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Re-identification of Vessels with Convolutional Neural Networks

Yitian Kong*

Abstract— Vessel re-identification is an important task in
maritime surveillance. Similar to pedestrian re-identification
problems, vessel re-identification also has challenges due to il-
lumination, occlusion, viewpoints and complicated background.
To explore the vessel re-identification, in this work, first we
classify the detected vessels into 10 vessel types and 5 orienta-
tion classes. Then, we propose a new vessel re-identification
approach based on the original triplet method. To support
our research, we also present three datasets for multi-class
vessel detection, vessel orientation recognition, and vessel re-
identification. Moreover, we explore several conditions which
can influence the proposed re-identification model performance.
Our experimental results reveal that our proposed approach
achieves 81.46% of the mean average precision accuracy in
3.8ms for a single image to query the correct match in the
database.

Keywords— vessel re-identification, vessel detection, vessel
orientation recognition, Convolutional Neural Networks

[. INTRODUCTION

In maritime surveillance, it is essential to keep track of
vessels to monitor safety, unreported fishing, drugs smug-
gling, etc [28]. There are many works which have been
developed based on satellite images to tackle these kinds of
problems. However, camera-based surveillance is also a vital
part, as it can be deployed on the shoreline to monitor from
different points of views. One of the important components
in maritime surveillance is vessel re-identification, which
should discover whether a vessel is captured on another
location or time by different cameras. In other words, the
vessel re-identification model should automatically find the
query ship in different cameras, as presented in Fig. 1. Vessel
re-identification task usually consists of vessel detection and
vessel retrieval. The camera images contain not only vessels
but also irrelevant objects, as shown in Fig. 1. Therefore,
we first need to detect the vessel bounding box. Then
we can use the detected bounding box in re-identification.
Furthermore, it is also crucial to classify the vessel types.
Unlike the pedestrian re-identification where all humans have
the similar appearance, vessels have different classes, such as
passenger ship, river cargo ship, etc. Specifically, for vessel
re-identification task, we first detect the ship bounding box
and ship type, and then we re-identify the ships by searching
for the best match among the database samples. Besides,
detecting vessel orientation is also a critical approach in
the process of vessel re-identification, since orientation of
a vessel provides the auxiliary information about the vessel.

Research Question Explore a vessel re-identification ap-
proach and training settings which would enable real-time
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Fig. 1: The vessel re-identification is to find the image with
same vessel in the database given a query vessel image. The
blue box means the query image, while green box represents
other vessels in the database and the red box is the correct
matched one in the database.

vessel re-identification with at least 80% of the mean average
precision score.

Nevertheless, to the best of our knowledge, there is
no existing work on vessel re-identification nor vessel re-
identification dataset. Here, we first propose a multi-class
vessel detection and orientation recognition dataset, which
is collected from several cities in the Netherlands and
Turkey including 11,000 images with over 30,000 vessels.
All images are labeled by bounding boxes for all vessels,
as well as categories and orientations for each vessel. The
second dataset we propose is captured in several cities in the
Netherlands by two cameras. It contains over 4,600 images
of 733 vessel identities. All unique vessels are labeled by
the bounding boxes, types and orientations.

Despite there is no vessel re-identification research, pedes-
trian re-identification has been developed dramatically in the
recent years. Especially deep-learning based pedestrian re-
identification has achieved significant improvement. There-
fore, we refer to pedestrian re-identification, since it is similar
to vessel re-identification from several aspects. First, human
surveillance in the city is based on visual cameras, which is
the same data type as we use. Second, the goal of human re-
identification is to re-identify the same person in the database



b
—

Fig. 2: Slight unique differences of different vessel identities
but from same vessel model.

given a query image, which is the same task as we pursue for
vessels. Third, the challenges in pedestrian re-identification
are similar to our application. These challenges for vessel re-
identification are, a) the cameras are placed on the shorelines
in different locations, which leads to different viewpoints of
the same vessel, b) vessels are affected by occlusion, illumi-
nation change, and other environmental noises, c) different
vessel identities have similar appearance because they belong
to the same ship companies/models, which makes the vessel
re-identification even more challenging. Fig. 2 illustrates few
samples of this challenge.

