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Abstract

Sonograph imaging or Ultrasound is a rapid, non-invasive method used as a diagnostic step to
identify surgical emergencies. It is more convenient and less expensive than Magnetic Reso-
nance Imaging or other invasive methods. To further improve diagnostic capabilities, chemi-
cals called Ultrasound Contrast Agents are injected into patients before the Ultrasound process.
These chemicals enhance the echogenicity of the blood flow thus improving tissue differentia-
bility. However, Ultrasound requires physicians to undergo significant training and practice to
analyse the reports and identify tissues to provide an accurate diagnosis. Artificial Intelligence
can aid the physicians to efficiently perform this step by classifying tissues based on their type
and health. This thesis explores applying supervised Artificial Intelligence to identify tissues.
We analyse contrast enhanced ultrasound videos of 5 patients labelled with information from
experts at the University Hospital Miinster (UKM). Broadly, the thesis also presents a com-
parative study on the performance of classical machine learning and deep learning for image
classification and object detection. The classifiers built are evaluated with performance metrics
like the AUC and intersection over union (IOU) among others. The results show that the Se-
quential Minimal Optimization (SMO) classifier performs best with an AUC of 0.8 followed by
k-NN with an AUC of 0.77. The deep convolutional network - U-Net, built demonstrates a high
IOU of 95.89%. Although the U-Net requires longer training duration and heavily depends
on underlying hardware, it is found to be more robust and reliable when trained for multiple
patients.









Contents

(L Introduction|

2 Background|

[2.3  Diagnosis of Focal Liver Lesions| . . . . . . ... ... ... ... .......
2.4 Digital Imaging and Communications in Medicine (DICOM)|. . . . . . . . ..
2.5 JPEGI . . .
2.6 Artificial Intelligence| . . . . . . . ... ... o oo oo

[2.6.1 Machine Learning| . . . . ... ... ... ... . L.

3 Data Pre-Processing and Exploration|
(3.1 Data Exploration| . . . . .. ... .. ... ... .
(3.2 DataSetup|. . . . . . . . e
[3.3  Data Pre-processing|. . . . . . ... ... ..
[3.4  Time-Intensity and Time-Brightness Curves| . . . . . . . ... ... ......
[3.4.1 CEUS Intensity vs Brightness| . . . . . . ... .. .. ... ......
[3.4.2 Twosampletests| . . . . . ... ... ... o
B.43 WilcoxonRankSum Test| . . ... ... ................
[3.4.4  Multiple Sample Homogeneity Test| . . . . . . ... ... ... ....

T Classification]
4.1 Sonographs with weak CEUS components| . . . . . . ... ... ... ... ..
4.2 A Time-series Approach| . . . . . .. ... .. Lo o

4.3 Deep Learning Approach| . . . . . . ... ... ... ... oL,

...................................

1X

10
14
16
17
17

19
19
19
20
20
22
22
25
26

29
29
30
32
35
37
37
38
39



X Contents

[5.2.1 EvaluationSetup| . . . . . .. ... ... o 49
.22 FvaluationResults| . . . . .. ... ..o oo oo 51

[5.3 Deep Learning Approach| . . . . . . .. .. ... ... ... ... .. ... 71
[5.3.1 EvaluationSetup| . . . . .. ... .. ... .. ... ... 71
B32 EvaluationResults] . . . . .. .. ... .. o 72

5.4 Summary| . . ... .. 74
0.5 Future Workl . . . . . . . oL 75
6 State of the Art| 77
[6.1 Computer Aided Diagnostics| . . . . . . . . ... ... ... .. ... 77
[6.2 Image Segmentation and Classification|. . . . . . . .. ... ... ... .... 80
[6.2.1 Pixel-based Machine Learning| . . . . . .. ... ... ......... 83

[6.2.2  Video Processing Pipelines| . . . . . . ... ... oo 00000 85

[6.3 Object Detection| . . . . .. .. ... ... .. ... 86

/__Conclusion| 89






1

Introduction

In 1880 the Curie brothers, became the first to produce ultrasound waves [86]. Medical use
of ultrasonic imaging started in the early 20th century after Paul Langevin, a student of the
inventors, used it for submarine detection during World War I [[61]]. Ultrasound or Sonography
is one of the key medical imaging techniques omnipresent today for real-time examination of
internal organs. Further advancements, backed up with half a century of research resulted in
high-intensity focused ultrasound (HIFU), with an intensity of usually 1-3 MHz ultrasound
waves, to now enable non-invasive selective tissue necrosis of lesions [33]].

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and has caused
782,000 deaths all over the world as recorded by the World Health Organization’s International
Agency for Research on Cancer in 2012. HCC, the third highest cause of cancer-related deaths,
accounts for 7% of all cancers recorded [34]. Liver cirrhosis represents a major risk factor for
the development of HCC. The development of a neoplasm in cirrhosis occurs in multiple phases
over a long time. This translates to the possibility of detecting different types of nodules in a cir-
rhotic liver, ranging from regenerative nodules to low-grade dysplastic nodules and high-grade
dysplastic nodules. Early diagnosis of HCC enables aggressive treatment, prolonging patients’
lives [22].

Techniques like Ultrasound Elastography [36] and Contrast Enhanced Ultrasound further
aid the diagnosis of Liver cirrhosis. Elastography eliminates the acoustic similarity of tissues
by introducing forces under which the tissues become differentiable. One such force is vibration
at a given frequency [71]]. In Contrast Enhanced Ultrasound, contrast agents (CA) are injected
into the blood streams of the patients prior to the scan. These agents enhance the echogenity
of blood flow dynamically depending on the lesion. The normal and affected tissues are then
differentiated based on the enhanced blood flow patterns. However, diagnosis of HCC remains
a challenge because lesions may be detected as areas of increased enhancement only in the
arterial phase, but the short duration of this phase can make full surveillance of the largest
organ of the body problematic [20].

Medical imaging examinations are heavily used for diagnosis today. However, a great frac-
tion of these examinations produce normal results, and the detection of only a small number of
suspicious lesions by radiologists is considered both difficult and time-consuming. Therefore,
evolving from what began as picture archiving and communication systems (PACS), automated
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2 Chapter 1. Introduction

computer-aided diagnosis (CAD) has thus become a major research subject in medical imaging
and diagnostic radiology. Advances in the field of Computer Science and Artificial Intelligence
have further aided in the development of innovative CAD systems [72]]. Today, radiologists use
CAD results as a ’second opinion”. The purpose of CAD systems is to complement and assist
physicians in making diagnosis.

In this thesis, above mentioned challenges are taken into consideration and a CAD scheme
for contrast enhanced ultrasound (CEUS) scans of the liver with the aim of lesion tissue recog-
nition is presented. The design of the proposed system is illustrated in Figure [I.1] The CEUS
scan videos from the University Hospital Miinster (UKM) are collected and fed into the CAD
scheme designed. Foremost, the videos are converted to image frames for further analysis. The
data collected is also labelled as per information received from the physicians at the hospital.
Following steps in the CAD pipeline include pre-processing, feature extraction, classification
and finally visualization of tissues identified. The predicted output of the system will assist the
radiologists/physicians in diagnosis.

CAD

Video to image conversion
'

Data Labelling
'
| Image pre-processing

| Feature Extraction |
W

| Classification |

US/CEUS Videos

| Prediction/Visualization |

Radiologist

Diagnosis

Figure 1.1: Proposed System

Another important contribution of the thesis is the comparison and evaluation of deep-
learning and other conventional machine learning techniques involving feature extraction. Both
learning techniques have been applied to the dataset collected and the results obtained are eval-
uated with various evaluation metrics.

The thesis is organized as follows. Chapter 2 explains medical imaging techniques - ultra-
sound and contrast enhanced ultrasound and industry standards for the same. It sheds light on
the medical significance of diagnosis of focal liver lesions. A background on artificial intelli-
gence and evaluation of machine learning algorithms is also presented. In chapter 3 and 4, the
main contribution of the thesis are described in detail. Chapter 3 focuses on exploration and



analysis of collected data. In chapter 4 we explain the different artificial intelligence approaches
taken to implement tissue recognition. The results of the approaches are discussed in chapter
5. The models built are evaluated and the tissue predictions are visualized. Following which,
a research on the state of the art on the topic of CAD systems, image processing and object
detection is conducted and described in chapter 6. Finally, chapter 7 summarises the findings
and concludes the thesis.
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Background

2.1 Ultrasound

Ultrasound or Sonography is a medical imaging technique. It works on the principal of reflec-
tion of sound. This principal can also be observed in nature as seen in the echolocation used
by dolphins, whales and bats. One of the first applications of this property of sound led to the
invention of sound navigation and ranging (SONAR) systems for submarines during World War
I. This later encouraged further research on the applicability of the new technique for medical
use.

Interestingly, the use of ultrasonics in the field of medicine began with its use in therapy
rather than diagnosis. The disruptive capabilities of high intensity ultrasound had been noticed
as early as 1920s by Paul Langévin who also invented the SONAR. High intensity ultrasound
progressively evolved to become a neuro-surgical tool. It was also being used in physical and
rehabilitation medicine. The 1940s saw ultrasound being claimed as the cure all” remedy.
However, lacking scientific evidence and increasing concerns about the detection of tissues for
treatment and also the harmful effects of ultrasound on neighboring tissues, research quickly
shifted to using ultrasound for diagnosis [91].

Karl Theo Dussik, a psychiatrist at the University of Vienna, Austria, is generally regarded
as the first physician to have employed ultrasound in medical diagnosis. He attempted to locate
brain tumors and the cerebral ventricles by measuring the transmission of ultrasound beam
through the skull [12]. Today, the use of ultrasound for diagnosis is omnipresent. The procedure
requires no preparation by the patient, is non-invasive, painless and produces real time images.

Figure shows the parts of a modern ultrasound machine. The main part of the machine
is the transducer probe that sends and receives sound waves. High frequency sound waves of
1-5 megahertz are used for the probing. The probe has one or more piezoelectric quartz crystals
which rapidly change their shape when electricity is applied to them. This rapid shape change
produces vibrations in the form of sound waves that travel outwards. Similarly, when reflected
sound waves hit the crystals, they are converted back to electricity. This phenomena is called
the piezoelectric effect. The frequency of the emitted sound waves determine the quality of
imaging. This can be controlled by the transducer pulse controls. Although most probing is
done by placing these transducers on the body, they can also be inserted into the body for even
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6 Chapter 2. Background

better imaging.

The Central Processing Unit (CPU) is the brain of the machine. It performs the tasks of
sending electrical signals to the transducer and converting electrical signals received back from
the transducer to images and storing the images on disk. Based on the time and strength of
echoes received, a microprocessor within the CPU assigns each one a position and color, ulti-
mately forming the image known as B-Mode (brightness mode). Ultrasound systems today are
commonly described as “real-time” because they have the ability to rapidly display B-Mode
images so that any motion that occurs is visualized as and when it happens. Modern systems
can show between 15 and 50 images per second. In order to produce the effect of continuous
movement, at least 16 frames need to be displayed per second [16]]. The stored images are
then converted to optical signals and displayed on the monitor. They can be grayscale or color
images. Digital Imaging and communication in medicine (DICOM) is a standard that describes
how medical image data should be stored, exchanged and printed. This is explained in section
[2.4] Controls like the keyboard and cursor can be used to add details to the displayed image on
the monitor and they can be printed if needed.

Transducer

— Solnd
backing

crystals

Figure 2.1: Parts of an Ultrasound Machine

The transducer collects the sound waves that are reflected back and converts them to elec-
trical waves. But, not all sound waves sent are reflected back. Some get refracted and scattered
[16]]. This depends on the angle at which the sound wave is sent but, more importantly, also
the surface the wave hits. This helps radiologists identify the tissues on the final image. For
instance, Rayleigh Scattering occurs when the wave hits a very small tissue like the red blood
cells or arteries or some veins. When a sound wave comes in contact with such small tissues,
it scatters creating a uniform amplitude in all directions and hardly reflecting back. Hence, the
intensity of such tissues is low on the scan image.
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Another possibility is that the sound waves are refracted. When the waves hit the border
between two tissues at an oblique angle, due to the difference in density of the media the sound
wave travels through, it bends. Useful conclusions about the organs/tissues can also be made
by moving the cursor around and observing the images created at each position.

Further, reflection of the sound waves can be of two types- specular or diffuse. Specular
reflection occurs when sound hits a large even surface such as bones. Majority of sound waves
are sent back and hence the image is most bright. On the other hand, when the sound hits a
large soft tissue with uneven surface, reflected sound in transmitted in more than one direction
but because of the large surface, most of it gets back to the transducer and the final image is
still quite bright. These discussed possibilities are illustrated in figure 2.2}

| Transducer | | Transducer |

” Ill e \T”

Specular Reflection Diffuse Reflection

I Transoucer
Sp—

Figure 2.2: Sound waves in an ultrasound [[16]

Usually a Doppler ultrasound is also part of an ultrasonography. Doppler effect explains
how the frequency of a sound wave is perceived to change relative to movement. This effect is
applied in ultrasound to study the blood flow in the subject. Hence, in addition to information
such as tissue size, shape and depth even the statistics about the blood flow such as speed,
amount per unit time etc can be measured. It is also possible today to convert the sound waves
to 3-D images producing 3-D ultrasound.

Ultrasound hence proves to be a real-time, quick and easy method for imaging subjects
with zero risks involved. Other imaging techniques such as Magnetics Resonance Imaging
(MRI), X-rays and Computed Tomography (CT) have an advantage that they can probe within
tissues and produce a clearer result in most cases. However, they require expensive equipment
with fixed installation. While X-rays and CT scans use radiation which is pose potential risk
of developing cancer [24]. MRI uses very strong magnets and is considered unsafe during
pregnancies and in cases where any ferromagnetic objects maybe present; for example a cardiac
pacemaker [19].

Therefore, driven by the motivation to reduce the need of such risky imaging, a lot of
research has been done in improving ultrasound image quality. Ultrasound elastography mea-
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sures the mechanical properties of tissues like its stiffness [36]. Contrast Enhanced Ultrasound
(CEUS) introduced contrast agents to improve the reliability and quality of ultrasound. The
ultrasound data used for analysis in this thesis is from CEUS.

2.2 Contrast Enhanced Ultrasound

The International Contrast Ultrasound Society defines CEUS as an enhanced form of ultra-
sound imaging that uses biocompatible contrast agents to improve the quality and reliability of
ultrasound scans [[11]].

Conventional ultrasound is used for the examination of the anatomy as a first-line tool for
differential diagnosis since it can accurately differentiate cysts or tumors from solid lesions
whereas Doppler ultrasound gives information about the blood flow in the subject. However,
Doppler ultrasound does not serve the purpose of blood flow inspection in small tissues or mi-
crovasculatures. Further, some lesions are inconclusive on conventional gray scale ultrasound,
and additional assessment other imaging techniques may be needed for the differential diagno-
sis. Ultrasound contrast agents overcome these drawbacks of ultrasound.

Contrast agents consist of microbubbles filled with air or gases and this makes them in-
crease the backscatter of ultrasound waves. Currently administered UCAs have low solubility
and therefore result in more stable and reliable images even in low acoustic pressure. Since
ultrasound is real-time, this property enables dynamic enhancement and promotes effective in-
vestigation. Further, the size of the microbubbles is equal to or smaller than the red blood cells.
Hence, they are capable of the analysis of both microvascular and microvascular tissues [29].

Based on the type of gas within the microbubbles, contrast agents are classified into two
generations. The first-generation ultrasound contrast agent called Levovist was introduced in
1996 and consisted of air within the microbubble shell. The microbubble shell of Levovist
allows easy diffusion of air within to the blood pool outside the shell. Furthermore, because
of the high solubility of air in blood, the diffused air can easily dissolve into the blood more
quickly than preferred [27]. This makes the CEUS unreliable. In order to fix this problem,
research was done to make the membrane thicker and to make the air "dense”. Finally the latter
worked out and the second generation of contrast agents were formed. The air inside the mi-
crobubbles was replaced by an inert or more slowly diffusing gas such as sulfur hexafluoride or
perfluorobutane. SonoVue, Definity , Optison and Sonazoid are some of the second generation
contrast agents. Of these agents, SonoVue and Sonazoid (in Japan and Korea) are used for the
detection and evaluation of liver lesions [27]].

