
 Eindhoven University of Technology

MASTER

Automatic code modernization with Rascal

Liu, T.

Award date:
2018

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b48a75be-43eb-4f4c-9fe6-056180fd697a

Automatic Code
Modernization with

Rascal
Master Thesis

Tianyu Liu

Department of Mathematics and Computer Science
Software Engineering and Technology Research Group

Graduation committee:

prof. dr. Mark van den Brand (Supervisor)
dr. Mathijs Schuts (Company supervior from Philips)
dr. Julien Schmaltz (External committee member)

Eindhoven, September 2018

Abstract

Large-scale software systems are widely used in the past decades among all the industries. These
software systems require frequent maintenance to ensure proper behaviors. Philips is one of
the companies in the high-tech industry, producing sophisticated Image Guided Therapy (IGT)
systems for decades. These IGT systems run with large-scale software systems. Due to the age of
those software systems, they contain legacy code. Therefore, it is difficult and costly to maintain
those legacy code. As a result, Philips intends to modernize the legacy code in their software
system.

The purpose of this study is to investigate the possibilities to transform legacy code into a later ver-
sion automatically. The research subject is a part of Philips’ code base, namely Philips’ homemade
Operating System Abstraction Layer (OSAL).

This thesis proposed a Domain-Specific Language (DSL) based automatic transformation tool to
handle the transformation. It contains the important steps and details to design the transformation
tool. We started with an analysis on the existing code base of Philips, then made an inventory
of the existing OSAL Application Programming Interface (API)s and comprehended the use of
the existing OSAL. After that, we formalized the requirements from the analysis results, used
model-based design approach and finally designed a transformation engine based on structure
matching of source code. The input of that tool is a DSL to let the users define transformation
details. Furthermore, we also made a working prototype based on the model design and the
implementation details are also performed in this thesis.

We used the prototype to apply some transformations to Philips’ code base and positive results
have been obtained. We can conclude that the tool described in this thesis can be used to transform
a large part of the OSAL functions.

Automatic Code Modernization with Rascal iii

Acknowledgment

This thesis is the result of my master graduation project at Eindhoven University of Technology
and Philips, within Software Engineering and Technolgoy (SET) group. I have been working
with SET group for a long time, started from course Software Evolution given by dr. Alexander
Serebrenik and course Generic Language Technology given by prof. dr. Mark van den Brand.
These well-designed courses let me find my real interests in software engineering and eventually
graduated in SET group. In this long period of time, I wish to give my appreciations to a lot of
people.

First of all, I would like to give my sincere appreciation to my supervisor prof. dr. Mark van den
Brand, for taking me over in the mid-term of my graduation project due to the absence of my
original supervisor prof. dr. Jurgen Vinju and giving me useful high-level guidances and advices
during the project. Without his kind help, I would never be able to graduate.

Secondly, I wish to give my deep thanks to the following people. dr. Alexander Serebrenik,
my previous supervisor during Capita Selecta project and Seminar SET, for guiding me during
the projects and recommending me this internship position. dr. Mathijs Schuts, my company
supervisor during my internship at Philips, for helping me and supporting me throughout the
project. prof. dr. Jurgen Vinju, my original supervisor of this graduation project, in the first
few times of meeting he showed me an overall look of the project, which has been helpful for the
further study. Jurgen is absent during my graduation project due to illness, I wish all the best for
his recovering.

Furthermore, I am very grateful to Rodin Aarssen, a PhD student at the TU/e together with
Philips, who developed the fantastic tool ClaiR, an important component in my study. Without
the help of ClaiR, it would be impossible to conduct my project. I wish him all the best in his PhD
study. Also, I wish to show my thanks to my colleagues at Philips, including but not limit to Bora
Akar, Clemens van Kempen, Jan Stevens, Luc Schouren, Peter Blom, Roel Kolman, my manager
Paul Tielemans, and many other people, for the useful help during my internship. My thanks will
also go to Weslley Silva Torres, for the happy lunch time we had at Philips, and Felipe Ebert, for
the cooperation we had before in SET group. And I wish to thank my committee members: prof.
dr. Mark van den Brand, dr. Mathijs Schuts and dr. Julien Schmaltz, for taking time to read and
assess my thesis.

Finally, the most important ones, I would give my deepest thanks to my beloved parents, who
have given me endless supports during the whole period of my study as well as my whole life time,
both materialistic and spiritual. I would also give tons of thanks to my best friends, including but
not limit to: ir. Huiyi Zhang, ir. Nan Yang, ir. Shidong Song and Yuyang Qi, for all the happy
time we have spent; and also to ir. Yuguang Zhao and Ziyuan Zhao, for the amazing photography
time.

Tianyu Liu
Sunday 30th September, 2018
Eindhoven

Automatic Code Modernization with Rascal v

Contents

Contents vii

List of Figures ix

List of Tables xi

Listings xiii

List of Algorithms xv

Acronyms xvii

1 Introduction 1
1.1 Problem Description . 2
1.2 Thesis Outline . 4

2 Background and Related Work 5
2.1 Software Modernization . 5

2.1.1 Early Usage . 5
2.1.2 State of the Art . 5
2.1.3 Exemplary of Modernization Techniques . 6
2.1.4 Code Modernization and Refactoring . 6

2.2 OSAL and Philips’ TOS OSAL . 7
2.3 Rascal and its Extensions . 9

2.3.1 Example of Rascal Code . 9
2.3.2 ClaiR . 11
2.3.3 Abstract Syntax Tree (AST) and ClaiR AST 11

3 Analysis of Philips’ Operating System Abstraction Layer 13
3.1 Analysis Steps . 13
3.2 Categories of the Philips’ OSAL APIs . 14
3.3 Distribution of Operating System Abstraction Layer Application Programming In-

terfaces . 16
3.4 Distribution of Application Programming Interface (API) Usage 18
3.5 Operating System Abstraction Layer (OSAL) APIs Use Cases 19
3.6 Preprocessor Statements . 22
3.7 Conclusion of the Analysis . 23

4 Tool Design 25
4.1 Design Approach . 25
4.2 Study of Code Use Cases . 26

4.2.1 Study of Atomic Cases . 26
4.2.2 Study of Paired Cases . 28

Automatic Code Modernization with Rascal vii

CONTENTS

4.3 Requirement Analysis . 30
4.3.1 Additional Description About the Requirements 31

4.4 Design Results . 32
4.4.1 Architecture Design . 32
4.4.2 Data Structure . 35
4.4.3 C++ Modernization Language - the DSL 37
4.4.4 Work Flow . 40
4.4.5 Algorithms . 42

4.5 Limitations and Future Work . 48
4.5.1 Limitation of Supported Transformation Type 48
4.5.2 Limitations of the Format of Transformation Rules 48
4.5.3 Future Work . 48

4.6 Conclusion of Tool Design . 48

5 Application and Case Study 51
5.1 Apply an Atomic Transformation to Philips’ Code Base 51
5.2 Apply a Simple Paired Transformation to Philips’ Code Base 53
5.3 Discussion . 57

5.3.1 Discussion of the Correctness . 57
5.3.2 Discussion of the Performance . 57

5.4 Conclusion of Case Study . 58

6 Conclusions and Suggestions 59
6.1 Contributions of this Thesis . 59
6.2 Suggestions to Philips . 60

Bibliography 61

Appendix 65

A Rascal Script Used for Searching Functions 65

B User Manual of the Transformation Tool 67
B.1 Installation . 67
B.2 Write the DSL . 73
B.3 Apply a Transformation . 74

C Implementation Examples in Rascal 75
C.1 Exemplar Implementation to Match a Single Statement 75
C.2 Exemplar Implementation to Match a Pair of Statements 76

viii Automatic Code Modernization with Rascal

List of Figures

1.1 A picture of Philips’ Allura IGT system. 2
1.2 A generic system architecture of software system in the industry. 2
1.3 An abstract illustration of Philips positioning system. 3
1.4 An abstract illustration of the project goal. 4

2.1 An abstract model of components in a general computer system [26]. 7
2.2 An abstract model of multi-platform system. 8
2.3 The abstract model of Philips’ multi-platform system. 9
2.4 The Rascal development environment in Eclipse. 10
2.5 An example of a standard AST. 12

4.1 An illustration of the approach work flow. 25
4.2 The three-layer model of this study. 33
4.3 An high-level view of the transformation tool. 34
4.4 Data flow model of the transformation tool. 35
4.5 The illustration of the data structure of the transformation tool. 36
4.6 The model of the DSL. 38
4.7 The workflow design of the transformation tool. 41

5.1 A file comparison for adding inclusion. 52
5.2 A file comparison for passing a pointer access. 52
5.3 The test result for transforming the sleep function. 52
5.4 File comparison of the open pattern. 54
5.5 File comparison of the close pattern. 55

B.1 Get Eclipse for Java Developers. 68
B.2 A screen of installing Eclipse CDT. 69
B.3 A screenshot of a new Rascal console of ClaiR. 70
B.4 Check ClaiR as reference project. 71
B.5 The Java build path. 72
B.6 Console example of a successful installation of transformation tool. 72
B.7 The structure of a Domain-Specific Language (DSL) script. 73
B.8 The structure of transformations. 74

Automatic Code Modernization with Rascal ix

List of Tables

3.1 Philips’OSAL category and description. 14
3.2 List of OSAL APIs . 16
3.3 Distribution of OSAL function calls by functionality. 19
3.4 Distribution of OSAL function calls by general category. 19

4.1 The criteria to choose an example for atomic cases. 26
4.2 Detailed information about the starting point: sleep function. 28
4.3 Details of simple paired scenario example. 29

5.1 A summary of running time in different transformation. 57

Automatic Code Modernization with Rascal xi

Listings

2.1 A Rascal code example to declare a new data type. 10
2.2 An example code fragment to demonstrate an AST. 11
2.3 An example statement to be parsed in ClaiR. 11
2.4 An example of ClaiR AST. 12
3.1 A minimal example of atomic function use. 20
3.2 A minimal example of simple paired function use. 20
3.3 A minimal example of complex paired function use with value passing. 21
3.4 A minimal example of an independent function implementation. 21
3.5 A minimal example of a dependent function. 21
3.6 An exmaple of conditional complication. 22
4.1 A transformation example of the mutex functions. 29
4.2 The Rascal code to define the top-level data structure. 37
4.3 An example of a DSL script. 40
5.1 The DSL script to transform the Sleep function on Philips’ code base. 52
5.2 The DSL script to transform the Sleep function on Philips’ code base. 53
5.3 The DSL script to transform the mutex construct on Philips’ code base. 54
5.4 The DSL script to transform the mutex construct on Philips’ code base in several

steps. 56
A.1 A Rascal code fragment for searching existing functions. 66
C.1 The implementation of matching a single statement. 76
C.2 The implementation of matching a pair of statements. 77

Automatic Code Modernization with Rascal xiii

List of Algorithms

1 Top level transform. transform(l) . 42
2 Parse a DSL and generate transformation. generateTransformation(l) 43
3 Transform a list. transformList(listOfTransformation) 43
4 Transformation algorithm for an atomic transformation. transformBasedOnType(t,

startLocation) . 44
5 Modify files for an atomic transformation. modifyFileAtomicVersion(source,

target, file, metadata) . 45
6 Transform a simple paired transformation. transformBasedOnType(t, startLocation) 46
7 Modify files for a simple paired transformation. modifyFileSimplePairedVersion(pairSource,

pairTarget, file, metadata) . 47

Automatic Code Modernization with Rascal xv

Acronyms

API Application Programming Interface.

AST Abstract Syntax Tree.

ClaiR C(++) language analysis in Rascal.

CML C++ Modernization Language.

Cpp C Preprocessor.

DSL Domain-Specific Language.

IDE Integrated Development Environment.

IGT Image Guided Therapy.

JDK Java Development Kit.

JVM Java Virtual Machine.

LOC Lines Of Code.

OS Operating System.

OSAL Operating System Abstraction Layer.

TIA Test Impact Analyzer.

UI User Interface.

UML Unified Modeling Language.

URL Uniform Resource Identifier.

Automatic Code Modernization with Rascal xvii

Chapter 1

Introduction

In high-tech industries, software plays a very important role in their products, the products that
are constructed using cutting-edge technologies [24]. In order to catch the cutting-edge technolo-
gies, the software must be updated from time to time. Thus, millions of Lines Of Code (LOC)
were created and kept updating in the past decades in order to operate those high-tech products
properly. As a result, many LOC in a high-tech system have become legacy code. Legacy code
means the code came from someone else which is not in the current team anymore; the code
belongs to someone else; the original author of the code is not reachable or the code came from
other companies [8].

In large-scale software development, it is important to create the software in a proper manner
and to ensure it fully functioned [21], [1]. However, the software system has a tendency to defect
due to the increasing number of LOC [12], resulting in accumulated maintenance difficulty. The
difficulties originate from the low readability of the code, the incompatibility of the latest Operating
System (OS), the poor understandability and other unexpected reasons.

Philips is a high-tech company, producing high-end medical equipment in the past decades. Image
Guided Therapy (IGT) system is one of the advanced medical systems designed by Philips, using
images provided by interventional radiology technologies to treat diseases. This interventional
radiology is different from the diagnostic radiology, containing both diagnosis and treatment of
diseases with minimal invasion. There are two product lines in Philips’ IGT system, namely Allura
and Azurion. Allura is the current maintained product line and Azurion the next generation
product line. To operate this system properly, both product lines require a large-scale (more than
1 million LOC) software. In such a software system, legacy code is inevitable. The positioning
team1 of Philips planned to investigate the possibilities to modernize their positioning software in
the Allura product line. Figure 1.1 is a picture of the Allura IGT system.

Philips’ IGT system has a three-layer architecture as shown in Figure 1.2. The intermediate
layer, also known as the Operating System Abstraction Layer (OSAL), is employed to provide
cross-platform support and allow same top-level application to run on different platforms. The
Operating System Abstraction Layer (OSAL) operates very similarly to the Java Virtual Machine
(JVM) of Java, acting as a bridge between the upper level applications and the OS or hardware.
Hence, the top-level applications can keep intact to support different versions of OS or hardware
platforms. With OSAL, the top-level applications can always call the same Application Program-
ming Interface (API) for the corresponding behavior regardless the OS or hardware [19], [23], [33].
This design results in less maintenance regarding time and cost. All the operations to control
the lower level OS or hardware are implemented in the intermediate layer. The concept of this
intermediate layer also applies to many embedded and mobile developing tools in the industry like
Rhodes, PhoneGap DragonRad and MoSync [20].

1The positioning team creates and maintains the software that controls all the movable parts on the IGT system.

Automatic Code Modernization with Rascal 1

CHAPTER 1. INTRODUCTION

Figure 1.1: A picture of Philips’ Allura IGT system.

top level applications

intermediate layer(s)

OS or hardware

calls APIs in the intermediate layer

calls system APIs or directly controls hardware

Figure 1.2: A generic system architecture of software system in the industry.

The goal of this project is to design and to build an automated transformation tool to modernize
the OSAL in Philips’ code base. For this aim, several research questions need to identified.

1.1 Problem Description

In software engineering domain, legacy code has been accumulated inevitably along time [8].
Philips’ software system is no exception. The existence of legacy code makes the whole-life-cycle
maintenance even more time-consuming and costly [1].

2 Automatic Code Modernization with Rascal

CHAPTER 1. INTRODUCTION

Introduction to the case

The main focus of this project is Philips’ intermediate layer, which was originally created decades
ago and acts as a OSAL. In this OSAL, there are different implementations to fulfill the same
functionality on different OSs. Philips’ OSAL is an important part of positioning software, as
shown in Figure 1.3. Philips’ OSAL is in a library named public library with different compon-
ents. The applications also use the functions provided by other components in this public library.
The OSAL has several variants of implementation to support both Microsoft Windows and Wind
River VxWorks2.

positioning applications

public library

Philips’ OSAL

other public library components

OS (Windows, VxWorks, etc)

uses

calls

controls

Figure 1.3: An abstract illustration of Philips positioning system.

The top-level positioning application contains the positioning logic. To apply this logic to the
real machine, these positioning applications use both the OSAL and other components in the
public library. The OSAL handles the operations related to OS, while the other public library
components handle the non-OS-related logic. Due to the upgrade of Windows and VxWorks, it is
necessary to maintain Philips’ OSAL, which can be very time-consuming. Furthermore, the larger
number of LOC in Philips’ OSAL might lead to higher possibilities of defect [12], resulting in a
higher maintenance cost [27].

Given the aforementioned situation, the positioning team of Philips IGT decided to find a solution
to reduce the maintenance cost in the future. According to previous investigations by Philips,
there are two existing standard libraries providing an OSAL, namely the C++11 standard library
and POSIX standard library. Both of the libraries are supported by Microsoft Windows 10 and
VxWorks7, which are the two OSs Philips is starting to use. As a result, Philips wants to explore
whether it is possible to deprecate the home-made existing OSAL and use the native C++11 OSAL
or POSIX OSAL instead. The goal of this project is shown in Figure 1.4. To replace Philips’
home-made OSAL with standard C++11/POSIX OSAL, the positioning applications must be
modernized.

With the help of the native C++11 OSAL or POSIX OSAL, Philips only has to maintain the
applications, while the maintenance of OSAL is no longer needed. Our challenge is: Is it possible
to automatically modernize the source code so that it uses native C++11 OSAL or POSIX OSAL
instead of home-made OSAL? If so, what should be done? In order to reach this goal, we raised
the following research questions:

2A Real-time OS used in Philips’ IGT systems.

Automatic Code Modernization with Rascal 3

CHAPTER 1. INTRODUCTION

positioning applications

public library

Philips’ OSAL C++11/POSIX OSAL

other public library components

OS (Windows, VxWorks, etc)

modernize code to sup-
port new OSAL

uses

calls

controls

Figure 1.4: An abstract illustration of the project goal.

RQ1 What Application Programming Interface (API)s are provided in Philips’ home-made OSAL?

RQ2 What are the functionality of Philips’ OSAL APIs?

RQ3 What is the quantity and the distribution of Philips’ OSAL APIs?

RQ4 How are Philips’ OSAL APIs being used?

