
 Eindhoven University of Technology

MASTER

OpenCL acceleration on FPGA vs CUDA on GPU

Quist, R.

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/96c72482-9565-476d-8aec-f1ff9f906cc0

A joint research by:
The Electronic Systems group, Eindhoven University of Technology

The High-End Computing group, Prodrive Technologies

OpenCL acceleration on FPGA vs
CUDA on GPU

Master Thesis

By
Remy Quist

Supervisors:

Prof. dr. K.G.W. Goosens

Prof. dr. ir. C.H. van Berkel

Ir. J.A. Huisken

Ir. R.P.M. van Doormaal

Revision: 5
Tuesday 12th March, 2019

Preface

During this research, many hurdles had to be overcome: inconclusive results, a broken collarbone,
and a fire destroying a large part of the company including my entire benchmarking setup. While
each of these hurdles postponed my graduation date by several months, I can now finally say that
my report is finished!

Without any help, finishing this report would have been impossible. For this reason, I would
like to thank Kees Goossens for mentoring and providing invaluable high-level feedback during
the entire project. Next, I would like to thank Roy van Doormaal as his continued support and
detailed feedback kept the quality standards high. I also want to thank both Mathijs Braakhuis
and Bas van Bree for managing the project and ensuring this project included the interests of
Prodrive. Next, I thank Frey Franken for stepping in when Roy was on holiday and Enzo Evers
for his understanding of the project and his help finalizing the benchmarking setup.

I also thank Prodrive for proving me the environment and tools to perform my research and Xilinx
for their help solving issues with their hardware and tooling.

Finally, I would like to thank my partner Jannelize, my family and friends for their continued
support and giving me the energy to continue and finish this project.

Remy Quist,
Eindhoven, February 2019

ii OpenCL acceleration on FPGA vs CUDA on GPU

Abstract

The goal of this research is to determine the value that OpenCL FPGA acceleration brings to
the CUDA GPU hardware acceleration market. This value is determined by both a literature
study and by optimizing and benchmarking the RabbitCT and Demosaic algorithms to a similarly
priced Nvidia Quadro P6000 GPU and Xilinx Kintex KCU1500 FPGA. The performance of the
selected algorithms is analyzed using six factors: maximum performance, costs per performance,
programmability, interconnect options, energy efficiency and product availability.

Here is found that while the maximum FPGA performance does not reach the maximum GPU
performance, the costs-per-performance can similar for less memory intensive algorithms. Next,
FPGAs offer higher energy efficiency and product availability than GPUs. As for the interconnect,
GPUs are limited to the PCIe interface for I/O communication, while FPGAs allow any additional
interconnect to be connected to increase the I/O bandwidth. Finally, while FPGAs offer several
advantages over GPUs, their programmability is much lower, meaning OpenCL kernels are signi-
ficantly harder to program for the FPGA due to the long compilation times and manual memory
management that is required.

From these results can be concluded that OpenCL FPGA acceleration is most useful in cases where
energy efficiency and product maintainability is more important than the maximum performance
or having a short development time.

OpenCL acceleration on FPGA vs CUDA on GPU iii

Contents

Contents iv

List of Figures vii

List of Tables viii

Listings x

Abbreviations xi

1 Introduction 2

1.1 Background: hardware acceleration . 2

1.2 Problem & project goal . 3

1.3 Outline . 4

2 Method 5

3 Literature Study 8

3.1 Accelerator availability . 8

3.2 Programming methods . 9

3.3 API porting . 11

3.4 FPGA acceleration research . 14

3.4.1 Cloud acceleration . 14

3.4.2 Image processing . 16

3.4.3 Others examples . 17

3.5 Optimization strategies . 20

3.5.1 FPGA OpenCL . 20

3.5.2 GPU CUDA & OpenCL . 24

iv OpenCL acceleration on FPGA vs CUDA on GPU

CONTENTS

3.6 Literature study conclusion . 27

3.6.1 Accelerator availability . 27

3.6.2 Programming methods . 27

3.6.3 API Porting . 27

3.6.4 FPGA acceleration . 27

3.6.5 Conclusion . 28

4 Algorithm Analysis 30

4.1 RabbitCT . 30

4.1.1 Theoretical analysis . 30

4.1.2 Algorithm implementation . 34

4.1.3 Implementation analysis . 35

4.2 Demosaic . 41

4.2.1 Theoretical analysis . 42

4.2.2 Algorithm implementation . 44

4.2.3 Implementation analysis . 46

5 Hardware Selection 49

5.1 FPGA selection . 49

5.1.1 FPGA requirements and options . 49

5.1.2 FPGA selection and specifications . 51

5.2 GPU selection . 52

5.2.1 GPU requirements and options . 52

5.2.2 GPU selection and specifications . 53

5.3 Host selection . 54

5.3.1 Host requirements . 54

5.3.2 Host specifications . 54

5.4 Hardware comparison . 55

5.4.1 Numerical comparison . 55

5.4.2 Interconnect options . 57

5.4.3 Roofline comparison . 57

6 Algorithm Implementation 60

6.1 RabbitCT . 60

OpenCL acceleration on FPGA vs CUDA on GPU v

6.1.1 RabbitCT GPU . 60

6.1.2 RabbitCT FPGA . 68

6.2 Demosaic . 75

6.2.1 Demosaic FPGA . 75

6.2.2 Demosaic GPU . 84

7 Results 88

7.1 Maximum performance . 88

7.2 Costs per performance . 89

7.2.1 RabbitCT . 89

7.2.2 Demosaic . 90

7.2.3 Summary . 91

7.3 Programmability . 93

7.3.1 Tooling . 93

7.3.2 Code . 96

7.3.3 Summary . 100

7.4 Interconnect options . 100

7.5 Energy efficiency . 100

7.6 Product availability . 101

8 Conclusion 102

9 Future Work & Expectations 105

9.1 Future work . 105

9.2 Future expectations . 106

Bibliography 107

Programming guides . 107

Referenced papers . 108

vi OpenCL acceleration on FPGA vs CUDA on GPU

LIST OF FIGURES

Referenced websites . 112

List of Figures

1.1 Hardware hierarchy . 2

3.1 Main GPU Programming Languages . 10

3.2 Productivity enhancing programming languages . 11

3.3 OpenCL and CUDA compilation flow . 13

3.4 CUDA OpenCL porting . 13

3.5 Cloud-Scale Acceleration Architecture . 15

3.6 OpenCL FPGA memory model . 21

3.7 OpenCL pipe implementation . 21

3.8 SIMD visualization . 22

3.9 Partitioning methods . 23

3.10 CUDA GPU memory model . 25

3.11 Memory access patterns . 25

4.1 Heatmap of RabbitCT input image #100 . 31

4.2 2D backprojection example . 31

4.3 Normal vs filtered backprojection . 32

4.4 2D to 3D perspective . 32

4.5 RabbitCT Dataflow . 37

4.6 Pixel access trace . 38

4.7 Pixel access heatmap . 39

4.8 Resolution 128 input memory usage analysis . 40

4.9 From raw input to interpolated output . 41

4.10 Bayer filter, colour channels and conversion to RGB 42

4.11 Luminance and chrominance . 43

OpenCL acceleration on FPGA vs CUDA on GPU vii

4.12 Malvar-He-Cutler demosaic filter coefficients . 43

4.13 Demosaic Dataflow . 47

5.1 Kintex UltraScale FPGA KCU 1500 PCB . 52

5.2 Nvidia Quadro P6000 . 54

5.3 Roofline initial implementations . 59

6.1 RabbitCT Thread Optimization . 64

6.2 The advantage of streams . 66

6.3 Simplified Demosaic prefetching . 78

6.4 Pixelbuffer example burst-size 4 . 80

7.2 Costs-per-performance results . 92

7.3 NVVP Performance Analysis Reports . 95

7.4 Lines of code . 98

7.5 FPGA hardware compilation time . 99

List of Tables

3.1 Xilinx Ultrascale+ data type comparisons for the addsub unit 23

3.2 Nvidia compute capability 7.5 data type comparisons for add, multiply, and multiply-
add commands . 26

3.3 Literature study results . 29

4.1 RabbitCT output size . 38

4.2 RabbitCT input distance between voxels . 41

5.1 Intel OpenCL FPGA Accelerators . 50

5.2 Xilinx OpenCL FPGA Accelerators . 51

5.3 Nvidia Quadro GPUs as of December 2018 . 53

5.4 Xilinx KCU1500 floating point performance calculation 56

viii OpenCL acceleration on FPGA vs CUDA on GPU

5.5 Hardware comparison . 57

6.1 RabbitCT CUDA GPU implementation results . 61

6.2 RabbitCT OpenCL GPU implementation results 61

6.3 RabbitCT FPGA implementation final results . 69

6.4 RabbitCT FPGA implementation 1 results . 69

6.5 RabbitCT FPGA implementation 2 results . 70

6.6 RabbitCT FPGA implementation 3 results . 71

6.7 RabbitCT FPGA implementation 4 results . 72

6.8 RabbitCT FPGA implementation 5 results . 73

6.9 RabbitCT FPGA implementation 6 results . 74

6.10 Demosaic FPGA implementation final results . 76

6.11 Demosaic FPGA implementation 0 results . 77

6.12 Demosaic FPGA implementation 1 results . 77

6.13 Demosaic FPGA implementation 2 results . 79

6.14 Demosaic FPGA implementation 3 results . 81

6.15 Demosaic FPGA implementation 4 results . 81

6.16 Demosaic FPGA implementation 5 results . 83

6.17 Demosaic OpenCL GPU implementation results . 84

6.18 Demosaic local work-item performance in FPS . 85

6.19 Demosaic GPU tweaking results . 87

7.1 RabbitCT costs per performance results . 90

7.2 Demosaic costs per performance results . 91

7.3 Programmability results . 100

8.1 Final results . 104

OpenCL acceleration on FPGA vs CUDA on GPU ix

LISTINGS

Listings

4.1 RabbitCT-Runner pseudocode . 34

4.2 RabbitCT-Algorithm pseudocode . 35

4.3 RabbitCT backprojection data . 36

4.4 Demosaic host pseudocode . 44

4.5 Demosaic algorithm pseudocode . 45

x OpenCL acceleration on FPGA vs CUDA on GPU

Abbreviations

ASIC Application Specific Integrated Circuit

API Application Programming Interface

BRAM Block Random Access Memory

BSP Board Support Package

CDF Cumulative Distribution Function

CPU Central Processing Unit

CT Computed Tomography

CUDA Compute Unified Device Architecture

DDR Double Data Rate Memory

DMA Direct Memory Access

DSP Digital Signal Processor

FF Flip Flop

FIFO First In First Out

Fmax Maximum frequency

FPGA Field Programmable Gate Array

FPS Frames Per Second

Freq. Frequency

GB Gigabyte

GbE Gigabit Ethernet

GBps, GB/s Gigabyte per second

GDDR Graphics Double Data Rate Memory

Gen Generation

GFLOP/s Giga floating point operations per second

Gop/s Giga operations per second

GPU Graphics Processing Unit

HBM2 High Bandwidth Memory 2

HDL Hardware Description Language

HLS High-Level Synthesis

HPC High-Performance Computing

HU Houndsfield scale Units

HW Hardware

II Instruction Interval

Impl. Implementation

I/O Input and Output

JTAG Joint Test Action Group

LTS Long Term Support

LUT Look Up Table

MSE Means Squared Error

MT/s Mega Transfers per Second

NVVP NVidia Visual Profiler

OpenCL Open Computing Language

Opt. Optimized

OS Operating System

OpenCL acceleration on FPGA vs CUDA on GPU xi

LISTINGS

PCB Printed Circuit Board

PCIe Peripheral Component Interconnect Express

Perf Performance

PSNR Peak Signal to Noise Ratio

QSFP Quad Small Form Factor Pluggable

RAM Random Access Memory

RGB Red Green Blue colour space

RTL Register Transfer Level

SIMD Single Instruction, Multiple Data

SLI Scalable Link Interface

SoC System on Chip

SW Software

TDP Thermal Design Power

TIFF Tagged Image File Format

TFLOP/s Terra floating point operations per second

WC Latency Worst Case Latency

XCPP Xilinx C++ Compiler

XOCP Xilinx OpenCl Compiler

YUV Luma (Y) and Chrominance (UV) colour space

OpenCL acceleration on FPGA vs CUDA on GPU 1

Chapter 1

Introduction

1.1 Background: hardware acceleration

Modern data processing workloads often contain large compute-intensive tasks with highly paral-
lelizable sections. These sections consist of a small piece of code that is executed a large number of
times. Hardware accelerators are used to increase the throughput and efficiency of these applica-
tions. Accelerators differentiate themselves from a general-purpose processor by trading flexibility
and functionality for a gain in efficiency. By combining a general-purpose processor, also known
as the host, with one or more accelerators, the throughput of an application can be increased
significantly. Offloading computationally intensive parts to an accelerator allows these parts to
be executed faster because accelerators can perform specific software functionality more efficiently
than a general-purpose processor. Additionally, offloading the work to an accelerator allows the
processor to process other work while waiting for the accelerator to finish.

When comparing computer hardware on flexibility and efficiency, computer hardware can be di-
vided into four main classes, see Figure 1.1. Here, flexibility means that the device can be used for
a wide range of functions and can easily be reconfigured for a new function. Efficiency indicates
that this type of device can execute a given job with high performance and power efficiency.

From the four categories, a CPU or a general-purpose processor is the most flexible piece of
hardware. It is designed to handle any task given and excels in the execution of complex sequential
tasks. Due to the large number of tasks a CPU should be able to handle, its hardware has a large
footprint. For this reason, the CPU with the most cores available at the moment of writing contains
32 cores [70], limiting the work that can be performed in parallel. Due to the large number of
tasks the CPU can perform, many different hardware elements are present, making it unlikely
that all hardware is used in each clock cycle. To improve the hardware usage, hyperthreading or
simultaneous multithreading virtually increases the number of cores by allowing two threads to be
processed in parallel on a single core. Here, the CPU selects instructions of both threads to make

Figure 1.1: Hardware hierarchy, taken from [69]

2 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 1. INTRODUCTION

optimal use of the hardware elements available.

The graphics processing unit, or GPU, is created for parallelism. Parallelism is achieved by limiting
the device to simpler processing tasks to allow a large number of processing elements to fit on a
chip with the same footprint. As of writing, the GPU with the most processing units contains
5120 cores on a single die [71]. The parallelism of the GPU enables it to efficiently execute simpler
tasks that are executed a large number of times. An example of such a task is graphics processing,
where the GPU calculates the colour data of each pixel that has to be shown on the screen.

Another type of accelerator is the Field Programmable Gate Array, FPGA for short. An FPGA is
more efficient than a GPU or CPU at the cost of programming flexibility. A CPU and GPU both
consist of computational cores which can be reconfigured at run-time. Every clock cycle these
cores receive instructions that are executed accordingly, which is enabled by the flexible design
of these cores where each core contains the hardware for performing all supported instructions
every cycle. So, even if most instructions are never executed, the device will always be ready to
perform them which reduces the overall efficiency of the device. An FPGA does not contain the
programmable core structure of the CPU and GPU; it contains a large number of logic building
blocks with a programmable interconnect. By combining these logic elements in certain ways, a
data path is formed using only the logic elements required for the execution of a specific func-
tion. Forming function-specific data paths makes FPGAs significantly more efficient as only the
hardware elements required for a specific task are being used.

A downside to FPGAs however, is that the hardware cannot be reconfigured every cycle, limiting
the implemented hardware paths to the configuration assigned at startup. To ease reconfiguration,
modern FPGAs add support for partial reconfiguration, allowing certain sections of the FPGA
to be reconfigured, while the rest stays operational. However, this reconfiguration operation still
takes time, which limits the flexibility of the hardware. Another downside to FPGAs is that
they are harder to program. An FPGA is programmed by a binary file generated from Register-
Transfer-Level code. RTL code is a low-level programming language, which requires knowledge of
the hardware, making it harder to program compared to any high-level language. Programming
an FPGA in RTL requires the user to program the data flow of the hardware; for each clock
cycle and input, the operation and output destination of each input must be defined. This is not
the case when programming for a CPU or GPU, here a compiler reads the program written in
a hardware independent high-level programming language and translates this into the hardware
specific machine code which the underlying CPU or GPU understands. Compilation for a CPU
or GPU is a relatively easy task, as the hardware in a CPU and GPU is constant. The FPGA
hardware is not constant, and its paths are user-defined. So, the compilation process must not only
map the software to hardware, but it must also synthesize an efficient hardware implementation
itself. These additional compilation steps make high-level FPGA compilation a much harder task,
requiring a lot of compute resources. For this reason, high-level synthesis has only recently become
a viable FPGA programming method.

The final hardware category shown in Figure 1.1 is that of the Application-Specific Integrated
Circuit or ASIC. The ASIC fully implements the application in hardware, reducing the flexibility
to what it is designed to do, which eliminates any general purpose usage. However, this reduction
in flexibility further increases its efficiency as this allows the performance and energy efficiency to
be maximized.

1.2 Problem & project goal

The goal of this research is to determine whether OpenCL FPGA acceleration can be a worthy re-
placement for the currently used CUDA GPU acceleration solutions. The search for a replacement
was initiated by customers of Prodrive stating the lifecycle of a GPU accelerator is a problem.

OpenCL acceleration on FPGA vs CUDA on GPU 3

CHAPTER 1. INTRODUCTION

They state that this problem is caused by GPU vendors only fabricating a certain GPU generation
for 2-3 years, after which only newer GPU generation are available; forcing any broken GPUs hard-
ware to be upgraded. Upgrading the hardware is by itself not a problem as this normally increases
performance or decreases costs. However, architectural changes in the new hardware generation
require the software to be updated as well. These changes require a new development and testing
process, making the upgrade a costly and time-consuming process, and thus a problem.

In November 2012, Altera (now Intel), released OpenCL compilers for FPGA programming [1],
with Xilinx following in early 2015 [2]. These compilers allow the FPGA to be programmed in a
similar way to the CUDA acceleration method currently used by Prodrive its customers. Moreover,
as FPGAs are available for ten years or more, FPGA acceleration could be an interesting solution
to the GPU lifetime problem. However, as this acceleration technique is still in its infancy, detailed
information about the performance and cost of this solution not available. So, to find the answers
to these unknowns, this research has been initiated.

1.3 Outline

In Chapter 2, the method of this research is explained. Which is followed by a literature study in
Chapter 3 to get a view of the current status of the market. The literature study is followed by an
algorithm analysis in Chapter 4. With knowledge of both the literature and algorithms, the bench-
marking hardware is selected in Chapter 5. Chapter 6 shows the applied optimizations and results
for each platform and algorithm. These results are discussed and compared in Chapter 7. Finally,
in Chapter 8, a conclusion is made and future work and expectations are shown in Chapter 9.

4 OpenCL acceleration on FPGA vs CUDA on GPU

Chapter 2

Method

The value that OpenCL acceleration on FPGA brings to the GPU hardware acceleration market
is determined by a literature study and by the porting and benchmarking of two Prodrive selected
algorithms. The literature study is used to gain knowledge on the subject, which helps with
porting the selected algorithms to the desired platforms. The literature study consists of a product
availability analysis, determining how many years a certain GPU or FPGA can be purchased;
an analysis between both the CUDA and OpenCL API, indicating the language differences and
similarities and porting methods; and it contains the optimization strategies and results obtained
by other FPGA acceleration research papers. This data not only helps to optimize the selected
algorithms but also serves as a result comparison, reducing the chance for a bias in the results to
one of the platforms.

With the knowledge of the literature study available, two applications are ported from their
source code to each of the acceleration platforms. The selected algorithms are the RabbitCT
benchmarking suite [22] and the Linear Image Demosaicing algorithm proposed by Malvar-He-
Cutler [23]. RabbitCT is a CT-scanner back-projection algorithm used in the medical market;
it converts a sum of X-ray images into a 3D voxel representation of the scanned object. The
Demosaic algorithm is an image processing algorithm that converts monochrome Bayer images into
coloured RGB output images by filtering the image data into their respective colours. Originally,
RabbitCT was the only algorithm benchmarked for this project, but as its GPU vs FPGA results
were inconclusive, the Demosaic algorithm was added to expand the scope of the project. Both
algorithms have been selected for their relevance for Prodrive Technologies, as their customers
found these algorithms computationally representative for the algorithms they want to implement.
Both algorithms are explained in more detail in Chapter 4.

Six metrics are used to determine what value OpenCL FPGA acceleration brings when com-
pared to the CUDA GPU acceleration market. These metrics are the maximum performance,
the cost per performance, the programmability, the interconnect options, the energy efficiency,
and the product availability of each platform. The maximum performance shows the maximum
capabilities of the hardware and indicates any differences between APIs. Analyzing the cost per
performance removes the architectural price differences and shows what a certain performance will
cost for each platform. The programmability metric indicates the perceived difficulty of creating
an optimized implementation of both algorithms for each platform and is determined subject-
ively. The interconnect shows the options that are available for the platform to communicate with
other platforms. The final two metrics, the energy efficiency and product availability, are used
to indicate what longer term cost saving properties a platform might have. If a platform has a
higher energy efficiency or is available for longer, then this platform is more cost efficient over
time, which might make it a better option even if another platform has a higher performance and
programmability. By analyzing the selected applications and platforms using these five metrics,
the knowledge Prodrive hopes to gain from this research is covered.

When comparing CUDA GPU acceleration with OpenCL FPGA acceleration, two variables are
changed; namely, the programming API and the accelerator hardware. So, to determine if per-

OpenCL acceleration on FPGA vs CUDA on GPU 5

CHAPTER 2. METHOD

ceived changes are API related or hardware related, an OpenCL GPU benchmark is performed
as well. Benchmarking OpenCL on a GPU enables CUDA vs OpenCL GPU testing to show API
differences, and it allows the created GPU builds to be compared to the OpenCL FPGA builds to
show whether any hardware differences are present.

During the RabbitCT porting process, the code was optimized for CUDA first. Selecting CUDA
first enabled this project to start from a similar perspective as Prodrive its customers, as they
currently accelerate their applications using CUDA. With the CUDA implementation optimized,
an OpenCL GPU port was created starting from the source code of the algorithm. Afterwards, the
optimizations used for the CUDA build are implemented, and both the CUDA and OpenCL are
updated to ensure that the only code differences present are API related. With both an optimized
CUDA and OpenCL GPU RabbitCT implementation, an OpenCL FPGA port is created. This
FPGA port is based upon the initial unoptimized OpenCL GPU implementation after which
FPGA specific optimizations are iteratively applied.

With CUDA being selected first, there is the danger for a negative bias in either direction. A
negative bias could be introduced against CUDA because it is the first implementation, making
it seem more difficult due to a lack of porting and optimization experience. And a negative bias
might be caused against OpenCL for FPGA because the gained GPU programming experience
might not be that useful for programming an FPGA where different optimization strategies are
required. The effect of these biases is reduced by optimizing the Demosaic algorithm for OpenCL
FPGA first, ensuring that the initial selected platform does not affect the applied optimization
strategies. Additionally, by using the information found in the literature study for optimization
and a result comparison, the effect of bias on the final results is minimized and a conclusion can
be made.

Due to a large fire at Prodrive Technologies on the first of December 2018, the entire benchmarking
setup was lost [72, 73]. The loss prevented some last finalization steps from being completed and
resulted in the loss of some benchmarking results. As the project was nearly finished and because
rebuilding the benchmarking setup might take several weeks, it was decided not to rebuild the
benchmarking setup, meaning that not all results could be obtained. For this reason, no Demosaic
CUDA implementation is created, and no power measurements could be performed the hardware.
Luckily, the RabbitCT CUDA vs OpenCL results provide an insight into the expected CUDA
performance, and the power measurement data can be estimated based upon the TDP of the
product.

To summarize, Prodrive wants to know the feasibility of using an FPGA as an accelerator compared
to a GPU. For this reason, this research was initiated, and it contains the following:

• Literature study

– Accelerator hardware availability comparison

– Accelerator programming method comparison

– CUDA and OpenCL porting methods

– Related FPGA acceleration research

– Performance and resource utilization optimization strategies

• Algorithm analysis & implementation

• Benchmarking

– Platforms

∗ GPU with CUDA

∗ GPU with OpenCL

6 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 2. METHOD

∗ FPGA with OpenCL

– Metrics

∗ Maximum performance

∗ Costs per performance

∗ Programmability

∗ Interconnect options

∗ Energy efficiency

∗ Product availability

OpenCL acceleration on FPGA vs CUDA on GPU 7

Chapter 3

Literature Study

FPGAs can be used to accelerate or run many different applications, and these applications can
be implemented in many different ways. The following sections provide an analysis of several
research papers where FPGAs are used for acceleration. These sections explain what the hardware
availability is for both the FPGA and GPU, what kind programming methods exist for FPGA
and GPU acceleration, what kind of programming API porting tricks can be used, what other
literature has achieved when porting applications to an FPGA accelerator, and what optimization
strategies they have used to get the reported performance for both FPGA and GPU platforms.
The answers to these questions provide a frame of reference and support the development choices
for this research.

3.1 Accelerator availability

According to the customers of Prodrive, the main problem with GPU accelerators is the GPU life-
cycle. They state that a GPU generation goes end of life quickly, requiring them to replace broken
GPUs with a newer generation only several years after launch. Replacing a GPU with a unit of a
newer generation requires a new development and testing process to ensure software compatibil-
ity, making it a costly process, and thus an issue that should be avoided. To determine whether
FPGAs improve upon availability compared to a GPU, this section analyzes the production data
and availability of multiple accelerators and searches for the oldest GPU or FPGA generation still
in production. As vendors do not openly provide production data, the production data used in
this section is provided by third party vendors or information sites stating the availability of a
product.

For Nvidia, production information is provided by the GPU database of Techpowerup [74]. This
database provides all specs of the GPUs developed by Nvidia, including their release date and
production status. As of the 21st of November 2018, the oldest Quadro GPU still in production
is the Nvidia Quadro K1200 which was released on the 28th of January 2015. The name of the
Quadro K1200 suggests that it is part of the Kepler generation, but it actually contains a first
generation Maxwell GPU, which are still in production. As no GPUs of the Kepler generation are
being produced anymore, this means that the oldest Nvidia GPU generation still in production
is three years old. Similar production statistics can be found for AMD, the other main GPU
developer. None of AMD’s 2014 FirePro professional GPUs are still in production, and the oldest
FirePro card available is the AMD FirePro S9170, released on the 8th of July, 2015. Data from
both AMD and Nvidia shows that GPUs are in production for roughly three years, after which
the number of remaining units depends on the stock available at vendors.

Intel provides its FPGA availability on the Intel FPGA purchasing website [75]. By performing
a search for the oldest FPGA generations in stock listed on their FPGA device overview [76], it
shows that the oldest FPGA generation available is the MAX II series, which was introduced in

8 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 3. LITERATURE STUDY

2004. The Cyclone III and Arria GX series from 2007 are also still available. However, the Stratix
III series from 2006 is not on stock and thus likely discontinued. Xilinx FPGAs show an even
better availability, with their main reseller Digikey indicating that the Xilinx Spartan-II from 2000
and the Virtex-II Pro FPGAs from 2002 are still being produced and are available for purchase
[77]. Additionally, the Xilinx website reports that their 2006 Spartan-6 FPGAs will be supported
until at least 2027 [78].

To conclude, the availability of FPGAs is significantly better than GPUs. GPUs are generally
available for up to three years, after which their hardware generation is phased out. FPGAs are
available for a much longer time, with 11-year-old generations still being available at Intel, and
18-year-old generations being available at Xilinx. Additionally, Xilinx states that they aim to
support their Spartan-6 series FPGAs up to 21 years after release, showing their commitment to
long-term hardware support.

3.2 Programming methods

FPGAs were initially programmed at register transfer level (RTL) using languages like Verilog
and VHDL. These languages allow the FPGA hardware connections to be defined at the register
level, which requires in-depth knowledge of the hardware to implement an application. The same
used to be true for general-purpose computer programming, where programmers wrote software in
assembly language. The introduction of the C language in the late 1970s changed this as it offered
more efficient, portable and more readable code than what was possible at a lower abstraction
level [24]. Currently, a similar change is happening for programming FPGAs, where according
to [25], programming in RTL can take up to six times longer to write and test the code when
compared to writing in a high-level programming language like OpenCL.

For this reason, both Intel and Xilinx have been developing high-level synthesis tools that can con-
vert high-level programming languages into the required RTL code for programming an FPGA.
Intel has created the Intel HLS tools [79], which generates RTL from C++, and Xilinx has cre-
ated the Vivado HLS tools [80], which supports RTL generation from the C, C++ and System C
languages. The use of these HLS tools allows FPGAs to be programmed using a high-level lan-
guage. However, these tools are limited to programming the FPGA and require the user itself to
develop a communication protocol for using the FPGA as a CPU controlled hardware accelerator.
For this reason, both vendors have released an additional tool explicitly created for acceleration.
Xilinx has developed the SDx toolset consisting of SDAccel aimed at OpenCL acceleration for
PCIe accelerated devices [81], SDSoC for OpenCL acceleration on SoC devices [82], and SDNet
for P4 programmed network devices [83]. Similarly, Intel has developed the Intel FPGA SDK for
OpenCL toolset, which is used for all Intel related OpenCL acceleration [84].

By adding OpenCL acceleration support, both vendors allow their FPGAs to be used similarly to a
GPU accelerator. GPUs are usually programmed in CUDA, OpenCL or OpenACC when used for
acceleration. Here CUDA is the most popular technology for GPU programming, created by Nvidia
and limited to Nvidia GPUs [26], OpenCL is a royalty-free cross-platform, parallel programming
standard similar to CUDA [85], and OpenACC is a directive-based parallel programming language
similar to OpenMP [27].

A comparison of the three parallel programming languages is made by joint research from the
University of Bristol, University of Warwick and the UK Atomic Weapons Establishment in 2012.
Here is reported that the OpenACC version offers about 24% to 34% more performance on a
GPU when compared to CUDA or OpenCL [27]. However, they do report that their CUDA and
OpenCL implementations are not optimized. The fact that this performance difference is caused
by unoptimized code is proven by follow-up research by the University of Warwick in 2015. Here
is shown that CUDA and OpenCL implementations do outperform OpenACC implementations

OpenCL acceleration on FPGA vs CUDA on GPU 9

CHAPTER 3. LITERATURE STUDY

Figure 3.1: Main GPU Programming Languages

by 15% to 20% for CUDA and 10% to 20% for OpenCL [28]. A paper by the Tokyo Institute of
technology in 2013 [26] also confirms that CUDA outperforms OpenACC as their fully optimized
CUDA implementation outperforms an OpenACC implementation of the UPACS benchmark by
2.7 times. However, the researchers do report that their CUDA implementation contains many
more line changes than their OpenACC version, which could indicate that the OpenACC version
might not be fully optimized for this implementation.

The main advantage of OpenACC over OpenCL or CUDA is the fact that the standard increases
programming productivity and code portability. According to joint research by the University
of Bristol, the University of Warwick and the UK Atomic Weapons Establishment in 2012, their
OpenACC version had about 10x less code than their CUDA and OpenCL implementations.
Namely 1510 words of code for OpenACC, 17930 for OpenCL and 13.6k for CUDA [27]. The
follow-up paper by the University of Warwick cites these results and states: “these performances
differences are more than acceptable when offset against programmer productivity measure in the
number of words of code” [28].

For compiling OpenACC code to an FPGA, a separate compiler framework has been created,
namely the Open Accelerator Research Compiler (OpenARC) framework [86]. This framework,
currently in Beta, allows for compilation of OpenACC, OpenMP 4, and NVL-C into a shared
heterogeneous runtime that can run on CUDA GPUs, GCN GPUs, the Xeon Phi, and FPGAs.
For compilation to FPGA, the compilers function to translate the OpenACC code into OpenCL is
used. The generated OpenCL code is then used for compiling the FPGA binaries. Early research
results by the Oak Ridge National Laboratory shows promising results [29]. Here, comparing a
similar OpenACC codebase to both GPUs and FPGAs show the GPUs favouring highly parallel
code and the FPGAs favouring highly pipelined code, with the GPUs being 5 to 10 times faster
than FPGAs for parallel benchmarks, and the FPGAs being 20 to 30 times faster for the pipelined
FFT benchmarks.

Another programming language aiming to increase productivity is Halide [87]. Halide is a pro-
gramming language developed to ease the writing of high-performance image processing code. Its
compiler supports the x86/SSE, ARM/NEON, CUDA and OpenCL target platforms, resulting in
a highly portable codebase. As with OpenACC, there is a third-party Halide to FPGA compiler
available. However, as with OpenARC, this compiler has only been developed as a research project
[30]. Currently, their GitHub wiki states Vivado HLS v2015.4 as a requirement [88], making the
project quite outdated as the latest Vivado toolset release is v2018.2.

Where Halide is a programming language aimed at image processing, OpenCV is a programming
library aimed at computer vision and machine learning [89]. The library contains more than 2500
optimized algorithms specified for an extensive array of computer vision tasks. It has a C++,
Python and Java interface and supports all leading operating systems. Currently, full-featured
OpenCL and CUDA interfaces for acceleration are in development. However, research by the

10 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 3. LITERATURE STUDY

National Tsing-Hua University states: the implementation is portable, but the performance still
needs to be tuned for different architecture models [31], showing that the provided implementations
are not optimal yet. The Federal University of Sergipe shows the same result in their paper
comparing their OpenCL implementations for the VCL library with the OpenCV implementations
[32]. For FPGA implementations, an official Xilinx library exists with C++ code optimized for
compilation to Xilinx FPGAs [90]. A similar library exists for Intel, which recently has released the
Intel Distribution of OpenVINO toolkit [91]. This SDK provides Deep learning tooling, OpenCV
and OpenVX optimized code for CPUs, GPUs and their FPGA accelerator platforms.

The final analyzed programming language is SYCL. SYCL is a higher-level programming language
than OpenCL, C, and C++, which also allows for the inclusion of lower-level code [92]. SYCL
supports the inclusion of OpenCL, C/C++, OpenCV and OpenMP, allowing SYCL code to be used
in a wide range of applications and target platforms. Due to the support for lower-level OpenCL,
SYCL could be used in combination with OpenCL kernels that are compiled using Xilinx SDAccel
and the Intel FPGA SDK for OpenCL. However, a 2017 paper from the University of Campinas
reports that the SYCL performance is not equal to an OpenCL or OpenMP implementation. They
state that for the used benchmarks, OpenCL is 2.35 to 2.77 times faster than SYCL, and OpenMP
is 1.38 to 2.22 times faster than SYCL [33].

Figure 3.2: Productivity enhancing programming languages

Based on the analyzed research papers, it can be concluded that higher-level programming lan-
guages like Halide, OpenACC, and SYCL offer the same functionality as other programming
methods at a significantly reduced programming effort and a somewhat reduced performance.
They are also often still in the experimental phase for FPGA support with beta or research com-
pilers being available. CUDA, OpenCL and OpenMP are mid-level programming languages for
parallel programming. They offer the middle ground in programmability and performance and
are supported by multiple vendors. Next, programming libraries like OpenCV exist to ease and
accelerate the implementation of computer vision and deep learning algorithms in an application.
However, the portability of this library hinders its performance making it unsuitable for use in
our benchmarking applications.

3.3 API porting

With both OpenCL and CUDA as the selected programming APIs, the chosen applications
are written using both languages. This section highlights the hardware-independent differences
between both CUDA and OpenCL and analyzes whether automated porting options can help with
the porting process.

A paper from the Seoul National University from 2015 reports that even though both CUDA and
OpenCL are very similar, some differences remain [34]. Even when a programmer is well known
with both CUDA and OpenCL, the porting process is reported to be a cumbersome and error-
prone task. For host and device code translation, most code remains untouched. Even though
most CUDA or OpenCL API calls look different, they perform the same task and thus can be

OpenCL acceleration on FPGA vs CUDA on GPU 11

CHAPTER 3. LITERATURE STUDY

translated to the respective API calls from the other programming language. An example of a
similar but different looking function is the OpenCL function clCreateBuffer() and the CUDA
function cudaMalloc(), which both allocate a certain memory space. Exceptions for one-to-one
porting exist as well. For example, the cudaMemcpyToSymbol() and cudaMemcpyFromSymbol()
functions are not supported on OpenCL. These functions transfer data between the host and a
device using a non-local variable located in device memory, which is not allowed in OpenCL, but
is allowed in CUDA.

Other stated differences between CUDA and OpenCL are present in the executable building pro-
cess. With OpenCL, the host and device code are split into multiple files. Here, the host code
loads the device code and compiles this at runtime. With CUDA the device code can be placed
in the same file as the host code and is compiled together with the host code before execution.
Another difference is found at the kernel execution statement. CUDA kernels are launched using a
single function that includes all that is needed to execute a kernel: what kernel, what parameters,
the size of the grid, the size of the thread blocks, and the size of the dynamic shared memory per
thread block used by the kernel. OpenCL splits the kernel argument declaration into separate lines
with the clSetKernelArg(), to set the arguments for the kernel, and clEnqueueNDRangeKernel()
to launch the kernel with the given size parameters and event info.

The final differences stated in [34] are language-specific features. CUDA supports the inclusion
of C++ features in the kernel, while OpenCL supports this functionality starting from OpenCL
version 2.1. As not all hardware supports OpenCL 2.1, support for this functionality is not guar-
anteed. Another language specific difference is the supported vector formats. OpenCL supports
two-, three-, four-, eight-, and sixteen- component vectors, while CUDA supports one-component
vectors but lacks the eight-, and sixteen-component vectors that OpenCL supports. CUDA also
supports more hardware specific functions as CUDA is limited to Nvidia hardware, enabling Nvidia
to implement more specific control into the API. CUDA also supports a unified address space,
allowing memory to be addressed by both the host and device. This functionality is present in
OpenCL starting from version 2.0.

A paper by the University of Tennessee Knoxville and the University of Manchester indicate
similar differences between CUDA and OpenCL in the naming of functions [35]. Additionally,
the researchers report that the OpenCL compilation method is similar to CUDA. However, where
OpenCL compilation can be performed by multiple compilers, CUDA can only be compiled by the
CUDA toolkit as it is closed source. Figure 3.3 shows both compilations flows. It shows that for
Nvidia devices to support OpenCL, OpenCL support has to be built into the CUDA toolkit, which
converts the kernel code into the PTX intermediate representation, allowing both languages to
use the same compilation back-end. Additionally, Figure 3.3 shows that OpenCL can be compiled
using multiple compilers, using a compiler specific intermediate code representation to generate
the device binaries.

The paper by the University of Tennessee Knoxville and the University of Manchester also shows
a runtime breakdown of an OpenCL kernel [35]. For their application, the execution of the kernel
took only 6.9% of the total runtime. The rest goes to kernel compilation, kernel creation and
kernel data copy functions. Avoiding kernel creation and copy overhead is not possible. However,
the latencies can be hidden by creating a streaming kernel that is continuously processing data and
copying data in parallel with the kernel execution. The kernel compilation time can and should
be avoided to affect the benchmark when benchmarking on a GPU, as this would result in an
unfair comparison with CUDA as CUDA applications are compiled prior to execution. This issue
can be resolved using offline compilation for OpenCL instead of the standard online compilation.
However, this can also be resolved by solely benchmarking the kernel execution time instead of
benchmarking the total application execution time.

The report also includes a performance comparison for the GEMM matrix multiplication algorithm
where the OpenCL implementation reaches similar performance levels as CUDA when the texture

12 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 3. LITERATURE STUDY

Figure 3.3: OpenCL and CUDA compilation flow, taken from [35]

cache is not used. With CUDA texture caching enabled, the OpenCL implementation performs
5% worse on average, allowing CUDA to perform better due to a reduction in memory fetching
overhead.

All in all, several differences exist between CUDA and OpenCL, and porting code between APIs
is a time-consuming process. For this reason, the researchers from the Seoul National University
have developed a tool for porting code between OpenCL and CUDA [34]. Their tool translates
the kernel code directly and uses code wrappers for porting the host code between languages,
see Figure 3.4. The porting tool has been benchmarked using the Rodinia benchmarking suite
[36]. When porting from OpenCL to CUDA, an average performance difference of about 3% is
reported for all 20 benchmarking applications when ran on an Nvidia GTX Titan. When porting
from CUDA to OpenCL, seven out of the 21 benchmarks failed due to CUDA specific code.
However, the applications that successfully have been ported from CUDA to OpenCL resulted
in an average performance difference of 0.3% when compared to the CUDA source code, and an
average difference of 0.2% when compared to the OpenCL source files of the same algorithm. This
average performance difference indicates that API porting between CUDA and OpenCL on a GPU
can be performed with automatically almost no performance loss.

(a) OpenCL to CUDA
(b) CUDA to OpenCL

Figure 3.4: CUDA OpenCL porting, taken from [34]

Swan is a tool that allows programs to execute using both CUDA and OpenCL [37]. Instead
of using wrappers like the example from [34], Swan provides an API with similar functions to
CUDA and OpenCL. Based upon the selected target API, Swan processes the code and converts
the Swan functions to the corresponding OpenCL or CUDA functions in pre-compilation. This
conversion allows for support of both APIs without requiring any changes to the source code when
the application is written using Swan library functions.
The reported benchmarks show that when using Swan to port CUDA code to OpenCL, the OpenCL
code is about 50% slower than the CUDA version on an Nvidia Tesla c1060 GPU. The paper links

OpenCL acceleration on FPGA vs CUDA on GPU 13

CHAPTER 3. LITERATURE STUDY

this slowdown to the source code initially being CUDA optimized and that the Nvidia OpenCL
compiler produces less optimized PTX intermediate representation code. The additional latency
Swan introduces to kernels was also measured by launching a thousand single threaded kernels
and measuring the launch latency. This measurement shows that Swan decreases the launch
latencies by 400 to 500 ns with CUDA and increases the launch latency by 200 to 300 ns for
OpenCL. Proving that Swan does not introduce a significant additional latency for converting the
Swan code into the respective OpenCL or CUDA code. Another observation made in [37] is that
the OpenCL launch latency is up to 9x higher than the CUDA launch latency. This additional
latency will hurt the performance of programs with short-duration kernels when using Swan to
target OpenCL devices.