The two generations of contrast agents are well differentialted by the ultrasound metric of
Mechanical Index (MI). Mechanical index is a unitless measure of the amplitude of the US
wave defined as

P
Vo

where P is the peak negative pressure and f, is the frequency of the wave. MI is used to
monitor the possible non-thermal side-effects of contrast agents such as cavitation or tissue
degradation. First generation contrast agents have high MI whereas the second generation have
a low MI. Low MI enables generation of real-time, stable images and hence the detection and

MI =
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characterization of tumors. Regulations require the MI to be lower than 1.9. First generation
agents have an M1 > 0.7 while the second generation function with an M1 < 0.3 [27].

Guidelines and good clinical practice recommendations for CEUS [29] define enhancement
of a signal as its intensity relative to that of adjacent parenchyma. The signal can be either
isoenhancing, hyperenhancing or hypoenhancing when its intensity is equal to, greater than or
lower than its neighbor respectively. Most malignant lesions are hypoenhancing while benign
lesions are either isoenhancing or hyperenhancing. A lesion can also show sustained or con-
tinuous enhancement and on the contrary, a complete absence of enhancement too. ”Wash in”
refers to the period before peak enhancement and ”wash out” refers to the period after.

The liver receives 25% - 30% of its blood supply from the hepatic artery and the remaining
from the portal vein. This gives rise to three overlapping vascular phases. The arterial phase
provides information on based on the blood supply from the hepatic artery. It generally starts
20s after the injection of the contrast agent and lasts for 30-45 seconds. The portal venous
phase relates to the blood supply from the porter vein and usually lasts for 2 minutes after the
injection. The late phase lasts till the UCA is cleared out of the blood pool and lasts between 4
to 6 minutes. An additional phase called the postvascular or Kpuffer phase , seen with contrast
agent Sonazoid, begins 10 minutes after injecting the agent and lasts for an hour or more.

Tang et al. [85] explain the three different ways for administration of CEUS and the follow-
ing analysis.

¢ Bolus Injections: Administering the contrast agent intravenously ensures that the entire
dose enters the general circulation. The agent is distributed throughout the body and
finally eliminated by the liver or kidney. When this administration method is used, func-
tional studies are based on the enhancement of ultrasound typically 1-3 minutes after
the injection. The analysis can be done both over a large tissue or on a per pixel ba-
sis. Enhancements patterns are studied at all the 4 vascular phases. The liver lesions are
characterized by comparison of their time intensity curve (TIC) with that of normal liver
parenchyma during all vascular phases. An example of differentiating TICs is shown in

Figure [2.3]

# a liver lumour
= normal liver parenchyma

intensity (linear units)

10 20 a0 410
Lime (£)

Figure 2.3: Time Intensity curve for a bolus injection in a liver. [85]]

Several functional features corresponding to the tissue subject can be determined from
the time intensity curve. Some of these are: peak intensity to identify the fractional blood
volume and flow, mean transit time and area under the curve. The features used in this
thesis are listed in table 4.2]in section 4.2.11
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¢ The disruption-replenishment or reperfusion method: This is a two step process where
first the contrast agent is bolus injected and once the microbubbles fill the tissue in obser-
vation, a series of high intensity pulses is transmitted to the tissue to destroy the bubbles
within it. In the second step, the tissue is refilled with microbubbles and the scanner
switches to low MI and the refill is monitored with a contrast-specific imaging mode of
the ultrasound machine. Unlike the Bolus injection method’s TIC, here an exponential
curve is seen. The slope corresponds to the velocity of blood flow while the maximum
enhancement relates to blood volume. An example of the same is shown in figure 2.4]

(L8 end of destruction pulse b
0.7 ;
0.6
0.5
L4
0.3

0.2

0l

4 6 ] 10 12 14 I
Lirme ()

Figure 2.4: Time Intensity curve for a reperfusion. [85]]

o Hepatic vein transit times: Bolus injection of the contrast agent is also used in this
method. However instead of TICs, the shortening of the transit time of the contrast agents
between the hepatic artery or portal veins and hepatic veins is monitored. The shortening
can be a result of a present malignancy. However, this method doesn’t identify lesions
with high confidence and is rarely used.

CEUS offers notable advantages when compared to Contrast enhanced CT (CECT) or MRI.
In addition to being radiation free, affordable and easy, because the arterial phase is short,
lasting only for 20-25 seconds, the real-time nature of ultrasound enables capturing it. CT
and MRI can not capture real-time information. CEUS has been used to successfully diagnose
98.5% of cases inconclusive on both CECT and conventional grayscale US and led to changes
in the treatment plans in 11.6% of these patients [27]. There is no need to predefine scan time
points or to perform bolus tracking. The dosage of UCA can be changed based on patient
history. Moreover, the excellent tolerance and safety profiles of UCA allow for their repeated
administrations in the same session when needed [29].

2.3 Diagnosis of Focal Liver Lesions

Cirrhosis is a condition in which liver cells are irreversibly scarred and is the leading cause
of Liver Cancer or Hepatic Cancer. Figure shows the liver with cirrhosis and HCC in
comparison to a healthy liver.

Focal liver lesions or tumors are of two broad categories.

1. Benign Lesions: These lesions are characterized by a sustained enhancement during the
portal venous and the late phases. Further, they show distinct enhancement patterns for



2.3. Diagnosis of Focal Liver Lesions 11

Marmal liver

Cirrhiotic liver

End-stage cirrhesis with

hepatocelular carcinoma
L]

i car P

e o ®

=

Hepatitis C virus

Figure 2.5: Healthy and affected livers [10].

individual kinds of benign lesions in the arterial phase too [21]. They can be present in
both cirrhotic and non-cirrhotic livers. These are summarized in Table 2.1]

2. Malignant(Cancerous) Lesions: The lesions are characterized by the wash out of mi-
crobubbles during the post vascular and late phases. They are hypoenhancing or isoen-
hancing in these phases. The arterial phase is most important for the detection of malig-
nant lesions : Hepatocellular carcinoma (HCC) and metases as they are hyperenhanced
[21]. Although cirrhosis is the leading cause of Malignant Cancers, they can occur even
in healthy livers. The enhancement patterns of malignant lesions are shown in Table [2.2]
are the standards followed by physicians during diagnosis.

Figure [2.6] A shows the observed arterial phase and B shows the late phases of a lesion in a
non-cirrhotic liver. The arterial phase is hypervascular and the enhancement is even throughout
the circular lesion. The late phase is isoenhanced - the intensity is equal to the adjacent liver
parenchyma. This lesion was diagnosed as focal nodular hyperplasia (FNH) by US-guided
biopsy [27]]. Notice how spotting the lesion without the annotated arrows is extremely chal-
lenging.

Figure 2.6: The arterial and late phase images of a lesion [27]
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Table 2.1: Enhancement pattern of Benign Lesions in cirrhotic and Non-cirrhotic Livers [29].

Lesion

Arterial phase

Portal venous phase

Late phase

A, Moncirrhotic liver
Hemangioma
Typical features
Additional features

FNH
Typical features

Additional features

Hepatocellular adenoma

Typical features
Additional features

Focal fatty infiltration
Typical features
Focal fatty sparing
Typical features
Abscess
Typical features

Additional features
Simple cyst

Typical features
B. Cirrhotic liver

Peripheral nodular enhancement
Small lesion: complete, rapid centripetal
enhancement

Hyperenhancing from the center,
complete, early

Spoke-wheel arteries

Feeding artery

Hyperenhancing, complete

Nonenhancing regions

Isoenhancing

Isoenhancing

Peripheral enhancement, no central
enhancement

Enhanced septa
Hyperenhanced liver segment

Nonenhancing

Regenerative nodule { =dysplastic)

Typical features
{not diagnostic)
Additional features

Isoenhancing

Hypoenhancing

Partial/complete centripetal fill in

Hyperenhancing
Unenhanced central scar
Isoenhancing
Hyperenhancing
Nonenhancing regions
Isoenhancing
Isoenhancing
Hyper-fiscenhancing rim, no central
enhancement
Hypoenhancing rim
Enhanced septa

Hyperenhanced liver segment

Nonenhancing

Isoenhancing

Complete enhancement
MNonenhancing regions
Iso/hyperenhancing
Unenhanced central scar
Isoenhancing

Slightly hypoenhancing
Nonenhancing regions
Isoenhancing
Isoenhancing

Hypoenhancing rim, no
central enhancement

Nonenhancing

Isoenhancing
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The CEUS images are shown on a dual screen format with low MI B-mode image alongside
the contrast-only display. This enables anatomic guidance for small lesions to ensure that the
target is kept within the field of view [29]. The data used for this thesis is collected from a
machine with such imaging mode. A frame from a CEUS video of a patient is shown in figure

Figure 2.7: A dual display of B-mode US and CEUS

However, a difficulty with the split screen method is that the low MI is used for both B-
mode and CEUS panels. This means that the gray scale display is noisy. So, the smaller and
low contrast lesions may be difficult to image. On some scanners, conventional and CEUS
images are not split onto two different screens but overlaid with different color scales [29].
Section [3.3|describes the noise handling used in this study.

Two major hurdles in detecting HCC particularly are that:

¢ HCC shows hypervascularity in the short arterial phase and hypovascularity starting from
wash out into the post vascular and late phases.

¢ The differentiability of the HCC with the adjacent liver parenchyma determine detection
accuracy. Moderately differentiated HCC generally show classic enhancement features,
while well and poorly differentiated tumors account for most atypical variations [43].

78% of well differentiated HCC showed atypical behavior [27]. Hence, identifying a HCC
lesion is technically challenging.

2.4 Digital Imaging and Communications in Medicine (DI-
COM)

The American College of Radiology (ACR) and the National Electrical Manufacturers Associ-
ation (NEMA) together came up with the a standard for medical data communication in 1983.
This was needed to enable medical imaging centers to efficiently share data among them. The
third version of this standard, in 1993 was named "DICOM”. Today, DICOM is used exten-
sively in hospitals and ensures the interoperability of producing, processing and storing patient
data.

Information Object Definition (IOD) is an object-oriented representation of the real world
in DICOM. A normalized IOD represents a single real-world entity like patient personal details.
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The Composite IOD comprises of multiple entities together. Such as ultrasound scans of the
patient along with personal data. The relevant IODs extracted from the DICOM data used for
this study are:

1. Rows: Defines the rows of the frame read.
2. Columns: Defines the columns of the frame read.

3. Pixel Data: A DICOM data set (Figure [2.8)) consists one special element containing the
image pixel data called "Pixel Data”. A single DICOM dataset can have only one element
containing pixel data. However, the element may contain multiple “frames”, allowing
storage of multi-frame data like videos [6].

Data set p order of transmission -
Data element | Data e]emer‘lti' Data element Da:t:ai‘ele_ment A Data element | Data element
- Tag VR Value length Value ﬁelcll"--_.
(optional) '

Figure 2.8: A depiction of DICOM dataset [S]]

The DICOM data format groups information into data sets. That means that a file of a
ultrasound scan image, for instance, actually contains the patient ID within the file so that the
image can never be separated from this information by mistake. Figure [2.8| shows the structure
of data elements that make up the dataset. The data elements in DICOM’s latest revision are
ordered according to the Little Endian byte ordering. Hence, in a characters are encoded in
the order of occurrence i.e. from left to right. There are various different formats for the data
element prescribed by the standard. However, each have three common fields:

¢ Tag: A 16-bit unique identifier representing the group number, indicating the function of
the IOD and the element number.

¢ Value Length: The length of the value of the element.
¢ Value: The value of the element

The pixel data conveyed in the Pixel Data IOD can be either in the Native or uncompressed
format, or in a compressed format (not supported by the DICOM standard). In the native
format, Pixel Cells are encoded as the direct concatenation of the bits of each Pixel Cell in
little endian format. That is, it is ordered from the least significant to the most significant bit.
Pixel Cell is the container for a single Pixel Sample Value-a value associated with an individual
pixel. The number of bits that make up each Pixel Cell is defined by the ’Bits Allocated” data
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element Value [[7]. In the data used for this study, the Bits Allocated is 8. Pixel Sample Value is
associated with an individual pixel. However, a pixel can have multiple Pixel Sample Values.
In the data used for this study, every pixel has 3 sample values associated with each. The values
correspond to the red, green and blue light components of the pixel respectively. The red, green
and blue components are added together to reproduce a color seen in the final image.

The RGB triplet (r,g,b) per pixel can be mapped to a three dimensional coordinate system.
This approach is advantageous when the colors of two pixels have to be compared. Their
smaller their Eucledian distance, the more similar they are.

Figure 2.9: The RGB color space [14]

2.5 JPEG

The Joint Photographic Experts Group is the joint committee formed by International Stan-
dardization Organization (ISO) and the International Electrotechnical Commission (IEC) in
1992. The committee created the image compression standard - JPEG, in 1992. In this thesis,
the output of the CAD system, that is, the resulting images marked with identified tissues are
compressed using jpeg.

A survey conducted to compare various lossless compressing techniques for medical images
[18]], found JPEG-LS to rank highest based on compression speed and compression ratio (Fig-
ure 2.10). In this study, the Lossless JPEG compression technique with maximum compression
quality and minimum loss is chosen.

CALIC F'
PNG H
JPEG2000 m = CR
JPEG-LS h = Cs
Lossless JPEG -—

0o 10 20 30

Figure 2.10: Comparison of Compression Rate(CR) and Compression Speed(CS) of various compression algo-
rithms [/ 18]]
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The measure comparison ratio (CR) , defined as

CR— Original Image Size

~ Comperessed Image Size

can be set for the compression. When converting the DICOM information to JPEG, we perform
the compression at a CR of 1. Hence, no image data is lost during conversion.

2.6 Artificial Intelligence

Artificial Intelligence(Al) or Machine Intelligence is defined as the study of “intelligent agents’-
any device, machine or program that perceives its environment and takes actions that maximize
its probability of successfully achieving its goals. Al often revolves around the use of algo-
rithms or sets of unambiguous instructions that a mechanical computer can execute. The goal
of learning from its environment can be accomplished by such algorithms using either repetitive
trial and error or a cycle of trial-error-feedback called reinforcement learning. The algorithms
can be of 3 broad types based on their design.

1. Symbolic: These task-specific algorithms, widely used from mid-1950s until the late
1980s were made up of production rules consisting of extensive if-then logic.

2. Machine Learning: These algorithms are generally of statistical nature and concentrate
heavily on learning data representations as opposed to task-specific algorithms.

3. Cognitive: These algorithms are an integration of symbolic and machine learning based
algorithms aimed to build intelligent agents with human like capabilities of performing a
variety of tasks, like decision making, problem solving, planning, and natural language
understanding, by encoding, using and learning all types of knowledge.

2.6.1 Machine Learning

Tom M. Mitchell 58] defines learning in machines as follows- ”A computer program is said
to learn from experience E with respect to some class of tasks T and performance measure P if
its performance at tasks in T, as measured by P, improves with experience E.” A basic machine
learning system takes inputs and identifies feature vectors that describe the input. It ”learns”
based on these features and creates a model. This model can now be used on a previously
unseen input to produce a required output.

Machine learning tasks can be broadly of two categories: classification and regression.
Classification divides input data into two or more discrete categories or classes. Regression is
related to forecasting or predicting a continuous output.

Additionally, based on the whether the learning system leverages available user feedback,
machine learning systems are of two broad types:

1. Supervised Learning: These algorithms map inputs to corresponding outputs based on
given input-output mappings. Predictive functions are learnt from labelled training exam-
ples. Both classification and regression tasks are typically tackled as supervised learning
problems.
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2. Unsupervised Learning: The algorithms are used when the data available is unlabelled.
Functions have to infer the relationships in the data. In the context of unsupervised
learning, grouping of similar data together is termed as clustering.

