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Abstract

In software engineering, duplication of code is an antipattern. In model
driven engineering, clones might appear as (partial) duplication of models.
Clones might be considered harmful for the maintenance of software artifacts,
including models. Companies such as ASML, which is the leading producer
of lithography systems, use models to define the functional behavior of such
systems. In multidisciplinary teams that deal with ever evolving models,
the presence of clones might be a negative quality, resulting in inconsistent
evolution. To this end, the tool SAMOS (Statistical Analysis of ModelS) has
been used to find clones within certain data models and control models as
used by ASML. The approach taken to detect clones within these models is
discussed in this work along with the clones detected using this approach.
We also discuss whether, and how, such clones can be or should be eliminated
or not, based on consultation with domain experts.
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1. Introduction

With the increasing application of model-driven engineering (MDE), the
need to address issues pertaining to the increasing number and variety of
MDE artifacts, such as domain specific languages (DSLs) and models, is on
the rise. One such issue is that of duplication and cloning in those artifacts.
The presence of clones might negatively affect the maintainability and evo-
lution of software artifacts in general, as widely reported in the literature [1].
When multiple instances of the same code or model fragment exist, a change
required in such a fragment (to fix a bug, for instance) would also have
to be performed at all instances of this fragment. Inconsistent changes to
such fragments might also lead to incorrect behavior. Therefore, eliminating
such redundancy in software artifacts might result in improved maintainabil-
ity. While not all cases of encountered clones can be considered negative,
as some might even be inevitable, it is worthwhile to explore what types of
clones exist and what their existence might imply for the system.

Model clone detection techniques have been employed by tools such as
NiCad/SIMONE [2], ConQAT [3], MACH [4] and SAMOS [5] to detect clones
in MATLAB/Simulink and UML models, Ecore metamodels and other types
of models. The primary focus of this work is to discuss the applicability
of SAMOS for the detection of clones in data and control models provided
by ASML. ASML is a provider of lithography systems used to manufacture
semiconductor chips. Different disciplines that work together to manufacture
these lithography machines employ the use of various domain-specific mod-
eling ecosystems [6]. A collection of models from one such ecosystem was
provided for analysis, with the goal of detecting clones among these models.
This goal was accomplished using the tool SAMOS. The framework of this
tool was extended to incorporate the ability to process the models provided
by ASML. Following this extension, the various settings available to compare
model elements was used and the results found have been discussed.

The following section provides discussion of the research questions that
were pursued in this work. This is followed by an introduction to the tool
SAMOS along with its existing functionality. The nature of the models pro-
vided by ASML is then discussed, followed by a description of the approach
taken to find clones in these models. The case studies conducted using this
approach are then presented and the results of these case studies are dis-
cussed. We then present the threats to validity of our approach and discuss
some related work. Finally, the possibility of future work in this area is
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discussed along with some conclusions about our work.

2. Research Questions

This section presents the research questions that were pursued to detect
clones in the models used at ASML.

We consider the functionality available in SAMOS to tackle the prob-
lem of clone detection. Since SAMOS already provides a means to detect
clones for models adhering e.g. to the Ecore metamodels (inspired by the
UML model clone classification [4], we explore how this framework can be
extended to include models adhering to the domain-specific metamodels used
at ASML.
ASML uses the ASOME modeling language [7] to model the behavior of its
machines. ASOME allows modeling by applying the Data, Control, Algo-
rithms (DCA) architecture, which they have developed in order to to separate
the data, control and algorithm aspects such that they can be defined, ver-
ified and validated in isolation. This should result in a higher quality (less
errors, more predictable behavior) system specification and implementation.

To analyze ASOME models in SAMOS, we first need to understand the
elements involved in these models, based on the metamodels they adhere
to. This is necessary to configure the feature extraction part, determining
settings such as which model parts to extract (and in which specific way)
or to ignore. Moreover, while SAMOS defines comparison schemes for the
comparison of features extracted from models such as Ecore metamodels and
feature models, it has yet to be examined if these comparison schemes are
suitable for ASOME models.

Once clones have been detected within ASOME models, there is the mat-
ter of evaluating these clones to gauge their accuracy and relevance. The goal
of the clone detection in this context is to find a way to use this information
to reduce the level of cloning in the models. To this end, we examine firstly
if the model fragments detected as clones are indeed clones. Secondly, we
examine which of the clones that have been found can or should be removed.
In conclusion, to address the problems as discussed above, the following re-
search questions were posed:

RQ1 “How can SAMOS be applied or extended to detect the relevant clones
in the ASOME models provided by ASML?”

The detection of clones within the ASOME models provided by ASML in-
volved an extension to SAMOS. Thanks to this extension, we could conduct
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case studies to determine what kind of clones could be found in the given
ASOME models. The following research question addresses the results found
using the extension of SAMOS as mentioned in RQ1.

RQ2 “What clones can be found in ASOME models using the
extended SAMOS?”

RQ3 “(How) can we use the discovered cloning information to help maintain
and potentially improve the MDE ecosystems at ASML?”

The research questions presented above have been discussed in various
sections of the work. RQ1 has been addressed through sub-questions in
Sections 6.1 and 6.2. RQ2 and RQ3 are discussed in Section 7.

3. Background: SAMOS Model Analytics Framework

The SAMOS (Statistic Analysis of MOdelS) framework is a tool developed
for the large-scale analysis of models using a combination of information
retrieval, natural language processing and statistical analysis techniques [5].
The model analytics workflow of SAMOS is as shown in Figure 1. The process
starts with an input of a collection of models that adhere to a particular
metamodel. SAMOS has so far been used for the analysis of e.g. Ecore
metamodels [8] and feature models [9].
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Figure 1: SAMOS Workflow

Given a collection of models1, SAMOS first applies a metamodel specific
extraction scheme to retrieve the features of these models and store them
in feature files. Features are attributes of model elements that have been
considered relevant for the comparison of such elements to detect clones. As
seen in the figure, SAMOS represents the features in terms N grams, or met-
rics [5]. Once the feature files have been extracted, the following steps are
independent of the type of model. The extracted features from the feature
files undergo a natural language processing step to tokenize and lemmatize
the values of these features for a fair language based comparison. Features
are compared to construct a Vector Space Model (VSM) [10] after assigning
a weighting scheme to feature attributes based on the type of feature being
compared. The comparison schemes available in SAMOS allow the user to
configure what aspect of the features needs to be compared, for example, the

1In the model analytics context, we use metamodels synonymously with models, in the
sense that they are models too (adhering to the corresponding meta-metamodel).
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name of the feature or the type of the model element. After choosing the
comparison scheme, a VSM is constructed where each model is represented
as a vector comprised of the features that occur in these models. Ultimately,
the distance between the vectors represents the distance between the models
they represent. The ability to calculate the distance between models allows
one to cluster the set of models based on how similar they are to each other.
Dendrograms provide a hierarchical clustering of models with respect to their
similarities. Aside from detecting clones, inspecting such dendrograms would
give one insight into the working of the ecosystem. Language focused anal-
yses could be done to detect common concepts discussed across the various
domains in a MDE ecosystem.

The workflow as detailed above can be modified to include scopes. By
identifying meaningful scopes for models (such as treating classes and pack-
ages separately in a class diagram, in contrast to the whole model as a single
entity), the settings in SAMOS allow for an extraction of features at the
level of the defined scope. Furthermore, the comparison scheme used for the
construction of the VSM can be configured to employ various kinds of com-
parisons, e.g. treating model elements such as names and types in certain
ways, or ignoring them altogether.