Inspired by the triplet model of pedestrian re-identification
[10], we propose a vessel re-identification approach to alle-
viate the challenges of vessel re-identification. The goal of
this approach is to learn how to extract more discriminative
feature representations. With this, the same vessel identities
will be similar to each other, while being different from other
vessel identities. In general, our contribution of the work is
as following:

o We propose a multi-class vessel detection and orien-
tation recognition dataset which is collected in multi-
ple cities in the Netherlands and Turkey. Furthermore,
we propose a vessel re-identification dataset which is
captured in several places in the Netherlands from two
non-overlapping viewpoints.

o We implement a multi-class vessel detection and ori-
entation recognition approach which can detect vessel
bounding box and classify the vessel categories and
orientations.

o We propose a vessel re-identification approach which
constrains the original triplet loss [10] more. Further-
more, we explore several conditions which can influence
the re-identification performance.

This work is structured as follows. Related works are
surveyed in section II. In section III, we present the multi-
class vessel detection and orientation recognition method.
Section IV presents our proposed vessel re-identification
approach. Section V evaluates the proposed methods.

II. RELATED WORK

In this section, first, we survey the state-of-the-art works
of vessel detection and classification. Then we review the
re-identification methods.

1) Multi-class vessel detection and vessel orientation
recognition: With recent developments in Convolutional
Neural Networks (CNN), most of the state-of-the-art works
in object detection use CNNs. Generally, these works focus

on either proposing a new CNN or improving an existing
CNN such as Faster RCNN [18], or SSD [16]. Some of
these works [2,13,28,29,34] focus on detecting vessels in
the synthetic aperture radar (SAR) images. In [12], the
proposed method improves the Faster RCNN by combining
the traditional constant false alarm rate method to select
better region proposals generated by Faster RCNN to im-
prove the accuracy of the predicted vessel locations. The
work in [34] propose SVDNet which jointly utilizes the
CNN and the singular value decompensation algorithm to
learn more discriminative features from the SAR images
with the interference of clouds and different sizes of vessels.
Moreover, [29] propose a new model called S-CNN which
embeds an improved saliency detection method improving
accuracy, especially for the offshore small sized vessels.

We did not find any works of vessel orientation detection,
but there are some vehicle orientation estimation approaches.
Similar to the methods of vessel detection, vehicle orientation
recognition is also based on object detection algorithms.
[8] proposed a CNN architecture based on Faster RCNN
which can detect the location of vehicles and estimate the
orientation simultaneously. The main idea is that it adds
another classification layer with softmax loss function to
predict the orientation in the ground plane.

2) Pedestrian re-identification: To the best of our knowl-
edge, there is no work on vessel re-identification. How-
ever, pedestrian re-identification are widely explored in the
literature. These methods attempt to re-identify the same
person over different locations by matching a query image to
the previously captured database images. Existing pedestrian
re-identification works approach the problem by improving
the feature representation to better discriminate images and
calculating a distance metric which can find the similarity
between two feature embeddings. Most of the recent works
[1,4,5,7,8,12,16,18,20,24-28,32] focus on obtaining more
distinguishable feature representations. Generally, they are
based on either verification model or identification model
[33].

The verification models usually adopt siamese network
as base architecture which takes pairwise images as input
and has two same branches. The general architecture of
the verification model is presented in Fig. 3a. The goal
of the verification model is to output a similarity score
between two input images by utilizing the Euclidean distance
of extracted features to decide whether the input images
belong to the same identity. The work in [23] improve
the siamese network by integrating matching gates. These
gates investigate the low-level features to distinguish the
critical point in higher layers. Instead of low-level features,
[1] improved the siamese network by appending a patch-
matching layer which is used to find the similarity of mid-
level features of two input images. Furthermore, [5] proposed
the triplet architecture on pedestrian re-identification. The
triplet method takes three images as input while two input
images have the same identity and the third input image
belongs to another identity. And the triplet loss pulls the
features of same identities close while pushing the features
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(c) The combination model architecture.