The final CUDA-to-OpenCL porting tool analyzed is one by the Department of Computer Science
from Virginia Tech and is called CU2CL [38]. Instead of using wrappers or acting as an interme-
diate API, this tool converts CUDA source code to OpenCL source code and does not initiate any
compilation steps. By analyzing the abstract syntax tree of the original code, a string to string
conversion from the CUDA to OpenCL functions is performed. A direct string to string conversion
does not always work; sometimes parameters have to be created, moved or converted in order to
convert between languages successfully. Examples of this are expressions with unsupported data-
types or expressions where one API requires a pointer as a parameter, and the other does not.
The main difficulty in porting source code from CUDA to OpenCL was reported to be producing
maintainable or readable code. Other issues are the rewriting of macros or the use of closed-source
libraries, as these macros or libraries still expect the original CUDA data as input. Fixing these
issues requires complex rewriting of the macro or the inclusion of a functionally equivalent library
in OpenCL, which is not always available. Benchmarks of the original CUDA, a manually created
OpenCL implementation, and a converted OpenCL implementation are performed on an Nvidia
GTX 280 GPU. Here, the automatic OpenCL converted code has a similar performance to the
manually converted OpenCL code. However, the original CUDA implementation was still between
2% and 32% faster depending on the benchmark performed.

3.4 FPGA acceleration research

FPGA acceleration is used for many different computational tasks. These tasks range from small
accelerated sections of a larger program to applications where the entire algorithm runs on the
FPGA. This section analyzes several research papers and reports their findings on FPGA acceler-
ation. The algorithms used in these papers all fall in the category of high-performance computing
and are be divided into three main categories: cloud acceleration, image processing and other
HPC examples. For each analyzed implementation, the application itself is explained, and any
performance, programmability, energy efficiency, and life cycle results found are noted.

3.4.1 Cloud acceleration

Recently, FPGA accelerators have been introduced to each Microsoft cloud server module to
reduce the ever-increasing load on the CPU [39, 40]. The FPGAs are connected via two 8x PCIe
connections to the server and via a 40Gbps QSFP connection to the network. These connections
allow the FPGA to act as a local accelerator, where the local server accelerates applications; as a
network accelerator, where the network data is pre-processed removing load from the CPU; and
as a global accelerator, where the FPGA receives commands from other FPGAs on the network
to help them process a particular load. Here, global acceleration also helps to prevent issues with
failing FPGAs, as this allows tasks to be offloaded to another FPGA if no response is received
within a certain interval. Figure 3.5 shows an overview of the system.
The FPGAs used in the cloud server modules are Intel (Altera) Stratix V D5 FPGAs with 4GB of

14 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 3. LITERATURE STUDY

DDR3-1600 memory. These FPGAs are not the fastest and largest FPGAs available at the time
of publishing [93]. However, by combining thousands of mid-range FPGAs in a single network,
Microsoft has developed an acceleration network that significantly reduces the server CPU loads
while only slightly increasing the server power usage. The introduction of FPGA accelerators into
their cloud architecture allows the throughput to increase by 95% with a fixed latency or it can
reduce the latency by 29% when aiming for a fixed throughput for the Bing webpage ranking [39].
So, significant improvements have been made despite the FPGAs only increasing the power usage
of the server blades by about 35W per FPGA in a worst-case scenario [40].

Figure 3.5: Cloud-Scale Acceleration Architecture, taken from [40]

In 2012, the National University of Defence Technology had performed research on the accel-
eration of another cloud-based architecture [41]. Here, the MapReduce framework for massive
data processing is ported to an HDL FPGA based cloud architecture. The framework is split into
CPU-based and FPGA-based workers that work together to solve specific tasks. The CPU workers
receive the input from a user application and send this task to one of its available CPU or FPGA
resources. As soon as the processing on one of these resources has finished, the CPU receives the
output data and sends it to its destination. This CPU based dispatching framework makes the
acceleration highly scalable as more accelerators allow more work processing in parallel.
Matrix multiplication and page ranking algorithms are used to test the MapReduce framework.
The matrix multiplication benchmark is reported to run at least ten times faster than ”com-
modity” hardware when using a single FPGA with a single mapper and reducer implementation.
However, what commodity hardware is used as a reference not explained. When implementing
multiple pipelines on this FPGA, the performance increases linearly. The same holds for adding
a second FPGA to the acceleration framework. With the addition of a third FPGA, an Ethernet
bottleneck is reached as the FPGAs cannot receive enough data from the CPU to scale the per-
formance linearly. Final performance reports show that the page ranking benchmark runs 3.94
times faster on three FPGAs when to using unknown commodity hardware.

Similar MapReduce research was performed in 2010 by the Tsinghua National Laboratory for
Information Science and Technology [42]. However, instead of writing the framework in HDL,
these researches used a high-level synthesis method as well. For synthesizing the C code into RTL,
the AutoPilot tool from AutoESL [43] is used. As of February 2011, Xilinx has acquired AutoESL
and merged their tools into the Vivado toolset [94]. For benchmarking an Altera Stratix II FPGA
is used. The manually written HDL version achieved a speedup of 33.5x for the Rankboost
page ranking algorithm when compared to a software implementation on a CPU, whereas the

OpenCL acceleration on FPGA vs CUDA on GPU 15

CHAPTER 3. LITERATURE STUDY

HLS generated implementation achieved a speedup of 31.8x. These similar performance numbers
indicate that High-Level Synthesis can achieve a performance close to manually written code.
Together with the increased productivity high-level synthesis offers, this makes HLS programming
of FPGAs a worthy replacement to manually writing HDL.

A 2016 survey by the University of Athens summarizes other FPGA cloud acceleration research
results [44]. Here, they analyze 15 papers FPGA cloud architecture papers for their results. Next
to the MapReduce and Search engine applications that are shown above, this survey also reports
on other cloud-based algorithms that are accelerated using an FPGA with either HDL or HLS.
Namely, results for database analytics, the Apache Spark framework and the MemCached pro-
gramming framework are analyzed as well. Of all the 15 papers analyzed, a speedup of 1x up
to 31.8x the CPU performance is reported for all but one FPGA acceleration implementation.
Namely, one of the four MemCached programming framework implementations reports a slow-
down. However, the survey reports that for cases when the speedup is low, the implementation
was created aiming for energy efficiency and not for maximum throughput. Reading the paper
corresponding to the research with a decrease in performance verifies this reason. Here, the re-
searchers aim to port the MemCached framework, which is generally used with high-end hardware,
to a low-power SoC, so a performance decrease was expected [45]. Additionally, all analyzed pa-
pers in this survey reporting the efficiency numbers show an energy efficiency increase between 2.6
and 33 times when compared to the CPU energy efficiency.

3.4.2 Image processing

FPGA acceleration is also often used for image processing tasks. For example, in 2017, the Tech-
nical University of Dresden has used the AKAZE feature detection algorithm for their comparison
of OpenCL performance on different hardware platforms [46]. The AKAZE algorithm detects
features in images by filtering the image in several ways, revealing and hiding image features with
each filtering step. The detected features can be a particular angle, a line, or a sudden change of
colour which are often used for computer vision. These features allow the computer to understand
a scene, categorize objects, and or create a 3D structure from the motion present in an image
set [47]. For benchmarking, the researchers used a Xilinx Virtex-7 FPGA, and an Nvidia GTX
780 GPU in combination with an Intel Core i7-4770k processor to determine the performance
of OpenCL implementations for each platform. The benchmarking results show that the FPGA
OpenCL implementation is reported to be 1.47x faster and about 10.6x more power efficient than
the GPU OpenCL implementation.

The University of Florida has performed another image processing research in 2016. Here they
used a Canney Edge detector, a Sobel filter and a SURF feature extractor for comparing HDL
vs OpenCL on FPGAs [25]. All these algorithms take an image as an input and use it to create
a specific output data. The SURF feature detection algorithm performs a similar task as the
AKAZE algorithm described above. The Canney Edge detector and Sobel filter both filter the
image to detect edges in the image and highlights them on the output image which is used to
detect objects in the image. Their paper reports that creating the HDL kernel took six months
while creating the OpenCL kernels to a similar performance took one month. The final results
show that the performance between the OpenCL and HLD implementations is within 10% of each
other with no clear winner. The only difference between the generated and handwritten kernel
was that the OpenCL implementation uses 70% of the FPGA resources, while the VHDL kernel
uses 59% of the resources. So, the researchers conclude that OpenCL FPGA kernel generation
offers significantly higher productivity at the cost of additional area usage for achieving similar
performance to manually writing the HDL code.

3D image reconstruction is another example of an often-used FPGA accelerated image processing
task. A study by the University of California in 2015 has compared the performance of an OpenCL

16 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 3. LITERATURE STUDY

FPGA application with a CUDA GPU application [48]. They used a 3D reconstruction benchmark
that creates a model of an object or environment by using depth information from a camera or
depth sensor. Here, two kernels are ported from CUDA to OpenCL for execution on a Stratix V
FPGA. The Iterative Closed point kernel is used for object tracking and subsamples the objects.
Its original CUDA implementation takes 1.4ms to complete on an Nvidia GTX 760 GPU. A one
to one port to FPGA takes 49.9ms, and a fully optimized FPGA implementation takes 3.22ms to
complete, showing that a one to one port of the GPU implementation to FPGA will not lead to
high performance, and FPGA specific optimization is required to achieve optimal performance.
The Volumetric Integration kernel integrates takes the subsampled objects from the previous kernel
and uses the depth information to create a single representation of the volume. This kernel takes
4ms to run on the GPU but takes 100ms when optimized for the FPGA. The reason for this
significant slowdown is a memory bottleneck, as each iteration performs operations on 512 MB of
data with little reuse to allow for optimizations. So, for each iteration data is transferred back
and forth between the FPGA and the host at 15 GB per second, which is the bottleneck of this
kernel. Luckily, the available memory bandwidth has significantly improved during the last couple
of years, with both Intel and Xilinx releasing a variant of their FPGAs High Bandwidth memory
(HBM2) chips on the FPGA substrate [49] [50]. Intel reports that these HBM2 chips can supply
a total of 256 GBps bandwidth per chip, increasing the total bandwidth by more than ten times
per HBM chip on the die when compared to Stratix V FPGA used in this research.

In 2017, the University of Paris-Saclay also ported a 3D image reconstruction algorithm to OpenCL
for FPGA. However, this one is not one for processing depth information, but one for creating a
3D model from a large number of 3D Tomography pictures [51]. Here, a backprojection algorithm
similar to the one used in the RabbitCT algorithm is benchmarked on both a GPU and an FPGA.
This algorithm takes a set of X-ray images taken from multiple angles around the patient. These
images are then used for back-projecting the X-ray image to the light source, which results in a 3D
model of the scanned object. For benchmarking, an Nvidia Titan X Pascal and an Intel Cyclone
V FPGA with an ARM Cortex A9 processor and 1 GB of DDR3 memory are used. The original
CPU single work item benchmark without any optimization took 222.9 seconds to complete, while
the best performing FPGA kernel using multiple work items and two compute units took 16.9
seconds.
As the used Cyclone V FPGA is a low power, low clock, and small-sized FPGA from 2011, and the
GPU is the best and largest consumer GPU available in 2017 no fair comparison can be made. For
this reason, the researchers try to map the gained Cyclone V performance linearly to the expected
Intel Arria 10 SX660 performance for a fairer comparison. Here, based on the Cyclone V area
usage, they map multiple parallel variants of the Cyclone V implementation to the Arria 10 SX660
and expect the performance to increase linearly with the number of parallel implementations.
This linear interpolation leads to an estimated FPGA performance of 991ms, which is 82.6 times
slower than the Titan, which only requires 12ms to complete the benchmark. However, by linearly
mapping the performance, the researchers ignore FPGA architecture enhancements like DSP units
for floating point calculations [52] and a significantly higher clock frequency. For this reason,
the conclusion not accurately predicts the performance and efficiency of a real Arria 10 SX660
implementation, making their benchmark comparison useless.

3.4.3 Others examples

A 2016 white paper by Berten Digital Signal Processing analyzed both GPU and FPGA hardware
on many aspects, including their performance per euro, performance per watt, and the ease of
development [53]. The paper determined their results on facts about the selected hardware mean-
ing that they have not performed any benchmarking themselves. The price per performance was
determined by dividing the FPGA price by the total theoretical floating point performance, the
performance per watt was determined by dividing the floating point performance by the TDP,
and the ease of development was based upon the according to general knowledge stating that

OpenCL acceleration on FPGA vs CUDA on GPU 17

CHAPTER 3. LITERATURE STUDY

FPGA development is hard and developers are harder to find. Their results show that the FPGA
latency is reported to be an order of magnitude faster than the GPU, the FPGA is reportedly
3 to 4x more energy efficient, the FPGA enables the interface of choice to be used, and the re-
duced power requirement allows an FPGA to fit in a smaller size. Next, the GPU is reported
to have a higher floating point processing performance, a higher performance per costs, an easier
development process, higher backward compatibility compared to FPGA code in HDL, and higher
flexibility as all GPU functionality is available at all times whereas the FPGA needs to be repro-
grammed. Additionally, the paper shows that the price per performance is highly dependent on
the hardware; thus the results cannot be used for our comparison. However, it can be stated that
the price per performance for FPGAs is higher than GPUs according to this research, with the
FPGAs being between 3 to 50x more expensive than the tested GPU based upon their floating
point performance.

In 2016 the Tokyo Institute of Technology had researched the performance and power efficiency of
an implementation of six high-performance-computing benchmarks in OpenMP on CPU, CUDA
on GPU and OpenCL on FPGA [54]. All six benchmarks come from the Rodinia benchmarking
suite [36] [95]. Here, DNA sequencing, thermal simulation, pathfinding, diffusion calculation, linear
equation solving, and a CDF 3D Euler volume solver application are tested on each platform.
For benchmarking, the researchers use a Stratix V A7 FPGA, Nvidia Tesla K20c GPU and an eight-
core Xeon E5-2670 CPU. The worst-case result was achieved using the CDF solver benchmark,
which computes a 3D Euler volume using single-precision floating point computation. Here, the
performance of the FPGA is 11.5 times slower than the GPU and is 0.47x as efficient. The lousy
performance and efficiency are reported to be caused by a sub-optimal implementation and the
Stratix V FPGA not containing floating point units, hindering the performance of the floating-
point heavy implementation. Currently, both Intel and Xilinx have resolved this issue as their
latest FPGA generations contain DSP units that accelerate floating point calculations [96] [97].
The next worst performing algorithm is the Pathfinder algorithm which is a kernel that tries to
find a path with the smallest accumulated integer weight from the bottom to the top of a 2-D
grid. Here, the FPGA performs the algorithm 5.28 times slower than the GPU, but the FPGA
is 1.3x more efficient. The main reason for slowdown here is the lack of on-chip memory, limiting
the number of exploitable parallelisms.
The best performing benchmark is the Needleman-Wunsch (NW) benchmark that sequences DNA.
Here, the FPGA is only 1.48x slower than the GPU but 3.36x more efficient. The reason the NW
benchmark performs the best is likely caused by the algorithm only using integer numbers and
each computation only requiring data from neighbouring matrix elements. This data usage allows
for a more efficient pipeline implementation inside the FPGA than other benchmarks. Another
interesting fact this research provides is the performance of code optimized for a GPU running on
an FPGA versus FPGA optimized code executing on an FPGA. Here, the researchers achieved a
maximum speedup of 133.7 when optimizing an algorithm for FPGA execution when compared to
running the original GPU optimized code on the FPGA. The smallest speedup gained by FPGA
specific optimization occurs with the CDF 3D Euler volume solver, where only a speedup of 1.28
is reported when compared to the original GPU code running on the FPGA. All other tested
algorithms perform between 10.5 to 66 times better when optimized for FPGA execution. More
details on code optimization techniques are shown in Section 3.5.

Research by IEEE members in 2017 has also benchmarked several HPC applications using OpenCL
for both GPU and FPGA acceleration [55]. Using an Nvidia GTX 960, an Nvidia Quadro K4200
and a Xilinx Virtex-7 690t FPGA, several algorithms are benchmarked. The K-Nearest Neighbour
(KNN), the Monte Carlo (MC), and the Bitonic Sorting (BS) algorithm are ported to each plat-
form. Here, KNN is used for pattern recognition in computer vision, and machine learning; MC
is used for solving complicated mathematical and physical problems, and BS is one of the fastest
known sorting networks. For benchmarking, the researchers initially also planned to benchmark
CUDA applications, but after porting the KNN algorithm to CUDA, no significant performance
differences were observed between CUDA and OpenCL on a GPU. Due to this similar perform-

18 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 3. LITERATURE STUDY

ance, they dropped the CUDA comparison and continued with OpenCL applications only.
The benchmarking results show interesting data. Namely, an initial KNN implementation indic-
ated that the FPGA was 1.4 times slower than the GPU. However, with a second implementation
where the researchers mapped a part of the off-chip global memory to on-chip BRAM blocks, the
FPGA was a factor 2.47 times faster than the initial GPU implementation. This performance
difference indicates how significant a bottleneck the off-chip memory can be for the FPGA per-
formance. Using the same optimization technique on a GPU does not offer better performance, as
the GPU implementation using on-chip global memory slowed down from 3.04ms to 930ms. Next,
four Monte Carlo implementations show a performance increase between two and five times on
an FPGA when compared to a GPU, and the Bitonic Sorting algorithm shows that the FPGA is
9.5x slower than a GPU using a non-optimized implementation and that the FPGA is 1.06x times
slower with optimized code. Which again shows the importance of FPGA specific optimizations.
As for power efficiency, all optimized FPGA implementations were between 1.8 and 80 times more
energy efficient than the respective GPU implementations. The researchers conclude that the
FPGA performance beats that of a GPU when FPGA specific optimizations are made. Especially
optimizations to reduce global memory accesses will increase the FPGA performance significantly.
On energy efficiency, FPGAs beat GPUs as FPGAs contain a hardwired control structure, making
them much more efficient. Finally, the paper states that FPGA specific optimizations require a
comparable amount of effort as optimizing a GPU implementation.

The acceleration of training a recurrent neural network-based language model is another high-
performance-computing example. This research was performed in 2012 by the University of Pitt-
sburgh [56]. This recurrent neural network-based model is created for language processing and
operates in the time domain as it has to capture dependencies of input data over one or multiple
input sentences. The main issue with this network is the time required to train it and the power
usage that comes with it. For this reason, acceleration methods were researched to find an optimal
platform for training the network. Here, an Intel Xeon E5-2630 was used together with an Nvidia
GeForce GTX 580 and a Convey HC-2ex FPGA. The GPU was programmed using an Nvidia
CUBLAS (CUDA Basic Linear Algebra Subroutines) implementation based upon research by the
Tsinghua University [57]. Here, the FPGA is programmed using System C, which is converted
to Verilog by the Convey Hybrid Threading HLS tool. Even though Convey Computers does
not exist anymore as Micron has acquired it [98], the result is still valid as both System C and
OpenCL code are written in the C language and converted to an RTL specification language. For
the neural network training benchmark, the FPGA performed 1.46x slower than the GPU, but at
a 6.7x higher efficiency, continuing the higher energy efficiency but somewhat slower performance
trend for FPGA acceleration.

A more recent example of neural network acceleration on FPGA is reported in a study of the
University of Wisconsin-Madison in 2017 [58]. Based on previous neural network acceleration
work on FPGAs they determined the memory bandwidth is the main bottleneck. For this reason,
the researchers propose a new kernel that optimally balances the computation, on-chip, and off-
chip memory accesses to reduce the memory bandwidth requirements. Their kernel achieved a
performance of 866 GFlops/s and 1790 Gops/s. As the researchers have not compared their results
to current GPU neural network solutions, no solid performance or efficiency results can be made.
However, when compared to the latest graphics architecture from Nvidia this FPGA solution is
still at least 16 times slower as the top-of-the-line Quadro RTX 6000 or 8000 GPUs, which both
are rated for 16.3 TFlops/s on single precision [99]. However, as Nvidia uses these numbers for
marketing, the real-world GPU performance is likely lower than what they report.

A final example comes from the Amazon Web Services (AWS) with their Elastic Compute Cloud
(EC2) F1 FPGA cloud acceleration service [59] [100]. This web service offers virtual machines
with one or multiple Xilinx Virtex Ultrascale+ FPGAs, allowing customers to take advantage of
the speed and efficiency of an FPGA without having to purchase any hardware and having to
install the tooling and drivers. Amazon provides the use of the Xilinx SDAccel tool to allow the
FPGAs to be programmed using either a high-level programming language like C, C++, OpenCL

OpenCL acceleration on FPGA vs CUDA on GPU 19

CHAPTER 3. LITERATURE STUDY

or a low-level programming language like Verilog. When an operational Amazon FPGA image is
created, it can be executed on their F1 FPGA hardware, and it can be sold on the Amazon Web
Service marketplace. So, with the AWS-EC2 F1 service, Amazon provides a development and
testing environment together with a store to create an entire FPGA development ecosystem. For
this research, the Amazon web services will not be used as Prodrive does not want to be limited
to the hardware provided by Amazon.

3.5 Optimization strategies

Multiple papers report their optimization strategies for their target platforms. Here, a small sum-
mary of each reported optimization is given together with an explanation of how this optimization
helps for executing code on the device.

3.5.1 FPGA OpenCL

The main optimization strategy for optimizing OpenCL for an FPGA is unrolling loops in the
code. Most papers reporting their optimization strategies report using this technique [25, 30, 59,
46, 48, 51, 54, 55]. Unrolling a loop exposes parallelism to the compiler enabling it to repeat this
short section of code multiple times, resulting in a pipeline of loop sections. This pipeline not
only increases the application throughput but it also increases the application latency because all
pipeline stages are limited by the slowest stage [1].
Further pipeline improvements are made automatically depending on the present data dependen-
cies. If no data dependencies are present between stages, the compiler can parallelize the loop
allowing multiple sections to be updated in parallel, reducing the total number of pipeline stages
and reducing the application latency while keeping the pipelined throughput. However, in [55] is
mentioned that too many loop unrolls can hamper the performance as the available number of
global memory ports is limited, causing data access conflicts resulting in code serialization. So,
an optimum between parallelization and pipelining has to be found.

When using OpenCL acceleration on FPGAs, data is stored in two types of memory banks: on-
chip memory and off-chip memory. These memory banks are split into multiple software defined
sections with different latencies, sizes and access rights, see Figure 3.6. Data stored in the global
and constant memory is located in off-chip memory. This memory has a large address space, but
as it is located off-chip, also the highest access latency. The local memory sections reside on-chip
in the FPGA BRAM memory blocks, and the private memory is located in FPGA shift registers.
Both these on-chip memories can be accessed with low latency, but are limited in size.

For processing data, a sliding window approach in combination with shift registers or line buffers
will increase data re-use and hide memory latencies. These processing techniques are used in
several papers [25, 30, 46, 48, 51, 54]. The line buffers or shift registers are implemented by
unrolling a for-loop without data dependencies. When the compiler detects this code structure,
it will implement a shift register to move the data along the pipeline. By implementing multiple
of these data paths, a sliding window approach can be used to process the data, as each pipeline
stage can access the previously loaded data without requiring additional memory accesses.

The next optimization method does not optimize the kernel itself. The use of multiple compute
units allows the same kernel to be implemented multiple times in the FPGA hardware [46, 54,
51, 55, 58]. Implementing multiple compute units allows for parallel kernel execution at the cost
of more FPGA resources. However, this also increases memory usage, which might cause a lower
overall performance due to memory conflicts. So, even though the compute power is available,
using compute units might not always lead to better performance due to memory bottlenecks.

20 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 3. LITERATURE STUDY

Figure 3.6: OpenCL FPGA memory model, taken from [3]

Another often used method is the use of OpenCL pipes [25, 46, 48, 55]. These pipes are FIFO
buffers between kernels that allow kernels to communicate without the host PC managing the
communication. Direct communication between kernels significantly reduces the communication
overhead and allows multiple kernels to execute as a pipeline, see Figure 3.7. When using OpenCL
pipes, the use of vectorization, which is explained below, is prohibited.

Figure 3.7: OpenCL pipe implementation, taken from [1]

The introduction of vector or SIMD (Single Instruction, Multiple Data) instructions is also an
often used optimization step [46, 54]. The use of vector or SIMD instructions results in the
data path of a kernel to be implemented multiple times in the hardware. Compared to multiple

OpenCL acceleration on FPGA vs CUDA on GPU 21

CHAPTER 3. LITERATURE STUDY

compute units, which duplicates the entire kernel, vectorization only duplicates the datapaths and
shares the control logic, making vectorization more resource efficient. Having a vectorized kernel
allows multiple iterations to be executed in parallel, significantly increasing the computational
performance, see Figure 3.8.

Figure 3.8: SIMD visualization, taken from [101]

Splitting large kernels is another technique reported in [25, 46]. Here, the splitting of the kernel
allows these separate kernel tasks to operate in parallel. As an example, a large kernel can be split
into a kernel handling the communication with the host PC, and a kernel performing the com-
putations. By splitting up these tasks and combining it with OpenCL pipes, the communication
kernel makes sure the computational kernel can continue its work.

The paper by the University of California reported that instead of splitting kernels, merging two
data-dependent smaller kernels can increase the performance as well [48]. The merging of these
kernels removed a memory bottleneck as this removes the need to transfer data to the DRAM in
between kernel executions. The use of OpenCL pipes might also have resolved this issue.

Research by IEEE members and by the Politecnico di Milano mention some other memory man-
agement examples not used in other papers [59, 55]. In both research papers, Xilinx FPGAs
are used and suggest performing global memory accesses in bursts to reduce the memory access
overhead. Next, they mention partitioning the memory by using dedicated memory ports for each
global array, reducing the total memory access conflicts. By partitioning the data, the data is
divided differently over the on-chip memory, allowing different elements to be accessed in parallel.
Figure 3.9 shows the SDAccel partitioning options. Here, block partitioning divides the array
into equally sized blocks of consecutive memory elements of the original array, which allows data
from multiple blocks to be accessed in parallel. Cyclic partitioning also splits the original array
into equally sized blocks, but now interleaves the data over multiple BRAM blocks, which allows
serial data to be accessed in parallel. Finally, complete partitioning splits all data into separate
memory elements, allowing all data to be accessed in parallel. Finally, the researchers also suggest
implementing an on-chip global memory on BRAMs as a buffer for inter-kernel communication to
avoid the excessive transfers to the off-chip memory.

Another massive advantage of FPGA acceleration is the more efficient implementation for branch-
ing code [55] [102]. If a GPU contains a branch in a parallel section of the code, this section has to
execute sequentially due to the parallel execution paths in a compute-unit only supporting a single
instruction at a time. For an FPGA branching is less of a problem as all paths are established
in hardware and thus does not require serialization. However, all outcomes have to be present
in the hardware. So, non-merging branching paths cause the FPGA hardware usage to increase
significantly as each branch then requires its separate processing hardware.

The paper by the joint research of the University of Pittsburgh, the Tsinghua University, and

22 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 3. LITERATURE STUDY

Figure 3.9: Partitioning methods, taken from [4]

the Syracuse University on Neural Network acceleration on FPGA [56] reported implementing a
thread manager to manage their memory, as their FPGA had only 26 MB of memory available.
Next, they also used the mixed-precision data formats that allow for FPGA area saving when not
all bits of a variable are in use.

Data type management is an optimization that is required as floating point operations have a
lower performance than fixed-point operations on Xilinx FPGAs [60]. Here Xilinx reports that
floating point implementations require more hardware resources which lead to increased power
consumption and latency when compared to fixed-point. This statement is proven when comparing
the performance and resource utilization tables with the Xilinx Ultrascale+ architecture for fixed-
point [103] and floating-point [104] functions, see Table 3.1. The hardware usage is dependent on
the required precision, as half-precision reduces the hardware requirements, and double precision
increases the requirements when compared to single-precision. Intel reports similar performance
changes for their FPGAs [105]. So, for an optimal implementation, calculations should use the
least number of bits required to get the desired result, and a fixed-point data format should be
used where possible. The Xilinx HLS tool flow also offers arbitrary datatypes, which lets the users
define the required bit size for each variable. However, this functionality is not supported for
OpenCL kernels as arbitrary sizes are not part of the OpenCL spec [5].

Table 3.1: Xilinx Ultrascale+ data type comparisons for the addsub unit

Datatype Fmax (MHz) LUTs FFs LUT-FF Pairs DSP48s BRAM

32-bit fixed point 833 1 0 0 1 0

16-bit half precision 724 93 227 80 2 0

32-bit single precision 724 208 309 136 2 0

64-bit double precision 680 630 952 526 3 0

A final FPGA performance optimization technique is the addition of RTL code to expand the
functionality of the OpenCL kernels [6]. As OpenCL kernels transfer data using standard FPGA
interconnect, it allows the kernels to be connected to DMA engines, I/O peripherals, memory
controllers, custom interconnects, other OpenCL compute units, and RTL based accelerators via

OpenCL acceleration on FPGA vs CUDA on GPU 23

CHAPTER 3. LITERATURE STUDY

the high-speed serial connectors [106]. With all these interconnect options, OpenCL kernels can
be used for many more tasks than just accelerating data coming from the host PC.

Other optimization examples can be found in the official Intel FPGA SDK for OpenCL Program-
ming Guide [7], Best Practices Guide [1], and the Xilinx Vivado HLS Optimization Methodology
Guide [8], SDAccel Environment Programmers Guide [5], and the SDAccel Environment Profiling
and Optimization Guide [4].

3.5.2 GPU CUDA & OpenCL

As both CUDA and OpenCL are similar APIs controlling the same GPU device, the optimization
techniques are similar as well. For this reason, the optimization techniques for both APIs are
combined in this section.

The primary method for porting code from a single-threaded application to a parallel GPU im-
plementation is by computing separate loop iterations in parallel GPU threads. This technique is
used by all the analyzed papers with a GPU implementation [26, 27, 31, 46, 57, 61, 62]. The code
requires to have no data dependencies between loop iterations to use this optimization. The more
data dependencies that are present, the more serialized the code will execute.

A GPU contains two memory banks, off-chip memory and on-chip memory. These memory banks
are split into multiple sections creating the memory model shown in Figure 3.10. Here, the local
and shared memory is located on-chip, and the global, constant and texture memory off-chip.
The main difference between on-chip and off-chip memory is the access latency and storage size.
On-chip memory can be accessed very quickly but is limited in size. While off-chip memory has
a high access latency, but also has a larger address space, allowing it to store significantly more
data than on-chip memory. Additionally, there is the host memory, which has the most storage
space, but also the highest access latency of all memory in the system.
Several research papers claim to fill the global GPU memory with as much data as possible to
remove the host-GPU latency from affecting the execution speed [26, 27, 57]. In case new data is
needed during kernel execution, a separate memory manager is used to handle additional host-GPU
memory transfers to make sure all data is available when required.

Other optimization methods can be applied to hide the memory latencies present when copy-
ing data from off-chip GPU memory to on-chip GPU memory. Here, research by the Technical
University of Dresden [46] used the read-only cache of the on-chip memory as a line buffer for
processing images in a sliding window fashion. From this cache, the image data is copied to the
thread registers for quick access to the required pixels. Other techniques include kernel and loop
fusion, where multiple kernels or loops are merged to reduce the number of global memory ac-
cesses present in the code [26, 31]. Shared memory blocking is a technique where threads execute
in lockstep which ensures that all threads read and write data at the same time [26]. Using the
shared memory reduces the number of global memory accesses, and executing in lockstep prevents
thread race conditions where input data from another thread might overwrite the data of the
current thread.

Branch hoisting is used to prevent warps from executing sequentially; this occurs when branching
occurs in parallel paths [26, 57]. This optimization is required as all threads in a thread block
have to execute the same instruction at a time. If a branch occurs where some threads branch
differently than others, parallelization is lost as each thread block can only execute a single set
of instructions. So, if a branch occurs, two sets of instructions are received, which result in a
serialized execution of the code. So, by moving the branches outside of a loop, the branch occurs
before the parallel section of the code allowing the loop sections to be executed in parallel no
matter the result of the branch.

24 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 3. LITERATURE STUDY

Figure 3.10: CUDA GPU memory model, taken from [107]

Another method to improve the warps on a GPU is warp formatting [31, 57]. Warp formatting
requires the code to be adapted to make use of the maximum threads executing in parallel. A
CUDA warp or an OpenCL workgroup is a set of GPU threads running concurrently on the same
GPU multiprocessor. A multiprocessor uses a single instruction to control multiple CUDA cores,
which increases the possible data parallelism in the hardware. By warp formatting, the code is
adapted to make use of all the CUDA cores in a streaming processor and thus maximizing the
hardware usage. So, if 250 threads are processed on a GPU with 32 threads per SM, but the code
only allows up to 25 threads to be processed simultaneously, a total of 10 warps are required.
However, by creating thread blocks with 32 threads, only eight warps are required to perform the
same computation.

The memory access patterns used in an algorithm also have a significant effect on the performance
of an algorithm [63]. Figure 3.11 shows several memory access methods. From these memory
accesses, linear coalesced memory accesses will generally result in the best results, as it allows a
large array of data to be fetched with a single load. The more displaced or random the memory
accesses are, the more individual memory fetches that are required as mostly a single array of
neighbouring data can be fetched in a single cycle. Predictability also helps, the more predictable
the data access, the easier it is to implement data prefetching, which makes the memory objects
available before they are needed and thus hides memory latencies.

Figure 3.11: Memory access patterns, taken from [63]

Advanced use of the GPU hardware is suggested by researches from IEEE [61] and the Friedrich-

OpenCL acceleration on FPGA vs CUDA on GPU 25

CHAPTER 3. LITERATURE STUDY

Alexander University [62]. Here, they loaded their image data as 2D textures, which allows the
bilinear interpolation circuitry of the GPU to be used, increasing the performance for this specific
calculation and offloading the GPU cores for other tasks.

Other improvement methods are the replacement of low throughput operations with multiple
higher throughput operations for example, the replacement of a divide function with a multiplic-
ation with the inverse. This technique is used in [61], where a divide function is replaced by a
fast-square root technique. Here, the bits in a floating-point number are exploited, allowing the
inverse to quickly be calculated, resulting in the division being replaced by a multiplication with
the inverse of the original number.

According to the Nvidia developer blog, defining a global memory element as restricted can signi-
ficantly increase the memory performance [108]. Defining a memory element as restricted tells the
compiler that no pointer alias is present. Having no pointer alias means that the memory addresses
accessed using a pointer do not change between multiple reads. This enables the compiler to cache
the global memory, reducing the number of global memory accesses required and speeding up the
algorithm.

Changing the data types used in the code also affects performance. The Nvidia programming guide
[9] reports that their latest Turing Quadro GPU generation(compute capability 7.5) offers increased
throughput for calculations with a lower precision while reducing the throughput of calculations
with a higher precision over their Pascal Quadro GPU generation (compute capability 6.1). As
shown in Table 3.2, 32-bit calculations have half the throughput of 16-bit calculations, and 64-bit
calculations have only a sixteenth of the throughput of 32-bit calculations. Note that Nvidia’s
table shows a throughput of 32 for 64-bit double-precision calculations, but it contains a side note
that the throughput is only 2 for compute capability 7.5 GPUs, which includes all their Turing
consumer and business Quadro GPUs. So, in order to take advantage of the highest throughput,
all data should be processed with the minimum precision required for that calculation.

Table 3.2: Nvidia compute capability 7.5 data type comparisons for add, multiply, and multiply-
add commands

Datatype Throughput per cycle per multiprocessor

Compute capability 6.1 Compute capability 7.5

32-bit integer 128 64

16-bit half precision 2 128

32-bit single precision 128 64

64-bit double precision 4 2

Another optimization is the introduction of buffers between multiple kernels in a similar fashion
to OpenCL channels on FPGA [31]. By using buffers between kernels, multiple kernel tasks can
be executed in parallel, allowing for simultaneous computation and communication.

A final optimization is the use of multiple GPUs that share their data using a high-bandwidth
interface: the Nvidia Link [109]. Having more GPUs processing the data allows for faster compu-
tation. Additionally, the use of the Nvidia link bridge allows the GPUs to communicate and share
their memory. However, the Nvidia bridge does not offer additional external bandwidth; it only
serves to reduce the bandwidth for inter-GPU communication.

Other CUDA and OpenCL programming techniques can be found in the Nvidia CUDA C Program-
ming Guide [9], the Nvidia OpenCL Best Practices Guide [10], the Nvidia OpenCL Programming
Guide [11], and the AMD OpenCL optimization guide [12].

26 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 3. LITERATURE STUDY

3.6 Literature study conclusion

This section combines the results of the literature study and shows an expectation for the final
results of this project based on the analyzed literature.

3.6.1 Accelerator availability

A product availability research comparing the availability of GPUs and FPGAs shows that a
certain generation of GPUs is produced up to three years after release, while currently, FPGAs
released up to 18 years ago are still available. Additionally, Xilinx states to support their Spartan-
6 FPGA up to 21 years after release. So, the availability of FPGAs can be generalized to up
to 20 years, whereas GPUs are only produced up to 3 years, making FPGAs a clear winner in
availability.

3.6.2 Programming methods

GPUs and FPGAs can be programmed using multiple programming languages. GPUs are most
often programmed in C or C++ using CUDA or OpenCL, and FPGAs are most often programmed
in RTL using VHDL or Verilog. For programming accelerators, CUDA and OpenCL are most used
programming APIs. Higher level languages or libraries like OpenACC, Halide or OpenCV exist
as well, each improving code portability and programmability at the cost of performance.

The primary goal of this research is to determine whether FPGAs are a valuable replacement for
GPUs used by Prodrive its customers. CUDA is chosen for programming the GPU as Prodrive
its customers are currently using it to accelerate their applications. Next, OpenCL is selected
for programming the FPGA as it is similar to CUDA and supported by all main FPGA vendors
for high-level synthesis. Additionally, OpenCL is reported to increase the productivity up to six
times for a similar performance when compared to programming in RTL. So, choosing OpenCL
minimizes the FPGA porting effort between both APIs, which helps any customers with porting
their applications, and it helps us speed up our research. Another reason to select OpenCL is
that Nvidia GPUs also support OpenCL, which allows for an API comparison between CUDA
and OpenCL on a GPU.

3.6.3 API Porting

Porting applications between CUDA and OpenCL should be a straightforward task as most func-
tions have a representative in the other API. Only when using certain CUDA specific functions,
some additional code has to be written to implement that functionality. Several automated API
porting tools are available. Of the analyzed tools, only the CU2CL tool is useful for this project as
this tool generates OpenCL source code from CUDA source code, which is required for generating
the FPGA kernel. All other analyzed tools either provide a new API or include wrapper functions
to their source code, and thus do not provide clean OpenCL source code that can be used to
generate the FPGA kernel.

3.6.4 FPGA acceleration

FPGAs can be used to accelerate a wide array of applications. Of the analyzed papers, the
accelerated algorithms can be divided into three categories. The largest real-life use case for

OpenCL acceleration on FPGA vs CUDA on GPU 27

CHAPTER 3. LITERATURE STUDY

FPGA acceleration is cloud acceleration. Here, multiple FPGAs are used to reduce the load on
the CPUs from large data centres. These FPGAs can be programmed to accelerate page ranking,
to help with the processing of large databases, to perform network pre- and post-processing steps,
or it can act as an additional memory cache for big data applications. Image processing is another
area in which FPGA acceleration is often used. Multiple pipelines are implemented in the FPGA
to execute the required tasks on a set of images. For example, these tasks could include feature
extraction, edge detection, and 3D image reconstruction which allows the images to be used for
computer vision. The final category consists of all other papers reporting on FPGA acceleration
that used algorithms that do not fit into the cloud computing or image processing domains.
These HPC applications include algorithms for DNA sequencing, thermal simulation, pathfinding,
diffusion calculation, linear equation solving, 3D Euler volume solving and neural network training.

Most of the analyzed FPGA acceleration papers have performed benchmarks of some kind. FPGA
acceleration vs CPU execution show results that either decrease the latency by 29%, or a through-
put up to 31.8x the original throughput is be achieved. Comparing FPGA HDL with FPGA HLS
shows performance numbers within 10% of each other with no clear winner. Next, it is stated that
programming FPGAs in HLS is approximately six times faster than programming the FPGA in
HDL to achieve similar performance. Additionally, programming in HDL is more resource efficient,
with an HDL implementation taking 59% of the FPGA resources, and the HLS implementation
taking 70% for a similar performance. Next, papers comparing both CUDA and OpenCL on a
GPU report only minor differences between API’s, indicating their similarity on the same hard-
ware.
The OpenCL FPGA vs GPU results show mixed results. The FPGA performance is reported to be
anything from 20x slower to 2.47x faster for executing a particular algorithm. However, all slower
FPGA executions show a common theme. A lack of memory bandwidth or a lack of floating point
units on older hardware is reported to be the main issues, making the algorithm execution speed
algorithm dependent. These issues should become less of an issue with newer FPGA generations,
as each generation improves upon memory bandwidth and modern FPGAs contain DSP units
optimized to accelerate floating point processing. The analyzed papers also report that special
FPGA optimizations are required to create efficient code, which can gain up to 133.7x the original
GPU code performance when executed on the FPGA. These FPGA specific optimizations are
reported to require a similar effort as GPU specific optimizations when porting code to run on a
GPU. However, all research with an FPGA performance higher than 0.1x the GPU performance
reports the FPGA to be more energy efficient than the GPU for their algorithms.
Finally, only a single paper reported on the costs per performance of FPGA acceleration. This
paper only used the theoretical hardware performance facts together with the price to determine
the costs per GFLOP of the FPGA and the GPU. Here, the FPGA costs reportedly between 3x
and 50x more per GFLOP than the GPU. These large variations are caused by different hardware
being analyzed, showing that the costs per performance ratio is highly hardware dependent. Ad-
ditionally, FPGAs are known to perform worse than GPUs on floating point math, especially on
the older generation of FPGAs used in this research, making these results inaccurate.

