12b shows the results of this setting,
where SiameseGRU baseline is outperformed by the transfered SiamereGRU, while ESIM
baseline maintains its strong position. Surprisingly, if we fine-tune the model trained
on Quora dataset the results of DecAtt are more stable than if that model was trained
solely on AskUbutu samples. This is likely because the base model is stable, which helps
the training in this case as the model does not need to learn everything from scratch.

From this section we can conclude that these models are not suited for entire model
transfer, irrespectively of how similar the datasets they are trained on are. On the other
hand, sentence encoding models definitely benefit from training the model on a different
dataset and fine-tuning it on the target dataset. Sentence interaction models are more
sensitive to the learned question representations and would probably require more data
before fine-tuning on a target dataset can become effective.

5.3.5 Effect of ensembling

In this section we present how ensembling can help with identifying duplicate questions.
As explained in Section 4.5, we create ensembles by stacking the three models and by
pairing them with each other. Hence, we have the following scenarios: 1) SiameseGRU,
DecAtt, ESIM; 2) SiameseGRU, DecAtt; 3) SiameseGRU, ESIM; 4) ESIM, DecAtt.

Figure 5.12a displays the effect of ensembling on Quora samples. The results clearly
show ensembling is a very compelling technique, outperforming the baseline in almost
all cases. The best ensemble is ESIM+DecAtt, which shows the predictive power that
sentence interaction models have. In contrast, ESIM+SiameseGRU seems to be the least
effective ensemble. Overall, the ensembles that contain the SiameseGRU model give a
poorer performance compared to ESIM+DecAtt, most likely because the SiameseGRU
is not able to capture the context and understand the interaction between the two ques-
tions. In fact, Figure 5.12a shows a clear pattern: all the ensembles where SiameseGRU
is included have drops in F1-score on the same samples: 10k and 25k, The baseline (see
Figure 5.6b) also shows SiameseGRU as the least performing model, so this result is not
surprising. The highest F1-score score is achieved on the 25k and 30k samples: 0.8036,
respectively 0.8019 F1-score.

Figure 5.12 depicts the results of ensembling on AskUbuntu dataset. As we have
previously observed that DecAtt is highly volatile on this dataset, we could only ensemble
SiameseGRU with ESIM and compare to the baselines. As we have seen that ESIM is
very robust on this dataset, in this case combining it with SiameseGRU outperformed
both baselines. Specifically, as the dataset size increases we observe a small increase in
performance compared to ESIM baseline (up to 0.007 F1-score).

From this section we can conclude that ensembling different models is a powerful
technique for better predicting which questions are duplicate and which are not. En-
sembling overcomes the weaknesses of each individual model and has the potential to
achieve better classification results.

Master Thesis, TU Berlin, 2018 71



Advancing DQD with Deep Learning Andrada Maria Pumnea

(a) Quora.

(b) AskUbuntu.

Figure 5.12: Results of Experiment 6: Ensembling

5.3.6 Hybrid Solution

In this section we evaluate the performance of our hybrid solution. In Sections 5.3.1 to
5.3.5 we have explored and evaluated different strategies for text representation, data
augmentation, transfer learning and ensembling. Based on the results, we create a hybrid
solution from our best performing components and we evaluate it against the baseline.
As our components performed slightly different on our datasets, each hybrid solution is
tailored to the dataset.

The hybrid solution for AskUbuntu is obtained by ensembling ESIM and SiameseGRU,
using GloVe and USE for text representation and augmenting the dataset either through
Thesaurus augmentation or word embedding perturbation with Gaussian noise={0.1}.
Hence, we test two solutions, where the data augmentation component differs. We
have opted for this approach because both augmentation methods marginally improve
the baselines. Based on the evaluation of the ensemble of models trained in this setting,
neither of these solutions improves the ESIM baseline, while both are better than Siame-
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seGRU baseline. This reflects the general behavior of ESIM and SiameseGRU that we
have seen so far and shows that the small improvements that we see in Figure 5.12 is
not significant. Overall, this indicates that further research is needed for DQD when
datasets have long questions with low word overlap.

Figure 5.13 shows the performance of our best solution on Quora samples. For this
experiment we have chosen GloVe and USE for text representation, reversing question
order as data augmentation and ensembling ESIM and DecAtt. Transfer learning was
not included because it did not have consistent results for all the models. The results
show that the combination of these methods outperforms all baselines on all samples.
The most important increase in performance we see on the smallest sample (Quora 5k),
where F1-score improves by 0.04.

Figure 5.13: Best performing components applied to Quora dataset. The solution con-
sists of using GloVe and USE for text representation, Reverse Order tech-
nique for data augmentation and ensembling ESIM and DecAtt. All the
baselines are outperformed by our hybrid solution.

There are 621 questions common to all Quora samples that this solution labels in-
correctly. The majority of them (429) are non-duplicates. One important characteristic
of this group of questions is the high word overlap. On average these questions have
an overlap of 64%, which is much higher than the overlap the samples have (which is
about 52%). Table 5.16 shows an overview of the types of questions that are mistaken
by our solution. Based on the classification introduced in Section 1.2 the main types of
paraphrases can also be seen in this table: pair 1 is obtained through morphology-based
changes, pairs 2 and 4 are obtained through lexicon-based changes and pair 3 is obtained
through semantic-based changes. As for non-duplicates, pairs 6 and 7 differ only through
on word, while questions 5 and 8 talk about the same subject, with a subtle difference.
These types of questions where the differences between the pairs are small are still chal-
lenging for deep learning models to classify correctly. The next step in improving the
classification of duplicate questions is to specifically tackle these types of questions and
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remains to be resolved by future work.