Fig. 3: Architectures of three basic pedestrian re-id models.
The numbers in the circle represent different identities. The
N in the circle is the total number of person identities in
the dataset. NP and PP represent negative pairs and positive
pairs.

of different identities away. According to [3], this condition
is not restricted enough such that it may result in a situation
where the images belonging to the same identity could be
clustered in a large distance. Therefore, [3] adds another
condition that the distance between similar pairs should be
smaller than a predefined margin.

The generic architecture of the identification model is pre-
sented in Fig. 3b. The input is a single image while the output
of the network is the predicted person identity. In [27], the
proposed method utilizes a typical classification model which
generates the identity of each input person. This method
combines several pedestrian re-identification datasets as a
whole large dataset since the conventional datasets contain
a low amount of samples (e.g., the VIPeR [7] which only
contains 1264 images of 632 people). A robust model can

be obtained from the mixed datasets using the convolutional
neural network. [26] improves the identification model by
combining the hand-crafted features with CNN features to
fine-tune the network. Moreover, the attribute is also utilized
as auxiliary information for pedestrian re-identification. The
work in [17] considers the enormous data disparity between
ImageNet [4] and pedestrian re-identification datasets since
such datasets are usually captured by surveillance cameras
which have relatively lower quality. This work utilizes the
pedestrian attribute dataset as the auxiliary dataset to fine-
tune the pretrained network. Furthermore, [15] improves the
identification model by utilizing attribute labels and person
identities as final classification labels. With the single input
image, the network can not only recognize the attributes ap-
peared in the input person but also re-identify the pedestrian
identity.

A typical combination model is presented in Fig. 3c. It is
similar to the verification model that it also has two branches.
But there are two extra fully connected layers which are
used to predict the person identities. The identification loss
and verification loss work together to optimize the base
network. The work in [6] has the similar architecture as the
presented. This work adopts a siamese network as base archi-
tecture and adds two identification subnets and a verification
subnet. Besides, it introduces a dropout unit to drop the
same neurons for verification subnet regarding two feature
vectors generated by the siamese network. The work in [33]
improves the siamese architecture by adding a square layer
which calculates the squared difference between two feature
representations generated by the base network. Moreover,
the work in [2] combines the triplet model and verification
model to improve the performance further. It first uses two
convolution layers to transform the input three images to
feature vectors. Then, these three feature vectors are fed into
two subnets. The idea of the triplet subnet is same as the
triplet loss function used in the work [5]. The verification
subnet contains three convolutional layers to compare the
difference between the positive pair (two images belong to
the same person) and between the negative pair (two images
belong to different persons).

In this work, we present a multi-class vessel detection and
orientation recognition dataset, and a vessel re-identification
dataset. We refer to these datasets as VesselDetection and
VesselRelID. The VesselDetetion contains 31,078 vessels
captured in multiple cities in the Netherlands and Turkey
under different weather conditions. Each vessel is annotated
by bounding box, vessel type, and vessel orientation. We
use this dataset to train the multi-class vessel detection and
the vessel orientation recognition models. The VesselRelD
includes 4,616 images which are captured by two cameras in
several places in the Netherlands with different backgrounds
like natural scene and buildings. Each vessel is labeled by a
unique id and appears in more than two images. Moreover,
we also annotate the bounding box, vessel type and vessel
orientation of each vessel for the potential further pro-
cess. Additionally, we propose a new vessel re-identification
model which uses triplet model as base architecture. This
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Fig. 4: The SSD feature maps in multi-scales.

Fig. 5: Five orientations of vessels. First row is front, back
and side while the second row is front-side and back-side.
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Fig. 6: Vessel orientations. The numbers 1 to 5 represent five
orientations as front, front side, side, back side, back.

model learns both the distance metric (to pull the positive
pairs close and push negative pairs away in the feature
space) and a new hyperplane decision making metric. The
second metric improves the feature similarity of the samples
belonging to the same vessel identity.