RQ5 What are the key aspects to make a transformation of OSAL APIs?

RQ6 What can be done to make the transformation as automated as possible?

1.2 Thesis Outline
The main content of each chapter is shown below:

• Chapter 2, Background and Related Work.
This chapter describes the background, related work of this study, the existing OSAL in
Philips’ code base and an explanation of Rascal.

• Chapter 3, Analysis of Function Calls.
This chapter contains an extensive analysis on the existing OSAL in Philips code base. The
analysis categorizes all interfaces provided by the OSAL, counts the number of occurrences,
summarizes the way to use the OSAL and finally investigates the use of preprocessor macros
in the OSAL.

• Chapter 4, Tool Design.
This chapter describes the detailed design and implementation of the transformation tool
developed in this project.

• Chapter 5, Application and Case Study.
In this chapter, we conduct several case studies where we apply the transformation tool to
Philips’ code base.

• Chapter 6, Conclusions.

4 Automatic Code Modernization with Rascal

Chapter 2

Background and Related Work

This chapter introduces the background and related work of this study, including the existing
examples of software modernization and a description of the tooling used in this study.

2.1 Software Modernization
Software system modernization is a part of domain software evolution. In the past decades,
many researchers and developers have elaborated on investigating different approaches to evolving
the software systems and making them operate more efficient.

2.1.1 Early Usage
Due to the rapid change of the software systems in the past decades, new architecture, new hard-
ware or new version of OS have been introduced continuously. Thus, it has become difficult to
port the source code to a new architecture/hardware/OS version. The first use of term soft-
ware modernization can be tracked back to as early as 1998 by NASA [10]. In NASA’s early
approach, a six-step approach for code modernization was introduced: clean up, serial optimiz-
ation(modernization), parallel optimization, performance monitoring, making automated tooling
and making machine specific optimization [10].

2.1.2 State of the Art
Apart from the early approach by NASA, other researches also introduced several approaches to
evolving legacy software systems. In 1997, Weiderman et al. [31], [32] introduced a taxonomy
of operational activities can be applied for legacy software systems evolution. Weiderman et al.
divided the evolution activities into 5 steps: assessment, maintenance, transformation, replacement
and the combination of the aforementioned four activities [32]. With the help of these five major
steps, a legacy system at any stage can be evolved in a proper manner. Thus, if a legacy system
is still running efficiently, assessment and maintenance can be applied; if a system is old and
inefficient, then replacement can be applied to evolve the system.

Further research in 2000 by Comella-Dera et al. [5] redivided the five steps introduced by Wei-
derman et al. into three steps, the S1, S2 and S3 listed below is based on different stages of the
legacy code:

S1 Maintenance
Maintenance is an iterative and incremental activity to apply small changes in the software
systems. An example of maintenance is the rewrite implementation of one specific function.
The activity will not involve the major structure of the system.

Automatic Code Modernization with Rascal 5

CHAPTER 2. BACKGROUND AND RELATED WORK

S2 Modernization
Modernization is renamed from the term transformation described by Weiderman et al.
[32]. If maintenance is not sufficient for improving the performance and stability of a software
system, then modernization can be a more efficient option. During modernization, a larger
portion of the software system will be involved. Modernization often contains reconstruction,
function rewriting and other operations involving multiple files [5].

S3 Replacement
Replacement is an extensive as well as intensive step in legacy software system evolution.
When a legacy system is extremely difficult to be maintained/modernized, or the mainten-
ance cost/modernization cost is too high, replacement is then a better option to evolve the
system. Replacement employs a new element to compensate the missing functionality.

2.1.3 Exemplary of Modernization Techniques
In software modernization domain, there are different techniques to modernize a software system,
and to fulfill different requirements, namely T1, T2 and T3 listed below:

T1 User Interface (UI) modernization
The UI of a software system requires frequent maintenances, and sometimes requires a
modernization. In the past decades, the most important modernization has been transferring
a legacy text-based screen to a graphical interface screen. [2].

T2 Database modernization
Database modernization is also widely applied, as the reflection of a database in real world
may change from time to time [5], [17]. Three major sub-techniques can be used for database
modernization, namely wrapping, statement rewriting and logic rewriting. Wrapping means
to encapsulate the data into an interface for new data representation. Statement rewriting
is to re-write the statement to access the database. Logic rewriting is to re-define the logic
inside the database [17].

T3 Functional modernization
Functional modernization is also known as logic modernization [5]. This can be a transform-
ation from legacy functionality (logic) into a more modern one according to the business
requirements of a system. It can also be modernizing the implementation from a legacy
version to a later version.

2.1.4 Code Modernization and Refactoring
When considering code modernization, refactoring cannot be neglected as it intersects with code
modernization significantly. Refactoring is defined as: changing the software system (incl. the
structure, the code construct or the calling sequence etc.) without modifying the behavior of it
[9]. Considering the software modernization techniques described in Section 2.1.3, part of UI
modernization and functional modernization can also be refactoring.

Refactoring tools are often integrated in modern Integrated Development Environment (IDE)s,
such as Eclipse, Microsoft Visual Studio, IntelliJ IDEA. Commonly used refactoring tools include
rename, extract local variable or methods, inline methods and introduce parameter. [18], [29], [16].
These refactoring tools are widely used in industry and open source communities [29], [16]. Apart
from the refactoring on code, refactoring a UML model is often applied in the industry to provide
an overview on how to modernize the software system [28].

In this project, none of the aforementioned techniques is applicable to address our problem de-
scribed in Section 1.1 since these techniques are used for single files rather than a whole system.
Therefore, a new tool for transforming the legacy code in Philips’ system has to be designed.

6 Automatic Code Modernization with Rascal

CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 OSAL and Philips’ TOS OSAL
In a modern computer system, components are organized in different layers including hardware,
operating system, system applications, user applications and other components [26] as shown in
Figure 2.1.

users

applications

system call interfaces

operating system kernel services

user space

kernel space

hardware

Figure 2.1: An abstract model of components in a general computer system [26].

In such a general model, there is a barrier between user space and kernel space. user space
means the domain that gives access to users and applications, while kernel spaces means the
domain that only gives access to the OS kernel. The applications in user space cannot access the
OS kernel services in kernel space, and vice versa. One special component of the kernel space
is the System Call Interfaces, which exposes a batch of interfaces to the user space so that
users and applications can use the OS resources to control the OS and hardware indirectly. And
the operating system kernel services often include memory manager, process scheduler (also
known as task manager, file system and other necessary services. In this study we will mainly
focus on the interfaces.

Multi-platform system with an Operating System Abstraction Layer (OSAL)

In practical cases, a large-scale computer system often contains several different types of hardware,
uses different versions of OS to control them. Upon these OS and hardware types, the applications
keep the same. This type of system is also called a multi-platform system, depicted in Figure 2.2.

The extended parts in a multi-platform system are the additional variants of system call inter-
faces, the additional types of operation systems, the additional types of hardware and an new
component named Operating System Abstraction Layer (OSAL). The OSAL in a multi-platform

Automatic Code Modernization with Rascal 7

CHAPTER 2. BACKGROUND AND RELATED WORK

users

applications

Operating System Abstraction Layer (OSAL)

user space

system call inter-
face variant 1

system call inter-
face variant 2

system call inter-
face variant 3

operating system
services variant 1

operating system
services variant 2

operating system
services variant 3

kernel space

hardware variant 1 hardware variant 2 hardware variant 3

Figure 2.2: An abstract model of multi-platform system.

system replaces the task of system call interfaces in a general computer system and is exposed to
the user space with only one variant. This concept follows the definition of an OSAL [19], [23].
With the help of this additional layer, the user space applications only need one implementation
to support multiple variants of OSes and hardwares.

Philips’ multi-platform system

In Philips’ case, there is also an OSAL to bridge the gap between user space and kernel space.
This OSAL was developed by Philips, named TOS. This TOS layer needs to be replaced by a
modern C++11/POSIX OSAL due to the difficulties to maintain it. In the following text of this
thesis, the term OSAL specifically means Philips’ TOS OSAL

This model of Philips’ OSAL, illustrated in Figure 2.3, is fairly similar to the aforementioned
multi-platform model shown in Figure 2.2. In Philips’ system, the users of positioning applic-
ations are the developers of these applications, and the client applications which use it. With
the help of this OSAL, the developers can easily develop and test the applications on a Microsoft
Windows development PC and then build them to the target systems running on VxWorks. All
these operations can be done with only one variant of application implementation.

In the two different OS versions, each contains its own implementation to fit the corresponding
hardware. The services are supported by Philips’ OSAL including the following functionalities:
memory manager, task manager, network manager, clock (for real-time environment)
and data-type manager. Detailed description will be explained in Chapter 3.

8 Automatic Code Modernization with Rascal

CHAPTER 2. BACKGROUND AND RELATED WORK

developers/client applications

positioning applications

Philips’ TOS Operating System Abstraction Layer (OSAL)

user space

system call interface for
Windows

system call interface for
VxWorks

Windows ser-
vices VxWorks services

kernel space

Windows devel-
opment PC

real Allura IGT
systems

Figure 2.3: The abstract model of Philips’ multi-platform system.

2.3 Rascal and its Extensions
Rascal1 is a Domain-Specific Language (DSL) running on Java that provides an insight of source
code from a high abstraction level for analysis and manipulation [11]. Rascal was first introduced
in 2009 by Centrum Wiskunde & Informatica (CWI) Amsterdam2, as a successor of syntax and
semantic analysis tool named ASF+SDF meta-environment [30]. Currently, Rascal supports the
analysis of most popular programming languages including Java, C/C++, PhP. From the users’
perspective, the syntax of Rascal is very close to that of Java. In Section 2.3.1, some examples
of Rascal code will be introduced.

Rascal is considered as a research-oriented language employed in University of Amsterdam and
Eindhoven University of Technology to analyze, visualize and transform source code of legacy
systems, and to construct DSLs. Apart from the education activities, Jezequel et al. [4] introduced
a concern-oriented language development approach uses some concept from Rascal. Given these
examples in research domains, Rascal is considered as a potential tool to address our research
problems.

2.3.1 Example of Rascal Code
Rascal is a plug-in of Eclipse, so the development of Rascal can simply be conducted in Eclipse.
Figure 2.4 presents a typical layout to write Rascal code in Eclipse. The left part of the figure is

1https://www.rascal-mpl.org/
2https://www.cwi.nl/research/groups/software-analysis-and-transformation

Automatic Code Modernization with Rascal 9

https://www.rascal-mpl.org/
https://www.cwi.nl/research/groups/software-analysis-and-transformation

CHAPTER 2. BACKGROUND AND RELATED WORK

the project navigator, lists all the files in opened projects. The upper right part is the text editing
area and the lower right part is the Rascal console. Rascal script can not only be run from a file,
but also directly in the console.

Figure 2.4: The Rascal development environment in Eclipse.

Though the syntax of Rascal is similar to that of Java, these two languages differ significantly
in the declaration of data structures. In this study, the declaration of data structures is a very
important aspect in the implementation phase.

Listing 2.1: A Rascal code example to declare a new data type.
1 data NewDataType (str optionalName = "")
2 = oneNumber (int num)
3 | twoNumbers (int numA , int numB)
4 | threeNumbers (int numA , int numB , int numC);
5
6 // Instantiate the data structure
7 NewDataType ndt = threeNumbers (1, 2, 3, optionalName = "new");

Listing 2.1 is a declaration of a data structure called NewDataType. The new data structure
NewDataType contains one optional attribute named optionalName and the default value is
an empty string. The optional attribute does not need to be present when declaring a data
structure. This data structure has three variants, one named oneNumber, with one integer attrib-
ute; the second one named twoNumbers, with two integer attributes; and the third one named
threeNumbers, with three integer attributes. These three variants can be considered as three
inheritances of the data structure. Line 7 declares a new variable ndt with the newly-declared
data structure as its type. The variable takes the threeNumbers variant, sets numA, numB and numC

10 Automatic Code Modernization with Rascal

CHAPTER 2. BACKGROUND AND RELATED WORK

to 1, 2 and 3 respectively. This variable declaration also sets the optional variable optionalName
to new.

2.3.2 ClaiR
C(++) language analysis in Rascal (ClaiR)3 is a Rascal extension as well as an Eclipse plug-in,
developed by Rodin Aarssen from CWI Amsterdam4. ClaiR can generate an Abstract Syntax Tree
(AST) per file of a C/C++ source code file, named ClaiR AST. ClaiR AST is understandable by
humans and is defined as Rascal’s data structure. Hence, it is Rascal compatible. The generated
AST comes from the parser of Eclipse CDT5, the C/C++ development tooling developed for
Eclipse. The core parsing steps in ClaiR are processed by the internal parser of Eclipse CDT,
including parsing files and getting the inclusions (headers). The output of these core steps is a
so-called CDT AST. However, the CDT AST is not that human-readable and cannot be directly
analyzed in Rascal. Thus, the contribution of ClaiR is translating the CDT AST into a Rascal-
compatible and human-readable version so that further analysis can be done by this tool.

2.3.3 Abstract Syntax Tree (AST) and ClaiR AST
In the general computer science domain, an AST is a tree representation of any source code.
The tree representation is an abstract syntactic structure, so that it is language independent in
most cases. The syntactic structure only describes the logic of the source code, ignoring the
language-specific details. Figure 2.5 indicates an standard AST of the statement in Listing 2.2.

Listing 2.2: An example code fragment to demonstrate an AST.
1 void foo(int a, int b) {
2 if (a > b) {
3 a = a + b;
4 } else {
5 a = a - b;
6 }
7 }

ClaiR AST

ClaiR AST is different from the standard AST in Figure 2.5, the ClaiR AST stores the tree rep-
resentation in a textual way, using brackets to distinguish different tree levels. Listing 2.4 shows
a ClaiR AST. The AST example is a representation of a declaration statement in Listing 2.3.

Listing 2.3: An example statement to be parsed in ClaiR.
1 \ texttt {int var = 1;}

Illustrated in Listing 2.4, the ClaiR AST is a translationUnit that contains all the statements
of this file. The statements are stored in this translationUnit as a list. All other information is
stored in an indented view to represent the tree structure. Furthermore, the ClaiR AST also stores
a very important field for each of the nodes in the tree, named src, which is the exact position of

3https://github.com/cwi-swat/clair
4https://www.cwi.nl/people/rodin-aarssen
5https://www.eclipse.org/cdt/

Automatic Code Modernization with Rascal 11

https://github.com/cwi-swat/clair
https://www.cwi.nl/people/rodin-aarssen
https://www.eclipse.org/cdt/

CHAPTER 2. BACKGROUND AND RELATED WORK

IF

CONDITION

GREATER

a b

THEN

ASSIGN

a ADD

a b

ELSE

ASSIGN

a SUBTRACT

a b

Figure 2.5: An example of a standard AST.

Listing 2.4: An example of ClaiR AST.
1 translationUnit (
2 [simpleDeclaration (
3 [],
4 declSpecifier (
5 [],
6 [],
7 integer (src =| tmp:///t.cpp |(0 ,3)),
8 src =| tmp:///t.cpp |(0 ,3)),
9 [declarator (

10 [],
11 [],
12 name(
13 "var",
14 src =| tmp:///t.cpp |(4 ,3)),
15 equalsInitializer (
16 integerConstant (
17 "0",
18 src =| tmp:///t.cpp |(10 ,1) ,
19 typ= basicType (
20 [],
21 int ())),
22 src =| tmp:///t.cpp |(8 ,3)),
23 src =| tmp:///t.cpp |(4 ,7) ,
24 decl =| cpp+ variable :///var |)],
25 src =| tmp:///t.cpp |(0 ,12))],
26 src =| tmp:///t.cpp |(0 ,12))

the corresponding node. The position is stored with type loc, which is a Rascal basic data type
and can be used as a hyper link to point to the exact position in the file. The AST is considered
as the structure of a program.

12 Automatic Code Modernization with Rascal

Chapter 3

Analysis of Philips’ Operating
System Abstraction Layer

This chapter contains the detailed results of Operating System Abstraction Layer (OSAL) ana-
lysis. These analyses include a categorization of all OSAL function calls, the distribution of each
category, the use patterns of the function calls and the preprocessor macros in the OSAL.

3.1 Analysis Steps

To transform Philips’ OSAL correctly, we list the OSAL APIs, then categorize them based on
function name prefix. After that, we calculate the distribution of the OSAL APIs. At last, we
discover the use cases of the APIs.

• Examination of OSAL header files
We check original header files of the Philips’ OSAL to retrieve all OSAL APIs and macros.
OSAL APIs will be used for categorization and macros will be used to help override compiler
configurations.

• Categorization of OSAL APIs
We categorize the OSAL functions based on function name prefixes. Each prefix represents
one functionality. For instance, if an OSAL function is used for basic task management,
it will have prefix TSK . Hence, a function which is used for task management in Philips’
OSAL will be named as TOS TSK foo, where foo can be a specific name according to its exact
behavior. Furthermore, we check the definitions (implementations) of each functionality to
categorize it from a general OS point of view. For instance, if there are two aforementioned
categories, one has functionality of a general task management and the other has function-
ality of a conditional task management, both of the categories are considered to have the
task management functionality.

• Calculation of the distribution of the OSAL functions
From the list of function calls, we calculate the distribution of function calls per category
automatically.

• Investigation of the OSAL functions
We examine the occurrences and refer back to the original source code file then check the
usage of each OSAL function. The usage includes the calling sequences, patterns and other
potential existing properties.

Automatic Code Modernization with Rascal 13

CHAPTER 3. ANALYSIS OF PHILIPS’ OPERATING SYSTEM ABSTRACTION LAYER

3.2 Categories of the Philips’ OSAL APIs
Philips’ OSAL APIs can be categorized into 19 functionalities, listed in Table 3.1. The table con-
tains 4 columns: Function prefix, the prefixes are retrieved from OSAL header files; Function-
ality, the functionality of the corresponding prefix; Category, the category from OS perspective
and Description, a brief description per category. The table is sorted by first column with the
original sequence in the header file.

Table 3.1: Philips’OSAL category and description.