Feature generation and selection is an important if not the most important part of machine
learning. The output is heavily dependent on the quality and quantity of features used. Mod-
els trained with a large number of features may more often than not suffer from the curse of
dimensionality. On the other hand, those trained with too few features might not be able to
differentiate all inputs seen in a good enough way. A subset of machine learning algorithms
that automate the process of feature generation and selection is Deep Learning. They use layers
of neural networks to learn data relationships and also features from them.
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Data Pre-Processing and
Exploration

This chapter discusses the properties of the collected data source. Details of the size and at-
tributes of the data are described in sections [3.1] The setup of the data for the experiments
carried out is explained in section The steps taken to clean the data are enumerated in
section In addition to the preprocessing details, in section |3.4], we compare the brightness
and intensities of the CEUS pixels of various tissues statistically to test their similarity. Also,
the CEUS brightness and intensity of a single tissue are compared.

3.1 Data Exploration

Dual mode contrast enhanced DICOM videos of the liver of 11 patients were collected from
University Hospital, Munster from the ultrasound machine - GE Healthcare Logiq E9 and using
SonoVue as contrast agent. These accounted for 3.5 GB of video data and translated to 5475
frames in total.

The DICOM video was cut into frames using the opensource DICOM viewer MicroDicom
[13]]. It was observed that additional unusable information was present around the US and
CEUS images in the frames extracted. These would ideally represent patient details but they
have been removed by the hospital so as to not disclose personal information. They were
trimmed out without tampering the content of interest. Further, it was observed that most
interesting information was present in the vertical center of the frames for the majority of the
samples. The CEUS side of the frames cover the same tissues as their B-mode US counterparts
but are translated right horizontally. For every pixel, the DICOM format carries its RGB values.

3.2 Data Setup

The experiments conducted in this thesis can be categorized into three based on the methods
used.

19
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. Time-series based: Out of the total 11 videos, 2 videos were found to have very well

defined contrast enhanced portion. These videos, amounting to a total of 623 frames
were the focus for this part of the study.

. Deep Learning based: Videos of 4 patients showing different levels of CEUS side images

were chosen out of the total 11 videos for this part of the study. The four videos amounted
to 1030 frames.

. Preliminary US brightness based: For the videos with negligent CEUS components, a

separate pipeline was built using only the US data. Since this is not the main focus of the
study, we worked with only single patient data to verify this approach.

3.3 Data Pre-processing

Two pre-processing steps were applied to the frames in this study.

¢ Smoothening : During the scan the physicians move around the transducer quite a bit

and exert varied amount of pressure on it while doing so. This is done to capture the im-
age of the target organ and its surroundings from various positions. However, it induces
noise in the video due to shaking. This was observed in all the videos and hence a mech-
anism to minimize the shaking was applied globally. Smoothening was used to counter
the disturbances caused by shaking. Figure [3.1]illustrates this on a single frame. It is
important to highlight here that the smoothening was done over sets of frames belonging
to a single video while preserving their order. The pixel values were averaged over a
selected selected number of frames or “window size”. We conducted our experiments
with a window sizes of 5 in this study.

Median Filtering : Due to random fluctuations of the sound signals, ultrasound images
generally suffer from additive noises like gaussian noise, speckle noise and salt and pep-
per noise. Median filtering has proven to be a good noise reducing technique that also
preserves the underlying image features like edges for instance [66]]. The RGB vales of
a pixel are the median of the RGB values of its “neighbours’. In this study we perform
a 7x7 window filtering. That is, a 7x7 rectangle with current pixel at its center is con-
sidered the neighbourhood of the pixel. An example of the resulting transformation is
shown in figure [3.2] However, since we expect the deep learning algorithms to generate
features based on neighbouring information among others features, we decided to not
apply median filtering for frames in the deep learning based experiment.

3.4 Time-Intensity and Time-Brightness Curves

It is widely accepted that liver lesions are characterized by comparison of their time intensity
curve (TIC) [83]]. In this thesis we statistically examine the above. The analysis is conducted
in two steps. First, we compare the CEUS brightness and intensity of two tissues in a single
video. In the second stage of the analysis, we compare the 2 tissues within CEUS videos of 2
patients.
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Figure 3.1: (A) Original frame as viewed in MicroDicom viewer. (B) Selected center portion of the frame. (C)
Smoothened selection with a window of size 5.

(b)

Figure 3.2: (a) Original frame as viewed in MicroDicom viewer. (b) Median filtered (window size=7) and cropped
frame.
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3.4.1 CEUS Intensity vs Brightness

Studies concentrate on the intensity of CEUS to study the TIC. We compare the shapes of
the CEUS brightness and intensity curves in figures [3.3] and [3.4] and find them to be similar.
Section[3.4.3] statistically validates this assumption made. However, in the case of tumors, the
brightness is more pronounced as seen in figure[3.4] The curve is not smooth due to the shaking
in the Sonography process. Smoothening and median filtering reduce noise but do not eradicate
it. Also, we observe that the sonography video available does not have complete data until the
contrast agent is washed out of the blood stream.

We will use the CEUS brightness henceforth. This approach is chosen because the bright-
ness calculated as

Brightness = 0.299 xR+ 0.587+G+0.114xB

weighs the red(R) and green(G) components of the pixels and they are the ones absorbed most
by the human eye. Whereas the intensity is the average of the three color components.

R+G+B

Intensity = 3
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Figure 3.3: Brightness and Intensity curve of CEUS pixels in a normal tissue. The intensity is more pronounced.

3.4.2 Two sample tests

Several statistical tests are available to compare the similarity between two samples.
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Figure 3.4: Brightness and Intensity curve of CEUS pixels in a tumour tissue. The brightness is more pronounced.

Two sample T-test

The two sample T-test checks if the means of two independent samples are equal. The null
hypothesis of the test is

Hy:u =
The test statistic 7" is given by
N1 »
- T 1
s+ ;)

where y; is the average of group i , n; is the number of items in group i and under the
assumption of equal variances, s, is the pooled variance given by

(m —1)si+(ma—1)s3
ni+ny—2

Sp =

where s; is the standard deviation of group i. Whereas, under the assumption of unequal
variances, the test statistic is given by

4%
(a‘i‘@)

The null hypothesis is rejected if

T > t(1—a/2).ar

where (1 _g/2).4y 18 the critical value of the t-distribution with degree of freedom df and
confidence 1 — ot /2. The degrees of freedom d f is n| +n, — 2 if the two groups are homoscedas-
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tic. If not,
2 2
o iy
o s{ I 53
(ni—Dn? * (na—1)n3

However, the two sample t-test assumes that the underlying groups are normal. Hence, we
first test the normality of our data.

Test for Normality

Shapiro Wilk is a powerful test for normality but it is sensitive to ties in data. And, in our case,
there are several times pixels might have the same intensity or brightness. Hence, we chose the
Anderson Darling test which works well for data with ties and also the QQ plot to visualize the
sample quantiles against the theoretical quantiles from a standard normal distribution to check
for normality.

The QQ plots for the intensity and brightness of CEUS pixels of a class from a video with
219 frames are shown in figures[3.5/and [3.6] They seem to deviate from normality. The Ander-
son Darling test produces a p value of < 2.2e — 16 for both CEUS intensity and brightness of
labelled class 0. Hence, it can be concluded that the CEUS intensity and brightness of labelled
class O are both not normal.

CEUS Intensity - Class 0 CEUS Brightness - Class 0

Sample Quantiles
20 40 80 80
50

Sample Quantiles
30
1
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0
|
o

Theoretical Quantiles Theoretical Quantiles
Figure 3.5: QQ plot for the CEUS pixel intensity. Figure 3.6: QQ plot for the CEUS pixel brightness.

Whereas, the QQ plot of the brightness of corresponding US pixels of the same class shown
in figure [3./|suggests normality. This is also supported by the Anderson Darling test(cx = 0.05)
with a p value of 0.159.

For pixels labelled class 1, denoting tumour tissues, a similar observation was made.The
CEUS brightness and intensities did not show normality while the US brightness did not reject
normality.

Hence, we used the two-sample t-test to compare the equality of means for only the US
brightness of the pixels of two classes - class 0 and class 1 in a video with 219 frames. We used
R to run the statistical test and the null hypothesis was rejected with a p value of < 2.2¢ — 16.
That is there is statistical significance that the US brightness of the two classes of tissues have
different means.

Since the CEUS intensities and brightnesses of the two class do not show normality, we use
a non-parametric test - Wilcoxon rank sum test, to compare them.
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Figure 3.7: QQ plot for the US pixel brightness of labelled tissue class 0.

3.4.3 Wilcoxon Rank Sum Test

This test is often described as the test for equal medians. The null hypothesis of the Wilcoxon
rank sum test is Hy : m; = my where m; is the median of sample i. Wilcoxon rank sum test
is non-parametric and hence, does not require the groups being compared to show normality.
Let yi1,yi2,Yi3, ---,Yin; be the data from group i. Rank r(y;;) is defined as the rank of y;; in the
complete data set y11,y12,Y13,---,Y1n;»Y21,Y22,Y23, ---,Y2n,- The sum of ranks for the two groups

is calculated as
n;

Si=Y r(yij) Vi=1,2

J=1

The test static of the Wilcoxon rank sum test W under large sample approximation is

s — p(S)
where,
ni(ny +ny+1
u(S;) :¥
1
2 (8)) = niny(ny +ny+

12

The test static is compared to the quantiles of the standard normal distribution. As shown
in the previous section, the CEUS intensity and brightness of tissues reject normality. Hence,
we use the Wilcoxon rank sum test to compare them. In both cases, the test results in a p value
< 2.2e — 16. This implies the null hypothesis can not be accepted. That is, there is statistically
significant evidence that CEUS intensities and brightnesses of the pixels of the two classes are
different.

Comparison of CEUS Brightness and Intensity

We also use the Wilcoxon rank sum test to verify the assumption made in section We test
for the equality of the medians of the CEUS Brightness and Intensity of tissues labelled class 0
(data points plotted in figures[3.3|and[3.4). The equality of the medians can not be rejected with
a p value of 0.09. Hence, the CEUS brightness and intensity curves are statistically similar.
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Therefore, it is verified that the two classes of tissues are statistically different both in terms
of their US and CEUS measurements. Further, the CEUS brightness is more pronounced in
magnitude than the intensity but both show the same statistical behavior when compared be-
tween classes. We choose to use the CEUS brightness for the classification.

3.4.4 Multiple Sample Homogeneity Test

In the previous sections, we compared classes of tissues within a single video and found that
there are statistical differences between them. In this section, we test if various classes in
multiple patient videos are distinguishable. Two sample tests should not be repeatedly applied
in combinations to compare multiple samples. To compare the means of multiple samples, the
analysis of variance (ANOVA) test is adopted. ANOVA compares the variation between groups
to the variation within groups. Figure [3.8] shows the box-plots of the CEUS brightness of 4
classes of tissues from two patient videos. The videos chosen had 414 and 219 frames each.
To ensure our samples are unbiased, we adopt truncation and use only the first 219 frames of
the longer video. Visually, the classes are distinguishable. The results of ANOVA test echo this
observation. With a p value of < 2e — 16, the null hypothesis that the means of the samples are
equal, can be rejected.

Multi-patient Tissue Specific CEUS Brightness
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Figure 3.8: Boxplot of the CEUS brightness observed in two classes in two different patients.

Taking a step further, we also test if the same tissue class is identical between patients.
We compare the normal tissue (labelled class 1) classes and tumor tissue (labelled class 0)
classes, each, between the two patients. The equality of means of the CEUS brightness of
the tumor classes between the two videos is rejected with a p value of 2.27¢ — 05. The mean
CEUS brightness of the normal tissues are also not the same between the two patients (p <
2e — 16). Although, these results obtained by comparing merely two patients are not sufficient
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to generalize but they echo the patient based factors explained by Dietrich et al. in [32]. To
validate the effects of this, in our experiments, we train and compare models with both single
patient data and combination of multiple patient data.
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Tissue Classification

This chapter elaborates the main contributions of the thesis. It explains the algorithms applied
on the dataset after the preprocessing described in the previous chapter. Section presents
an approach applied to videos with weak CEUS components. Following sections {.2] and [4.3]
provide in depth details on the artificial intelligence approaches adopted for CEUS videos in
this study.

4.1 Sonographs with weak CEUS components

It was seen that 8 out the total 11 videos did not show a prominent CEUS side image. This
maybe due to presence of minuscule benign tumors. Hence, we used only the US side of
the frames to identify tissues in such videos. This is not the most important contribution of
this thesis but it allows tissue recognition in the absence of good quality CEUS and hence is
important nevertheless.

At this point of the thesis, labelled data was not made available by the hospital. Hence, two
approaches were tried to label the data. First, the US brightness values of pixels were split into
three equal sized bins and the pixels were put in on of the bins based on their US brightness
values. A pixel’s bin number was the class assigned to the pixel. One tissue of interest can be
clearly seen with the lowest US brightness (the darkest region) in the *Unlabelled smoothened
original” image in figure d.1] As a second approach, we marked rectangular region of interest
per frame of the video which is also shown in figure It shows two classes marked by green
and red.

We used a PML classification pipeline for the classification. As explained in section |6.2.1,
pixel-based machine learning is widely being used in the medical domain. For every frame f
of a video consisting on n pixels, every pixel p; V i€ [1,n]is labelled. The algorithms used
in this thesis are from the WEKA toolkit integrated with Java. Features to identify individual
pixels are determined and instances are built for every pixel with these features. Features are
chosen based on the data labelling method, the pixels position, neighborhood and its color
channels. Using Canny’s edge detection, edges are found within the frame. These are important
as they mark tissue boundaries. A binary feature to determine a pixel’s position on an edge is
created. The median of these features in the 3x3 neighborhood of the current pixel is also

29
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Figure 4.1: The result of classification using Hoeffding Tree classifier with different approaches to labelling.

considered. Moreover, the features chosen are dependent on the method of labelling. For
labelling based on the pixel brightness values, the 8 features are described in table 4.1]

Feature description Number of features Type
Pixel color components: red, green, blue. 3 Numerical
Pixel’s position on an edge 1 Binary
The median color components(red, green, blue) of its 9 neighbors. 3 Numerical
Sum of neighbors on edge. 1 Numerical

Table 4.1: Pixel features when data labelled with US brightness values.

On the other hand, when the labelling was done solely based on the pixel’s position by
drawing rectangular Rols, brightness was used as a measure instead of the individual color
components. This reduced the number of features to 4: pixel US brightness(numerical), pixel
on edge (binary), median pixel neighborhood brightness (numerical) and sum of pixel neighbors
on edge (numerical).

Apart from the above features, a nominal feature 'class’ denotes the class in which the pixel
belongs. These feature are used as attributes to form instances required by WEKA classifiers.

The frames are split into 70-30 training and testing sets. We test the performance of clas-
sifiers: Naive Bayes (refer section 4.2.1.1) and Hoeffding Tree (refer section [4.2.1.3). The
outcome of the Hoeffding Tree classifier using both labelling methods is shown is figure @.1]
In both cases the region of interest was identified. In the first case, with 3 classes, additionally
probable fat tissues are also identified as a tissue marked by green on the left of figure @.1].

4.2 A Time-series Approach

The main idea behind the use of contrast agents for ultrasound is that they result in distin-
guishable time-intensity curves for different tissues [85]]. This has been statistically verified in
section [3.4L We leverage the differences in the time-brightness curves of tissues and approach
the tissue classification as a time-series classification problem.
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Figure 4.2: Per pixel classification pipeline for US.