III. THE VESSEL DETECTION AND CLASSIFICATION
METHOD
A. Multi-class vessel detection

We use single shot detection (SSD) [16] as our base
method to detect the location of vessels in an image and
predict the vessel type. SSD takes single image labeled by

ground-truth bounding box and object class as input, and
generates the predicted bounding box and predicted object
class. It appends a set of convolutional feature layers by a
base network which can be an image classification network
like VGG [21]. These feature layers can generate multiple
feature maps in different scales. As presented in Fig. 4, the
leftmost image is the raw image labeled by ground-truth
bounding boxes. The middle one is the 8 x 8 feature map
while the rightmost is the 4 x 4 feature map. The network
will evaluate four default boxes with different aspect ratio
represented by dash lines in Fig. 4 for each feature map
cell. For each default box, the network will predict the shape
offset with the ground-truth boxes as well as the vessel types.
The network concatenates six different scales of features to
provide the final detection.

B. Vessel orientation recognition

Since the visual cameras are located in different places,
they provide different views to the vessels. As illustrated
in Fig. 5, we divide the vessel orientation into five classes,
which are front, back, side, front side, and back side. In
Fig. 6, the given arrow represents the vessel positioning
direction. Since the views from the left side and right side
are equivalent, we represent the viewpoints just by dividing
the left area into five equal parts. The viewpoints 1,2,3,4,5
represent the labels, front, front side, side, back side, back,
respectively. Similar to the multi-class vessel detection, we
adopt the VGG-SSD [16] network to detect the location of
vessels and predict the five different orientation classes at
the same time.

IV. THE PROPOSED VESSEL RE-ID METHOD

The architecture of the proposed method is illustrated in
Fig. 7. It has three parts which are presented in different
colors. The black part includes the three base networks
which share weights between each other. The base network
is used to transform the input image into a feature vector.
To reduce the risk of error in computing feature distance
in the triplet subnet, we use the same CNN for the three
branches. In this work, we use ResNet50 [9] as our base
network, and we take the average pooling layer as the base
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Fig. 7: The proposed vessel re-id model architecture. The letter A and P represent same vessel while N is another different

vessel.

Fig. 8: The triplet loss will pull samples from same identities
close and push different identities away. But it may also
mislead negative to the wrong direction against with its
cluster. The letter A, P, and N represent three images anchor,
positive and negative, while A and P are the same identity
and N is from another class.

network output which is a 2048-dims feature vector. Then
we append a batch normalization layer which could speed
up the convergence and be beneficial for deep convolution
networks [11] and obtain a 1048-dims feature representation.
As presented in Fig. 7, the blue box is the triplet subnet
while the green box is the identification subnet. The triplet
subnet pulls the features of same vessel identities close and
pushes the features of different vessel identities away. The
identification subnet improves the similarity of features for
the same vessel identities. The base network receives three
images as input denoted by I, I, and IV, while 4, I”
belong to the same vessel (positive pair) and IV is another
vessel (negative sample). The objective of our method is
to cluster the features of same vessel identity to a single
point and at the same time to increase the feature similarity
between the same vessel samples.

A. Triplet subnet

We first briefly review the traditional triplet model and
its limitations. FaceNet [19] first proposed the triplet loss
and applied it on face re-identification. The goal of triplet
loss is to pull image features from the same class closer to

each other than other samples from different classes, which
is illustrated in Fig. 8. Suppose we have three images as
A (Anchor), P (Positive) and N (Negative) while A and P
belong to the same identity and N is another identity. This
process can be expressed by

DAP_DANZCV (1)

where D 4p is the distance between features of images from
the same class and D4 is the distance between features
of images from different classes in the feature space. « is a
margin to determine how far should two distances be.