Function
prefix Functionality Category Description

TOS p INT Interrupt Task/event
management

Interrupt is a signal to
override current event/task.
The event/task with
interrupt property can be
processed immediately.

TOS p JOB OS job Task/event
management

Job object in OSAL is
similar to task. In real
situation these functions
were only declared but never
implemented or used.

TOS p MBX OS mailbox Task/event
management

Mailbox is used as a
communication media
between tasks. In a
multi-task scenario,
messages can be sent by
using the mailbox feature
among all tasks.

TOS p OBJ
Philips’s
OSAL (TOS)
object

Data type
management

This type of functions are
used to manage all TOS
specific objects.

TOS p REG
Region-based
memory
management

Memory
management

The region-based memory
management provides a
more flexible scope of a
memory segment. The
allocated memory segment
can live longer than
standard allocated memory.

TOS p MTX Task mutex Task/event
management

Mutex means mutual
exclusive objects. The mutex
functions can set mutual
exclusive flag to an object so
that the object is locked and
can only be modified by one
thread.

14 Automatic Code Modernization with Rascal

CHAPTER 3. ANALYSIS OF PHILIPS’ OPERATING SYSTEM ABSTRACTION LAYER

TOS p RTS
Philips’ OSAL
(TOS) object
type converter

Data type
management

The TOS object converter
converts other objects (incl.
fundamental types and
user-defined types) into TOS
compatible objects.

TOS p SEG
Memory
segment
management

Memory manager

The memory segment
management interface can
have a directly control to a
specific memory segment
from an OS level.

TOS p SEM
Semaphore
(non-
counting)

Task/event
management

Semaphore is used similar to
mutex, between multiple
tasks to store the sync
informations. Non-counting
semaphore represents only
two states, also known as
binary semaphore.

TOS p CSEM
Semaphore
(counting)

Task/event
management

Counting smaphore is
identical to non-counting
semaphore, only except for
the representations.
Counting semaphore
represents multiple states.

TOS p EVT OS event Task/event
management

The event functions handles
the OS events.

TOS p SCK Network layer Network
This type of functions
implement the TCP/IP
socket from OSAL level.

TOS p STK
Stack imple-
mentation

Memory
management

Provides the stack from an
OS level, specifically used as
memory stack.

TOS p TSK
Basic task
management

Task/event
management

Manages the basic task
operations.

TOS p MAIN
OSAL self
manager Administrative Provides a control panel of

the OSAL layer.

TOS p RTC
Real time
clock Clock

Provides the essential APIs
to control the real time clock
in VxWorks, an real time OS

TOS p LOG
OSAL log
system Administrative

This interface provides the
log system for this Philips’
OSAL.

TOS p STR
Start job of
Philips’ OSAL Administrative

The start job is specifically
designed for VxWorks
variant of the OSAL, helping
start the OS from a cold
state. However, this
interface was never used.

Automatic Code Modernization with Rascal 15

CHAPTER 3. ANALYSIS OF PHILIPS’ OPERATING SYSTEM ABSTRACTION LAYER

TOS p STP
VxWorks
booting Administrative

The booting category was
specifically designed for
booting VxWorks as there
are some additional
requirements and settings for
booting VxWorks compare
to booting Windows.

Furthermore, we categorized these OSAL functions according to their behaviors from an OS point
of view. These functions are categorized into the following:

C1 Task/event management
Handles everything that is related to task or event. Task or event in this study is also called
OS jobs by Philips.

C2 Data type management
Manages the custom-defined data types in Philips’ system. The operations are used to
transform a non-Philips-OSAL data type to a Philips’ OSAL compatible data type.

C3 Memory management
Handles everything that is memory related including creating, deleting and region based
management. Here the term memory states the main memory of a computer system.

C4 Network
Provides an interface for the use of network layer in the OSAL.

C5 Administrative
The administrative functions for Philips’ OSAL itself. It provides a control panel so that
some settings can be applied to the OSAL. Also, it provides the booting procedure specifically
designed for VxWorks and the build-in log system.

C6 Clock
Provides a real-time clock so that the applications that have a real-time requirement can
work properly.

3.3 Distribution of Operating System Abstraction Layer
Application Programming Interfaces

According to OSAL header, there are 108 single APIs provided by the OSAL, as listed in Table 3.2.
The first column Functionality is identical to the same column in Table 3.1, the second column
#Interfaces shows the number of APIs per prefix (functionality) and the last column Descrip-
tion explains how those APIs work.

Table 3.2: List of OSAL APIs

Functionality #APIs Description
OSAL log
system 1 This category contains only one function to

initialize the log used in servers.
Start job of
Philips’ OSAL 1 This category contains one function to start

OSAL.

16 Automatic Code Modernization with Rascal

CHAPTER 3. ANALYSIS OF PHILIPS’ OPERATING SYSTEM ABSTRACTION LAYER

OSAL object
type converter 2

The OSAL object type converter interfaces
contain functions to either convert a C/C++
pointer to a OSAL token or convert a OSAL
token to a C/C++ pointer.

OSAL self
manager 2 The OSAL self manager provides an

initialization function and a menu.

OS object 3

The OS object interfaces provide functions to
lookup an object and catalog/uncataglog an
object. The interfaces were only declared but
never implemented or used.

Stack 3

The stack implementation in Philips’ OSAL
only contains interfaces to check the status of a
stack. The checking functions include checking
whether a stack is free, how many bits are left
in a stack, the pointer to the stack and
switching on/off free stack checking.

OS job 4

The job interfaces contain functions to
create/delete a job, and get a current/root job.
The interfaces were only declared in header, but
were never implemented or used in real code.

Semaphore
(non-
counting)

4
Non-counting semaphore provides interfaces
to create/delete a semaphore and send/receive
message related to the semaphore.

Semaphore
(counting) 4

Counting semaphore is similar to the
non-counting semaphore, only the semaphore
object is a multi-state semaphore.

OS event 4
The OS event interfaces contain functions to
create/delete an OS event, set the flag of an
event check whether an event is set.

Region-based
memory
management

4
The region-base memory management
interfaces contain functions to create/delete a
region and enter/exit a region.

VxWorks
booting 7

This category only applys to VxWorks. It
provides interfaces to boot VxWorks as well as
check whether the OS is available and operable.

OS mailbox 8
The mailbox interfaces contain mailbox create,
delete, send/receive, queue length query and
name query functions.

Real time
clock 8

Real time clock provides an entry to manage
the real-time behavior from upper application.
The interfaces contain functions to create/delete
a real-time closk, get/set timestamp, get/set a
timer and get elapsed time.

Memory
segment
management

8

Memory segment management provides
interfaces to create/allocate, delete/delocate a
memory segment and to check the remaining
bits left in an existing memory segment.

Automatic Code Modernization with Rascal 17

CHAPTER 3. ANALYSIS OF PHILIPS’ OPERATING SYSTEM ABSTRACTION LAYER

Interrupt 11
The interrupt interfaces contain functions to
create, delete, enable, disable, exit, interrupt
level settings and waiting function.

Network layer 13

The network layer provides interfaces to
create/delete a network socket, connect to a
socket, bind, accept data, attach data, close
socket, send and receive data. For each
operation related to data, it also has a version
for UDP transmission.

Basic task
management 21

Basic task management provides the
common used task managing functions including
sleep, create, delete, suspend, resume. Also, it
provides functions to check/set task name,
check/set task priority, get thread id, measure
the performance and two functions to manage
the flags.

3.4 Distribution of Application Programming Interface (API)
Usage

The distribution of each functionality is listed in Table 3.3. The table is considered as an extended
version of Table 3.2. The first column Functionality is identical to the same column in both
Table 3.1 and Table 3.2, the second column #Occurrence is the sum of all invocations per
functionality in positioning software code base.

As shown in Table 3.3, the most frequently used functionality is Basic task management,
followed by Memory segment management and Region-based memory management, the
fourth most used functionality is OS mailbox, which is also related to task management.

Furthermore, we calculate the distribution of each category from general OS point of view, listed
in Table 3.4. Among all the occurrences of OSAL APIs, the most used category is Task/event
management and is followed by Memory management. These two categories take more than
90% of all function calls.

18 Automatic Code Modernization with Rascal

CHAPTER 3. ANALYSIS OF PHILIPS’ OPERATING SYSTEM ABSTRACTION LAYER

Table 3.3: Distribution of OSAL function calls by functionality.

Functionality #Occurrence
OS job 0
OSAL object 0
Start job of OSAL 0
OSAL object type converter 2
OSAL log system 7
OSAL self manager 12
Stack implementation 18
OS event 31
Real time clock 64
Interrupt 70
Network layer 111
Semaphore (counting) 115
VxWorks booting 272
Semaphore (non-counting) 394
Task mutex 397
OS mailbox 1087
Region-based memory management 1252
Memory segment management 1472
Basic task management 2651

Table 3.4: Distribution of OSAL function calls by general category.

Category #Occurrence
Data type management 2
Clock 64
Network 111
Administrative 291
Memory management 2742
Task/event management 4745

3.5 Operating System Abstraction Layer (OSAL) APIs Use
Cases

We analyze the use of OSAL APIs and generalize the model of their use cases, which can be
divided into three cases:

C1 Atomic use
The term atomic use means that the API is not related to any other APIs or functions.

Automatic Code Modernization with Rascal 19

CHAPTER 3. ANALYSIS OF PHILIPS’ OPERATING SYSTEM ABSTRACTION LAYER

An example of an atomic API usage is shown in Listing 3.1.

Listing 3.1: A minimal example of atomic function use.
1 /* Here goes expressions */
2 int varA = 1;
3 foo(varA);
4 /* Here goes other expressions */

C2 Simple paired use
The simple paired use means to use the APIs in pairs. Each pair contains a open pattern
and a close pattern. Both open pattern and close pattern are a group of statements.
The definition of a group depends on the concrete usage in the source code. In the simple
paired cases, the data in open/close patterns are not read/written by statements in between;
the data in statements between the open/close patterns are not modified by both patterns.
Listing 3.2 shows a minimal example of simple paired scenario.

Listing 3.2: A minimal example of simple paired function use.
1 /* Here goes some expressions */
2 { // Here goes into a scope
3 /* Here goes some expressions */
4 int varA = 1;
5 if (varA == 1) {
6 varA = 2;
7 }
8 fooStartCall (varA);
9 /* ... */

10 /* Here goes critical section statements */
11 fooClose (varA);
12 /* Here goes expressions */
13 } // Here goes out of a scope

C3 Complex paired use with value passing
The complex paired use is an extension of simple paired use. The difference between the
two cases is that in complex pair cases, the data in open/source pattern can be read/written
by statements in between; the data in statements between the open/close patterns can be
modified by either pattern. A minimal example of complex paired use with value passing is
shown in Listing 3.3.

Furthermore, there are some OSAL API implementations use other OSAL APIs. Hence, we
summarize these into two situations:

S1 Independent functions
Independent function means that for every variant of the implementation, no other
OSAL APIs are used. Listing 3.4 is a minimal example to show this case.

S2 Dependent functions
Dependent function means that at least one implementation of that API uses at least
one other OSAL API. Listing 3.5 is a minimal example to show the dependent function
case.

20 Automatic Code Modernization with Rascal

CHAPTER 3. ANALYSIS OF PHILIPS’ OPERATING SYSTEM ABSTRACTION LAYER

Listing 3.3: A minimal example of complex paired function use with value passing.
1 /* Here goes some expressions */
2 { // Here goes into a scope
3 /* Here goes some expressions */
4 int varA = 1;
5 if (varA == 1) {
6 varA = 2;
7 }
8 type_t varB = fooStartCall (varA);
9 /* ... */

10 intermediateExp (varB);
11 /* Here goes critical section statements */
12 fooClose (varA);
13 /* Here goes expressions */
14 } // Here goes out of a scope

Listing 3.4: A minimal example of an independent function implementation.
1 // Declaration
2 void TOS_p_CATA_foo ();
3
4 // Definition / implementation
5 void TOS_p_CATA_foo ()
6 {
7 fooa ();
8 foob ();
9 sa;

10 /* ... */
11 sb;
12 /* Non of the above statement is from OSAL */
13 }

Listing 3.5: A minimal example of a dependent function.
1 // Declaration
2 void TOS_p_CATA_foo ();
3 void TOS_p_CATB_dependent ();
4
5 // Definition / implementation
6 void TOS_p_CATA_foo ()
7 {
8 fooa ();
9 foob ();

10 TOS_p_CATB_dependent ();
11 sa;
12 /* ... */
13 sb;
14 /* At least one of the above statement is from OSAL */
15 }

Automatic Code Modernization with Rascal 21

CHAPTER 3. ANALYSIS OF PHILIPS’ OPERATING SYSTEM ABSTRACTION LAYER

3.6 Preprocessor Statements
Preprocessor is an important feature in C and C++. The C programming language is incomplete
without its C Preprocessor (Cpp) [7]. Ernst et al. [7] summarized the usage of Cpp in practical
situations:

• Definitions
Definitions are annotated with #define and #undef, meaning to define a macro, and to
revoke the macro if possible. The use of definitions is #define MACRONAME value and #undef
MACRONAME.

• Inclusions
Inclusions are annotated with #include, usually divided into two types: system inclusion and
normal inclusion. System inclusions are written as #include <inc> and normal inclusions
are written as #include "inc".

• Conditional complications
Conditional complications includes different annotations: #if, #else, #elif #endif and
#ifdef, #ifndef. The later are usually used together with definitions.

In practical situations, conditional complications are usually used as a implement variable [15].
With the help of this single variable, the compiler can choose the target platform easily. List-
ing 3.6 shows a small example about the conditional complications.

Listing 3.6: An exmaple of conditional complication.
1 #if TARGET == PC
2 # define pc_environment 1
3 # define mac_environment 0
4 # define linux_environment 0
5 #elif TARGET == mac
6 # define pc_environment 0
7 # define mac_environment 1
8 # define linux_environment 0
9 #else

10 # define pc_environment 0
11 # define mac_environment 0
12 # define linux_environment 1
13 #endif

Suppose we want to compile executable for one of the three platforms: PC, Mac and Linux. In
this case the compiler must choose the correct platform to generate the binary code. As a result,
the conditional complications are used in this case. Assume TARGET is a variable to indicate the
platform, and PC, mac and linux is set in the configuration file. So with the combination of this
conditional complications and the setting, the target platform can be changed.

Usage of Preprocessor in this study

In this study, the usage of preprocessor macros has to be taken into consideration. Inclusions
of header files, definitions of preprocessor variables and conditional complications are all used in
Philips’ code base.

The #include used in this study are the header of OSAL, which declares functions/macros/data
types can be used by applications. No other actions are needed to be concerned on inclusions.

22 Automatic Code Modernization with Rascal

CHAPTER 3. ANALYSIS OF PHILIPS’ OPERATING SYSTEM ABSTRACTION LAYER

The definitions of OSAL define important constants. For instance, an OK status is 0, an error
status is 2. The values of these definitions are not important to us, but the names are. During the
investigation of the AST, we realize that a macro definition will be expanded to its value in the
AST, which causes the lost of macro name in AST. We have to take this situation into account in
the design phase, the details are described in Section 4.3 and Section 4.5.

One of the important preprocessor statements is the conditional complication. As described in
Section 2.2, Philips has several different platforms to deploy their software. The different plat-
forms are running different OSs, which require different configurations to compile the executables.
Therefore, there are several different conditional complications to distinguish these platforms. In
Philips’ code base, these conditional complications are called compiler switching helper. There
are 6 different cases switched by the helper.

The cases are selected in a pre-defined work flow. In the preprocessing work flow of Philips’ code,
the compiler switching helpers are first #undef. After that, the preprocessor determines which
platform should be chosen and #define the corresponding case. Due to the #undef step, setting
the conditional complications manually is not possible. This mechanism can protect the compiler
switching helper variables from unexpected changes, but it makes our analysis more difficult. As
a result, an approach to address this problem has to be found. The details to solve this problem
is described in Section 4.4.5.

3.7 Conclusion of the Analysis
The results of the analysis contain the category of OSAL APIs, the distribution, the usage and
the preprocessor statements. We have found out that Philips’ OSAL provides 108 APIs, which
are divided into 19 categories by its function name prefix. They can also be divided into 6 groups
of functionality from general OS perspective.

The use of Philips’ OSAL APIs contains 7955 function calls. The most used category is basic task
management with 2651 calls, followed by memory segment management with 1472 calls. The same
distribution also applies to the functionality, with 4745 calls to task/event management followed
by 2742 calls to general memory management. The use cases are summarized into three cases,
atomic, simple paired and complex paired.

Automatic Code Modernization with Rascal 23

Chapter 4

Tool Design

This chapter describes the detailed design of the transformation tool. We apply an extended case
study of the code usages. A intensive requirement analysis is conducted based on the case study of
code usages. According to the requirement analysis, we design a model of the transformation tool
and a DSL to describe the input of the transformation. Additionally, the implementation details
are included in this chapter.

4.1 Design Approach
The tool design step is based on the results of case study, namely the inventory of OSAL interfaces
described in Chapter 3. However, those results were not sufficient for building a tool as we also
need a few examples to understand the patterns of a transformation. Therefore, the design starts
with an extended case study on the three function call usages explained in Section 3.5. After
gathering enough information of the examples, we start building the tool.

conduct an
extended

case study

find simple
examples

test the examples

build tool
based on simple

examples

verify the output

find ex-
amples of

complex cases

extend the
tool with

newly-found
examples

verify the output

iterate (future work)

Figure 4.1: An illustration of the approach work flow.

The workflow as shown in Figure 4.1 is divided into six blocks. The first three blocks in the top
row indicate the three steps to build the structure of the tool, while the other three blocks in the
bottom row show the steps to extend the tool. In the step of building the structure, we use a
criteria-based selection strategy to find simple examples. We also test the examples that have
been found, and derive the pattern from the examples. In the step of extending the tool, we use
the examples found by Philips’ engineers so that verifying output is unnecessary. The curve with
label iterate indicates the future work to extend this tool.