3.6.5 Conclusion

In this report, the value of FPGA and GPU acceleration is compared based on six factors: max-
imum performance, performance per costs, programmability, interconnect options, energy effi-
ciency and product availability. Based upon the previously performed research, it can be concluded
that FPGAs are about ten times more energy efficient than GPU accelerators, and they can be
anything from 20x slower to 2.5x faster than a GPU depending on whether memory bottlenecks
are present. FPGA specific optimizations are required to achieve a high FPGA performance when
programming with OpenCL. These optimizations are reported to require a comparable effort as
GPU specific OpenCL optimizations. However, when compared to programming on CUDA, more
words of code are required for the same functionality. Next, where GPUs only contain a PCIe

28 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 3. LITERATURE STUDY

interface and video I/O ports, FPGAs offer many more interconnect options due to the generic I/O
ports that can be connected to OpenCL kernels using RTL. The product availability of FPGAs
is significantly better than GPUs with FPGAs reportedly being available for up to 20 years, and
GPUs being available for three years. Finally, the performance per costs was analyzed by only
one paper that did not perform any benchmarks. Here, the FPGAs were reported to cost 3x to
50x more for the same floating point performance than a GPU. However, as this paper has not
performed any benchmarks and thus uses theoretical performance numbers, this result is likely
inaccurate. A summary of all metrics can be found in Table 3.3.

Table 3.3: Literature study results

Metrics GPU FPGA

Performance 1x 0.05x to 2.5x

Costs per performance 1x 3x to 50x

Programmability equal equal

Interconnect options limited extensive

Energy efficiency 1x 10x

Product availability 3 years 20 years

OpenCL acceleration on FPGA vs CUDA on GPU 29

Chapter 4

Algorithm Analysis

The value OpenCL acceleration brings to the GPU acceleration market is analyzed using both the
RabbitCT and Demosaic algorithms. These algorithms have been selected for their relevance for
Prodrive Technologies, as their customers found these algorithms computationally representative
for the algorithms they want to implement. This chapter analyzes the selected algorithms to
determine how they work and how they are currently implemented. Afterwards, the current
implementation is thoroughly analyzed on the data flow, data types, data sizes, and the memory
access patterns to determine the main issues that need to be tackled in order to optimize the
algorithm for acceleration on a GPU and FPGA.

4.1 RabbitCT

RabbitCT (RCT) is an all-in-one benchmarking application with the goal to set up a competition
in developing the most efficient backprojection implementation for a 3-D cone beam reconstruction
algorithm [110]. It is based on the backprojection algorithm proposed by FDK [64], which forms
the basis for most CT-cone beam image processing algorithms [22]. FDK suggested a method
where the raw CT scan input data is first filtered before applying a back-projection algorithm.
This backprojection algorithm is the most computationally intensive section of the 3-D cone beam
reconstruction [111] and thus requires optimizations for quick execution. RabbitCT offers an
environment for users to take a simple backprojection example and optimize the execution as much
as possible. It provides pre-processed input data of a CT scanned rabbit, see Figure 4.1, and it
provides benchmarking results like the average processing time and the accuracy of execution.

4.1.1 Theoretical analysis

This section analyses the theoretical background of the RabbitCT algorithm. Here, a short ex-
planation is given on the backprojection method and the built-in benchmarking functions.

Backprojection

The RabbitCT backprojection algorithm computes a 3d voxel space based upon a set of X-ray
images taken from the subject with a C-arm CT scanner. The provided RabbitCT benchmarking
input data consists out of 496 images with a resolution of 1248 by 960 that are taken around
a Rabbit along a 200-degree axis [22]. For each of the voxels in the output model, an X-ray
beam is back-projected to determine which input pixels correspond with the selected voxel. With
backprojection an X-ray beam is traced from the X-ray source, through each voxel of a voxel space
representing the object onto an input image received from the detector, see Figure 4.2. At the

30 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 4. ALGORITHM ANALYSIS

Figure 4.1: Heatmap of RabbitCT input image #100

intersection of the backprojected X-ray with the input image, the neighbouring pixels are read
and bilinearly interpolated. Afterwards, this value is normalized and applied to the voxel from
which the X-ray was backprojected.

Figure 4.2: 2D backprojection example, taken from [112]

Without pre-filtering the input data, a superposition of all backprojection images leads to the
blurred image shown in the top row of Figure 4.3. This blurring is caused by the backprojection
input data being a 2D snapshot, that is mapped to a 3D space and summed over all input images
results in a smeared out image. This effect is shown in Figure 4.4, where a top or bottom snapshot
of a 3D sphere contains a circle, which results in a cylinder when applied to all voxels in the
third dimension. Figure 4.3 also shows this effect in the top left image with a 1D snapshot being
smeared out in a 2nd dimension. So, when summing over all input images, the object becomes
visible, but the smearing leads to blurred edges. By pre-filtering the input data with a high-pass
filter, the backprojected images highlight only the edges of the photographed object, resulting in a
much sharper output image, see the bottom row of Figure 4.3. The benchmarking data provided
by RabbitCT is already pre-filtered, so, for RabbitCT, only the backprojection step has to be
implemented and optimized for execution on the desired hardware.

OpenCL acceleration on FPGA vs CUDA on GPU 31

CHAPTER 4. ALGORITHM ANALYSIS

Figure 4.3: Normal vs filtered backprojection, taken from [113]

Figure 4.4: 2D to 3D perspective, taken from [114]

The RabbitCT backprojection algorithm is a discrete version of the algorithm proposed by FDK
[64]. The algorithm results in a Cartesian 3D voxel space f(x, y, z), and is calculated as shown in
Equation (4.1).

f(x, y, z) =

N∑
n=1

p̂n(un(x, y, z), vn(x, y, z))

wn(x, y, z)2
, (4.1)

where

un(x, y, z) =
a0x+ a3y + a6z + a9

wn(x, y, z)
, (4.2)

vn(x, y, z) =
a1x+ a4y + a7z + a10

wn(x, y, z)
, (4.3)

wn(x, y, z) = a2x+ a5y + a8z + a11, (4.4)

and

32 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 4. ALGORITHM ANALYSIS

An =

a0 a3 a6 a9

a1 a4 a7 a10

a2 a5 a8 a11

 . (4.5)

.

Here, f(x, y, z) represents a voxel at position x,y,z with respect to the origin. Each voxel is
calculated by summing all normalized interpolated pixel values corresponding to the voxel position
overall N input images. In this equation, p̂n represents the interpolated pixel value, calculated
using the normalized column and row values un and vn; and wn represents is the normalization
factor. An is a pre-calibrated projection matrix given for each projection image. It projects the
voxel positions of the 3D object data onto the 2D projection images [22].

The interpolated pixel values p̂n(x, y) are calculated by performing a bilinear interpolation with
a zero-boundary condition on the four pixels surrounding the intersection of the backprojected
beam with the input image In [22]. The bilinear interpolation is calculated by:

p̂n(x, y) = (1−α)(1−β)pn(i, j)+α(1−β)pn(i+1, j)+(1−α)βpn(i, j+1)+αβpn(i+1, j+1), (4.6)

where
i = bxc , (4.7)

j = byc , (4.8)

α = x− bxc , (4.9)

β = y − byc , (4.10)

and

pn(i, j) =

{
In,i,j if i ∈ {0, ..., Sx − 1} ∧ j ∈ {0, ..., Sy − 1}

0 otherwise.
(4.11)

pn(i, j) represents the pixel data of the current input image n from the image matrix I when the
requested pixels are within the resolution boundaries; otherwise, it returns 0. For the RabbitCT
provided benchmarking data, Sx = 1248, and Sy = 960, representing the number of pixels in the
column and rows of the input image.

Built-in benchmarking

For benchmarking a given backprojection algorithm, RabbitCT provides the total execution time,
the average execution time of processing a single CT scan image, and several algorithm quality
metrics [110].

The reported program runtime measures only the actual backprojection algorithm. All pre-
processing and host data management does not count towards to program runtime, removing
any disk access latencies from affecting the performance of the algorithm, leaving only the per-
formance of the actual algorithm on the selected hardware to affect the results.

The quality metrics are determined by comparing the calculated backprojection output with a
pre-calculated result of the provided LolaBunny backprojection source code. This reference (frefL)
is compared with the output of the provided backprojection algorithm (fL). The mean squared
error is calculated according to:

OpenCL acceleration on FPGA vs CUDA on GPU 33

CHAPTER 4. ALGORITHM ANALYSIS

qmse(fL) =
1

L3

∑
i,j,k

[fL(i, j, k)− frefL (i, j, k)]2 (4.12)

A peak signal-to-noise ratio qpsnr, measured in decibels (dB) is also provided. It is calculated with
the following equation:

qpsnr(fL) = 10 log10

(
40952

qmse(fL)

)
(4.13)

By analyzing the provided image quality metrics, the correctness of the RabbitCT implementation
can be determined. Here, the higher the peak signal to noise ratio and the lower the mean squared
error, the more similar the current output is to the reference output.

4.1.2 Algorithm implementation

The RabbitCT source application consists of two parts, the RCT-Runner, and the RCT-Algorithm.
The RCT-Runner is the main application that provides an environment for the RCT-Algorithm to
run in. It loads the benchmarking data into a global data struct, initializes the memory, performs
the benchmark, provides the benchmarking results and cleans up. A pseudocode example of RCT-
Runner is provided in Listing 4.1 which is based on the pseudocode example provided in the paper
by the Friedrich-Alexander University [22].

input :
L ; // Output r e s o l u t i o n
S x ; // Image width
S y ; // Image he ight
A n ; // Pro j e c t i on matrix
I n ; // Image b u f f e r
R L ; // Voxel s i z e
O L ; // Orig in

output :
f L ; // Voxel r e c o n s t r u c t i o n
t t o t a l ; // Total execut ion time
t avg ; // Average execut ion time
q mse ; // Mean squared e r r o r
q psnr ; // S igna l to no i s e r a t i o

// Def ine g l o b a l s t r u c t
s t r u c t RabbitCtGlobalData{

unsigned i n t L ; // Output r e s o l u t i o n
unsigned i n t S x ; // Image width
unsigned i n t S y ; // Image he ight
double ∗ A n ; // Pro j e c t i on matrix
f l o a t ∗ I n ; // Image b u f f e r
f l o a t R L ; // Voxel s i z e
f l o a t O L ; // Orig in
f l o a t ∗ f L ; // Voxel r e c o n s t r u c t i o n

}

// I n i t i a l i z e data
s t r u c t RabbitCtGlobalData RCTdata = i n i t S t r u c t (L , S x , S y , A n , I n , R L , O L) ;
t t o t a l = 0 ;

// I n i t i a l i z e a lgor i thm
RCTLoadAlgorithm (RCTdata) ;

// Run RCT−Algorithm f o r a l l input images
f o r (i n t n = 0 ; n < Nmax; n++) {

34 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 4. ALGORITHM ANALYSIS

t = currentTime () ;
RCTAlgorithmBackprojection (RCTdata) ;
t t o t a l = t t o t a l + currentTime () − t ;

}

// Perform f i n a l p r o c e s s i n g s t ep s
RCTFinishAlgorithm (RCTdata) ;

// Ca l cu la te benchmarking s t a t s
t avg = t t o t a l / N;
q mse = qmse(fL) ;
q psnr = qpsnr(fL) ;

// Free a l l a l l o c a t e d data and e x i t
RCTUnloadAlgorithm () ;

Listing 4.1: RabbitCT-Runner pseudocode

The RCT-Algorithm is the section of the code that performs the backprojection algorithm. Here,
the provided LolaBunny algorithm loops over all voxels in three-dimensional Cartesian space and
calculates the value of the voxel for each position. Afterwards, the data of the voxel is used to
update a variable representing the volume of the object, which is the output of the algorithm.
The pseudo code for the RabbitCT-Algorithm can be found in Listing 4.2 and is also based on
the pseudocode written in [22].

input :
I n , // Image b u f f e r
A n , // Pro j e c t i on matrix
L , // Problem s i z e
O L , // Orig in
R L , // Voxel s i z e
f L // Previous voxe l r e c o n s t r u c t i o n

output :
f L // Updated voxe l r e c o n s t r u c t i o n

// For each voxe l o f the output g r id
f o r (i n t i =0; i < L ; i++) {

f o r (i n t j =0; j < L ; j++) {
f o r (i n t k=0; k < L ; k++) {

// Ca lcu la te voxe l c oo rd ina t e s based upon o r i g i n and voxe l s i z e
x = O L + i ∗R L ;
y = O L + j ∗R L ;
z = O L + k∗R L ;

// Update the volume
f L (i , j , k) = fL(i, j, k)

}
}

}

Listing 4.2: RabbitCT-Algorithm pseudocode

4.1.3 Implementation analysis

A glance at the provided code quickly shows the hotspot of the application. With the provided
benchmarks, the RCT-Runner calls the backprojection algorithm 496 times as there are 496 im-
ages to be back-projected. For each image, the backprojection algorithm runs three nested for
loops for either 128, 256, 512, or 1024 iterations depending on the user-defined output resolution.
These iteration counts lead to a total of 532.6e9 (496 · 10243) or 532.6 billion iterations of the
backprojection algorithm when running the largest benchmark. When using the source code, all

OpenCL acceleration on FPGA vs CUDA on GPU 35

CHAPTER 4. ALGORITHM ANALYSIS

the iterations are executed sequentially on the CPU; which takes a long time to finish. By paral-
lelizing or pipelining the code, multiple iterations are being processed in parallel which, assuming
no bottlenecks are introduced, linearly speeds up the algorithm with the number of parallel paths.
This section analyzes the backprojection algorithm on its data and memory access patterns, to
devise an optimal implementation for both acceleration platforms.

Data flow

Figure 4.5 shows the data flow of the source implementation of the provided LolaBunny backprojec-
tion algorithm. RabbitCT-Runner calls the algorithm for every image and provides the necessary
image parameters to calculate the output data. This image data is constant and is reused for every
voxel calculation of an image, allowing the image and voxel calculations to performed in parallel.

A single iteration of the backprojection algorithm calculates the value for one voxel for a single
input image. Each step in the backprojection algorithm requires data from the previous step,
preventing the parallel execution of multiple backprojection steps for the same voxel. However,
by pipelining these backprojection steps, the throughput can still be increased as different steps of
multiple voxel calculations are then executed concurrently. During the backprojection calculation,
normalized pixel positions have to be determined. These positions indicate where an X-ray beam
from the source through this voxel intersects the input image. The four pixels surrounding the
intersection point are loaded from memory for the bilinear interpolation, after which the output
voxel value can be calculated, and the next voxel or image calculation is started. As four pixels
are loaded per voxel, there is data re-use present. Here, smart caching solutions could mediate
memory access latencies. The output voxel value is an array shared between images and voxels.
So, for a particular voxel, sequential access to this array is required to prevent race conditions
from corrupting the data. A more in-depth memory access analysis is performed in Section 4.1.3.

Data types

As not all data types offer the same performance on all platforms, an analysis of the used datatypes
provides an insight into the expected performance of these platforms.

When looking at the per-image provided input data to the backprojection algorithm, the following
struct is provided:

unsigned i n t L ; ///< problem s i z e {128 , 256 , 512 , 1024}
unsigned i n t S x ; ///< p r o j e c t i o n image width
unsigned i n t S y ; ///< p r o j e c t i o n image he ight (de t e c t o r rows)
double ∗ A n ; ///< 3x4 p r o j e c t i o n matrix
f l o a t ∗ I n ; ///< p r o j e c t i o n image b u f f e r
f l o a t R L ; ///< i s o t r o p i c voxe l s i z e
f l o a t O L ; ///< p o s i t i o n o f the 0− index in the world coord ina te system
f l o a t ∗ f L ; ///< po in t e r to where the r e s u l t volume should be s to r ed

Listing 4.3: RabbitCT backprojection data

The input data shows that the algorithm uses unsigned integer, double and floating-point variables.
Additionally, all backprojection calculations use double precision except for the output fL, which
is in single precision. So, almost all calculations are performed using 64-bit floating point, which
offers a significantly lower throughput on a GPU, and significantly higher resource usage on FPGA,
as is indicated in the optimization strategy analysis in Section 3.5. As the final output is a single-
precision floating point array, the algorithm can be adapted to perform all calculations in single-
precision with minor accuracy loss. Additionally, all variables except the image buffer In, matrix
An, and the output fL are constant, so they can be removed from the struct to reduce the data
usage between input image iterations.

36 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 4. ALGORITHM ANALYSIS

For each image

For each voxel

Calculate
normalized

pixel positions

Load pixels

Bilinear
interpolate

pixels

Update f_L for
selected voxel

Problem size L

Normalized pixel data:
U_n, V_n, W_n

Voxel size R_L,
Origin Offset O_L,

Projection matrix *A_n

Output data *f_L,

Image data *I_n,

Image unique input data

Parallelizable section

Sequential section

Voxel unique data

Shared output data

Figure 4.5: RabbitCT Dataflow

Data sizes

An analysis of the data sizes used for the RabbitCT algorithm can show what the memory size and
PCIe bandwidth requirements are. An individual input image consists of 1248x960 floating point
values. Together with the additional image parameters required, a total of 4.8 MB per image is
transferred to the accelerator. Assuming the output variable fL resides on the global memory of
the accelerator and is only copied back when the algorithm is finished, a PCIe 3.0 16x bandwidth
of 15.75GB/s allows up to 3281 images to be transferred from the host to the accelerator per
second. So, when using a streaming implementation of the algorithm, the algorithm will at least
take 0.151 seconds to copy all 496 input images to the device. However, when looking at the
RabbitCT ranking [115], the fastest multi-GPU implementation took 0.3 seconds to process all
images in 2016. So, this PCIe input bottleneck has not been reached yet. Next, intermediate data
created and used in the backprojection calculation consists of five integers, one floating point and
ten double-precision variables. Which requires about 104 bytes of data and should easily fit in
the on-chip memories of both the GPU and FPGA accelerators as those chips contain multiple
megabytes of data.

OpenCL acceleration on FPGA vs CUDA on GPU 37

CHAPTER 4. ALGORITHM ANALYSIS

Finally, the size of the output variable depends on the performed benchmark. As shown in
Table 4.1, at the lowest benchmarking resolution only 8.4 MB of output data is generated by the
algorithm, while the benchmark with the highest resolution generates 4.3 GB. Because RabbitCT
updates all data in the output variable for each image calculation, quick access is required. So, the
entire output variable should always be located in the global memory of the FPGA. With these
large data sizes, the selected FPGA should contain at least 5GB of global memory data to ensure
the entire output array plus the input data can be accessed from device memory. If 5GB RAM
is not available, the global array should either remain on the host; with the host performing the
final summation of the voxel data, or a separate data handler will have to be written to ensure
the correct data resides on the FPGA memory at all times.

Table 4.1: RabbitCT output size

Benchmark resolution Output size in MB

128 8.389 MB

256 64.11 MB

512 537.8 MB

1024 4.295 GB

Memory access patterns

As explained in Section 3.5, the memory access pattern can have a significant effect on the per-
formance of the algorithm. The more predictable and linear the memory accesses, the easier it is
to prevent memory bottlenecks from hampering the performance.

Before starting the backprojection algorithm, the RabbitCT host code loads the benchmark input
images from the disk into a buffer on the main memory. This buffer contains all images in order,
allowing each host-to-device transfer to copy large chunks of linear memory. In the backprojection
algorithm, the image pixel data is selected based upon where the X-ray beams going through a
voxel intersect the input image. At this intersection point, the four closest surrounding pixels
are loaded from memory for bilinear interpolation. This leads to the semi-random access pattern
shown in Figure 4.6. Here, the numbers indicate the order in which the pixel squares are loaded
from memory. So, the leftmost square of 1s is loaded first, the square of 2s second, and so on.

Figure 4.6: Pixel access trace

This pattern is only a small section of the overall access pattern. To see how the access pattern
changes between input images and output resolutions, a more in-depth pixel access analysis has
been performed. First, a heat map showing the pixel access pattern has been created by adapting
the LolaBunny source code to count the total number of pixel accesses, and store this value at the
position of the loaded pixel. The adapted LolaBunny script then stores the acquired data to a file
which is read by a Python script to create a heat map of the data.

The generated heat maps are shown in Figure 4.7, which show the accumulated pixel access
patterns for both the 128 and the 512 resolution. In this image, light coloured pixels are accessed
earlier in the program than darker pixels, showing that the input rows are accessed from top to
bottom and that each pixel is accessed more often at higher resolutions. Additionally, at lower

38 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 4. ALGORITHM ANALYSIS

resolutions, the heat-map shows a moving star-like access pattern between images. This pixel
access pattern is caused by the voxel grid having a slightly different angle for each input image,
resulting in the cone-shaped X-ray beams to hit the input image at different positions. With a
low resolution, this leads to some pixels not being used to represent the output voxel space which
shows up as the star-shaped figure.

(a) Resolution 128 (b) Resolution 512

Figure 4.7: Pixel access heatmap

As the output voxel space has a different orientation for each input image, processing it in the
XYZ order results in a zigzagging pixel access pattern. Let us define a single zigzag as a window in
which pixels are accessed. As the voxel space orientation changes with respect to the input image,
so do the required rows and columns of the input image to calculate all voxels corresponding with
the window. Figure 4.8a and Figure 4.8b show the total number of times a window requires a
certain number of rows or columns. The figures show that most windows require pixels from all
1248 columns of the input image, and only several windows require up to 160 rows of the input
image. These numbers are also visible in Figure 4.7, where all columns on a row mostly have the
same colour, while the colour between rows changes. As a single window could require a chunk
of 160x1248 of input data, a memory bottleneck will be present when all data in the window is
processed in parallel, as memory typically allow only a chunk of data to be loaded from a single
row per clock cycle. So, to parallelize the RabbitCT algorithm, a caching or prefetching algorithm
has to be applied.

The viability of using prefetching depends on whether enough data re-use is present so new data
can be loaded in without stalling the calculations, and whether the required prefetch buffer fits on
the device hardware. Figure 4.8c shows the first and last time usage of each row. It shows that the
number of first used rows grows steadily in a step-like pattern as the algorithm progresses. Each
step represents a window that requires data from several new rows, followed by a set of windows
re-using this data. As every 200 rows contain between 15 and 25 steps, between 8 and 14 new
rows can be required for a new window, which increases the data that must be buffered for it to
be available when needed. Assuming about 25% rows of overhead on top of the maximum of 160
rows that can be required, this means that for implementing 200 rows in the FPGA hardware
approximately 1MB of on-chip storage is required for prefetching, which easily fits on the FPGA.

Next, prefetching a single row of input data with the maximum single bank memory bandwidth of
16 floating point values takes 78 cycles (1248 columns divided by 16). Next, each window requires
approximately the same number of calculations as the output resolution. So when processing 16
elements in parallel, the data of a row should be re-used by at least ten windows before data
from a new row is required to ensure new data is prefetched on time. Comparing the number of
windows and rows in Figure 4.8c shows that this is the case. The last row, row 960, is loaded at

OpenCL acceleration on FPGA vs CUDA on GPU 39

CHAPTER 4. ALGORITHM ANALYSIS

window 10500, which results in a single row providing data for approximately 10.9 windows. With
a higher resolution, this number only improves as more calculations are performed per window.
This is shown in Table 4.2, where the distance between multiple voxels decreases as the resolution
increases. For 1024 the distance increases a bit again, but this could be an artifact with how the
data is calculated.
Additionally, Figure 4.8c shows several steep drops in the middle of the figure. These drops are
an artifact from the data acquisition method where the first and last row usage window number
are written to a zero-initialized array. As these values jump to zero, it indicates that these rows
are not accessed with the 128 resolution. They are however accessed at higher resolutions. Next,
Figure 4.8d shows the number of rows required per window of a single image. As shown in the
figure, the first set of windows require data from only a small set of rows, limiting the additional
cycles required to initialize the prefetch buffer.

Note that all images in Figure 4.8 are plotted with output resolution 128, which has been chosen for
readability. Higher resolutions result in similarly shaped graphs, but with a larger set of windows,
and higher total row and column counts.

(a) Rows required per window summed (b) Columns required per window summed

(c) Lifetime of a row (d) Number of rows required per window

Figure 4.8: Resolution 128 input memory usage analysis

Finally, the output access patterns for the RabbitCT data is a lot simpler than the input access
patterns. Here, each element of the big fL array representing the output voxel space is accessed
sequentially. Additionally, no overlapping accesses occur per image calculation, allowing this data
to be accessed and adapted in parallel without conflicts for multiple voxel calculations of the same
input image.

40 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 4. ALGORITHM ANALYSIS

Table 4.2: RabbitCT input distance between voxels

Resolution 128 256 512 1024

Row Col Row Col Row Col Row Col

2 voxels 3 17 2 8 2 5 3 10

4 voxels 7 41 4 22 3 12 5 26

8 voxels 13 94 8 48 5 25 9 51

16 voxels 26 199 15 101 8 51 17 124

Conclusion

To conclude, the RabbitCT algorithm can easily be optimized for throughput by performing the
voxel calculations in parallel. The main difficulty, however, lies in the input memory accesses,
where the input pixels are required in a semi-random zigzag pattern. To optimize the processing,
all data required for this pattern should be either cached or prefetched to prevent a memory
bottleneck from hindering the performance. Luckily, the algorithm at its lowest resolution contains
enough data re-use to enable prefetching, and the low number of rows required at initialization
will keep the additional prefetch cycles to a minimum. Furthermore, as the total number of rows
required to calculate a window is limited, the total buffer size remains limited as well. Finally,
as the resolution increases, so does the number of pixel accesses, increasing the data-reuse of the
algorithm, which will help with the performance as prefetching and caching will have more effect.

4.2 Demosaic

Demosaicing or debayering is a method to convert monochrome images taken with a colour filter
array into an RGB format using interpolation, see Figure 4.9. It is a technique used in most digital
cameras to reduce the costs of the hardware [23]. Instead of using three separate light sensors to
capture the red, green an blue light at full resolution, a single sensor is used with a colour filter,
so each pixel registers a different colour. Multiple colour filters exist for taking pictures using a
single sensor. This research focuses solely on the Bayer filter, which is a two by two square with
one red, two green and one blue pixel. Using two pixels for green improves the perceived picture
quality as the human eye is more sensitive to green colours [116].

The use of a single sensor with a colour filter array also has a downside; it reduces the output
colour resolution [116]. So, when the sensor has a monochrome 4k by 4k resolution, the coloured

(a) Raw Bayer pattern (b) Interpolated Bayer pattern

Figure 4.9: From raw input to interpolated output, taken from [117]

OpenCL acceleration on FPGA vs CUDA on GPU 41

CHAPTER 4. ALGORITHM ANALYSIS

output data has a 1k by 1k resolution for the red and blue colours, and a 2k by 2k resolution for
green colours. To restore an image to full resolution, the Demosaic algorithm takes the separate
colour channels and creates an interpolated pixel based upon the surrounding colour data, as can
be seen in Figure 4.10.

A Bayer demosaicing algorithm can be implemented in multiple ways. These options can be
divided into the following three categories:

• Linear demosaicing: where each interpolated pixel receives the average colour value of the
surrounding pixels

• Matrix demosaicing: where a moving matrix multiplies the surrounding pixels with different
coefficients to determine the interpolated pixel value [23].

• Smart demosaicing: where more complex algorithms are used to determine the interpolated
pixel values. These algorithms use noise filtering, edge detection or colour wavelet analysis on
top of the conventional demosaicing algorithm to reduce demosaicing artifacts and improve
the quality of the output image [65, 66].

For this research, the matrix demosaicing option has been selected as the implementation is sim-
ilar to other popular image processing techniques like edge detection and noise reduction. This
similarity allows the same optimized algorithm to be used for other image processing tasks and
thus forms a general idea of the image processing performance on both GPU and FPGA hardware.

Figure 4.10: Bayer filter, colour channels, and
conversion to RGB. Taken from [118]

4.2.1 Theoretical analysis

The demosaicing algorithm used in this research is the one proposed by Malvar-He-Cutler in 2004
[23]. This algorithm uses the luminance and chrominance information of the surrounding pixels to
improve the output quality. Luminance and chrominance are part of the YUV colour spectrum,
which was developed to enable backwards compatibility of colour television with black and white

42 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 4. ALGORITHM ANALYSIS

television [119]. Here, the Y or luma channel contains the image in black and white, and the
U and V channels contain the colour information of the image. Combining both luminance and
chrominance information results in the complete image, see Figure 4.11.

Figure 4.11: Luminance and chrominance, taken from [120]

Malvar-He-Cutler states that in the YUV spectrum, edges contain sharp luminance changes [23].
So, if an edge occurs, the interpolated pixel can be colour corrected by using luminance data
from the surrounding pixels. The luminance based Demosaic algorithm is performed by filtering
the input image with the matrices shown in Figure 4.12. All matrix multiplications sum up to
eight, so, to get the final pixel value, the sum of matrix calculations is normalized by eight. By
performing the stated matrix calculations and normalizing the final value for all pixels, luminance
corrected RGB data remains, which together create the coloured output image.

Figure 4.12: Malvar-He-Cutler demosaic filter coefficients, taken from [121]

OpenCL acceleration on FPGA vs CUDA on GPU 43

CHAPTER 4. ALGORITHM ANALYSIS

4.2.2 Algorithm implementation

The initial Demosaic implementation contains two parts, the host code and the Malvar-He-Cutler
demosaicing algorithm. The host code reads the input images, initializes the memory, executes
the demosaicing algorithm, compares the results with a reference, and cleans up. The input of the
algorithm is a set of 5120x3072 monochrome Bayer TIFF images of an American Football match.
These images are loaded into memory using libTIFF, a TIFF image reading and writing library
[122]. Then they are copied to the accelerator after which the demosaicing algorithm is started and
the execution time of the kernel is recorded. When the demosaicing algorithm finishes processing
all pixels of an input image, the output is copied back to the host and the data compared with
a reference image. Finally, when all colours have the same output value, the output is written to
a TIFF output file, and possible errors are reported. A pseudocode implementation of the host
algorithm is shown in Listing 4.4.

Only the execution time of the kernel is used for benchmarking. It indicates how many images
per second the kernel processes. The measurement does not include any latency introduced by
data transfers between host and device and thus gives insight into the maximum accelerator
performance.

input :
inputPath , // Path to input images
outputPath , // Path to s t o r e output images
imgStart , // Number o f f i r s t image to proce s s
imgEnd , // Number o f l a s t image to proce s s

output :
imgOutN , // N output images with N in between imgStart and imgEnd
fps max , // Fas te s t k e rne l o f N proce s sed images
fps avg , // Average number o f images ke rne l can proce s s per second
fps min , // Slowest ke rne l o f N proce s sed images

// I n i t i a l i z e image c o n t a i n e r s
t i f f D a t a t ∗ t i f f I n = i n i t T i f f D a t a (img parameters) ;
t i f f D a t a t ∗ t i f f O u t = i n i t T i f f D a t a (img parameters) ;
t i f f D a t a t ∗ t i f f R e f = i n i t T i f f D a t a (img parameters) ;

// I n i t i a l i z e p r o f i l i n g parameters
ulong t min = 1e12 ;
ulong t max = 0 ;
ulong t t o t = 0 ;

// I n i t i a l i z e OpenCL environment
initCL () ;

f o r (i n t imgnr = imgStart ; imgnr < imgEnd ; imgnr++) {
// Read input image imgnr in to t i f f I n conta ine r
r e a d t i f f (t i f f I n , imgnr) ;

// Copy input image to dev i ce
c lEnqueueWriteBuffer (dev in , t i f f I n −>imgData) ;

// Star t a demosaic k e rne l f o r a l l p i x e l s o f input image and measure execut ion
time in ns

t = currentTime () ;
clEnqueueNDRangeKernel (demosaic , img width∗ img he ight) ;
t e x e c = currentTime () − t ;

// Store image p r o c e s s i n g data
t t o t = t t o t + t e x e c ;
i f (t e x e c > t max)

t max = t e x e c ;
i f (t e x e c < t min)

t min = t e x e c ;

// Copy output image to host

44 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 4. ALGORITHM ANALYSIS

clEnqueueReadBuffer (dev out , t i f fOut−>imgData) ;

// Read r e f e r e n c e image imgnr , compare with imgOut and pr i n t e r r o r s
compare img (t i f f R e f , t i f fOut , imgnr) ;

// Write demosaic output data to output image
w r i t e t i f f (t i f fOut , imgnr) ;

}

// Ca lcu la te and pr in t p r o f i l i n g data
ulong t temp = t t o t / (imgEnd − imgStart) ;
f l o a t fp s avg = (1 . 0 f / (t temp ∗ 1e−9 f)) ;
f l o a t fps min = (1 . 0 f / (t max ∗ 1e−9 f)) ;
f l o a t fps max = (1 . 0 f / (t min ∗ 1e−9 f)) ;

p r i n t f (fps max , fps avg , fps min) ;

// Cleanup and e x i t
teardown (0) ;

Listing 4.4: Demosaic host pseudocode

Pseudocode of the Demosaic algorithm is shown in Listing 4.5. It loops over all pixels and determ-
ines whether the row and column of the selected pixel are odd or even. Based on this information,
the corresponding matrix multiplication from Figure 4.12 is applied. This value is then normalized,
clamped to one byte and stored in the respective colour channel for the output pixel.

input :
uchar∗ imgIn ;

output :
uchar∗ imgOut ;

uchar matrixMult (imgin , row , co l , matrix [2 5])
{

f o r each row and column o f a matrix that f a l l s with in image boundar ies {
// Get matrix and p i x e l va lue
f l o a t matr ixva l = matr ixvalue ;
uchar p i x e l v a l = imgin [p i x e l pos based on matrix pos] ;

// Sum t h e i r product and sum a l l matrix va lue s f o r edge ca s e s
colorSum += p i x e l v a l ∗ matr ixva l ;
matrixSum += matr ixva l ;

}

// Normalize r e s u l t and round to nea r e s t i n t e g e r
i n t outputco lo r = round (colorSum / matrixSum) ;

// Clamp to byte s i z e d output
uchar r e tu rnva l = clamp (outputco lor , 0 , 255) ;

// Return co l o rda ta
re turn r e tu rnva l ;

}

ke rne l void demosaic (imgIn , imgOut)
{

// Def ine matr i ce s
f l o a t crossMatr ix [2 5] ;
f l o a t checkerMatr ix [2 5] ;
f l o a t thetaMatr ix [2 5] ;
f l o a t phiMatrix [2 5] ;

// Get p i x e l p o s i t i o n
i n t c o l = g e t g l o b a l i d (0) ;

OpenCL acceleration on FPGA vs CUDA on GPU 45

CHAPTER 4. ALGORITHM ANALYSIS

i n t row = g e t g l o b a l i d (1) ;

// Check row/column p o s i t i o n and perform matrix m u l t i p l i c a t i o n
i f (row % 2 == 0) {

i f (c o l % 2 == 0) {
R = imgIn [row ∗ width + c o l] ;
G = matrixMult (imgIn , row , co l , c ros sMatr ix) ;
B = matrixMult (imgIn , row , co l , checkerMatr ix) ;

} e l s e {
R = matrixMult (imgIn , row , co l , thetaMatr ix) ;
G = imgIn [row ∗ width + c o l] ;
B = matrixMult (imgIn , row , co l , phiMatrix) ;

}
} e l s e {

i f (c o l % 2 == 0) {
R = matrixMult (imgIn , row , co l , phiMatrix) ;
G = imgIn [row ∗ width + c o l] ;
B = matrixMult (imgIn , row , co l , thetaMatr ix) ;

} e l s e {
R = matrixMult (imgIn , row , co l , checkerMatr ix) ;
G = matrixMult (imgIn , row , co l , c ros sMatr ix) ;
B = imgIn [row ∗ width + c o l] ;

}
}

// Write co l ou r data to output image
imgout [(row ∗ width + c o l) ∗3 + 0] = R;
imgout [(row ∗ width + c o l) ∗3 + 1] = G;
imgout [(row ∗ width + c o l) ∗3 + 2] = B;

}

Listing 4.5: Demosaic algorithm pseudocode

4.2.3 Implementation analysis

The hotspot of the Demosaic algorithm is in the MatrixMult function, which is executed twice for
each pixel. In matrixMult, the 25 surrounding pixels are loaded from memory and multiplied with
the values in the matrix. So, for all 5120 by 3072 pixels of an image and a total of 50 iterations of
the inner loop of MatrixMult, this leads to 786.4 million iterations of this inner loop per image.
When executed on a CPU, the parallelism is limited to the number of cores, resulting in slow
processing speeds. However, with the parallel power of a GPU, and pipelined implementations of
the FPGA, a huge increase in throughput can be achieved. This section analyzes the Demosaic
algorithm on its data and memory access patterns, to devise an optimal implementation for all
platforms.

Data flow

Figure 4.13 shows the data flow of the Demosaic implementation. Here, the algorithm loops over
all pixels of the input image and determines whether the selected pixel is even or odd for both the
row and column. Depending on this result, each colour, red green and blue, is calculated with the
matrix data shown in Figure 4.12. This is shown in Figure 4.13 by the branching paths, where
two calculations and one memory fetch are performed. Note that for the initial calculation, these
branches are executed sequentially and not in parallel. Each of the three branching paths require
pixel data to be loaded from memory; the matrix calculations require a five by five grid of pixels,
and the identity calculation only requires data of the selected pixel. As all three calculations
require data from the same five by five grid of pixels, great memory optimizations are to combine
the calculations in a single function to reduce the number of memory accesses, or to cache the

46 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 4. ALGORITHM ANALYSIS

pixel data so that the data is immediately available. When all colour data is calculated, this data
is written to the output image in the RGB format.

For each pixel

Combine color
channels

Colour computation data:
matrix & calc. method

Image data:
*imgout

Image data:
*imgin, width, height

Row and
column even

or odd

For each
matrix element

Calculate
coloursum and

matrixsum

Normalize and
clamp to byte

For each
matrix element

Calculate
coloursum and

matrixsum

Normalize and
clamp to byte

Load identity
color

Image input data

Parallelizable section

Sequential section

Color unique data

Image output data

Figure 4.13: Demosaic Dataflow

Data types

All platforms offer a different performance for different data types. An analysis of the used data
types can set an expectation for the final performance and show whether changing the data types
used in the algorithm could lead to better results.

The input of the Demosaic algorithm is a 5120 by 3072 pixels input image. As the input image
consists of a single colour, the input data requires only one byte per pixel and is represented by
an unsigned char in the algorithm. Next, the matrices suggested by Malvar-He-Cutler and are
shown in Figure 4.12 contain floating point values, which is known to have a lower performance
on an FPGA, see Section 3.5. However, the floating point is only required to represent halves

OpenCL acceleration on FPGA vs CUDA on GPU 47

CHAPTER 4. ALGORITHM ANALYSIS

of an integer which are normalized by the factor 8. So, a possible optimization would be to
double the matrix values and normalization factor resulting in a char matrix, making the matrix
multiplication more optimized for execution on an FPGA. Finally, as each output colour after
normalization is clamped to a single byte, the output image is represented by three unsigned
chars, which should not hamper the performance of the algorithm.

Data sizes

Knowing the data sizes used in an algorithm can show any external bandwidth issues that might
be present. For Demosaic, the input is a monochrome 5120 by 3072 image. Of this image, each
pixel is represented by a single byte, resulting in the input image requiring a total of 15MB. Next,
the output of the algorithm is the same image but now coloured. As three 8-bit colour channels are
used, the output image requires 45 MB. With the demosaicing matrices being hard-coded in the
algorithm, a total of 60 MB per image has to be transferred over the PCIe connection. So, with
a commonly used PCIe 3.0 16x bandwidth of 15.75 GB/s, a total of 262 images can be processed
per second, limiting the maximum throughput. For this reason, the Demosaic algorithm purely
benchmarks the kernel, leaving only the kernel performance. Finally, for internal processing, up
to 25 pixels are required for processing a single output pixel. As this requires only 25 bytes, all
the data required for processing should easily fit on the on-chip memory.

Memory access patterns

Memory access patterns can have a significant effect on the performance of the algorithm, as
is explained in Section 3.5. The more predictable a memory access pattern is, the higher the
performance of an algorithm can be. For Demosaic only one image is processed at a time. The
host loads a TIFF input image as input and stores this in RAM. With the image loaded into RAM,
it is copied to the accelerator, and the Demosaic algorithm is started. With sequential execution,
the pixels of the input image are processed row by row, enabling the use of burst transfers for the
column data. For each calculation, a window of 5 by 5 pixels is loaded from the global memory,
and the colour data is computed. Afterwards, the colour data of a pixel in the next column can
be computed. This access pattern resembles a sliding window approach that linearly moves across
the input image. So, significant memory optimizations are possible as either caching or prefetching
will ensure that all data is available and is only once loaded to the device. Finally, for the output,
the same linear access pattern as the input image is present. As the input image, the output image
is written row by row, which enables burst transfers for the columns of each row.