By optimizing this process over the whole dataset iter-
atively, positive pairs converge into a single cluster while
getting more distance with negative samples. As a limitation,
the triplet architecture only considers two different identities
at a time. This can push the negative pair against its cluster
[30], as presented in Fig. 8. This drawback increases the
convergence time. Another limitation of triplet architecture
appears when we only choose easy negative samples (the
negative pair with a very different appearance compared
to the anchor). The explicit difference between the anchor
image and its easy negative pair disables the network to
learn how to perform differentiation between a positive and
a negative sample with similar appearance. Therefore, it is
crucial to select hard negatives to improve the performance.
An instance of hard negative can be a person with similar
clothes with anchor person. Accordingly, it is also important
to use hard positive pairs (e.g., the same person with different
appearance due to pose or viewpoint). On the other hand, if
we choose the “hardest negative” or “hardest positive”, the
network can only learn some outliers of the dataset.

Evidently, the proper sample-set selection is of vital im-
portance for triplet learning. The work in [10] alleviates the
hard mining problem. It first picks P person and K images
per person in a batch. After feeding the P x K images into
the CNN, it obtains feature representations of these images.
Then, it calculates all pairwise Euclidean distances of all
features. For each image, the positive pair is selected as the



image from the same identity but with the largest distance
from the anchor. The negative pair is picked as the image
from a different identity which has the smallest distance
compared to the anchor. In this case, the triplet pairs consist
of the hardest negative and the hardest positive in this mini-
batch. In order to increase the convergence speed, the works
in [19] and [20] consider the moderate negative and the
moderate positive. According to these papers, this technique
also improves the re-identification accuracy.

B. Identification subnet

As discussed above, one of the triplet limitations is the
negative misleading problem, which is shown in Fig. 8.
In order to solve this problem, we propose the multi-task
learning architecture, as illustrated in Fig. 7. In the identifi-
cation subnet, we consider all the samples belonging to the
same identity as a unique label and perform as multi-class
detection learning. With the output of the base network, we
feed the feature representations into a new fully-connected
layer to generate 586-dims feature vectors, as there are 586
different identities in our VesselRelD training set. Then, we
use the softmax function to normalize the feature vectors.
By adding this subnet, the final loss function of our network
can be formulated as follows:

L = )\Ltriplet + (1 o )\)Lidentification )

where L!"Plt — o4+ D 4 p — D 4 according to equation (1)
and Lidentification jg the softmax loss function. The trade-
off parameter A € (0,1). And when A = 0 the final loss
becomes identification loss function. When A = 1 it turns to
pure triplet loss function.

This proposed loss function restricts the CNN such that the
feature representations of the same vessel should be similar
to each other while being different from other vessels.

V. EMPIRICAL VALIDATION
A. Datasets

1) VesselDetection dataset: This dataset is captured in
several places in the Netherlands and Turkey. It contains
11,000 images with 31,078 vessels. Each image is anno-
tated by three labels: bounding box, vessel type, and vessel
orientation. In this dataset, we annotate ten vessel types
based on the captured data in all maritime backgrounds like
river, harbor, sea. As illustrated in Fig. 9, the ten vessel
types are sailing ship, container ship, passenger ship, fishing
ship, tanker ship, river cargo ship, boat, yacht, tug ship, and
taxi ship. Additionally, the orientation labels include front,
front side, side, back, and back side. We divide the dataset
into training set and testing set with 10,000 images (28,260
labels) and 1,000 images (2,818 labels), respectively.

2) VesselRelD dataset: This dataset is captured by two
different cameras in multiple cities in the Netherlands. It
contains 4616 images with 733 different vessels. Each vessel
is represented by more than two images. Also, we annotated
three states of vessels which are normal, truncated and
occlusion. These status are explained in Fig. 10. For example,
the up-left image of the first vessel in Fig. 10 is occluded

by other vessels. The first image of the second ship loses
part of the body which is the truncated. Similar to our
VesselDetection, this dataset is also labeled by bounding box,
vessel model and orientation. Besides, we give a unique id
to each vessel. To fit in our vessel re-identification method,
we crop each vessel from the whole image according to the
annotated bounding box, as shown in Fig. 10.

We split this dataset into two parts for training and testing.
The training set contains 586 identities with 3,651 images,
while testing set includes 147 identities with 965 images.