Automatic Code Modernization with Rascal 25

CHAPTER 4. TOOL DESIGN

Iterative and incremental strategy

As mentioned in the previous paragraph, the approach we use in this study fulfills the concept
of iterative and incremental strategy. The iterative strategy aims at doing rework regularly to
improve parts or elements of the system [3], while increment strategy is to break large scale tasks
into several small tasks [3]. In the industry, it is frequent to use the combination of these two
strategies [22], [14], [3].

The history of iterative and incremental strategy can be tracked to more than seven decades
ago introduced by Shewhart [25] in quality control field. After which, this strategy appeared in
software engineering field in the 1970s and grew rapidly in the 1990s [14].

In this thesis, we the concepts of iterative and incremental strategy rather than directly applying
the strategy. As described before, the first step of this study is to build structure of the trans-
formation tool, which is considered as the first iteration. Furthermore, the second iteration is
to extend the tool based on this structure. More iterations can be applied as future work.

4.2 Study of Code Use Cases
Based on the use of function calls and the idea of iterative and incremental strategy, we aim at
finding some examples of each use case to build the tool. Each example contains the usage of an
OSAL API and its alternative. In this thesis, we applied the extended code study twice, which
are used to find the examples of the use cases: atomic use case and simple paired use case.

For these two use cases, we use different approaches to find working examples: the first approach
is criteria-based selection and the other one is using previous investigation conducted by
Philips. The criteria-based selection is used to select an example for atomic transformation
since we plan to find the example by ourselves. Due to the complexity and required knowledge,
finding an example of simple paired cases is far beyond the scope of this thesis. As a result, we
cannot find the examples without any help. Luckily, Philips’ engineers have conducted several
investigations to find the transformation examples for paired use cases. Therefore, we use the
example of simple paired cases from Philips’ engineers in our study.

Since the underlying structure of complex paired cases are more difficult than simple paired cases,
the extended study of this case is out of the scope of this thesis. Also, based on the concept of
iterative and incremental strategy, it is not recommend to directly jump into the most difficult
scenario. Additionally, Philips’ engineers did not find any example of this case either. In this
thesis, the complex paired scenario will not be considered and it will be investigated in the future.

4.2.1 Study of Atomic Cases
The study of atomic cases is an extension of the function call analysis in Chapter 3. The intent
of this study is to find a transformation example of this case. We define four criteria to select the
example from all OSAL function call occurrences with this type, as shown in Table 4.1.

Table 4.1: The criteria to choose an example for atomic cases.

Criterion Description Rationale

Atomic

The example shall be
an atomic function call
according to the usage
in Section 3.5.

Since we are choosing the
example for the atomic use cases,
there is no doubt to select an
atomic function. This is
considered as the key criterion of
this selection.

26 Automatic Code Modernization with Rascal

CHAPTER 4. TOOL DESIGN

Testable

There are existing test
cases to test the
functionality of the
starting function call.

In this study, we use empirical
evidences to ensure the functional
correctness. As shown in
Figure 4.1, we also investigate
the possible alternative of the
starting function call. Thus, a
testable function call shall be
chosen so that we can make sure
the alternative is usable in the
whole system.

Independent

The starting function
call shall be used
independently according
to the interoperability
categories in
Section 3.5.

Since we rely on empirical
evidences and testing, the first
transformation should not break
the testing environment. In our
analysis, we have found that for
some of the interface
implementations that depend on
other Philips’ OSAL APIs, the
test functions may check the
variables created/modified by the
related OSAL APIs. Thus, the
transformation of these types of
functions can break the test
environment and even make the
function not testable. Therefore
we consider independent function
calls only for starting.

Widely used

The starting function
call should be called for
more than 400 times
in the code base
analyzed.

The outcome of this study will
finally be applied in the industry,
the empirical evidence of the
possibility to do the
transformation must be
convincing. Thus, if a function is
only called 10 times, the success
in transforming it is not
convincing for us. We consider a
function call widely used if its
proportion of usage is more than
5%. According to Table 3.3 and
Table 3.4, for the total number
of 8000 function calls, 5% is 400.

Apart from the four criteria listed in Table 4.1, we also consider the ease to find the alternative.
Since the main goal of this study is to build the transformation model instead of finding altern-
atives, if it is too difficult to find an alternative of the example use, the procedure to find the
alternative will be beyond the scope of this thesis. Hence, it should be easy to find an alternative
for the example.

Result of the criteria-based selection

With the help of the aforementioned criteria, we manage to choose a proper example for atomic
cases. We select the sleep function as the example of atomic cases to build the tool. Table

Automatic Code Modernization with Rascal 27

CHAPTER 4. TOOL DESIGN

Table 4.2 shows detailed information of the selected sleep function.

Table 4.2: Detailed information about the starting point: sleep function.

Details about sleep function
Item Description
Original function call TOS p TSK sleep(unsigned int)

Target alternative (C++11) std::this thread::sleep for(chrono time)

Criteria - atomic Fulfilled. The use of Philips’ sleep function is
atomic, only a single call is needed.

Criteria - testable
Fulfilled. There exists test cases that cover the
use of the function. As a result, the transforma-
tion can be verified.

Criteria - independent
Fulfilled. The implementation uses a standard
delay function and no other Philips’ OSAL APIs
were used.

Criteria - widely used
Fulfilled. The number of occurrence of the sleep
function is 1850. It is also considered the most
widely used function in the code archive.

Manual transformation and verification

From the table above, it is clear that the selection of the sleep function fulfills all the criteria
defined above. Apart from the function call transformation, there is also another data type trans-
formation that should be conducted as the type of argument of std::this thread::sleep for is
std::chrono. Hence we used the native type converter std::chrono::milliseconds to convert
an unsigned int to a chrono type.

We applied a manual transformation of the sleep function on a file with several occurrences and
then ran the tests. The testing result showed that this transformation did not break the original
behavior of the sleep function. Therefore, we use this specific transformation as a starting point
to build the tool.

4.2.2 Study of Paired Cases
After understanding the simple scenario and designing an automated transformation tool for that
scenario, we focused on a more complicated case: the simple paired scenario as mentioned in
Section 3.5. Since finding the alternative of the complicated cases is out of the scope of this
project and this task is performed by other engineers at Philips, we directly used the result from
the other engineers at Philips as an example to build the tool.

According to another investigation at Philips, the example to be taken for simple paired scenario
is the functions to handle mutex for a task. Table 4.3 shows all the details of the mutex function
pair.

From the summary listed in Table 4.3, it is clear that the transformation of simple paired scenario
is completely different from the aforementioned atomic scenario. Listing 4.1 is an example of
the two variants, the upper code fragment is Philips’ version and the lower code fragment is the
standard C++11 version.

28 Automatic Code Modernization with Rascal

CHAPTER 4. TOOL DESIGN

Table 4.3: Details of simple paired scenario example.

Item Description

Original functions TOS p MTX create, TOS p MTX enter and
TOS p MTX exit

Functionality according to
Table 3.1 Task mutex

OS category according to
Table 3.1 Task/event management

Occurrence of this
functionality according
to Table 3.3

397

Target alternative (C++11)
Declare a std::mutex variable and a
std::lock guard for that std::mutex vari-
able.

Listing 4.1: A transformation example of the mutex functions.
1 // Here is the TOS version
2 {
3 static TOS_p_MTX_object var = 0;
4 if (var == 0)
5 {
6 var = TOS_p_MTX_create ();
7 }
8 TOS_P_MTX_enter (var);
9 /* Here goes the code which is supposed in the mutex */

10 /* ... */
11 TOS_p_MTX_exit (var);
12
13 /* followed by other code */
14 }
15
16 // The following is the standard version
17 {
18 // Very important : the scope of the lock_guard is the enter

point
19 {
20 std :: mutex var;
21 std :: lock_guard <std :: mutex > lk(var);
22 /* Here goes the code in mutex */
23 /* ... */
24 } //No exit , but exit with end of scope bracket .
25
26 /* Here followed by other code */
27 }

A simple paired functions are used in pairs, start with a fixed calling sequence and end with a
fixed calling sequence. Here we name the start sequence open pattern and the end sequence

Automatic Code Modernization with Rascal 29

CHAPTER 4. TOOL DESIGN

close pattern. Apart from the patterns, another interesting observation is that for this specific
case, the use of the standard mutex construct does not need a close pattern. The mutex lock will
be ineffective after the bracket ‘}’ at the end of the pair

4.3 Requirement Analysis
In software design, it is important to use requirements to guide and constraint the design approach
[13]. The design of this transformation tool is also based on requirements that are derived from the
results of previous analysis. In this section we describe the requirements derived from the problem
statements in Section 1.1 and the results of previous analysis in Chapter 3 and Section 4.2.
The requirement analysis intends to declare the essential requirements and discard or merge the
unnecessary ones to reduce redundant and duplication in the design task. Furthermore, analyzing
the requirements makes the requirements S.M.A.R.T. [6].

The requirements are listed in the following text. The description starts with the requirement
itself and followed by some explanation.

REQ1 The tool must be able to transform atomic statements.
An atomic statement means the statement is used individually in the source code. The
atomic transformation is considered as the first example to be used to design and build a
tool. Therefore it must be supported and acts as a basis of the tool.

REQ2 The tool must be able to transform simple paired statements.
A pair of simple paired statements means two list of statements are in this code fragment.
The code fragment starts with a particular list of statements and ends with another particular
list of statements, with some other statements in between. The rationale is similar to REQ1,
as we have an example to understand the idea of this type of transformation, it should also
be supported in the tool.

REQ3 The tool must be able to insert new headers needed by the new code introduced by trans-
formation.
Since the transformation is applied on C/C++ code and in this particular case the trans-
formation targets are usually the latest C++11 construct, they require corresponding include
files (also known as headers) to ensure static semantic correctness. Therefore it is essential
to have the headers inserted together with the transformation.

REQ4 The tool must be able to pass the variables in a statement from the original code to trans-
formed code.
Here passing variable means: if a variable in a statement is supposed to be reused after a
transformation, it has to be kept unchanged during the transformation. An example of this
requirement is: if the original code contains a statements such as foo(var1); and var1
must be kept unchanged, then the transformed code shall also contain the same form of the
variable for instance foo new(var1). Since in the code base we used for this study one type
of function call can have different forms of arguments, including basic types, variables, macro
expansions or variables with field accesss. If the same variable cannot be passed into the
transformed code, the functionality of the code will be changed. Therefore it is necessary to
pass variables if applicable.

REQ5 The tool must be able to solve expanded macros in the source code.
Macro definitions are used very often in C/C++ programming. Sometimes a variable used
in source code comes from a macro definition with a meaningful name. As stated in REQ4,
the design should let the tool be able to pass those variables and the variables may be
a macro expansion. Additionally, as mentioned in Section 3.6, there are some OSAL
constants defined as macros. However, the AST of a code file is based on the information

30 Automatic Code Modernization with Rascal

CHAPTER 4. TOOL DESIGN

after preprocessing. Hence, the macro definitions are expanded into its true value in an
AST. Thus, if the macro has an informative name, it will get lost in an AST. From the
transformation and functionality perspective, this will not break the transformation and the
functionality. However, the meaningful names will lose in the source code file and reduce
the readability of the source code. Therefore there shall be a feature to retrieve the original
macros of the expanded ones.

REQ6 The tool must be able to do the transformation for all conditional complication flags.
Preprocessor macro is a C/C++ exclusive feature to let the compiler process a piece of
code fragment before real compiling. Conditional complication is one of the preprocessor
types. Practically, conditional complication is usually used to let the compiler to select dif-
ferent platforms so that it can generate proper executables. According to the analysis in
Section 3.6, there are several different platforms to be chosen by the conditional complica-
tion. Since the flags are set internally by the compiler, we need to find a solution to let the
transformation tool override the settings from the compiler and visit all possible conditions.

REQ7 The tool must be able to modify the source code file directly from the file system.
The last step of code transformation is to generate transformed code and output it into
original source code files instead of printing it in the console only. Hence, a proper file writer
is also planned for design.

REQ8 For each transformation, there can only have one input to define the transformation details.

Since the goal of this study is to investigate whether it is possible to perform code transform-
ation automatically, and if it is possible how to achieve it. We shall try to make the trans-
formation as automated as possible. We concluded that more inputs lead to less automation.
Therefore, we decide to reduce the number of input entry to only one and encapsulate all
transformation data in that entry. With the help of this one-time input, the transformation
only needs one manual invocation and the rest will be performed automatically.

REQ9 The location to start a transformation must be defined when invoking it.
The transformation will not be applied on all files on the computer, hence there should
be a location or path to reduce the scope of the files. Hard-coding the start directory is
not sophisticated in designing, therefore the top level directory that contains all files to be
transferred will be defined in the input data of the transformation.

REQ10 The applicable file types shall be defined in the input data.
Similar to REQ9, another aspect to reduce the transformation scope is the file types, usually
defined by file extensions. For standard C/C++ files, the source code files can be .c or .cpp.
However in practical situations like Philips’ case, other file extensions like .i0c are also used.
Therefore the applicable file extensions shall also be defined manually.

REQ11 The additional header files shall be defined in the input data.
As mentioned previously the new C++ constructs may require new header files to work
properly. Therefore the transformation shall have the information on which inclusion shall
be inserted.

REQ12 The tool should support extensions for new transformation types.
Since we only include two out of three cases in this study, the design of the tool should support
further extensions, in this study the further extension means to support the complex paired
case.

4.3.1 Additional Description About the Requirements
Based on the analysis of the 12 requirements listed in Section 4.3, for each of the requirements
listed we have made a design choice to meet the requirement. The requirements can easily be

Automatic Code Modernization with Rascal 31

CHAPTER 4. TOOL DESIGN

designed and implemented in the model as the core logics (or basic logics) of the tool, differ-
ent approaches of design and implementation only differ the efficiency but can function similar.
The detailed design and algorithms to implement functional requirements will be described in
Section 4.4.1 and Section 4.4.5.

One input entry

As mentioned in REQ8, we aim at reducing the number of input entry to one in the design process.
There are different ways to reach this goal including building a graphic interface to retrieve the
input data, retrieving an external pattern file with all necessary transformation details or creating
a Rascal module to store all the transformation details and then changing this module. Since
we use Rascal for transformation in this study, building a graphical interface for input is the
first to discard as Rascal is a console based language and does not provide a powerful interactive
graphical user interface. Changing a Rascal module directly is the second discarded option since
it is better to keep the original Rascal modules unchanged from software engineering perspective.
Furthermore, changing Rascal module requires the user of this transformation tool to learn Rascal.

As a result, we chose to let the tool retrieve transformation data from an external pattern file
and then process the transformation automatically. Retrieving information from an external file
and operate the code is actually the concept of a DSL. Hence, we let the transformation tool use
a DSL as input. The DSL script describes the detail of transformations and is the input used
by the transformation tool. The detailed design and examples of this DSL will be described in
Section 4.4.3.

Retrieving additional information

Except for the transformation detail, we also need additional information including start place,
applicable file type and additional inclusions as mentioned REQ9, REQ10 and REQ11.
Since we chose the DSL approach to let the DSL script be the only input entry of all transformation
information, these additional information will also be written in the DSL script. The details of
retrieving this information will be described in Section 4.4.1 and Section 4.4.2.

4.4 Design Results
This section describes the detailed results of the design according to the choices made based on
the requirements. The design started with describing the models of this tool, followed by defining
data structures and the DSL. Then we describes the work flow of the transformation engine and
the algorithms used in each of the step.

4.4.1 Architecture Design
The architecture of the tool is used to describe the overall structure of each component in the
tool. We will use two types of models to describe the overall structure: the high-level view of the
tool and the data flow model.

High-level view of the tool

The high-level view of the tool takes the transformation tool as a whole system, illustrates the
components from an external perspective. In this transformation tool, the subject to be analyzed is
C/C++ code, which is at a programming language level. From programming language perspective,
a three-layer model is often used to describe it. This model contains the following three layers:
syntax, static semantics and dynamic semantics. In generic cases, syntax means the structure
of a statement of a language; static semantics means the meaning of a syntactically correct
statement of a language; while dynamic semantic means the actual behavior when executing a

32 Automatic Code Modernization with Rascal

CHAPTER 4. TOOL DESIGN

statement. In this study, syntax means the structure of the code; static semantics are related
to the type declarations of functions/variables that are used in the code, which are put in the
header files; while dynamic semantics means the runtime behavior of the code. The model and
examples are illustrated in Figure 4.2.

syntaxLayer 0 code structures

foo(v);
if (v == 1){...}
(function call fol-
lowed by if)

static semanticsLayer 1 declarations of
functions/variables

int a;
a = 1; (a is with
type int)

dynamic semanticsLayer 2 runtime behavior
sleep(x); pauses
a thread for x mil-
liseconds.

in a transformation correct example

Figure 4.2: The three-layer model of this study.

In the three-layer model, layer 0 and layer 1 can be analyzed without executing the program,
while the analysis of layer 2 requires to execute the program. In a correct transformation, the
modification in layer 0 and layer 1 should ensure the same behavior of layer 2. Since the transform-
ation tool cannot execute the code, we focus on the transformation of layer 0 and layer 1, while
the behavior equivalence of layer 2 shall be verified by code testing system. Thus, the high-level
view of the transformation tool is illustrated in Figure 4.3

In the high-level view, the transformation tool is divided into four parts: original file, DSL script,
transformation engine and transformed file. In both original file and transformed file there are
three composites: relevant code fragments, headers and irrelevant code. In the DSL script describes
headers to be inserted and the actual transformation rule. The transformation engine checks both
the structure and the static semantic based on the data input from DSL script.

The transformation rule is used to handle syntactic transformation, which defines source and
target of a transformation in terms of structures. This affects layer 0 as described in three-layer
model. This rule is input to the transformation engine together with the original file. The relevant
code fragments, if exists, are matched with source of the transformation rule. Then the matched
relevant code fragments are transferred to a new version that fulfills the structure of target in the
transformation rule. Source and target in a transformation rule should have the same runtime
behavior while being defined.

The headers to insert part in DSL script is used to handle static semantic transformation.
To keep static semantics correct, newly inserted code fragments might need additional declara-
tions, which requires new headers to be inserted. This step also reflects REQ11 described before.
During a transformation, the headers that will be inserted are input into the header checker in
the transformation engine to check whether it is necessary to insert. If so, the new header will be
inserted into the transformed file. This step ensures the correctness from layer 1. Besides the
relevant code fragments and the headers, all other text in the original file is considered as irrel-
evant code. These part of text is input into the transformation engine during a transformation
but remains unchanged.