4. MDE Ecosystems at ASML

The development of complex systems involves a combination of skills and
techniques from various disciplines. The use of models allows one to abstract
from the concrete implementation provided by different disciplines to enable
the specification and operation of complex systems. Artifacts originating
from such models coming from different disciplines; i.e., code generated from
these models, are used to run these systems. However, shortcomings or
misunderstandings between the disciplines involved at the model level can
become visible on the implementation level. To avoid such shortcomings, it
is essential to resolve such conflicts on the model level. To this end, Multi-
Disciplinary Systems Engineering (MDSE, used synonymously with MDE in
our work for simplicity) ecosystems are employed to maintain the consistency
among inter-disciplinary models.

ASML is developing such MDE ecosystems by formalizing the knowledge
of several disciplines into one or more domain specific languages [11]. The
separation of concerns among the different disciplines helps with handling
the complexity of these concerns. Clear and unambiguous communication
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between different disciplines is facilitated to enable not only the functioning
of the complex system, but also its ability to keep up with the evolving per-
formance requirements. Furthermore, the design flow is optimized, resulting
in a faster delivery of software products to the market.

In such an ecosystem, concepts and knowledge of the several involved dis-
ciplines are formalized into of one or more domain specific languages (DSLs).
Each MDE ecosystem has its own well defined application domain. Examples
of developed MDE ecosystems at ASML are:

• ASOME, from ASML’s Software application domain. It enables func-
tional engineers from different disciplines to define data structures and
algorithms, and allows software engineers to define supervisory con-
trollers and data repositories [7];

• CARM2G, from ASML’s Process Control application domain. It en-
ables mechatronic design engineers to define the application in terms
of process (motion) controllers (coupled with defacto standard Mat-
lab/Simulink), providing a means for electronic engineers to define the
platform containing sensors, actuators, the multi-processor, multi-core
computation platform and the communication network, and means for
software engineers to develop an optimal mapping of the application
on to the platform, see [12, 13];

• Wafer handler (WLSAT), from ASML’s Manufacturing Logistics ap-
plication domain. It provides a formal modeling approach for composi-
tional specification of both functionality and timing of manufacturing
systems. The performance of the controller can be analyzed and opti-
mized by taking into account the timing characteristics. Since formal
semantics are given in terms of a (max, +) state space, various existing
performance analysis techniques can be reused [14], [15], [16].

4.1. ASOME Models

The ASOME MDE ecosystem is a software development environment that
supports the DCA pattern, which separates Data, Control and Algorithms.
A motivation to employ this architecture pattern is to avoid changes in the
behavior of a system based on a change in data. In situations where a single
change in measured data leads to a change in a chain of actions, this DCA
pattern proves to be advantageous. The result of employing such a pat-
tern is providing an environment where data can be stored and manipulated
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separately from the environment where the behavior can be defined. More-
over, algorithms can independently be designed to perform operations using
the defined data. Using techniques of MDE, ASOME provides metamodels
to create data and control models independently of each other. Algorithm
metamodels allow for the specification of algorithm models that perform com-
putation on the data during different steps of the control flow.

In the context of DCA and ASOME, data is one of the aspects. (Similar,
we also talk about the ‘control’, ‘algorithm’ and ‘system’ aspect.) Within
this data aspect, several kinds of systems, interfaces and realizations can
be recognized. Domain Interfaces and Repository services are just a few
examples. Concepts such as Data Shifters, Data Access Interfaces, Domain
Data Services etc. also exist. ASOME models that contain elements can
be categorized according to these aspects. For the work in this paper, our
investigation was limited to the area of Domain Interfaces with respect to
data. This area is referred to when data models are discussed.

Different data elements of an ASML component are represented using
one or more data models, the elements of which adhere to a collection of
metamodels. Data models, as seen in figure 2 contain:

• Domain Interfaces Any kind of interface in ASOME can express a de-
pendency on another interface. Interfaces allow dependencies between
models to allow the use of model elements among different models.
Within these domain interfaces, several model elements reside includ-
ing enumerations, entities, primitive type definitions and value objects.

• Attributes and Associations that have a name and type information.
Attributes and associations have multiplicities to represent how many
instances of these elements can exist at run-time. Associations addi-
tionally have a source multiplicity to denote how many instances of the
source of the association can be involved in the association for each tar-
get. For attributes and associations that could have multiple instances,
the order of such instances might be relevant. To represent such op-
tional ordering of instances, an attribute order is used to represent if
this collection of instances is ordered or not.

• Entities which are model elements that contain value objects, attributes
and associations to other entities (within the same model or from dif-
ferent models). Entities additionally allow a user to define properties
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Figure 2: Basic elements in a data model
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such as deletability, mutability, and persistency.

• Value Objects contain attributes and associations to other entities or
value objects. The concept of value objects has been introduced to
be able to avoid repetition. Value objects facilitate the modeling of
data that does not need to be persisted. This relates to the DCA
pattern where the Algorithm component might need some intermediate
artifacts for some computations.

• Enumerations which contain a collection of constants called Enumera-
tion Literals.

Control models allow a user to model the behavior of different compo-
nents of the system at hand. This is done using state machines. From the
models received, it was observed that control models were of three different
types - composite, interface and design2. We have categorized control mod-
els accordingly for the purposes of this work. The construction of complex
systems in ASOME control models is done using instances of some smaller
systems. This concept is often called the application of ‘a system of systems’
pattern. Composite models contain a decomposition defining what system
instances it is made up of along with how they are connected through ports
and interfaces. An interface model provides a protocol for a state machine
along with a definition of how the system and its interfaces can be defined.
A design model uses this protocol to define a concrete realization of this sys-
tem. The components of interest within these models, and as seen in figure
3 are:

• State Machines defined in the protocols of interface models or realiza-
tions of design models. A state machine consists of states, transition
states and variables used within these states.

• States used to represent different states of the system being modeled
using control models. Every state machine consists of a number of
states; one of them is indicated as the initial state.

2composite is strictly a part of the ‘system’ aspect and not the ‘control’ aspect. As
with data models, the concept of a control model as such does not exist within ASOME.
For the purposes of this paper, we group three kinds of systems or interfaces and call them
control models
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Figure 3: Basic elements of a control model
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• Transition States contained within the state to model the behavior of
the system based on different triggers. Each transition state is associ-
ated with such a trigger, followed by one or more actions and optionally
a guard and a target state specification. Guards are specified using the
expressions defined in the Expression metamodel.

• Actions which define the activity that follows when the event defined
in the trigger occurs. A sequence of one or more actions is defined
in each transition state. These actions could include sending a reply
to an interface of a model, terminating the control flow, invoking an
operation or a notification, etc.

While ASOME also facilitates the specification of Algorithm models,
these were not considered for the purpose of finding clones in this work.
The following section details how SAMOS can be used to extract informa-
tion from a collection of data and control ASOME models in order to find
clones.

5. Model Clones: Concept and Classification

Before detailing the process of clone detection, it is essential to consider
what defines a clone. Model clone detection is a relatively newer topic of
exploration as compared to code clone detection [17]. While there are clear
definitions of what constitutes a clone for code, such a definition is not as
clear for models. The first step to approach the problem of clone detection
for ASML models using SAMOS, was to define what model clones are. A
model fragment (a part of a model) is considered to be a clone of another
fragment if the fragments are considered to be highly similar to each other.
Therefore, the idea of model clones boils down to groups of model fragments
that are highly similar to each other in the general sense.