B. Training

For multi-class vessel detection and orientation recognition
task, we use VGG [21] as our base network and SSD [16] as
our detection approach to localize the vessels in the images
and recognize the vessel categories and orientations. The
image size in the dataset is 1080 x 1920, and we reduce
it to 512 x 512 as the input size. We train the models for
240,000 iterations.

For vessel re-identification task, the base network is
ResNet50 [9] which is pretrained on ImageNet [4] and take
the global average pooling layer as the output. The optimizer
is Adam [13] with default hyper-parameters. We set the
initial learning rate to 0.0003 and exponentially decayed after
35,000 iterations with the total iteration of 50,000, while
the computation of weight decay is followed by the strategy
used in [10]. We select 18 vessel identities and 4 images per
identity to form a mini-batch of size 72. Furthermore, we
insert a dropout layer [22] after the batch normalization layer
[11] for identification subnet to reduce the risk of overfitting.
The trade-off parameter in equation (2) is 0.6 in our model.

C. Testing

To test the vessel detection and classification models, we
use the 1,000 images as the test dataset and predict the
vessel bounding box, vessel type, and vessel orientation. The
confidence score threshold for both vessel type and vessel
orientation is 0.5.

For the vessel re-identification testing phase, we want to
get a feature extractor after training the network. So we
feed a 224 x 224 input image into the network and obtain
the result of batch normalization layer which is a 1024-dim
feature embedding. After we get feature embeddings of all
database images offline, we first collect the query image
feature embedding online and then calculate the distance
between the query image with all database images using
Euclidean distance and rank the result from the smallest to
the largest.

D. Evaluation metrics

There are usually two metrics adopted for pedestrian re-
identification [32]. The first is cumulative matching charac-
teristics (CMC). This metric is calculated by the first matched
appearance position in the ranking list. However, CMC is
accurate only when there is a single image per identity in
the database. Therefore, the second metric mean average
precision (mAP) was proposed by [31]. If there are multiple



Fig. 9: Ten models of vessels. The most left image is sailing ship. The four images in the first row are container, passenger,
fishing and tanker. The five images in the second row are river cargo, boat, yacht, tug and taxi.
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Fig. 10: Three vessel samples of VesselRelD dataset.

Classification | Orientation
TP 2,071 1,979
FP 83 140
FN 747 839
mAP 0.96 0.93
F1 score 0.83 0.80

TABLE I: Results of multi-class vessel detection and orien-

Models mAP Rank1 Rank5 Rank10
Identification 35.32 55.78 73.47 79.59

Triplet 78.36 88.44 97.28 98.64

MTLnet 81.46 | 91.16 | 98.64 99.32

TABLE II: Results of vessel re-identification.

images for an identity in the database, the re-id model should
return all the true matched images. In this case, if CMC
values are the same for two re-id models, the recall is more
significant to evaluate the performance. For multi-class vessel
detection and orientation recognition, we use two metrics to
evaluate our approach, which are mAP and F1-score.

E. Result and Analysis

1) Multi-class vessel detection and orientation recog-
nition: As presented in Table I, in our 1,000 images
with 2,818 labels, our multi-class vessel detection approach
detects 2,071 vessel correctly and only gives 83 wrong
detections. The mAP and F1 measurement are 0.96 and
0.83 respectively. The vessel orientation recognition method

gives 1,979 correct predictions and presents the mAP and F1
measurement by 0.93 and 0.80.

2) Vessel re-identification: To present the actual perfor-
mance improvement performed by our combination models,
we train an identification model with pretrained ResNet50.
Similar to the testing period, we take the output of batch nor-
malization layer as the feature embedding and calculate the
Euclidean distance to find the matched result in the database.
The performance is presented in Table II. Evidently, the
accuracy of mAP or CMC for identification model is very
worse than our proposed model (MTLnet). This is reasonable
because we split 586 classes according to the identities of
vessels in the training set, while each class only has less
than 20 images, especially with different orientations. It
is very tough for softmax function to distinguish so many
different vessels. We also train a triplet model which is
based on the TriNet [10]. We can see there is a huge
improvement compared with identification model. The result
of the mAP for triplet model is two times larger compared
to the identification model. The rankl accuracy increases
by 45% while rank5 and rankl0Q also increase by 63%.
We can conclude that the triplet model is very suitable for
the retrieval task on the small-sized dataset. Generally, the
verification model achieves higher accuracy for vessel re-
identification task with hundreds of identities and dozens of
images per identity. This is because the triplet model takes
three images at a time and compare their difference directly.
But the identification model can only make the difference in
the hyperplane decision.