Automatic Code Modernization with Rascal 33

CHAPTER 4. TOOL DESIGN

original file DSL script

transformation engine

transformed file

headers

declarations
relevant
code frag-
ments

structure

headers to
insert

declarations
transformation
rule

structure

irrelevant
code

irrelevant
code

check headers to
be inserted (check
static semantics)

match the struc-
ture according to
rule (check syntax)

relevant code
(transformed)

headers (trans-
formed)

remains
unchanged

Figure 4.3: An high-level view of the transformation tool.

Furthermore, the transformed files should be executed in a testing environment to check whether
the transformation breaks runtime behavior or not, which is on layer 2. Since this step is not
performed in the transformation tool, it is not presented in the high-level view of Figure 4.3. In
principle, the runtime behavior should be preserved when defining a transformation rule. There-
fore, if the transformed code cannot past the test, the transformation rule might be incorrect and
it should be modified.

Model of data flow

The data flow model is a diagram to indicate the data flow in the system. It describes the content of
data between different components. The data flow in Figure 4.4 illustrates that from the user side
the data is the DSL script created by the users. The DSL script is input into the DSL parser and
transformation generator. Transformation rules and headers to insert in Figure 4.3 are generated
by the DSL parser and transformation generator, which will be used by the transformation engine.
In this design, ClaiR is used to generate the transformation rules. Then the Transformation in
Figure 4.4 is the output, which contains the transformation rules and the new headers.

34 Automatic Code Modernization with Rascal

CHAPTER 4. TOOL DESIGN

DSL Script, user controlled interface

DSL parser and transformation generator

ClaiR

transformation engine

file system

DSL Script input into

transformation rule AST of each state-
ment

Transformation

source code AST of source code

files

Figure 4.4: Data flow model of the transformation tool.

The transformation engine also communicates with ClaiR, sends the source code into ClaiR and
gets the AST of it. The AST here produced by ClaiR is the structure of the complete source code
file. Additionally, ClaiR also generates some static semantic information of the input source code
file including the relevant headers. The files between transformation engine and file systems
contains both the original files and the transformed files.

4.4.2 Data Structure
The term data structure in this study means the data type used in the implementation of the
tool. The data structure design comes from the models defined in Figure 4.3 and the data flow
model in Figure 4.4. We focuses on the data structure used in transformation engine since
the data used in other components are either come from an external software like ClaiR or just
plain text. Figure 4.5 illustrates the class diagram of the data structure in the form of Unified
Modeling Language (UML).

The data structure contains 12 classes: TransformationList, Transformation,
AtomicTransformation, SimplePairedTransformation, AtomicSource, AtomicTarget,
PairedSource, PairedTarget, OpenPattern, ClosePattern, ListOfStatements and Statement.

The class TransformationList is a list of transformations, which reflects the data Transforma-
tion in Figure 4.5, as the output data of DSL parser and transformation generator. Each
Transformation contains the transformation rule in terms of code structure (layer 0). In order
to store additional information of a transformation, a Transformation has 3 attributes: name,
the name of this particular transformation with type string; appliesTo, the applicable file types
with type list of string and addHeaders, the additional header files need to be inserted in this
transformation with type list of string.

Each Transformation class has two variants as sub classes, it can either be an
AtomicTransformation or be a SimplePairedTransformation, which reflects the two cases that
must be supported in REQ1 and REQ2.

Automatic Code Modernization with Rascal 35

CHAPTER 4. TOOL DESIGN

Contains1..*

1..1 1..1 1..1 1..1

1..1

1..1

1..1

1..1

1..1 1..1

1..1

1..1

Contains0..*

TransformationList

startLocation : loc

Transformation

name : str {optional}
appliesTo : list[str] {optional}
addHeaders : list[str] {optional}

AtomicTransformation SimplePairedTransformation

AtomicSource AtomicTarget PairedSource PairedTarget

OpenPattern ClosePattern

ListOfStatements

Statement

Figure 4.5: The illustration of the data structure of the transformation tool.

An AtomicTransformation contains two other classes, namely AtomicSource, the source to be
found in the source code and AtomicTarget, the target of the transformation. Each AtomicSource
and AtomicTarget contains a ListOfStatements, which is the structure of source/target.

36 Automatic Code Modernization with Rascal

CHAPTER 4. TOOL DESIGN

A SimplePairedTransformation also contains two other classes, namely PairedSource and
PairedTarget in Figure 4.5. Theses two classes are different from the aforementioned
AtomicSource and AtomicTarget as both of them contain an OpenPattern and a ClosePattern.
The OpenPattern and ClosePattern are also defined as classes in Figure 4.5, reflecting the
open pattern and close pattern described in Section 4.2.2. Each of the OpenPattern class
and ClosePattern class contains a ListOfStatements.

The ListOfStatements class in Figure 4.5 models a list of statements in the data structure.
Here the class Statement represents a ClaiR statement, which comes from the ClaiR AST. The
ListOfStatements contains several Statement, the bottom class in Figure 4.5.

Listing 4.2 is the code we used to define the data structure in Rascal. For each optional
attribute, it has a default value since the optional attribute in Rascal for a data type can be left
empty when instantiating it. In this case the default name of a transformation is unspecified and
both appliesTo and addHeaders are left empty. We also add the complex paired scenario here
but leave it empty so it can easily be extended in the future if applicable.

Listing 4.2: The Rascal code to define the top-level data structure.
1 data Transformation (
2 str transformationName = " Unspecified name.",
3 list[str] appliesTo = [],
4 list[str] addHeaders = [])
5 = \ transformationList (
6 list[Transformation] transformations ,
7 loc startLocation)
8 | \ atomicTransformation (
9 list[Statement] sourceStatements , list[Statement]

targetStatements)
10 | \ simplePairedTransformation (
11 tuple [list[Statement] openPattern , list[Statement]

closePattern] patternTupleSource ,
12 tuple [list[Statement] openPatternNew , list[Statement]

closePatternNew] patternTupleTarget)
13 | \ complexPairedTransformation (); //h!: complex paired

4.4.3 C++ Modernization Language - the DSL
We name the DSL as C++ Modernization Language (CML). The DSL is used to describe the
transformation from the user point of view. The user defines all necessary information of the
transformation in the DSL script, including syntax transformation and static semantic trans-
formation. Then, the DSL parser of the tool can generate a list of transformation, shown as
Transformation in Figure 4.4 and TransformationList in Figure 4.5, based on the given
information provided in the DSL script. Therefore, the design of the DSL contains and reflects
the classes listed in Figure 4.5. Figure 4.6 shows a model of the DSL. We name the script of
this DSL a transformation pattern.

We define a single DSL script as a TransformationPattern in Figure 4.6, reflects the
TransformationList in Figure 4.5. Each TransformationPattern contains exact one
StartLocation class. The StartLocation class reflects the startLocation attribute of
TransformationList class in Figure 4.5. A TransformationPattern class also contains several
SinglePattern classes, reflecting the Transformation class in Figure 4.5.

Automatic Code Modernization with Rascal 37

CHAPTER 4. TOOL DESIGN

1..1
1..*

1..1

1..1

1..1

1..1

1..1

1..*
1..*2..2

Has1..1 Has2..2

TransformationPattern

StartLocation

startLocation : text

SinglePattern

patternName : text

SinglePattern1

SinglePattern2

TransformationSyntax

transferTo : keyword

Applies

andConnector :
keyword {optional}

AddHeaders

Header

andConnector : keyword {optional}

SystemInclusion

inclusion : text

NormalInclusion

inclusion : text

Extension

fileExt : text
CodeStatement

AtomicStatement PairedStatement

pairSeparate : keyword

Statements

statementText : text

Figure 4.6: The model of the DSL.

A SinglePattern class has one attribute named patternName. This attribute is plain text and
reflects the attribute name of Transformation in the data structure. Each SinglePattern class
in Figure 4.6 has two variants: named SinglePattern1 and SinglePattern2, shown as classes.
The only difference between SinglePattern1 and SinglePattern2 is that SinglePattern1 con-
tains a class AddHeaders and SinglePattern2 does not. The AddHeaders reflects the attribute
addHeaders of Transformation in the data structure. The other classes, TransformationSyntax
and Applies remain the same. Each SinglePattern1 or SinglePattern2 contains exact one
TransformationSyntax and one Applies. The TransformationSyntax reflects an
AtomicTransformation or a simplePairedTransformation in the data structure and the Applies
class reflects the attribute appliesTo of Transformation in the data structure.

38 Automatic Code Modernization with Rascal

CHAPTER 4. TOOL DESIGN

Even though each single pattern contains only one Applies class, it is possible to apply the pattern
to several different types of files. The Applies class in Figure 4.6 composes several classes named
Extension with an attribute fileExt, the fileExt is a piece of plain text representing a file
extension in the DSL script. For different file extensions, a keyword ‘and’ is used to distinguish
them. The same logic applies to AddHeaders class as well. The real definition of header files is
not defined in AddHeaders class but in Header class. Since the headers are used in C/C++ code,
we distinguish between a system inclusion, like #include<iostream> and a normal inclusion, like
#include "demo.h".

A TransformationSyntax defines the rule of a transformation, the source and target attributes
of an AtomicTransformation or a SimplePairedTransformation. Since we need both a source
and a target, each TransformationSyntax class in Figure 4.6 contains two CodeStatement
classes, reflecting a transformation rule from AtomicSource to AtomicTarget or from PairedSource
to PairedTarget in the data structure. The two CodeStatement are connected with a keyword
transferTo, denoted as ‘-->’. The CodeStatement differs by the type of the transformation as
the syntax of an atomic transformation is different from a simple paired transformation.

The Statements class in Figure 4.6 reflects the class ListOfStatements in the data structure
(Figure 4.5). The attribute statementText of Statements reflects the class Statement in the
data structure. The statementText is a piece of real C/C++ code. It can either be one statement
or be a larger piece of code fragment. During DSL parsing and transformation generation, this
piece of text will be input into ClaiR and get a list of statement, as shown in Figure 4.4.

An AtomicStatement contains only one Statements class because the atomic transformation is
not in pair. A PairedStatement contains two Statements classes: the first one indicates an open
pattern of this pair and the second indicates the close pattern of the pair. Each Statements
class reflects either OpenPattern or ClosePattern in the data structure. We define a keyword
pairSeparate, an attribute in class PairedStatement of Figure 4.6, annotated as ‘...’ in the
DSL script. In both cases, the plain text statementText accepts an empty string.

Listing 4.3 is an example of the DSL introduced in this section.

This script does the following things:

• Define a start location at X:/FolderY.

• Define an atomic transformation as shown in Line 7 to Line 9, applies to .cpp files, with
additional headers <thread>, <chrono> and "demo.h".

• Define a paired transformation as shown from Line 16 to Line 28 applies to both .c and
.cpp files.

There are some additional aspects in this DSL script:

• The quote mark in Line 7 and Line 9 of Listing 4.3 but not in the paired transformation.
This is due to a limitation of ClaiR. The statement in Line 7 or Line 9 is a single statement
without any other declarations. In this case the internal compiler of ClaiR does not know the
context of this statement, which means it does not know the detail of var and var2
in this transformation. As a result, the compiler will identify these two statements as 2
declaration statement instead of function call, which is not correct. Thus, we use the
quote mark to avoid this issue as in this case the compiler will identify " var1 " and
" var2 " as a string, a basic type of C/C++ and this statement can be correctly parsed
as a function call.

Automatic Code Modernization with Rascal 39

CHAPTER 4. TOOL DESIGN

Listing 4.3: An example of a DSL script.
1 *** Comments look like this ***
2 Start patterns :=
3 Start from := X:/ FolderY ;
4
5 *** atomic ***
6 Pattern #1 :=
7 [foo1 (" __var1__ ", " __var2__ ")]
8 -->
9 [foo2 (" __var2__ ", " __var1__ ")];

10 Add header := <thread > and <chrono > and "demo.h";
11 Applies to := cpp;
12 End pattern ;
13
14 *** paired ***
15 Pattern #2 :=
16 [
17 static int __var1__ = 1;
18 foo_enter (__var1__);
19 ...
20 foo_exit (__var__1);
21]
22 -->
23 [
24 static int __var1__ = 2;
25 foo2_enter (__var1__);
26 ...
27 _NULL_ ;
28]
29 Applies to := c and cpp;
30 End pattern ;
31 End.

For the paired transformation, since var1 is declared in Line 17, the compiler knows the
context of the code, it can be correctly parsed so we do not need the quote marks.

• A NULL symbol is also used here in a simple paired scenario to indicate that the target of
this transformation does not have a close pattern.

4.4.4 Work Flow
The work flow of a transformation is designed based on the high-level view and data flow model. A
complete transformation starts with the user defined DSL script, and ends with file modifications.
Figure 4.7 illustrates the complete work flow from writing a DSL script to the modification of a
file.

The start point is the only input entry as described before, the DSL script. After the DSL script
has been input into the system, a DSL parser parses the script and feeds it into a transformation
generator to generate the TransformationList. This step reflects the DSL parser and trans-
formation generator in the data flow (Figure 4.4). The following steps are iteration based,
namely iterate over all transformations in the generated list. Here the transformation in each
iteration is a single transformation.

For each transformation, we distinguish them by its type, namely atomic or simple paired. Differ-
ent types use different algorithms to detect, match and transform. The algorithms used in each
process of the work flow will be described in detail in Section 4.4.5.

40 Automatic Code Modernization with Rascal

CHAPTER 4. TOOL DESIGN

Start

Input DSL
script

Parse DSL script
and generate Trans-

formationList.
(Algorithm 2)

Select the next
transformation in the

list. Algorithm 3

Transformation
type?. (Al-
gorithm 3)

Transform pro-
cess atomic.

(Algorithm 4)

Transform process
simple paired.

(Algorithm 6)

Modify applicable
files for atomic.
(Algorithm 5)

Modify applic-
able files in pair.
(Algorithm 7)

Output
modified

files

More trans-
formation?

End

Atomic

Paired

No

Yes

Figure 4.7: The workflow design of the transformation tool.

The process ParseDSL script and generate TransformationList is described in Algorithm 2.
The Select the next transformation in the list and the condition block is described in Al-
gorithm 3. The Transform process atomic and Modifyapplicable files for atomic are
described in Algorithm 4 and Algorithm 5. The Transform process simple paired and
Modify applicable files in pair are described in Algorithm 6 and Algorithm 7.

Automatic Code Modernization with Rascal 41

CHAPTER 4. TOOL DESIGN

4.4.5 Algorithms
The algorithms describe in this section are the detailed operations for a transformation tool. Seven
algorithms are described in this section:

• Algorithm 1, top level transform. transform(l)
This algorithm describes the operation at the top level, which is the method to be invoked
by users.

• Algorithm 2, parse a DSL and generate transformation. generateTransformation(l)
This algorithm describes the operations to parse a DSL script from a given location, and
then generate transformation details based on this DSL script.

• Algorithm 3, transform a list. transformList(listOfTransformation)
This algorithm is used to apply transformations from a list.

• Algorithm 4, apply an atomic transformation. transformBasedOnType(t, startLocation)
This algorithm describes the necessary steps to apply an atomic transformation.

• Algorithm 5, modify a file for an atomic transformation. modifyFileAtomicVersion(source,
target, file, metadata)
This algorithms describes the details about the syntactical transformation of an atomic
transformation in a file.

• Algorithm 6, apply a simple paired transformation. transformBasedOnType(t, startLocation)
This algorithm describes the necessary steps to apply a simple paired transformation.

• Algorithm 7, modify a file for a simple paired transformation.
modifyFileSimplePairedVersion(pairSource, pairTarget, file, metadata)
This algorithms describes how to apply the syntactical transformation on a file of a simple
paired transformation.

Top level operation

According to the requirements, there should be only one operation for each transformation at the
top level. In this case top level transform algorithm (Algorithm 1) represents this operation.
The algorithm has only one input, which is the location of the DSL script describing the details of
this transformation. This algorithm first creates an empty log file for logging the transformation
and then call method transformList (Algorithm 3) to perform a transformation generated by
method generateTransformation (Algorithm 2).

Algorithm 1: Top level transform. transform(l)
Data: {l}, the location of the DSL script to be input.
Result: The modified files with code transformed based on the transformation rules written

in the input DSL script.
1 createLogFile();
2 transformList(generateTransformation(l));

Parse DSL and generate transformation

This algorithm (Algorithm 2) is used to parse a DSL script written by users, and then generate
a transformation based on the details in it. The algorithm has one input, which is the location of
the DSL script; and one output, which is a list contains all single transformations defined in the
DSL script. The first step of this algorithm is to parse the DSL script into a parse tree. After that,

42 Automatic Code Modernization with Rascal

CHAPTER 4. TOOL DESIGN

every node in that parse tree shall be visited and processed, where each node represents a single
transformation. Every single transformation is generated according to its type, namely atomic or
simple paired. The generated transformations are added to the list.

Algorithm 2: Parse a DSL and generate transformation. generateTransformation(l)
Input: {l}, the location of the DSL script to be input.
Output: A {listOfTransformation} contains all transformation rules described in the

input DSL script.
1 parseTree ←− parse(transformationPattern, l);

// parse is a native Rascal method to generate a parse tree.
2 listOfTransformation ←− empty list;
3 foreach Node n ∈ parseTree ∧ !visited do
4 if n.transformation is atomic then
5 addToList(listOfTransformation,

atomicTransformation(transformationDetail(n.transformation)));
6 else
7 addToList(listOfTransformation,

simplePairedTransformation(transformationDetail(n.transformation)));

8 return listOfTransformation;

Transform a list of transformation

This algorithm (Algorithm 3) is also called in the top-level algorithm. The reason to have this
algorithm is that the output of DSL parser and transformation generator is a list of different single
transformations. Hence, an algorithm is needed to iterate over every single transformation (the
loop in Figure 4.7). As a result, the input of this algorithm is a list with all transformations
generated by Algorithm 2. Furthermore, from the list, the start location can also be extrac-
ted. In each iteration of this algorithm, a method is invoked based on the type of that single
transformation.