Regions of interest are identified for every frame of a video. This information has been
collected from the physicians. A single Rol can not be used for all frames of a video because
its position might change throughout the video as the radiologist moves the transducer. An open
source image annotation tool [4], was used to annotate the frames of the video. Rectangular
boxes are used to mark the Rols. An example is shown in figure 4.3

74 AnnotationTool = ]

Image Dir: [1 Load

Bounding boxes:
p: (37, 19) > (117, 77)

Choose Class

1: (222, 164) -> (257, 189]

Delete

ClearAll Add Class

<< Prev ] Next »> |0200/0214 GotolmageNo. (200 Go x 374,y 2

Figure 4.3: Example of a frame annotated with 7 rectangles for two classes - 0,1

A supervised learning approach is adopted and the data is first labelled. Every frame in a
video is labelled with classes corresponding to Rols present. For every class in a frame, the
pixel with the median CEUS brightness is chosen as the representative for that class in that
frame. Hence, irrespective of the size of the Rol in a frame, every class is equally represented
in a frame. In this manner, at the end of a video, a frame-brightness curve is created. The frame
corresponds to time.

While training, only representative pixels of each Rol marked are looked at. Once a clas-
sifier is trained, it is used to classify each pixel in every frame of the video. We first train a
model per video for two patients. Next, we combine the data from the two patients and train
the models on the combined data. We want to point out that the classifier trained only on one
video is not limited to *'memorization’. The learning is generalized over pixels. In order to test
the models, videos are converted into frames and passed as input to the model which classifies
each pixel of every frame resulting in a classified output image. Finally, the output frames are
stitched together to result in a video with tissues identified and color annotated. The system
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design for a video with two tissues identified using structural feature extraction is shown in

figure 4.4
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Figure 4.4: System design for a video with two tissues of interest using structural feature extraction.

The system built has a learning phase and a prediction phase. In the former, the time-series
for the CEUS brightness of labelled tissues are fed to the model for learning. If there are n
labelled tissues, a classifier with n classes is the result of this phase. In the latter phase, as the
video proceeds, a time-series for the CEUS brightness for all pixels is formed. These are then
classified by the trained classifier into one of the n classes.

4.2.1 Structural Feature Extraction

Although Fourier and wavelet transformation are heavily used for feature extraction, owing to
the relative small size of data, we chose the structural feature extraction method like ‘Wiens
et al. [90]. A bag of features that identify the current state, global state and fluctuation in the
time series is prepared. The features used are listed in table d.2] Feature 1 identifies time or
here, the number of frames. Features 2-4 are averages that characterize the series. Linear and
Quadratic weighted averages weigh more importance to the most recent observations. Features
6-8 and 19 are indicators for the amount of fluctuation in the observations. Features 5 and 9
gather information about the most recent states the pixel’s CEUS brightness. Features 10-13
summarize information regarding global maxima and minima in the series. Key differentiating
metrics like the time to peak and time to decay are captured here. Features 14-16 describe the
distribution of the brightnesses near the mean. Features 17 and 18 identify micro-clusters of
similar pixels above and below the mean.



4.2. A Time-series Approach

33

Feature Description Calculation
Number of frame/
1 . ) f
Length of time-series
2 Average brightness U= }Z{:l O;
3 Linear weighted average brightness Jﬁ Z{:l i0;
4 Quadratic weighted average brightness m Y i?0;
5 Current CEUS Brightness Oy
6 Standard deviation of brightness o
Average absolute change in Lvf=11 .
7 brightness between frames 7Lzt [0i= Oipi
3 Average absolute change in derivatives 1y -2 0 -0, ||
of brightness between frames fe=L P it
9 Sum .Of the brightness y f: ,0;
seen in the last 3 frames i=f
Time to peak/ 1
10 Frame of maximum brightness jargmaxO;
11 Peak/ maximum brightness max O;
l
Time to decay/ 1 .
12 Frame of minimum brightness jargmin0;
13 Minimum brightness min O;
1
14 Number of pixels with brightness above mean ), 1
o;>u
15 Number of pixels with brightness below mean ) 1
o;<u
16 Ratio of below mean to above mean (Y n/cx 1
oi<u o;>u
17 Longest streak of brightness above mean
18 Longest streak of brightness below mean
19 Variance o’

Table 4.2: Features of the time-series: CEUS brightness-frame curve with observation vector O = [0}, 03, ...0,]
for n frames.

Once these features are extracted, we train different classifiers and compare their perfor-
mance. The classifiers compared are:

¢ Probabilistic: Naive Bayes
¢ Tree based: J48
¢ Ensemble: Random Forest

¢ Non-probabilistic: Sequential Minimal Optimization

4.2.1.1 Naive Bayes

Naive Bayes classifier belongs to the family of probabilistic classifiers. The underlying problem
of the classifier is to predict a class ¢; Vi € [1,k] from a set of k classes given a a set of
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predictors or feature vector, x = {x,x2,...x,}. Naive Bayes achieves this by using the Bayes
theorem. The posterior probability, which is the probability of the predictors belonging to a
class c;, is denoted as p(c;|x) and is calculated as

. Likelihood * Prior
Posterior = -
Evidence
n
(IT p(xelei)) * p(ex)
pleilx) = =
Y. p(ci)p(xle:)

l

Finally, the class assigned/predicted class is the one with maximum posterior probabil-
ity. We use the Naive Bayes algorithm implemented in Weka. Multiple variations of Naive
Bayes exist that use different estimation functions for the likelihood. A Gaussian estimator
assumes underlying data to belong to a Gaussian distribution. Similarly, there are normal and
multinomial estimators. We use the DiscreteEstimator that uses data points as is without any
assumptions on its underlying distribution.

Naive Bayes is frequently studied and experimented with. However, due to the assump-
tion of strong independence between the predictive variables Naive Bayes is known to be a
good classifier but a bad predictor. Each predictor contributes independently to the posterior
probability. However, one feature might be dependent on another hence amplifying predictors’
contributions. During training, this amplification averages out over the elements in the training
set and boosts the classification accuracy. However, during prediction, this effect is prominent
as a result the classifier produces poor test instance-class label association.

4.2.1.2 J48 Decision Tree

The J48 decision tree in WEKA is the implementation of the Iterative Dichotomiser 3 algorithm.
This algorithm iterates through the attributes present in the dataset and calculates the entropy or
information gain for each attribute. The attribute with the maximum information gain is chosen
to then split the data and is made a node of the decision tree. The process is repeated for all
subsets of attributes. The algorithm requires all of the dataset before it can start building the
tree. We use WEKA’s implementation of J48 with the default hyperparameters.

4.2.1.3 Hoeffding Tree

Hoeffding tree is an incremental decision tree algorithm. It is advantageous for large data sets
because it does not need to see the complete data before making decisions about the branch
splits unlike the traditional decision tree algorithm. Moreover, the results produced are statisti-
cally comparable to that of a decision tree. It does so by the application of Hoeffding bounds.
Hoeffding bounds are concentration inequalities that quantify the convergence given N samples
of a population.

Theorem: Let X{,X>,...,X, be independent bounded random variables. Let S, = f X;

=1

1

Then for any > 0 the two sided Hoeffding inequality is

P(Sy — E[Sy]| >=1) <= 2¢~ 2"
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Let a = P(|S, — E[S,]| >=1). o is the probability of making an error for a confidence
interval of size 2t around E[S,]. Solving o0 <= 22" for n gives

log(2
oo loe(s)
212
2
Hence, with altleast % samples, (1 — o)% confidence of S, € [Es, —t,Es, +1] is guar-

anteed.
We use Weka’s implementation of the classifier with default hyperparamenters.

4.2.1.4 Random Forest

Random forest is an ensemble classifier that uses multiple decision trees built on sub samples
of the data set. The advantage of this is that the overfitting by decision trees is controlled and
overall accuracy is improved by averaging. We use Weka’s implementation of random for-
est classifier with a default bag size equal to training size. Bootstrap aggregating or bagging
weights each model in an ensemble equally. Random forest uses bagging to combine the differ-
ent decision trees built. In addition it implements feature bagging and trains the decision trees
on different subsets of the features too. We do not limit the depth of the tree. This works well
in case of random forests due to averaging.

4.2.1.5 Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) is an algorithm that is implemented in WEKA to solve
the quadratic optimization problem of the Support Vector Machine (SVM) classifier. SVM finds
the maximum margin hyperplane that divides a dataset of n points into two classes. The QP of
SVM is

Minimize ||W||
st. yi(w-X—b)>1, Vi=1,....n

The hyperplane is given by w - X; — b where w is normal to the hyperplane and ﬁ is the
offset of the hyperplane from the origin.

SMO is an algorithm that breaks the above optimization problem to smaller ones and iter-
atively solves each using the Lagrange multipliers. Multi-class problems are solved pairwise
using the one-vs-one strategy. Hence, for a c¢ class classification, @ binary classifiers are
created and the class with maximum number of 1’s predicted is assigned to the test data.

4.2.2 Time-series Similarity

In section [4.2.1] structural features were extracted from the time series and used to train clas-
sifiers. In this section, we use the raw CEUS brightness values that build the time series. The
CEUS brightness values of a tissue class over n frames is collected. For an instance we use
the most recent 20 frame values for every class of tissues as numeric attributes. Additionally,
one nominal attributing denoting tissue class is added. We do not include the first 25 frames
as the CEUS images do not show up until much later in the videos. For training, one instance
per class per frame is created for all (n —25) frames of the video. For testing, the time-series is
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made pixel-wise - an instance is created per pixel in the frame with attributes being the CEUS
brightness values of the pixels seen in the last 20 frames.

The generated time-series are compared with each other using the dynamic time warping
(DTW) distance between them. DTW is a time-series alignment algorithm that computes the
minimum distance between two series. It differs from traditional distance measures like the
Eucledian distance in that it is one to many and not one to one. When calculating the Eucledian
distance between two series, the distance between two aligned points (one-to-one) is calculated
and summed up. On the other hand, in DTW, two time series are aligned and the distance
between one data point on a series to all points on another series is found resulting in a distance
matrix. Figure [4.5]illustrates the distance matrix between two series A = ay,a,..a, and B =
b1,by,...,b,. Both series start on the bottom left of the matrix and end on the top right. A path
between these two points is created by selecting the minimum distance at each aligned data
point. The DTW between the two series is the sum of distances along this path.

Sequence A

m LJL L)

Sequence 3 |1]19/01@

Figure 4.5: The distance matrix of aligned time series A(t) and B(t) with the minimum distance path shown in red.

(8]

A k-Nearest Neighbor (k-NN) classifier is learnt based on the DTW distance metric. The
Ibk class provided by WEKA implements the k-NN algorithm. K-NN is a simple algorithm
that uses the neighborhood of a test data-point for classification or regression. In the case of
classification, the class assigned to the data point is the majority of its neighbor’s classes. For
regression, the value predicted is given by the average of the neighbors. LinearNNSearch is the
default search algorithm that WEKA uses to find the neighbors. A custom distance function can
be set for the algorithm. However, there was no available implementation of a DTW distance
function class for WEKA. We created one using inspiration from the Java implementation of
the algorithm in [9].
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4.3 Deep Learning Approach

Dietrich et al. [32] list the various factors that the CEUS output depends on. These can be
broadly divided into equipment based factors and patient based factors. Inclusion of such
a broad spectrum of variablity as human extracted features for tissue recognition is time-
consuming and highly succeptible to being errorneous. Further, some factors of variablity
differentiate tissues better than others. Hence, feature selection also becomes important. Deep
learning provides a solution with two-fold benefits. It not only identifies underlying features
but also chooses the most differentiating ones for learning. Hence, we also implement a deep
learning based pipeine for tissue recognition.

4.3.1 Brief overview

Neural networks consist of many connected processors called neurons, each producing a se-
quence of real-valued activations. Figure 4.6 shows a neuron, in the simple perceptron neural
network configuration, with n inputs x1,x7,x3, ...X, having corresponding weights wi, wa, w3, ...wy,.
The contribution of each input by weight is aggregated. Optionally a bias can also be added.
The result is passed to the neuron’s activation function f. The activation function can be any
function like the linear, Rectifier(ReLU), tanh, sigmoid or softmax. Linear functions are used
only when the data for classification is known to be linearly separable. As this is not usually the
case, in most cases non-linear activation functions are adopted. Deep Learning networks con-
sist of multiple layers of neurons. The goal of supervised deep learning is to learn the weights
and biases given an input and the desired output.
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Figure 4.6: An artificial neuron in a Perceptron neural network.

We implement a deep network in python using Keras (https://keras.io/) with a Tensorflow
backend. Keras is a high-level neural network library that is flexible, modular and extensible.
It supports multiple low-level deep learning libraries closer to the machine like Tensorflow
by Google, CNTK by Microsoft and Theanos and provides APIs to interact with the backend
libraries too. Although it supports various backends, the library recommends using TensorFlow.
Hence, we use it with a TensorFlow backend.
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4.3.2 Data Augmentation

We were provided with a couple of annotated frames per video. Since the position of tissues
changes per frame, one annotation file could not be used for all frames in a video. Each frame
needed to be annotated independently. A single patient’s video consisted of upto 409 frames.
Labelling every frame for multiple patients was extensively time-consuming. Hence, we lever-
aged data augmentation.

Shear transformed Zoom transformed Height translated

Figure 4.7: Augmented images.

We chose 4 patients with relatively short sonograph videos having varying tumor tissues and
at different stages of HCC. These amounted to a total of 1046 frames. Further, from the evenly
distributed frames across each of the videos, few frames were picked as representatives of the
video. Since the frames picked were from different time points in the video, a sample for each
phase of the contrast enhancement was considered. We capped the maximum frame number
picked from any video at the frame count of the shortest video (163). Hence, the representative
frames were picked from only the first 163 frames of every video. This truncation is needed to
ensure the scale of the ”time” factor across the videos is the same.

This selection of representatives resulted in a total of 193 frames from the 4 patients. These
frames were annotated by hand using the Bbox Labelling tool described in section #.2] How-
ever, we labelled the images with only two classes in this approach- tumor and non-tumor.

It is widely accepted that a large training set is a pre-requisite for a well-performing neural
network model. When the training size is small, the model tends to overfit. In order to increase
the number of training samples and include invariance and robustness to the model, we applied
translational and rotational variance to the training images. These are chosen keeping in mind
the shaking and real-time nature of ultrasound. Keras provides dedicated functions for image
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preprocessing. We use the ImageDataGenerator class to perform the augmentation of training
images. We apply both height and width shift translation on the training images. Parameters
“height _shift _range” and “width_shift _range” are both set to 0.05. Keras picks a random
number, x, from the uniform distribution in the interval [-0.05, 0.05] and translates the image
pixels by x along the image height or width. A rotational range of 0.2 is used and a zoom and
shear range of 0.05 each is applied. The augmentations are applied in batches of 3 images to
the training set. We leverage the “generator” model of Keras where the data is not loaded all at
once but instead in batches. Figure 4.7 shows some augmentations of a training sample.

4.3.3 U-Net

Convolution Neural Networks (CNN) are widely preferred for tasks involving image process-
ing. They have been successful is identifying features not readily visible to the human eye. U-
net, which is a deep convolution network, built by Ronneberger et al. [65] in 2015 outperforms
traditional CNN networks and has since been extensively used for medical image processing.
Our implementation choices are discussed and described in the following sections. The graph
of the U-Net implemented is shown in figure d.13] (a)-(c) (in alphabetical order).

4.3.3.1 Input Layer

The input layer is the starting point of the architecture. Every frame of the sonograph video is
preprocessed before it is fed into this input layer. A frame is converted into a 3 dimensional
numpy array. The first two dimensions carry the spatial information i.e. the x-y coordinates of
the pixels present and the third dimension denotes the ’depth’ or the number of color channels
in an RGB image. In our case, this is 3. This can be visualized as a 2-d numpy array for each
color channel stacked on top of one another.

256x 256

912 x 552

Figure 4.8: A sonograph frame resized to be fed as input to the U-Net.