Evidently, our MTLnet model improves the mAP,
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Rank1, Rank5, and Rank10 to 81.46%,91.16%, 98.64% and
99.32%, respectively. This proves our expectation that the
combination model strengthens the compensatory advantages
and alleviate the complementary disadvantages of identifica-
tion model and triplet model. As we see, the identification
model takes strong labels like ID number into consideration
but does not estimate the similarity between triplet pairs.

Triplet model directly compares the similarity between
triplet images but only uses the weak label of positive pair
or negative pair. Our MTLnet model builds the explicit rela-
tionship by triplet loss using the Euclidean distance between
triplet embeddings. Meanwhile, it also constructs the implicit
relationship by identification loss between all identities in
the dataset. More specifically, our model constrains the final
loss in two aspects. It proposes the feature embeddings of
the same identity should be close to each other and far
away from other identities in the feature space by triplet loss
function. Simultaneously, it restricts the triplet condition in
hyperplane decision that feature representations of the same
identity should be similar to each other and dissimilar to
other identities.

We train our model for 50,000 iterations with an initial
learning rate of 0.0003 with exponential decay after 35,000
iterations. The scores of mAP and CMC are presented
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Fig. 13: The results of different trade-off parameter.

in Fig. 11. We can see the results are not stable before
35,000 iterations, which happens because the learning rate is
relatively large and the model skips some local optimizations.
After 35,000 iterations, the scores tend to be stable and
slightly improve.

We augment our vessel images with randomly cropping
and horizontal flipping in the training phase, like other pedes-
trian re-identification works [1,11] did. We first increase the
image size by % with the same aspect ratio. And then we
crop the image randomly with the original size. Then we
randomly choose to flip the image horizontally. The results
of using data augmentation and without data augmentation
are given in Fig. 12. According to this figure, if we do not use
data augmentation, the mAP result is over 80%. However,
if we augment the vessel images, the performance goes
down to about 76%. This behavior is similar to CMC scores
that the performance is poorer if we use data augmentation.
Nevertheless, in pedestrian re-identification task, the model
improved after using data augmentation [1]. This happens
because training random parts of a vessel does not improve
the model.

We explore the sensitivity of mAP scores and rank1 to the
trade-off parameter A in equation (2). As presented in Fig.
13, our proposed model achieves the best Rank1 performance
when A = 0.5, 0.6 and 0.7. But the mAP is the highest
when A = 0.6. Then we choose this value as our trade-off
parameter.

To pursue the real-time vessel re-identification, we calcu-
late the average time of discovering the same vessel in the
database for a single query image. There are 147 images with
147 identities in our query set and 818 images in the database
set. The total time for all 147 query images is 558.7ms.
Therefore, for a single query image, it only takes 3.8ms
to inquiry the Euclidean distance with all database images
and returns the ranking list which promises the real-time
requirement.



VI. CONCLUSION

In this work, we propose a vessel re-identification ap-
proach to explore the problem of finding the same vessel
in the database with a given vessel image. We first present
a multi-class vessel detection and orientation recognition
model which is based on SSD framework to find the location
of vessels and predict the vessel model and orientation.
Then we propose an improved vessel re-identification model
based on a triplet architecture. This model combines the
advantage of triplet model and identification model that it
can not only learn the explicit similarity between triplet
images with Euclidean distance but also learn the implicit
relationship using the annotated ID labels. The empirical
results demonstrate our approaches outperform the original
triplet model on our vessel re-identification dataset. We
also propose a vessel dataset which is annotated by the
bounding box, vessel category, and vessel orientation. This
dataset is captured in multiple cities in the Netherlands and
Turkey with 11,000 images of 31,078 vessels under different
weather conditions and different time. Besides, we present
another vessel re-identification dataset which is captured in
several places in the Netherlands with two non-overlapped
cameras. Except for the bounding box, vessel category, and
orientation, we also assign a unique id number to each vessel,
while each vessel has at least two images. With the carefully-
annotated 4,616 images of 733 vessels with identity number,
bounding box, vessel category, and orientation, this dataset
can be utilized for further research on vessel re-identification.
For example, we can combine orientation recognition with
the re-identification model to further improve performance.
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APPENDICES
A. Hard positives and hard negatives

