
 Eindhoven University of Technology

MASTER

Design, implementation and evaluation of a KPI-driven recommender system based on
predictive process monitoring

Reulink, L.T.W.

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ed3b21e2-ae43-4667-bf46-58a93229c0cb

Design, Implementation
and Evaluation of a

KPI-driven Recommender
System based on

Predictive Process
Monitoring

Master Thesis

Laurens Theodorus Wilhelmus Reulink

Department of Mathematics and Computer Science
Architecture of Information Systems Research Group

Supervisors:
dr. Massimiliano de Leoni (TU/e)

ir. Marcus Dees (TU/e, UWV)
dr. Anna Wilbik (TU/e)

final version

Eindhoven, December 2018

Abstract

Predictive (business) process monitoring is a technique that makes predictions about the future
state of the executions of a business process [17]. Data related to the business process is used to
predict a process’ future outcome state. When a future outcome for a process is predicted, process
managers can use this prediction to assess the performance of the process and decide whether to
use mitigation actions. The performance of a process is determined by Key Performance Indic-
ators (KPI’s). This research presents a methodology that generates predictions about the KPI
of a running process instance. On top of that, this study also introduces a methodology for the
generation of recommendations. The goal of these recommendations is to concretize the required
mitigation actions to prevent negative KPI outcomes.
This study is executed in cooperation with UWV, the Dutch employee insurance agency. The
reintegration process within UWV is used as the case for this study. The main goal of this process
is to help unemployed people get back to work before they run out of their entitled unemploy-
ment benefits. The most important KPI in this process is whether a customer finds a job before
running out of benefits. Data related to the reintegration is used in the design, implementation
and evaluation of a predictive process monitoring methodology that also incorporates the ability
to generate recommendations.
This study shows that techniques for predictive process monitoring can be extended for the gen-
eration of KPI-driven recommendations. This thesis discusses the outline of the methodology and
shows advantages and drawbacks of the system. Suggestions for future work are also provided.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

iii

Preface

First of all I would like to thank Marcus Dees, my supervisor at UWV. Marcus has helped me
out a lot throughout the project. He has helped me settle at UWV and also spend a lot of time
retrieving and improving the data at UWV such that I could keep working on the project. Mar-
cus and I also had a lot of fruitful discussions about the subject during the project, which often
resulted into useful insights. On top of that Marcus has kept me sharp and provided me with the
necessary feedback whenever I needed to.

Next I would also like to thank Massimiliano de Leoni for being my supervisor. Our weekly meet-
ings were very interesting and I am very grateful that Massimiliano made time for me week in
week out. Massimiliano’s feedback was always useful, and together with Marcus, he challenged
me to reach for the top.

I would also like to thank UWV for facilitating this research and providing me with all the re-
sources I needed. I had a great time getting to know the organization, and the people inside it.

I would also like to thank my fellow students Mike de Roode and Teun Graafmans. Without their
help and support I would never have achieved such good grades throughout my master program.
Working with them on projects was always a joy, and they inspired me in many ways.

I would also like to thank my close friends in Eindhoven, who have always believed in me and did
not refrain of expressing their admiration for all the things I was doing.

Finally, I would like to thank my family for the patience they have had with me throughout my
study years. I know they have always wanted the best for me and they kept supporting me no
matter what.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

v

Contents

Contents vii

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Thesis Context . 1
1.2 Research Goal . 2
1.3 Research Approach . 3
1.4 Thesis Outline . 3

2 Preliminaries 5
2.1 Process Mining Principles . 6

2.1.1 Events . 6
2.1.2 Traces . 7
2.1.3 (Outcome-Oriented) Predictive Process Monitoring 7

2.2 Data Mining Principles . 7
2.2.1 Machine Learning: Supervised vs. Unsupervised 8
2.2.2 Machine Learning in Predictive Process Monitoring 8
2.2.3 Agglomerative Hierarchial Clustering . 9