Another aspect of model clone detection is the categorization of the types
of clones that can be detected. For the purposes of this work, the classifica-
tion used in [5] has been used, and is as follows:

• Type A. Duplicate model fragments except secondary notation (layout,
formatting), internal identifiers, including cosmetic changes in names
such as case.

• Type B. Duplicate model fragments with a small percentage of changes
to names, types, attributes with a few addition or removal of parts.
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• Type C. Duplicate model fragments with a substantial percentage of
changes or additions or removal of names, types, attributes and parts.

For the ASOME data models, the names of elements are considered rel-
evant (elements with similar names are candidates for elimination). The
classification of clone types takes changes in the name of model fragments
into account. However, for the ASOME control models, since the behavior of
these models is to be analyzed and the structure of the models represents be-
havior, the classification of clones takes into account the addition or removal
of components that modify the structure of the model (in the sense of finding
structural clones). This is partly in line with the clone category of renamed
clones, as investigated in the model clone detection literature (e.g. in [2] for
Simulink model clones).

6. Using and Extending SAMOS for ASOME Models

SAMOS is natively capable of analyzing certain types of models, such as
Ecore metamodels. However, it needs to be configured to the domain-specific
ASOME models. The current section addresses:

[RQ1] “How can SAMOS be applied or extended to detect the relevant
clones in the ASOME models provided by ASML?”

The workflow of SAMOS, as represented in Figure 1 involves the ex-
traction of relevant features from the models. This extraction scheme is
metamodel specific and therefore, an extension to SAMOS is first required,
to incorporate a feature extraction based on the ASOME metamodels. To
answer this question, we first consider the following subquestion:

RQ1-1. How can we incorporate a way to process ASOME models in SAMOS?

As addressed in Section 3, SAMOS already uses a customizable work-
flow for extracting and comparing model elements, e.g. for clone detection.
The first step to do this is the metamodel dependent extraction of features;
separate extractors exist for different types of models. However, once the ex-
traction has been completed, the comparison of extracted features is done in a
model-independent way. Therefore, to begin the clone detection for ASML’s
ASOME models, a custom feature extraction needs to be implemented for
each type of model, addressed in the following subsection.
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6.1. Feature Extraction

The current section discusses the following aspect of the extension to
SAMOS to incorporate ASOME models:

RQ1-2. What kind of information that is relevant for clones needs to be ex-
tracted from the models? How can this information be represented in
SAMOS?

The first step to analyzing the set of models to detect clones is to deter-
mine the information that is relevant for comparing model elements. In the
feature extraction phase as seen in Figure 1, first, the collection of metamod-
els which jointly define what the Data and Control models adhere to were
inspected. Along with input from a domain expert, we gained insight into
the features for each model element that could be considered relevant for
clone detection. For instance, the model element Model contains the feature
name that was considered relevant for extraction. An Attribute on the other
hand contains the features name and type. Given that the ASOME models
to be analyzed were Data and Control models, a separate extraction scheme
exists for each type of model.

Running the comparison part of SAMOS on the extracted features results
in a model to model comparison based on all the elements contained in each
model using their features. This extraction scheme however does not allow
for the detection of clones within each model as it compares each model as
a whole with every other model. We therefore used the scoping facility of
SAMOS to restrict the entities to be extracted and compared. The scopes
involved for Data and Control models are detailed below.

Data Models. Figure 2 is a basic representation of the elements contained in
the data models. The scopes defined for the extraction of data models are
as follows:

• Model: Setting the scope to this level allows results in the extraction
of one feature file per model, containing all the elements present in the
model along with their relevant features. Data models contain domain
interfaces along with model elements such as imports and data ports.
Such elements were deemed less important for the comparison of models
by domain experts and hence lead to the following reduced scope for
comparison.
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• Domain Interface: The scope domain interface extracts a set of features
for each domain interface contained in the model. This set of features
contains all the model elements, along with their features, present in
the domain interface.

• Structured Type and Enumerations: Reducing the level of comparison
to this scope allowed one to compare each entity, value object and
enumeration within a model with each other. Feature files per model
fragment at this level contain the model elements attributes and asso-
ciations, along with their features.

• LevelAA: Using this scope resulted in the extraction of one feature file
per attribute or association consisting of the features of this attribute
or association. These features include the name of the attribute or asso-
ciation along with their multiplicities. Additionally, a property Asome
Type represents the type of the attribute or association. This Asome
Type could be an Entity, Enumeration, Value Object or Primitive Type
defined in the same model or in a different model. The detection of
clones at this level was used to find micro clones within the models [18].

Control Models. Figure 3 represents the basic elements of ASOME control
models.

As for data models, the level of granularity of comparison can also be
altered for control models.

• Model: This level allows a comparison of models in their entirety.

• Protocol: Narrowing down the scope to the level protocol allows for the
comparison of elements contained within a protocol or realization. A
control interface, defined in an interface model, uses a state machine
to specify the allowed behavior (protocol) along that interface. The
state machine is contained in (or by) the control interface. A control
realization, defined in a design model, needs to provide a specification
that adheres to the control interfaces it provides and requires. This
specification is also done by a state machine. A control realization also
owns a state machine.
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6.1.1. Domain Specific Concerns for Extraction

The feature extraction with the scopes detailed above allow for the com-
parison of models based on the extracted features. However the as is repre-
sentation of model elements might lead to inaccurate results. The following
problems have been identified and the solutions to these problems have been
presented.

Collections and Multiplicities. The feature extraction process following the
containment relation between the model elements was problematic in the
case of multiplicities and collections in data models. For attributes and as-
sociations, two model elements, collections and multiplicities exist to denote
the number of instances of the attribute. Collections contain a flag ordered
which can be set to true if the collection of instances of the attribute or
association are ordered. Collections also contain multiplicities which have
two properties min and max to denote the upper and lower bound of the
number of instances of the aforementioned attributes or associations. This
can be seen in Figures 4 and 5. As seen in Figure 5, associations contain
an additional multiplicity (outside the collection element) with min and max
properties to denote the multiplicity of the source of the association. For
associations, the multiplicity of the target of the association is represented
through the collection element. The Asome Type then denotes the target of
the association.

Such an extraction of features leads to a redundant representation of
features which in turn leads to inaccurate similarities between models. For
attributes or associations that have single instances, a line for the Collection
element with the property ordered set to false is extracted. Additionally,
there is also a line denoting the Multiplicity element with properties min
and max set to 1. However, when entities or value objects contain multi-
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Figure 6: Example problem: collections and multiplicities

ple attributes and associations with single instances, it was observed that
the result of the clone detection was inaccurate. Especially for the scope
Structured Type and Enumeration, it was observed that two entities or value
objects that did not have many similar attributes were still in the same clus-
ter. This was due to the presence of separate features for the collection and
multiplicity elements.

Figure 6 shows two value objects with one attribute each. A domain
expert might consider these two value objects completely different as they
do not have the same names or the same attributes. However, the feature
files for these two value objects would look as follows:

1. type:ValueObject, name:Bank
type:Attribute, name:account, Asome Type:Int
type:Collection, ordered:false
type:Multiplicity, min:1, max:1

2. type:ValueObject, name:Customer
type:Attribute, name:BSN, Asome Type:Int
type:Collection, ordered:false
type:Multiplicity, min:1, max:1

While the two value objects are different from each other, comparing them
would result in a similarity of 50% due to the model elements collection and
multiplicity.