Conclusion

To conclude, the Demosaic algorithm contains a significant number of optimization possibilities.
First, it contains multiple iterations of matrixMult that can be merged to simplify the algorithm.
Next, it contains floating point data that can be converted into chars, increasing the processing
performance. As for memory, its linear memory access patterns allow for many accesses to be
prevented by using burst transfers, prefetching and caching. And finally, the algorithm only
requires several bytes of on-chip memory per processed pixel. The only downside and possible
performance limiting factor is the 60 MB the algorithm requires per image, which saturates the
PCIe 3.0 16x memory bandwidth when processing 262 5k by 3k images per second. To solve this
issue, compression could be used. However, as this falls outside the scope of this project, only the
kernel performance is benchmarked.

48 OpenCL acceleration on FPGA vs CUDA on GPU

Chapter 5

Hardware Selection

To select the benchmarking platform hardware, the FPGA, GPU, and software requirements must
be taken into account. The following sections show what requirements need to be satisfied for each
device, and what hardware has been selected that meets these requirements. Based upon these
requirements, an FPGA is selected first, after which a similarly priced GPU is chosen to compare
the hardware performance at a similar price point.

5.1 FPGA selection

This section considers the selection of suitable FPGAs for OpenCL Acceleration.

5.1.1 FPGA requirements and options

Intel and Xilinx are the two largest FPGA vendors. They produce FPGAs dies with similar
specifications at similar price points. Third party companies, including Prodrive, purchase these
FPGA dies and integrate these FPGAs into their own hardware. Even though Prodrive does
produce FPGA hardware, only FPGA accelerators from either Xilinx or Intel are selected for this
project. Buying FPGA accelerators removes the need to create a custom BSP to support OpenCL
on Prodrive FPGA hardware, and buying FPGAs from Intel or Xilinx allow these vendors to
support us with any hardware or tooling issues directly. Additionally, as the goal is to compare
GPU with FPGA acceleration, their communication interface with the host should be similar. So,
the selected FPGA should be connected to the host PC via a PCIe connection. The following
sections indicate the vendor-specific requirements.

Intel FPGA requirements

According to the Intel FPGA SDK for OpenCL getting started guide [13], Intel only requires that
an Intel FPGA accelerator must be used and that this accelerator must be provided by either
Intel or a third party Intel partner. According to the custom platform creation guide [14], custom
acceleration hardware with any Intel OpenCL enabled FPGAs can be created as well, however,
this requires the creation of a PCB and BSP with working PCIe and memory interfaces and falls
outside the scope of this project.

For off-the-shelf FPGA OpenCL acceleration, Intel itself provides the development kits shown in
Table 5.1 with full BSP support [123]. Here, the FPGA die name is shown together with its
number of logic elements, DSPs, and the devkit and FPGA price. As development kits are often
sold at a loss to get companies using these products, both the platform and consumer FPGA die
prices are shown to show the difference between devkit pricing and consumer pricing. Next, in

OpenCL acceleration on FPGA vs CUDA on GPU 49

CHAPTER 5. HARDWARE SELECTION

2019 Intel will start selling acceleration cards as well [124] with engineering samples being available
now. However, these acceleration cards will contain the same FPGA dies as the development kits
currently available so should offer the same performance.

Table 5.1: Intel FPGA OpenCL Accelerators, pricing as of February 2019 from digikey.nl [77]

Platform FPGA
Released
in

Logic
Ele-
ments

DSP
units

Memory
size &
type

Memory
band-
width

Platform
price in e

FPGA die
price in e

Cyclone V SoC Devel-
opment Kit [125]

5CSXFC6-
D6F31C6N

2015 110k 112
2GB
DDR3

6.4GB/s 1556.27 295.07

Arria 10 GX FPGA
Development Kit [126]

10AX115-
S2F45I1SG

2016 1150k 1518
2GB
DDR4

21.3GB/s 3897.17 8897.16

Stratix V GX FPGA
Development Kit [127]

5SGXEA7-
K2F40C2N

2011 622k 0
1GB
DDR3

14.4GB/s discontinued 7210.88

Stratix 10 GX FPGA
Development Kit [128]

1SG280-
HU2F50E2VG

2018 2753k 5760
1GB
DDR4

21.3GB/s 6936.-
not for
sale

Xilinx FPGA requirements

The Xilinx SDAccel Platform Development Guide v2017.4 [15] states the following requirements
for creating a custom OpenCL FPGA Acceleration platform:

• A Vivado Design Suite supported FPGA that supports partial reconfiguration
• Global memory in the form of DDR4 SDRAM that is accessible to both the host and user

kernels via AXI4 memory mapped connectivity.
• Software compatibility via the hardware abstraction layer driver provided with the SDAccel

installation.

Note that Xilinx has not made the v2018.2 release of the Platform Development Guide freely
available, with the website stating that those files are only available upon request.

For off-the-shelf OpenCL acceleration, the Xilinx SDAccel Environment User Guide v2018.2 [16]
lists that using one of the FPGA development kits in Table 5.2 as a requirement. Here, the exact
FPGA, its logic elements and DSP units are shown. Additionally, like Intel, Xilinx recently has
released its own FPGA accelerator hardware: the Alveo U200, U250 and U280. These accelerator
cards contain a custom FPGA and support SDAccel out of the box. These cards were not available
at the start of the project, so, could not be chosen. However, they do give an indication of future
FPGA accelerator hardware and pricing. For other accelerator options, Xilinx links to third-party
vendors. However, as with Intel; the introduction of another vendor is not preferred and thus not
analyzed.

50 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 5. HARDWARE SELECTION

Table 5.2: Xilinx OpenCL FPGA Accelerators, pricing as of February 2019 from digikey.nl [77]

Platform FPGA
Released
in

Logic
Ele-
ments

DSP
units

Memory
size &
type

Memory
band-
width

Platform
price in e

FPGA die
price in e

Kintex UltraScale
FPGA KCU1500 [129]

XCKU115-
2FLVB2104E

2017 1451k 5520
16GB
DDR4

76.8GB/s discontinued 9020.82

Virtex UltraScale+
FPGA VCU1525 [130]

XCVU9P-
L2FSGD2104E

2017 2589k 6840
16GB
DDR4

76.8GB/s discontinued 49004.43

Alveo U200 [131] XCU200 2018 2003k 5867
64GB
DDR4

76.8GB/s 9597.67
not for
sale

Alveo U250 [132] XCU250 2018 3007k 11508
64GB
DDR4

76.8GB/s 13865.67
not for
sale

Alveo U280 [133] XCU280 2019 2384k 8490

32GB
DDR4
8GB
HBM2

38GB/s
+
460GB/s

unknown
not for
sale

5.1.2 FPGA selection and specifications

Prodrive its customers are currently using Nvidia K620 and K4000 GPUs, which launched for
e190 and e950 respectively [74]. Optimally, a modern FPGA accelerator within the same price
range should be selected. However, this is not possible with the provided options. For this reason,
the Kintex UltraScale FPGA KCU1500 was selected as it offered the most FPGA resources and
memory bandwidth with the lowest devkit and FPGA price in February 2018. The Alveo FPGAs
were not available back then, but would certainly be an interesting option now.

At the time, the Kintex KCU1500 FPGA devkit sold for approximately e 3k and was likely sold
at a loss as a separate FPGA die costed e 8k back then. With the Kintex KCU1500 FPGA being
discontinued, it has to be compared with the current Alveo offerings to estimate a more accurate
accelerator price. The Kintex KCU1500 die sells for e 9k, but this not necessarily represent the
current market price due to low selling volumes and discounts companies get for buying them in
bulk. Looking at the recently released Alveo U200 FPGA enables a more realistic price estimation.
The Alveo U200 FPGA has a newer FPGA architecture, contains about an equal number of DSPs,
has about 38% more logic elements, and sells for e 9.5k. Additionally, the Alveo U250 has 33%
more logic elements and double the DSPs of the Alveo U200, and sells for e 14k. So, with the
KCU1500 having an older less efficient architecture and fewer logic elements than the Alveo U200,
a KCU1500 accelerator would likely cost around e 6.5k when sold as an accelerator. To represent
a more realistic market value, the approximated e 6.5k KCU1500 price will be used in the rest of
this document.

The complete specs of the Xilinx Kintex UltraScale FPGA KCU1500 Development Kit are [129]:

• XCKU115-2FLVB2104E FPGA
• 4 banks with 4GB DDR4 2400MT/s 64-bit memory of which 3 banks support error correction
• 1Gb Dual Quad SPI Flash
• Two 8x PCIe Gen3 connections on a single 16x edge connector
• USB JTAG & JTAG PC4 header & Two 100gBe QSFP+ cages

OpenCL acceleration on FPGA vs CUDA on GPU 51

CHAPTER 5. HARDWARE SELECTION

Figure 5.1: Kintex UltraScale FPGA KCU 1500 PCB, taken from [129]

5.2 GPU selection

This section considers the selection of a suitable GPU for OpenCL Acceleration.

5.2.1 GPU requirements and options

There are two requirements for selecting a GPU:

• The GPU should be a successor to the Nvidia Quadro K620 and K4000 GPUs currently used
by Prodrive its customers.

• The GPU should be in a similar price range as the selected FPGA for a fair comparison.

At the start of this project, Pascal was the latest generation of Nvidia graphics cards. As of
August 2018, Nvidia has released four next-generation Turing Quadro RTX GPUs. An overview
of the Pascal and Turing generation of GPUs is listed in Table 5.3.

52 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 5. HARDWARE SELECTION

Table 5.3: Nvidia Quadro GPUs as of February 2019. Data from techpowerup.com [74]

GPU Architecture
CUDA
Cores

Core
Clock
in MHz

Memory size &
type

Memory
bandwidth
in GB/s

Lowest price
in e according
to tweakers.net
[134]

Quadro K620 Kepler (2012) 384 1058 2GB GDDR3 28.8 184.10

Quadro K4000 Kepler 768 810 3GB GDDR5 134.8 883.-

Quadro P400 Pascal (2016) 256 1228 2GB GDDR5 32.1 136.92

Quadro P600 Pascal 384 1329 2GB GDDR5 64.19 228.40

Quadro P1000 Pascal 640 1266 4GB GDDR5 80.19 369.60

Quadro P2000 Pascal 1024 1076 5GB GDDR5 140.2 462.70

Quadro P4000 Pascal 1792 1202 8GB GDDR5 243.3 797.84

Quadro P5000 Pascal 2560 1607 16GB GDDR5x 288.5 1802.86

Quadro P6000 Pascal 3840 1506 24GB GDDR5x 432.8 4635.12

Quadro GP100 Pascal 3584 1304 16GB HBM2 732.2 5681.43

Quadro GV100 Volta (2018) 5120 1132 32GB HBM2 868.4 11322.-

Quadro RTX 4000 Turing (2018) 2304 1215 8GB GDDR6 416.0 1012.89

Quadro RTX 5000 Turing 3072 1620 16GB GDDR6 448.0 2429.79

Quadro RTX 6000 Turing 4608 1440 24GB GDDR6 672.0 4938.31

Quadro RTX 8000 Turing 4608 1005 48GB GDDR6 672.0 unknown

5.2.2 GPU selection and specifications

To meet the requirements, a GPU had to be selected that was in a similar price range as the
selected FPGA, which price was approximated at e 6.5k. As the Pascal generation of GPUs was
the latest GPU generation available at the start of this project, no Turing Quadro RTX cards
could be chosen. Currently, the Quadro GP100 is the only Pascal GPU in the target price range
set by the selected FPGA. However, at the start of this project in February 2018, the average
GP100 price was e 8k, and the Quadro P6000 was priced e 5.6k on average [134], which made the
P6000 the GPU that was the closest to the price range of the selected FPGA. Next, by looking at
the specifications, the Quadro P6000 offers more CUDA cores, a larger memory size, albeit a lower
memory bandwidth at a significantly lower price than the GP100. //* Additionally, the selected
FPGA has a memory bandwidth that is about five times lower than the Quadro P6000. As there
is no need to spend more money to get an even higher memory bandwidth for the GPU, the
Quadro P6000 has been selected. If one of the selected algorithms contains a memory bottleneck,
the Quadro P6000 will outperform the selected FPGA due to this memory bandwidth advantage.

The complete specs of the Nvidia Quadro P6000 GPU are [74]:

• GPU die: GP102
• CUDA Cores: 3840
• CUDA Core clock: 1506 MHz
• CUDA compute capability: 6.1
• Memory clock: 1127 MHz
• Memory size: 24 GB
• Memory type: GDDR5X
• Memory bus: 384-bit
• Memory bandwidth: 432.8 GB/s
• Displayport video output: 4x
• DVI video output: 1x
• SLI high bandwidth connector: 1x
• DirectX 12.1

OpenCL acceleration on FPGA vs CUDA on GPU 53

CHAPTER 5. HARDWARE SELECTION

• OpenGL 4.6
• OpenCL 1.2
• Max TDP: 250W

Figure 5.2: Nvidia Quadro P6000, taken from [135]

5.3 Host selection

This section considers the selection of a suitable kernel compilation and benchmarking PC.

5.3.1 Host requirements

As of version 2018.2 of the Xilinx SDAccel Environment Release Notes, Installation and Licensing
Guide [16], the following requirements are stated for the use of the SDAccel OpenCL acceleration
software:

• Motherboard with a PCIe 3.0 8x slot
• 16GB RAM
• 100GB free disk space
• A Vivado Design Suite 2018.2 installation
• A supported 64-bit Windows or Linux OS [17]

Next, Nvidia does not specify any requirements other than that the GPU should be able to connect
to the system, and that an Nvidia driver that supports the card should be installed.

5.3.2 Host specifications

A search for a PC with these requirements resulted in a server (SCH MK2) that was directly
available from another project at Prodrive. This server has been used for all compilations and
benchmarking.

• 2 * Intel Xeon E5-2640v4 (@2.4Ghz, 6 cores per socket)
• 8 * 32GB DDR4 RAM @2400 MHz

54 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 5. HARDWARE SELECTION

• Motherboard: SuperMicro X10DRH-ILN4 (2x PCI Gen 3.0 x16, 4x PCI Gen 3.0 x8, 1x PCI
Gen 3.0 4x)

• 2x Samsung SSD SM863 960 GB

On the MK2 server, the following software has been installed:

• Ubuntu 16.04.5 LTS
• GCC 5.4.0-6
• Nvidia Display Driver version 396.45
• Nvidia CUDA Toolkit 9.2
• Xilinx Vivado v2018.1
• Xilinx SDAccel v2018.2

Ubuntu 16.04.5 is not officially supported according to the Vivado documentation. However, as
16.04.5 only contains security updates over 16.04.3, this should not affect the performance of the
FPGA acceleration.

5.4 Hardware comparison

This section shows a comparison between the selected hardware. It includes a numeric comparison
showing the theoretical performance of the hardware. With these theoretical number, a Roofline
plot is created based upon the initial implementations of the selected algorithms. This Roofline
plot visualizes the hardware differences in a single graph and shows where the bottleneck lies for
the default algorithm implementations.

5.4.1 Numerical comparison

A comparison between several hardware specifications of the selected benchmarking hardware is
shown in Table 5.5. This comparison shows that the GPU has a significantly larger memory
bandwidth than the other devices. Due to this bandwidth difference, the Xilinx FPGA will
most likely pay a bigger performance penalty than the GPU for memory intensive applications.
However, smart FPGA implementations using on-chip memory could alleviate this problem. Here,
the on-chip memory can be implemented as a pipeline or prefetch cache, significantly reducing
the number of global memory accesses. The next generation Intel and Xilinx FPGAs use HBM2
memory on the die with high-end models, significantly increasing the FPGA memory bandwidth
with a bandwidth up to 512GB/s reported [49].

Additionally, a factor six difference in maximum single precision floating point performance is
found between FPGA and GPU devices. As only Nvidia reports the single precision performance,
the CPU and FPGA floating-point performances are calculated. Here, the Intel Xeon E5-2640v4
Processor floating point performance is based upon the calculations provided at [136], where the
clock speed (2.4GHz) is multiplied with the total number of cores (2*6) and the number of Single
Precision FLOPs per cycle (32), leading to 921.6 GFLOPs. For the Nvidia Quadro P6000, the
performance was reported, but can also be calculated. Here, each CUDA core can execute a
floating point multiply and add in a single clock cycle. So, multiplying the number of CUDA cores
(3840) with the maximum boost clock frequency (1645 MHz) and the number of operations per
cycle (2), leads to the reported 12.634 TFLOPs.
Finally, the Xilinx FPGA single-precision floating point performance is based on the calculations
in [67]. By comparing the available resources of the XCKU115 FPGA [137], with the resources
required for the least hardware intensive floating point operation [104], the total number of floating
point operators that fit in the hardware can be determined. In this case, the DSP multiplication
requires the least FPGA hardware. By combining the full and medium DSP usage implementations

OpenCL acceleration on FPGA vs CUDA on GPU 55

CHAPTER 5. HARDWARE SELECTION

of the multiplier, an implementation can be created that achieves the maximum floating point
performance possible on the KCU1500 hardware. The total number of multiplier units is then
multiplied with the speed of the slowest FPGA (speed grade -1) clock speeds results, which results
in a maximum single precision floating point performance of 2116.4 GFLOP/s. All data used for
the calculation is shown in Table 5.4.

Table 5.4: Xilinx KCU1500 floating point performance calculation

Multiplier
Type

fmax
Number of
multipliers

LUTs per
multiplier

LUTs Total
DSPs per
multiplier

DSPs Total GFLOPs

DSP full 568 MHz 1684 91 153244 2 3368 956.5

DSP med 539 MHz 2152 237 510024 1 2152 1159.9

Total 3022 663268 5520 2116.4

Remaining 92 0

Note that the calculated performance numbers show the absolute maximum performance numbers
that can theoretically be achieved using the hardware. For Intel, it is assumed that all 32 floating
point units of all cores will be processing data at the base clock frequency. For Nvidia, it is
assumed that all 3.8k CUDA cores are processing computations with a combined floating point
multiplication and addition at the maximum boost frequency. Finally, for Xilinx, it is assumed no
hardware overhead is present for routing, and that the maximum clock frequency of the FPGA
with the lowest speed can be attained for a design that uses all the FPGA hardware. For this
reason, Intel states that it does not use FPGA logic to determine the GFLOP/s performance
metric and reports such calculations to be false [67].

The final single-precision floating point performance numbers show that the selected FPGA gen-
eration is about six times slower than the reported Quadro P6000 floating point performance.
However, when looking at the next generation Stratix 10 or Virtex Ultrascale+ architectures, FP-
GAs are closing the floating point performance gap with the DSP performance being reported to
achieve up to 7 TFLOP/s for Xilinx [68], and 9.2 TFLOP/s for Intel [138]. However, Nvidia has
also improved their architecture, with their next generation Quadro RTX 6000 GPU reporting a
16.3 TFLOP/s performance, making it still theoretically twice as fast in floating point math as
the latest Intel and Xilinx FPGAs.

The last two differences between hardware shown in Table 5.5 are the API support and thermal
design power (TDP). Nvidia GPUs support the full OpenCL 1.2 API and CUDA with compute
capability 6.1. Xilinx FPGAs support OpenCL 1.0 [18] with some additional features from OpenCL
2.0 [4]. Next, the difference in TDP indicates that the GPU is designed to use more power than
either the CPU or FPGA as its cooler can dissipate more heat.

56 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 5. HARDWARE SELECTION

Table 5.5: Hardware comparison

Device
Single
precision
GFLOP/s

Memory
size and
type

Memory
band-
width

PCIe band-
width

Supported programming
APIs

Max TDP

Host PC (2x
Intel Xeon
E5-2640v4)

921.6
256GB
DDR4

153.6
GB/s

2x 15.75 GB/s,
4x 7.88 GB/s,
1x 3.94 GB/s

OpenCL 1.2, 2.0, and 2.1
experimentally

180 W

Nvidia
Quadro
P6000 [139]

12.6k
24GB
GDDR5x

432.8
GB/s

15.75 GB/s

OpenCL 1.2 with experi-
mental support for some 2.0
functions, CUDA compute
capability 6.1

250 W

Xilinx Kintex
Ultrascale
KCU1500

2.1k
16GB
DDR4

76.8
GB/s

2x 7.88 GB/s
OpenCL 1.0 with some 1.2
features

75 W

5.4.2 Interconnect options

The Quadro P6000 GPU has a PCIe 3.0 16x connection, several video output ports, and an optional
SLI bridge interface. With the SLI-bridge being for GPU-GPU communication only, the input
and output data is limited to the PCIe interface. Next, the KCU1500 FPGA contains two PCIe
3.0 8x connections and two QSFP+ cages that allow for two 100gBe connections. The addition of
these QSFP+ cages adds additional I/O bandwidth on top of the available PCIe 3.0 connection.
As the QSFP+ moves directly into the FPGA, this data can also be used as a memory interface
to increase the available memory bandwidth. However, this does require BSP changes and the
addition of a QSFP+ data handler written in RTL to manage the data, which falls outside of the
scope of this project.

5.4.3 Roofline comparison

A Roofline graph allows the maximum memory bandwidth and compute performance of a set of
hardware to be compared in a single graph. Additionally, the arithmetic intensity of an application
can be plotted to indicate whether an application is bottlenecked by either the hardware its
memory or its compute performance. The compute and memory performance of the hardware
is calculated in Section 5.4.1. Leaving only the numerical intensity of both the RabbitCT and
Demosaic algorithm to be determined.

The arithmetic intensity of an application is calculated by dividing the total number of floating
point operations by the total number of bytes that need to be loaded from memory for this
calculation. This calculation is performed using the following formula:

I =
W

Q
, (5.1)

Where W is the work of the application and Q is the number of bytes transferred.

RabbitCT Arithmetic Intensity

For the RabbitCT Lolabunny implementation, the arithmetic intensity is defined as follows:

W = Operations per voxel ∗ number of voxels ∗ number of images, (5.2)

OpenCL acceleration on FPGA vs CUDA on GPU 57

CHAPTER 5. HARDWARE SELECTION

and
Q = inbytes + outbytes, (5.3)

with

inbytes = pixels loaded per voxel ∗ bytes per pixel ∗ number of voxels ∗ number of images,
(5.4)

and
outbytes = 2 ∗ bytes per voxel ∗ number of voxels ∗ number of images. (5.5)

In this case, as the work and memory traffic is defined per voxel per image, the equation can be
reduced to:

I =
Operations per voxel

P ixels loaded per voxel ∗ bytes per pixel + 2 ∗ bytes per voxel
(5.6)

The source LolaBunny RabbitCT algorithm requires 26 additions, six subtractions, 29 multiplic-
ations, three divisions, four compares, and two floors to perform the backprojection algorithm for
each voxel and each image. So, a total of 70 operations are executed. Additionally, four pixels are
loaded from memory as input; and a single output voxel value is loaded, updated, and written back
to the memory, resulting in two transfers. Additionally, both pixel and voxel data are stored as
floating point variables, resulting in them requiring four bytes each. As the number of voxels could
be removed from the equation, the arithmetic intensity is benchmark independent and results in
an arithmetic intensity of 2.92 for each benchmark.

Demosaic Arithmetic Intensity

For the Demosaic initial implementation, the arithmetic intensity is defined as follows:

W = Operations per pixel ∗ number of pixels ∗ number of images, (5.7)

and
Q = inbytes + outbytes, (5.8)

with

inbytes = pixels loaded per calculation ∗ bytes per pixel ∗ number of pixels ∗ number of images,
(5.9)

and

outbytes = 3 ∗ bytes per pixel ∗ number of pixels ∗ number of images. (5.10)

As with the RabbitCT calculation, the calculations are pixel and image independent and can be
removed. This reduces the equation to:

I =
Operations per pixel

(Pixels loaded per calculation + 3) ∗ bytes per pixel
(5.11)

The initial Demosaic implementation requires 95 additions, 16 subtractions, 157 multiplications,
two divisions, 86 compares, two modulo, and two rounding functions per calculated pixel. So, a
total of 360 operations are executed for each pixel. For the memory transfers, a total of 25-byte
sized pixels are loaded from memory for the matrix multiplication, and three-byte sized colour
channels are written back to the output. This leads to an arithmetic intensity of 12.86.

58 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 5. HARDWARE SELECTION

Roofline plot

Combining the hardware characteristics and algorithm arithmetic intensities results in the Roofline
plot shown in Figure 5.3. It shows that the selected GPU offers significantly more floating point
compute performance and memory bandwidth for a device with a similar cost to the selected
FPGA. Next, the intersection point of the arithmetic intensity of an application with the Roofline
plots of the hardware shows whether the application will be limited by the memory bandwidth, or
the computational performance, assuming no other factors limit the execution speed. Applications
that intersect the diagonal part of the graph are memory bottlenecked, and applications that
intersect the horizontal sections are compute bottlenecked. In this case, a parallel implementation
of the RabbitCT source code is always memory bottlenecked, and the Demosaic source algorithm
is compute bottlenecked on the host PC, but memory bottlenecked on both the GPU and FPGA.

Finally, it should be noted that this graph only compares the floating point performance between
hardware. So, the predicted performance differences are not necessarily true for the integer or
double precision calculations present in both the RabbitCT and Demosaic algorithms, reducing
the usefulness of this Roofline plot.

Figure 5.3: Roofline initial implementations

OpenCL acceleration on FPGA vs CUDA on GPU 59

Chapter 6

Algorithm Implementation

The optimization of each algorithm for each platform was done iteratively. This chapter explains
the applied optimizations and shows the results that these optimizations achieved. Initially, it was
planned to include the power usage of the final implementations of each algorithm. However, due
to the loss of the testing setup, these measurements could not be performed.

6.1 RabbitCT

For RabbitCT, the code for each created platform and API started from the LolaBunny source
code described in Section 4.1.2. The source code was ported to and iteratively optimized for the
respective APIs and platforms to maximize the performance. Initially, a CUDA RabbitCT imple-
mentation was created and optimized. Afterwards, the OpenCL GPU implementation was created
using similar optimization strategies. For OpenCL, optimizations were applied in a different order
due to a better understanding of each optimization technique. To compare both OpenCL and
CUDA, the CUDA implementation was recreated from scratch. Only this time the optimization
techniques used with OpenCL were implemented in the same order, resulting in both CUDA and
OpenCL GPU implementations with a similar code base. Now, the only differences between the
CUDA and OpenCL implementations are caused by API differences, allowing a clear CUDA GPU
vs OpenCL GPU comparison to be made. This optimization path could not be used for OpenCL
on FPGA, as this requires FPGA specific optimizations.

6.1.1 RabbitCT GPU

This section covers the optimization strategies applied to both the CUDA and OpenCL imple-
mentations of the RabbitCT algorithm. For each implementation, the state of the algorithm was
analyzed to determine the main performance bottleneck. Afterwards, optimizations reported in
Section 3.5 and the corresponding API programming guides were used to resolve the found bottle-
necks and improve the performance of the algorithm. As both CUDA and OpenCL offer similar
optimization techniques, the same optimization techniques were used for both APIs, allowing for
easy comparison.

The applied optimizations of each benchmarked implementation are explained in the sections
below, and the results are shown in Table 6.1 for CUDA, and Table 6.2 for OpenCL. These results
show a selection of the RabbitCT output data for a 512 resolution together with the memory
statistics reported by the Nvidia System Management Interface (Nvidia-SMI) [140]. Here, the
total run-time represents the total run-time of the entire RabbitCT benchmarking algorithm for a
512 resolution. Next, the Mean Squared Error (MSE) and the Peak Signal to Noise Ratio (PSNR)
show the magnitude of calculation errors on the output, and the memory usage shows the total
global memory usage of the GPU and gives an indication of the memory requirements of the

60 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

algorithm. Finally, some implementation results were not recorded or got lost in the fire. These
results are marked by a slash in the table.

Table 6.1: RabbitCT CUDA GPU implementation results

Implementation Total runtime 512 (s) MSE (HU2) PSNR (dB) Memory usage (MB)

0 - LolaBunny 42.86293 0 inf 683

1 - Arguments 37.90586 0 inf 681

2 - Memory 20.1344 0 inf 681

3 - Precision 9.29296 7.83e-4 103.307 681

4 - Threading 2.85317 7.87e-4 103.283 681

5 - Multi-image 1.73989 7.79e-4 103.328 683

6 - Streams 1.08831 7.79e-4 103.328 693

7 - Textures / / / /

8 - Tweaking 0.667255 / / /

Table 6.2: RabbitCT OpenCL GPU implementation results

Implementation Total runtime 512 (s) MSE (HU2) PSNR (dB) Memory usage (MB)

0 - LolaBunny / / / /

1 - Arguments 34.2801 0 inf 675

2 - Memory 20.198 0 inf 675

3 - Precision 8.37173 8.96e-4 102.723 675

4 - Threading 2.11372 8.96e-4 102.723 675

5 - Multi-image 1.65845 8.91e-4 102.744 679

6 - Streams 0.996018 8.91e-4 102.744 1433

7 - Textures 0.870298 8.91e-4 102.744 1309

8 - Tweaking 0.655967 8.95e-4 102.727 1329

Implementation 0 - LolaBunny

The goal of the initial GPU implementation was to allow the backprojection algorithm to run
in parallel on the GPU. Here, no optimizations are applied other than allowing the code to take
advantage of multiple CUDA cores present.

A first GPU implementation was created by changing the RCTLoadAlgorithm to allocate a piece of
memory on the device for the input image, projection matrix, output volume, and the global data
struct. This global struct contains all the settings and data for the current RabbitCT execution.
For the first GPU implementation, it is implemented just like the source LolaBunny algorithm;
however, this time its pointers point to memory on the accelerator device instead of host memory.
After initialization, the global struct is copied to the device and is not changed anymore as all its
data is constant.

Next, the RCTAlgorithmBackprojection function is adapted to copy the received input image
and projection matrix to the device pointers created in the RCTLoadAlgorithm. With the data on
the device, the backproject function is called using a kernel call function. This function executes
the backprojection algorithm with three-dimensional thread blocks that process eight threads per
dimension, or 512 threads in total. To enable parallel processing, two main changes are made to

OpenCL acceleration on FPGA vs CUDA on GPU 61

CHAPTER 6. ALGORITHM IMPLEMENTATION

the backproject function. The first change is the replacement of the three for-loops by a thread
identifier function representing the iterators of the three loops. The second change is the addition
of a CUDA global or OpenCL kernel statement in front of the function definition. These
statements tell the compiler that this function is a GPU kernel that can be called from the host.
Similarly, the two helper functions p hat n and p n, which perform the bilinear interpolation and
clamped pixel loading respectively, receive the CUDA device statement in front of the function
definition to indicate that those functions can only be called by another CUDA function and can
only be executed on the CUDA accelerated device. This statement is not required for OpenCL
as all kernels are located in a different file, from which each function can only be executed by the
OpenCL accelerated device.

For CUDA, this direct port of LolaBunny resulted in a total run-time of 42.863 seconds. For
OpenCL, the compiler was unable to compile the code due to an unsupported global pointer
redefinition in the kernel. This issue is resolved in the next implementation.

Implementation 1 - Arguments

The goal of implementation 1 is to enable OpenCL compilation by replacing the locally defined
global pointer with another data sharing method. Lolabunny uses this global pointer to share
the global data struct it receives as a kernel parameter with the backprojection helper functions.
By parallelizing the execution of the backproject function, each thread will write the same input
parameter data to this global address, introducing a large memory bottleneck. Having each thread
write the same data to this global variable is a large waste of resources and should be avoided.
Luckily, the CUDA compiler detects this inefficiency and resolves it by allowing only a single
thread to write to this variable, preventing the memory bottleneck from taking place. However,
even without this memory bottleneck, this global pointer still has to be defined and created before
the helper functions can read it, and thus still causes a slight performance reduction.

To resolve the issue of defining a global pointer, the global data struct is shared in the function
arguments of the helper functions. This way the helper functions still receive a pointer to the
global data, but no global pointer redefinition is required. Additionally, the device memory point-
ers defined in the global struct are moved to function arguments to reduce the double pointer
accesses required to load the data. With these small changes, the OpenCL implementation now
compiles, and a small performance increase and memory usage reduction are shown for the CUDA
implementation.

A result comparison shows that both the CUDA and OpenCL implementations have a similar
performance with a slight edge for OpenCL. Additionally, for unknown reasons, OpenCL uses 6
MB less global memory than the CUDA implementation, which is a negligible difference for a
24GB GPU.

Implementation 2 - Memory

The next implementation experimented with further memory optimizations. The first optimization
defines variables as constant or read-only when used as such, this did not lead to any performance
gains as the compiler already detects this and optimizes for it. Next, unused global RCTData
variables are removed, which introduces a minor speedup as it reduces the number of GPU registers
that are required per thread. The final memory optimization present in this implementation is
the use of constant restricted memory pointers for the global memory input variables. This tells
the compiler no pointer aliasing is present, enabling the compiler to cache the global data, which
allows the global memory intensive RabbitCT algorithm to speed up significantly. For OpenCL,
the constant function argument definition was also tested, but this gave the same performance
results as defining the variable as a constant restricted global pointer.

62 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

Implementation 3 - Precision

An analysis of the CUDA version of implementation 2 with the Nvidia Visual Profiler [141] showed
that the double precision units of the GPU are the main performance bottleneck. As explained
in Section 3.5, changing from double precision to either single precision or integer introduces
a performance gain at the cost of precision. For RabbitCT, all calculations are performed in
double precision, and the output is stored in single precision. So, converting all double precision
calculations to single precision leads does not introduce large errors, but does lead to rounding
errors showing in the output. The results in Table 6.1 and Table 6.2 confirm this, showing double
the performance at the cost of a reasonably small error in the output.

Comparing the performance of CUDA with OpenCL shows that the OpenCL implementation
finishes the algorithm about one second faster than CUDA, making OpenCL about 10% faster.
However, the move to single precision also resulted in OpenCL having a somewhat lower precision
in the final results. With no kernel code differences present other than the API definitions, a
likely cause of the performance difference is the OpenCL compiler scheduling the code in a slightly
different way than the CUDA code. This different schedule results in a more efficient calculation,
but also in a reduction of accuracy.

Implementation 4 - Threading

Profiling the single precision implementation showed that memory latencies became the next
performance bottleneck. To optimize the memory usage and improve the cache usage of the
algorithm, thread optimizations have been applied. The first optimization is an overhead reduction
by having a single thread compute multiple voxels. This change reduces the total number of
threads required to calculate the output and thus also the thread initialization overhead. So,
instead of having a single thread for each voxel in the X, Y and Z dimension, this implementation
contains threads that compute all voxels along the Z-axis, limiting the parallelism to the X and
Y dimension only. As shown in Figure 6.1a, limiting the parallelism to the X and Y dimensions
leads to a thread block that requires data from a single slice of the input image at a given time,
limiting the amount of data that must be loaded for each calculation and thus improving the data
locality. This optimization reduced the processing time of the CUDA algorithm from 9.3 seconds
to 7.6 seconds, and the OpenCL algorithm from 8.3 seconds to 7.3 seconds.
Next, Figure 6.1b visualizes that the sizing of the thread block also affects the data-locality. So,
the thread blocks were iteratively resized to an optimum size of 32 by eight voxels for both APIs,
which reduced the run-time to 5.23 seconds for CUDA, and 4.6 seconds for OpenCL.

As the memory latency issue was not fully resolved by optimizing the threading, further memory
improvements have been applied as well. Directly sending the RabbitCT struct data to the helper
functions instead of providing a pointer to the struct reduced the CUDA run-time to 2.85 seconds
and the OpenCL run-time to 2.56 seconds. By providing this data directly, the function access
the data from local memory instead of a global memory pointer and thus removes several global
memory data accesses from the algorithm.
The final optimization applied for this implementation is the use of loop unrolling. By writing an
unroll loop pragma above the Z-axis loop, the compiler places multiple iterations of the loop after
each other in machine code. This optimization reduces the number of branches required to check
the loop bounds and allows the compiler to perform more extensive code optimizations as more
code is present. For CUDA, bounded loop unrolling reduced the performance and an unbounded
loop unroll kept the performance at the same level. So, the compiler likely already unrolls this
loop to create an optimal loop structure for the GPU. For OpenCL, the best performance was
achieved by unrolling the loop four times, which reduced the total run time to 2.11 seconds. With
these results, the final OpenCL performance for implementation 4 becomes about 25% faster than
CUDA.

OpenCL acceleration on FPGA vs CUDA on GPU 63

CHAPTER 6. ALGORITHM IMPLEMENTATION

Te
xt

ur
e

Pr
o

je
ct

io
n

XX

ZZ

(a) Limiting parallel dimensions

(b) Thread block optimization, taken from [61]

Figure 6.1: RabbitCT Thread Optimization

Implementation 5 - Multiple images

In addition to using a single kernel to process the entire Z-axis, this implementation lets threads
process the data from multiple input images. Originally, the global output voxel data was updated
for each image, requiring a memory write for each thread. By processing multiple images in a
single kernel, this output value only needs to be read and written once for each set of images
processed, reducing the required memory bandwidth.
A downside to processing multiple images is that this might interfere with the automatic data
caching present in the GPU. The additional input images might overwrite previously cached data
that is still required for future computations, which then must be loaded from the global memory
again. This statement proved this statement as the best run-time improvement was achieved when
processing two images with a single kernel.

In addition to multi-image processing, the use of an atomic add function increased the CUDA
performance by several milliseconds. An atomic add combines the read, addition and write com-
mand in a single instruction, which is executed on a separate on-chip ASIC for Nvidia GPUs [61].
For this reason, using atomics relieves each thread from performing these tasks. The performance
gain is minimal because the compiler likely schedules the read earlier in the code, resulting in only
the skipped addition and memory write commands from improving the performance. For OpenCL
floating point atomic adds are not supported, and thus could not be used.

Comparing the final results shows that the performance gap between OpenCL and CUDA has
decreased, with OpenCL being 5% faster. This result shows that the performance gain of OpenCL
is likely caused by a more efficient memory usage due to the different schedule the OpenCL compiler
provides.

Implementation 6 - Streams

Profiling the multi-image implementation showed two issues. The first being the floating point
performance, and the second issue is that there are no simultaneous memory transfers during
execution. To tackle this last issue, a multi-stream implementation has been created. A CUDA
stream or OpenCL command queue is a FIFO queue listing the tasks the GPU should perform.
With a single command queue, the GPU is limited to a single task at a given time, enabling it to
either copy data between host and device, or execute a kernel, but not both in parallel. By using

64 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

multiple streams, GPU commands can be executed in parallel when the hardware is available.
Not only can data be copied between host and device in parallel with a kernel execution, but it
also enables for parallel kernel execution when processing elements are available. So, the use of
multiple streams does not improve the efficiency of the kernel code itself, but it does improve the
efficiency of how this kernel is being executed. Figure 6.2 shows the difference between a single
stream and a multi-stream implementation for a kernel bottlenecked application.

A downside to using multiple streams is that both the host and the device must be able to store
the data of each command issued in each parallel stream. This data must remain available until all
GPU commands using this data have finished executing. To schedule all GPU copy and execution
tasks, the host must be able to prepare multiple GPU calls so that the GPU can read data from
or write data to the host whenever it is able to. Additionally, to allow the host to process other
tasks when the GPU is busy requires the use of pinned in- and output buffers for the GPU. Pinned
memory buffers are buffers that are page-locked, this means that this data is always present on the
RAM, and cannot be swapped out to the disk. By keeping all data in the host RAM, no CPU is
required to load the data, and the GPU can copy this data using its Direct Memory Access (DMA)
module enabling significantly faster memory transfers. Without pinning the memory buffers, the
GPU requires help from the CPU to load the data, preventing any parallelism between GPU
kernels as the host device cannot move ahead to prepare the next GPU kernel iterations.

Each RabbitCT iteration only requires new input data as the output data is reused and remains
on the device. So, pinned input buffers for both the images and matrices had to be created.
These input buffers store input for 124 iterations of the backprojection algorithm, which is the
number of inputs the RabbitCT-Runner host application prefetches at a given time. By copying
this input data to the input buffer and queuing up the processing commands to the GPU, the
host can fetch the next 124 images from disk while the GPU is processing the input buffer data.
Even though fetching the data from the disk is not counted as processing time for the RabbitCT
benchmarking data, it still offers an improvement on the overall algorithm efficiency as multiple
kernels can execute in parallel. So, by enabling parallel data transfers and kernel execution, a
significant performance increase was achieved without implementing any kernel changes. These
results show that host code optimizations are just as important as kernel optimizations to enable
high-performance acceleration using both APIs.

While the performance gain for both CUDA and OpenCL by using streams with pinned memory
is similar, the reported memory usage is not. For CUDA, creating a pinned memory buffer only
requires the cudaMallocHost() function call to create the pinned host buffer, and the rest of the
code remains as it was with a device buffer initialization and memory copy functions. Here, the
API detects that data from a host buffer is copied to the device, which automatically maps the
memory spaces and allows the use of a DMA for fast and parallel transfers.
The OpenCL implementation is based on the one shown in the Nvidia OpenCL Best Practices
guide [10]. Here, a host and device buffer are created, and the two memory spaces are mapped to
each other by the clEnqueueMapBuffer() command. This command returns a pointer to a separate
device buffer created for the mapping. So by mapping the host and device buffers, an additional
buffer is created, resulting in the high memory usage reported by the OpenCL implementation.
A solution to this issue exists by manually mapping and unmapping the buffers for every host-to-
device transfer to limit the additional buffer space required. This way, only a second buffer with
the size of a single transfer is required instead of a copy of the entire stream buffer. However,
after many iterations, no error-free streaming implementation could be created without stalling
the host, so the high memory usage remained present in all following OpenCL implementations.