The input image size can affect the training time and the performance of the network. In
order to strike a good balance between both, we chose to resize our images to 256 x 256 from the
original 912 x 552. The reduction in size, benefits the train time. Also, since the model learns
several features to describe the images, it is generally assumed it takes care of learning features
associated with size and aspect. Several deep learning libraries such as TensorFlow also adopt
image resizing before training. The resizing was implemented using the ImageDataGenerator
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class provided by Keras. Hence, the dimension of the input tensor is (256,256,3). An example
of an input frame is shown in figure

4.3.3.2 Convolution Layers

We use the Conv2D layer provided by Keras to implement the convolution layers. We use the
standard 3 x 3 convolution filters with a stride of 1. In order to prevent loss of information
during the convolutions k-zeros padding technique is used. At all times, the image size is
maintained at 256 x 256. Hence, k is calculated appropriately. Therefore, we set parameter
padding as ’same’ to ensure the the input is padded before the filter is convoluted on it.

Once, the filter is applied of the input image, the resulting tensor is passed through an
activation function. The activation function used is Rectifier Linear Unit (ReLLU). This function
preserves only the positive parts of an input. That is, f(x) =x7. Initializers are needed to define
the initial weights of the neurons in a layer. We use the He normal initializer that randomly

picks weights from a normal distribution with mean O and standard deviation \/% where in is
the number of input units to the layer.

4.3.3.3 Max Pooling Layers

For pooling the usual window size used is (2 x 2) and we stick to this convention. The window
is applied on the image with a stride of 1. Our implementation has 4 Max pooling layers with
window sizes of 2 x 2 defined by MaxPooling2D function provided by Keras. The max pooling
operation is applied to each color channel in the data separately. An example of max pooling is

shown in figure

Max Pooling
-

S

QI U I —

Figure 4.9: Max pooling with window size 2 x 2.

4.3.3.4 Dropout Layers

Dropout layers drop some activations in every layer by setting them to zero. This ensures
that the model doesn’t overfit the training data and perform badly on test data by inclusion of
redundancy. Srivastava et al. [76], who are the inventors of the dropout technique, carry out all
the experiments with a dropout probability of 0.5 for the hidden layer units. The models with
dropout perform better on all the datasets tested on including MNIST and ImageNet. They state
that a dropout rate of 0.5 for the hidden units was often found to be optimal. Hence, we choose
to use a dropout rate of 0.5.
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4.3.3.5 Up-Convolution Layers

U-Net uses up-convolution layers to improve localization in the images resulting in improved
segmentation and learns the “where” in the data. As is common practice, we use a 2 x 2 filter
for the up convolution. Every value of a cell is repeated four times in the feature map generated.
This is filter is slid over the input map with a stride of 2. An example of the same is shown
in figure 4.10] The up convolution is implemented in Keras using the UpSampling2D layer
provided. We use the default nearest interpolation.

ix4

Sx 8

Figure 4.10: Up-convolution with a window size of 2 x 2.

4.3.3.6 Output Layer

The expected output implemented network is a segmented image marked with the tissue class.
Figure d.11]shows the input to and expected output from the implemented deep network. While
testing, the segmented frames derived from the model are overlaid on the test frames and pre-
sented as the final result.

A A

Input U-Net Output

Figure 4.11: Input and outputs used to train the Unet.

We use a 1 x 1 x 3 convolution to reduce the number of feature channels in the penultimate
layer of the network to 3. Although the number of classes in the segmentation are two - tumor
and non-tumor, we maintain the 3 RGB channels to ease the next overlaying step.
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4.3.3.7 Loss Function

Loss functions are chosen based on the underlying operation of the neural network - regression
or classification. Because classification tasks produce a probabilistic outcome loss functions
like binary cross-entropy or negative log-likelihood are preferred over others. Considering
one-hot encoding, the target variable in classification tasks are binary - 0 or 1 for “present
in class” and “not present in class” respectively. In our case, the number of classes are 2.
Also, the two classes are independent. Hence, we use the binary cross-entropy loss function.
It provides the advantage of fast conversion and is more likely to reach global optimization.
Cross-entropy tends to allow errors to change weights their derivatives during back-propagation
are asymptotically close to 0 [60].

4.3.3.8 Optimization Function

Adaptive learning algorithms use heuristics and adapt the learning rate and do not require them
to be manually tuned. Adaptive Moment Estimation (ADAM) is an optimization algorithm that
adapts learning rate scale for different layers and is found to be cost-effective and fast.

3 i C\FARIP Conngt First 3 !Epoches ‘ i i ICIFARllc Co'nvNet‘
i — AdaGrad 162 o | — AdaGrad
— AdaGrad+dropout £ £ — AdaGrad+dropout
! —— SGDNesterov : —— SGDNesterov
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E‘“ Adam+dropout : : Adam-+dropout
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Figure 4.12: Training cost of various optimization algorithms over a CNN with 3 alternating 5 x 5 convoluntion
and 3 x 3 max-pooling layers applied on the CIFAR-10 image dataset [46].

As seen in figure 4.12] both during the initial epochs of the training and later, ADAM and
SGD converge but with the ADAM having marginally lower training cost. Hence, we chose
ADAM as the optimization function.
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Figure 4.13: (a) U-Net implemented - The input layer begins.
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: Figure 4.16 (b) U-Net implemented - Contraction convolution layers.



4.3. Deep Learning Approach

onv2d 2d ... . T i
£ traims £ traims conv2d 24
conv2d 23 |« ini
_— <. 110 IsVariablel...
conv2d 22 |+
conv2d 21 |- ini
— . IsVanablel...

conv2d 15
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Evaluation

The experiments conducted and an evaluation of the obtained results are presented in this chap-
ter. First, the evaluation metrics used are explained briefly in section Later, the two sections
- and explain the evaluation set-up and results of the two main approaches - traditional
feature extraction based machine learning and deep learning.

5.1 Evaluation Metrics

There are multiple well-known techniques to evaluate the performance of machine learning
models. The confusion matrix summarizes the model’s performance. In the scenario of binary
classification, the confusion matrix delivers the information about true positives and true neg-
atives - test instances belonging to positive and negative classes, respectively, and that were
correctly predicted; false positives - test instances that belonging to the positive class and were
wrongly predicted to belong to the negative class and false negatives - test instances belonging
to the negative class and were incorrectly predicted to belong to the positive class. In most
cases, especially in the medical, monitoring false positives is very critical in evaluating a model
([731, [83]] and [23]]).

Precision accounts for the correct predictions made. It is computed by true positives(TP)
divided by the sum of true positives and false positives(FP).

TP

Precision = ———
TP+ FP

Recall or sensitivity denotes the number of ground truth classes that were accurately pre-
dicted. It calculated by true positives (TP) divided by the sum of true positives and false nega-
tives (FN).

TP
TP+FN

F1 score is a measure that combines both precision and recall. It is the harmonic mean of
precision and recall.

Sensitivity =

47
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2 x Precisi R
Fl Score — * Precision * Recall

Precision + Recall

The accuracy of a classifier is the fraction of test instances correctly classified.

TP+TN
TP+TN+FP+FN

The Receiver Operating Characteristic (ROC) curve is a plot between the true positive rate
( TPR or recall) and the false positive rate (FPR). The range of each axis is [0, 1]. The closer the
area under the ROC (AUC or AUROC) is to 1, the better the classifier. In figure classifier
with ROC marked C1 has a close to linear relationship between TPR and FPR. Hence, what is
does is very close to guessing. Whereas, classifier C2 clearly has some instances where the FPR
beats TPR and vice-versa. Therefore, it is able to distinguish classes with confidence. Also, the
area under the curve for C2 is greater than C1.

Accuracy =

1

TPR

0 FPR 1

Figure 5.1: Based on the AUC, classifier C2 performs better than classifier C1.

These evaluation metrics are based on the fact that the ground truth is known accurately.
This implies the importance of correct labelling in supervised learning. Therefore, the collected
data is labelled strictly according to the information from experts from the University Hospital
Miinster (UKM).

5.1.1 Intersection over Union

Intersection over union (IOU) is an important evaluation measure used for image segmentation.
It is the ratio between the intersection of actual and predicted image regions and their union.

I0U =

Figure 5.2: Intersection over union metric.
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5.2 Time-series Approach

5.2.1 Evaluation Setup

For the time series approach, the sonograph videos of two patients were used. The two patients
had tumors at different stages. Figure[5.3|shows frames from the songraphy of the two patients.

Patient 1 Patient 2

Figure 5.3: Tumors of two patients at different stages of HCC.

We received information about the tissues present in the videos from the physicians. The
information received is shown in figure[5.4]

Patient 1 Patient 2

Figure 5.4: Tissues marked as per information from physicians.

Hence, we labelled the frames with four classes. Figure [5.5]shows the classes for a frame
of patient 1. This is a rather simple example. In majority of the frames, multiple rectangles had
to be used to mark a class.

¢ Class 0- This class denotes the dead tissue. It corresponds to the highly affected area
¢ Class 1- Also part of the tumor tissue.
¢ Class 2- Area not part of the sonograph. Pixels that are in the black bounding regions.

¢ Class 3- This class marks the normal tissue.
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Bounding boxes:

Figure 5.5: Example of the four classes marked on a sonograph frame. The class label and the rectangle coordinates
are listed on the right. Each color signified a class.

In the classification results we use the color encoding shown in figure[5.6|to mark the classes
identified.

Shading Class Description

i Class0 Dead tumor tissue
Class1 Part of tumor tissue

(transparent) Class 2 Boundaryregions. Outside area ofinterest.
Class3 Normal tissue.

Figure 5.6: The color encoding used when classifying the frames.

Labelled ultrasound videos of two patients were used to train different models using the
time series features extracted. The features that were extracted are listed in table 4.2]in section
M.2.1] We first built idiosyncratic models for each patient and then combined the videos to build
a single model for both patients. The results of the various algorithms applied are presented in
this section.

5.2.1.1 Combining Videos

Combining patient videos of different sizes together can increase the bias in the data. The
model can be biased towards the videos with more number of frames. As of the above chosen
patients, patient 1’s sonograph has 404 frames while that of patient 2 has only 202 frames. One
method to not introduce unnecessary bias is truncation. We adopt this technique in the current
study. Notable advantages of truncation are ease of implementation. We simply look at only as
many frames as present in the shortest video. This makes it a viable option when combining a
large number of videos. However, truncation comes with its drawbacks- loss of information. In
scenarios where the sonographs are long, the initial frames usually have no CEUS information.
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Hence, truncating from the beginning of videos is not a very good idea. To overcome this, a
section of the video with highest CEUS information can be chosen. Although this introduces
human bias when “selecting” the most important section, it prevents using frames carrying low
information. Another method that can be used is interpolation. Although it prevents loss of
information, the method can be cumbersome when combining multiple videos. Also, new data
is highly dependent on the goodness of the interpolation function.

As in our current experiment, we are looking at only two patients, we chose the truncation
method and truncate the video of patient 1 to 202 frames starting from the first. Hence, the
combined video consists of 404 frames. As we look at 4 representative pixels per frame; one
corresponding to each class, the total number of training instances from the combined data are
1616. As for patient 2 alone, we train with 808 instances (202 frames * 4 classes). On the other
hand, models with trained only with data from patient 1 work with 1616 instances (404 frames
* 4 classes).

5.2.1.2 Single Patient Models

The models that are trained on single patients can be mistakenly thought to not be ”generalized”.
However, it is to be noted that the models are trained with pixels and not frames. The training
“pixels” are only 4 per frame- one corresponding to every class of tissue described earlier.
While testing, all the pixels of every frame are looked at. Hence, the models for single patients
are certainly not meagre memorization”.

5.2.2 Evaluation Results

5.2.2.1 Naive Bayes
Combined

We performed 10 fold cross validation for the model to evaluate its goodness and robustness
to changing training data. The false positive rate is an important measure as misclassifying a
non tumor tissue as tumor is highly undesirable. The weighted false positive rate is 0.16. The
weighted prediction rates observed are summarized in table [5.1]

Weighted True Positive Rate | Weighted False Negative Rate

0.49 0.50
Weighted False Positive Rate = Weighted True Negative Rate
0.16 0.83

Table 5.1: Classification rates for the Naive Bayes classifier on combined data from 2 patients.

We also look at the confusion matrix for class O which we denote the tumor tissue by as a
measure of goodness of the classifier. The confusion matrix for the class O generated during the
10 fold cross validation is shown in table[5.2] The false positive rate is low at 0.15. However,
the true positive rate also drops to 0.29. The effect of this is reflected in the predicted images in
figures and which fail to identify the tumor tissues.

Further, the kappa static which is a better measure than accuracy is 0.32. It is found that
50.3% of the cases are incorrectly predicted with a low weighted precision and weighted recall
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Tumor Mot Tumor

Tumor 121 283
Not Tumor 193 1019

Table 5.2: Confusion matrix for tumor tissue labelled class 0.

of 0.55 and 0.49 respectively. Moreover the weighted AUC was observed to be 0.75 while that
of tumor class 0 was 0.62 as shown in figure

Plot (Area under ROC = 0.6289)

Figure 5.7: Area under ROC for Naive Bayes model on the combined data of two patients for tumor class (class
0).

Patient 1

The Naive Bayes classifier trained with time series features of the CEUS brightness in the
sonograph video of patient 1 has a kappa statistic of 0.34. It predicts incorrectly 49.3% of
times. The weighted precision and weighted recall are 0.51 and 0.50 respectively. On the other
hand, the weighted false positive rate is seen to be 0.16 like the combined model. The weighted
AUC is 0.84 which is much higher than the combined videos’ Naive Bayes classifier. The
confusion matrix for tumor tissue is shown in figure 5.8] The false positive rate for the tumor
class is stands at 0.18 which is a little high in comparison to the combined model.

Tumor MNot Tumor

Tumor 182 222
Not Tumeor 219 993

Figure 5.8: Confusion matrix for the tumor class in Naive Bayes classifier built with patient 1’s data.

Patient 2

The classifier trained with the CEUS video of patient 2, shows a hight correct prediction rate
percentage of 68.19% and kappa statistic of 0.58. The weighted false positive rate drops to 0.11
and the weighted AUC is 0.83. The confusion matrix for class tumor is shown in figure[5.9] We
calculate that the false positive rate for this class is 0.02.
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Tumaor Not Tumor
Tumor 163 39
MNot Tumor 10 596

Figure 5.9: Confusion matrix for the tumor class in Naive Bayes classifier built with patient 2’s data.

Summary

In the model trained on the combined data from the two patients, the performance of the model
on both patients is found to be rather poor. When tested with patient 1’s data, the model iden-
tifies tissues belonging to class 3 (representing normal tissues, encoded in red) correctly as

shown in However, the other results of the other classes are poor and the results do not
improve as the number of frames seen increases.

Frame 1

Frame 50

Frame 100

Combined Patient 1 Only

Figure 5.10: Frames of patient 1’s CEUS video as segmented using the Naive Bayes model trained with combined
data and data only from patient 1.

As for patient 2’s sonograph, although the dark parts in the boundary of the image are rightly
classified as class 2, the model identifies the majority of the frame as class 1 - part of the tumor.
Figure [5.11] shows the same.

Overall, the individual patient model for patient 1 not seem to be much better than the
classifier trained on the combined data of two patients both in terms of segmented test frames
and in terms of cross validation statistics. The model rained on patient 2’s data alone, shows
significantly lower false positive rates. The 10FCV statistics are summarised in table[5.3]
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Frame 1

Frame 50

Frame 100

Combined Patient 2 Only

Figure 5.11: Frames of patient 2’s CEUS video as segmented using the Naive Bayes model trained with combined
data and data only from patient 2.

Data % Correct %Incorrect Kappa Weighted AUC WTP WFN WFP WTN WPrecision WRecall

Combined 49.69 50.31 0.33 0.75 0.5 05 017 0.83 0.56 0.5
Patient 1 50.68 49.32 0.34 0.85 051 049 0.16 0.84 0.51 0.51
Patient 2 68.19 31.81 0.58 0.83 068 032 011 0.89 0.73 0.68

Table 5.3: Evaluation statistics for the Naive Bayes Classifier.