3 Initial Situation at UWV 11
3.1 The WW Reintegration Process . 11
3.2 The Data . 11

4 Prediction of KPI Outcomes 13
4.1 State of the Art . 13
4.2 Design . 17

4.2.1 Preprocessing . 18
4.2.2 Trace Bucketing . 20
4.2.3 Sequence Encoding . 20
4.2.4 Training . 24
4.2.5 Prediction . 25

4.3 Implementation . 25
4.4 Evaluation of the Entire Methodology . 26

5 Recommendation System for Key Performance Indicator Improvement 29
5.1 Concept . 29
5.2 Design . 30
5.3 Implementation . 35
5.4 Evaluation using Historical Data . 35

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

vii

CONTENTS

6 The Koala System 36
6.1 Classification . 37
6.2 Prediction and Recommendation Generation . 43
6.3 Recommendation Tuning . 44
6.4 Improvements & Extensibility . 45

7 Conclusions 47
7.1 Suggestions for UWV . 49
7.2 Future Work . 49

Bibliography 51

viii Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

List of Figures

2.1 A dendogram representing a hierarchial clustering, from [18]. 9

4.1 The offline predictive process monitoring workflow, from [17]. 15
4.2 The online predictive process monitoring workflow, from [17]. 16
4.3 The preprocessing workflow as designed in this research. 17
4.4 The training workflow as designed in this research. 17
4.5 The workflow for the prediction phase in PPM as designed in this research. 17
4.6 Selection of events based on milestone value to generate sequences needed for encoding. 19
4.7 The confusion matrix for the predictions generated by the classifier. 27

5.1 The workflow for the training phase in the methodology for creating prediction and
recommendations, as designed in this research. Next to the classifier a transition
system is also created. 31

5.2 The workflow for the online phase in the methodology for creating predictions and
recommendations, as designed in this research. 32

5.3 A transition system where each state represents the full history of events as a
sequence, from [18]. 33

5.4 A transition system where each state represents the full history of events as a
multiset, from [18]. 33

6.1 The home window of the Koala GUI. 37
6.2 The main window in the training section, after a .csv dataset is uploaded. The

dataset is visualized automatically. 38
6.3 The dialog window for setting the main attributes. 39
6.4 The dialog window to select the categorical features. 40
6.5 The dialog window to select the numerical (or continuous) features. note that the

attributes that are selected in fig. 6.4 are no longer available. 40
6.6 The dialog window to select the events to use as recommendations. 41
6.7 The results of the grid search on the uploaded dataset as showed in Koala. The

proper model can be saved here. 42
6.8 The main window within the ’Generate Recommendations’ part of the GUI. The

model and dataset are already loaded here. 43
6.9 The screen where recommendations can be tuned. A recommendations source file

as generated by Koala is already loaded here. 44

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

ix

List of Tables

4.1 A selection of the aggregated event attributes in the dataset after feature engineering. 23
4.2 Parameters and statistics for the created random forest classifier. 26

x Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

Chapter 1

Introduction

Data can be a powerful resource to monitor, analyze and improve business processes. Many or-
ganizations are sitting on large amounts of data and are not always using this data to its full
potential. Data science is the field of study that creates value out of data. Data and process
mining techniques are examples of applications of data science in practice, along with machine
learning. One type of machine learning algorithms can generate models which have great pre-
dictive power when trained properly. One of the predictions such a model can make is what the
outcome of a process is going to be. This outcome is measured in the form of Key Performance
Indicators (KPI), which state when and to what extend the outcome of a process is satisfactory
as defined by its stakeholders. Using predictions to analyze and monitor running processes early
is called predictive process monitoring. Gaining insights in KPI outcomes, especially early on in
the process, can have great benefits for organizations. For example, process managers can opt
to interfere in the process if it is moving towards an unfavorable outcome. Being able to predict
process outcomes with respect to a certain KPI can help to prevent problems and achieve overall
better results.