Algorithm 3: Transform a list. transformList(listOfTransformation)
Data: {listOfTransformation}, a list contains all transformation rules described in the

DSL script.
{startLocation}, the start location of the transformation list, is extracted from
listOfTransformation.
Result: The modified files start from startLocation with code transformed according to

the given Transformation.
1 foreach singleTransformation ∈ transformations do
2 transformBasedOnType(singleTransformation, startLocation) ;

Transform an atomic transformation

An atomic transformation is presented in two algorithms: the first one (Algorithm 4) describes
each step of that transformation and the second one (Algorithm 5) describes how to apply the
syntactical transformation on a file. If the input transformation t is an atomic transformation,
then the transformation engine will invoke this algorithm. The input data of this algorithm is the

Automatic Code Modernization with Rascal 43

CHAPTER 4. TOOL DESIGN

transformation detail and the start location of the transformation. Additionally, another variable
named additionalMacros is also used to let the transformation tool access the code under all
conditional complications. This macros are pre-defined in the transformation tool, as an internal
variable.

An atomic transformation is divided into three steps: generate a list of files according to the
applicable file extensions, start from the start locations; then for each file, apply the syntactical
transformation with method modifyFileAtomicVersion (Algorithm 5) for all additional macros
and at last apply static semantical transformation by adding additional headers to that file.

Algorithm 4: Transformation algorithm for an atomic transformation.
transformBasedOnType(t, startLocation)
Data: {t}, an atomicTransformation contains elements:

{sourceStatement}, the statement in the source code file that will be modified;
{targetStatement}, the statement that will be transformed to in the source code

file;
{appliesTo}, the appliciable file extensions;
{addHeaders}, the additional header files to be inserted in this transformation.

{startLocation}, the start location of this transformation.
{additionalMacros}, the additional preprocessor macros according to the platforms.
Result: The modified files start from startLocation with atomic transformations have

been performed on the files with extensions described in appliesTo.

// Generate a list of all files corresponding to the file extension.
1 listOfFilesToCheck ←− empty list;
2 foreach e ∈ t.appliesTo do
3 addToList(listOfFilesToCheck, getFileList(startLocation, e)) ;
4 foreach f ∈ listOfFilesToCheck do

// Go over all additional macro definitions.
5 foreach macro ∈ additionalMacros do

// Modify file.
6 modifyFileAtomicVersion(t.sourceStatement, t.targetStatement, f, parseCpp(f,

macro));
7 addHeader(t.addHeaders, f);

To modify a file for an atomic transformation, it is necessary to know the structure of source,
structure of target, the file location and full AST of the file. In Algorithm 5, these four
elements are the input of the algorithm. Where in our case, the AST is stored in the variable
named metadata together with other information of the file including the headers included and
the expanded macros. This algorithm first reads the file into a list of bytes, then matches the
structure of source with the full AST of the file, trying to find the statements have the same
structure as the source defined in the DSL script, then stores them into a list. This list contains
the statements that will be modified. After that, the algorithm iterates over each statement
in that list, and transforms the corresponding statement from syntactic level. The syntactic
transformation starts with creating a map for meta variables, helping transfer the value which
is represented by a meta variable directly into the new code. The following step comments out the
old statement in file, followed by a step to insert the target statement. The insertion of a target
statement is handled by a code generator that generates the code from AST to real C++ code.
In this study, we use Rascal to implement the algorithms. Some exemplar implementations of the
matching step can be found in Appendix C.

44 Automatic Code Modernization with Rascal

CHAPTER 4. TOOL DESIGN

Algorithm 5: Modify files for an atomic transformation.
modifyFileAtomicVersion(source, target, file, metadata)
Data: {source}, the AST represents the structure of the statement that has to be changed

in the source code.
{target}, the AST represents the structure of the statement that will be transformed to.
{file}, the location of the file which is currently working with.
{metadata}, the data generated by ClaiR of the file which is currently working with
containing the AST of the file and other information like the headers, macro expansions.
Result: The modified file at location file.

1 fileByte ←− readFileBytes(file);
// Match statements that will be changed.

2 matchedStatements ←− matchStatement(source, metadata);
3 foreach i ∈ matchedStatements do
4 metaVarMap ←− createMetaVarMap(source, i, metadata);
5 commentOut(i);
6 if size(target) > 0 then
7 if isEmpty(metaVarMap) then
8 fileByte ←− addString(fileByte, statementToStr(target), i.location.offset);
9 else

10 fileByte ←− addString(fileByte, statementToStr(target), metaVarMap,
i.location.offset);

11 writeFileBytes(file, fileByte);

Transform a simple paired transformation

To perform a simple paired transformation, two algorithms are needed, which is similar to an
atomic transformation. The first algorithm (Algorithm 6) describes the steps, while the second
one (Algorithm 7) describes the syntactical transformation to files. The internal variable
additionalMacros is also used in a simple paired transformation to help the transformation
tool accessing all possible conditional complications. A simple paired transformation also con-
tains three steps: generating a list of files according to the applicable file extensions, starting
from the start locations; then for each file, applying the syntactical transformation with method
modifyFileSimplePairedVersion (Algorithm 7) for all additional macros and finally applying
static semantical transformation by adding additional headers to that file.

Applying a syntactical transformation (modifying file) for a simple paired transformation is differ-
ent from that for an atomic transformation. The input data of this algorithm (Algorithm 7) also
contains four elements: structure of source pair, structure of target pair, the file location
and full AST of the file. In this case the both source and target store open pattern and close
pattern separately. The algorithm first reads the file, then uses the structure of source pair to
match corresponding pairs in the original file ad stores the matched statements in a list. Addition-
ally, the irrelevant statements other than the pair itself are removed from the list, so that all the
statements in that list are relevant. Furthermore, this list also stores additional information like
the insert position for a new open pattern/close pattern. After that, the algorithm iterates over
all statements matched in the list, creates a map for meta variables, comments out the statement.
During each iteration, if the location of the statement in this iteration is the position to insert
the new open/close pattern, then the code generator will generate new C++ code according to
corresponding target pair. Some exemplar implementations to match a pair of statements and to
simplify the matched lists can be found in Appendix C.

Automatic Code Modernization with Rascal 45

CHAPTER 4. TOOL DESIGN

Algorithm 6: Transform a simple paired transformation. transformBasedOnType(t,
startLocation)
Data: {t}, a simplePairedTransformation contains elements:

{pairSource}, the pair of statements in the source code file that will be modified;
{pairTarget}, the statement that will be transformed to in the source code file;
{appliesTo}, the appliciable file extensions;
{addHeaders}, the additional header files to be inserted in this transformation.

{startLocation}, the start location of this transformation.
{additionalMacros}, the additional preprocessor macros according to the platforms.
Result: The modified files start from startLocation with simple paired transformation

performed on the files with extensions desribed in appliesTo.
// Generate a list of all files corresponding to the file extension.

1 listOfFilesToCheck ←− empty list;
2 foreach e ∈ t.appliesTo do
3 addToList(listOfFilesToCheck, getFileList(startLocation, e)) ;
4 foreach f ∈ listOfFilesToCheck do
5 foreach macro ∈ additionalMacros do
6 modifyFileSimplePairedVersion(t.pairSource, t.pairTarget, f, parseCpp(f, macro));
7 addHeader(addHeaders, f);

46 Automatic Code Modernization with Rascal

CHAPTER 4. TOOL DESIGN

Algorithm 7: Modify files for a simple paired transformation.
modifyFileSimplePairedVersion(pairSource, pairTarget, file, metadata)
Data: {pairSource}, the pair that has to be modified in the source code.
{pairTarget}, the pair that will be transformed to.
{file}, the location of the file which is currently working with.
{metadata}, the data generated by ClaiR of the file which is currently working with
containing the AST of the file and other information like the headers, macro expansions.
Result: The modified file at location file.

1 fileByte ←− readFileBytes(file);
2 toBeModified ←− generateStatementList(pairSource, metadata);
3 metaVarMap ←− empty map;
4 foreach s ∈ toBeModified do
5 addToMap(metaVarMap, s.openPatternInsertPlace, createMap(pairSource,

s.statementToChange, metadata));
6 fileByte ←− commentOut(s.statementToChange);
7 if s.statementToChange.location = s.openPatternInsertPlace then
8 if isEmpty(metaVarMap.getKey(s.openPatternInsertPlace)) then
9 foreach i ∈ pairTarget.openPatternNew do

10 fileByte ←− addString(fileByte, statementToStr(i),
s.statementToChange.location.offset);

11 else
12 fileByte ←− addString(fileByte, statementToStr(i,

metaVarMap.getKey(s.openPatternInsertPlace)),
s.statementToChange.location.offset);

13 if s.statementToChange.location = s.closePatternInsertPlace then
14 if isEmpty(metaVarMap.getKey(s.openPatternInsertPlace)) then
15 foreach i ∈ pairTarget.closePatternNew do
16 fileByte ←− addString(fileByte, statementToStr(pairTarget.i),

s.statementToChange.location.offset);

17 else
18 fileByte ←− addString(fileByte, statementToStr(i,

metaVarMap.getKey(s.openPatternInsertPlace)),
s.statementToChange.location.offset);

19 writeFileBytes(file, fileByte);

Automatic Code Modernization with Rascal 47

CHAPTER 4. TOOL DESIGN

4.5 Limitations and Future Work
There are several limitations have been found during the design. These limitations concerning the
supported transformation type and the format of transformation rules.

4.5.1 Limitation of Supported Transformation Type
At this moment, only two types of transformation, namely atomic transformation and simple paired
transformation, are supported by the transformation tool. The complex paired transformations
are still not supported. For a complex paired scenario, or even complex grouped scenario, the
obstacle is to track data flow between statements. Referring back to Listing 3.3, since a statement
between an open pattern and a close pattern uses the value produced by the open pattern, the
transformation of the open/close pattern should also check all values produced by the open/close
pattern to ensure static semantic correctness. However, in ClaiR there is no such a feature to
track the data flow between statements. Furthermore, if the type of value produced by open/close
pattern is changed during a transformation, then the statement using that value might need
a completely new implementation to support the newly-introduced type, which is hardly to be
finished automatically now.

4.5.2 Limitations of the Format of Transformation Rules
Another limitation is the format of transforamtion rules. In the current design, each single trans-
formation uses a source-target format to define the original code and target code of a transform-
ation. For each transformation the source-target is only a one-to-one mapping. Thus, for a
one-to-many, many-to-one or many-to-many transformation, it must be spitted into mul-
tiple one-to-one transformations. This is not a limitation for Philips’ code that is used in this
study, but it will be one for generic cases.

4.5.3 Future Work
The future work from design point of view can focus on extending the models. One approach is to
focus on investigating a data flow tracker of the C/C++ program. This tracker can use the idea of
Object Flow Diagram produced by Rascal for Java analysis. An object flow diagram tracks all
object flow (data flow) in a Java program. This object flow can be an object flow from a class to
a method or a method to a field. With the help of this kind of data flow tracker, it is possible to
conduct further research on transforming a complex pair scenario. The other approach is to focus
on investigating the format of transformation rules. By extending the model of transformation
rules, it is promising to support a many-to-many transformation.

4.6 Conclusion of Tool Design
This chapter explains the design process of this DSL based code transformation tool in detail,
from the requirement analysis to a concrete choice of algorithms. Followed by the design results,
including a detail explanation of each algorithm and its implementation.

We have designed a DSL based transformation tool for the code transformation. The tool can now
handle two types of transformation: the one-to-one atomic transformation for single statement;
and the one-to-one paired transformation for a pair of statements. To apply the transformation, the
user only needs to write one single DSL script that includes all transformation rules. Furthermore,
the DSL script includes the applicable file extensions and additional headers.

Referring back to our two research questions in this chapter: What are the key aspects to make
a transformation of OSAL APIs? and What can be done to make the transformation
as automated as possible?. This chapter has make the answer clearly: the key aspects of a

48 Automatic Code Modernization with Rascal

CHAPTER 4. TOOL DESIGN

transformation contains: a transformation rule, including a source and a target, applicable files
and additional header; a start location, limiting the scope of files to be transformed and type
of the transformation. The answer to our second research question is reducing the number of
input entries. In this study, we chose to make a DSL as the only entry of the transformation.

Automatic Code Modernization with Rascal 49

Chapter 5

Application and Case Study

To verify the output, the implementation of the design result should be applied to some examples.
This chapter presents details about the application of the transformation tool, in the form of
case study. We apply the transformation tool on Philips’ code base, to get evidence that the
transformation tool can be directly used in real industry scenario.

5.1 Apply an Atomic Transformation to Philips’ Code Base
We apply the atomic transformation on two different directories: one is named gsc and the other
is GeoCVEmb directory. We choose gsc because previous investigations about sleep construct were
done on file in this directory. It is informative to apply it on the same directory automatically as
a “reproduction”. The reason to choose GeoCVEmb is that this directory is the complete code base
of Philips’ positioning software. Running a transformation on the complete code base can help to
measure the performance of it.

We use two metrics to proof the correctness of an atomic transformation. The first metric is
the compile result, the other is test result of Philips’ module test mechanism. A passed compile
result indicates the transformation does not break the syntax as well as static semantics of the
code. A passed test result indicates the equivalence of the functionality behavior. Thanks to
Philips’ modular testing mechanism, we can test the transformed code automatically to verify
the functionality. Furthermore, there is a tool to automatically detect a changed file and run the
required tests, named Test Impact Analyzer (TIA). With the help of TIA, we do not run all tests
in Philips’ modular testing mechanism.

Transformation of the sleep function on gsc

Listing 5.1 is the script to apply the transformation on directory gsc. The transformation rule
is defined the same as we described in Table 4.2. The argument name is also covered with quote
marks because they are not declared in this particular content.

The transformation tool examined 94 files, and 25 files have been changed with 257 statements
modified, indicating the possibility of applying the transformation on a number of files. The
running time of this particular transformation is around 30 minutes.

In Figure 5.1 the header part of the transformation was successful, showing the correct insertion
of the two headers. The text with red color on the left side of the figure shows the newly inserted
headers, which is the same as we defined in the DSL.

Automatic Code Modernization with Rascal 51

CHAPTER 5. APPLICATION AND CASE STUDY

Listing 5.1: The DSL script to transform the Sleep function on Philips’ code base.
1 *** trial ***
2 Start patterns :=
3
4 Start from := Y:/ PosCore / GeoCVEmb /gsc/src;
5
6 *** previous atomic ***
7 Pattern #2 :=
8 [TOS_p_TSK_sleep (" __var__ ") ;] --> [std :: this_thread :: sleep_for (std :: chrono ::

milliseconds (" __var__ "));];
9 Add header := <chrono > and <thread >;

10 Applies to := cpp;
11 End pattern ;
12
13 End.

Figure 5.1: A file comparison for adding inclusion.

Figure 5.2 presents the function transformation. It should be noted that in Figure 5.2, the
passed variable is a pointer access, which is also supported by the transformation tool.

Figure 5.2: A file comparison for passing a pointer access.

Figure 5.3 is the test result from TIA running. TIA considers to run one test module named
fsco pcm for these changes and the test result is successful.

Figure 5.3: The test result for transforming the sleep function.

52 Automatic Code Modernization with Rascal

CHAPTER 5. APPLICATION AND CASE STUDY

Transformation of the sleep function on complete Philips’ code base

To apply the transformation of sleep function on a complete code base, we only change the Start
location field in DSL script. Listing 5.2 is the DSL script of the transformation we applied to
the complete Philips’ code base. The transformed code can be built correctly and pass Philips’
modular test using TIA as the previous case. In this case, the transformation tool examined 808
files and applied 731 modifications to statements. The running time of this transformation is
around 4 hours.

Listing 5.2: The DSL script to transform the Sleep function on Philips’ code base.
1 *** trial ***
2 Start patterns :=
3
4 Start from := Y:/ PosCore / GeoCVEmb /gsc/src;
5
6 *** previous atomic ***
7 Pattern #2 :=
8 [TOS_p_TSK_sleep (" __var__ ") ;] --> [std :: this_thread :: sleep_for (std :: chrono ::

milliseconds (" __var__ "));];
9 Add header := <chrono > and <thread >;

10 Applies to := cpp;
11 End pattern ;
12
13 End.

5.2 Apply a Simple Paired Transformation to Philips’ Code
Base

We apply the simple paired transformation on gsc directory since Philips’ engineers conducted
their investigations about mutex construct on the same directory. We produce two different trans-
formations: one is exactly the same as the mutex construct investigated by Philips’ engineers, and
the other is a split version to match more occurrences in the code.

We use one metric to verify the output: the compile result. A passed compile result (successful
build) indicates that the transformation is successful. Philips’ modular testing mechanism is not
applicable there for the following two reasons: according to TIA no suitable tests can be applied to
the files with mutex constructs in gsc directory; according to Philips’ engineers the transformation
they have investigated about mutex construct still contains some limitations that cannot be tested.

Transformation of mutex construct in one step

Listing 5.3 is the script to apply a transformation of mutex construct from Philips’ engineers’
investigations. Note that the NULL at the end of the close pattern means there is no need to
insert a new close pattern for this case.

Figure 5.4 shows the file comparison of the open pattern. It can be concluded that the open
pattern of transformation was completed successfully since the standard mutex construct was
inserted correctly and Philips’ version was commented out. For this new open pattern a ‘{’ was
also added to limit the scope.

Automatic Code Modernization with Rascal 53

CHAPTER 5. APPLICATION AND CASE STUDY

Listing 5.3: The DSL script to transform the mutex construct on Philips’ code base.
1 *** trial ***
2 Start patterns :=
3
4 Start from := Y:/ PosCore / GeoCVEmb /gsc/src;
5
6 *** mutex ***
7 Pattern #3 :=
8 [
9 static TOS_t_MTX_object __var2__ = 0;

10 if(__var2__ == 0) {
11 __var2__ = TOS_p_MTX_create ();
12 }
13 TOS_p_MTX_enter (__var2__);
14
15 ...
16
17 TOS_p_MTX_exit (__var2__);
18]
19 -->
20 [
21 std :: mutex __var2__ ;
22 std :: lock_guard <std :: mutex > lock(__var2__);
23
24 ...
25
26 _NULL_ ;
27];
28 Add header := <mutex >;
29 Applies to := cpp;
30 End pattern ;
31
32 End.