Implementation 7 - Texture memory

The last applied optimization is the use of texture memory. A texture is a 2D or 3D image
applied to a 3D polygon model to colour the colourless polygon model. A video game scene

OpenCL acceleration on FPGA vs CUDA on GPU 65

CHAPTER 6. ALGORITHM IMPLEMENTATION

Stream 1
Stream 2

1 11
2 2

3 33 5

Copy H2D Copy D2HExecute

Stream 1 1 11 2 2 32

4
5

2 4 4 6

3

Figure 6.2: The advantage of streams

consists of many textures which can change constantly depending on the scene. To support fast
texture changes and to prevent excessive texture loading, textures are stored in the global texture
memory and are cached on-chip. Additionally, texture objects have extra parameters defining the
image parameters, and support hardware accelerated pixel interpolation and boundary condition
checking.

For RabbitCT, the image and matrix inputs are implemented as 3D texture objects in CUDA, and
a 2D image array in OpenCL. Here, the first and second dimension of each object represents the
size of the input image or matrix, and the third dimension is used for the input of other iterations.
Using three-dimensional objects enables a single texture object to contain all the data required for
several iterations of the algorithm. Additionally, by setting the texture addressing mode to border
in CUDA and clamp in OpenCL, out of bounds accesses to this texture automatically return zero.
This setting removes the need for the p n border detection function which removes all branches
from the kernel code and thus significantly increases the algorithms throughput.
Additionally, using the hardware accelerated linear interpolation on the textures could also remove
the need for the p hat n bilinear interpolation function. However, the use of the hardware bilinear
interpolation did not provide a noticeable performance gain and significantly reduced the accuracy
of the algorithm due to it only providing 9-bit precision. So, hardware interpolation was not used
for the final GPU implementation.

At the time of the fire which destroyed the benchmarking setup, the CUDA texture memory
implementation with code similar to OpenCL was still a work-in-progress and thus not bench-
marked. As two CUDA implementations have been created, the results from the first iteration
are still available. However, the texture memory optimization was applied much earlier in the
optimization process, preventing a CUDA vs OpenCL comparison from being made.

Implementation 8 - Tweaking

The last optimization step is the tweaking of all optimization constants. Here, the input buffer
size, multi-image factor, number of streams, and the thread block parameters are changed to find
their optimal values.

For OpenCL, all values except the multi-image factor were at their optimum value: the buffer size
remained at 124, the threading parameters remained 32 by 8, and the optimum number of streams
remained two. Changing the multi-image factor to 4 however, offered a performance increase and
reduced the run time to 0.656 seconds. Here, the introduction of texture memory likely improved
the caching behaviour of the algorithm, allowing more images to be processed in a single kernel
iteration.

66 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

For the second CUDA optimization iteration, no tweaking was applied due to the benchmarking
setup being lost to the fire. However, the final optimization results from the first CUDA imple-
mentations can be used. Here, the same optimizations are applied, but in a different order. Also,
this build was not created in tandem with the OpenCL implementation, so code differences are
present. This CUDA implementation uses an array of textures instead of a single 3D texture
object and uses several arithmetic code changes which speed up calculations. Despite the code
differences, this CUDA implementation also uses two streams and a 124 element buffer, but it also
uses a 16 by 16 thread block and processes the voxels of eight images with a single kernel. Despite
the differences, this CUDA implementation finished the RabbitCT algorithm in a total of 0.667
seconds, which is only 2% slower than the OpenCL implementation.

Ineffective optimizations

Next to the effective GPU optimization described above, several optimizations did not affect
the performance of the algorithm. Which is likely caused by the compiler already automatically
applying these optimizations with -O3 compilation enabled. These optimizations are:

• Declaring the function arguments and variables as constant if they do not change
• Moving loop independent calculations out of the loop
• Shifting the position of calculations to improve the hardware scheduling of calculations
• Replacing divisions by multiplications with the inverse of the divider
• Replacing division calculations by the fast inverse square root division approximation func-

tion

The top two items are still present in the code, as these optimizations improve the code readability.
However, the last three optimizations make the code harder to read and thus have not been
implemented.

Future improvements

Not many improvements remain untested for the GPU implementations of RabbitCT. Tests could
be performed to see the performance impact of using both a read-only input and write-only output
volume for the images. Next, shared memory could be used as input for thread blocks which could
improve the caching performance somewhat. Hardcoding the loop bounds could also improve
the performance as this removes the global data struct and makes it easier for the compiler to
optimize the code. However, this does remove the users’ ability to change any backprojection
setting without adapting and compiling the code themselves. Switching to half-precision would
theoretically also increase the performance while also decreasing the accuracy of the algorithm.
However, as noted in Section 3.5, the selected Pascal GPU is not optimized for half-precision
calculations as it offers only two results per clock cycle per multiprocessor.

Finally, using the next generation of GPU hardware will give another performance boost as the
number of CUDA cores has been increased by 20%, and the addition of the tensor cores on Nvidia
hardware might speed up the matrix multiplications present in the algorithm.

Implementation conclusion

The final GPU builds for both APIs run the RabbitCT benchmark with a 512 resolution in 0.66
seconds, with a signal to noise ratio between 102.7 and 103.3 dB. Compared to other results on
the RabbitCT Ranking website [115], the created GPU implementation achieves a performance
between the fourth and fifth position shown on the website, but with significantly higher accuracy.
Our achieved accuracy is better than all but the slowest three CPU implementations. Additionally,

OpenCL acceleration on FPGA vs CUDA on GPU 67

CHAPTER 6. ALGORITHM IMPLEMENTATION

this research uses a single GPU, while the top three solutions all use multiple GPUs. So, for a
single GPU implementation, this implementation takes the first place based on both accuracy
and performance. However, the top solutions in the ranking report that CUDA 5.5 has been
used with multiple GPUs. As CUDA 5.5 was released in 2013, this research likely used GPUs
that were released in that year as well. So, this implementation taking the first place for its
achieved performance and accuracy with a single GPU is probably caused by architectural GPU
improvements instead of improvements to the algorithm itself.

6.1.2 RabbitCT FPGA

This section covers the optimization strategies applied to the OpenCL FPGA implementation of
the RabbitCT algorithm. For each implementation, the algorithm is analyzed for its bottleneck,
and optimizations from Section 3.5 to resolve these issues are applied and tested. As the com-
pilation time for the FPGA kernel takes hours instead of the seconds a GPU compilation takes,
functionality is first tested in software. When this software implementation is functional, multiple
FPGA builds are compiled for software emulation, which takes several minutes. This compilation
method performs the first few steps of FPGA compilation which provides estimations about the
actual FPGA compilation and allows for software emulation of the FPGA kernel. With the estim-
ated FPGA build differences known, a select few builds are compiled for the FPGA hardware to
determine the actual hardware performance. From each set of builds, the best performing build
is selected, which then forms the basis for the next implementation. For the first four implement-
ations, all builds were compiled for the FPGA hardware as no worst-case latency relation was
found in the software emulation results. From implementation five and six, software emulation
was used to compare builds which significantly increased the implementation speed as build results
could be compared within minutes instead of the hours required for compilation and the hardware
execution itself.

The applied optimizations and differences between builds for each implementation are explained
in the sections below. Here, the first FPGA implementation uses the code of implementation 1
of the OpenCL GPU builds. For this reason, the implementation number starts at 1, after which
FPGA specific adaptations are made to optimize the code for FPGA acceleration further. Note
that due to the long compilation and testing time, a 128 resolution is used for benchmarking the
FPGA. Using this resolution reduces the FPGA workload a factor 4 in each dimension, resulting
in a total workload reduction of 64x compared to the 512 resolution used with the GPU build
testing. An overview of the FPGA hardware benchmarking results with a 128 resolution are shown
in Table 6.3. It allows the most important results of each implementation to be compared and
uses a ”/” to indicate any results that are lost or cannot be obtained. Additionally, for GPU
comparison the estimated 512 resolution run-time is added as well. For this run-time estimation,
a linear increase in run-time by factor 64 is expected as increasing the resolution increases the
loop bounds of each dimension. So, increasing the resolution by 4x in three dimensions results to
64 more voxels that need to be calculated, and thus 64x more pipeline iterations for the FPGA.
However, whether the assumption that total run-time linearly increases with the resolution has
never been tested and could be wrong as changing the resolution also affects the memory access
patterns.

In addition to the run-time, the most interesting results for each implementation are shown in the
respective sections, with the selected data representing the following:

• Burst-size: number of voxels processed in parallel
• Total runtime 128: measured kernel run-time for the benchmark with a 128 resolution
• Estimated runtime 512: run-time estimation for 512 resolution benchmark, equals total

runtime 128 multiplied by 64
• MSE: reported mean square error

68 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

• PSNR: reported peak signal to noise ratio
• Max WC Latency: maximum reported worst-case latency estimation, this value does not

include latencies associated with data transfers to global memory
• FPGA freq: clock frequency at which the FPGA executes the kernel, affected by compilation

timing results
• Impl. pipelines: number of pipelines that are implemented
• Max pipeline depth: length of the longest pipeline in stages
• Max II: maximum instruction interval in cycles, shows how many cycles it takes before a

new instruction can be issued in a pipeline
• LUT Usage: FPGA resource used the most of all resources, represents the resource limiting

factor
• BRAM Usage: FPGA memory block usage
• Compile time: time required to compile the FPGA hardware binaries

Finally, after explaining all implementations, a list of possible future improvements is given, and
a conclusion is made.

Table 6.3: RabbitCT FPGA implementation final results

Implementation
Total
runtime
128 (s)

Estimated
runtime 512
(d:h:m:s)

MSE
(HU2)

PSNR
(dB)

FPGA
Freq
(MHz)

Max II
(cycles)

LUT
Usage
(%)

Compile
time
(h:m:s)

1 - Work-items 6467.64 04:18:58:49 0 inf 300 no pipeline 7.24 01:52:44

2 - Loop experiments 6107.16 04:12:34:18 0 inf 300 no pipeline 5.66 01:43:29

3 - Hardcoding 3341.28 02:11:24:02 0 inf 300 no pipeline 5.25 01:30:14

4 - Vectorization 592.961 00:10:32:30 0 inf 300 unrecorded 13.02 02:23:10

5 - Memory Opt. 28.8468 00:00:30:46 0 inf 188.3 15 6.65 04:37:20

6 - Prefetching 12.22 00:00:13:03 0 inf / 5 / /

X - Fully Opt. 0.153 00:00:00:10 / / 300 1 / /

Implementation 1 - Workitems

The first RabbitCT FPGA implementation starts from the first compilable OpenCL GPU code.
Here, the FPGA is set as the target device, and the Xilinx SDAccel compiler is used to generate the
FPGA binaries. For this implementation, the three-dimensional eight by eight by eight threaded
GPU implementation is compared with a single work-item implementation, where only a single
thread is launched with three nested loops iterating over the voxels. The single work-item method
is recommended for high level synthesis as FPGAs excel in a pipelined execution, and having
more work per thread enables the compiler to synthesize a better pipeline. The results of this
comparison are shown in Table 6.4 where the single work item not only performs faster, it also
uses fewer resources and compiles faster.

Table 6.4: RabbitCT FPGA implementation 1 results

Implementation
Total run-time
128 (s)

Max WC
Latency (cycles)

FPGA Freq
(MHz)

LUT Usage
(%)

Compile time
(h:m:s)

NDRange 8,8,8 9039.83 1064560 300 19.02 03:06:55

Single Work-item 6467.65 undefined 300 7.24 01:52:44

OpenCL acceleration on FPGA vs CUDA on GPU 69

CHAPTER 6. ALGORITHM IMPLEMENTATION

Implementation 2 - Loop experimentation

The initial results are not very promising with the FPGA implementation being almost 200x
slower for a benchmark that requires 64x less work than the GPU benchmark. An analysis
of the compilation logs quickly showed why: the compiler failed to implement a pipeline and
thus computes each voxel result sequentially. To improve the performance of the nested loops,
implementation 2 experiments with pragmas and compiler optimization techniques to improve
the loop compilation. Here, the pipeline and unroll pragmas are used on the main nested loops,
and the effect of the inline pragma is tested on the helper functions. The inline pragma tells
the compiler to insert the function code at each function call, resulting in the helper functions
being implemented directly in the main loops instead of them being implemented as separate
FPGA functions. Additionally, a multi-compute-unit approach was tested where the work of the
outer loop is split into threads that are executed in parallel over all compute units that can be
implemented in the FPGA.

The results in Table 6.5 show that no significant performance improvements were gained. The
pipeline builds still did not have a successfully synthesized pipeline as the loop bounds are variable.
Next, the default unroll build gave the same results as implementation 1, indicating that the
compiler predicatively unrolls a loop by several iterations if no loop bounds are known. Inlining
the helper functions helps speeding up the algorithm and shows that having the helper functions
directly in the main loops enables the compiler to perform more effective code optimizations.
Getting the compute-unit test to compile took many iterations. Initially, 15 compute units were
expected to be the maximum that could fit on the FPGA hardware based upon the single unit
hardware usage. As multi-compute-unit compilations could take up to two days before failing,
it took a long time before ending up with the first successfully compiled build. The final build
had five compute units, which theoretically should improve the processing speed of the original
algorithm by a factor 5. However, as the multiple compute units shared the same data and memory
bus, a bottleneck was introduced that eliminated the effect of the created parallelism. Having five
compute units processing the data of the outer loop in parallel resulted in an implementation with
a similar per-cycle performance as the single compute unit implementation. Only this time the
maximum performance is reduced due to the lowered FPGA clock frequency caused by timing
failures introduced by the increased hardware usage. Due to the long compilation time, compute
units were not further analyzed in this research, and all effort was spent on optimizing a single
kernel implementation.

Table 6.5: RabbitCT FPGA implementation 2 results

Implementation
Total run-time
128 (s)

Max WC
Latency (cycles)

FPGA Freq
(MHz)

LUT Usage
(%)

Compile time
(h:m:s)

Pipeline 8018.93 undefined 300 7.23 01:46:14

Pipeline + inline 6494.58 undefined 300 5.75 01:49:26

Unroll 6467.78 undefined 300 7.24 01:51:41

Unroll + inline 6107.16 undefined 300 5.66 01:43:29

Compute units 8070.08 undefined 246 37.38 04:53:37

Implementation 3 - Hardcoding

The main issue with implementation 2 was that the compiler did not know the loop bounds,
preventing it from forming a pipelining or fully optimizing the unrolled code implementation.
For this reason, this implementation replaces all variables that remain constant during execution
by defines which makes them known during the compilation process. Assertions have also been
added to ensure the user input variables are equal to the constant values defined in the code.

70 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

These optimizations removed the need for a global data struct, thus leaving only the input image,
projection matrix, and output volume as global variables. By hardcoding the input values, all
flexibility in code execution is removed and thus requires a recompilation or the loading of different
pre-compiled binaries to execute the algorithm using different settings.

The results of these tests are shown in Table 6.6. With the loop bounds now know, the compiler can
estimate the worst case latency of the implementation and is able to apply more code optimizations.
Even though a pipeline or unroll pragma was used for the main loops without inlining the helper
functions, the compiler synthesized the same FPGA implementation for the first three tests as
indicated by the similar hardware usage and latency numbers. The unroll implementation was not
tested on the hardware because it shows the same compilation results as the default and pipeline
compilation results, making it very likely the run-time results will be similar as well.

Next, when using inlined helper functions, both the unroll and pipeline code resulted in a very
similarly performing FPGA implementation. Here, the maximum latency has increased by 7%
and the run-time is reduced by 30%. The latency increase is caused by the helper functions being
included in the main loop, increasing its latency instead of being reported as a separate function
with its own latency. The run-time decrease is caused by the compiler being able to optimize
the code more efficiently with all code in a single loop instead of also having to manage the
communication between two FPGA functions that have been implemented separately.

Even with these improvements, the compiler guidance report indicates that for each implement-
ation no loops were pipelined due to too large carried dependencies being present. A carried
dependency is an issue where a value acquired in a later pipeline stage is needed for the calcula-
tion of the next cycle, which results in the pipeline being stalled until this value is available. An
example of a carried dependency is a program that reads a value A and B, adds B to A, and stores
this back in A. When executing sequentially, no issues are present as the new value of A is read
at the start of the second iteration. However, when pipelining this code, A is read, updated and
written every cycle. So, to read the latest value of A, the pipeline has to wait until the previous
A is written, stalling the entire pipeline and making the execution of this program sequential.

Table 6.6: RabbitCT FPGA implementation 3 results

Implementation
Total run-time
128 (s)

Max WC
Latency (cycles)

FPGA Freq
(MHz)

LUT Usage
(%)

Compile time
(h:m:s)

Default 4789.72 2.252e9 300 6.99 02:06:02

Pipeline 4789.78 2.252e9 300 6.99 02:07:43

Unroll untested 2.252e9 300 6.99 02:07:49

Pipeline + inline 3341.08 2.408e9 300 5.25 01:30:14

Unroll + inline 3344.44 2.414e9 300 5.22 01:35:29

Implementation 4 - Vectorization

To tackle the issue of the carried dependencies, the code was vectorized to parallelize the execution
of the program. Dividing the code into vectorized segments allows the memory loads and stores
to be scheduled in bursts. Here multiple memory transactions take place with a single instruction
which reduces the busy time of the memory bus and reduces the carried dependencies present. For
vectorization, the RabbitCT backprojection kernel was split into three sections. The first section
contains backprojected row and column calculation, the second section contains the loading and
bilinear interpolation of the input, and the final section contains the normalization and updating
of the output volume. The vectorization of each section is implemented by adding for-loops around
each section. When pipelining, the compiler unrolls these inner loops a constant number of times
defined by a global burst-size variable. So, instead of each pipeline stage working on a single

OpenCL acceleration on FPGA vs CUDA on GPU 71

CHAPTER 6. ALGORITHM IMPLEMENTATION

RabbitCT voxel at a given cycle, each pipeline stage can now work on a burst-size number of
voxels in parallel.

The results of this implementation for different burst sizes are shown in Table 6.7. It shows that
implementing vectorization increases the performance in all cases due to the burst memory trans-
fers that it enables. Theoretically, a higher burst-size should always lead to a higher performance
due to the parallelism it enables. However, using a burst-size of 4 results in the best algorithm
performance, as using a burst-size of 8 or higher prevents the compiler from successfully unrolling
the vectorized loops for some reason.

Table 6.7: RabbitCT FPGA implementation 4 results

Implementation
Total run-time
128 (s)

Max WC
Latency (cycles)

FPGA Freq
(MHz)

LUT Usage
(%)

Compile time
(h:m:s)

Burst-size 2 2503.52 1.934e9 300 7.44 03:25:43

Burst-size 4 592.961 undefined 300 13.02 02:23:10

Burst-size 8 2039.97 1.573e9 286 23.52 07:10:30

Burst-size 16 2701.36 1.513e9 213.3 48.02 34:41:31

Implementation 5 - Memory optimization

The goal of the memory optimization implementation is to further reduce the carried dependencies
present in the code to improve the throughput of the pipeline. For this implementation, multiple
optimizations were tested using software emulation to determine the effect on the predicted worst-
case pipeline latency. The latency is reduced by minimizing the instruction interval (II), which
directly corresponds with minimizing the carried dependencies.

Similar to the GPU memory optimizations in Section 6.1.1 implementation 2, each variable was
made constant/read-only when used as such, and each global input variable was made restricted
to tell the compiler no pointer alias is present. This change had an unknown effect on the latency,
as the compilation report of the burst-size 4 build of implementation 4 did not report the worst
case latency. However, the resulting latency was 1.444e9 cycles.
Next, the RabbitCT volume was split into a separate read input volume and a write output
volume. This split together with the addition of extra vectorization steps removed the carried
dependency between the volume reading and writing. For each input image, the host swaps the
two pointers so that the output volume of one RabbitCT image calculation becomes the input of
the other. These optimizations significantly reduced the carried dependencies present and reduced
the latency to 8.914e6 cycles.
Finally, all global variables were split over multiple FPGA memory banks, which increases the
memory bandwidth of the application and further reduced the worst-case latency to 8.39e6 cycles.

With these optimizations, another burst-size benchmarking test was performed, resulting in the
data shown in Table 6.8. Here, the decrease in latency and stall cycles resulted in less time
being available for signal propagation, causing more timing failures. The compiler automatically
resolves the timing failures by lowering the clock frequency, which has the undesired effect of
reducing the performance. Next, the achieved results nicely show the effect of the instruction
interval and the number of pipelines. The burst-size 4 implementation has a carried dependency
of 16 because four voxels are calculated in parallel, which each requires four pixels to be loaded
from memory and thus result into a 16 cycle pipeline stage or a 15 cycle pipeline stall. By
performing four times more work with a burst-size of 16, the stall cycles are increased to 63,
negating the performance gain by the additional parallelism and thus resulting in a similarly
performing FPGA implementation. The cause for the performance difference between the burst-
size 4 and 8 implementation is the lower FPGA clock frequency due to the increased hardware

72 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

usage. Finally, the burst-size 8 implementation again proved difficult for the compiler as it failed
to unroll an inner loop resulting in a less efficient multi-pipeline implementation.

Table 6.8: RabbitCT FPGA implementation 5 results

Implementation
Total
run-time
128 (s)

Max WC
Latency
(cycles)

FPGA
Freq
(MHz)

Impl.
pipelines
(Nr)

Max pipeline
depth
(stages)

Max II
(cycles)

LUT
Usage
(%)

Compile
time
(h:m:s)

Burst-size 4 28.8468 8.389e6 188.3 1 542 15 6.65 04:37:20

Burst-size 8 1648.5 undefined 300 2 4 1 30.99 04:25:06

Burst-size 16 33.9638 8.389e6 140.2 1 579 63 12.17 05:23:56

Implementation 6 - Prefetching

With the carried dependencies of the pixel loading being the main bottleneck of the algorithm, the
only solution is to prefetch the data so that all data is immediately available on the FPGA. For
this reason, a prefetching feasibility analysis is performed and is reported in Section 4.1.3. Here
is shown that enough data re-use is present for prefetching to keep up with the calculations and
that the required prefetch buffer should easily fit on the FPGA hardware.

After several weeks of analysis and testing prefetching options, the following had been implemen-
ted. The main algorithm has received an image buffer array sized 205 rows by 1248 columns to store
the prefetched input data. Additionally, the buf load col, buf load row, and buf target row vari-
ables are introduced to track the status of the prefetch buffer. The buf load row and buf load col
variables track which column and row have been prefetched into the buffer, and buf target row
indicates which row should be prefetched. As the algorithm starts at row 960 and moves down to
0, the target row is determined by subtracting a constant reload offset of 15 rows from the lowest
row currently in use by the algorithm. The reload offset ensures that new rows are prefetched
on time so that the input data is available when needed. Its value of 15 is determined by the
maximum number of new rows required per window as calculated in Section 4.1.3.
The maximum required rows for a single window and the reload offset both determine the size of
the prefetch buffer. With the reload offset set to 15, at least 160 + 2x the reload offset rows are
required to ensure the new prefetched data does not overwrite the data currently in use by the
algorithm. However, this setting still resulted in prefetch errors where the data was not available
in some cases. Thus the buffer size was increased to 160 + 3x the reload offset or 205 rows, which
resolved this issue.

The prefetching itself occurs in bursts of 16 floating point elements with the vload16 statement,
saturating the FPGA interconnect bandwidth. The loaded float16 data is then stored in the image
buffer array at position (buf load row % 205, buf load col). Using a modulo equal to the size of
the buffer allows the data position in the buffer to be calculated easily, and it ensures the new
data overwrites the old data that is not required anymore.

Next to the changes required for prefetching, the p n helper function that loads the pixels and
performs the image edge clamping is replaced by a function that loads two neighbouring pixels via
a vload2 function when possible to reduce the number of pixel accesses required from four to two.
Finally, vload vectorization is applied to the output volume reading and writing as well, were a
burst-size of volume input elements are read, updated and written back to the global memory at
a given time.

The result of this prefetching implementation with a burst-size of 4 is shown in the no-partition
result of Table 6.9. It shows a reduction of the instruction interval from 15 to 9, a run-time
reduction with an equal factor, and a 5x increase in BRAM usage. The BRAM increase was

OpenCL acceleration on FPGA vs CUDA on GPU 73

CHAPTER 6. ALGORITHM IMPLEMENTATION

expected, but not such a slight reduction in run-time and instruction interval. The issue lies
in the partitioning of data on the FPGA. Without stating how the data should be stored, the
compiler assigns the buffer data sequentially over multiple BRAM elements, preventing efficient
parallel accesses. The optimal partitioning method to reduce the carried dependencies to zero
would be complete partitioning. However, this does not fit on the FPGA hardware for a 205 by
1248 floating point array. Leaving block and cyclic partitioning as the only options. As each voxel
calculation always requires data from two columns and rows, optimally this data and the data
for the other voxels calculated in this cycle should be accessible in parallel. Table 6.9 shows the
software estimation results of several tests with the cyclic partitioning factor, and an intermediate
hardware test of the cyclic 64 build showed that implementation was taking 12.22 seconds to finish
the resolution 128 benchmark.

Table 6.9: RabbitCT FPGA implementation 6 results

Implementation
Total run-time
128 (s)

Max Worst Case
Latency (cycles)

Max pipeline
depth (stages)

Max II
(cycles)

BRAM Usage
(units)

No partition 16.46 4.719e6 542 9 672

Cyclic 16 / 4.719e6 542 9 672

Cyclic (40, 64, 128) 12.22 2.622e6 526 5 824

Cyclic 624 / 4.719e6 542 9 1474

A final RabbitCT FPGA prefetching implementation was never tested due time constraints. With
two months of FPGA optimization not resulting in a performance that does not even match
the first working GPU optimization, the choice was made to focus on the Demosaic algorithm.
Demosaic has a significantly easier memory access pattern. Additionally, there are several similar
OpenCL FPGA examples online which should help with getting the most out of the Demosaic
OpenCL FPGA implementation.

Future improvements

With the final RabbitCT FPGA build being unfinished, several optimizations remain that could
still increase the performance. The first optimization would be to finish the prefetch build with
further testing of partitioning options.
If further partitioning does not lead to a reduced instruction interval, a second smaller prefetch
buffer could be implemented that completely partitions all data in a 26 by 200 grid. This grid in-
cludes all voxels that will be accessed in parallel by a burst-size 16 pipeline as shown in Table 4.2
from the memory analysis in Section 4.1.3. This second prefetch buffer would need to be im-
plemented as some kind of line buffer that efficiently loads the data from the initial prefetch
buffer. However, such double prefetched implementations move away from the simplification that
programming OpenCL on FPGA should bring.

Another improvement that is not tested for RabbitCT is the switch from double precision calcula-
tions to single precision. This change will significantly reduce the resource usage of the algorithm,
which likely decreases the compilation time and enables higher FPGA clock frequencies that make
the algorithm perform better. Next, increasing the benchmarking resolution might lead to better
results as it increases the data re-use in the algorithm. Finally, further parallelization might be
possible by using more memory banks. Currently, using a burst-size of 16 saturates the bandwidth
for both the input and output memory channels. If the two remaining memory banks would be
used for I/O as well, the parallelism can be doubled.

Assuming the instruction interval can be reduced from five to one (5x), the burst size increased
from four to 16 (4x), two compute units can be implemented (2x), and the clock frequency can
be doubled to the maximum of 300MHz (2x), a maximum 80x speedup can still be achieved with

74 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

the RabbitCT implementation. With this speedup, the resolution 128 benchmark will have a
total run-time of 0.15 seconds, and the 512 resolution benchmark will have a total run-time of
approximately 10 seconds.

Further optimizations require the use of RTL code to expand the available memory bandwidth
by the use of the two external QSFP+ ports on the FPGA. Here, an additional image input data
bandwidth 25GB/s can be provided when two 100gBe fibre connections are made. However, the
use of this additional input requires the host to send data via this connection to the FPGA, and
the FPGA BSP must be adapted to support an OpenCL kernels connection to this interface.
Adding additional FPGA interfaces requires RTL code to be written and falls outside the scope
of this project.

Implementation conclusion

The final FPGA build performed the 128 resolution benchmark within 12.22 seconds. As the 512
resolution benchmark contains 64 times more computational work, the FPGA implementation
is expected to take 782 seconds for this implementation. However, whether the benchmarking
time increases linearly with the resolution has never been verified. The achieved results place the
RabbitCT FPGA implementation on the 18th position in the RabbitCT ranking [115]. Making it
about just as fast as a multithreaded CPU implementation. However, with the above described
future improvements implemented, the lowest achievable 512 resolution benchmarking run-time is
estimated at 10 seconds, finally placing it within the performance range of the GPU implement-
ations. With this estimated future performance, the FPGA would be placed at the 12th position
on the RabbitCT ranking. Which proves that currently, an FPGA might not be the best choice
for accelerating the RabbitCT algorithm because of the memory bottleneck hampering further
performance improvements.

6.2 Demosaic

The Demosaic algorithm has been selected in the hope that its predictable memory patterns would
allow a fully optimized FPGA implementation to be created within a short time-frame that would
be able to compete with the performance of an optimized GPU implementation. All builds created
in this chapter started from the initial single threaded Demosaic implementation introduced in
Section 4.2. Due to the fire destroying the benchmarking setup, not all implementations were
finished, and no CUDA Demosaic implementation has been created. With the FPGA being the
main focus of the Demosaic algorithm, the first implementations were created for the FPGA, with
the GPU implementations being created during the long waits for the FPGA compilation to finish.

6.2.1 Demosaic FPGA

This section lists the optimizations applied during the Demosaic FPGA optimization process.
The knowledge gained by porting RabbitCT to an FPGA enabled the Demosaic algorithm to
be implemented more efficiently. As with the RabbitCT FPGA implementation process, the
functionality of each implementation was tested on the CPU first as it only takes seconds to
compile for this platform. When all errors are removed from the implementation, a software
FPGA emulation build is compiled providing estimated hardware and pipeline statistics within
minutes. For each implementation, the worst case latency and pipelining statistics are used to
create multiple iterations of the code. Of each set of iterations, the iteration providing the best-
estimated results is compiled for the FPGA hardware and tested on the FPGA.

OpenCL acceleration on FPGA vs CUDA on GPU 75

CHAPTER 6. ALGORITHM IMPLEMENTATION

The sections below describe each implementation and show relevant intermediate results, of which
the final results are shown in Table 6.10. These results show a selection of the most interesting
FPGA data, with the selected data representing the following:

• Burst-size: number of voxels processed in parallel
• Average FPS: kernel FPS averaged over ten kernel executions
• Max WC Latency: maximum reported worst-case latency estimation, the value does not

include latencies associated with data transfers to global memory
• FPGA freq: clock frequency at which the FPGA executes the kernel, affected by compilation

timing results
• Impl. pipelines: number of pipelines that are implemented
• Max pipeline depth: length of the longest pipeline in stages
• Max II: maximum instruction interval in cycles, shows how many cycles it takes before a

new instruction can be issued in a pipeline
• LUT Usage: FPGA resource used the most of all resources, represents the resource limiting

factor
• BRAM Usage: FPGA memory block usage
• SW Compile time: time required to compile for software emulation and produce emulation

reports
• HW Compile time: time required to compile the FPGA hardware binaries

Finally, at the end of this section, possible remaining future improvements are given, and a con-
clusion is made.

Table 6.10: Demosaic FPGA implementation final results

Implementation
Burst-
size

Average
FPS

Max
WC
Latency
(cycles)

FPGA
Freq
(MHz)

Impl.
pipelines
(Nr)

Max
II
(cycles)

LUT
Usage
(%)

BRAM
Usage
(%)

SW
Compile
time
(m:s)

HW
Compile
time
(h:m:s)

0 - Initial 1 0.00747 Undefined 300.0 12/22 11 1.74 0.05 / 01:21:41

1 - Loop Opt. 1 0.16068 408.95e6 225.0 1 26 5.99 0.05 / 02:48:32

2 - Prefetching 1 0.88460 15.729e6 188.2 1 1 9.73 0.1 ~17m 05:10:00

3 - Parallelization 16 52.2318 984.60e3 262.6 2 1 9.86 2.33 02:53 04:28:00

4 - Split writing 64 270.702 246.59e3 152.4 2 1 42.86 4.95 16:16 11:35:19

5 - Resource Opt. 64 278.195 246.57e3 171.8 2 1 18.37 4.95 17:45 05:57:49

X - Fully Opt. 64 ~645 / 300 2 1 / / / /

Implementation 0 - Initial

The initial Demosaic implementation focused on getting the algorithm to work on the FPGA
hardware. Here, a single work-item implementation with predefined image parameters was created.
Predefining or hardcoding the image parameters in the code makes the loop bounds known to the
compiler, enabling it to optimize the kernel loops at the cost of input flexibility of the algorithm.

For implementation 0, an inlining test was performed for the matrixMult function. The results
of this test are shown in Table 6.11. They show that without inlining, the compiler sees two
pipelineable loops, namely, the main Demosaic loop and the matrix iterator loop in the matrixMult
function. With inlining, eight implementations of matrixMult are inlined into the Demosaic
function resulting in the compiler detecting 22 possible pipelines of which only 12 short pipelines
could be implemented.

76 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

Table 6.11: Demosaic FPGA implementation 0 results

Implementation
Average
FPS

Max WC
Latency
(cycles)

FPGA
Freq
(MHz)

Impl.
pipelines
(Nr)

Max
II
(cycles)

LUT
Usage
(%)

BRAM
Usage
(%)

SW
Compile
time
(m:s)

HW
Compile
time
(h:m:s)

no inline 0.00684 Undefined 300.0 1/2 11 0.84 0.05 / 01:15:16

inline 0.00747 Undefined 300.0 12/22 11 1.74 0.05 / 01:21:41

Implementation 1 - Loop optimization

The issue in implementation 0 was that the matrix multiplication bounds were variable to accom-
modate the matrix multiplication at the image edges. Having the loop bounds variable removed
the need for boundary checks inside the loop but made it harder for the compiler to optimize for
the FPGA. So, the first change in implementation 1 was to make the loop bounds constant and
move the boundary check inside the loop. This change enabled the compiler to unroll the matrix
multiplications and allowed it to see the entire code as a single pipeline, see Table 6.12. However,
implementing this pipeline leads to the compiler trying to parallelize the two matrix calculations
that are required to calculate the unknown colour data. As each parallel implementation tries
to load a five by five grid of input pixels every cycle, a too large carried dependency is created,
resulting in the compiler choosing to skip the pipelining step.

To resolve the carried dependency issue, the two matrixMult iterations are merged into one, which
allows the pixel data to be shared for both matrixMult calculations. Merging the calculations
reduced the pipeline carried dependencies to 25 for the input, which together with the three output
writes results in an instruction interval of 26 cycles. A summary of the software estimated results
are shown in Table 6.12.

Table 6.12: Demosaic FPGA implementation 1 results

Implementation
Average
FPS

Max WC
Latency (cycles)

Impl. pipelines
(Nr)

Max pipeline
depth (stages)

Max II
(cycles)

Hardcoded loops / 20494.4e6 0/1 512 250

matrixMult merge 0.16068 408.945e6 1 629 26

Implementation 2 - Prefetching

The goal of this prefetching implementation is to optimize memory usage and reduce the instruction
interval to a single cycle. The first applied changes were making all the read-only memory elements
constant, and making the global memory elements restricted to indicate no pointer alias is present.
However these changes did not affect the compilation or performance of the FPGA implementation,
see Table 6.13.

The next change was the addition of a shifting prefetch buffer that ensures that all 25 input pixels
are available for matrix multiplication each cycle. Here, two buffers are implemented, a pixelBuffer
and a loadBuffer. The pixelBuffer is a two-dimensional array containing five rows and columns. It
is used to store the pixel data for the matrix multiplications. Next, the loadBuffer is used to store
input data loaded from global memory. It contains five rows and two times the memory burst-size
in columns and is used to temporarily store new input data before it is copied to the pixel buffer.
Before starting the main algorithm, the loadBuffer and pixelBuffer are initialized with the first set
of data. Here, three memory fetches fill the first part of the loadBuffer, of which the first columns
are copied over to the pixelBuffer. During the main algorithm, the next set of data is fetched into

OpenCL acceleration on FPGA vs CUDA on GPU 77

CHAPTER 6. ALGORITHM IMPLEMENTATION

the other burst-sized memory element of the loadBuffer if required. Afterwards, the pixelBuffer
data is shifted one column to the left, and new data for the last column is copied over from the
loadBuffer. With the pixelBuffer ready, the Demosaic processing loop starts with the only change
that data is now fetched from the pixelBuffer instead of global memory. After processing the first
pixel, the next iteration of the main algorithm starts where the pixelBuffer is updated, and the
loadBuffer fetches a new row if required. A simplified version of this cycle is shown in Figure 6.3.
Here, a 3x3 pixelBuffer is used with a memory burst-size of 4 instead of the 5x5 pixelBuffer and
burst-size 8 original implementation. Note that for the Demosaic calculations of the first row, no
image data is loaded as this falls outside the image boundaries. The data in these rows have been
indicated with a slash in Figure 6.3.

The emulation results of this implementation in Table 6.13 show a significantly improved worst-
case latency and an instruction interval. However, the instruction interval is not at its optimum
value of 1 yet as the writing of the output data forms the next bottleneck.

Initialization

Pixelbuffer Loadbuffer

/ / / /

0 1 2 3

a b c d

/ / / /

0 1 2 3

a b c d

/

0

a

/

0

a

/ / / /

0 1 2 3

a b c d

/ / / // / / /

0 1 2 3

a b c d

/ / / // /

0 1

a b

/ /

0 1

a b

Cycle 1

/ / / /

0 1 2 3

a b c d

/ / / /

4 5 6 7

/ / / /

0 1 2 3

a b c d

/ / / /

4 5 6 7

/ / /

0 1 2

a b c

/ / /

0 1 2

a b c

Cycle 2

/ / / /

0 1 2 3

a b c d

/ / / /

4 5 6 7

e f g h

/ / / /

0 1 2 3

a b c d

/ / / /

4 5 6 7

e f g h

Cycle 3

/ / /

1 2 3

b c d

/ / /

1 2 3

b c d

/ / / /

8 9 10 11

a b c d

/ / / /

4 5 6 7

e f g h

/ / / /

8 9 10 11

a b c d

/ / / /

4 5 6 7

e f g h

Cycle 5

/ / /

3 4 5

d e f

/ / /

3 4 5

d e f

...

Figure 6.3: Simplified Demosaic prefetching

The final change for this implementation is the vectorization of the output writing to resolve the
carried dependency it contains. As a single 8-bit input pixel results in three 8-bit output pixels,
the total output data is 24 bits or 3 bytes. Until now, each implementation wrote those three
bytes back to separate addresses, which results in three memory writes. Changing the format to a
vectorized format requires the uchar3 format to be used, allowing the compiler to write these three
bytes in a single command. However, this leads to a distorted output image as each 3-component

78 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

vector always maps its data to 4 component memory segment [19], leaving gaps in the data. So,
the output data now contains four bytes for every three colour channels. To work around this
issue, the output image format was changed to a 4-byte per pixel image with the additional byte
representing the alpha or transparency channel. This alpha byte is set to 255 which indicates no
transparency is present, resulting in an output image visually similar to the original. As shown in
Table 6.13, vectorizing the output writing resolved all memory dependencies in the pipeline and
finally reduced the instruction interval to 1, which allowed this build to perform the Demosaic
algorithm five times faster than implementation 1.

Table 6.13: Demosaic FPGA implementation 2 results

Implementation
Average
FPS

Max WC
Latency (cycles)

Impl. pipelines
(Nr)

Max pipeline
depth (stages)

Max II
(cycles)

Constant & restrict / 408.945e6 1 629 25

Shifting prefetch / 47.1867e6 1 625 3

Vectorized writing 0.86548 15.7294e6 1 630 1

Implementation 3 - Parallelization

With the memory dependencies resolved, the next step is the parallelization of the pipeline to
increase the throughput. However, the parallelization of implementation 2 shows the limitations of
its prefetching implementation. Namely, the loadBuffer requires five cycles to load new data, which
limits the parallelism to the used burst-size divided by 5. So, with a maximum memory bandwidth
of 64 bytes per cycle and a four-byte output variable, out of the 16 parallel computations based
on memory bandwidth, only three parallel computations can be performed due to the loadBuffer
bottleneck.

To resolve this issue, a new prefetching approach is developed similar to the Xilinx Edge Detection
or Sobel filter examples available on their GitHub [20]. This buffered prefetching implementation
retains the same working principle but uses significantly larger buffer sizes to reduce the memory
fetches required. For this new implementation, the pixelBuffer contains five rows and 2x the burst-
size columns. Two times the burst-size columns are required for processing a burst-size number of
elements as the 5x5 matrix calculation requires two additional columns left and right of the current
processing window. The loadBuffer now contains four rows of data with the image-width minus
the pixelBuffer-width number of columns, enabling it to buffer all the input data and retain this
data until it is reused in the next row. The pixelBuffer width is subtracted from the loadBuffer to
save some FPGA memory, as data in the pixelBuffer does not need to be stored in the loadBuffer
as well.