When an organization is able to identify high risk process instances, it can also act on them.
A next step in the management of these processes is to be able to steer the process instance into
the right direction. Again, process data can be used to find the best ways to positively influence
a process. When knowing which actions to undertake process managers and organizations as a
whole have the opportunity to manage their processes in a different way. Data can be used to
find the actions to take within a process. This thesis focuses on leveraging data mining techniques
to monitor process executions to predict their expected KPI outcome and, when negative, enact
appropriate mitigation action.

1.1 Thesis Context

This research is facilitated by UWV (Uitvoeringsinstituut Werknemersverzekeringen), which is
the Dutch employee insurance agency. This government body is responsible for the handling of
employee insurances in the Netherlands [1]. One of UWV’s responsibilities is the handling of
unemployment insurances under the Unemployment Insurance Act (WW, or Werkloosheidswet
Werknemers). One of these aspects is helping people get back to work, a process called the
reintegration process. Process data related to the reintegration of a customer is used for the
development of the methodology described in this thesis. The reintegration process starts when
a person who recently got unemployed makes a claim on the insurance. The process can end for
multiple reasons, for example when the unemployed person finds a new employer or when the
process reaches the point in time where the person is no longer entitled to receive social security
benefits. The latter implies that the process has a max duration for each case. After surpassing
this max duration, the customer automatically leaves the process and ends up receiving only

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

1

CHAPTER 1. INTRODUCTION

welfare payments, which are usually way lower than the social security under the WW. This is a
very unfavorable outcome for both UWV and the unemployed person. Whether a process instance
is going to reach this max duration is one of the important key performance indicators for this
process. Within the reintegration process UWV provides services to help people get back to work
as fast as possible.

1.2 Research Goal

UWV sits on huge amounts of data related to the reintegration process and wants to use this data
in order to be able to predict the process outcomes. It also wants to know when and how to act
on it. Having a system in place that can predict KPI’s can be very valuable to UWV. One of the
KPI’s is the actual reintegration of a customer, e.g. whether a customer finds a new job before
running out of benefits. People who might need extra attention can now be identified. UWV’s
also uses work coaches, to help customers in their attempts to get back to work. These coaches
can use KPI predictions of running cases to identify risky cases such that they can better divide
their time. Therefore, UWV wants to be able to predict what the outcome is going to be for each
of the process instances. Business owners at UWV want to know if the data that is currently
available can be used to develop a system than make predictions on process related KPIs. In the
case of UWV the most important KPI is whether a process is successfully completed, i.e. whether
a person finds a new employer. The latter would be the case when a person has used up all
its entitled months of benefit payments and proceeds to the welfare process. Therefore, the first
research goal of this thesis is:

Research Goal 1: Analyzing, processing and transforming process data and create a reliable
prediction model for process instance outcomes.

The methodology that can predict process outcomes should also be extendable to other processes,
organizations and with different types of KPIs. Hence, this research tries to create a methodology
for UWV that could also be applied to other cases.
Once high risk cases can be identified, the work coaches at UWV might want to focus their energy
on the high risk cases and help these people with services that are more tailored to them. A recom-
mendation system is needed that can suggest which activities can best be executed in a specific
case at a certain point in time. Therefore a second goal is to generate a system that can generate
recommendations for customers taking into account how these customers have been dealt till that
moment. These recommendations are elements of the designed process and should decrease the
predicted risk and as a result increase the overall performance of the process as described in the
form of KPI’s. Subsequently, the second goal of this research is:

Research Goal 2: Create a methodology that can generate tailored recommendations in the form
of executable process elements in order to improve process KPI values of a process.
Once again this methodology is more valuable when it is applicable in other situations.

To make the techniques accessible for business owners and other end-users a graphical user inter-
face (GUI) must be generated. This GUI must be easy to use and incorporate all basic functions
of both the prediction and recommendation systems. The GUI must be able to process data
sets into a new prediction model. It must also be able to evaluate running cases and generate
recommendations for these instances. A prototype for such a graphical interface must be created.
Therefore, the third research goal is:

Research Goal 3: Create a prototype for a graphical user interface that incorporates both the
prediction and recommendation system for a process.