To solve this problem of collections and multiplicities resulting in inaccu-
rate clone detection, the extraction of the features in the model was modified
for attributes and associations. Now, instead of extracting features for col-
lections and multiplicities individually, these properties are appended to the
attribute or association. Figure 7 denotes how the extraction has been mod-
ified for associations. The properties Name, Asome Type, Ordered, Min,
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Figure 7: Modified association structure

Max, Target Min and Target Max have now been added to the association,
eliminating the need for the separate extraction of the collection and multi-
plicity elements. Similarly, the properties Name, Asome Type, Ordered, Min
and Max have been appended to attributes to solve the problem of collections
and multiplicities. The presented solution allowed for the representation of
features in files that were not cluttered with lines representing collection and
multiplicity values that showed two files as more similar than they were.
The result of this modification is a more meaningful comparison of model
elements resulting in a more accurate clone detection process.

Unigram structure. For the scopes detailed for data models, the features were
extracted with a unigram structure. This representation extracts a line of
features for each model element contained in the fragment chosen using the
scope. This representation of model features does not include any structural
information about the elements, i.e., does not include any relationship be-
tween the model elements.

Annotations. With MDE systems, maintaining traceability between models
and eventually derived or generated artifacts, such as code, is important.
ASOME uses annotations in control models to provide this traceability be-
tween their systems. In control models, for transition states within a state,
such annotations are introduced. During the extraction of features from
models, annotations are also extracted. However, the behavior of the model
does not depend on these annotations and therefore, including these anno-
tations impedes the accuracy of the clone detection process. Therefore, the
extraction of model features excluded the extraction of such annotations.
However, as these annotations have been used widely, and consistently, the
ASOME language could be modified to incorporate these annotations as an
essential part of the models.
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One depth tree structure. Unlike data models, for control models, the struc-
ture of the model needs to be taken into account for clone detection. This
stems from the fact that the structure for these models represents its be-
havior. To include this structural information of the model, a tree based
extractor was constructed for control models. For this representation, each
node consists of the properties of the model element, similar to each line of
the features extracted in the unigram comparison.

Following this, between these model element nodes, a node exists that
contains information about the relationship between these nodes. The nodes
are extracted following the containment relationship of the model. However,
associations between these nodes are also separately modeled (using infor-
mation from the control metamodels). The result of the extraction is a tree
whose root node starts at the scope that has been defined.

However, the comparison of models on the full tree structure was too
time consuming. To overcome this problem, we reduce the depth of the trees
being compared.

Figure 8: Full tree repre-
sentation

Figure 9: One depth tree
representation

Figure 8 represents a full tree. A modification to the tree extraction
allowed one to extract corresponding one depth trees, as shown in figure
9. In such a representation, for each node, the nodes related through the
containment relationship and associations were modeled as children. For
example, a node containing the features of a state modeled as a parent node
would have all the transition states contained in the state as children with
an intermediate node representing that the relationship between the state
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and the transition states is containment. A separate node then exits for each
transition state (modeled as a parent node) with all the contained actions
as children and an intermediate node to denote the containment relationship
between these elements.

Generic comparison techniques exist for models, such as a graph compar-
ison of model structure. However, through the feature extraction described
above, using domain knowledge improves the power of the approach as com-
pared to a generic one.

6.2. Feature Comparison and VSM Calculation

A different aspect of RQ1 is considered in this section:

RQ1-3. How can the extracted information be compared to detect patterns?

Using the features that have been extracted as described in the section
above, SAMOS then performs the feature comparison step. This is done
by constructing a Vector Space Model (VSM). All the features extracted
correspond to a column in this VSM. Every row in the VSM corresponds to
the model fragment being compared, as defined by the scope, i.e., if the scope
is Model, a row exists for each model. In this row, a number representing
the occurrence of each feature in the model is calculated for the column
representing the feature. The resulting VSM is a vector for each model
fragment (based on the selected scope) representing the occurrence of all the
features within this model fragment. This construction of the VSM allows
for some settings for the comparison of model elements.

The comparison of two features in SAMOS involves a combination of
comparisons between the names of the features, their types and the remain-
ing attributes they contain. The comparison of names has been the focus of
SAMOS. Many techniques have been combined to facilitate name compar-
isons. Natural language processing techniques such as tokenization, lemma-
tization, synonym detection, etc. have been employed to compare names as
accurately as possible.

SAMOS allows for the comparison of features by ignoring either the name
or the type information of the features. The setting Ignore Type takes into
account all the attributes of a feature excluding the type. The type infor-
mation for data models is a combination of both the model element type as
well as the Asome Type, which could be an Entity or Value Object belonging
to the same or different model or a primitive type. The setting Strict Type
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Figure 10: Example model elements for comparison

allows for the comparison of all the attributes of a feature including the type.
However, this places a constraint on the comparisons in that two model el-
ements of different types with similar attributes would not count as similar
in this setting. To include the type information for comparison, the Relaxed
Type setting has been introduced by attaching a weight of 0.5 to mismatched
elements and a weight of 1 to matching elements. To facilitate the com-
parison of features without considering the names of these features, the No
Name setting has been introduced. For data models, names are a relevant
part of the comparison. However, for control models, where structure is more
important, maybe the names of the elements would not be relevant for the
comparison. Along with the scoping settings for data and control models,
SAMOS, therefore, also allows for the type comparison settings Ignore Type,
Strict Type, Relaxed Type in combination with two name comparison settings,
namely Name and No Name. To illustrate how the VSM is influenced by the
different comparison settings, consider the following example. We compare
two model elements on the Structured Type and Enumeration scope. These
model elements may not necessarily belong to the same model. Figure 10
is a basic example of an entity and a value object (possibly from different
models), being compared to build a vector space model. The feature files for
these model elements are as follows:

1. The feature file for the entity would look as follows:
type:Entity, name:Example
type:Attribute, name:bank id, Asome Type:Int

2. The feature file for the value object would look as follows:
type:ValueObject, name:Example
type:Attribute, name:bank id, Asome Type:String
type:Attribute, name:account, Asome Type:Int

The vector space model for these two model elements would be con-
structed based on the comparison scheme involving a combination of set-
tings for name and type comparison as described above. Figure 11 shows the
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Figure 11: Example VSM to illustrate comparison settings

values in the vector space model for all the combinations of the comparison
schemes. The vector space model illustrated in Figure 11 is a linear one.
It is called so because each element is compared with every other element
in the other models. SAMOS adapts this VSM to create a quadratic VSM
which represents the sum of comparisons of each feature in question with
every other feature. For example, using the No Name and Relaxed Type set-
ting, for the row representing the Value Object, and the column representing
<account, Int>, the value would be a sum of:

• 1 : for the attribute account of type int in the value object.

• 0.25: for the feature ValueObject (no name comparison ignores the
names, relaxed type comparison multiplies the mismatch between the
type and Asome Type with 0.5 each).

• 0.5: for the feature Attribute with the name bank id (no name setting
ignores the name and the mismatch between the Asome Types assigns
a penalty of 0.5).

While a value of 1 is assigned in the linear VSM, the quadratic VSM
assigns a value of 1.75 for the row Value Object and column <account,Int>
under the Relaxed Type and No Name setting.

However, not all comparison combinations are relevant for the detection
of clones for different models. For instance, the combination Ignore Type
along with the No Name setting might result in all elements with just name
and type information but no attributes to be considered equivalent. There-
fore, while all these comparison settings are available, for the case studies
conducted, only a selected combination of settings is applied.