Figure 5.4: File comparison of the open pattern.

Figure 5.5 presents the file comparison of the close pattern. Since standard mutex construct does
not require a close pattern, the new close pattern is a ‘}’ symbol, which also reflects the NULL in
the DSL script.

54 Automatic Code Modernization with Rascal

CHAPTER 5. APPLICATION AND CASE STUDY

Figure 5.5: File comparison of the close pattern.

The number of files examined by the transformation tool is 94, with one statement modified. The
total running time of this transformation is roughly 27 minutes.

Transformation of mutex construct in several steps

The transformation of mutex construct can also be applied in several steps by spiting the trans-
formation investigated by Philips’ engineers. The reason to split the transformation is that in the
real code base, not all mutex occurrences have a declaration statement and an if statement in the
open pattern like the one in the example of Listing 5.3. Some of them have only one function
call as open pattern and the declaration statement is located somewhere else in the file. Thus,
splitting the transformation into several steps can help transform this situation. Listing 5.4 is
the DSL script to transform mutex construct in several steps.

This particular transformation is a combination of three steps, as three single transformations
named Pattern #4, Pattern #5 and Pattern #6 in Listing 5.4. The first step transforms a
mutex construct starts with an if statement and followed by a pair of function calls. The second
step transforms a mutex construct with only a pair of function calls. The last step removes the
original declarations from Philips’ OSAL.

In this particular transformation, the transformation tool examined 94 files and applied 22 modi-
fications to statements. Since the DSL script contains three single transformations, the total
number of files examined was 280. Each file was examined three times. The running time of this
transformation is around 1.4 hours. The transformed code can be built successfully.

Automatic Code Modernization with Rascal 55

CHAPTER 5. APPLICATION AND CASE STUDY

Listing 5.4: The DSL script to transform the mutex construct on Philips’ code base in several
steps.
1 Start patterns :=
2
3 Start from := Y:/ PosCore / GeoCVEmb /gsc/src;
4
5 *** mutex with only if and pair ***
6 Pattern #4 :=
7 [
8 if (" __var3__ " == 0) {
9 " __var3__ " = TOS_p_MTX_create ();

10 }
11 TOS_p_MTX_enter (" __var3__ ");
12 ...
13 TOS_p_MTX_exit (" __var3__ ");
14]
15 -->
16 [
17 std :: mutex __var3__ ;
18 std :: lock_guard <std :: mutex > lock(__var3__);
19 ...
20 _NULL_ ;
21];
22 Add header := <mutex >;
23 Applies to := cpp;
24 End pattern ;
25
26 *** mutex with only pair ***
27 Pattern #5 :=
28 [
29 TOS_p_MTX_enter (" __var4__ ");
30 ...
31 TOS_p_MTX_exit (" __var4__ ");
32]
33 -->
34 [
35 std :: mutex __var4__ ;
36 std :: lock_guard <std :: mutex > lock(__var4__);
37 ...
38 _NULL_ ;
39];
40 Add header := <mutex >;
41 Applies to := cpp;
42 End pattern ;
43
44 *** remove TOSMTX declarations ***
45 Pattern #6 :=
46 [static TOS_t_MTX_object __var5__ = 0;] --> [];
47 Applies to := cpp;
48 End pattern ;
49 End.

56 Automatic Code Modernization with Rascal

CHAPTER 5. APPLICATION AND CASE STUDY

5.3 Discussion
The discussion section about case study includes two aspects: the correctness of the results, and
the performance of the transformation tool.

5.3.1 Discussion of the Correctness
From the cases we have applied to Philips’ code base, the results are positive from a correctness
perspective.

In both applications of atomic transformation, the transformed code can be built successfully and
can pass Philips’ modular tests. Hence, for sleep construct it is fully transformable with the tool
designed in this thesis. The transformation of a single statement, namely the atomic trans-
formation, is always the same from the transformation engine’s point of view. The transformation
engine only matches the semantic of transformation rules described in the DSL script. This suc-
cessful result of sleep construct indicates the correctness of the transformation engine. Hence, we
can conclude that if transformation rules are defined correctly in DSL scripts, the transformation
engine can ensure the correctness of that transformation.

Same logic applies to simple paired transformations. The transformation engine has been il-
lustrated to handle the semantics correctly. Another difference between different simple paired
transformations is the quantity and sequence of statements in a pair. The results also indicates
that the transformation engine has the ability to match and transform statements with different
amount and orders, which ensures the correctness of other paired transformations.

Furthermore, for transformations other than the two cases studied in this thesis, the correctness
of the transformation is also verifiable. The verification of syntax level and static semantics level
can be done by compilers, and the verification of dynamic semantics level can be done with testing
mechanisms.

5.3.2 Discussion of the Performance
The metric we use to measure the performance is running time of a transformation. In the
applied transformations, the running times are different. We list the result of four transforma-
tions in Table 5.1, with aspects including transformation type, number of examined files, number
of modified statements and the running time. A transformation type is either atomic trans-
formation or simple paired transformation. Number of examined files shows the number of
examined files by the transformation in total of a transformation. If one transformation contains
several single transformations, then the number of examined files is the sum of files examined in
each single transformation. Number of modified files is the number of statements that have
been modified among all files in a transformation. Running time is the exact running time of a
transformation, starting from the invocation of the transform method.

Table 5.1: A summary of running time in different transformation.

Transformation type #Examined files #Modified
statements

Running time
(hours)

Atomic transformation 94 257 0.5
Atomic transformation 808 731 4
Simple paired transformation 94 1 0.45
Simple paired transformation 282 22 1.4

Automatic Code Modernization with Rascal 57

CHAPTER 5. APPLICATION AND CASE STUDY

Comparing the first row and the second row with the same transformation type in, but different
number of examined files in Table 5.1. In the second row, 8.5 times more examined files resulting
in nine times more running time than that in the first row even though the number of modified
statements is only three times more than that in the first row. This result shows a linear relation
between the number of examined files and the running time. Roughly, the transformation tool
can examine 200 files per hour.

The comparison between the first row and the third row shows that there is no significant difference
in running time between an atomic transformation and a simple paired transformation (94 files with
0.5 and 0.45 hour). Furthermore, it also indicates that different number of modified statements
does not affect the running time.

The third row and the fourth row in Table 5.1 differ in number of examined files and number
of modified statements. The number of modified statements is the total number of modifications
have been made to all files. The result of this comparison is similar to the result of comparison
between the first row and the second row. The running time of the fourth row is three times as
that of the third row since the number of files examined in the fourth row is roughly three times
as that of the third row. Even though the number of modified statements in the fourth row is 22
times as the number in the third row, it does not affect the running time.

It can be found from the comparison between rows that the dominate part affecting the trans-
formation performance is the number of examined files in a software system. For each trans-
formation, larger number of files to be examined resulting in longer running time. The other
aspects, namely number of statements modified and transformation type do not affect the trans-
formation performance. The overall speed of a transformation in a large-scale software system is
approximately 200 files per hour.

The results above hint that the bottleneck of the performance is in operations related to file
system. In the transformation tool, there are two operations related to file system: the parsing
step provided by ClaiR and the output step after modifying statements. Since for the same number
of files, different number of modified statements does not affect the running time, we can conclude
that the output step does not affect the performance. Hence, ClaiR restricts the running time of
a transformation.

5.4 Conclusion of Case Study
In the case study phase, we have applied two types of transformation: the atomic transformation
and the simple paired transformation to Philips’ code base. The atomic transformation that has
been applied is the sleep construct and the simple paired transformation applied is the mutex
construct. For each type, we have applied two variants. All the four applications have presented
positive results, namely the transformed code can be built successfully. We can conclude that
the transformation tool can handle an arbitrary transformation fulfill the properties of these two
transformation types.

Furthermore, we have tested the performance of a transformation, which is the running time. The
investigation is that the dominate aspect that can affect the transformation performance is the
number of examined files of a transformation. From our experiments, the transformation tool can
run at a process rate of 200 files per hour. The bottleneck of this transformation tool is ClaiR,
the external component that is used to generate AST of a file.

58 Automatic Code Modernization with Rascal

Chapter 6

Conclusions and Suggestions

In this thesis, we have conducted an extensive research on legacy code of Philips’ code base and
the possibilities to modernize the legacy code automatically. The ultimate goal of this study is to
investigate whether it is possible to modernize the legacy code in large-scale software systems in
an automated way. The specific case discussed in this thesis is the Operating System Abstraction
Layer (OSAL) in Philips’ code base. In order to reach this ultimate goal, we started with an
extensive examination on the positioning code in Philips’ code base, categorized the types and
functionalities of the OSAL functions, calculated the number of occurrences, the distribution of
the occurrences and summarized the ways to use those OSAL functions. Then we chose several
occurrences as examples, from the simplest one to a complex one, designed and implemented a
Domain-Specific Language (DSL) based transformation tool from the examples. We applied the
automated transformation to Philips’ code base and get several positive results.

6.1 Contributions of this Thesis
The main contributions of this thesis are the answers to the research questions:

RQ1 What APIs are provided in Philips’ home-made OSAL?
To answer this research question, we manually checked the header file of Philips’ OSAL
library. Each function declaration in the header file contains a prefix in the function name.
The prefix indicates the functionality of that function, from the concrete usage perspective.
The detailed list of the prefixes is in Section 3.2.

RQ2 What are the functionality of Philips’ OSAL APIs?
We investigated the functionality by examining the implementation of each function prefix
and categorizing the functions from a general Operating System point of view. From the
prefix, we have found 19 different functionalities provided by the existing OSAL. And from a
general Operating System perspective, these 19 different functionalities can be divided into
5 categories: data type management, real-time clock, network management, memory man-
agement and task/event management. Furthermore, another category named administrative
is also included in the OSAL, which is used to manage the other functions provided by the
OSAL. The detail list and description of the functionality is in Section 3.2.

RQ3 What is the quantity and the distribution of Philips’ OSAL APIs?
We first counted the number of function declarations from the header file manually, there
are in total 108 function declarations in the header file. In other words, there are 108
interfaces provided by this OSAL. Afterwards, we applied automated examination with the
help of Rascal. The automated examination iterates over all C and C++ source code files

Automatic Code Modernization with Rascal 59

CHAPTER 6. CONCLUSIONS AND SUGGESTIONS

in Philips’ code base and found all function calls use the interfaces provided by the existing
OSAL. There are 7955 function calls use the interfaces provided by the existing OSAL, with
task/event management used the most, followed by memory management. The detailed list
of the quantity and distribution is in Section 3.3 and Section 3.4.

RQ4 How are Philips’ OSAL APIs being used?
We checked the use of the OSAL functions manually in the code base. We can conclude
3 ways of using the OSAL functions: atomic use, the function is used only in a single
statement. Simple paired use, the function is used in pair, starts with a list of statements
end ends with a list of statements, with other statements in between. In simple paired use
case, the statements in between are not affected by the return value provided by the OSAL
functions. Complex paired use, the function is used in pair, starts with a list of statements
end ends with a list of statements, with other statements in between. The statements in
between may retrieve values returned by the OSAL functions. The detailed description and
examples of the 3 use cases are explained in Section 3.5.

RQ5 What are the key aspects to make a transformation of OSAL APIs?
We answered this research question by an intensive requirement analysis. The requirements
are derived from the problem statement, the ultimate goal of this study, and the analysis
of the existing code base. We have concluded 8 key aspects of a transformation that must
be taken into consideration: type of transformation, transformation detail, new in-
clusions, applicable type of files, start location of the transformation, related
variables in the transformation, related preprocessor macros and file modifica-
tion. All the 8 key aspects are spread in 13 requirements. The detail of these requirements
are described in Section 4.3.

RQ6 What can be done to make the the transformation as automated as possible?
The solution of this research question came from a proper model-based design. We designed
a complete transformation tool with the input side to the users, the output side to the file
system and a transformation engine in between. The approach we used is to reduce the
number of input entries of the transformation. Eventually, we proposed a Domain-Specific
Language (DSL) to handle the automated transformation. The DSL is considered as the
only entry in the input side of the transformation tool provided to the user to write the key
aspects of the transformation. The rest of the jobs are performed by the transformation
engine designed in a model-based way. The detail of the design is explained in Chapter 4.

6.2 Suggestions to Philips
Apart from the answers to the research questions, one other important contribution of this study
is a working prototype of the transformation tool. We suggest Philips to use this tool to partially
solve Philips’ problem of modernizing the legacy code. It is possible to apply a proper defined
transformation to the whole code base of Philips. The proper defined transformation should be
either an atomic transformation or a simple paired transformation. Unfortunately, at this moment
due to the limitations the complex paired transformation is not supported yet and so that we
cannot get rid of the legacy OSAL completely with this tool. Furthermore, the C++11 constructs
cannot be applied to .c files. But with the help of the transformation tool a large amount of the
legacy OSAL can be transformed into the new version and with the future extension the tool will
support more cases.

60 Automatic Code Modernization with Rascal

Bibliography

[1] Keith H. Bennett and Václav T. Rajlich. Software maintenance and evolution: A roadmap.
In Proceedings of the Conference on The Future of Software Engineering, ICSE ’00, pages
73–87, New York, NY, USA, 2000. ACM.

[2] David F. Carr. Web-enabling legacy data when resources are tight. Internet World, 1998.

[3] A. Cockburn. Using both incremental and iterative development. Cross Talk. The Journal of
Defense Software Engineering, May 2008.

[4] B. Combemale, J. Kienzle, G. Mussbacher, O. Barais, E. Bousse, W. Cazzola, P. Collet,
T. Degueule, R. Heinrich, J. Jézéquel, M. Leduc, T. Mayerhofer, S. Mosser, M. Schöttle,
M. Strittmatter, and A. Wortmann. Concern-oriented language development (cold): Fostering
reuse in language engineering. Computer Languages, Systems and Structures, 54:139 – 155,
2018.

[5] S. Comella-Dorda, K. Wallnau, Robert C. Seacord, and J. Robert. A survey of legacy system
modernizationapproaches. Technical report, Carnegie-Mellon univ pittsburgh pa Software
engineering inst, 2000.

[6] George T. Doran. ThereâĂŹsa smart way to write managementâĂŹs goals and objectives.
Management review, 70(11):35–36, 1981.

[7] M. D. Ernst, G. J. Badros, and D. Notkin. An empirical analysis of c preprocessor use. IEEE
Transactions on Software Engineering, 28(12):1146–1170, Dec 2002.

[8] M. Feathers. Working Effectively with Legacy Code. Prentice Hall, 1 edition, 2004.

[9] M. Flower, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the
Design of Existing Code. Addison-Wesley Professional, 1 edition, 1999.

[10] Michelle R. Hribar, M. Frumkin, H. Jin, A. Waheed, J. Yan, and S. Saini. Legacy code
modernization. Technical report, NASA, Jan 1998.

[11] P. Klint, T.v.d. Storm, and J. Vinju. Rascal: A domain specific language for source code
analysis and manipulation. In 2009 Ninth IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 168–177, September 2009.

[12] A. G. Koru, D. Zhang, K. E. Emam, and H. Liu. An investigation into the functional form of
the size-defect relationship for software modules. IEEE Transactions on Software Engineering,
35(2):293–304, March 2009.

[13] A. van Lamsweerde. Requirements Engineering. Wiley, 1 edition, 2009.

[14] C. Larman and V. R. Basili. Iterative and incremental developments. a brief history. Com-
puter, 36(6):47–56, June 2003.

Automatic Code Modernization with Rascal 61

BIBLIOGRAPHY

[15] J. Liebig, C. Kästner, and S. Apel. Analyzing the discipline of preprocessor annotations in
30 million lines of c code. In Proceedings of the Tenth International Conference on Aspect-
oriented Software Development, AOSD ’11, pages 191–202, New York, NY, USA, 2011. ACM.

[16] H. Liu, Y. Gao, and Z. Niu. An initial study on refactoring tactics. In 2012 IEEE 36th
Annual Computer Software and Applications Conference, pages 213–218, July 2012.

[17] T. Mens, A. Serebrenik, and A. Cleve, editors. Evolving Software Systems. Springer-Verlag
Berlin Heidelberg, 1 edition, 2014.

[18] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how we know it. IEEE
Transactions on Software Engineering, 38(1):5–18, Jan 2012.

[19] R. S. Oliver, I. Shcherbakov, and G. Fohler. An operating system abstraction layer for portable
applications in wireless sensor networks. In Proceedings of the 2010 ACM Symposium on
Applied Computing, SAC ’10, pages 742–748, New York, NY, USA, 2010. ACM.

[20] M. Palmieri, I. Singh, and I. Cicchetti. Comparison of cross-platform mobile development
tools. In 2012 16th International Conference on Intelligence in Next Generation Networks,
pages 179–186, Oct 2012.

[21] Thomas M. Pigoski. Practical Software Maintenance: Best Practices for Managing Your
Software Investment. Wiley Publishing, 1st edition, 1996.

[22] Winston W. Royce. Managing the development of large software systems: concepts and
techniques. In Proceedings of the 9th international conference on Software Engineering, pages
328–338. IEEE Computer Society Press, 1987.

[23] A. Schoofs, M. Aoun, P. van der Stok, J. Catalano, R. S. Oliver, and G. Fohler. A framework
for time-controlled and portable wsn applications. In N. Komninos, editor, Sensor Applic-
ations, Experimentation, and Logistics, pages 126–144, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[24] M.T.M. Schuts. Industrial Experiences in Applying Domain Specific Languages for System
Evolution. PhD thesis, Radboud University Nijmegen, September 2017.

[25] W. A. Shewart. Statistical Method from the Viewpoint of Quality Control. Dover Publications
Inc., 1939.

[26] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts Essentials. John
Wiley & Sons Ltd., 1 edition, 2010.

[27] S. A. Slaughter, D. E. Harter, and M. S. Krishnan. Evaluating the cost of software quality.
Commun. ACM, 41(8):67–73, August 1998.