This GUI should be reusable and work on new process data, whenever this becomes available.

2 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 1. INTRODUCTION

Therefore, the GUI is kept as general as possible such that it is usable with different datasets
containing process data.

UWV also wants to know, in the case of a successfully developed prediction and recommendation
system, if such systems could be implemented and if it would function in practice. In order to
evaluate the usefulness and quality of such systems employees that work within the process must
be addressed. Their opinions and expert knowledge on this matter might prove meaningful. The
employees for which such a system is most relevant in the case of UWV would be the work coaches.
The fourth and final research goal of this thesis focuses on this problem.

Research Goal 4: Identify the opinions of UWV work coaches on the usefulness, feasibility and
quality of the developed prediction and recommendation system.

1.3 Research Approach

In order to reach these goals the project is divided in multiple phases. In the first phase the
available data is analyzed, after which a preprocessing algorithm is developed that prepares the
data for machine learning. Consecutively, different machine learning techniques have been applied
to the data to find the best predictor model. The predictor model is evaluated in order to achieve
Research Goal 1.
The prediction technique generated in the first stage proved useful to generate the recommenda-
tions. To fulfill Research Goal 2 the sequence of activities that happened in a running process so
far is extended with another activity, as if that activity is the first activity that happens next. A
prediction for this hypothetical scenario is made using the predictor model. The prediction is used
to see if the added activity results in lower risk levels compared to the original prediction. When
this is the case, it can be concluded that the activity that was added does have a positive effect
on the KPI of the process, hence it is an activity that could be recommended. For each possible
recommendation and each unique process instance these steps must be repeated, resulting in a
large set of combinations that need to be tested. In order to cope with this complexity additional
solutions must be developed. These solutions must also take into account that only activities that
are meaningful from the business perspective are included in this analysis. The recommendations
are eventually tested with historical data to check whether they have happened before in similar
cases and, if so, if they improved the chances of a positive process outcome.
To develop the GUI required for Research Goal 3 a set of mockups is created to establish the
general design. The mechanics of the prediction and recommendation system are optimized to
work within the GUI. After evaluating the best Python programming packages for creating graph-
ical user interfaces, the mockups are implemented. After some rounds of evaluation, additional
functionalities are build into the design, which is eventually tested for flaws and further optimized.
For the fourth research goal a survey has been developed to be conducted among work coaches to
address their opinions about the systems. However, reactions from business owners and managers
on the contents and direction of the survey in an early evaluation of the setup of the survey were
negative. There, the Research Goal 4 was not fully achieved due to external circumstances. Still
we aim to sketch the results obtained in this respect and the direction to continue in to reach the
goal.

1.4 Thesis Outline

This thesis is structured as follows. Chapter 2 introduces aspects from process mining, data mining
and machine learning this research builds upon.
Chapter 3 sketches the current situation at UWV with respect to the process that is analyzed, as
well as the process data that is available for this research.
Chapter 4 describes the methodology used to create prediction model for process outcomes as well
as the evaluation of a model generated using the methodology. Implications for the GUI are also

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

3

CHAPTER 1. INTRODUCTION

discussed here.
Chapter 5 describes how the recommendation system is created and how the data is interpreted
to generate meaningful recommendations. An evaluation of these recommendations based on
historical data can also be found here as well as details on GUI implementation.
Chapter 6 describes shortly how the GUI was created and which functions are included. This
chapter also shows the most important aspects of the final design.
The outcomes of this research are discussed in the conclusive chapter 7.