6.3. Distance Measurement, Clustering and Other Analyses

Following the construction of the VSM, SAMOS performs a vector-based
distance measurement to compute the distance between each pair of model
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elements being compared. This is done using a Bray-Curtis distance mea-
surement [5]. Following this, based on the distance measurement, clustering
is applied to identify clusters of clones. This has been done using the Density-
Based Spacial Clustering of Applications with Noise (dbscan) algorithm in
the dbscan package in R. The choice of this algorithm is justified because of
its ability to find clusters in various shapes and to detect noise, and because
of its suitability for large datasets.

7. Case Studies with ASOME Models

The current section discusses the case studies on clone detection for the
ASOME models at ASML, addressing the following research questions:

RQ2 “What clones can be found in ASOME models using the extended SAMOS”

RQ3 “(How) can we use the discovered cloning information to help maintain
and potentially improve the MDE ecosystems at ASML?”

7.1. Clone Detection in ASOME Data Models

This section discusses the results of the case studies performed using the
different settings of SAMOS on the ASOME data models.

7.1.1. Dataset and SAMOS Settings

The dataset consists of 28 models, containing one domain interface each.
Within these domain interfaces, 291 structured type and enumerations model
fragments were found. Finally, a total of 574 elements were found for the
comparison on the LevelAA scope.

For the comparison of data models, the scopes Model and Domain In-
terface did not yield significant results at higher similarity thresholds. This
means that the different models or domain interface were not sufficiently sim-
ilar enough to each other in terms of their contents. However, similar model
fragments were found on the lower scopes, Structure Type and Enumerations
and LevelAA.

For the comparison of data models, the following settings were used:

• Scopes: Structured Type and Enumerations, LevelAA.

• Structure: Unigram. For model elements at the chosen scopes, the
structure of these elements do not have as much relevance as the fea-
tures of the elements contained within these model elements [4].
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• Name Setting: Named comparison of elements. For data models, the
names of the elements are considered relevant for the comparison of
model fragments. Names attach meaning to the elements and elements
having similar names might be candidates for potential elimination or
refactoring.

• Type Setting:

– Structured Types and Enumerations: Relaxed type comparison of
elements.

Data models contain elements with Asome Type information (re-
lating to entities or value objects within the same model or from a
different model; or to primitive types defined in the ASOME lan-
guage). This type information might again be relevant for com-
parison, however, the comparison value for non matching types
is increased from a 0 provided by the strict type setting to the
0.5 provided by this relaxed type setting. This implies that two
elements that do not have matching type information are not im-
mediately regarded as unequal.

– LevelAA: Strict type comparison of elements. While attributes
present in entities or value objects may have the same name, they
are not exactly the same unless they are also similar in terms of
their Asome Types. The detection of attributes that are exactly
the same, distributed over various entities or value objects, might
signify the need to refactor the models to lift this attribute to a
higher level of abstraction [18].

On the given set of data models, using the settings above, the following
results were found.

7.1.2. Results and Discussion

This section discusses, per scope, the results obtained through the chosen
settings. The discussion is structured as follows: first, the model fragments
considered to be clones are discussed; second, the proposition for reducing
the level of cloning is presented and finally, the opinion of a domain expert
on this proposition is presented.

Scope: Structured Type and Enumerations
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Figure 12: Type A value object clones

Type A Clones. One cluster was found for this category consisting of two
Value Objects that were similar terms of their contents as well as their names.
These value objects are represented in Figure 12. As can be seen, both the
value objects have the same name, XYVector and the same attributes x and
y of the same type Double.

Model A was a core data model, whose elements were used through im-
ports in several other data models. The duplicated instance of this value
object could be eliminated in model B through the reuse of the same value
object from the core data model A.
According to the domain expert:

“This is definitely an example where we should look whether commonality
should be factored out. Part of the reason why these clones have been detected
is explained by the state of the project. The project responsible for delivering
the common model, also known as core model, is lagging behind a bit. This
has led to duplication of core concepts in other models. These clones or
duplicates have been detected by SAMOS.

There might be reasons not to refactor some of these clones. For instance,
if one of the clones is expected to develop into a different direction then the
other. In that case, also a more different name might be expected though.”

Type B Clones. Four clusters were found of this type containing two models
in each cluster. Figure 13 is an indication of the types of clusters that were
found as Type B clones.

As seen in Figure 13, the elements found in the clusters for Type B clones
consisted of model elements with different names but contained attributes
and associations with the same names, types and other attributes. The two
entities also have partially similar names. They additionally contain the
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Figure 13: Type B example 1

same attribute with the same Asome Type. Moreover, they both contain an
association to a third entity with the same association name and target. The
{0..1} at the target of the association represents that the multiplicity of the
target entity during instantiation is between 0 and 1.

A technique to eliminate this redundancy in attributes is to introduce
inheritance. A parent Entity Position containing the attribute location and
the association to the Capture Plan entity could be introduced with the
entities End and Start inheriting these properties from the parent.
According to the domain expert:

“The elements that are modeled here, result in the generation of repos-
itories. In that, we decided that each repository is a singleton. In the ex-
ample above, that leads to two repositories holding positions, one holding
End Positions and one holding Start Positions. If we would migrate that into
one repository, then an additional attribute per Position would be needed in-
dicating whether it represents a start or an end position. Given these design
constraints, it would be doubtful whether that would be an improvement. So
with the current concepts, this proposal would likely not be accepted. General-
izing this example, I dont think that we will see many of these kind of merges.
This results from the fact that we decided to treat the generated repositories
as singletons.”

Type C Clones. Figures 14 and 15 are two examples of some of the 23 Type
C clone clusters that were detected. Figure 14 shows two value objects with
partially similar names. While these value objects have some similar at-
tributes with the same Asome Type, they each have an additional attribute
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Figure 14: Type C example 1

Figure 15: Type C example 2

that is not present in the other. Figure 15 is also an example of the Type C
clones that were detected where one value object contains an attribute that
the other does not, while two other attributes are the same.

For both these instances of Type C clones, some elimination of redun-
dancy can be done by creating one value object containing the common
attributes and having these models use instances of that value object.
According to the domain expert:

“These kind of discoveries are beneficial and in essence are variants of
the type A clones shown in figure 12.”

Scope: LevelAA

Type A Clones. Fifty three clusters were found containing a few elements
with similar names and the exact same values for all other properties. How-
ever, the most interesting result proved to be the association task. One clus-
ter containing 9 elements was found, all representing this association named
task. The target of this association is an entity Task which belongs to a core
data model (a special type of data model considered crucial for other mod-
els). This pattern along with the fact that these associations were all named
the same is an indication of consistency and good design, as confirmed by a
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Figure 16: Type B - LevelAA example

domain expert. This shows that not all clones are harmful and in this case,
the clones are an indication of good design.

For attributes that are Type A clones, refactoring by lifting these at-
tributes to a common parent entity or a value object that can be reused
eliminates these clones. Duplicate associations in some cases cannot be elim-
inated. Entities from different models associated to an entity, for instance,
cannot be refactored to reduce the level of cloning.
According to the domain expert:

“Im not sure that it has been a wise idea to support an inheritance like
concept in our data language. There are too many complicated consequences
that came with the introduction of inheritance. So the proposal to solve some-
thing with inheritance will be treated with a lot of suspicion and care. Im not
so sure that we would like to act on the level of individual attributes and/or
associations.”

Type B Clones. Sixty five clusters were found containing elements that were
considered type B clones. An inspection of such elements revealed the dif-
ferences between the attributes and associations in the cluster, as indicated
in Figure 16. For clones of these types, the name and Asome Type of the
elements are the same with one property different. In the figure, the names
and targets of the association are the same. However, they differ in terms of
the upper bound of the multiplicity of the target entity.