Similar to implementation 2, during the initialization phase, both buffers are filled with an initial
set of data. However, this time two entire rows of the input image are loaded into the loadBuf-
fer instead of five burst-sized fetches. Due to the many memory fetches that are required, the
initialization loop is implemented as an additional pipeline that must finish before executing the
main pipeline. Next, the 2x burst-size memory savings on the loadBuffer require the pixelBuffer
to initialize with data from the last columns of row one and two as well. This data is moved into
the loadBuffer when the pixelBuffer is updated. Figure 6.4a shows the initial pixelBuffer data for
a burst-size of 4.

To process a burst-size number of pixels each cycle, a total of burst-size + 4 input pixels are
required. As four pixels of the previous cycle are reused, the only time more than a burst-size
number of pixels have to be loaded is during the initialization. This additional memory fetch
requires to load only two pixels as two out of the four extra pixels are outside of the image bounds
for the first calculation. For loading new input data, an input-buffer is added which contains the

OpenCL acceleration on FPGA vs CUDA on GPU 79

CHAPTER 6. ALGORITHM IMPLEMENTATION

data of two burst-sized memory transfers. It enables all memory transfers to use addresses located
at a burst-sized multiple and allows the pixelBuffer to read the required data from the two bursts
window it requires.

The main processing loop is as follows. First, the data in the input buffer is shifted by a burst-
size to the right to enable new data to be loaded in the second burst-sized memory segment.
Afterwards, the pixel and loadBuffers are updated, and finally the matrixMult computation takes
place for a burst-size number of pixels. The updating of the pixel and loadBuffer occurs via a loop
that iterates over the first four rows of both the pixel and loadBuffer. For each row, all data of the
pixelBuffer is shifted by the burst-size to the left, and the freed memory segment receives the next
data from the loadBuffer. This copy frees a loadBuffer memory segment that is overwritten with
the first burst-sized pixelBuffer data from the next row; ensuring all pixelBuffer data that will be
reused is stored. After iterating the previous three steps for the first four rows, the fifth row of
the pixelBuffer is updated by shifting the columns and adding new data from the input buffer in
the freed memory segment. Figure 6.4b shows an overview of the data division of the pixelBuffer
for a burst-size of 4.

Last data
of row 0

and 1

First data of row 0 and 1

New input data

Processed pixels

Empty
(outside image bounds)

(a) Pixelbuffer initial data

Data from loadbuffer
(reused next cycle)

New input data
(reused next cycle)

Data previous cycle
(stored)

Data previous cycle
(discarded)

Processed pixels

(b) Pixelbuffer data division

Figure 6.4: Pixelbuffer example burst-size 4

The described buffered prefetching approach successfully removed the parallelization bottleneck
caused by the original prefetching implementation. Next, it increased the maximum parallelism
to 16 pixels per cycle, which is now limited by the output data. However, compiling the buffered
prefetching code with a burst-size of 16 for FPGA hardware resulted in a compilation failure due to
not enough FPGA resources being available. So, additional optimizations were applied to reduce
resource usage and allow this build to compile.

To save resources, three main optimizations have been applied. The first optimization is the
doubling of all values in the by Malvar-He-Cutler defined matrices [23]. The original matrices
contain multiplications by halves, which requires floating-point hardware. By merely doubling the
matrices and normalization factor, the matrix values can be stored as chars, hugely simplifying the
calculations performed in the algorithm. The second optimization is the combination of multiple
matrixMult iterations into a single function call. Combining the even and odd matrixMult calls
reduce the total number of parallel paths that have to be implemented while only slightly increasing
the work of a single path as the multiplications now occur on a five by six grid instead of a five by
five. Additionally, this optimization simplifies the main algorithm as no even or odd checks have
to be performed anymore. The last optimization is adding the row branching to the matrixMult

function as well. This creates a single matrixMult function that can handle all cases, and further
simplifies the main algorithm as now only a single matrixMult call is required.

Table 6.14 shows the results from the above-described optimizations. It shows that removing float-
ing point math from the algorithm significantly reduces the LUT resource usage from a number

80 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

above 100% to 11.6% of the total resources, which enables this build to compile. Additionally,
combining the four matrixMult variants resulted in small resource savings. These resource sav-
ings allowed the compiler to create a more efficient implementation increasing the FPGA clock
frequency and the FPS.

Table 6.14: Demosaic FPGA implementation 3 results

Implementation
Burst-
size

Average
FPS

Max
WC
Latency
(cycles)

FPGA
Freq
(MHz)

Max
pipeline
depth
(stages)

LUT
Usage
(%)

BRAM
Usage
(%)

SW
Compile
time
(m:s)

HW
Compile
time
(h:m:s)

Buffered Prefetching 16 / 984.77e3 / 490 >100 / ~42m /

Char matrix 16 50.669 984.60e3 208.9 321 11.62 2.33 17:43 05:35:11

Char + comb col 16 50.423 984.60e3 240.9 321 11.54 2.33 05:13 04:09:35

Char + comb row & col 16 52.232 984.60e3 262.6 320 9.86 2.33 02:53 04:28:00

Implementation 4 - Split writing

Output memory bandwidth is the main performance limiting factor of implementation 3. The
cause of this bottleneck is the fact that the algorithm generates four output bytes for each input
byte. To resolve this, the global output buffer is split into three separate colour channels. Addi-
tionally, the alpha channel is removed from the output, reverting the change from implementation
2. So, instead of a single RGBA output buffer being created, there are now three output buffers
containing the individual data of the R, G, and B, colour channels. The merging of this data is
done on the host just before the data comparison. Here, the read and merge function reads the
data from the three buffers and combines this into the RGB format required for a TIFF image.
Finally, to write data with the full memory bandwidth, each output channel has been assigned to
a different memory bank.

Table 6.15 shows the results of both the single bank and multi-bank performance of the split
writing implementation. It shows that when using a single memory bank, the instruction interval
is equal to three as three write cycles are required to write the three 64 byte buffers to a single
memory bank. When using multiple memory banks, the II reduces to 1, enabling a considerable
performance increase. Another notable difference can be found in the LUT usage, where the
single-bank implementation requires 244k LUTs, and the multi-bank implementation requires
430k LUTs. This LUT usage increase is caused by the multiple memory controllers required for
writing to the different memory banks. So, using multiple memory banks does offer significantly
more bandwidth, but also comes at a resource usage penalty which can decrease the operating
FPGA frequency.

Table 6.15: Demosaic FPGA implementation 4 results

Implementation
Burst-
size

Average
FPS

Max WC
Latency
(cycles)

FPGA
Freq
(MHz)

Max
pipeline
depth
(stages)

Max
II
(cycles)

LUT
Usage
(Nr)

SW Compile
time (m:s)

HW Compile
time (h:m:s)

Single bank 64 72.6 738.12e3 / 323 3 244519 ~16.5m ~5h

Multi bank 64 270.7 246.60e3 152.4 321 1 430022 16:16 11:35:19

OpenCL acceleration on FPGA vs CUDA on GPU 81

CHAPTER 6. ALGORITHM IMPLEMENTATION

Implementation 5 - Resource Reduction

The use of multiple memory banks resulted in a large FPGA resource usage increase. This resource
usage makes it harder for the compiler to meet the timing requirements when implementing the
kernel, resulting in an FPGA clock frequency reduction to meet the timing constraints. Imple-
mentation 4 resulted in a kernel operating at 152.4 MHz out of the maximum 300MHz. So, if the
clock frequency can be restored to the maximum, the achieved performance can be doubled. For
this reason, the main goal for this implementation is to reduce the hardware usage of the kernel,
which can increase the FPGA clock speed and enables smaller FPGAs to be used to decreasing
the accelerator costs.

The critical path of implementation 4 is the single to floating-point conversion required for the
matrix normalization. To optimize this critical path, several methods for normalization of the
matrix multiplication sum have been tested. The first tests replaced the division with either an
OpenCL half divide, native divide, or a standard divide with half-precision parameters. These
changes reduce the precision of the division which could lead to a faster computation. Here,
half divide has an accuracy of at least 10 bits, the half-precision division has an accuracy of exactly
10 bits, and the native divide has an accuracy that is defined by the hardware [19]. The results
are shown in Table 6.16 and indicate that the native divide and half divide functions barely have
any effect. Both implementations, reduce the LUT usage by approximately 1%, while the pipeline
gains four stages. The half-precision implementation did have an effect. Here, the LUT usage is
reduced by approximately 19%, and the pipeline depth is reduced by 16 stages when compared to
implementation 4. However, for all three implementations, the single to floating-point conversion
is still the critical path.

The OpenCL round function only works on floating point numbers, so to get rid of the floating
point conversion [19], an integer division with rounding is required. Here, an integer division with
a shift-based rounding method is used. With the shift rounding, half the divisor is added to the
dividend before the division as shown in Equation (6.1). As the integer division always rounds
down, adding half the divisor ensures that fractions larger than half the divisor are rounded up,
and fractions smaller than the divisor are rounded down. With this change, the LUT usage has
decreased by 43% and the floating point conversion critical path has been resolved, resulting in a
slight FPS and FPGA clock frequency increase.

outputcolor =
colorSum+ (matrixSum >> 1)

matrixSum
(6.1)

With the critical path resolved, other small optimizations were tested in order to reduce the
resource usage even further. From all tested tweaks, only a change in the clamping function
resulted in a notable improvement. Here, the initially used branched clamping is replaced by
the min-max clamping reported in the OpenCL spec, which returns min(max(x, minval), maxval)
[19]. When using this OpenCL clamp function, the SDAccel compiler reports that this function
is unknown. For this reason, clamping has been implemented by a function definition using the
min-max clamping method. This implementation enables the compiler to produce a more efficient
FPGA implementation, reducing the LUT usage, and increasing the FPGA clock frequency and
throughput.

Finally, three smaller tweaks have been tested as well. However, these tweaks did not result in
any improvements in the estimated FPGA compilation results. The first change was replacing the
multiplications and divisions with a constant multiple of two by shifts; the second change was to
replace the modulo function used to determine whether a row is even or odd by a binary check
on the first bit; and the third change was the addition of an extra branch to matrixMult to skip
the multiplications by zero that are present in the constant multiplication matrices. Theoretically,
all three changes simplify the required calculations significantly and should lead to a resource

82 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

reduction. However, this was not the case, making it likely that the compiler already implements
these changes automatically.

Table 6.16: Demosaic FPGA implementation 5 results

Implementation
Burst-
size

Average
FPS

Max WC
Latency
(cycles)

FPGA
Freq
(MHz)

Max
pipeline
depth
(stages)

LUT
Usage
(Nr)

SW Compile
time (m:s)

HW Compile
time (h:m:s)

Half & native divide 64 / 246.60e3 / 325 425790 ~18m /

Half precision divide 64 / 246.58e3 / 305 350009 ~17m /

Int-divide 64 272.45 246.57e3 158.2 295 199992 17:16 04:44:50

Int-divide, minmax-clamp 64 278.19 246.57e3 171.8 296 198209 17:45 05:57:49

Future improvements

As the kernel uses the maximum memory bandwidth for both its input and output data, not
many performance optimizations remain as the algorithm is limited by memory bandwidth that is
available every clock cycle. However, FPGA clock speed optimizations can still improve the FPS
of the Demosaic algorithm. Currently, the final implementation has a clock frequency of 171.8
MHz out of the maximum of 300 MHz. If all critical paths affecting this clock frequency reduction
are removed, a maximum 74.6% speedup can be achieved.

Currently, the critical path is at an unsigned remainder function. It is used when accessing the
separate loadBuffer elements. Here, a mux is implemented in hardware to fetch data from the
FPGA memory elements corresponding with the requested address. As all loadBuffer fetches
access a burst-size number of sequential memory addresses, this can still be optimized by using
the xcl array reshape command instead of the xcl array partition command that is currently
used. Where array partitioning divides the parallel accessed data over multiple elements, array
reshaping restructures the data into a single memory element containing all this data. Reshaping
the array enables all loadBuffer accesses to use a single memory element instead of branching out
to 64 different memory elements. Accessing a single memory element with a single but 64x larger
bus would significantly optimize the FPGA resource usage and likely resolves the critical path as
the mux accessing the memory elements is simplified.

Another improvement would be the addition of an additional kernel which uses the remaining
memory bank. This kernel can only operate at 33% the throughput of the current kernel due to
the memory write bandwidth bottleneck, but it would increase the throughput by an additional
33% at the cost of additional FPGA resources.

Assuming the critical paths can be resolved and that a second kernel is implemented using the
remaining memory bank, a maximum performance increase of 2.32x could still be achieved with
the current hardware. This speedup will increase the performance of the kernel to approximately
645 FPS at the cost of additional resource usage. However, this 2.32x speedup is the absolute
maximum and might not be realistic as these suggested changes could introduce new critical paths,
that might make it hard to reach the 300 MHz clock frequency with the selected hardware.

As with RabbitCT, the use of the two available QSFP+ cages would allow an additional 25GB/s
memory bandwidth to be added on top of the available bandwidth as the data from these con-
nections moves directly into the FPGA. However, as support for these connections requires BSP
changes in RTL, it falls outside the scope of this project.

Finally, upgrading to the latest FPGA hardware generation will also improve the throughput of
the algorithm. These FPGAs have a more advanced architecture, enabling higher kernel clock

OpenCL acceleration on FPGA vs CUDA on GPU 83

CHAPTER 6. ALGORITHM IMPLEMENTATION

speeds without making any changes. Additionally, the FPGAs containing HBM2 memory have a
more than 10x higher per-bank memory bandwidth which will remove the performance hampering
memory bottleneck.

Implementation conclusion

The final Demosaic build achieved a performance of 278.195 FPS, with a theoretical maximum
fully optimized performance of 645 FPS. As the final Demosaic implementation has reduced the
instruction interval to 1 and since the Demosaic pipeline is parallelized as far as the memory
bandwidth allowed; it can be stated that the Demosaic algorithm is well optimized for FPGA
execution. Theoretically, the performance and resource usage can still be improved by using the
fourth memory bank and by optimizing the prefetching algorithm.

However, if only the PCIe interface is used for data management, any further improvements will
not lead to a better performance when a streaming implementation is created. As mentioned in
Section 4.2.3, the maximum number of images with a 5k by 3k resolution that can be processed
based upon the PCIe 3.0 16x bandwidth is 262 images per second. So, the current implementation
will already be bottlenecked by the PCIe bandwidth, making any further performance optimiz-
ations useless unless additional processing steps are added or a different I/O method is used for
host-accelerator communication.

6.2.2 Demosaic GPU

This section lists the optimizations applied when optimizing the Demosaic algorithm for the GPU.
For Demosaic, only an OpenCL build is created due to time limitations and a loss of the bench-
marking setup. Each implementation is described below, and their results are shown in Table 6.17.
These results show the average Demosaic FPS over a total of 10 input images, and show the memory
usage as reported by the Nvidia System Management Interface (Nvidia-SMI) [140]. Finally, pos-
sible future improvements are listed, and a conclusion is given that analyzes the achieved GPU
Demosaic performance.

Table 6.17: Demosaic OpenCL GPU implementation results

Implementation Average FPS Memory usage (MB)

0 - Initial 1.11326 219

1 - Loop Optimization 24.84783 217

2 - Thread Optimization 542.08508 217

3 - Vectorization 545.60291 231

4 - Kernel simplification 923.2375 231

5 - Tweaking 988 /

X - Reduced precision 1109 /

Implementation 0 - Initial

The goal of the initial GPU implementation was to get the algorithm to run on the GPU. Where
the FPGA implementation used a single work-item, the GPU implementation creates one work-
item per pixel so they can execute in parallel. The results show that without any optimization
other than specifying the number of work items, the GPU can run the algorithm at 1.16 FPS.

84 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

Implementation 1 - Loop Optimization

Just as implementation 1 of the FPGA, the second GPU implementation focuses on optimizing
the matrix multiplication code as the initial implementation with variable loop bounds is not
efficient. Originally, variable loop bounds were used to prevent matrix multiplications outside of
the image boundaries. By hardcoding the loop boundaries and moving the boundary check inside
the loop, the performance of the previous implementation was increased to 22.5 FPS. Indicating
that branch hoisting only works when the branches do not affect the loop boundaries.

Next, matrixMult was expanded to include the calculations for all three colour channels. So,
instead of matrixMult computing the data for a single colour channel, it now computes the data
for all three colour channels with a single function call, increasing the frame-rate to 24.8 FPS.
Additionally, making all variables constant or read-only when used as such, transforming the
Malvar-He-Cutler matrices into 2D instead of 1D to improve the readability of the code, and
hardcoding matrix parameters by defines all did not affect the frame-rate.

Implementation 2 - Thread Optimization

With the matrix multiplication optimized, the main issue is the data usage of the GPU. As a
global work item is assigned for every pixel of the input image and the local work items are set to
one, the GPU will schedule its tasks randomly, resulting in inefficient data usage. By increasing
the number of local work-items, the GPU executes all global work-items in batches of the sized
accordingly to the specified local work-item dimensions. So, by increasing the local work-items in
multiple dimensions, multiple sets of neighbouring threads are started in parallel, improving the
data locality and the performance of the algorithm.

Experimentation results for multiple local work-items are shown in Table 6.18. The maximum
local work-items supported on the Quadro P6000 is 1024, so any local work-item containing more
work-items result in a compilation failure. The results show that executing multiple neighbouring
work-items offers a massive increase in performance. Additionally, it is shown that parallelizing
in the x-dimension offers a larger performance increase than in the y-dimension. The memory
likely causes this difference as fetching on the x-axis enables the use of burst memory transfers
that fetch multiple elements within a single cycle, while y-axis transfers require data that is not
stored sequentially and thus requires an additional memory fetch for each transfer.

Table 6.18: Demosaic local work-item performance in FPS

Work-items Y

8 16 32 64 128 256

W
o
rk

-i
te

m
s

X

8 266.8 267.7 270.2 290.1 287.2 invalid

16 274.1 276.1 292.5 298.6 invalid /

32 495.4 508.4 542.6 invalid / /

64 506.7 542.2 invalid / / /

128 538.5 invalid / / / /

256 invalid / / / / /

Implementation 3 - Vectorization

For the third implementation, vectorization has been applied to the output of the algorithm. In-
stead of separately writing three 8-bit values to the output, now a single 32-bit uchar4 variable is
written. This 32-bit variable contains all three colour channels plus an additional alpha channel

OpenCL acceleration on FPGA vs CUDA on GPU 85

CHAPTER 6. ALGORITHM IMPLEMENTATION

to make use of the 32-bit memory format. As explained in the second Demosaic FPGA imple-
mentation, having an alpha channel enables the host to write the image data into a TIFF image
without the pre-processing that would be required for the empty byte caused by a 3-component
vector. Vectorization of the output only increased the frame rate by 3 FPS, indicating that the
compiler likely already performed some optimizations on output data handling.

Implementation 4 - Kernel simplification

Implementation 4 simplified the kernel by removing floating point calculations, which were the
bottleneck of implementation 3. By doubling all the values in the Malvar-He-Cutler matrices, the
original floating point matrix data is transformed into chars, hugely simplifying the calculations
required which almost doubles the achieved frame rate.

Implementation 5 - Tweaking

The final GPU build was still a work-in-progress at the time the benchmarking setup was destroyed.
However, several tests have been performed, and their results are shown in Table 6.19.

The first test was the use of the OpenCL image format, as this improved the performance of the
RabbitCT GPU algorithm. However, for Demosaic it reduced the performance, likely caused by
the straightforward memory usage of the Demosaic algorithm. When processing the Demosaic
kernel with 32 by 32 local work-items, the cache usage is already optimized for as much data
re-use as possible. So, the introduction of the image format or textures might reduce the caching
efficiency as it also loads neighbouring data, whereas for RabbitCT the efficiency was improved
due to the semi-random memory accesses.
Next, the effect of several small tweaks was tested. Here, the use of the native divide for a reduced
precision floating point division offers a 25 FPS boost over implementation 4. Using the OpenCL
clamping function instead of the branch based clamping improves the frame rate by an additional
36 FPS, and as with the FPGA build, using bit masking to determine whether a row is even or
odd instead of a modulo function has no effect on the performance.
The integer division with shift rounding that improved the FPGA performance was tested as well.
However, this time it reduced the performance, indicating that a GPU offers better performance
with a single native-divide operation when compared to the multi-operation integer division and
rounding.

Finally, two tests were performed where bit-shifting is used to replace the matrix normalization
division. One test applied the shift normalization to all pixels, and the other test used the shifting
division for all results except those that are affected by the image boundaries. Both tests increased
the performance of the algorithm at a loss of output precision. When taking the edges into account,
errors are minimized to single-bit rounding errors caused by the bit-shifting always rounding down.
When applying the bit-shift to all pixels normalization errors are present at the last two rows and
columns of the output image in addition to the single-bit rounding errors occurring over the entire
image. By not taking the edges into account the normalization factor is too high resulting in
darker pixels in the output data.

Future Improvements

Even though GPU testing was not finished, most optimizations have been implemented. Currently,
only three optimizations remain untested. The first being half-precision floating point divisions,
which might provide better performance results than the native divide function with single pre-
cision floating point data currently used. The second untested optimization is the merging of

86 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 6. ALGORITHM IMPLEMENTATION

Table 6.19: Demosaic GPU tweaking results

Implementation Average FPS

Image format 776.8

Native divide 952

Native divide + OpenCL clamp 988

Native divide + OpenCL clamp + Bitmasking 988

Integer division + shift rounding + OpenCL clamp 849

Shift division except edges 1052

Shift division everywhere 1109

multiple matrixMult calculations. Merging multiple column calculations like in Demosaic FPGA
implementation 3 halves the total number of threads required to calculate all pixels, which might
reduce the performance impact of thread handling as each thread then needs to perform more
calculations. The third optimization is creating a streaming Demosaic implementation. Using
multiple CUDA streams or OpenCL command queues could improve the average kernel execution
time as this enables multiple kernels to process in parallel when hardware units are available.

Finally, as with all other tests, testing the algorithm on the next generation of GPUs will improve
the performance as the Nvidia Turing generation offers 20% more CUDA cores and dedicated
matrix multiplication tensor cores that might help accelerate the application even further.

Implementation conclusion

The maximum achieved error-free Demosaic kernel performance on an Nvidia Quadro P6000 is 988
FPS when using images with a 5120 by 3072 resolution. However, as determined in the Demosaic
algorithm analysis in Section 4.2.3, the maximum number of images that can be processed based
upon the PCIe 3.0 16x bandwidth is 262 images per second. As the current GPU implementation
adds an alpha channel to the output, an additional 15 MB of data transferred over the PCIe redu-
cing the maximum number of images that can be processed per second to 215. This limitation is
not recorded in the output, as only the kernel processing time is used for the frame-rate calcula-
tion. So, the PCIe connection will severely bottleneck the P6000 performance as it requires at 5x
the PCIe bandwidth based upon its kernel performance, which indicates that the final Demosaic
implementation is well optimized for the GPU.

OpenCL acceleration on FPGA vs CUDA on GPU 87

Chapter 7

Results

This chapter analyzes the results achieved in Chapter 6. Here the implementation results are com-
pared, and the cost per performance and programmability of both APIs and hardware platforms
are determined. Additionally, the selected hardware is analyzed together with the literature study
to determine the available interconnect options, energy efficiency and product availability.

7.1 Maximum performance

In this section, a comparison is made between the achieved and expected fully optimized perform-
ance of all created implementations. Figure 7.1a compares the performance of the CUDA and
OpenCL API builds for each implementation, and Figure 7.1b compares the final implementation
results. The figures show that both the CUDA and OpenCL RabbitCT GPU implementations
offer very similar performance for each implementation, indicating that no API has a significant
performance advantage over the other on the selected GPU hardware. Memory access latencies
limit the final GPU build of the RabbitCT implementation due to its semi-random memory ac-
cess pattern, and the Demosaic GPU implementation is limited by the number of CUDA cores
available.

The FPGA implementations show lower maximum performance than the achieved GPU perform-
ances. This difference is caused by a lack of optimization for the final FPGA implementations,
and a lack of memory bandwidth for the expected fully optimized FPGA implementations. The
memory bandwidth limitation has a reduced effect on the Demosaic algorithm as it requires less
I/O data than RabbitCT and has a predictable memory access pattern. Additionally, the Demo-
saic algorithm does not require any floating point calculations allowing it to perform better than
RabbitCT on both the GPU and FPGA hardware platforms. However, when a streaming Demo-
saic implementation is created, both the GPU and FPGA performances will be limited by the
available PCIe memory bandwidth. However, the interconnect freedom of an FPGA allows the
two QSFP+ cages to be used as two 100gBe connections, which would allow the FPGA to surpass
the GPU performance because of the increased I/O bandwidth.

88 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 7. RESULTS

(a) CUDA vs OpenCL GPU performance (b) Final implementation performance

7.2 Costs per performance

In this section, the costs per performance for the GPU and FPGA are determined using the
results of both the RabbitCT and Demosaic algorithms. While both GPU implementations fully
utilize the available hardware, the created FPGA implementations do not. As the hardware price
increases with the available resources, smaller/cheaper hardware is selected to improve the costs per
performance ratio based upon the hardware utilization. Here, the hardware is selected to optimize
for both the performance and the costs. The following sections show the costs-per-performance
for both the created RabbitCT and Demosaic implementations.

7.2.1 RabbitCT

The RabbitCT performance is expressed as the total run-time of the benchmark. As costs per
total run-time of the benchmark is a vague metric, the performance results have been converted
to FPS by dividing the total images in the benchmark (496) by the achieved total run-time.
Table 7.1 shows the results for the current hardware and the prices reported in Chapter 5. The
results show that due to the lack of an optimal FPGA pipeline, the performance and costs per
FPS results are significantly worse than the GPU results. However, with the algorithm not being
fully optimized and the algorithm not using all the FPGA hardware, the cost per performance
ratio can be significantly improved.

To show the best achievable costs-per-performance ratio, both the performance of a fully optimized
algorithm and costs of the optimal hardware should be used. The fully optimized performance
is already reported in Section 6.1.1, which leaves only the optimal hardware to be selected. The
optimal hardware should be selected from the same FPGA architecture to prevent any architecture
changes from affecting the results. Additionally, the final hardware usage of the FPGA must be
taken into account to determine the optimal size of this FPGA. As the final RabbitCT hardware
usage result is lost in the fire, the hardware usage of this implementation has to be estimated.
Between implementation five and six, the BRAM usage increases 5x. So, assuming the LUT usage
increases with a similar number, about 33% of the total available LUTs are used. As Xilinx
reports FPGA size in logic cells which is directly related to the available LUTs, using 33% of the
available 1451k logic cells of the KCU1500 results in an FPGA requiring at least 480k logic cells
to run the algorithm. The smallest Kintex Ultrascale replacement FPGA is the XCKU040, as
it contains 530k logic cells. However, according to the Xilinx external memory capacity utility
[142], this FPGA only supports two DDR4 64-bit memory banks. While this does not affect
the final implementation as it uses only two banks, it will result in only half the performance

OpenCL acceleration on FPGA vs CUDA on GPU 89

CHAPTER 7. RESULTS

of the fully optimized implementation. As FPGAs supporting four 64-bit DDR4 banks are only
available in a much higher price range, both a cost-optimized and a performance-optimized FPGA
is selected. Here, the performance optimized FPGA uses the fully optimized four memory bank
implementation results from Section 6.1.1, and the costs-optimized implementation uses the fully
optimized implementation with only two memory banks and thus half the performance.

According to digikey.nl [77], the cheapest XCKU040 die supporting two DDR4 memory banks
currently costs about e 1430, and the cheapest FPGA supporting four DDR4 memory banks, the
XCKU095, currently costs about 4500 e. However, these prices are for the FPGA die only, and
thus still require a PCB with DDR4 elements to be added. Let us assume a PCB with two DDR4
banks cost e 250, and a PCB with four DDR4 banks adds e 500 to the total price, making the
complete FPGA accelerators cost around 1750 and 5000 euros when rounding to the nearest 250
euro price point.

The final results in Section 6.1.1 show that the fully optimized implementation can significantly
reduce the costs per performance on the current FPGA, making it cost 21x more per frame than
the GPU. Next, applying this algorithm to either a 2-bank or 4-bank DDR4 FPGA, the costs-per-
performance can be further reduced to 16.3x the GPU when maximizing performance, or 11.4x
the GPU costs-per-performance when optimizing for costs.

Table 7.1: RabbitCT costs per performance results

Implementation Hardware Total run-time (s) FPS Hw costs (e) Costs per FPS
(e / FPS)

CUDA GPU Final Current 0.667255 743.34 4635.12 6.24

OpenCL GPU Final Current 0.655967 756.14 4635.12 6.13

OpenCL FPGA Final Current 782.08 0.63 ~6500 10317

OpenCL FPGA Perf Opt. Current ~10 49.6 ~6500 131

OpenCL FPGA Perf Opt. Optimal 4-bank ~10 49.6 ~5000 101

OpenCL FPGA Cost Opt. Optimal 2-bank ~5 24.8 ~1750 70.6

7.2.2 Demosaic

The final performance results for the Demosaic algorithm are shown in Table 7.2. It shows that
for processing 5k by 3k input images with the selected hardware, the costs for a given frame-rate is
4.69 euro per FPS for the GPU implementation and 23.36 euro per FPS for FPGA implementation.
However, the FPGA implementation only uses 18.37% of the available hardware, and thus only
requires 267k of the 1451k logic elements that are available in the KCU1500 [143]. So, smallest
available Xilinx Kintex FPGA, the XCKU025, should still have enough hardware to run the
algorithm with its 318k logic cells. However, as with RabbitCT, the XCKU025 supports only
two out of the four initially available DDR4 memory banks. As the final implementation uses
three memory banks and the fully optimized implementation four, both implementation will see
a performance drop due to the lower memory bandwidth, so a larger FPGA has to be selected.

Four bank 64-bit DDR4 support is only available with high-end FPGAs of the Kintex Ultrascale
architecture. So, to show the best costs-per-performance results, both a 3-bank cost-optimized
and a 4-bank performance-optimized FPGA are selected. Here, the XCKU035 has been selected
for the final implementation as it is the smallest FPGA supporting up to three DDR4 64-bit
memory interfaces, and the XCKU095 has been selected as it is the cheapest FPGA supporting
up to four DDR4 64-bit interfaces. According to digikey.nl [77], the cheapest XCKU035 supporting
three memory banks currently costs about e 1250, and the cheapest XCKU095 that supports four
memory banks costs about 4500 e. Assuming that a PCB with three DDR4 banks costs e 375,

90 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 7. RESULTS

and a PCB with four DDR4 banks adds e 500 to the total price, these FPGA accelerators cost
e 1625 and e 5000 respectively when rounding to the nearest 250 euro price point. Running a
clock optimized implementation of the Demosaic algorithm, these smaller and more cost-optimal
FPGAs drop the costs-per-performance from e 10 per FPS to 7.75 for the four memory bank
FPGA, and 3.34 for the FPGA with three memory banks. However, with both the optimal FPGA
cases, not all hardware resources are used as the memory bandwidth is the main limitation. If
the computational intensity of the algorithm is increased by adding another processing step for
the same data, the costs-per-performance ratio will improve as the FPGA still has computational
resources to spare.

The above results have one issue in common; they use the kernel execution time to calculate
the result and ignore the PCIe bandwidth limit. When demosaicing input images with a 5k by
3k resolution, the PCIe interface becomes the bottleneck as this limits the frame-rate to 215
FPS for the 4-byte output GPU implementation, and 262 FPS for the 3-byte output FPGA
implementation. So, no matter how fast and optimized the kernel performance is, the PCIe
bandwidth will limit the performance of both platforms. While FPGAs allow the PCIe bandwidth
issue to be resolved by using their high-speed serial transceivers with other interconnect, it cannot
be resolved for the GPU. For this reason, a smaller/cheaper GPU will also be selected to lower its
performance to the PCIe bottleneck.

Lowering the FPS of the GPU can be done by either adding additional processing steps to each pixel
to perform more work on a given set of input data or by selecting hardware with less processing
cores to reduce the available parallelism and thus increasing the time required to process the data.
If only the Demosaic algorithm has to be performed, a GPU can be selected which contains only
22% of the current 3840 CUDA cores. Assuming a linear performance decrease, this will limit the
maximum GPU performance to 217 FPS, minimizing the effect of the PCIe bandwidth limitation.
From the available Pascal GPUs, the Quadro P2000 seems the best option to minimize the effect
of the PCIe bottleneck. According to TechPowerup [74], it contains 26% of the Quadro P6000
CUDA cores and has 32% of the P6000 memory bandwidth. On top of that, the Quadro P2000
costs e 462.70 according to the Tweakers pricewatch [134], reducing the costs per performance to
e 2.15 per FPS.

Table 7.2: Demosaic costs per performance results

Implementation Hardware FPS Hw costs (e) Costs per FPS (e / FPS)

OpenCL GPU Current 988 4635.12 4.69

OpenCL FPGA Current 278.195 ~6500 23.36

OpenCL FPGA Perf Opt. Current ~645 ~6500 10

OpenCL FPGA Perf Opt. Optimal 4-bank ~645 ~5000 7.75

OpenCL FPGA Cost Opt. Optimal 3-bank ~486 ~1625 3.34

OpenCL GPU PCIe-limit Optimal PCIe 215 462.70 2.15

7.2.3 Summary

The RabbitCT results show that both the CUDA and OpenCL GPU implementations result in
a very similar performance. With both algorithms using the same GPU, this results in both al-
gorithms also sharing a similar price per FPS ratio, see Figure 7.2a. Additionally, the unoptimized
final state of the RabbitCT FPGA implementation causes it to have a bad costs-per-performance
ratio. However, when using the expected performance of the fully optimized implementation with
optimal FPGA hardware, the costs-per-performance ratio decreases significantly, but the FPGA
implementation remains more than 11x as expensive per performance than the GPU.

OpenCL acceleration on FPGA vs CUDA on GPU 91

CHAPTER 7. RESULTS

For Demosaic, the FPGA implementation was well optimized. When using the optimal FPGA
hardware, the costs-per-performance ratio of the FPGA and the GPU becomes closer, see Fig-
ure 7.2b. Additionally, when taking the expected fully optimized FPGA performance on the
optimal hardware into account, the FPGA costs-per-performance is reduced up to 3x when using
only three memory banks. With these final results, the FPGA costs-per-performance ratio can
become 0.71x the GPU ratio, making the FPGA costs per performance cheaper than the cur-
rent GPU implementation. However, when taking the PCIe bandwidth bottleneck into account
and selecting a smaller and cheaper GPU for this bottleneck, the performance stays the same
while the costs-per-performance ratio is reduced. Using a PCIe bandwidth optimized GPU, the
costs-per-performance drops to 2.15, which makes the FPGA implementation cost 1.55x the GPU
costs-per-performance.

The achieved 11x higher price per frame-rate for the optimal RabbitCT FPGA implementation
compared to the GPU implementation neatly falls in the 3x to 50x price per performance ratio
determined in the literature study. However, the 1.55 ratio when using the optimal GPU and
FPGA implementations for Demosaic show significantly better results for the FPGA. As the
RabbitCT algorithm mainly uses floating point mathematics, it falls in line with the price-per-
GFLOPs ratio the literature study analyzed, whereas the integer mathematics of the Demosaic
algorithm do not. These different results for different calculation precisions show that costs-
per-performance ratio of the literature study was inconclusive as it only covered the costs-per-
performance ratio of single-precision floating point algorithms.

(a) RabbitCT (b) Demosaic

Figure 7.2: Costs-per-performance results

The costs-per-performance can be further reduced if the FPGA high-speed serial transceivers are
used to provide additional memory bandwidth. This change would either improve the overall
performance or allow cheaper FPGAs to be selected when this additional bandwidth is used to
replace certain memory banks. However, the use of these transceivers requires BSP changes and
a host-FPGA interface that uses this connection, making the kernel optimization a more difficult
task. Another option is the use of an FPGA with HBM2 memory, which would significantly
increase the performance as it alleviates the memory bottleneck. However, the use of HBM2
memory also increases the costs of FPGA. As the price of such FPGA accelerators is unknown at
the moment, no such costs-per-performance ratio can be calculated.

92 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 7. RESULTS

7.3 Programmability

The programmability metric analyzes the experienced ease of using a particular API or hardware
platform for accelerating the selected algorithms. To make the programmability metric as objective
as possible, the subjective experiences are explained using two main categories, the tooling and
code, each containing several subcategories. For each of the subcategories, a ranking is made
between the tools. Finally, the summary section combines the given ranking allowing a conclusion
to be made.

7.3.1 Tooling

The use of the right tools can make or break the programming experience. The correct tooling
will accelerate the user to its goal, while poorly designed tooling only hampers the progress. The
tooling of CUDA, OpenCL GPU and OpenCL FPGA are analyzed on the installation, ease of
usage, and code profiling abilities in the subsections below.

Installation

For CUDA, all code is compiled using Nvidia CUDA Toolkit version 9.2. With a single installation,
the toolkit provides everything needed to compile and run CUDA code on the Nvidia GPU. It
provides the NVCC compiler, the NVVP code profiler, the Nvidia display driver, a large set of
tools and libraries, and CUDA code examples. For more information, see the CUDA Installation
Guide [21].

For OpenCL on Nvidia GPUs, an all-in-one toolkit is not available. The host code of our created
OpenCL GPU implementations is compiled using GCC 5.4, which comes pre-installed on the
Ubuntu OS. The host code loads the OpenCL kernel source files or binaries during execution and
compiles them using the Nvidia-OpenCL-Runtime, which is installed together with the Nvidia
display driver. So, for both OpenCL and CUDA compilation, only the Nvidia CUDA Toolkit had
to be installed. However, whereas this installation offers all required tools for CUDA, it offers only
bare-bones support for OpenCL.

Finally, for SDAccel, Xilinx offers an installer for the tooling which installs all Xilinx compon-
ents. It installs the SDAccel compilers XCPP and XOCC for compiling the host and kernel code
respectively. It installs the default supported board support packages (BSP) which contain the
FPGA design and drivers to support OpenCL acceleration on the supported accelerators, and it
installs the Vivado toolset to compile the XOCC generated RTL code into an FPGA binary. In
addition to the installation, an extensive list of packages have to be installed in order to offer full
support on the Ubuntu OS, and a license has to be downloaded from the Xilinx website for the
SDAccel tooling to work. For more information, see the SDAccel Release Notes, Installation, and
Licensing Guide [16].

As no installation difficulties were observed with each programming API, no ranking of each API
is made.

Ease of usage

The use of both the CUDA and OpenCL GPU compilers is very similar. Here, the CMake
find package(API) command is used to search for compilers that support the selected API. With
the supported compilers found, the find package(API) command sets the required compilation
settings and makes several commands or flags available to ease the compilation. For CUDA, the

OpenCL acceleration on FPGA vs CUDA on GPU 93

CHAPTER 7. RESULTS

cuda add library command becomes available, allowing CMake to compile the linked files using
the NVCC compiler. For OpenCL, an OpenCL target flag becomes available, linking the attached
code to the OpenCL library shipped with the Nvidia-OpenCL-Runtime.

Creating a CMake environment to compile OpenCL using SDAccel is more difficult as no default
CMake find package() command is available. Instead of creating a find package CMake script for
SDAccel, the make file compilation method provided with the Xilinx SDAccel GitHub examples
has been used for compiling the FPGA binaries [20]. The use of this Makefile enabled compilation
with minor changes. A successful compilation using the provided Makefile results in both a host
executable and a kernel FPGA binary file. These two files are copied by the original CMake scripts
to the required location, allowing the code to be tested using the same test scripts as the GPU
builds.

Another advantage the Xilinx GitHub compilation environment provides is a set of helper functions
for setting up the OpenCL environment. These helper functions combine a large number of
OpenCL initialization commands into a single function call. An example is the xcl input source()
command that allocates memory, loads the source file, creates an OpenCL program using the device
settings and source file, compiles the program, and checks for success for each step. Because these
helper-functions hugely simplify the host code, they have also been added to the OpenCL GPU
builds to simplify the host code.

After the compilation setup, both the CUDA and OpenCL GPU compilers worked without any
issues. However, this was not the case with SDAccel for which two mayor issues were present.
The first issue was that Vivado failed linking when compiling for hardware emulation, and the
second issue was that any use of the printf function crashed the FPGA kernel, resulting in an
immediate halt of the program. The linking issue was resolved by installing a missing ubuntu
package that was not on the requirements list [144]. The second issue was resolved by replacing
the objcopy executable SDAccel uses with the Ubuntu variant. This fix prevented printf from
crashing the kernel but resulted in it being unable to print variables [145]. The printf variable
printing issue was never resolved, preventing in-depth debugging from being used on the FPGA
hardware. Luckily, the portability of OpenCL code allows the FPGA code to run on the CPU or
GPU as well, resulting in these platforms being used for code debugging.

The tools of each platform were easy to use with either a CMake script or the provided Makefiles.
For CUDA and OpenCL everything worked without any issues. However, this was not the case
with SDAccel as some bugs were present. The missing package bug can be forgiven, but the non-
operational printf function cannot as it significantly complicates the debugging of the kernels. For
this reason, SDAccel is placed last, with CUDA and OpenCL sharing the first position.

Profiling

Profiling the created CUDA kernels is made easy with the Nvidia Visual Profiler (NVVP) [146].
It provides a CPU and GPU timeline giving a clear overview of what happens in the kernel.
Additionally, it provides performance analysis statistics and gives hints to optimize the kernel
code further, see Figure 7.3. An example is shown in implementation 3 of the RabbitCT GPU
build in Section 6.1.1. Here, NVVP reported that the available double precision units significantly
bottlenecked the code. Replacing the double precision calculations with single-precision doubled
the performance of the algorithm after which the bottleneck was shifted from a compute problem
to a memory problem.