4 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

Chapter 2

Preliminaries

This research builds on topics from many academic fields of study. The most prominent academic
fields in this research are those of process mining and data mining. The difference between pro-
cess mining and data mining is often hard to formulate because they overlap in multiple ways.
They are both centered around data and use similar algorithms and techniques. Process min-
ing is about analyzing process data and differs from data mining on the fact that temporal and
sequence-related aspects play a predominent role. Where data mining works with the data in
general, process mining is concerned with data about events, which hold the information about
the processes they belong to [19]. Although this project does consider the data as process data at
first and start from a process mining perspective, the actual techniques used later on in the project
fit better in the data mining perspective. Therefore this thesis can not be placed in one or the
other perspective. Since it definitely uses aspects from data mining and statistics as well, it can
better be described as a research in the field of data science, which combines elements from process
mining, data mining and other related fields of study into a broader perspective. [18] defines data
science as follows:

”Data science is an interdisciplinary field aiming to turn data into real value.” ... ”Value may be
provided in the form of predictions, automated decisions, models learned from data, or any type
of data visualization delivering insights. Data science includes data extraction, data preparation,
data exploration, data transformation, storage and retrieval, computing infrastructures, various
types of mining and learning, presentation of explanations and predictions, and the exploitation of
results taking into account ethical, social, legal, and business aspects.”

From this definition it becomes clear that data science is not just mining the data for models, but
also taking into account all transformations both data and intermediate outputs might undergo,
before actually bringing value to the business. Van der Aalst [2] names four questions data science
can help answer:

1. What happened? (Reporting)

2. Why did it happen? (Diagnosis)

3. What will happen? (Prediction)

4. What is the best that can happen? (Recommendation)

This research aims to provide means to answer the last two questions in this list. It can be cat-
egorized in the direction of prediction and recommendation since the main goal of this research is
to develop systems than can make predictions and/or recommendations from process data. But,
in order to actually start answering these questions, the process data needs to be understood, ex-
plored and transformed first. Before this can be done, a deeper understanding of certain concepts
in data science is needed.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

5

CHAPTER 2. PRELIMINARIES

This chapter will discuss the elements of data science which are preliminary to the rest of this
research. Together, these preliminaries will provide in understanding the concepts introduced in
this thesis.

2.1 Process Mining Principles

This section describes the basics of the principles which originate from the field of process mining.
Process mining as defined in the Process Mining Manifesto is the set of techniques, tools, and
methods to discover, monitor and improve real processes (i.e., not assumed processes) by extracting
knowledge from event logs commonly available in today’s (information) systems [21]. Event logs
contain the data belonging to at least one process instance or case. Each activity that takes place
in a process instance is recorded into a database. One such activity is called an event record, which
represents the execution of a specific activity in a business process [17]. A trace is the sequence of
all stored event records for one specific case. The concepts of cases, traces, events and event logs
are explained below.

2.1.1 Events

A case is a process instance, one execution of a business process. For example, one handling of
a mortgage at a bank for a certain customer is one case of a mortgage request handling process.
Each activity in a case is recorded as an event. These events contain information about the activity
in the form of attributes. For example, in the mortgage process, the application of the mortgage
request at a bank employee is such an event. Teinemaa et al. [17] name three attributes that are
always stored in an event record. These are:

1. The event class (or activity name) of the event, to identify what activity has been executed.
For example, in case of the application of a mortgage the label would be ’Application’.

2. The timestamp of the activity, i.e. the date and time the activity is executed.

3. The case id or unique id of the process instance the activity belongs to. For example, when
an application for a mortgage is requested at the bank, a process instance starts and the
customer is assigned a case number which functions as the case id.

Through these three attributes a representation of a process as a sequence of events over time
can be constructed. Next to the attributes introduced above, event records can also contain a
number of other attributes which contain information either related to the case the event belongs
to (case attributes) or the event itself (event attributes). Case attributes are static attributes that
contain information about the case that does not change over time. For example, in the mortgage
handling process at a bank such an attribute would be the amount of money requested within the
mortgage or the annual income of the customer requesting the mortgage. Event-specific attrib-
utes are directly related to the specific activity in the event record. For example: when an order
is taken in a restaurant ordering process,the type of drink ordered would be an event attribute.
Event-specific attributes change from event to event, and thus are dynamic in nature.