Clones of these types, however are not candidates for elimination or refac-
toring.
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Figure 17: Type C - LevelAA example

Type C Clones. Eighty one type C clone clusters were detected. Figure
17 presents an example of associations that are considered type C clones.
The differences between these associations are subtle, given that these are
micro clones. There is a substantial change in the number of properties that
differ between the two associations. While their names and targets are the
same, the number of associations from X and Y to the entity Lot is different.
Moreover, the upper bounds of the multiplicities of the target entity are
different. The values of ordered for these multiplicities are also different,
denoted by the difference in the brackets used.

As with the type B clones that were found, these clones are also not can-
didates for refactoring.

Overall Discussion. Inspecting attributes or associations that were found
similar using the available settings, provided an insight into the natural lan-
guage processing aspect of SAMOS. Attributes with names such as n1 and
n2 were considered similar. The comparison of names containing a numer-
ical part ignores this numerical aspect. Moreover, attributes with names
that were slightly different were also grouped in the same cluster. Some ex-
amples of this are: changed, unchanged and changing. In such a situation,
lemmatization of words in the Natural Language Processing (NLP) part is a
disadvantage. While this NLP does provide a more thorough comparison of
names, in the case of LevelAA clones containing only attributes and associa-
tions, these LevelAA elements are grouped together even though their names
might signify different properties.
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7.2. Clone Detection in ASOME Control Models

This section first discusses the case studies performed on control models
as well as the results of these case studies.

7.2.1. Dataset and SAMOS Settings

The approach taken to detect clones within control models is different
compared to data models. This is due to the importance of structure, repre-
senting behavior, in these models. However, a graph representation of these
models would result in an expensive computation for the comparison of mod-
els [19]. Therefore, the first step to this approach is to narrow down on the
number of elements for comparison using the unigram representation as with
data models. On the elements that have been narrowed down, a tree extrac-
tion and comparison is performed.

The data set of control models provided contained 691 models, 531 pro-
tocols and realizations. A pre-processing step excluded 10 protocols and
realizations because the sizes of these protocols and realizations were very
large compared to the other models. Excluding these for the comparison was
justified considering it was less likely to find similar models to these ones
based on their size. Moreover, these models would slow down the compar-
ison significantly while constructing the VSM. The following settings were
chosen for the comparison of control models.

• Scope: The chosen scope of comparison was the protocol scope. On
this level of comparison, one can compare models based on their be-
havior, as defined using the state machines residing in these protocols
or realizations.

• Structure: For the first round of comparisons, the unigram setting was
used to find clusters of similar model elements. 50 such clusters of
models were found. The second round of comparison was done for
models in each cluster. For this round, a one depth tree structure was
used to compare models using structural information.

• Name Setting: A no name setting was used for the two rounds of
comparison of control models. This was done so we could find models
that were structurally equivalent disregarding names.
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Figure 18: Hierarchical clustering - Cluster 1

• Type Setting: A strict type setting was used for both rounds of compar-
isons for control models. This setting was chosen because for control
models, type information included was the type of model element be-
ing compared, as opposed to the Asome Type for data models. In a
no name comparison, to find structurally similar models, this setting
allows one to detect models as similar based on the number of similar
model elements in the model.

7.2.2. Results and Discussion

This section discusses the types of clones found in the set of provided
control models.
Example Cluster 1:

Figure 18 represents the hierarchical clustering of elements contained in
the cluster after the initial round. This hierarchical clustering of elements is
used to find models that can be considered clones.

The models inspected in this cluster were quite large. These models
contained a single state with a variation in the number and type of transition
states. This behavior is similar to that of an accepting state. A combination
of patterns found in the models is shown in Figure 20. The state X contains a
number of transition states. The patterns of the different types of transition
states found in the models are represented by TS1 through TS6.

Figure 19 is an example of a visualization of a few of the transition states
in the single state models found in this cluster. The figure shows a single state
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Figure 19: Example visualization of some transition states in cluster 1

Operational which defines behavior using three transition states. A trigger
exists for each transition state. The triggers here are Update X, Notify and
Evaluate. Depending on the trigger that has been received, the corresponding
transition state is executed. For example, the Update X trigger is followed
by the action of a State Variable Update where the variable x is updated.
Following this, the value “Updated” is sent as a reply. Once the reply is sent,
the transition state specifies the same state Operational as a target state.

The discussion of the different types of clones that were found can now
be done based on the number of occurrences of each type of transition state
in the models.

Type A Clones. The elements shown in Figure 18 that are represented at the
same height and are part of the same hierarchical cluster can be considered
type A clones. Examples of such clones are models 20, 14 and 17, and models
18, 12 and 15. An inspection of a collection of models of this type showed
that these models had a single state X with multiple transition states. The
behavior of the transition states is as shown in figure 20. An inspection of
models 19, 16, 10 and 13 showed that they each had 18 occurrences of the
pattern TS1; 1 occurrence each of patterns TS2, TS3 and TS4; and 8 occur-
rences of the pattern TS5. TS6 however, did not occur in these models.
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Figure 20: Representation of combined behavior of cluster 1 models

Type B Clones. Type B clones are models with a small percentage of differ-
ence between them. The hierarchical clustering shown in figure 18 was used
to identify elements that are not exactly the same but could be considered
similar to each other. Model 8 for instance, is not exactly the same as, but
is similar to the cluster of models 19, 16, 10 and 13. To examine how these
models are different from each other, models 8 and 10 were investigated. As
with the discussion of type A clones, the behavior of the models is discussed
in terms of the number of occurrences of transition states TS1 through TS6
in these models, as shown in Figure 20. Models 8 and 10 were found to have
the same number of occurrences of every transition state except TS6. They
each had 18 occurrences of TS1, 1 each of TS2, TS3 and TS4 and 8 occur-
rences of TS5. However, while model 10 had no occurrences of TS6, model 8
had 2. It is because of these two additional transition states in model 8 that
these models could be considered type B clones.

Type C Clones. Type C clones are models with a substantial percentage of
change between the model elements.The clustering shown in figure 18 is used
to identify models that could be considered as type C clones. Models 27 and
24 were chosen as candidates as they can be considered sufficiently different
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Figure 21: Number of occurrences of transition states in models 24 and 27

enough from each other through the clustering. Figure 20 can be used to
judge how different these models are from each other based on the number of
occurrences of the six transition state patterns. Figure 21 shows the number
of times each transition state pattern was found in the models.

As seen in the figure, the number of occurrences are slightly different
for four out of six transition state patterns. Therefore, these models are
instances of type C clones.

The overall discussion in this section discusses the implications of these
findings in terms of how the level of cloning can be reduced.

Example Cluster 2:
Figure 22 represents the hierarchical clustering of the elements in a cluster

found using the unigram setting in round one. The three types of clones in
this cluster are distinguished below.

Type A Clones. The elements in this cluster excluding models three and four
in this cluster can be considered type A clones. These models had the same
structure, as shown in figure 23. The models were all protocols, defining
state machines with this structure. The action of sending a reply is associ-
ated with a control interface defined in the model. in each of these models,
it was observed that the value of the reply sent to the control interfaces in
all these models was void.

Type B Clones. The models excluding model 3 and model 4 could be consid-
ered similar to model 4, while not exactly the same, as shown in figure 22.
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Figure 22: Hierarchical clustering - Cluster 2

Figure 23: Representation of behavior of cluster 2 models
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The behavior of these models is depicted in figure 23. Upon investigating
these models, it was noted that the difference between the other models and
model 4 is in the action Send Reply. While the other models sent an empty
reply to the control interface, model 4 replied to the control interface with
a value. Since this is a small percentage of change between these models,
model 4 and the models excluding model 3 can be considered type B clones.