ID Question 1 Question 2 Label

1
Are democracy inherently

inefficient?
Are democracies inherently

inefficient ?
Duplicate

2 What is singleton class in java? What is a singleton class used for? Duplicate

3
What is the best way to give

speech?
How do I give a killer speech ? Duplicate

4
What should I do to avoid sleeping

in class?
How do I not sleep in a boring

class?
Duplicate

5
What is your favorite type of toy

dog?
What is your favorite dog and why? Non-Duplicate

6 How can I improve my skills?
How do I improve my learning

skills ?
Non-Duplicate

7
What is your opinion about

showflipper.com?
What is opinion about Pippli.com? Non-Duplicate

8 What is exactly there after life? Is there life after life? Non-Duplicate

Table 5.16: Example of questions from Quora samples mislabeled by the hybrid solution.
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6 Conclusion and Future Work

This chapter summarizes the main ideas and results from this thesis. Our goal is to
advance the study of duplicate question detection by identifying techniques to improve
the performance of deep learning models when training data is scarce. We propose and
evaluate four different components for achieving this goal: text representation, data
augmentation, transfer learning and ensembling. The experiments are performed on two
competitive datasets with very different characteristics.

Overall, the content of the questions does not influence much the final classification
result. Aspects such a word overlap, sentence length and noise in the labels influence
more the classification result. The results show that Glove and FastText pre-trained
word embeddings are very competitive text representations. We demonstrated that
an additional feature from the Universal Sentence Encoder can bring a small boost of
performance to the deep learning models when datasets are small. In terms of data
augmentation, we showed that reversing the order of questions as means of doubling the
size of the original dataset can be helpful, especially if the models build the question
representation using asymmetrical operations like subtraction. Creating new pairs of
questions by replacing words with their synonyms is also helpful, but it depends on the
datasets and how technical they are. Specifically, this method works better on technical
datasets where words do not have polysemy. We proposed a new method for data
augmentation, namely adding the pairs of questions which fit the criteria of having high
overlap or that have low overlap and are duplicates. While this method did not perform
well in terms of increasing F1-score, we believe this method can be used to test the
lexical knowledge of deep learning models as questions with high word overlap or just
one different word can pose a great challenge to deep learning models. We also showed
that small amounts of Gaussian noise added to the embedding matrix makes sentence
encoding models more robust. In addition, from the transfer learning experiment we can
conclude that transferring knowledge between datasets that address different problems
but have similar characteristics is better than very different datasets that address the
same problem. At the same time, pre-training and fine-tuning a model highly depends
on the model’s ability to capture and transfer context and in this case it performed
well only for the sentence encoding model. Finally, our results show that ensembling
by stacking different deep learning models is a very compelling technique for achieving
better classification results.

As a conclusion, we propose a hybrid solution which consists of using GloVe and
Universal Sentence Encoder for text representation, reversing question order as data
augmentation and ensembling two sentence interaction models. This solution is effective
in outperforming all baselines in a setting with limited training sets on a general purpose
dataset like Quora, where questions are short and the pairs share more words. On the
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other hand, how classification can be improved in datasets with longer sentences and
fewer words in common remains to be studied by future work.

Identifying duplicate questions is a very challenging task that entails that deep learning
models are able to understand semantics and syntax. In order to further improve the
performance of deep learning models on small data samples, one challenge that remains
to be addressed is that of questions with very high word overlap or that differ only
through small details. For models it is hard to differentiate between these questions
[Glockner et al., 2018], so it is important to either equip existing models with more lexical
information or build models that address this issue. A possible way to achieve this is to
identify words that destroy labels (i.e. salient words) and propose a weighting scheme
that would put more emphasis on these words. Samanta and Mehta propose a method
for ranking the importance of the words in context in order to generate adversarial
examples, so this could be a starting point [Samanta and Mehta, 2017].

We have discussed the role of data augmentation in helping models generalize and
reduce overfitting for small datasets. Creating new, diverse data is challenging, as our
results show. Another method for data augmentation is back-translation [Sennrich et al.,
2016]. Back-translation refers to creating synthetic training data by choosing a ”pivot”
language (for example German), and translating the pairs of questions to that language
and then back to English. This approach is somehow similar to Thesaurus augmentation
but it is likely to create the new questions closer to natural language (based on the quality
of the system used for translation). A new technique for data augmentation for NLP
problems is style-transfer [Fu et al., 2017]. This approach can be used to transfer certain
aspects of a sentence (e.g. formality) without modifying its content [Prabhumoye et al.,
2018]. For duplicate question detection it can create new data either by modifying
certain attributes of a question and pairing it to the original or by applying two different
styles to the same question and creating a new pair. In terms of word embedding
perturbation, deep learning models could be trained by adding adversarial noise to the
embedding matrix [Zhang and Yang, 2018]. In adversarial training [Goodfellow et al.,
2014] the goal is to generate examples that are slightly different from the original input
and would ”fool” the classifier. Adversarial noise, as proposed by Zhang et al., would
be added in the direction that would maximally increase the loss function. They discuss
two other variants, Gaussian Adversarial Noise and Bernoulli Adversarial Noise that are
promising on the datasets they use for evaluation. These methods have not been tried
yet for duplicate question detection. Furthermore, You et al. propose the Adversarial
Noise Layer as a means to improve the generalization of CNN for image classification
[You et al., 2018]. They discuss the possibility of extending this approach to NLP, so it
would be interesting to evaluate it on the problem of duplicate question detection.

As a final remark, the NLP community is leaning more and more towards the transfer
learning paradigm, aiming to pre-train complex architectures that could be applied to
many tasks [Howard and Ruder, 2018], [Radford et al., 2018]. Thus, finding a suit-
able pre-training task or an architecture better suited for transfering between pair-wise
classification tasks, would be a step forward in solving the duplicate datection problem.
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