All the attributes related to the event form the definition of an event [17]:

Definition 2.1. (Event) An event e is a tuple (a, u, t, (d1, v1), .., (dm, vm)) where
λA(e), λU (e), λT (e) are functions that return the activity label a, the unique identifier u of the
case the event belongs to and the timestamp t of an event. The tuples (d1, v1), .., (dm, vm) where
m1 are all combinations of names and values belonging to either an event attribute or case attrib-
ute.

All events belong to the universe of events E .

6 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 2. PRELIMINARIES

2.1.2 Traces

A process instance can be described as a sequence of events belonging to that instance, or a series
of activities belonging to one specific case which have happened in direct succession of each other.
This sequence of events generated by a process instance or case is called a trace [17]:

Definition 2.2. (Trace) A trace is a non-empty sequence σ = 〈e1, .., en〉 ∈ E∗ of events, such
that ∀ei, ej ∈ σ : λU (ei) = λU (ej, which implies that all events in a trace share the same unique
identifier, thus are part of the same case.

The set of all possible sequences within an event log is E∗. The set of traces is called an event log.

A sequence can be extended with additional events whenever a new activity is executed within a
process instance. This can be defined as the concatenation of an element and a sequence:

Definition 2.3. (Concatenation) Given a sequence 〈e1, .., en〉 and an element ex the concaten-
ation of the sequence and the element 〈e1, .., en〉 ⊕ ex = 〈e1, .., en, ex〉.

The focus of this research is on the outcome of processes. Each completed process instance has
such an outcome, and therefore also each trace has a such an outcome. Key performance indicators
express whether a trace outcome is satisfactory from a business point of view. A definition of a
KPI is given below [13]:

Definition 2.4. (Key Performance Indicator) Let L be an event log. Let U be the set of
possible values for a key performance indicator. A key performance indicator is a pair (k,K)
consisting of a function k : L → U that assigns a KPI value k(σ) to each trace σ and of a set
K ⊂ U that contains the KPI values that are satisfactory from a business point of view.

Note that in this definition it is only known whether an outcome is satisfactory or not, which is
a binary decision. Definition 2.6 defines another solution for process outcome, which allows for
tertiary and higher dimensions of outcomes.

2.1.3 (Outcome-Oriented) Predictive Process Monitoring

When a value k(σ) is known, set K can be used to evaluate if a case was either successfully or
unsuccessfully completed. By making predictions on these KPI values the likelihood of a success-
ful case completion can be predicted as well. These predictions can be placed into the field of
business process monitoring. Business process monitoring is the act of analyzing events produced
by the executions of a business process at runtime, in order to understand its performance and
its conformance with respect to a set of business goals [6]. When making predictions of the fu-
ture state of a process at runtime, the performance of the process at runtime can be addressed.
If a process is likely to complete with an unsatisfactory outcome, action is needed. When this
prediction technnique is used for process monitoring, it is called predictive process monitoring.
Predictive (business) process monitoring techniques go beyond traditional business process mon-
itoring techniques by making predictions about the future state of the executions of a business
process [17]. When this future state is the final state (or outcome) of a case this monitoring is
called outcome-oriented predictive process monitoring. This thesis falls directly into this field.
In order to be able to make predictions, techniques from the field of data mining are needed. This
shows how process mining aspects as described above can be directly related to aspects in data
mining. Principles from data mining used in this thesis are described in the next section.

2.2 Data Mining Principles

Data mining is described in [3] as ”the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel ways that are both understandable
and useful to the data owner”. In data mining, the input data is typically given as a table and

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

7

CHAPTER 2. PRELIMINARIES

the output may be rules, clusters, tree structures, graphs, equations or patterns [18]. The input
data in this definition might as well be process data, if necessary in a transformed form.
To get to these outputs from the original data, machine learning is one of the techniques that
can be applied. Machine learning is often mistaken as a synonym for, but is merely one of the
techniques used in or in addition to data mining.