Type C Clones. Model 3, as seen in figure 22 can be considered significantly
different from the models in this cluster, excluding model 4. The behavior of
these models is depicted in figure 23. The differences between these models
is that model 3 was a realization while the other models were protocols. In
addition to this, model 3 also sent a value back to the control interface in
the Send Reply action, like model 4.

Overall Discussion. The example clusters discussed above represent the types
of clusters detected after performing a comparison on the extracted one depth
trees representing control models on the 50 unigram clusters. Some clusters
that were investigated, however, only contained type A clones because all the
models found were similar to the other models in that cluster.

While eliminating clones was straightforward for cases in data models,
this is not as easy for control models. The presence of duplicates in terms
of a sequence of actions might be inevitable if that is the intended behavior
of the models. This presents the case for the idea that not all clones can be
considered harmful, and some are in fact, intended.

However, many occurrences of some transition state patterns have been
found in the models. The transition state pattern TS1 as seen in the example
cluster 1 shown in figure 20 was found 18 times each in two inspected models.
For such transition states, maybe the metamodel could allow for an easier
representation of such a pattern to make it easier for a user to implement
this sequence of actions.
According to the domain expert:

“Detecting such patterns of control behavior definitely can be used to in-
vestigate whether the user could benefit from a more comfortable syntax. Then
an evaluation is needed that needs to take into account:

1. Whether the new syntax requires more time to learn by the user.
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2. Whether the simplification really simplifies a lot (see below).

For instance, in the example above, even for TS1, the user will need to
specify the trigger and target state somehow. In case of a non-void reply,
also the reply value will need to be specified. So, TS1 cannot be replaced by
one simple keyword.It will always need 2 or three additional inputs from the
user. In this case, we will not likely simplify this pattern. However, the way
of thinking to inspect whether we can support the user with simplifying the
language is interesting. It will always be a trade off between introducing more
language concepts vs. writing (slightly) bigger models.”

Another suggestion for control models is to investigate the unigram clus-
ters to find the different types of patterns found within the control models.
Following this, checking what models do not adhere to these patterns might
reveal outliers to investigate, to find unexpected behavior.
According to a domain expert:

“I see the line of reasoning and it brings me to the idea of applying ma-
chine learning to the collection of models and let the learning algorithm clas-
sify the models. Then, investigating the outliers indeed might give some in-
formation about models that are erroneous. However, these outliers could
also be models describing one single aspect of the system, which would justify
the single instance of a pattern. However, I would expect that these models
would also have been identified by other, less costly, means (like verification,
validation, review etc.)”

8. Discussion

The extension and application of SAMOS on ASOME models resulted in
a collection of model fragments that could be considered clones. These clones
have been classified based on different categories. For each classification of
clones found for the selected scope and the chosen settings, a proposition for
the elimination of these has been provided.

For data models, the propositions included modifying the models them-
selves in terms of design. Some of these propositions have been validated by
a domain expert, favoring the elimination of the amount of cloning in some
model fragments. However, as mentioned by the domain expert, not all the
discovered clones can be candidates for elimination. Some clones are in fact
are intended to be so. An example of this are the model fragments shown
in Figure 13. The domain expert clarifies that this design is a result of the
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decision to maintain singleton repositories and the elimination of these clones
would hinder developers from achieving that goal. An instance where clones
were actually an indication of consistent design is that of the association
task found at the LevelAA scope. All these associations pointed to the same
entity Task defined in a core data model. By targeting all these duplicated
associations to the same entity found in a core data model, the need to define
the concept Task is eliminated from each model. In conclusion, while some
of the detected clone instances can be eliminated by modifying the design of
the model and increasing the amount of reuse, not all clones are harmful and
some are even instances of good design.

For control models, modifying the models themselves would not be a
desirable way to eliminate clones. This is because the instances of clones
detected were occurrences of the same pattern of behavior. However, a change
introduced to the metamodel could provide a developer with some syntactic
sugar. This would allow a user to specify the same behavior with reduced
effort. Yet the ease with which (in terms of time and effort) a user can learn
such syntax needs to be considered. Moreover, the simplification of some
patterns might not add much value, as mentioned by the domain expert
for the example pattern TS1 in figure 20. Generalizing this pattern as a
language concept would eliminate some clone instances but would still require
additional input from users. From the given set of control models, a number
of clusters containing models with similar behavior was found. An analysis
of such patterns could be done using machine learning techniques to classify
models as having expected or unexpected behavior.

In conclusion, for control models, the level of cloning cannot be eliminated
by modifying the models themselves but by adding language concepts to the
metamodel. In some cases these concepts might not be desirable because they
might not add much value. However, in some cases, adding such concepts
could ease the effort needed by a developer to create control models.

For the clones that have been found, certain assumptions or simplifica-
tions have been made which might result in a threat to the validity of the
approach. These threats to validity are discussed in the following section.

8.1. Threats to validity

Thanks to our extension in this work, SAMOS is adapted for detecting
clones in ASOME data and control models. The comparison of data models
has been done ignoring the structure of the models on the scopes of Structure
Type and Enumerations and LevelAA. While it can be argued that for these

39



scopes, the structure of the elements is less important, case studies on the
level of Model and Domain Interface could focus on the structure of such
models and domain interfaces. Here, comparisons could be made to find
similar patterns in the models, perhaps using a pattern catalogue.

The detection of clones in control models has been done on the Protocol
scope using, initially, the unigram setting (comparing model elements with-
out including structural information), followed by a comparison including
the structural information through one depth trees. The use of one depth
trees allowed us to reduce the computational time for comparison while still
including structural information of the models. The disadvantage of this ap-
proach, however, is that there is a loss of context while using this approach.
The lower level elements of the models, the actions for instance, contained in
the transition states which are in turn contained in the states, are compared
independently of the state they belong to. This problem is slightly solved by
appending most of the information required within the action node, avoiding
for instance sub-trees representing expressions used in guards. While this
solution improves the accuracy of the comparison, increasing the depth of
comparison would further improve the accuracy of the results. Moreover, a
slight change in the metamodel that increases the depth of the lower level
elements by adding a level of containment, would reduce the accuracy of the
results. There is a trade-off between the accuracy of the comparison and
the running time for this comparison, the most accurate with the most ex-
pensive running time for comparison being a full graph one comparing state
machines.

SAMOS offers the functionality to compare trees either including or leav-
ing out the order of the nodes of the tree. For data models, since tree
comparisons were not performed, this was not a problem. For control mod-
els, however, currently, an unordered comparison of tree nodes is performed.
While the order of the states in the protocol or realization and the transition
states within these states is irrelevant for the comparison, the order of the
actions within these transition states might be relevant. Therefore, a combi-
nation of comparisons where the order of some elements is considered while
the order of other elements is ignored, would improve the accuracy of the
results obtained.

The comparison of elements for control models using the No Name name
setting is similar to the blind renaming approach taken in [2]. In such an
approach, the identifiers of all the model elements are blindly renamed to the
same name, therefore ignoring the relevance of names for the comparison.

40



Figure 24: Counter example for blind renaming, where SAMOS (erroneously) cannot
distinguish between the two cases.

Figure 25: Counter example where consistent renaming would be inaccurate.