[28] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. Refactoring uml
models. In Martin Gogolla and Cris Kobryn, editors, âĽłUMLâĽń 2001 — The Unified Mod-
eling Language. Modeling Languages, Concepts, and Tools, pages 134–148, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

[29] T. Tourwé and T. Mens. A survey of software refactoring. IEEE Transactions on Software
Engineering, 30:126–139, 01 2004.

[30] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The
asf+sdf meta-environment: A component-based language development environment. In Re-
inhard Wilhelm, editor, Compiler Construction, pages 365–370, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

62 Automatic Code Modernization with Rascal

BIBLIOGRAPHY

[31] N. Weiderman, K. Bergey, D. Smith, and S. Tilley. Approaches to legacy system evolution.
Technical report, Carnegie-Mellon univ pittsburgh pa Software engineering inst, Dec 1997.

[32] N. Weiderman, L. Northrop, D. Smith, S. Tilley, and K. Wallnau. Implications of distributed
object technology for reengineering. Technical report, Carnegie-Mellon univ pittsburgh pa
Software engineering inst, 1997.

[33] S. Yoo and Ahmed A. Jerraya. Introduction to Hardware Abstraction Layers for SoC, pages
179–186. Springer US, Boston, MA, 2003.

Automatic Code Modernization with Rascal 63

Appendix A

Rascal Script Used for Searching
Functions

This appendix contains all the detailed information about the Rascal script we used for function
call analysis described in Chapter 3. The aims of using the automated Rascal script are:

• Automated iterating over all files in Philips’ code archive.

• Getting ClaiR representatives (ClaiR AST) per file.

• Matching desired function calls.

• Calculating the total number of function call occurrences.

The code fragment in Listing A.1 was used to reach our goal.

The basic task in this code fragment is searching and outputting. The first part of this method
is to create a log file in order to store all function call occurrences. The file name is specifically
determined by the only parameter of this method, also indicates the prefix of the function call
to be searched. The second part of this method simply iterates over all the file in the list files,
which stores all the file locations with .c and .cpp extension in the positioning software. The
positioning software is in the GeoCVEmb folder as listed in Line 2.

In the iterations, the method first makes query via ClaiR to get a ClaiR AST for further queries.
The AST has a datatype named Declaration, shown in Line 17. After getting a Declaration,
a pattern matching is applied as shown in Line 19 to get the exact function calls according to
the input prefix. The matched function calls are stored in a list.

The final step is outputting. All the matched function calls are output to a log file, indicating the
name of the function call and its exact location.

Automatic Code Modernization with Rascal 65

APPENDIX A. RASCAL SCRIPT USED FOR SEARCHING FUNCTIONS

Listing A.1: A Rascal code fragment for searching existing functions.
1 /* Root location */
2 public loc l = |file:///Y:/ PosCore / GeoCVEmb |;
3
4 /* Count method */
5 public void count(str functionCallPattern) {
6 map[loc , str] listOfFunctions = ();
7 list[loc] files = getLoc (l);
8 loc logFile = | project :// DataExtractor / analysisresult /<

functionCallPattern >. txt |;
9 if (! exists (logFile)) {

10 writeFile (logFile);
11 }
12
13 for (f <- files) {
14 println ("File <f>");
15 for (m <- additionMacros) {
16 println ("Macro <m> \r\n");
17 Declaration a = parseCpp (f,
18 additionalMacros = m);
19 list[Expression] funcs = getFunctionCall (a,

functionCallPattern);
20 for (e <- funcs) {
21 if (! (e.src in listOfFunctions)) {
22 listOfFunctions += (e.src : e. functionName .

name .\ value);
23 str s = " Function call <e. functionName .name

.\ value > at <e.src > \r\n";
24 appendToFile (logFile , s);
25 }
26 }
27 }
28 }
29 }

66 Automatic Code Modernization with Rascal

Appendix B

User Manual of the
Transformation Tool

This appendix gives a detailed guide on how to use the DSL designed in this thesis to apply a
code transformation. The manual contains all necessary information, including installation and
configurations. The manual will be written in a hands-on format, describe a transformation in a
step-by-step approach.

B.1 Installation
This transformation tool is a Rascal project and Rascal is running on Eclipse. Therefore, a
installation of Rascal and Eclipse is necessary. In order to install Eclipse, a proper version of Java
Development Kit (JDK) is also needed. The installation flow starts with installing a JDK.

Installation of JDK

The proper version of JDK used in this study is JDK version 8. Go to Oracle’s download page of
JDK1 to get a copy of JDK for the development machine.

Installation of Eclipse

The Eclipse version we used for implementing this tool is Eclipse Oxygen.2. However, the
later version of Eclipse also works with this tool. The required packages of Eclipse are the Java
development package and C/C++ development package. We recommend to install Java version
first and then install C/C++ package.

Go to Eclipse Packages website https://www.eclipse.org/downloads/packages/ and find the
Eclipse IDE for Java Developers as shown in Figure B.1.

Make sure the installed version is for Java developers, otherwise there might be some unexpected
issues in the further installation. It is also possible to use Eclipse package manager for the
installation, but we do recommend to install the package directly with the installation executable.

After installing Eclipse for Java Developers, it is also required to install the C/C++ supporting
package, which is named Eclipse C/C++ Development Tooling (CDT). The installation of
CDT is NOT from the website but from the internal software installation system.

1http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Automatic Code Modernization with Rascal 67

https://www.eclipse.org/downloads/packages/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

APPENDIX B. USER MANUAL OF THE TRANSFORMATION TOOL

Figure B.1: Get Eclipse for Java Developers.

Open Eclipse just installed, go to Help − > Install New Software and in the Work with
field click Add. Then in the pop-up window enter CDT in Name and http://download.
eclipse.org/tools/cdt/releases/9.2 in Location. Figure B.2 is the correct information to
be installed. Make sure the location ends with 9.2, which is version 9.2 of CDT. A later version
may not be compatible with this tool. Then select all options and click Next till finish.

Installation of Rascal

When the installation of Eclipse is finished, use the same steps to install Rascal. Go to Help
− > Install New Software and add a new repository. In the Name filed enter Rascal and in
the Location field enter https://update.rascal-mpl.org/unstable. Make sure the selected
repository is unstable version as not all the features used in this transformation tool is merged to
the stable version. Then select Rascal and finish the installation. After restarting Eclipse, select
the perspective to Rascal.

Installation of ClaiR

The official installation of ClaiR is also via Eclipse software installation system. However for the
transformation tool designed in this study, we need a modified version for it. The modification
version is on Github, there are 2 places to get it: through the original repository at https://
github.com/cwi-swat/clair or through a forked repository at https://github.com/t-liu93/
clair.

It is recommend to get the modified ClaiR from the forked repository as it is tested and proved

68 Automatic Code Modernization with Rascal

http://download.eclipse.org/tools/cdt/releases/9.2
http://download.eclipse.org/tools/cdt/releases/9.2
https://update.rascal-mpl.org/unstable
https://github.com/cwi-swat/clair
https://github.com/cwi-swat/clair
https://github.com/t-liu93/clair
https://github.com/t-liu93/clair

APPENDIX B. USER MANUAL OF THE TRANSFORMATION TOOL

Figure B.2: A screen of installing Eclipse CDT.

working with this transformation tool. For the forked repository, go to the release page of the
repository at https://github.com/t-liu93/clair/releases and download the release with tag
DemoVersion, then import the whole project into Eclipse workspace.

After importing the project, click on any of the file or directory in this project, and press Press
to Start a Rascal console button in the workbench toolbar. A new Rascal console should be
created in the terminal area of Rascal, with the name clair and model debug. Then input
import lang::cpp::AST;
in the console and an ok is supposed to be printed in the console. After that type:
import lang::cpp::ASTgen;
generate();
in the console statement by statement. If it shows ok then the installation of ClaiR is finished.
Figure B.3 shows a successful installation in Rascal console.

Installation of the transformation tool

The transformation tool can be found from Github as well. On the release page of the repository
https://github.com/t-liu93/Code-Modernization-Tool/releases2, find and download the
latest zip file.

When the whole project is downloaded, unzip it and simply input it into Eclipse workspace by
clicking File − > Open Projects from File System and then select the unzipped directory

2Currently not available and please contact Mathijs Schuts at Philips Mathijs.Schuts@philips.com or the author
of this thesis for the project file.

Automatic Code Modernization with Rascal 69

https://github.com/t-liu93/clair/releases
https://github.com/t-liu93/Code-Modernization-Tool/releases
Mathijs.Schuts@philips.com

APPENDIX B. USER MANUAL OF THE TRANSFORMATION TOOL

Figure B.3: A screenshot of a new Rascal console of ClaiR.

then click Finish.

Then right-click on the newly imported project and select Properties, navigate to Java Build
Path then Projects, click Add and then check project clair imported in the previous step and
click OK then Apply and Close. Figure B.4 and Figure B.5 indicates the correct build path
setting.

After setting the build path, click on any file or directory in project Code-Modernization-Tool
and open a new Rascal console on it. In the newly opened Rascal console type:
import Transformer;
If an ok is printed in the console as shown in Figure B.6, then the installation of the transform-
ation tool is finished.

70 Automatic Code Modernization with Rascal

APPENDIX B. USER MANUAL OF THE TRANSFORMATION TOOL

Figure B.4: Check ClaiR as reference project.

Automatic Code Modernization with Rascal 71

APPENDIX B. USER MANUAL OF THE TRANSFORMATION TOOL

Figure B.5: The Java build path.

Figure B.6: Console example of a successful installation of transformation tool.

72 Automatic Code Modernization with Rascal

APPENDIX B. USER MANUAL OF THE TRANSFORMATION TOOL

B.2 Write the DSL
The structure of a DSL script contains 4 parts: start symbol, start location, transformations
and end symbol, as shown in Figure B.7.

DSL script

Start symbol

Start location

Transformations

End symbol

Figure B.7: The structure of a DSL script.

The start symbol is a case sensitive keyword denoted as Start patterns, followed by a
connector denoted as :=.

The start location contains 3 elements sequentially: a case sensitive keyword Start with, a
connector := and a Uniform Resource Identifier (URL) that indicates the start location. A start
location must ends with a semi column ;.

The transformations contains several elements that describe the exact transformation details.
These details is described in the later part of this section.

The end symbol is a case sensitive keyword denoted as End.. Note that this keyword ends
with a dot ..

Details about transformations

The transformations block in Figure B.7 contains the detail of multiple transformations. The
detail of each transformation is independent from the others. It consists of 4 compulsory elements
and 1 optional element. The compulsory elements including transformation start symbol,
transformation rule, applicable file extensions and transformation end symbol, while
the optional element is additional header files, as shown in Figure B.8.

The transformation start symbol consists of 3 tokens separated by white spaces. The tokens
are input sequentially include a case sensitive keyword Pattern, a transformation id starts
with a hash symbol # and a connector :=.

The transformation rule contains a source and a target. Both of them are covered in a pair
of square brackets []. The source and target are connected with a transform to symbol
denoted as -->. Hence a transformation rule is described in form:
[srouce] --> [target];. It must ends with a semicolon.
For an atomic transformation, both source and target are written in C/C++ code format.

Automatic Code Modernization with Rascal 73

APPENDIX B. USER MANUAL OF THE TRANSFORMATION TOOL

Transformations

Transformation start symbol

Transformation rule

Additional header files (optional)

Applicable file extensions

Transformation end symbol

...
Another transformation follows the
same structure as shown above

Figure B.8: The structure of transformations.

On the other hand, for a simple paired transformation, the source and target contains a pair
separator ... to distinguish an open pattern and a close pattern.

For each transformation, the transformation rule is followed by additional headers and applicable
file extensions. Additional headers start with Add headers := and applicable file starts with
Applies to :=. Additional header statement is optional in this DSL.

B.3 Apply a Transformation
Applying a transformation contains 2 steps: writing a DSL script and applying the script in Rascal
console.

The DSL script can be written in any text editors. Follow the manual described in Appendix B.2.
When finish writing, save the DSL script in any place on local machine, with file extension .txt.

Select any file of the project Code-Modernization-Tool in Eclipse, and then open a new Rascal
console with this project. In the input area of Rascal console, type the following commands:

l = |<locOfTheScript>|;
import Transformer;
transform(l);

Then the transformation tool will apply the transformation automatically according to the details
defined in the DSL script. Note the <locOfTheScript> is the location of the DSL script defined
in the previous paragraph.

74 Automatic Code Modernization with Rascal

Appendix C

Implementation Examples in
Rascal

This appendix contains some code fragments we have implemented in this study. These imple-
mentations are about matching statements and generating code. The implementation is done with
Rascal.

C.1 Exemplar Implementation to Match a Single State-
ment

In our implementation, we use pattern matching system provided by Rascal to match a statement.
This implementation uses overloading feature provided by Rascal, so that different types of state-
ments can be matched with one method name. The method used to match a single statement has
two inputs: the first one is the structure of the statement that is going to be matched and the other
is the AST of a source code file potentially containing the statement. All matched statements are
stored in a list, which is the return value of this method.

In the example shown in Listing C.1, we give two methods to match a function call within a
expression statement. The first method matches a expression statement, while the second one
matches a function call inside that expression statement. We set one additional constraint in the
pattern matching statement, which ensures the matched function call has the desired name. In
our study, two functions are identical in structure if they have the same name.

Furthermore, we define a default method of this particular matchStatement. This default method
accepts two arbitrary value variables, which is a generic data type in Rascal, as input, and then
throws an exception to indicate the user that the input value is not supported. According to the
design of Rascal, this default method will be invoked if and only if all other variants of this
method have been tried, and all previous attempts have failed. In practices, if this exception has
been thrown, the user only needs to add a new variant of this method.

Automatic Code Modernization with Rascal 75

APPENDIX C. IMPLEMENTATION EXAMPLES IN RASCAL

Listing C.1: The implementation of matching a single statement.
1 // Match an expressionStatement
2 public list[Statement] matchStatement (
3 expressionStatement (_, e),
4 Declaration a) {
5
6 return matchStatement (e, a);
7 }
8
9 // Match a functionCall , assume it is always under an

expressionStatement
10 public list[Statement] matchStatement (
11 functionCall (n, arg),
12 Declaration a) {
13
14 return [expressionStatement ([], f, src=f.src) | /f:

functionCall (idExpression (name(fn)), _) := a,
15 fn==n.name .\ value];
16 }
17
18 // Default with an exception
19 default list[Statement] matchStatement (value v, value a) {
20 throw " Unknown statement when matching statement <v> in AST

<a>. ";
21 }

C.2 Exemplar Implementation to Match a Pair of State-
ments

To match a pair of statements, we use the pattern matching system in Rascal as well, together
with the overloading feature. Hence, all methods to match a pair of statement have an identical
name. A pair matching statement has three inputs: the structure of the first statement in a pair
(first statement of open pattern), the structure of the last statement in a pair (last statement of
close pattern) and the AST of the file to be checked. The return value of this method is a list of
list of statements. Each inner list (nested list) is the matched statements that contain the pair.
The outer list is used to store several matched list if there are several pairs exist in code.

In the example shown in Listing C.2, we match a pair with two structures: starting with a simple
declaration and ending with a function call. Similar to single statement, we also use additional
constraints to make sure the matched statements are the desired ones. The default method is also
used here.

76 Automatic Code Modernization with Rascal

APPENDIX C. IMPLEMENTATION EXAMPLES IN RASCAL

Listing C.2: The implementation of matching a pair of statements.
1 // Variant 1: declaration statement ... functionCall
2 public list[list[Statement]] match(
3 Declaration ast ,
4 declarationStatement (_, decl),
5 expressionStatement (_, exp)) {
6
7 return [s | /s: [
8 *_,
9 declarationStatement (

10 _,
11 simpleDeclaration (
12 _,
13 namedTypeSpecifier (
14 _,
15 name(dn)),
16 _)),
17 *after ,
18 expressionStatement (
19 _,
20 functionCall (
21 idExpression (name(fn)),
22 _)),
23 *_] := ast ,
24 dn == decl. declSpecifier .name .\ value &&
25 fn == exp. functionName .name .\ value];
26 }
27
28 default list[list[Statement]] match(
29 value ast ,
30 value begin ,
31 value end) {
32 throw " Unsupported statement pairs <begin > and <end >";
33 }

Automatic Code Modernization with Rascal 77

	Contents
	List of Figures
	List of Tables
	Listings
	List of Algorithms
	Acronyms
	Introduction
	Problem Description
	Thesis Outline

	Background and Related Work
	Software Modernization
	Early Usage
	State of the Art
	Exemplary of Modernization Techniques
	Code Modernization and Refactoring

	OSAL and Philips' TOS OSAL
	Rascal and its Extensions
	Example of Rascal Code
	ClaiR
	ast and clair ast

	Analysis of Philips' Operating System Abstraction Layer
	Analysis Steps
	Categories of the Philips' osal apis
	Distribution of osal apis
	Distribution of api Usage
	osal apis Use Cases
	Preprocessor Statements
	Conclusion of the Analysis

	Tool Design
	Design Approach
	Study of Code Use Cases
	Study of Atomic Cases
	Study of Paired Cases

	Requirement Analysis
	Additional Description About the Requirements

	Design Results
	Architecture Design
	Data Structure
	cml - the dsl
	Work Flow
	Algorithms

	Limitations and Future Work
	Limitation of Supported Transformation Type
	Limitations of the Format of Transformation Rules
	Future Work

	Conclusion of Tool Design

	Application and Case Study
	Apply an Atomic Transformation to Philips' Code Base
	Apply a Simple Paired Transformation to Philips' Code Base
	Discussion
	Discussion of the Correctness
	Discussion of the Performance

	Conclusion of Case Study

	Conclusions and Suggestions
	Contributions of this Thesis
	Suggestions to Philips

	Bibliography
	Appendix
	Rascal Script Used for Searching Functions
	User Manual of the Transformation Tool
	Installation
	Write the dsl
	Apply a Transformation

	Implementation Examples in Rascal
	Exemplar Implementation to Match a Single Statement
	Exemplar Implementation to Match a Pair of Statements