5.2.2.2 J48 Decision Tree

The decision trees are generated for training data from patient 1, patient 2 and both combined.
The three cases are discussed below.

Combined

The decision tree classifier trained on the combination of two patients’ data is shown in figure
5.12]

The 10FCYV results in a weighted AUC of 0.91 and a tumor class AUC of 0.87 as shown in
figure [5.13] 79.08% instances are correctly classified by the classifier. The weighted precision
and recall values are 0.88 and 0.79 respectively. Owing to which, the kappa statistic is also
hight at 0.72. The model also shows a low weighted false positive rate of 0.07. However,
the confusion matrix of the tumor class in figure [5.14] shows that the true positives and false
positives are quite similar in number. Hence, pointing towards a classifier that just “guesses”
the tumors.

Patient 1

The decision tree generated for patient 1 is visualized in figure [5.16] The differentiating fea-
tures, providing the most information gain are identified to be “aboveMean” and "belowMean”.
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Plot {Area under ROC = 0.8729)

1

Figure 5.13: AUC of the tumor class (class 0) for combined data using the J48 Decision tree.

Tumor Mot Tumor

Tumor 200 204
Mot Tumor 2 1210

Figure 5.14: The confusion matrix for the tumor class.

These correspond to the number of instances with CEUS brightness values above and below the
mean respectively.

The model classifies 75% instances correctly. It demonstrates weighted precision and recall
of 0.75 each. The kappa statistic lowers to 0.66. As for the confusion matrix of the tumor class,
the prediction rates are not very different from the combined model. The confusion matrix for
the tumor class is shown in figure[5.13]

Tumor Not Tumor

Tumor 240 164
Not Tumor 244 968

Figure 5.15: The confusion matrix for the tumor class with the J48 decision tree classifier on patient 1’s data.
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Patient 2

The decision tree generated with only patient 2’s data is rather short owing to the few frames in
the sonograph of the patient. The tree is visualized in figure[5.18]

The classifier achieves a hight correct prediction percentage of 81. The weighted precision
and recall are also high; both being 0.81. As expected, the kappa statistic is also high at 0.75.
Further, the confusion matrix of the tumor class shows high true positives and tru negatives and
low false positives and false negatives. The numbers are shown in figure The weighted
false positive rate is also low at 0.06.

Tumor Not Tumeor

Tumor 201 1
Mot Tumor 3 603

Figure 5.17: The confusion matrix for the tumor class with the J48 decision tree classifier on patient 2’s data.
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Summary

For both patient 1 and patient 2, the J48 decision tree classifier does not perform very well. As
shown in figure[5.19] the model trained with only patient 1 data does not identify the boundaries
and wrongly classifies class 0. While on the other hand, the comboned model rightly identifies
the boundary class 2 but a majority of the frame is classified as part of tumor (class1). Hence,
the classification quality is poor.

Frame 1

Frame 50

Frame 100

Combined Patient1 Only

Figure 5.19: Frames of patient 1’s CEUS video as segmented using the J48 Decision Tree model trained with
combined data and data only from patient 1.

The model trained with the combination of data from the two patients and one trained only
with patient 2’s data, both identify the boundaries well but show weak classification results for
the tissues. This is shown in figure [5.20] where majority of the tissue is classified as part of
tumor (class 1) in blue.

The decision tree algorithm is known to overfit. Hence, it usually produces a high accuracy.
This is reflected in the kappa statistic of the classifiers. Also the false positives are found to be
unreasonably low.

The evaluation statistics captured during the 10FCV on the three types of training data used
for the J48 decision tree classifier are summarized in table[5.4] This is an example of why we
can not evaluate a solely model based on the performance statistics and that we require human
evaluation in place.

Data %Correct %Incorrect Kappa Weighted AUC WTP WFN WFP WTN WPrecision WRecall
Combined 79.08 20.92 72 91 79 21 .07 .93 .88 79
Patient 1  74.69 25.31 .66 92 75 25 .08 .92 75 75
Patient2  81.06 18.94 5 .95 .81 .19 .06 .94 .81 .81

Table 5.4: Evaluation statistics for the J48 Decision Tree Classifier.
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Framel

Frame 50

Frame 100

Combined Patient 2 Only

Figure 5.20: Frames of patient 2’s CEUS video as segmented using the J48 Decision Tree model trained with
combined data and data only from patient 2.

5.2.2.3 Random Forest
Combined

The random forest classifier trained with the combined data of two patients produces a weighted
AUC of 0.84. The AUC for the tumor class is 0.75 as shown in figure [5.21} The classifier
correctly classifies 68.13% instances. It has weighted precision and recall of 0.7 and 0.68

respectively. The weighted false positive rate also stays low at 0.11. The kappa statistic is
found to be 0.58.

Plot (Area under ROC = 0.751)
1

Figure 5.21: The area under ROC is 0.75 for the random forest classifier trained on data from two patients for
tumor class (class 0).

The confusion matrix corresponding to the tumor class is shown in figure[5.22] We observe
that the false positive rate is a low 0.09. Low false positive rates were also observed for the J48
classifier.
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Tumor Not Tumor

Tumor 201 203
Not Tumor 113 1099

Figure 5.22: The confusion matrix for the tumor class with the random forest classifier on combined patient data.

Patient 1

The weighted AUC of the random forest classifier trained on patient 1’s data is 0.84 while the
AUC for tumor class (class 0) is 0.67. The weighted precision and recall drop to 0.52 each.
As a result the kappa statistic also drops. It is found to be 0.37. The percentage of correctly
classified instances also reduces to 52.5. The confusion matrix for class tumor is shown in
figure[5.23] The number of false positives is seen to rise. Consequently, the false positive rate
increases to 0.31.

Tumor Not Tumor
Tumor 17 387
Not Tumor 381 | 831

Figure 5.23: The confusion matrix for the tumor class with the random forest classifier on patient 1’s data.

Patient 2

The false positive rate is seen to be low again for the model trained with patient 2’s data alone.
The confusion matrix is shown in figure [5.24] and results in a false positive rate of 0.1. While
the AUC for the tumor class is 1, the weighted AUC is 0.94 and the the weighted precision and
recall are 0.7 each. The kappa statistic is seen to increase to 0.6. The effect of this is reflected
in the percentage of correctly classified instances that raises to 70%.

Tumeor Not Tumor

Tumor 202 0
Not Tumor 2 604

Figure 5.24: The confusion matrix for the tumor class with the random forest classifier on patient 2’s data.

Summary

Figure[5.25|shows the resulting classifications from the random forest classifier trained with the
combination of patient data and with only patient 1’s data. The model trained on the combined
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data identifies the boundaries well but does not do well in identifying the tumor tissues. On the
other hand, the model trained with only patient 1’s data identifies few pixels of tumor class 0
correctly and again most of the frame is classified as part of tumor tissue belonging to class 1.
However, the model is quite unsure about the boundary class.

Frame 1

Frame 50

Frame 100

Combined Patient 1 Only

Figure 5.25: Frames of patient 1’s CEUS video as segmented using the Random Forest model trained with com-
bined data and data only from patient 1.

As for patient 2, the classification results are shown in figure The classification is
not informative as majority of the image is classified as class 1- part of the tumor tissue. The
boundaries are identified much better in the combined model than in the model trained with
data from patient 2 only.

Normal Not Normal

Normal 82 120
Not Normal 120 486

Figure 5.26: The confusion matrix for the normal tissue class - class 3, with the random forest classifier on patient
2’s data.

The confusion matrix of the model trained only on patient 2’s data has a high number of
true positives and true negatives. The number of false positives and false negatives are low.
This directs us to assuming that the predictions should be good but as seen, this is not the case.
This can be understood with the confusion matrix of class 3 shown in figure [5.26] The false
negative rate is high at 0.59. This means that majority of pixels not belonging to class 3 are
wrongly classified as being class 3.

The 10FCV evaluation statistics are summarized in table 5.3
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Frame 1

Frame 50

Frame 100

Combined Patient 2 Only

Figure 5.27: Frames of patient 2’s CEUS video as segmented using the Random Forest model trained with com-
bined data and data only from patient 2.

Data % Correct %Incorrect Kappa Weighted AUC WTP WFN WFP WTN WPrecision WRecall

Combined 68.13 31.87 .58 .84 .68 32 11 .89 7 .68
Patient 1 52.48 47.52 37 .84 52 48 .16 .84 52 52
Patient 2 70.05 29.95 .6 .94 i 3 .1 9 7 i

Table 5.5: Evaluation statistics for the random forest Classifier.

5.2.2.4 Sequential Minimal Optimization
Combined

The classifier built with the combined data of two patients has a AUC of 0.69 for tumor class 0
as shown in figure [5.28] while the weighted AUC is 0.8. The weighted false positive rate is low
at 0.13. The model classifies instances correctly in 62.4% cases. The kappa statistic is quite
average at 0.5. The weighted precision and recall are 0.65 and 0.62 respectively.

The confusion matrix corresponding to the tumor class 0 is shown in figure [5.29] The false

Plot (Area under ROC = 0.6998)

P e

Figure 5.28: The area under ROC is 0.69 for the tumor class 0 using the SMO classifier trained on data from two
patients.
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positive rate looks good at 0.08. However, the false negative rate is quite high a 0.69 indicating
that the model is not sure about the actual tumor class and predicts it as non-tumor many times.

Tumeor Mot Tumor

Tumor 124 280
Not Tumor 103 1109

Figure 5.29: The confusion matrix for the tumor class with the SMO classifier on combined patient data.

Patient 1

As for the model trained with data only from patient 1, a weighted AUC of 0.89 is observed.
The AUC for the tumor class 0 is 0.82. The kappa static increase marginally to 0.57 and the
model classifies 67.88% instances correctly. Both weighted false positive and false negative
rates drop. The weighted precision and recall increase to 0.68 each. The confusion matrix of
the tumor class 0 shown in figure[5.30]indicates that the false positive rate has increased to 0.17
and the false negative rate has dropped to 0.56.

Tumor Not Tumor

Tumor 178 226
Not Tumor 208 1004

Figure 5.30: The confusion matrix for the tumor class with the SMO classifier data from patient 1.

Patient 2

The classifier trained with patient 2’s data is found to correctly classify 77.35% instances. This
is reflected in the kappa statistic which is 0.7.

Tumor Not Tumor

Tumor 202 0
Mot Tumor 39 567

Figure 5.31: The confusion matrix for the tumor class with the SMO classifier data from patient 2.

The weighted precision and recall also increase to 0.82 and 0.77 respectively. The weighted
AUC is 0.89 while the AUC for tumor class 0 is a whooping 0.97. The weighted false negative
and false positive rates are also low at 0.23 and 0.08 respectively. The confusion matrix of
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tumor class 0 shown in figure[5.3T|shows that actual tumor class was always predicted correctly.
Hence, the false negative rate is 0. However there were a few non-tumor instances predicted as
tumors. This false positive rate was low at 0.06.

Summary

The overall 10FCV evaluation metrics for the three training cycles are shown in table[5.6] The
AUC for the tumor marked as class O is seen to be higher for models trained on individual
patients than the combined model. This is also reflected in the segmented images that are
generated in figures [5.32] and [5.33] The boundaries are identified better in the model with
combined patient data.

Frame 1

Frame 50

Frame 100

Frame 200

Combined Patient 1Only

Figure 5.32: Frames of patient 1’s CEUS video as segmented using the SMO model trained with combined data
and data only from patient 1.

Data % Correct %Incorrect Kappa Weighted AUC WTP WFN WFP WTN WPrecision WRecall

Combined 62.44 37.56 5 8 .62 .38 .13 .87 .65 .62
Patient 1 67.88 32.12 57 .89 .68 32 11 .89 .68 .68
Patient 2 77.35 22.65 i .89 77 .23 .08 92 .82 a7

Table 5.6: Evaluation statistics for the SMO Classifier.
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Frame 1

Frame 50

Frame 100

Combined Patient 2 Only

Figure 5.33: Frames of patient 2’s CEUS video as segmented using the SMO model trained with combined data
and data only from patient 2.
5.2.2.5 Similarity based - k Nearest Neighbours

Combined

The tumor class (class 0) shows an AUC of 0.72 as shown in figure [5.34] The weighted AUC
of the classifier on the combined data of the two patients is 0.77.

Plot (Area under ROC = 0.7219)
1

Figure 5.34: The area under ROC is 0.72 for the tumor class 0 using the kNN classifier trained on data from two
patients.

Tumor Mot Tumor
Tumor 84 472
Not Tumeor 12 1654

Figure 5.35: The confusion matrix for the tumor class with the kNN classifier on combined patient data.
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The weighted false positive rate is low at 0.14. However, the weighted false negative rate
is is relatively high at 0.41 implying that the classifier is poor in identifying tumor tissues.
The weighted precision and recall ate 0.76 and 0.59 respectively. The confusion matrix for the
tumor class 0 is shown in figure[5.35]

Patient 1

In terms of the AUC of the tumor class, the model trained on patient 2 does not show major
difference. The AUC of class 01s 0.73. The weighted AUC also increases to 0.79. The weighted
false positive and weighted false negative rates also do not change a lot and are 0.17 and 0.5
respectively. The confidence matrix of tumor class 0 observed is shown in figure [5.36

Tumor Not Tumor

Tumor 341 38
MNot Tumor 521 615

Figure 5.36: The confusion matrix for the tumor class with the kNN classifier data from patient 1.

Patient 2

As for patient 2, the confusion matrix for the tumor class (class 0) is shown in figure

Tumaor Mot Tumor
Tumeor 84 93
Mot Tumor 27 503

Figure 5.37: The confusion matrix for the tumor class with the k-NN classifier data from patient 2.

Summary

Figure [5.38] shows the results of classification by the k-NN model trained with combination of
patient data and only patient 1’s data. The combined model performs better at identifying the
boundaries but does poorly at classifying tumors.

As for patient 2, the combined model again identifies boundaries well and also does well
on the tumor tissues. The individual classes are very well classified by the k-NN classifier on
patient 1. Notably, the model trained on patient 1’s data only, produces better results for the test
frames in this case. The classification outputs are shown in figure [5.39]

The summary statistics from the 10FCV of the different training data are shown in table[5.7]
The correctly classified instances in the first two cases is 50%. This indicates that the classifier
simply guesses and is rather poor. This is seen to improve when trained only with patient 1’s
data but is still low in comparison to other classifiers.
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Frame1

Frame 50

Frame 100

Combined Patient 1 Only

Figure 5.38: Frames of patient 1’s CEUS video as segmented using the k-NN model trained with combined data
and data only from patient 1.

Frame 1

Frame 50

Frame 100

Combined Patient 2 Only

Figure 5.39: Frames of patient 2’s CEUS video as segmented using the k-NN model trained with combined data
and data only from patient 2.

Data % Correct %Incorrect Kappa Weighted AUC WTP WFN WFP WTN WPrecision WRecall

Combined 58.82 41.18 45 17 .59 41 .14 .86 76 .59
Patient 1 59.8 40.2 46 79 .6 4 13 .87 .67 .6
Patient 2 59.69 40.31 46 5 .6 4 13 .87 1 .6

Table 5.7: Evaluation statistics for the k-NN Classifier.
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5.2.2.6 Discussion

We trained classifiers on the CEUS data of two patients both individually and using a combina-
tion of the two. Various evaluation metrics were discussed in the previous sections. We looked
at the weighted metrics and also the metrics pertaining specifically to the tumor tissue (class 0).
We now rank the classifiers based on the weighted AUC, tumor class AUC and percentage of
correctly classified instances. Table [5.8]ranks the classifiers trained on the combination of data
from the two patients.

Algorithm AUC - Tumor Class Weighted AUC % Correct
j48 0.87 0.91 79.08
Random Forest 0.75 0.84 68.13
Sequential Minimum Optimization 0.69 0.8 62.44
k-NN 0.72 0.77 58.82
Naive Bayes 0.62 0.75 49.69

Table 5.8: Classifiers trained on combined patient data ranked by performance after IOFCV.