This approach allows us to find model elements that have similar structure
but different values for elements such as guards or triggers or target state
specification. While this improves the recall of the results found, the behavior
of the two states as shown in figure 24 cannot be distinguished. The behavior
of the model where state A has two transition states that specify state A and
state B as the target state is similar to one specifying states B and C as
target states. This is because while the structure is mainly captured by
the extracted trees, some structural value is also attached to the names of
elements, especially target state specifications. While consistent renaming
of model elements might solve this problem, this approach was not taken
because the order in which these states are renamed could result in inaccurate
results of comparison. Figure 25 represents a case against the consistent
renaming of model elements. If state A is defined first, followed by state B,
even though state B in the figure on the right has similar behavior to state
A in the figure on the left, consistent renaming would miss this.
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9. Related Work

The following section discusses existing literature in the area of model
pattern or clone detection and techniques used previously to find clones in
models.

9.1. Model Pattern Detection

Model pattern detection is a prominent research area, related to the tasks
we are interested in for our research. However, the word pattern has been
mostly considered synonymous to design patterns or anti - patterns in the
literature [20]. One approach uses pattern detection as a means to com-
prehend the existing design of a system to further improve this design [21].
This approach involves a representation of the system at hand, as well as the
design pattern to be detected, in terms of graphs. Ultimately, the similarity
between the two graphs is computed using a graph similarity algorithm. The
paper claims to find (design) patterns within the system even when the pat-
tern has been slightly modified. This approach, however, involves building
a collection or catalogue of expected patterns as graphs. Since there were
no expectations of the kind of patterns that needed to be detected in our
case, we focused on finding e.g. model clones in an unsupervised manner as
discussed in the section below.

9.2. Model Clone Detection

While code clones have been previously explored in abundance and hence
can be associated with some standard definition and classifications [22, 23],
relatively less work has been done in the field of model clone detection, re-
sulting in the lack of such clear definitions. Model clones have been defined
as “unexpected overlaps and duplicates in models” [24]. Störrle discusses the
notion of model clones in depth, as a pair of model fragments with a high de-
gree of similarity between each other [4]. Model fragments are further defined
as model elements closed under the containment relationship (the presence of
this relationship between elements implies that the child in the relationship
cannot exist independently of its parent).

Quite a few approaches advocate representing and analysing models with
respect to their underlying graphs, for clone detection purposes. One such
approach involves representing Simulink models in the form of a labeled
model graph [3]. In such graph-based methods, the task of finding clones in
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the models boils down to finding similar sub-graphs within the constructed
model graph. To do this, all maximal clone pairs are found within the
graph (with a specification as to what constitutes a clone pair in their case).
The approach of finding these maximal clone pairs is NP-complete and to
reduce the running time, [3] the approach is modified to construct a similarity
function for two nodes as a measure of their structural similarity. Finally,
the detected clone pairs are aggregated using a clustering algorithm to find
the resulting clone classes in the model. The disadvantage of this approach
however, is that approximate clones are not captured.

The work presented in [25] compares block based models by assigning
weights to relevant attributes for comparison such as names, functions of the
block and interfaces. A similarity measure is defined to assign a value for the
comparison and this value is stored for every pair of blocks being compared.
This approach is taken to find variability in models in the automotive domain.
Variations were introduced to a base model to add or remove functionality.
By inspecting the similarity values, one could find models similar to a selected
base model. SAMOS also uses the idea of computing similarity using a vector
space model to represent the occurrence of features in each model.

In a different approach, Chen et al. detect clones in Stateflow models [2].
Stateflow models are an extension to Simulink that provides a modeling en-
vironment to represent state machines. This approach aims to detect struc-
tural clones in these Stateflow models. The linear representation in which
the models are stored, one where the description of substates is not nested
within the description of superstates, is converted to a hierarchical repre-
sentation, in accordance with the logically nested nature of the Stateflow
models. To accomplish this representation, each object is“folded” into its
parent object to consolidate all referenced elements from the parent object
into one self contained unit, and each such unit is compared to every other
unit. Additionally, the level of granularity of model elements being compared
can be defined. This means that the models can be compared on the level of
Stateflow charts, representing entire machines, or on the level of states, rep-
resenting the states in all the charts. This text based representation as well
as the changing of the granularity are techniques also employed by SAMOS.

Störrle provides a contradictory notion however, that for some UML mod-
els, the graph structure may not necessarily be the most important aspect
of the models to consider for clone detection [4]. Section 4.2 discusses that
for some UML models, most of the information worth considering resides
in the nodes as opposed to the links between these nodes. Therefore, the
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approach taken in this paper defines the similarity of model fragments as the
similarity of the nodes in such model fragments instead of the similarity of
the graph structure of these model fragments. To construct this measure of
similarity, the approach involves using heuristics based on the names of the
elements being compared. Such an approach is justified when considering
that “most elements that matter to modelers are named” [4]. This approach
works for models where structure does not represent much in terms of model
behavior. However, when the behavior of the models is represented in terms
of structure, this approach cannot be used.

10. Conclusion and Future Work

The sections above present an overview of the tool SAMOS, along with
the extensions developed to detect clones within ASOME data and control
models. The relevant attributes for comparison of model elements was ex-
tracted, followed by a comparison of the extracted features. The case studies
discuss the types of clones found within the various data and control mod-
els. While some clones could be eliminated using refactoring techniques, not
all clones are harmful and are in some cases, unavoidable. The threats to
validity of the approach have also been discussed.

The settings available in SAMOS allow for many kinds of comparisons of
models. While not all of them have been pursued for the case studies in this
work, future work could explore results of the clone detection process with
the now easily configurable settings.

One such instance of this could be the detection of patterns (design or
anti patterns) in data models. While the case studies did not focus on this
aspect of data models, structural information of these models on the Model
and Domain Interface scopes could be explored to find patterns within or
among these models. As with the approach taken in [21], a catalogue of
design or anti patterns could be created to find such patterns within data
models.

Comparing the different elements of data and control models in the case
studies conducted did not place an importance on the types of model ele-
ments considered similar. For example, a domain expert might find it more
important in a data model if two entities were similar to each other than
if an entity was similar to a value object. Such a situation would call for a
weighted comparison of model elements placing different weights for different
elements being compared.
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While case studies were conducted for control models that successfully
detected clones within models, future work in this area has much potential.
The comparison of models using structure was done in terms of one depth
trees for the conducted case studies. This approach was chosen because tree
comparison for comparing full trees with the Protocol or Realization at the
node, was expensive in terms of computational time. The validation of the
results obtained using this approach was positive, however, the accuracy of
the comparison improves with the depth of the trees being compared because
the depth introduces more structural information. Therefore, future work
could involve altering the depth of the trees being compared to see how the
accuracy of the results is affected.

SAMOS has the functionality available for tree comparison that either
takes into account the order of the nodes being compared or compares trees
irrespective of the order of nodes. For the comparison of control models, the
order of the states or the transition states of the models did not affect the
similarity of the models. However, the order in which the action occur in
each transition state does affect the behavior of the models. While currently
an unordered comparison is being performed, future work could use a combi-
nation of ordered comparisons for actions in a transition state and unordered
comparisons for other model elements to further improve the accuracy of the
results.

SAMOS currently has the ability to extract features from four scopes for
data models and two scopes for control models. The comparison of model
elements for control models using structure might be less expensive while
comparing model elements at lower scopes, such as state or transition state.
Observing clones at the level of transition states might provide an insight
into what sequences of actions occur frequently and for these sequences, the
metamodel could include a more compact way to specify them. Moreover, for
the types of patterns found in the control model clusters after the unigram
comparison, one could create a pattern catalogue and find what models do
not adhere to these patterns. This could be an indication of unexpected
behavior in the models.
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