The Nvidia Nsight toolset supports OpenCL profiling on Nvidia GPUs. Nvidia Nsight extends the
functionality of both the Eclipse and Visual Studio editors with debugging and profiling options
for their GPUs. However, OpenCL profiling is only supported in the Visual Studio editor, limiting
this functionality to the Windows operating system [147]. Other OpenCL profilers are available,

94 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 7. RESULTS

but limit their performance analysis functionality to a specific hardware vendor. For example,
Intel provides OpenCL SDK containing debug tools for their platforms [148] and AMD provides
the CodeXL profiler for AMD GPUs and CPUs [149]. With the CUDA profiler giving in-depth
information that also applies to the OpenCL implementation, no separate OpenCL profiler has
been used. So, the RabbitCT build was optimized based on CUDA profiling results, and the
Demosaic build was optimized based upon optimization experience as no CUDA build has been
created.

SDAccel also provides several profiling tools and reporting options. It offers design guidance,
estimation reports, an in-depth profile summary, an application timeline, and a waveform viewer.
Of these options, the estimation report is used the most for creating the RabbitCT and Demosaic
kernels as it offers insight in pipelining issues recognized by the tool and shows where the critical
path lies. Additionally, design guidance is used to further optimize the code for FPGA. However,
this guidance is basic and only checks whether a pipeline is present, whether the full memory
bandwidth is used, and whether all memory banks are used. Next, both the in-depth profile
summary and waveform viewer were not used as they offer too much detail which makes it hard
to find the exact issue. The application timeline tool was also not used as it is aimed for kernel
scheduling, which is not required when executing only a single kernel.

One main difference between the Nvidia Visual Profiler and the SDAccel profiling tools is that
NVVP is significantly easier to use. NVVP is one toolset that contains all the required data within
its interface which requires only one or several runs of the algorithm to fill with data. Next,m the
profiling tools of SDAccel are all provided separately and thus are not incorporated into a single
program. Each of them activates by adding specific commands to the compilation process. After
compilation, several reports are generated which are split over multiple directories, making the
data hard to find. Additionally, profiling with either the application timeline or waveform viewer
results in a file that first needs conversion into a readable format, further reducing the accessibility
of the data.

For OpenCL on Nvidia GPUs, no profiler is available that supports performance analysis on Linux,
resulting in it being placed last. Next, both SDAccel and CUDA provide profiling and performance
analysis tools. However, where CUDA provides an easy to use all-in-one toolset, SDAccel provides
many tools which require different settings to be enabled and generate data scattered over multiple
directories. For this reason, SDAccel takes the second place, and CUDA is placed first.

(a) Utilization report, taken from [150]

(b) Stall reason report, taken from [151]

Figure 7.3: NVVP Performance Analysis Reports

OpenCL acceleration on FPGA vs CUDA on GPU 95

CHAPTER 7. RESULTS

7.3.2 Code

Even when using the best tools for acceleration, the code must still be written. In this section, the
perceived programmability of porting both RabbitCT and Demosaic to the selected acceleration
platforms is analyzed. Here, a comparison is made between the ease of programming, lines of
code, compilation time and code portability.

Ease of programming

The main difference between both the CUDA and OpenCL API is present in the host code. With
CUDA both the host and kernel code is compiled by NVCC, allowing the compiler to analyze
the code for both platforms and use this knowledge to optimize the code. Compilation results
in a single executable file containing the compiled binaries for both the host code and the kernel
code. With OpenCL, the host code is compiled by a standard C or C++ compiler that links
to the OpenCL libraries. Its kernel is either compiled before execution and loaded as a binary
file, or during execution and loaded as source files. This compilation freedom results in OpenCL
host code requiring additional functions for loading and preparing the separate kernel files for
execution. As the host code does not know anything about the OpenCL kernel before execution,
each kernel parameter has to be defined, whereas the CUDA compiler can determine these settings
automatically. Because of these required additional initialization steps, programming the OpenCL
host code is perceived as more difficult.

The increased difficulty in writing the host code also hampered the streaming implementations of
RabbitCT. Where CUDA automatically detects a pinned memory buffer allowing for fast host-
device transfers, OpenCL requires manual mapping and unmapping for each transfer. As no
successful mapping and unmapping for each transfer implementation could be created in the
available time, the final build maps the entire input buffer in a single mapping command. The
result is a final RabbitCT OpenCL GPU streaming implementation where the memory footprint
of the input data is doubled.

The increased difficulty of writing in OpenCL for a GPU is limited to the host code. The dif-
ferences between the kernels of both APIs remains limited to the syntax of each API, resulting
in functionally the same code being written. The same cannot be said when writing kernels for
FPGA acceleration. While the OpenCL GPU host code can be reused, the writing of an OpenCL
FPGA kernel is perceived as significantly more difficult than its GPU counterpart. The program-
ming API does not cause this increase in difficulty; the hardware causes it. GPUs are created for
parallelism. They have a large number of processing cores, a large number of memory banks, and
use automated caching and memory access algorithms that hide most memory management re-
lated difficulties. FPGAs, on the other hand, are created for pipelining data where the parallelism
is limited. A pipeline contains an input and output stage for every input or output variable. Here,
data flows from the input or calculation stage along the pipeline towards the output or calculation
stage where this data is last needed. In a fully optimized pipeline, each stage is active every
cycle, resulting in the memory bus of each variable being busy each cycle. As all required data is
available every cycle and moves along with the pipeline, no data is never offloaded to make room
for other data, and thus no caching algorithms or additional memory fetches should be present.
So, when both previously loaded data and new data is required from the same input buffer, it
is up to the programmer to implement a buffering strategy that prevents the need for multiple
global memory accesses. Accessing the same global memory variable multiple times in a cycle is
an issue because the bus is already in use at the input stage. So, if multiple fetches are required,
a pipeline stall must be scheduled to fetch the data.

The main reason FPGA kernel creation is perceived as more difficult is because a buffering strategy
must be created. For Demosaic, creating such a buffer strategy was doable as the memory access

96 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 7. RESULTS

patterns are predictable and because Xilinx SDAccel GitHub contains good buffering examples
for image processing algorithms. The semi-random memory access pattern used by the RabbitCT
algorithm make it significantly harder for a buffering strategy to be created and optimized. The
increased difficulty resulted in there not being enough time available to fully optimize the buffering
for RabbitCT, causing the bad results for RabbitCT on an FPGA.

As programming in CUDA requires the least lines of code in both the host and kernel code, it takes
first place on ease of programming. OpenCL is placed second because of the additional difficulty in
writing the host code. SDAccel is placed last as it adds additional kernel programming difficulties
on top of the already more difficult host code of OpenCL.

Lines of code

A great way to visualize and objectify the above-described differences in difficulty is by showing
the lines of code that are required to create each implementation. Figure 7.4 shows the total
implemented lines of code and the lines of code required for the kernel for both the RabbitCT and
Demosaic implementations. Here, the total lines of code graph represents the code in the header,
host, and kernel code combined, and the kernel lines of code graph shows only the code written
for execution on the accelerator. Both line-counts only show the code required for the execution
of the algorithm, and thus do not include debug and preprocessor code. Additionally, the Xilinx
SDAccel GitHub provided helper functions are used to initialize the OpenCL environment for all
OpenCL implementations. The use of these helper functions makes the host-code several hundred
lines shorter than required for a complete implementation.

Comparing the RabbitCT CUDA and OpenCL GPU lines of code show that OpenCL has a
significantly higher total line-count than CUDA for each implementation. However, the kernel
line-counts show almost no difference between both APIs. This result proves that most differences
between OpenCL and CUDA are present in the host code. Additionally, comparing OpenCL
GPU with OpenCL FPGA shows that while the first implementations share the same kernel
code, the FPGA kernel quickly requires more lines of code to implement the memory buffering
optimizations. Additionally, the FPGA total line-count increase is similar to the kernel line-count
increase, indicating that the header and host code do not require many changes for an optimized
execution on an FPGA accelerator.

For the lines-of-code required, CUDA is placed first, then OpenCL GPU and finally OpenCL for
FPGA because of the additional lines required for the host code with OpenCL and the kernel code
for OpenCL FPGA.

OpenCL acceleration on FPGA vs CUDA on GPU 97

CHAPTER 7. RESULTS

(a) RabbitCT (b) Demosaic

Figure 7.4: Lines of code

Compilation time

The next major factor affecting the programmability is the compilation time. The shorter the
compilation time, the faster iterations can be made upon the code and the faster the code will
be optimized. The compilation time for both the CUDA and OpenCL GPU implementations was
not recorded as it was so fast that it never was an issue. All compilations for the GPU finished in
seconds, after which the code could be tested immediately.

FPGA compilation is something else entirely. Here, a successful compilation for the hardware
can take anything from one hour and twenty minutes to 34 hours depending on the created
implementation. On average, the time required for compiling the main RabbitCT implementations
took 2.5 hours and the main Demosaic implementations took 5.25 hours to compile, see Figure 7.5.
Generally, the higher the FPGA hardware usage, the longer the compilation time. The compiler
causes this increase in compilation time mainly during the routing of the compiled hardware paths.
When one or more of these paths do not meet the timing constraints, the compiler tries to swap
around implemented modules in the hope to meet the timing requirements. The more FPGA
resources required, the more modules that are available for re-routing and the longer the paths
between modules become.

To work around the long compilation time, SDAccel produces estimation reports of the final
kernel early in the compilation process. During these early compilation steps, the compiler uses
the OpenCL software to create and schedule a pipeline that can be implemented in the hardware.
By writing the pipelining results in the estimation report, early pipelining issues can be found,
and the expected worst-case latency and initiation interval can be analyzed. However, as shown in
the Demosaic FPGA results, this software compilation step can still take between two and twenty
minutes, with outliers of an hour also being observed. These long compilation steps make the
FPGA kernel creation and optimization a time-consuming process.

As both OpenCL and CUDA GPU kernels compile within seconds, they share the first place.
SDAccel is placed last due to the software compilation taking up to twenty minutes, and final
hardware compilation taking multiple hours.

98 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 7. RESULTS

Figure 7.5: FPGA hardware compilation time

Portability

The last code programmability metric is the portability of the code. Higher portability means
that the code can be executed on hardware other than the target platform. Because CUDA is a
closed source standard, no other compilers are available for CUDA than the one made by Nvidia,
limiting its portability to Nvidia GPUs. Next, OpenCL is an open-source standard, which allows
its code to be executed on all devices for which an OpenCL compiler has been made available,
giving it a high portability.

Having a high portability does not mean that the code needs to be optimized for the other platform;
it just needs to be able to execute and produce the same calculation results. An example of this
can be seen in the first RabbitCT FPGA results where the first OpenCL GPU implementation is
tested on both the FPGA and GPU. This FPGA implementation took 2.5 hours to produce the
same results as the GPU can produce in 34 seconds.

The portability of a given API can be reduced when compiler specific functionality is used. For
example, SDAccel introduces a set of pragmas to optimize the code for the FPGA, limiting code
that uses these pragmas to the SDAccel compiler which reduces the portability. This limitation
was circumvented by using preprocessor commands to detect whether the Xilinx SDAccel compiler
is used and only enabling FPGA specific optimizations when compiling with SDAccel. This change
enabled the FPGA code to be compiled for the GPU and CPU as well, allowing the functionality
of the kernel to be tested without needing to wait on the lengthy FPGA compilation process.
Additionally, testing on the CPU or GPU bypassed the broken printf functionality of the SDAccel
compiler, allowing for significantly faster debugging of the kernel and showing the advantages of
portable code.

With OpenCL GPU code being compatible with all OpenCL compilers, it is ranked first. OpenCL
FPGA code is also compatible with all OpenCL compilers unless FPGA specific pragmas are used,
ranking it just behind OpenCL GPU code. Finally, as CUDA code is limited to Nvidia GPUs
only, the CUDA portability score is the lowest of the analyzed acceleration methods.

OpenCL acceleration on FPGA vs CUDA on GPU 99

CHAPTER 7. RESULTS

7.3.3 Summary

Table 7.3 summarizes the results of each acceleration method on the above-stated categories. For
each acceleration method, a score between one and three stars is given. Three stars indicate that
this acceleration method scores the best, and one star indicates that this acceleration method
scores the lowest in comparison to the other acceleration methods. Analyzing the results shows
that CUDA offers the best programmability results in all categories but portability. Next, OpenCL
for GPU offers high portability at the cost of a more difficult host code and no profiling support
for Nvidia GPUs on Linux. Finally, OpenCL for FPGA scores the lowest of the three tested
acceleration methods due to its additional programming difficulty, large compilation times, and
the printf issues with the SDAccel compiler.

Table 7.3: Programmability results

Metrics CUDA GPU OpenCL GPU OpenCL FPGA

T
o
ol

in
g Installation PPP PPP PPP

Ease of usage PPP PPP P

Profiling PPP P PP

C
o
d

e

Ease of programming PPP PP P

Lines of code PPP PP P

Compilation time PPP PPP P

Portability P PPP PP

7.4 Interconnect options

While GPUs only contain a PCIe interface, video output ports, and an optional SLI or NVLink
bridge for GPU-GPU communication, FPGAs have generic high-speed serial connections that
allow any serial interconnect to be added. These generic high-speed serial transceivers can be used
for additional I/O bandwidth and additional memory bandwidth when used in combination with
internal FPGA memory. While using these generic interconnect with OpenCL kernels was not
within the scope of this project, it still adds value to OpenCL FPGA acceleration as it allows the
OpenCL programmed FPGA to be used for a broader range of applications than the GPU.

Comparing the interconnect options for each programming API shows that CUDA is PCIe limited
as it only supports acceleration with Nvidia GPUs. Next, the interconnect options of the OpenCL
API are hardware dependent as it can execute on any hardware for which a compiler has is
available. So, if an OpenCL kernel is created for a GPU, it is limited to PCIe I/O, and if an
OpenCL kernel is created for a CPU or FPGA, it is free to use with any available interconnect
the infrastructure provides.

7.5 Energy efficiency

Initially, a hardware power measurement was planned for the final implementations of each al-
gorithm. These power measurements would have shown the average power usage difference between
both the GPU and FPGA. However, due to the loss of the benchmarking setup, these measure-
ments could not be performed. For this reason, the final energy efficiency results are an estimation
based on the known information of the selected hardware.

100 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 7. RESULTS

As the power usage of the hardware varies with the load, the hardware manufacturers only provide
the Thermal Design Power (TDP) of a product. The TDP of a product represents the maximum
power output for which the cooler is designed, which is often close to the maximum power output of
the hardware. As reported in Section 5.4.1, the selected Quadro P6000 GPU has a TDP of 250W,
and the Kintex KCU1500 FPGA has a TDP of 75W. From these numbers, it can be concluded
that the FPGA is 3.3x more energy efficient than the GPU at full power. However, this number
does not represent the actual power usage.

To determine the actual power usage, hardware usage and clock speeds must be analyzed. Here, a
significant difference is present between the FPGA and the GPU. The GPU runs at its maximum
clock and uses 100% of its processing units for the created final implementations, resulting in the
power usage that likely is close to the maximum TDP. Next, the created Demosaic FPGA imple-
mentation uses only 20% of the KCU1500 hardware resources and runs at 57% of the maximum
clock speed due to path timing violations. The final results for RabbitCT are lost, but similar
hardware and clock usage as Demosaic are expected. So, with only ~20% of the hardware in
use and the clock running at ~60% of the maximum value, the KCU1500 power usage should be
significantly lower than the 75W maximum.

With the literature study results indicating that the FPGA is approximately 10x more energy
efficient than a GPU, and most FPGAs from the literature study requiring between 20 and 30W
of power, it is likely the achieved final FPGA results also fall within this power envelope. Taking
the estimated fully optimized FPGA performances of 0.07x to 0.65x the GPU performance into
account, the FPGA becomes 0.7x as efficient as the GPU for RabbitCT and 6.5x more efficient
for Demosaic. These results indicate that the efficiency of FPGAs can be anywhere from slightly
less efficient to significantly more efficient than the GPU for executing a specific task.

7.6 Product availability

The product availability is not something that can be tested. For this reason, the results from the
literature study in Section 3.1 are used. Here, the GPU database of Techpowerup [74], the Intel
FPGA catalogue [76], and the Xilinx FPGA catalogue on Digikey.nl [77] were analyzed on the
availability of the hardware. The product availability results showed that both Nvidia and AMD
GPUs are generally available for two to three years after release, that the oldest Intel FPGA
available is 15 years old, and that Xilinx offers to support their FPGAs up to 20 years after
release.

OpenCL acceleration on FPGA vs CUDA on GPU 101

Chapter 8

Conclusion

The goal of this research is to determine the value that OpenCL FPGA acceleration brings to
the CUDA GPU hardware acceleration market. This value is determined by both a literature
study and by optimizing and benchmarking the RabbitCT and Demosaic algorithms to a similarly
priced Nvidia Quadro P6000 GPU and Xilinx Kintex KCU1500 FPGA. The performance of the
selected algorithms is analyzed using six factors: maximum performance, costs per performance,
programmability, interconnect options, energy efficiency and product availability. By comparing
these factors for the CUDA GPU, OpenCL GPU, and OpenCL FPGA acceleration methods the
differences between the CUDA and OpenCL APIs are revealed, and the value OpenCL FPGA
acceleration brings to the market is determined. Below, the results of each analyzed factor are
shown, and a recommendation is made.

Maximum performance

Based upon the maximum performance results can be concluded that both the CUDA and OpenCL
GPU APIs offer similar performance. The FPGA implementations of both RabbitCT and Demo-
saic were not fully optimized due to time being limited and FPGA optimization being a time-
consuming task. For this reason, an estimated fully optimized FPGA performance is used to
compare the FPGA with the fully optimized GPU implementations to make a fair comparison.
However, even with the most optimal performance estimation, the FPGA performance never came
close to the GPU performance due to to a memory bandwidth bottleneck. Here, the fully optimized
RabbitCT FPGA implementation performs at 0.07x the GPU performance, and the Demosaic im-
plementation performs at 0.65x the maximum GPU performance. However, where the final GPU
implementations use 100% of the GPU resources, the FPGA implementations use only a fraction
of the available FPGA hardware. This hardware usage difference shows that the selected FPGA
has room for further parallelization of the implemented pipeline or additional processing tasks
which might give the FPGA a higher performance. So, for performance can be concluded that
FPGAs cannot reach the same performance as GPUs for memory intensive applications. However,
for compute-intensive applications, the FPGA performance will likely come close or even surpass
the GPU performance.

Costs per performance

The cost per performance ratio is determined by dividing the costs of the accelerator by the
achieved performance. With the final FPGA builds using only a fraction of the available FPGA
resources, a smaller FPGA has been selected to reduce the costs for the created FPGA solution.
Additionally, as the final FPGA builds were not fully optimized, the remaining optimizations were
used to estimate the fully optimized FPGA costs per performance ratio on the optimal hardware.
With this in mind, the RabbitCT FPGA implementation costs about 11x more than the GPU
for a given performance, and the Demosaic FPGA implementation costs 0.71x as much as the

102 OpenCL acceleration on FPGA vs CUDA on GPU

CHAPTER 8. CONCLUSION

GPU implementation for a given frame-rate when ignoring PCIe bandwidth limitations. The
results show that the floating-point heavy RabbitCT algorithm is more cost-effective on the GPU,
whereas the Demosaic algorithm containing only integer calculations is more cost effective on the
FPGA. However, when taking the PCIe bottleneck into account and selecting the cheapest GPU
PCIe bandwidth limited GPU, the costs-per-performance ratio changes in favour of the GPU,
making FPGAs 1.55x more expensive than the GPU for a given performance. However, as the
final FPGA implementation on optimal hardware does not use all the FPGA resources, the FPGA
costs-per-performance ratio can be further increased if additional computational work is added to
the algorithm. Here, the GPU will require more cycles to calculate the result which lowers the
throughput, while the FPGA creates a longer pipeline which increases the latency but leaves the
throughput unaffected.

Programmability

To make the programmability analysis as objective as possible, the analysis has been divided into
a tooling and code analysis on multiple categories for each acceleration method. The tooling was
analyzed on the installation, ease of usage, and profiling capabilities; and the code was analyzed
on the ease of programming, lines of code, compilation time and portability.

Ranking the programmability of CUDA, OpenCL GPU and OpenCL FPGA showed that CUDA
takes the first place by it scoring the highest on all categories except portability. OpenCL on a
GPU takes the second place, where its high portability reduces the ease of programming as many
extra lines-of-code are required for the host code. Additionally, no fully supported profiling tool is
available for OpenCL on Nvidia hardware using the Linux operating system, making it harder to
analyze the kernel performance. Finally, OpenCL on FPGA scores the lowest on programmability
due to its multi-hour compilation time and the significantly higher complexity for writing efficient
kernels as manual memory management is required. The combination of these two factors results
in a one week GPU kernel optimization taking a month or longer on the FPGA.

Interconnect options

GPU accelerators only use the PCIe connector for I/O communication, while FPGA accelerators
have the freedom to connect any interconnect to the hardware as long as it is supported in the BSP.
Adding BSP support for custom interconnect might make the FPGA programmability somewhat
harder due to the FPGA knowledge that is required, but it also enables the PCIe bandwidth
limitation to be bypassed as the data from this interconnect can be directly routed into the
OpenCL kernels.

Energy efficiency

The energy efficiency could not be measured due to the loss of the benchmarking setup in the
final weeks of the project. For this reason, an estimation is made which resulted in the FPGA
being reportedly up to 10x more energy efficient than the GPU. However, when including the
estimated maximum FPGA performances, the FPGA energy efficiency can be anywhere from 0.7x
as efficient as the GPU for RabbitCT, to 6.5x more efficient for Demosaic.

Note that these numbers are estimations and do not represent the actual energy efficiency in any
way. However, it can be stated that the FPGA is more energy efficient than the GPU when it
achieves 10% of the maximum GPU performance or more.

OpenCL acceleration on FPGA vs CUDA on GPU 103

CHAPTER 8. CONCLUSION

Product availability

The product availability is not something that can be tested, so, only literature study results are
used. These results showed that GPUs are produced up to three years after the initial release, while
FPGAs are produced up to 20 years after release. Having an extended availability removes the need
for a new development process to ensure compatibility with the next generation of hardware when
the original hardware is no longer available. So, the extended availability of FPGAs gives them
a considerable advantage when selecting hardware for maintainability of a particular acceleration
platform.

Summary

Table 8.1 shows all results in a single table. From these results can be concluded that OpenCL
FPGA acceleration is most useful in cases where energy efficiency and product maintainability is
more important than the maximum performance or having a short development time. A recom-
mended use case for FPGA acceleration is an implementation in accelerators that process data
around the clock and that have to be maintained for longer than three years or in machines where
custom interconnect is required. GPU, on the other hand, excel in performance due to their larger
memory bandwidth, have a short kernel development time, but have a short product availability
and high energy usage. Their optimal use-case is a kernel for which high performance is required
and which is constantly updated to perform each task as quickly as possible.

Table 8.1: Final results

Metrics
GPU OpenCL FPGA

CUDA OpenCL RabbitCT Demosaic

Maximum performance 1x 1x 0.07x 0.65x

Costs per performance 1x 1x 11x 0.71x

Programmability easy moderate hard

Interconnect options PCIe HW dependent Free of choice

Energy efficiency 1x 1x 10x

Product availability 3 years 3 years 20 years

104 OpenCL acceleration on FPGA vs CUDA on GPU

Chapter 9

Future Work & Expectations

9.1 Future work

While many aspects of GPU and FPGA acceleration are analyzed, several factors were not in-
cluded. The most important factor is the use of custom interconnect. Theoretically, the data from
the custom interconnect moves directly into the FPGA, allowing this data to be used to expand
the total I/O or memory bandwidth. These changes could increase the FPGA performance as it
becomes less dependent on the available PCIe or DDR4 memory bandwidth. The only issue with
this custom interconnect is that it requires the FPGA BSP to be adapted to support it and it
requires a source for the data which sends the data in the required order over this interconnect.
An additional advantage of custom interconnect is that it might reduce access latencies as data
is moved directly into the FPGA, removing the need to fetch the data from the global memory
first. FPGA and GPU latencies have not been analyzed in this research and could provide another
advantage for FPGA acceleration.

Another way to reduce the effect of the memory or PCIe bandwidth limitations is by using com-
pression [152]. Compression can be used to either lower the image quality to reduce the file sizes
or to store the image in a more efficient format that first needs to be decompressed to be used.
When the image quality is lowered, compression results in smaller I/O data sizes, it reduces both
the global memory and cache usage, and it reduces the required PCIe bandwidth. So, the accel-
erator will be able to perform the algorithm at a higher performance at the cost of introducing
compression errors in the output. The more efficient file format compression option requires the
compressed image first to be decompressed before being used as accelerator input. This compres-
sion method saves some PCIe bandwidth and reduces global memory usage, but does not improve
the caching behaviour as both the compressed and decompressed data is present on the accelerator.
Future work could analyze the effect of both compression methods on both the FPGA and GPU
to see whether it helps to overcome bandwidth limitations and increase the overall performance.

As both the selected RabbitCT and Demosaic algorithms are memory bandwidth bottlenecked on
the FPGA, additional research should also analyze a compute-intensive application. Benchmarking
a compute-intensive application might show the actual performance capabilities of an FPGA when
the memory bandwidth is not an issue. Additionally, it might allow all FPGA hardware elements
to be used resulting in the FPGA being ’too small’ for the algorithm. In this case, the FPGA
might have to be reprogrammed during execution, after which the reprogramming time can be
analyzed. If this FPGA reprogramming time is short enough, reconfiguring the FPGA to execute
new kernels might not have a significant performance impact, which would allow even the smallest
FPGAs to perform large and complex tasks by switching its configuration.

Finally, the energy efficiency of GPU and FPGA acceleration should still be analyzed. Here,
performing an average energy usage measurement over several benchmarks for both the GPU and
FPGA will allow both platforms to be compared. When this energy usage is then to determine

OpenCL acceleration on FPGA vs CUDA on GPU 105

CHAPTER 9. FUTURE WORK & EXPECTATIONS

the performance per watt, the actual energy usage of both platforms for a particular benchmark
can be visualized.

9.2 Future expectations

The future of FPGA acceleration looks bright as both Intel and Xilinx recognize the value OpenCL
acceleration on FPGAs can bring to the market. Both vendors have recently released a new gen-
eration of FPGA accelerators that use their newest architectures. These architectures are further
optimized for acceleration allowing higher clock speeds/performance than the current FPGA gen-
eration, and they are more energy efficient [153, 154]. Next, from both vendors, FPGA accelerators
using HBM2 memory are available at third party companies [155, 156]. The use of HBM2 removes
the memory bottleneck that currently limits the FPGA performance and allows them to compete
or surpass the performance of the latest GPUs.
Additionally, these FPGA accelerators have four QSFP network cages, supporting up to 100 GbE
per port. These network cages add a maximum of 50 GB/s bandwidth on top of the already
available PCIe 3.0 15.8 GB/s bandwidth, eliminating the host-accelerator bandwidth issue. The
only downside to these HBM2 FPGAs is that they currently are only used in the flagship models of
both Intel and Xilinx. These flagship models use the largest FPGA dies available and are produced
in limited quantities, which makes them very expensive. So, HBM2 FPGAs are not available yet
on the lower end of the market, limiting those FPGAs to the currently available DDR4 memory
solutions.

The future of GPU hardware lies in the addition of specialized hardware to the GPU die for
Nvidia. Nvidia has added specialized ray tracing and tensor cores to their Turing GPU hardware,
which are used to accelerate real-time ray tracing and floating point matrix computation tasks for
deep-learning. So, instead of focusing on performance increases of the available hardware, Nvidia
focuses on increasing the performance of their GPUs in two specific areas. Next, AMD is hast just
released a set of Vega 20 GPUs on the 7nm node and have their next-generation GPU architecture
Navi coming up [157]. This Vega 20 GPU series uses PCIe 4.0, which doubles the available PCIe
bandwidth over PCIe 3.0. However, currently no CPUs or motherboards PCIe 4.0 are available
yet, but they will be in mid-2019 [158]. Finally, Intel also aims to launch a dedicated GPU in 2020
to compete with both Nvidia and AMD, but no other information is known [159].

While the maximum performance of both acceleration platforms will keep increasing, the pro-
grammability is not expected to change. GPUs will remain a quicker and easier to program than
FPGAs because of the required manual FPGA kernel memory management and the long FPGA
hardware compilation times. The kernel memory management is not expected to become easier
as this requires to OpenCL compiler to detect an optimal memory management strategy for all
divisible FPGA implementations, which requires a significant investment in the OpenCL tooling
and is unlikely to happen soon. Next, the FPGA hardware will always need to be compiled, and
thus will remain a bottleneck for testing on the hardware. Software analysis tools help to postpone
the need for actual FPGA compilation, but analyzing these results still takes time, resulting in
FPGA kernel development always taking more time than GPU development.

106 OpenCL acceleration on FPGA vs CUDA on GPU

Bibliography

Programming guides

[1] Intel. Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide,
2018. URL https://www.intel.com/content/www/us/en/programmable/documentation/

mwh1391807516407.html.

[2] Xilinx. SDAccel Development Environment User Guide v2015.1. Technical re-
port, 2015. URL https://china.xilinx.com/support/documentation/sw_manuals/

xilinx2015_1/ug1023-sdaccel-user-guide.pdf.

[3] Xilinx. SDAccel Environment Profiling and Optimization Guide 2017.4, 2017. URL https:

//www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/ehb1504034292718.html.

[4] Xilinx. SDAccel Environment Profiling and Optimization Guide 2018.2, 2018. URL https:

//www.xilinx.com/html_docs/xilinx2018_2/sdaccel_doc/zgr1534452172723.html.

[5] Xilinx. SDAccel Environment Programmers Guide 2018.2, 2018. URL https://www.xilinx.

com/html_docs/xilinx2018_2/sdaccel_doc/vno1533881025717.html.

[6] Xilinx. SDAccel Optimization Guide v2016.4, 2017. URL https:

//www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/

ug1207-sdaccel-optimization-guide.pdf.

[7] Intel. Intel FPGA SDK for OpenCL Pro Edition: Programming Guide, 2018.
URL https://www.intel.com/content/www/us/en/programmable/documentation/

mwh1391807965224.html.

[8] Xilinx. Vivado HLS Optimization Methodology Guide 2018.1, 2018. URL
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/

ug1270-vivado-hls-opt-methodology-guide.pdf.

[9] Nvidia. CUDA C Programming Guide, 2018. URL https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html.

[10] Nvidia. OpenCL Best Practices Guide, 2011. URL https://hpc.oit.uci.edu/nvidia-doc/

sdk-cuda-doc/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf.

[11] Nvidia. OpenCL Programming Guide for the CUDA Architecture, Version 4.2. CUDA SDK,
2012. URL https://hpc.oit.uci.edu/nvidia-doc/sdk-cuda-doc/OpenCL/doc/OpenCL_

Programming_Guide.pdf.

[12] AMD. AMD Accelerated Parallel Processing OpenCL Programming Guide. Technical report,
2013. URL http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_

Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf.

[13] Intel. Intel FPGA SDK for OpenCL Pro Edition: Getting Started Guide,
2018. URL https://www.intel.com/content/www/us/en/programmable/documentation/

mwh1391807309901.html.

OpenCL acceleration on FPGA vs CUDA on GPU 107

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html
https://china.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1023-sdaccel-user-guide.pdf
https://china.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/ehb1504034292718.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/ehb1504034292718.html
https://www.xilinx.com/html_docs/xilinx2018_2/sdaccel_doc/zgr1534452172723.html
https://www.xilinx.com/html_docs/xilinx2018_2/sdaccel_doc/zgr1534452172723.html
https://www.xilinx.com/html_docs/xilinx2018_2/sdaccel_doc/vno1533881025717.html
https://www.xilinx.com/html_docs/xilinx2018_2/sdaccel_doc/vno1533881025717.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug1207-sdaccel-optimization-guide.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-opt-methodology-guide.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://hpc.oit.uci.edu/nvidia-doc/sdk-cuda-doc/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
https://hpc.oit.uci.edu/nvidia-doc/sdk-cuda-doc/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
https://hpc.oit.uci.edu/nvidia-doc/sdk-cuda-doc/OpenCL/doc/OpenCL_Programming_Guide.pdf
https://hpc.oit.uci.edu/nvidia-doc/sdk-cuda-doc/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807309901.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807309901.html

REFERENCED PAPERS

[14] Intel. Intel FPGA SDK for OpenCL Pro Edition: Custom Platform Toolkit User Guide,
2018. URL https://www.intel.com/content/www/us/en/programmable/documentation/

ewa1402666946838.html.

[15] Xilinx. SDAccel Environment Platform Development Guide v2017.4. 2018. URL
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/

ug1164-sdaccel-platform-development.pdf.

[16] Xilinx. SDAccel Environment Release Notes, Installation, and Licensing Guide
v2018.2, 2018. URL https://www.xilinx.com/html_docs/xilinx2018_2/sdaccel_doc/

yrc1534452173645.html.

[17] Xilinx. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing
v2018.2. Technical report, 2018. URL https://www.xilinx.com/support/documentation/

sw_manuals/xilinx2018_2/ug973-vivado-release-notes-install-license.pdf.

[18] Xilinx. SDAccel Environment User Guide 2018.2, 2018. URL https://www.xilinx.com/

html_docs/xilinx2018_2/sdaccel_doc/itd1534452174535.html.

[19] Khronos Group. OpenCL 1.2 Reference Pages. URL https://www.khronos.org/registry/

OpenCL/sdk/1.2/docs/man/xhtml/.

[20] Xilinx. Xilinx SDAccel Examples GitHub, 2018. URL https://github.com/Xilinx/

SDAccel_Examples.

[21] Nvidia. CUDA Installation Guide for Microsoft Windows, 2019. URL http://docs.nvidia.

com/cuda/cuda-installation-guide-microsoft-windows/index.html.

Referenced papers

[22] C. Rohkohl, B. Keck, H. G. Hofmann, and J. Hornegger. Technical Note: RabbitCT-an open
platform for benchmarking 3D cone-beam reconstruction algorithmsa). Medical Physics, 36(9
Part 1):3940–3944, 2009. ISSN 00942405. doi: 10.1118/1.3180956. URL http://doi.wiley.

com/10.1118/1.3180956.

[23] H.S. Malvar, Li-wei He, and R. Cutler. High-quality linear interpolation for demosaicing of
Bayer-patterned color images. In 2004 IEEE International Conference on Acoustics, Speech,
and Signal Processing, volume 3, pages 485–8. IEEE, 2004. ISBN 0-7803-8484-9. doi: 10.
1109/ICASSP.2004.1326587. URL http://ieeexplore.ieee.org/document/1326587/.

[24] Brian W. Kernighan. A programming language called C. IEEE Potentials, 2(December):
26–30, 12 1983. ISSN 0278-6648. doi: 10.1109/MP.1983.6499601. URL http://ieeexplore.

ieee.org/document/6499601/.

[25] Kenneth Hill, Stefan Craciun, Alan George, and Herman Lam. Comparative analysis
of OpenCL vs. HDL with image-processing kernels on Stratix-V FPGA. In Proceedings
of the International Conference on Application-Specific Systems, Architectures and Pro-
cessors, volume September, pages 189–193. IEEE, 7 2015. ISBN 9781479919246. doi:
10.1109/ASAP.2015.7245733. URL http://ieeexplore.ieee.org/document/7245733/.

[26] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, and Ryoji Takaki. CUDA vs Open-
ACC: Performance case studies with Kernel benchmarks and a memory-bound CFD applic-
ation. In Proceedings - 13th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing, CCGrid 2013, pages 136–143. IEEE, 5 2013. ISBN 978-0-7695-4996-5. doi:
10.1109/CCGrid.2013.12. URL http://ieeexplore.ieee.org/document/6546071/.

108 OpenCL acceleration on FPGA vs CUDA on GPU

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1402666946838.html
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1402666946838.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1164-sdaccel-platform-development.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1164-sdaccel-platform-development.pdf
https://www.xilinx.com/html_docs/xilinx2018_2/sdaccel_doc/yrc1534452173645.html
https://www.xilinx.com/html_docs/xilinx2018_2/sdaccel_doc/yrc1534452173645.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug973-vivado-release-notes-install-license.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug973-vivado-release-notes-install-license.pdf
https://www.xilinx.com/html_docs/xilinx2018_2/sdaccel_doc/itd1534452174535.html
https://www.xilinx.com/html_docs/xilinx2018_2/sdaccel_doc/itd1534452174535.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/
https://github.com/Xilinx/SDAccel_Examples
https://github.com/Xilinx/SDAccel_Examples
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html
http://doi.wiley.com/10.1118/1.3180956
http://doi.wiley.com/10.1118/1.3180956
http://ieeexplore.ieee.org/document/1326587/
http://ieeexplore.ieee.org/document/6499601/
http://ieeexplore.ieee.org/document/6499601/
http://ieeexplore.ieee.org/document/7245733/
http://ieeexplore.ieee.org/document/6546071/

REFERENCED PAPERS

[27] J. A. Herdman, W. P. Gaudin, S. McIntosh-Smith, M. Boulton, D. A. Beckingsale, A. C.
Mallinson, and S. A. Jarvis. Accelerating Hydrocodes with OpenACC, OpenCL and CUDA.
In Proceedings - 2012 SC Companion: High Performance Computing, Networking Storage
and Analysis, SCC 2012, pages 465–471. IEEE, 11 2012. ISBN 9780769549569. doi: 10.1109/
SC.Companion.2012.66. URL http://ieeexplore.ieee.org/document/6495848/.

[28] J. A. Herdman, W. P. Gaudin, O. Perks, D. A. Beckingsale, A. C. Mallinson, and S. A. Jarvis.
Achieving portability and performance through OpenACC. In Proceedings of WACCPD 2014:
1st Workshop on Accelerator Programming Using Directives - Held in Conjunction with SC
2014: The International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 19–26. IEEE, 11 2015. ISBN 9781479970230. doi: 10.1109/WACCPD.
2014.10. URL http://ieeexplore.ieee.org/document/7081674/.

[29] Seyong Lee, Jungwon Kim, and Jeffrey S. Vetter. OpenACC to FPGA: A Framework for
Directive-Based High-Performance Reconfigurable Computing. In Proceedings - 2016 IEEE
30th International Parallel and Distributed Processing Symposium, IPDPS 2016, pages 544–
554. IEEE, 5 2016. ISBN 9781509021406. doi: 10.1109/IPDPS.2016.28. URL http://

ieeexplore.ieee.org/document/7516051/.

[30] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-Kelley,
and Mark Horowitz. Programming Heterogeneous Systems from an Image Processing DSL.
10 2016. ISSN 15443566. doi: 10.1145/3107953. URL http://arxiv.org/abs/1610.09405.

[31] Hsiang-Wei Sung, Yuan-Ming Chang, Shao-Chung Wang, and Jenq-Kuen Lee. OpenCV
Optimization on Heterogeneous Multi-core Systems for Gesture Recognition Applications.
2016 45th International Conference on Parallel Processing Workshops (ICPPW), pages 59–
65, 8 2016. doi: 10.1109/ICPPW.2016.24. URL http://ieeexplore.ieee.org/document/

7576453/.

[32] Davy Oliveira Barros Sousa Daniel Oliveira Dantas, Helton Danilo Passos Leal. Fast 2D
and 3D image processing with OpenCL. IEEE International Conference onImage Processing
(ICIP), pages 4858–4862, 2015. ISSN 15224880. doi: 10.1109/ICIP.2015.7351730.

[33] Hercules Cardoso Da Silva, Flavia Pisani, and Edson Borin. A comparative study of SYCL,
OpenCL, and OpenMP. In Proceedings - 28th IEEE International Symposium on Computer
Architecture and High Performance Computing Workshops, SBAC-PADW 2016, pages 61–
66. IEEE, 10 2017. ISBN 9781509048441. doi: 10.1109/SBAC-PADW.2016.19. URL http:

//ieeexplore.ieee.org/document/7803697/.

[34] Junghyun Kim, Thanh Tuan Dao, Jaehoon Jung, Jinyoung Joo, and Jaejin Lee. Bridging
OpenCL and CUDA: A Comparative Analysis and Translation. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Storage and Analysis
on - SC ’15, pages 1–12, 2015. ISBN 9781450337236. doi: 10.1145/2807591.2807621. URL
http://dl.acm.org/citation.cfm?doid=2807591.2807621.

[35] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and Jack Don-
garra. From CUDA to OpenCL: Towards a performance-portable solution for multi-platform
GPU programming. Parallel Computing, 38(8):391–407, 8 2012. ISSN 01678191. doi:
10.1016/j.parco.2011.10.002. URL https://www.sciencedirect.com/science/article/

pii/S0167819111001335.

[36] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang Ha Lee,
and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In Proceedings
of the 2009 IEEE International Symposium on Workload Characterization, IISWC 2009,
pages 44–54. IEEE, 10 2009. ISBN 9781424451562. doi: 10.1109/IISWC.2009.5306797. URL
http://ieeexplore.ieee.org/document/5306797/.