As for the models trained on individual patients, J48 decision tree and SMO are seen to
have the best performance in terms of the weighted AUC. However, the classification results
produced look much better for SMO classifier for both patients. The k-NN classifier performs
specially well for patient 1.

Algorithm AUC- Tumor Class Weighted AUC % Correct
Sequential Minimum Optimization 0.82 0.89 67.88
748 0.83 0.92 74.69
k-NN 0.72 0.79 59.8
Random Forest 0.67 0.84 52.48
Naive Bayes 0.81 0.85 50.68

Table 5.9: Models trained on patient 1 ranked by performance.

Algorithm AUC- Tumor Class Weighted AUC % Correct
j48 0.99 0.95 81.06
Sequential Minimum Optimization 0.97 0.89 77.35
Random Forest 1 0.94 70.05
Naive Bayes 0.98 0.83 68.19
k-NN 0.71 0.75 59.69

Table 5.10: Models trained on patient 2 ranked by performance.

When training, it is observed that models with the combined data do not perform much
worse than those trained on individual patients. Given the case, it is better to train models
on combined patient data as it is more generalized. However, the data preparation step would
then need to include and additional step for the combination. Figures[5.40and [5.41] shows the
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classification results on selected frames for patient 1 and patient 2, respectively, produced from
the models trained with combination of data from the two patients.

Framel

Frame 50

Frame 100

Frame 200

Naive Bayes  J48 Decision Tree Random Forest SMO K-NN

Figure 5.40: Frames of patient 1’s CEUS video as classified by various classifiers rained on combined data from
two patients.

Framel

Frame 50

Frame 100

Naive Bayes 148 Decision Tree Random Forest

Figure 5.41: Frames of patient 2’s CEUS video as classified by various classifiers rained on combined data from
two patients.

5.3 Deep Learning Approach

5.3.1 Evaluation Setup

As in the time-series approach, we also combined videos of patients for the convolution neural
network based learning. In this experiment, the data from 4 patients was used. The shortest
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among the 4 sonograph videos had 163 frames. We truncate the other videos to select the first
163 frames from them. Hence, the total data size is 652 frames. However, since hand-labelling
652 images is tedious we chose a total of 193 images from the first 163 frames of the 4 videos.
These were labelled and constituted the training set along with their augmentations as described
in section[4.3.2] To train the U-net, masks are created based on the information received from
the physicians. The masks vary per frame for each patient. However, they are exactly the same
for the US and CEUS components in a single frame. Figure [5.42] shows one frame from each
patient, the corresponding annotated image and the mask generated with that information.

Smoothened
frames

Annotated
frames

Masks

i 4
[ f i
Wi e

Patient 1 Patient 2 Patient 3 Patient 4

Figure 5.42: Examples of masks generated for the four patients on selected frames.

Further, the pixel values were normalized to lie in the range [0, 1| and the data was divided
into training and test set. The training images were augmented as explained in section 4.3.2

5.3.2 Evaluation Results

The U-net was trained for 5 epochs of 2000 steps per epoch. We ran the network on CPU with
32 GB RAM. The training lasted 5 days. The progress of the accuracy over the epochs trained
is plotted in figure The trained U-net displayed and accuracy of 97.13

Also, the binary cross entropy loss used was monitored throughput the training phase and
has a final value of 0.09.

Accuracy is an evaluation metric with high variance. Hence, we can not base the goodness
of the network solely on accuracy. Therefore, the intersection over union (IOU) score is also
calculated for the U-net trained trained. The IOU score achieved is 95.89%.
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Figure 5.43: Accuracy of the network during training. The final accuracy is
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Figure 5.44: Binary crossentropy loss of the network during training. The final loss is
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5.3.2.1 Visualizing results

The U-net was trained with masks corresponding to each frame. Hence, when the test frames
were run, the output of the U-net was masks. These masks were then overlaid on the test frames
to generate the final output. Some examples of final results are shown in figure

Patient 2 . '. | -. -. m -

Patient 3

ctual Masks/Labels Predicted

Patient 45

Figure 5.45: Four actual test frames, marked labels and final results from the U-net for the four patients.

Since the data was labelled such that the masks on the CEUS and US side of a frame were
always the same, in some cases when there is no CEUS image, masks are still marked. This is
beneficial as the network inherently learns features even when the CEUS parts are absent. The
result of this is seen in patient 2’s predictions in figure[5.45] The CEUS side is only beginning
to appear but the network is already able to identify major dead tissue cells.

5.4 Summary

The various machine learning techniques applied have been extensively compared and dis-
cussed in this chapter. We looked at various evalion metrics to compare the performance of
the models trained. In terms of observed predictions, SMO and k-NN are found to be the top
performers. They also show an high AUC close to 1. However, in terms of traditional metrics
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like accuracy and percentage of correctly predicted instances, tree based algorithms- J48 and
random forest show better numbers. This is explained by their nature to overfit training data.

The U-net trained is seen to produce good results and it identifies tissues not readily visible
to the human eye with its extensive feature generation. It is observed that the deep learning
method produces excellent results with fewer data having more variability among patients. We
achieved an IOU of 95.89% on the CEUS videos of 4 patients combined.

In comparison, the results of the deep learning model are found to be much better than the
machine learning approach based on time-series. However, the good results are obtained at the
cost of long training time and availability of decent hardware to run the network. The training
time of the machine learning algorithms is shorter than the U-net.

5.5 Future Work

Although the analysis and algorithms used have been discussed in depth, we believe there is a
lot of scope for further work on this topic.

In terms of the data, in the current experiment, we worked with the CEUS scans of 5 pa-
tients. However, we could broaden the scope and include scans from more patients to increase
the range of training domain even more. This would require labelling a larger set of frames;
translating directly to more man hours. Further, at present we only collect data from a single
ultrasound machine - GE Healthcare Logiq E9, using one particular contrast agent - SonoVue.
One might think using data from multiple machines would also promote the robustness of our
scheme. However, we would not claim so because

1. each machine uses ultrasound waves of different frequencies and also the inbuilt logic
and hardware affect the final scan, for instance, in terms of output color scheme.

2. every contrast agent enhances the tumors and normal tissues separately but the duration
and intensity of enhancement vary within contrast agents.

Hence, we would want to increase the number of patients being considered while training
but restrict to one machine and one contrast agent. However, the process of data collection
and labelling can be made decentralized across hospitals to further promote research on the
topic. The positive effects of creation of a good data source, especially for images has been
well established with the creation and popularization of the ImageNet data source by Jia Deng
et al. [44] in 2009.

With respect to the algorithms experimented with, in this thesis we only study one deep
neural network architecture - U-Net’s performance on the dataset. There are other architectures
like recurrent neural networks (RNN) a combination of RNN and CNN [89] that can be tested
on the dataset. Furthermore, the bottleneck of labelling data could be reduced by evaluating a
unsupervised learning scheme using long short term memory (LSTM) networks [75]].
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State of the Art

6.1 Computer Aided Diagnostics

Shamir et al. [69] analyze available pattern recognition (PR) approaches for microscopy im-
age analysis. Instead of concentrating on a particular organ or imaging technique used, they
identified 4 general steps that most PR approaches have in common. As a first step, these algo-
rithms select a region of interest (Rol). This can be done manually but this often introduces bias
and leads to inconsistency. Hence, automatic Rol selection is preferred in most cases. Other
widely used methods for ROI detection include global thresholding [93]], watershed algorithms
[87], [52]], [64], model-based segmentation [30], and contour methods [88]. Li et al. [S0] use
automatic edge detection to segment regions of interest.

As a second step, the algorithms summarize pixel data to extract more information on image
content using feature extraction. These algorithms are usually very general in that they can
operate on any set of pixels without specifying any parameters. However, since we are focused
on CEUS scans of the liver in this work, we add features specific to this imaging technique too.

The next step analyzed by Shamir et al. [69] is Feature Selection and Classification. As
for Feature Selection, it can be done using filters, wrappers or embedded techniques. In filter-
ing, statistical methods are used to compare features and select the most discriminating ones.
The feature selection is blind to the classification algorithm to be applied. On the other hand,
in wrapping features are selected based on their performance in the classifier being applied.
Hence, the feature selection is aware and dependent on the classifier. In the embedded feature
selection technique, feature selection is done as part of the classification process by the classi-
fier. This is done in decision tree classifiers and is less computationally intensive than wrappers.
The paper however, does not present an elaborate analysis on the landscape of classifiers ap-
plicable but instead concentrates on the Support Vector Machine (SVM) classifier. The authors
found that for the microscopic image analysis, the number of classes are usually in the order of
a few thousands and SVM is the only classifier that is moderately tested in literature. However,
at the macroscopic analysis of biological images, classifiers including Random Forests [38],
Bayes Classifier [35] and Artificial Neural Networks [72] have been used.

The final step of the PR approach to image analysis is interpreting the classification output
and evaluating the goodness of the applied classification algorithm. Accuracy of a classifier,
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defined as the ratio of correctly classified test images by the total number of images tested, is
one metric to measure its goodness. However, depending on the set of images used for training
and testing, accuracy can be biased. To avoid this, cross-validation is used and the training
and testing sets are randomly shuffled and the classifier accuracy is measured in multiple runs.
Still, Shamir et al. [69] rightly argue it might be possible that the accuracy does not have any
biological meaning. More often than not, labeling of classes is manual. This is a major cause
of bias. Further, the equipment used for imaging also adds some bias. In most cases, labeling is
aided by the features generated or by looking at a processed image rather than raw. Therefore,
the artifacts influence class assignment while labeling. Hence, it is possible that the classifier
has very high accuracy but this is only due to the way the training data is labeled. It might be
far away from the biological truth. It is therefore important to ensure that the data collection
and labeling is unbiased. Another measure of classifier goodness is the confusion matrix or the
error matrix. The matrix summarizes the True Positives and True Negatives, that is the number
of times a test image’s class was correctly predicted. Additionally, it provides information
about the False Positives and False Negatives. Each of which happens when the test image
belongs to one class and the classifier predicts it to belong to another class. The dimension
of the confusion matrix reflects the number of classes in the classification problem. A binary
classification problem has a 2 x 2 confusion matrix. A n-class classification problem has a n x
n confusion matrix. The confusion between a pair of classes also gives an estimate about their
similarity. This is also used for biological analysis [69].

Partly, we also follow this 4 step approach to classify normal tissues and lesions within
CEUS data collected. Rols are identified by the radiologists and tissues are labeled by them.
Based on a considerably sized training set, we generate feature vectors per pixel per frame.
We test tree based classifiers - J48 Decision Tree, Hoeffding Tree and Random Forest, with
embedded feature selection among other classifiers on the training sets. The other classifiers we
test include Naive Bayes, Sequential Minimal Optimization (SMO) and k- Nearest Neighbours
(kKNN). We perform 10 fold cross validation on all models trained to evaluate their performance.

Ghose et al. [38] propose an approach to prostate gland segmentation based on building
multiple mean parametric models derived from principal component analysis of shape and pos-
terior probabilities in a multi-resolution framework. They work with 126 ultrasound images of
the prostate gland taken from different positions of the transducer. They use supervised learn-
ing to build a Random Forest classifier to determine the posterior probability of a pixel being
prostate. As a second step, they build a statistical shape and appearance model. On this front,
the authors build a point distribution model (PDM) by equal-angle sampling of the prostate
contours to model shape and use the active appearance model (AAM) from [3]] for appearance
modeling. They apply principal component analysis of the PDM and AAM to identify prin-
cipal modes of variation in shape and appearance. Motivated by central limit theorem which
states that a non-Gaussian distribution can be better approximated by multiple Gaussians, the
authors use multiple mean Gaussian models of shape and appearance. The authors use prostate
segmentation evaluation metrics - Dice Similarity Coefficient (DSC) , 95% Hausdorff Distance
(HD), Mean Absolute Distance (MAD), specificity and sensitivity to evaluate their method. In
this work, for the machine learning experiments, instead of an explicit shape detector, edge
detection is leveraged. Canny edge detection algorithm is chosen because it also suppresses
noise. This algorithm is applied at the training step and the edge information is then a part of
the feature vector used for classification. In the deep learning part of our experiment, all feature
generation and selection is embedded in the convolution network architecture used. Like Ghose
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et al. [38] we also use specificity and sensitivity to evaluate our models. In addition we use the
area under ROC and intersection over union (IOU) metrics too.

Shiraishi et al. explain a non-grid image warping technique for temporal subtraction
of consecutive scan images. Temporal subtraction leads to improved identification of anoma-
lies. An example is illustrated in figure[6.1} The authors built a University of Chicago approved
CAD system allowing radiologists to generate temporal subtraction of two chosen images. This
was integrated with the picture archiving and communications system (PACS) being used. The
overall scheme of the implemented system is described in figure[6.2] The authors worked with
the CT scans of patients repeated successively over periods of time. They developed non-linear
image warping for the non-rigid image matching needed. This was done to accommodate pa-
tient movement or equipment misplacement resulting in changed angles or positions of subject
in the resulting images. They marked regions of interest (Rol) based on tissues being observed
and shifted the x,y coordinates of the image based on the cross-correlation values of the Rol in
the comparison source image. However, in this thesis, we work with CEUS videos of patients.
A patient video consists of upto 1147 frames. Hence generating this non-linear warping for ev-
ery frame in two consecutive videos given the Rol shift is not feasible. Moreover, we currently
do not have the consecutive scan data for patients available at hand.

Previous
image image

Temporal
subtraction
image

Figure 6.1: Temporal subtraction applied to the chest radiographs aids identification of a lung mass progression

It is found that Artificial Intelligence through CAD is rapidly disrupting the field of medical
analysis [33]). It has been studied with multiple imaging techniques like Ultrasound, CT, MRI,
CEUS etc,. and also for various organs including lungs by Shiraishi et al. [72], prostate by
Gelet et al. [37], breast by Finette et al. [33], liver by Lerski et al. [48] and Lerski et al. [49].
However, no record of a large scale successful implementation have been found. Additionally,
no resources could be found on the video analysis of ultrasound or CEUS.
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Figure 6.2: Temporal subtraction scheme used in [[72]]

Although there is quite some literature available on image classification, the evaluation is
usually done on in-house data sets [31], [/4] . Lin et al. [S1]] propose a large scale image
classification technique built on Hadoop using the SVM classifier on the largest available image
dataset- Imagenet. They are able to achieve state-of-the-art performance on the ImageNet 1000-
class classification, with 52.9% in classification accuracy and 71.8% in top 5 hit rate. Shiraishi
et al. [[72] use a data set of 58 consecutive bone scans to evaluate their temporal subtraction
approach. Ghose et al. [38] use a total of 125 images comprising of base, central and apex zone
images of the prostate gland to evaluate their supervised learning framework for automatic
prostate segmentation in utrasound images. On the Microscopy analysis front, Guerra et al.
[40] uses a database of 128 pyramidal cells and 199 interneurons from mouse brains to perform
a comparison between supervised and unsupervised classification of neuron cell types. 380+
thermal images were used to compare different compression methods by Schaefer et al. [67].
To provide a scale for comparison, Imagenet consists of more than 14 million images. Hence,
the availability of a centralized large scale medical image dataset in general and for specific
organs of interest is scarce and limits application and validation of various image classification
and segmentation techniques for systems like CAD.

6.2 Image Segmentation and Classification

Image segmentation plays a fundamental role in understanding image content for searching
and mining in medical image archives and automated segmentation also aids diagnosis. Image
segmentation is the task of grouping similar regions of an image together. Usually these regions
are defined by the pixels constituting the image. Hence, pixels that are similar are grouped in
one segment. Image Classification additionally assigns labels to identified similar pixels.
Sharma and Aggarwal [[70] work with MR and CT images with the aim of segmentation
and classification for aiding study of anatomical structure, identifying region of interests (eg.
lesions) and measuring tissue volume to estimate tumor growth in order to help in treatment
planning. The authors use different methods for segmentation and also list out the various
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possible methods for classification.