In section IV-A, we discuss hard positives and hard
negatives of triplet model. Fig. 14 illustrates some examples
of hard positives and hard negatives. Images with blue border
and red border represent true matched and false predicted
images respectively. The first row is the query vessel im-
ages. Following three images with blue border represent the
top3 matched images in the database. Our MTLnet model
recognizes these true images from the database and gives a
high ranking. The images with the red border are the first
false samples appears in the ranking list, which represents the
hard negatives. We can see the appearances of these vessels
are very close to the query images. In addition, the hard
negative of the left query image has the different orientation
with the query. However, if we observe the two images,
the color of forecastle is the same and the bridge of the
vessel in the two images is also similar. This also proves
that our MTLnet learns the metric that orientation change
has no strong influence on the re-identification, despite this
is a negative image. We can improve this performance in
the future work. The last row is the true matched images
but with the largest distance to the query images, which

Fig. 14: Some of the hardest samples. The top row repre-
sents query images. Followed by the top3 database images
discovered by our MTLnet model. The images with the red
border are the retrieved mistakes (hard negative). The last
row represents the correct matches in the database with the
largest distance to the query images (hard positive).

layer VGG16 ResNet50
name
3 x 3,64
convl_x 3% 3 64 7TX 7,64
maxpool 2x2 3x3
1x1,64
3 % 3,128
conv2_x 3% 3,128 3x3,64| x3
1x 1,256
maxpool 2x2 —
3x3,256 | |1x1128
conv3x | 3 x 3,256 3 x3,128| x4
3x3,256 | 111,512
maxpool 2x2 —
3 x 3,512 1% 1,256
convd_x | 3 x 3,512 3x3,256| x6
3x3,512 | | 11,1024
maxpool 2Xx2 —
3 x 3,512 1x1,512
convS_x | 3 x 3,512 3 x 3,512 %3
3x3,512 | | 11,2048
pool maxpool averagepool
FC 4096 —
FC 4096 —
FC 1000 1000
softmax

TABLE III: Network definition of VGG16 and ResNet50.

represents hard positive. Some of the hard samples are easy
to distinguish for human, but not for the machine, such as the
hard negative image and hard positive image of the middle

query.
B. Image classification network definition

In this work, we use two image classification network as
our base networks, which are VGG16 [21] and ResNet50 [9].
The network definitions of two models are listed in Table III.
In addition, we only take the convolutional layer and fully
connected layer into account. So the layer amount does not
include pool or activation layer. For VGG16, there are 13
convolutional layers and three fully connected layers. For
ResNet50, there are 3 + 4 4+ 6 + 3 = 16 building blocks.
Each building block contains three convolutional layers. As
these two networks are trained on ImageNet [14] which has
1000 object classes, the output of the final fully connected
layer is a 1000-dims vector.

C. Parameters during training process

Fig. 15 - Fig. 18 illustrates four parameters of our MTLnet
model during the training process. Fig. 15 presents the top3
accuracy in a mini-batch. We can see our network learns
the similarity metric rapidly since the accuracy achieves to
100% at around 3000 iterations. The final loss curve in Fig.
16 also illustrates this since it drops rapidly at the beginning.
The triplet loss tends to reduce to 0 and has no enormous
variations, while the identification loss fluctuates but has a
downward trend.
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Fig. 15: The batch top3 predicted accuracy.
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Fig. 18: The triplet loss.
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