OpenCL acceleration on FPGA vs CUDA on GPU 109

http://ieeexplore.ieee.org/document/6495848/
http://ieeexplore.ieee.org/document/7081674/
http://ieeexplore.ieee.org/document/7516051/
http://ieeexplore.ieee.org/document/7516051/
http://arxiv.org/abs/1610.09405
http://ieeexplore.ieee.org/document/7576453/
http://ieeexplore.ieee.org/document/7576453/
http://ieeexplore.ieee.org/document/7803697/
http://ieeexplore.ieee.org/document/7803697/
http://dl.acm.org/citation.cfm?doid=2807591.2807621
https://www.sciencedirect.com/science/article/pii/S0167819111001335
https://www.sciencedirect.com/science/article/pii/S0167819111001335
http://ieeexplore.ieee.org/document/5306797/

REFERENCED PAPERS

[37] M. J. Harvey and G. De Fabritiis. Swan: A tool for porting CUDA programs to OpenCL.
Computer Physics Communications, 182(4):1093–1099, 4 2011. ISSN 00104655. doi:
10.1016/j.cpc.2010.12.052. URL https://www.sciencedirect.com/science/article/pii/

S0010465511000117.

[38] Gabriel Martinez, Mark Gardner, and Wu Chun Feng. CU2CL: A CUDA-to-OpenCL
translator for multi-and many-core architectures. In Proceedings of the International Con-
ference on Parallel and Distributed Systems - ICPADS, pages 300–307. IEEE, 12 2011.
ISBN 9780769545769. doi: 10.1109/ICPADS.2011.48. URL http://ieeexplore.ieee.org/

document/6121291/.

[39] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constantinides,
John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, Michael
Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo Young Kim, Sitaram Lanka, James
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug
Burger. A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services. IEEE
Micro, 35(3):10–22, 6 2015. ISSN 02721732. doi: 10.1109/MM.2015.42. URL http://

ieeexplore.ieee.org/document/6853195/.

[40] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Daniel Firestone, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo Young Kim,
Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram
Lanka, Derek Chiou, and Doug Burger. Configurable Clouds. IEEE Micro, 37(3):52–61, 2017.
ISSN 02721732. doi: 10.1109/MM.2017.51. URL http://ieeexplore.ieee.org/document/

7948672/.

[41] Dong Yin, Ge Li, and Ke Di Huang. Scalable MapReduce framework on FPGA accelerated
commodity hardware. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 7469 LNCS,
pages 280–294, 2012. ISBN 9783642326851. doi: 10.1007/978-3-642-32686-8{\ }26.

[42] Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, and Huazhong Yang. FPMR: MapReduce
Framework on FPGA A Case Study of RankBoost Acceleration. Proceedings of the 18th
annual ACM/SIGDA international symposium on Field programmable gate arrays - FPGA
’10, page 93, 2010. doi: 10.1145/1723112.1723129. URL http://portal.acm.org/citation.

cfm?doid=1723112.1723129.

[43] Berkeley Design Technology. The AutoESL AutoPilot High-Level Synthesis Tool. Design,
2010. URL https://www.bdti.com/InsideDSP/2010/02/16/Autoesl.

[44] Christoforos Kachris and Dimitrios Soudris. A survey on reconfigurable accelerators for cloud
computing. In FPL 2016 - 26th International Conference on Field-Programmable Logic and
Applications, 2016. ISBN 9782839918442. doi: 10.1109/FPL.2016.7577381. URL http:

//ieeexplore.ieee.org/document/7577381/.

[45] Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wen-
isch. Thin servers with smart pipes. In Proceedings of the 40th Annual International Sym-
posium on Computer Architecture - ISCA ’13, pages 36–47, 2013. ISBN 9781450320795.
doi: 10.1145/2485922.2485926. URL http://dl.acm.org/citation.cfm?doid=2485922.

2485926.

[46] Lester Kalms and Diana Gohringer. Exploration of OpenCL for FPGAs using SDAccel
and comparison to GPUs and multicore CPUs. In 2017 27th International Conference on
Field Programmable Logic and Applications, FPL 2017, pages 1–4. IEEE, 9 2017. ISBN
9789090304281. doi: 10.23919/FPL.2017.8056847. URL http://ieeexplore.ieee.org/

document/8056847/.

110 OpenCL acceleration on FPGA vs CUDA on GPU

https://www.sciencedirect.com/science/article/pii/S0010465511000117
https://www.sciencedirect.com/science/article/pii/S0010465511000117
http://ieeexplore.ieee.org/document/6121291/
http://ieeexplore.ieee.org/document/6121291/
http://ieeexplore.ieee.org/document/6853195/
http://ieeexplore.ieee.org/document/6853195/
http://ieeexplore.ieee.org/document/7948672/
http://ieeexplore.ieee.org/document/7948672/
http://portal.acm.org/citation.cfm?doid=1723112.1723129
http://portal.acm.org/citation.cfm?doid=1723112.1723129
https://www.bdti.com/InsideDSP/2010/02/16/Autoesl
http://ieeexplore.ieee.org/document/7577381/
http://ieeexplore.ieee.org/document/7577381/
http://dl.acm.org/citation.cfm?doid=2485922.2485926
http://dl.acm.org/citation.cfm?doid=2485922.2485926
http://ieeexplore.ieee.org/document/8056847/
http://ieeexplore.ieee.org/document/8056847/

REFERENCED PAPERS

[47] Pablo Fernndez Alcantarilla, Adrien Bartoli, and Andrew J. Davison. KAZE features. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume 7577 LNCS, pages 214–227, 2012. ISBN
9783642337826. doi: 10.1007/978-3-642-33783-3{\ }16.

[48] Quentin Gautier, Alexandria Shearer, Janarbek Matai, Dustin Richmond, Pingfan Meng,
and Ryan Kastner. Real-time 3D reconstruction for FPGAs: A case study for evaluating the
performance, area, and programmability trade-offs of the Altera OpenCL SDK. In Proceedings
of the 2014 International Conference on Field-Programmable Technology, FPT 2014, pages
326–329. IEEE, 12 2015. ISBN 9781479962457. doi: 10.1109/FPT.2014.7082810. URL http:

//ieeexplore.ieee.org/document/7082810/.

[49] Deo Manish, Schulz Jeffrey, and Brown Lance. Intel Stratix 10 MX
Devices Solve the Memory Bandwidth Challenge, 2017. URL https://

www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/

wp-01264-stratix10mx-devices-solve-memory-bandwidth-challenge.pdf.

[50] Xilinx. Xilinx Memory Solutions. URL https://www.xilinx.com/products/technology/

memory.html.

[51] Maxime Martelli, Nicolas Gag, Alain Merigot, and Cyrille Enderli. 3D tomography back-
projection parallelization on FPGAs using opencl. In 2017 Conference on Design and Archi-
tectures for Signal and Image Processing (DASIP), pages 1–6. IEEE, 9 2017. ISBN 978-1-5386-
3534-6. doi: 10.1109/DASIP.2017.8122119. URL http://ieeexplore.ieee.org/document/

8122119/.

[52] Amulya Vishwanath. Enabling High-Performance Floating-Point Designs. Intel Whitepa-
per, 2016. URL https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/

literature/wp/wp-01267-fpgas-enable-high-performance-floating-point.pdf.

[53] BertenDSP. GPU vs FPGA Performance Comparison White Paper 2. Technical report, 2016.
URL www.bertendsp.com.

[54] Hamid Reza Zohouri, Naoya Maruyamay, Aaron Smith, Motohiko Matsuda, and Satoshi
Matsuoka. Evaluating and Optimizing OpenCL Kernels for High Performance Computing
with FPGAs. In International Conference for High Performance Computing, Networking,
Storage and Analysis, SC, pages 409–420. IEEE, 11 2017. ISBN 9781467388153. doi: 10.
1109/SC.2016.34. URL http://ieeexplore.ieee.org/document/7877113/.

[55] Fahad Bin Muslim, Liang Ma, Mehdi Roozmeh, and Luciano Lavagno. Efficient FPGA Imple-
mentation of OpenCL High-Performance Computing Applications via High-Level Synthesis.
IEEE Access, 5:2747–2762, 2017. ISSN 2169-3536. doi: 10.1109/ACCESS.2017.2671881. URL
http://ieeexplore.ieee.org/document/7859319/.

[56] Sicheng Li, Chunpeng Wu, Hai Li, Boxun Li, Yu Wang, and Qinru Qiu. FPGA Acceleration
of Recurrent Neural Network Based Language Model. 2015 IEEE 23rd Annual International
Symposium on Field-Programmable Custom Computing Machines, pages 111–118, 2015. doi:
10.1109/FCCM.2015.50. URL http://ieeexplore.ieee.org/document/7160054/.

[57] Li Boxun, Zhou Erjin, Huang Bo, Duan Jiayi, Wang Yu, Xu Ningyi, Zhang Jiaxing, and
Yang Huazhong. Large scale recurrent neural network on GPU. Neural Networks (IJCNN),
2014 International Joint Conference on, pages 4062–4069, 7 2014. doi: 10.1109/IJCNN.2014.
6889433. URL http://ieeexplore.ieee.org/document/6889433/.

[58] Jialiang Zhang and Jing Li. Improving the Performance of OpenCL-based FPGA Accelerator
for Convolutional Neural Network. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays - FPGA ’17, pages 25–34, 2017. ISBN
9781450343541. doi: 10.1145/3020078.3021698. URL http://dl.acm.org/citation.cfm?

doid=3020078.3021698.

OpenCL acceleration on FPGA vs CUDA on GPU 111

http://ieeexplore.ieee.org/document/7082810/
http://ieeexplore.ieee.org/document/7082810/
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01264-stratix10mx-devices-solve-memory-bandwidth-challenge.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01264-stratix10mx-devices-solve-memory-bandwidth-challenge.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01264-stratix10mx-devices-solve-memory-bandwidth-challenge.pdf
https://www.xilinx.com/products/technology/memory.html
https://www.xilinx.com/products/technology/memory.html
http://ieeexplore.ieee.org/document/8122119/
http://ieeexplore.ieee.org/document/8122119/
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01267-fpgas-enable-high-performance-floating-point.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01267-fpgas-enable-high-performance-floating-point.pdf
www.bertendsp.com
http://ieeexplore.ieee.org/document/7877113/
http://ieeexplore.ieee.org/document/7859319/
http://ieeexplore.ieee.org/document/7160054/
http://ieeexplore.ieee.org/document/6889433/
http://dl.acm.org/citation.cfm?doid=3020078.3021698
http://dl.acm.org/citation.cfm?doid=3020078.3021698

REFERENCED WEBSITES

[59] Lorenzo Di Tucci, Marco Rabozzi, Luca Stornaiuolo, and M.D. Santambrogio. The role of
CAD frameworks in heterogeneous FPGA-based cloud systems. In Proceedings - 35th IEEE
International Conference on Computer Design, ICCD 2017, pages 423–426. IEEE, 11 2017.
ISBN 9781538622544. doi: 10.1109/ICCD.2017.74. URL http://ieeexplore.ieee.org/

document/8119247/.

[60] Ambrose Finnerty and Herv Ratigner. Reduce Power and Cost by Converting from Float-
ing Point to Fixed Point. volume 491. 2017. URL https://www.xilinx.com/support/

documentation/white_papers/wp491-floating-to-fixed-point.pdf.

[61] Eric Papenhausen and Klaus Mueller. Rapid rabbit: Highly optimized GPU accelerated
cone-beam CT reconstruction. In IEEE Nuclear Science Symposium Conference Record, 2013.
ISBN 9781479905348. doi: 10.1109/NSSMIC.2013.6829126. URL http://ieeexplore.ieee.

org/document/6829126/.

[62] Christian Siegl, H G Hofmann, B Keck, M Prümmer, and J Hornegger. OpenCL: a viable solu-
tion for high-performance medical image reconstruction? SPIE Medical Imaging: Physics of
Medical Imaging, 7961:79612Q, 2011. ISSN 0277-786X. doi: 10.1117/12.878058. URL https:

//pdfs.semanticscholar.org/32b6/45ca9aeef6724c7368f20919faf0a0cd1e1a.pdf.

[63] Byunghyun Jang, Dana Schaa, Perhaad Mistry, and David Kaeli. Exploiting memory access
patterns to improve memory performance in data-parallel architectures. IEEE Transactions
on Parallel and Distributed Systems, 23(1):105–118, 1 2011. ISSN 10459219. doi: 10.1109/
TPDS.2010.107. URL http://ieeexplore.ieee.org/document/5473222/.

[64] L. A. Feldkamp, L. C. Davis, and J. W. Kress. Practical cone-beam algorithm. Journal of
the Optical Society of America A, 1(6):612, 6 1984. ISSN 1084-7529. doi: 10.1364/JOSAA.1.
000612. URL https://www.osapublishing.org/abstract.cfm?URI=josaa-1-6-612.

[65] Hen-Wai Tsao and Da-Cheng Sung. Demosaicing using subband-based classifiers. Electronics
Letters, 51(3):228–230, 2015. ISSN 0013-5194. doi: 10.1049/el.2014.1557. URL http://

digital-library.theiet.org/content/journals/10.1049/el.2014.1557.

[66] Marcel Nawrath and Jens Jäkel. Deriving color images from noisy Bayer data using local
demosaicking and non-local denoising. In Proceedings - 4th International Congress on Image
and Signal Processing, CISP 2011, volume 2, pages 668–672, 2011. ISBN 9781424493067. doi:
10.1109/CISP.2011.6100289.

[67] Michael Parker. Understanding Peak Floating-Point Performance Claims. Technical report,
2017. URL https://www.intel.com/content/dam/www/programmable/us/en/pdfs/

literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.

pdf.

[68] Xilinx. Pushing Performance and Integration with the UltraScale+ Portfolio. volume 471,
pages 1–10. 2015. URL http://www.xilinx.com/support/documentation/white_papers/

wp471-ultrascale-plus-perf.pdf.

Referenced websites

[69] Jamal Robinson. FPGAs, Deep Learning, Software Defined Networks and the
Cloud: A Love Story Part 1, 2017. URL https://medium.com/@jamal.robinson/

fpgas-deep-learning-software-defined-networks-and-the-cloud-a-love-story-part-1-c685dc6b657b.

112 OpenCL acceleration on FPGA vs CUDA on GPU

http://ieeexplore.ieee.org/document/8119247/
http://ieeexplore.ieee.org/document/8119247/
https://www.xilinx.com/support/documentation/white_papers/wp491-floating-to-fixed-point.pdf
https://www.xilinx.com/support/documentation/white_papers/wp491-floating-to-fixed-point.pdf
http://ieeexplore.ieee.org/document/6829126/
http://ieeexplore.ieee.org/document/6829126/
https://pdfs.semanticscholar.org/32b6/45ca9aeef6724c7368f20919faf0a0cd1e1a.pdf
https://pdfs.semanticscholar.org/32b6/45ca9aeef6724c7368f20919faf0a0cd1e1a.pdf
http://ieeexplore.ieee.org/document/5473222/
https://www.osapublishing.org/abstract.cfm?URI=josaa-1-6-612
http://digital-library.theiet.org/content/journals/10.1049/el.2014.1557
http://digital-library.theiet.org/content/journals/10.1049/el.2014.1557
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
http://www.xilinx.com/support/documentation/white_papers/wp471-ultrascale-plus-perf.pdf
http://www.xilinx.com/support/documentation/white_papers/wp471-ultrascale-plus-perf.pdf
https://medium.com/@jamal.robinson/fpgas-deep-learning-software-defined-networks-and-the-cloud-a-love-story-part-1-c685dc6b657b
https://medium.com/@jamal.robinson/fpgas-deep-learning-software-defined-networks-and-the-cloud-a-love-story-part-1-c685dc6b657b

REFERENCED WEBSITES

[70] Bill Thomas. AMD Ryzen Threadripper 2nd Generation release date,
news and features, 10 2018. URL https://www.techradar.com/news/

amd-ryzen-threadripper-2nd-generation.

[71] Ryan Smith. Big Volta Comes to Quadro: NVIDIA Announces
Quadro GV100, 2018. URL https://www.anandtech.com/show/12579/

big-volta-comes-to-quadro-nvidia-announces-quadro-gv100.

[72] Prodrive Technologies. Prodrive Press Release Fire, 2018. URL https://

prodrive-technologies.com/press-release-prodrive-technologies/.

[73] Omroepbrabant. Prodrive Fire Pictures, 2018. URL https://www.omroepbrabant.nl/

nieuws/2894606/Foto-s-leggen-enorme-brand-bij-Prodrive-op-industrieterrein-in-Son-vast.

[74] Techpowerup. Techpowerup GPU Database, 2018. URL https://www.techpowerup.com/

gpu-specs/?mfgr=NVIDIA&generation=Quadro&sort=name.

[75] Intel. Intel FPGA Store, 2018. URL https://buyfpga.intel.com/Search?kw=maxII&

stock=True.

[76] Intel. Intel FPGA Devices, 2018. URL https://www.intel.com/content/www/us/en/

products/programmable/fpga.html.

[77] Digikey. Digikey Store, 2018. URL https://www.digikey.nl/.

[78] Xilinx. Xilinx Spartan-6, 2018. URL https://www.xilinx.com/products/

silicon-devices/fpga/spartan-6.html.

[79] Intel. Intel HLS Compiler - Overview, . URL https://www.altera.com/products/

design-software/high-level-design/intel-hls-compiler/overview.html.

[80] Xilinx. Vivado High-Level Synthesis, . URL https://www.xilinx.com/products/

design-tools/vivado/integration/esl-design.html.

[81] Xilinx. SDAccel Development Environment, . URL https://www.xilinx.com/products/

design-tools/software-zone/sdaccel.html.

[82] Xilinx. SDSoC Development Environment, . URL https://www.xilinx.com/products/

design-tools/software-zone/sdsoc.html.

[83] Xilinx. SDNet Development Environment, . URL https://www.xilinx.com/products/

design-tools/software-zone/sdnet.html.

[84] Intel. Intel FPGA SDK for OpenCL - Overview, . URL https://www.intel.com/content/

www/us/en/software/programmable/sdk-for-opencl/overview.html.

[85] Khronos Group. OpenCL Overview, . URL https://www.khronos.org/opencl/.

[86] Future Technologies Group. OpenARC: Open Accelerator Research Compiler. URL https:

//ft.ornl.gov/research/openarc.

[87] Halide website. URL http://halide-lang.org/.

[88] Jingpu. Halide HLS. URL https://github.com/jingpu/Halide-HLS.

[89] OpenCV. OpenCV Library. URL https://opencv.org/about.html.

[90] Xilinx. Xilinx xfOpenCV, . URL https://github.com/Xilinx/xfopencv.

[91] Intel. Intel® Distribution of OpenVINO toolkit, 2018. URL https://software.intel.

com/en-us/openvino-toolkit.

OpenCL acceleration on FPGA vs CUDA on GPU 113

https://www.techradar.com/news/amd-ryzen-threadripper-2nd-generation
https://www.techradar.com/news/amd-ryzen-threadripper-2nd-generation
https://www.anandtech.com/show/12579/big-volta-comes-to-quadro-nvidia-announces-quadro-gv100
https://www.anandtech.com/show/12579/big-volta-comes-to-quadro-nvidia-announces-quadro-gv100
https://prodrive-technologies.com/press-release-prodrive-technologies/
https://prodrive-technologies.com/press-release-prodrive-technologies/
https://www.omroepbrabant.nl/nieuws/2894606/Foto-s-leggen-enorme-brand-bij-Prodrive-op-industrieterrein-in-Son-vast
https://www.omroepbrabant.nl/nieuws/2894606/Foto-s-leggen-enorme-brand-bij-Prodrive-op-industrieterrein-in-Son-vast
https://www.techpowerup.com/gpu-specs/?mfgr=NVIDIA&generation=Quadro&sort=name
https://www.techpowerup.com/gpu-specs/?mfgr=NVIDIA&generation=Quadro&sort=name
https://buyfpga.intel.com/Search?kw=max II&stock=True
https://buyfpga.intel.com/Search?kw=max II&stock=True
https://www.intel.com/content/www/us/en/products/programmable/fpga.html
https://www.intel.com/content/www/us/en/products/programmable/fpga.html
https://www.digikey.nl/
https://www.xilinx.com/products/silicon-devices/fpga/spartan-6.html
https://www.xilinx.com/products/silicon-devices/fpga/spartan-6.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.khronos.org/opencl/
https://ft.ornl.gov/research/openarc
https://ft.ornl.gov/research/openarc
http://halide-lang.org/
https://github.com/jingpu/Halide-HLS
https://opencv.org/about.html
https://github.com/Xilinx/xfopencv
https://software.intel.com/en-us/openvino-toolkit
https://software.intel.com/en-us/openvino-toolkit

REFERENCED WEBSITES

[92] Khronos Group. SYCL Overview, . URL https://www.khronos.org/sycl.

[93] Intel. Intel Stratix V - Product Table, . URL https://www.intel.com/content/dam/www/

programmable/us/en/pdfs/literature/pt/stratix-v-product-table.pdf.

[94] Clive Maxfield. AutoESL acquisition a great move for Xilinx, 1 2011. URL https://www.

eetimes.com/author.asp?section_id=36&doc_id=1284904.

[95] Rodinia. Rodinia: Accelerating Compute-Intensive Applications with Accelerators. URL
https://rodinia.cs.virginia.edu/doku.php.

[96] Intel. Intel Arria 10 Architecture, 2016. URL https://www.intel.com/content/www/us/

en/products/programmable/fpga/arria-10/features.html.

[97] Xilinx. Xilinx IP: Floating-Point Operator, . URL https://www.xilinx.com/products/

intellectual-property/floating_pt.html.

[98] Micron. About Convey Computer Accelerator Products, 2015. URL https://www.micron.

com/about/about-convey-computer-accelerator-products.

[99] Nvidia. Quadro in desktop workstations, 2018. URL https://www.nvidia.com/en-us/

design-visualization/quadro-desktop-gpus/.

[100] Amazon. Amazon EC2 F1 Instances. URL https://aws.amazon.com/ec2/

instance-types/f1/.

[101] Jon ”Hannibal” Stokes. SIMD Architectures, 2004. URL http://archive.arstechnica.

com/cpu/1q00/simd/m-simd-1.html.

[102] Acceleware. OpenCL on FPGAs for GPU Programmers. Technical report, 2014. URL
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/

wp/wp-201406-acceleware-opencl-on-fpgas-for-gpu-programmers.pdfhttp:

//design.altera.com/Acceleware_OpenCL_FPGA_WP.

[103] Xilinx. Performance and Resource Utilization for Adder/Subtracter v12.0, 2018. URL
https://www.xilinx.com/support/documentation/ip_documentation/ru/c-addsub.

html.

[104] Xilinx. Performance and Resource Utilization for Floating Point v7.1, 2018.
URL https://www.xilinx.com/support/documentation/ip_documentation/ru/

floating-point.html.

[105] Intel. Floating-Point IP: Resource Utilization and Performance, 2016. URL
https://www.intel.com/content/altera-www/global/en_us/index/documentation/

eis1410764818924.html.

[106] Xilinx. High Speed Serial. . URL https://www.xilinx.com/products/technology/

high-speed-serial.html.

[107] Jeremiah van Oosten. 3D Game Engine Programming, 2011. URL https://www.3dgep.

com/cuda-memory-model/.

[108] Jeremy Appleyard. CUDA Pro Tip: Optimize for Pointer Aliasing, 2014. URL https:

//devblogs.nvidia.com/cuda-pro-tip-optimize-pointer-aliasing/.

[109] Nvidia. NVLink, . URL https://www.nvidia.com/en-us/design-visualization/

nvlink-bridges/.

[110] Informatik department of the Friedrich-Alexander-Universität. RabbitCT Website. URL
https://www5.cs.fau.de/research/former-projects/rabbitct/.

114 OpenCL acceleration on FPGA vs CUDA on GPU

https://www.khronos.org/sycl
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-v-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-v-product-table.pdf
https://www.eetimes.com/author.asp?section_id=36&doc_id=1284904
https://www.eetimes.com/author.asp?section_id=36&doc_id=1284904
https://rodinia.cs.virginia.edu/doku.php
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10/features.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10/features.html
https://www.xilinx.com/products/intellectual-property/floating_pt.html
https://www.xilinx.com/products/intellectual-property/floating_pt.html
https://www.micron.com/about/about-convey-computer-accelerator-products
https://www.micron.com/about/about-convey-computer-accelerator-products
https://www.nvidia.com/en-us/design-visualization/quadro-desktop-gpus/
https://www.nvidia.com/en-us/design-visualization/quadro-desktop-gpus/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
http://archive.arstechnica.com/cpu/1q00/simd/m-simd-1.html
http://archive.arstechnica.com/cpu/1q00/simd/m-simd-1.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-201406-acceleware-opencl-on-fpgas-for-gpu-programmers.pdf http://design.altera.com/Acceleware_OpenCL_FPGA_WP
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-201406-acceleware-opencl-on-fpgas-for-gpu-programmers.pdf http://design.altera.com/Acceleware_OpenCL_FPGA_WP
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-201406-acceleware-opencl-on-fpgas-for-gpu-programmers.pdf http://design.altera.com/Acceleware_OpenCL_FPGA_WP
https://www.xilinx.com/support/documentation/ip_documentation/ru/c-addsub.html
https://www.xilinx.com/support/documentation/ip_documentation/ru/c-addsub.html
https://www.xilinx.com/support/documentation/ip_documentation/ru/floating-point.html
https://www.xilinx.com/support/documentation/ip_documentation/ru/floating-point.html
https://www.intel.com/content/altera-www/global/en_us/index/documentation/eis1410764818924.html
https://www.intel.com/content/altera-www/global/en_us/index/documentation/eis1410764818924.html
https://www.xilinx.com/products/technology/high-speed-serial.html
https://www.xilinx.com/products/technology/high-speed-serial.html
https://www.3dgep.com/cuda-memory-model/
https://www.3dgep.com/cuda-memory-model/
https://devblogs.nvidia.com/cuda-pro-tip-optimize-pointer-aliasing/
https://devblogs.nvidia.com/cuda-pro-tip-optimize-pointer-aliasing/
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://www5.cs.fau.de/research/former-projects/rabbitct/

REFERENCED WEBSITES

[111] Saoni Mukherjeet, Nicholas Moore, James Brock, and Miriam Leeser. CUDA and OpenCL
implementations of 3D CT reconstruction for biomedical imaging. 2012 IEEE Conference
on High Performance Extreme Computing, HPEC 2012, 2012. doi: 10.1109/HPEC.2012.
6408674. URL http://ieee-hpec.org/2012/index_htm_files/mukherjee.pdf.

[112] Stanislav Maslan. Cone-beam backprojection tool, 2018. URL http://elektronika.

kvalitne.cz/SW/graphics/cone_beam_backprojection/cone_beam_backprojection_

eng.html.

[113] ASTRA Toolbox. Filtered Backprojection (FBP) Youtube, 2015. URL https://www.

youtube.com/watch?v=pZ7JlXagT0w.

[114] Datagenetics. Sphere in Cylinders. URL http://datagenetics.com/blog/july32014/

index.html.

[115] Informatik department of the Friedrich-Alexander-Universität. RabbitCT Ranking, 2016.
URL https://www5.cs.fau.de/research/former-projects/rabbitct/ranking/.

[116] CambridgeInColour. Digital camera sensors. URL https://www.cambridgeincolour.com/

tutorials/camera-sensors.htm.

[117] RED. The Bayer Sensor Strategy, . URL https://www.red.com/red-101/

bayer-sensor-strategy.

[118] Yves Roumazeilles. Camera Raw 5.6 is here, 2009. URL https://www.ylovephoto.com/

en/2009/11/19/camera-raw-5-6-is-here/.

[119] Joe Maller. FXScript Reference: RGB and YUV Color. URL http://joemaller.com/fcp/

fxscript_yuv_color.shtml.

[120] RED. Chroma Subsampling Techniques, . URL https://www.red.com/red-101/

video-chroma-subsampling.

[121] Morgan McGuire. Efficient, High-Quality Bayer Demosaic Filtering on
GPUs. Journal of Graphics Tools, 13(4):1–16, 2008. ISSN 1086-7651. doi:
10.1080/2151237X.2008.10129267. URL https://pdfs.semanticscholar.org/088a/

2f47b7ab99c78d41623bdfaf4acdb02358fb.pdfhttps://www.tandfonline.com/doi/

full/10.1080/2151237X.2008.10129267.

[122] Even Rouault, Bob Friesenhahn, Frank Warmerdam, Andrey Kiselev, Joris van Damme,
and Lee Howard. LibTIFF, 2017. URL http://www.simplesystems.org/libtiff/.

[123] Intel. Intel FPGA SDK for OpenCL overview, 2018. URL https://www.

intel.com/content/www/us/en/programmable/products/design-software/

embedded-software-developers/opencl/support.html.

[124] Intel. Intel FPGA Acceleration Hub, 2018. URL https://www.intel.com/content/www/

us/en/programmable/solutions/acceleration-hub/platforms.html.

[125] Intel. Cyclone V SoC Development Kit and Intel SoC FPGA Embedded Development Suite,
. URL https://www.intel.com/content/www/us/en/programmable/products/boards_

and_kits/dev-kits/altera/kit-cyclone-v-soc.html.

[126] Intel. Arria 10 GX FPGA Development Kit, . URL https://www.intel.com/

content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/

kit-a10-gx-fpga.html.

[127] Intel. Stratix V GX FPGA Development Kit, . URL https://www.intel.com/

content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/

kit-sv-gx-host.html.

OpenCL acceleration on FPGA vs CUDA on GPU 115

http://ieee-hpec.org/2012/index_htm_files/mukherjee.pdf
http://elektronika.kvalitne.cz/SW/graphics/cone_beam_backprojection/cone_beam_backprojection_eng.html
http://elektronika.kvalitne.cz/SW/graphics/cone_beam_backprojection/cone_beam_backprojection_eng.html
http://elektronika.kvalitne.cz/SW/graphics/cone_beam_backprojection/cone_beam_backprojection_eng.html
https://www.youtube.com/watch?v=pZ7JlXagT0w
https://www.youtube.com/watch?v=pZ7JlXagT0w
http://datagenetics.com/blog/july32014/index.html
http://datagenetics.com/blog/july32014/index.html
https://www5.cs.fau.de/research/former-projects/rabbitct/ranking/
https://www.cambridgeincolour.com/tutorials/camera-sensors.htm
https://www.cambridgeincolour.com/tutorials/camera-sensors.htm
https://www.red.com/red-101/bayer-sensor-strategy
https://www.red.com/red-101/bayer-sensor-strategy
https://www.ylovephoto.com/en/2009/11/19/camera-raw-5-6-is-here/
https://www.ylovephoto.com/en/2009/11/19/camera-raw-5-6-is-here/
http://joemaller.com/fcp/fxscript_yuv_color.shtml
http://joemaller.com/fcp/fxscript_yuv_color.shtml
https://www.red.com/red-101/video-chroma-subsampling
https://www.red.com/red-101/video-chroma-subsampling
https://pdfs.semanticscholar.org/088a/2f47b7ab99c78d41623bdfaf4acdb02358fb.pdf https://www.tandfonline.com/doi/full/10.1080/2151237X.2008.10129267
https://pdfs.semanticscholar.org/088a/2f47b7ab99c78d41623bdfaf4acdb02358fb.pdf https://www.tandfonline.com/doi/full/10.1080/2151237X.2008.10129267
https://pdfs.semanticscholar.org/088a/2f47b7ab99c78d41623bdfaf4acdb02358fb.pdf https://www.tandfonline.com/doi/full/10.1080/2151237X.2008.10129267
http://www.simplesystems.org/libtiff/
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html
https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/platforms.html
https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/platforms.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-cyclone-v-soc.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-cyclone-v-soc.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-a10-gx-fpga.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-a10-gx-fpga.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-a10-gx-fpga.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-sv-gx-host.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-sv-gx-host.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-sv-gx-host.html

REFERENCED WEBSITES

[128] Intel. Stratix 10 GX FPGA Development Kit, . URL https://www.intel.com/

content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/

kit-s10-fpga.html.

[129] Xilinx. Xilinx Kintex UltraScale FPGA KCU1500 Acceleration Development Kit, . URL
https://www.xilinx.com/products/boards-and-kits/dk-u1-kcu1500-g.html.

[130] Xilinx. Xilinx Virtex Ultrascale+ FPGA VCU1525 Acceleration Development Kit, . URL
https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html.

[131] Xilinx. Alveo U200 Data Center Accelerator Card, 2018. URL https://www.xilinx.com/

products/boards-and-kits/alveo/u200.html.

[132] Xilinx. Alveo U250 Data Center Accelerator Card, 2018. URL https://www.xilinx.com/

products/boards-and-kits/alveo/u250.html.

[133] Xilinx. Alveo U280 Data Center Acceleration Card, 2019. URL https://www.xilinx.com/

products/boards-and-kits/alveo/u280.html.

[134] Tweakers. Tweakers Pricewatch, 2018. URL https://tweakers.net/pricewatch/.

[135] Elsa-jp. Quadro P6000, 2018. URL http://www.elsa-jp.co.jp/products/

products-top/graphicsboard_pro/quadro/ultra_high_end_2/quadro_p6000/.

[136] Georg Zitzlsberger. Intel Architecture for HPC Developers, 2015. URL https:

//indico.cern.ch/event/403113/contributions/1847268/attachments/1123555/

1603259/01_Intel_Architecture_for_HPC_Developers.pdf.

[137] Xilinx. Ultrascale FPGA Product Table, 2016. URL https://www.xilinx.com/support/

documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf.

[138] Intel FPGA. Intel Stratix 10 Product Table. pages 5–6, 2018. URL https:

//www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/

stratix-10-product-table.pdf.

[139] Techpowerup. Techpowerup Quadro P6000, 2016. URL https://www.techpowerup.com/

gpu-specs/quadro-p6000.c2865.

[140] Nvidia. Nvidia System Management Interface, 2018. URL https://developer.nvidia.

com/nvidia-system-management-interface.

[141] Nvida. Nvidia Visual Profiler, 2018. URL https://developer.nvidia.com/

nvidia-visual-profiler.

[142] Xilinx. Xilinx Technology: FPGA Memory, . URL https://www.xilinx.com/products/

technology/memory.html.

[143] Xilinx. Kintex Ultrascale Product Table, . URL https://www.xilinx.com/products/

silicon-devices/fpga/kintex-ultrascale.html.

[144] Xilinx. Xilinx Forums Linking Error, 2018. URL https://forums.xilinx.com/t5/

SDAccel/Vivado-failed-to-link-libdpi-so/m-p/870521.

[145] Xilinx. Xilinx Forums Printing error, 2018. URL https://forums.xilinx.com/t5/

SDAccel/My-SDx-IDE-can-t-run-the-printf-example-code/m-p/870574.

[146] Nvidia. Nvidia Visual Profiler, 2018. URL https://developer.nvidia.com/

nvidia-visual-profiler.

[147] Nvidia. Nvidia Nsight Visual Studio Edition, . URL https://developer.nvidia.com/

nsight-visual-studio-edition.

116 OpenCL acceleration on FPGA vs CUDA on GPU

https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-fpga.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-fpga.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-fpga.html
https://www.xilinx.com/products/boards-and-kits/dk-u1-kcu1500-g.html
https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://tweakers.net/pricewatch/
http://www.elsa-jp.co.jp/products/products-top/graphicsboard_pro/quadro/ultra_high_end_2/quadro_p6000/
http://www.elsa-jp.co.jp/products/products-top/graphicsboard_pro/quadro/ultra_high_end_2/quadro_p6000/
https://indico.cern.ch/event/403113/contributions/1847268/attachments/1123555/1603259/01_Intel_Architecture_for_HPC_Developers.pdf
https://indico.cern.ch/event/403113/contributions/1847268/attachments/1123555/1603259/01_Intel_Architecture_for_HPC_Developers.pdf
https://indico.cern.ch/event/403113/contributions/1847268/attachments/1123555/1603259/01_Intel_Architecture_for_HPC_Developers.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
https://www.techpowerup.com/gpu-specs/quadro-p6000.c2865
https://www.techpowerup.com/gpu-specs/quadro-p6000.c2865
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
https://www.xilinx.com/products/technology/memory.html
https://www.xilinx.com/products/technology/memory.html
https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale.html
https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale.html
https://forums.xilinx.com/t5/SDAccel/Vivado-failed-to-link-libdpi-so/m-p/870521
https://forums.xilinx.com/t5/SDAccel/Vivado-failed-to-link-libdpi-so/m-p/870521
https://forums.xilinx.com/t5/SDAccel/My-SDx-IDE-can-t-run-the-printf-example-code/m-p/870574
https://forums.xilinx.com/t5/SDAccel/My-SDx-IDE-can-t-run-the-printf-example-code/m-p/870574
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nsight-visual-studio-edition
https://developer.nvidia.com/nsight-visual-studio-edition

REFERENCED WEBSITES

[148] Intel. Intel SDK for OpenCL, . URL https://software.intel.com/en-us/intel-opencl.

[149] AMD. Code XL. URL https://gpuopen.com/compute-product/codexl/.

[150] Mark Harris. CUDA Pro Tip: nvprof is Your Handy Uni-
versal GPU Profiler, 2013. URL https://devblogs.nvidia.com/

cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/.

[151] User3829636. New issue stall reasons in NVIDIA Nsight,
2015. URL https://stackoverflow.com/questions/25067518/

new-issue-stall-reasons-in-nvidia-nsight-visual-studio-edition-4-1-rc1.

[152] Nathan Reed. Understanding BCn Texture Compression Formats, 2012. URL http://www.

reedbeta.com/blog/understanding-bcn-texture-compression-formats/.

[153] Xilinx. FPGA Power Efficiency, . URL https://www.xilinx.com/products/technology/

power.html.

[154] Intel. Intel Stratix 10 FPGAs, . URL https://www.intel.com/content/www/us/en/

products/programmable/fpga/stratix-10.html.

[155] BittWare. Bittware 520N-MX - Intel Stratix 10, . URL https://www.bittware.com/fpga/

520n-mx/.

[156] BittWare. Bittware XUPVVH - Xilinx Virtex Ultrascale+, . URL https://www.bittware.

com/fpga/xupvvh/.

[157] Zhiye Liu. AMD Claims First 7nm GPUs With Radeon Instinct MI60, MI50, 2018. URL
https://www.tomshardware.com/news/amd-radeon-instinct-mi60-mi50-7nm-gpus,

38031.html.

[158] Ian Cutress. AMD Ryzen 3rd Gen ’Matisse’ Coming Mid 2019: Eight Core Zen
2 with PCIe 4.0 on Desktop, 2019. URL https://www.anandtech.com/show/13829/

amd-ryzen-3rd-generation-zen-2-pcie-4-eight-core.

[159] Mark Campbell. Intel Invites Gamers to join a Global Graphics Odyssey, 2019.
URL https://www.overclock3d.net/news/gpu_displays/intel_invites_gamers_to_

join_a_global_graphics_odyssey/1.

OpenCL acceleration on FPGA vs CUDA on GPU 117

https://software.intel.com/en-us/intel-opencl
https://gpuopen.com/compute-product/codexl/
https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/
https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/
https://stackoverflow.com/questions/25067518/new-issue-stall-reasons-in-nvidia-nsight-visual-studio-edition-4-1-rc1
https://stackoverflow.com/questions/25067518/new-issue-stall-reasons-in-nvidia-nsight-visual-studio-edition-4-1-rc1
http://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/
http://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/
https://www.xilinx.com/products/technology/power.html
https://www.xilinx.com/products/technology/power.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10.html
https://www.bittware.com/fpga/520n-mx/
https://www.bittware.com/fpga/520n-mx/
https://www.bittware.com/fpga/xupvvh/
https://www.bittware.com/fpga/xupvvh/
https://www.tomshardware.com/news/amd-radeon-instinct-mi60-mi50-7nm-gpus,38031.html
https://www.tomshardware.com/news/amd-radeon-instinct-mi60-mi50-7nm-gpus,38031.html
https://www.anandtech.com/show/13829/amd-ryzen-3rd-generation-zen-2-pcie-4-eight-core
https://www.anandtech.com/show/13829/amd-ryzen-3rd-generation-zen-2-pcie-4-eight-core
https://www.overclock3d.net/news/gpu_displays/intel_invites_gamers_to_join_a_global_graphics_odyssey/1
https://www.overclock3d.net/news/gpu_displays/intel_invites_gamers_to_join_a_global_graphics_odyssey/1

	Contents
	List of Figures
	List of Tables
	Listings
	Abbreviations
	Introduction
	Background: hardware acceleration
	Problem & project goal
	Outline

	Method
	Literature Study
	Accelerator availability
	Programming methods
	API porting
	FPGA acceleration research
	Cloud acceleration
	Image processing
	Others examples

	Optimization strategies
	FPGA OpenCL
	GPU CUDA & OpenCL

	Literature study conclusion
	Accelerator availability
	Programming methods
	API Porting
	FPGA acceleration
	Conclusion

	Algorithm Analysis
	RabbitCT
	Theoretical analysis
	Algorithm implementation
	Implementation analysis

	Demosaic
	Theoretical analysis
	Algorithm implementation
	Implementation analysis

	Hardware Selection
	FPGA selection
	FPGA requirements and options
	FPGA selection and specifications

	GPU selection
	GPU requirements and options
	GPU selection and specifications

	Host selection
	Host requirements
	Host specifications

	Hardware comparison
	Numerical comparison
	Interconnect options
	Roofline comparison

	Algorithm Implementation
	RabbitCT
	RabbitCT GPU
	RabbitCT FPGA

	Demosaic
	Demosaic FPGA
	Demosaic GPU

	Results
	Maximum performance
	Costs per performance
	RabbitCT
	Demosaic
	Summary

	Programmability
	Tooling
	Code
	Summary

	Interconnect options
	Energy efficiency
	Product availability

	Conclusion
	Future Work & Expectations
	Future work
	Future expectations

	Bibliography
	Programming guides
	Referenced papers
	Referenced websites