For image segmentation, the authors work with gray scale features only. They use features
generated , per image, using each of the below listed techniques individually. Figure[6.3|shows
the results of the segmentation techniques listed.

¢ Pixel Amplitude Histogram: A histogram of all pixels in the image with their correspond-
ing values is built. Similar pixels are placed together in bins and a threshold is applied to
detect a region. It is particularly suitable for an image with region or object of uniform
brightness placed against a back ground of different color. The results of this technique
are highly dependent on set threshold.

o Edge Detection: The image is segmented by the detection of edges or borders present.
Again thresholds are set to define edge-strength based on number of segments expected.
The limitations of this technique include its strong fluctuations with noise and misleading
segmentation caused by weak or fake edges detected.

¢ Region Based: In this method seeds are placed and regions consisting of “similar” pixels
are built around the seeds. The definition of "similarity” can be implementation specific.
The drawback of this technique is that the image maybe over or under segmented. The
authors find that one way this challenge can be rectified is by combining region based
and edge detection based techniques.

Figure 6.3: The A) Original Image of an Abdomen CT and its segmentations based on B)Pixel thresholding
C)Edge Detection and D)Region seeds. [[70]

Although the paper focuses on segmentation, Sharma and Aggarwal [70] identify what they
call as textural features which also aid in classification. Texture features include not only pixel
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based values such as intensity, brightness etc,. but also its spatial arrangement in the image.
That is, it combines the tone and structure information into one called fextone. Two approaches
the authors discuss for classification are:

¢ Atlas based segmentation: This approach involves construction of an atlas or look up ta-
ble corresponding to every organ/tissue recording its anatomical features. These methods
perform segmentation and classification in one pass. The limitation however is building
the atlas with exhaustive features per organ, for eventually all organs.

o Atrtificial Intelligence (AI) for segmentation and classification: Both supervised and un-
supervised Al techniques have been used for this purpose. Supervised Artificial Neural
Networks (ANNSs) are self-organizing, adaptive and use training data to solve complex
problems in real-time, courtesy parallel programming. In ANNSs, creating a labeled train-
ing set and training is a bottleneck. Also, the performance is sensitive to training param-
eters and is adversely affected by the presence of noise. Unsupervised methods include
clustering that overcome the bottleneck of training but bring with them another set of
limitations. These include setting algorithm initiation parameters and stopping condi-
tions and that the algorithms are prone to convergence at local minima.

A large number of image classification studies are carried out at the whole image level, that
is by extracting features per image ([69], [35] and [56]), there are special cases where pixel
classification is preferred.

Online et al. [59] adopt a pixel classification technique for skin segmentation. In face or
gesture detection problems, detecting skin in images reduces the search space for objects of
interest, such as faces or hands. The authors use a color pixel classification approach. They
compare the various color spaces including the below channels and their combinations.

¢ RGB: All colors in the image are specified by three primary components: red, blue and
green channels.

o HSV: Colors are described by the hue, saturation and intensity value channels. This color
space is similar to HIS, HLS and HCL.

¢ YCbCr: Colors are specified by the luminance and chrominance channels.

The performance of four classifiers with pixel features extracted in each of the color spaces
is also compared. The classifiers tested are Linear Decision Boundary, Naive Bayes, Gaussian
and Multi-layer Perceptron. The study finds that classifier performance using color spaces with
only chrominance channels are weaker than when all channels (RGB, HSV or YCbCr) are used.
Further, Naive Bayes and Multi-layer perceptron classiffiers are seen to consistently perform
better than the others. Extensions have also been proposed to color spaces. Macaire et al. [S7]]
propose the use of a new hybrid color space that has d dimensions unlike the conventional three
dimensional color spaces.

Deformable models are curves or surfaces that deform under the influence of internal and
external image forces to demarcate object boundary hence segmenting the image. These mod-
els work on an energy minimization problem over the image based on edge or region based
features. They involve no prior training step. Huang and Tsechpenakis [42] describe a new
deformable model called “Metamorphs” that integrates both edge and region based features in
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the energy function together. With the edge energy term Er and the region energy term Er and
a constant k, the Metamorphs energy function, E, is defined as

E =FEp+kER

(a) b {c) (d) 5] (fi

Figure 6.4: The image at various steps in the Metamorphs segmentation model. a) Original Image a brain structure
with a initial selected region of Interest. b) Edges detected using Canny’s edge detection algorithm. c),e) Intensity
likelihood based on the internal energy forces. d) Intermediate evolving model after 15 iterations. f) Converged
model after 38 iterations. [42]

Figure [6.4] shows the iterative steps of the Metamorphs model and its convergence on a
frame of a brain structure. The metamorphs models are not learning based and hence do not
need long training times. However, the result of the model hugely depends on the initialization
and the model is prone to convergence at local minima. Unlike the authors’ work here, we
adopt learning based methods in this thesis. This does require long training time and a large
training set but once the model is trained, the predictions can be very close to real-time. Like
Huang and Tsechpenakis [42]], we also use edge and region based features together.

6.2.1 Pixel-based Machine Learning

Extensive work on both pixel-based and object-based classification has been done. Pixel-based
classification requires a feature vector per pixel in the image for training. On the other hand,
in object-based classification, the image is first segmented together forming multiple joint and
disjoint chunks of similar pixels. The classifier is trained with feature vectors correspond-
ing to these segments. It is widely speculated that the object-based classifiers outperform the
pixel-based classifiers. However, the accuracy of object-based classifiers strongly depends on
the quality of underlying segmentation algorithm [S3]]. With the advancements in computing
technologies, pixel-based machine learning techniques are being experimented with. Suzuki
[78]] survey the various pixel/voxel-based machine learning (PML) used on medical images to
aid diagnostics. These PML techniques can avoid errors caused by inaccurate segmentation or
feature generation. Due to these reasons, the performance of PML is better than object-based
learning in some cases. Another issue with using features per image is the loss of localiza-
tion. When features are summarized per image, their spatial origin is lost. Hence, making
object detection cumbersome. There are three classes of PML algorithms that have been im-
plemented on a variety of medical images- neural filters, convolution neural networks (CNNs)
and massive-training artificial neural networks (MTANNS)

Neural filters are a class of PML algorithms that have been used for image processing. A
filter plays an important role for improving the sensitivity and specificity in CAD schemes. The
application of neural filters include edge-preserving noise reduction [79], edge enhancement
from noisy images [80] and supervised edge enhancing [81]]. The neural filters imply a linear
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artificial neural network model. The input to the neurons are the values of all the pixels in the
neighborhood of the current pixel. The output is the pixel value of the current pixel. The final
output image is formed by combining all the individual pixel values. In the supervised scenario,
the filter is trained with a feaching image corresponding to every train image. The value of the
error function is back-propagated through the ANN to improve its output in every iteration.
The performance of the neural filter is found to be superior to a conventional averaging filter

(Figure[6.5).
(C)

Figure 6.5: (A) A noisy angiogram input. Noise reduction by the (B) neural filter and (C) averaging filter. [78]

The second class of PML algorithms - convolution neural networks (CNNs) are widely
used for image classification to support medical diagnostics. CNNs, responsible for major
breakthroughs in image classification, are the core of most Computer Vision systems today.
They consist of one input and several hidden layers. The layers of the CNN are connected
with convolutions with a local kernel or filter (that are automatically learnt by the CNN in the
training phase). The convolved values calculated, passed to an activation function and sent
through the layers and finally exit the network at the output layer. The input to the CNN are
all the pixel values of the image and the output is the class to which the input image belongs.
However, in this basic implementation, all localization information is lost and object detection
within the image is not possible. Shift-Invariant neural networks are an enhancement of CNN
that produce images as output and not just class labels. Hence, making localization of objects
within an image (eg. lesions) possible.

In Massive training artificial neural networks (MTANNS), The input to the MTANN are the
pixels in a region of the image. The output is the center pixel of the input region (Figurdb.6).
To enrich training samples, multiple overlapping subregions are created in a region and training
is repeated for all pixels in each subregion. Owing to the resulting massive number of train-
ing samples, this class of PML algorithms is appropriately named. The working unit of the
MTANN can be any ML model of choice- feed-forward ANN, Support Vector Machines etc,.
MTANNSs have been successfully applied for image processing, segmentation, classification
and also object detection. In [77] authors develop a supervised filter for the enhancement of
actual lesions using MTANN:Ss for detection of lung nodules in CT. This is also a good technique
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to reduce false positives. Suzuki et al. [84] use MTANNSs to separate bones from soft tissues.
Benign and Malignant lung tumors are distinguished by Suzuki et al. [82]] using MTANNS.
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Figure 6.6: Explained input and output of the MTANN.

As stated earlier, image segmentation and classification are interlinked. A classifier im-
plicitly segments an image and a segmentation implies a classification [[1]. In this thesis we
attempt to segment and classify tissues present in the images in one pass. We use a per-pixel
approach for classification with features based on the pixel’s RGB color space (brightness) but
also additionally take the position of pixel into consideration. We use Canny’s edge detection
algorithm [26] to identify if a pixel belongs to an edge. Additionally unlike Sharma and Aggar-
wal [[70], we use both these features together. This combination of features is found to enhance
the segmentation results observed. We leverage supervised learning based Al techniques for
classification. Further, we do not use single pixel values but also the pixel values of the locality
or neighbourhood. This is explained in figure

6.2.2 Video Processing Pipelines

Deep learning based Convolution Neural Networks (CNNs) have been known to perform ex-
tremely well for image and also speech applications and are currently used as the state-of-the-art
performance benchmark as studied by Sermanet et al. [68]],Sce [2]] and Cires,ancires,an et al.
[28]]. They have been consistently performing better than traditional models that require hand-
picking of features from inputs. These models eliminate the feature generation, extraction and
selection process that are key to deciding the performance of classical ML models. The building
bocks of all deep learning models are layers of neurons with weights and activation functions.
However, their arrangement can be modified to lead to different types of deep networks each
recommended for specific use-cases. For instance, multilayer perceptron (MLP) consists of
2-3 hidden layers and are widely used for natural language processing. CNNs contain one or
more convolution layers that filter the inputs to the net layer and hence allows the network to be
deeper with fewer parameters. As mentioned above, they are extensively used for image pro-
cessing and classification but also for video analysis [54]. Recurrent neural networks (RNN)
contains a directed cycle in the connections between neurons. This allows temporal information
effecting the output. This makes RNN suitable for connected handwriting recognition and text
classification as shown bt Lai et al. [47]].

However, Ye et al. [92] show that their performance has not been up-to expectations when
it comes to video analysis. This is credited to two major factors: the spatial-temporal nature of
videos and the limited availability of annotated video data for training. Ye et al. [92]] approach
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Figure 6.7: The two pixel-based learning approaches compared in this thesis.

this issue by handling video data training in two separate CNNs on spatial and temporal data
respectively and fusing the two networks for the final output. The spatial data is the a stack
of the static frames that make up the data and the temporal data is the a stack of the optical
flow that shows the displacement vector between two frames. Karpathy et al. [45] evaluates the
performance of this approach on the 200,000 videos in the Sports-1M dataset. In this work,
we refrain from using RNN based architectures due to availability of limited data. Instead, we
implement and test a CNN based network architecture - U-Net by Ronneberger et al. [65] which
works well with small training set size too.

6.3 Object Detection

Identifying an object within an image, that is, locating its position, followed by predicting the
class that it belongs to is called object detection. Object detection is modeled as a classification
problem where multiple overlapping windows of all sizes from the input image are fed to the
classifier. The problem of choosing the size of the sliding window is critical here and is tackled
by resizing the image at multiple scales such that the chosen window size will completely
contain an object in one of the scales chosen. This idea is illustrated in figure

Region based convolution neural networks (R-CNNs) are one of the algorithms that use
classification as the underlying problem for object detection. An object proposal algorithm
called ”’Selective Search” reduces the number of bounding boxes per image using local features
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Figure 6.8: Resizing the image to multiple scales in order to fit the object in a single window in one of the resized

images [13]

like color, texture, position etc,. The reduced bounding boxes are fed to a CNN classifier.
In order to improve the speed, several modifications byGirshick [39], Ren et al. [63] and He
et al. [41] have been proposed. Faster R-CNN by Ren et al. [63] replaces the Selective Search
algorithm by a small convolution network called the Region Proposal Network.

Unlike conventional methods that handle detection as a classification problem, two algo-
rithms handle it as a regression problem. These two most relevant state-of-the-art algorithms
for object detection are ”You only look once” (YOLO) and "Single Shot Detector” (SSD).

YOLO by Redmon et al. [62] divides the image into an SxS grid and creates B bounding
boxes with different confidence levels and C class probabilities. This is depicted in figure [6.9]
A threshold for the confidence can be set to limit the number of bounding boxes accordingly.
YOLO sees an image just once and hence is very fast and used in real-time. Sindhu Ramachan-
dran S. detect nodules in real-time in the CT scans of the lung using a YOLO based deep
net and shows a reduced false positive rate and high precision and sensitivity.

S x S grid on input Final detections

Class probability map

Figure 6.9: The steps involved in YOLO ] [62]
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SSD by Liu et al. [55] also runs an image through a CNN only once. The CNN generates a
feature map. Small convolution networks are run on this feature map to predict bounding boxes
and classification probability. SSD achieves a good balance of speed and accuracy. It can also
be used real-time.

In this thesis, we implement a CNN based network called U-Net by Ronneberger et al.
[65] that has gained popularity due to its high performance in the domain of medical image

processing. The results are compared with that obtained using other more traditional pixel-
based machine learning models.



7

Conclusion

Hepatocellular carcinoma (HCC), the fifth most common cancer worldwide, has led to 782,000
deaths all over the world as of 2012. It is the third highest cause for cancer related deaths. Over
the years, research has led to several treatments for the cancer including resection, liver trans-
plantation, radioembolization and chemoembolization. Today, HCC has stepped down from
being an almost universal death sentence to a cancer that may be prevented and treated and
cured if detected at an early stage [25]. With the advancements in image processing and dig-
ital systems several medical imaging techniques have risen to aid the early detection of HCC.
Sonography or ultrasound imaging is an effective, portable and real-time imaging technique
heavily used for the diagnosis of several liver malignancies. Furthermore, enhancement agents
are introduced in the patients blood flow to additionally enhance the visibility of tumors. How-
ever, the diagnosis of HCC remains a challenge due to factors like short duration of arterial
phase where malignancies can be spotted and individual patient history. We propose the use of
artificial intelligence to assist physicians in the diagnosis of the disease.

In a nutshell, our system does the following. CEUS scan (video) data collected are con-
verted to images. The images are labelled based on information we received from physicians.
Image pre-processing is done to remove noise. The pre-processed images are used to train
both traditional machine learning and deep neural network based classifiers. The predictions
of the classifiers are visualized and evaluated by relevant performance metrics. The system is
trained with data from multiple patients and hence overtime can learn to aid physicians in their
diagnosis.

The machine learning algorithms experimented with include Naive Bayes, Hoeffding Tree,
J48 Decision Tree, Random Forest, Sequential Minimal Optimization and k- Nearest Neigh-
bours. The performance of each of the models was thoroughly analysed and it was found that
Sequential Minimal Optimization and k- Nearest Neighbours show the best performance with
an AUC of 0.8 and 0.77 respectively. The weighted precision and weighted recall of the SMO
classifier are 0.65 and 0.62 respectively. On the other hand, the same for the k-NN classifier
0.76 and 0.59 respectively. The deep convolution network architecture called U-Net was also
trained on the available CEUS data. The model performed very well with and intersection over
union (IOU) of 95.89%.

Therefore, it is seen that neural network based architectures do indeed perform better than
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traditional machine learning algorithms in the current problem of tissue recognition in contrast
enhanced ultrasound scans. However, they require longer training time and dedicated infras-
tructure.
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