2.2.1 Machine Learning: Supervised vs. Unsupervised

Machine learning can be divided into supervised and unsupervised learning. Supervised learning
assumes labeled data, i.e., there is a response or dependent variable that labels each instance [18].
A common technique in supervised learning is predictive modelling, in which a predictive model
is learned from the data. Predictive models have the specific aim of allowing us to predict the
unknown value of a variable of interest given known values of other variable [3]. These models can
predict categorical variables (classification) or continuous variables (regression).
In unsupervised learning a labeling is absent, so it’s main focus is discovery. In other words, unsu-
pervised learning aims to gain new insights from the data. One of the techniques in unsupervised
learning is clustering, which examines the data to find groups of instances that are similar [18].

2.2.2 Machine Learning in Predictive Process Monitoring

Recall that in outcome-oriented predictive process monitoring, the outcomes of unfinished cases
are being predicted. These unfinished cases are represented as traces of an incomplete process, or
a partial trace. Such partial traces are called prefixes. A prefix of a trace is defined as [17]:

Definition 2.5. (Prefix) Let σ be a trace with events 〈e1, .., en〉. Let l be a integer 0 ≤ l ≤ n.
Then the prefix of length l is denoted as prefix(σ, l) = 〈e1, .., el〉.

In predictive process monitoring the outcome of a prefix is to be predicted. This outcome can
be defined as the outcome value of a trace generated from the KPI function k(σ). Recall that K
is the set of all positive KPI outcomes. When k(σ) ∈ K than the outcome of the process is a
success. Whether a process instance ends with a success, is what actually needs to be predicted.
Therefore, class labels are used. A class label expresses the outcome of a process according to a
business goal [17]. So it expresses whether the business goal is met with respect to a KPI, i.e.,
it expresses if the outcome of a process was positive or negative. Note that this is not always a
binary situation, as mentioned earlier. E.g., an outcome can also be indecisive. It depends on the
specification of the business goals. When a set of traces and their outcome labels are known, e.g.
by checking if k(σ) ∈ K, the following can be defined:

Definition 2.6. (Labeling Function) Let L be an event log. A labeling function y : L → Y is
a function that maps a trace σ ∈ L to its class label y(σ) ∈ Y with Y being the domain of the
class labels. When predicting the outcomes, Y is a finite set of categorical outcomes. For a binary
outcome Y = {0, 1}, e.g. 0 implies a failure, and 1 a success.

With the prefixes and labels of unfinished traces known, machine learning can be used to train a
model than can predict the outcome class label from a prefix. Because the data here is labeled,
this is a supervised machine learning problem. A classification algorithm can be used to create a
predictive model. Such algorithms use a vector of variables, called features, to train a model. In
order to translate a sequence of events into a vector, a certain encoding is needed [17]:

Definition 2.7. (Sequence Encoder) A sequence encoder f : L → X1 × ... × Xp is a function
that takes a (partial) trace σ and transforms it into a feature vector in the p-dimensional space
X1 × ...×Xp with Xj ⊆ R, 1 ≤ j ≤ p being the domain of the j-th feature.

Some features in the vector represent the sequence of activities. The features can represent the
order of the activities in the sequence or the count of each activity in the sequence. These are
control-flow features. Some features in the feature vector correspond to case and event attributes.

8 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 2. PRELIMINARIES

Figure 2.1: A dendogram representing a hierarchial clustering, from [18].

These can be the values of the attributes at the last event in the prefix, but they might also be a
cumulative value of all the events up to the last event. How this encoding is applied and to which
events and attributes is a design decision made by the data scientist/researcher that is working
with the data. Many alternatives might have to be tried in order to end up with the best suitable
encoding for the data that is available. Business knowledge of the process is often needed to make
these decisions.

When a proper encoder has been set a classifier is trained through machine learning. A classifier
can be defined as [17]:

Definition 2.8. (Classifier) A classifier cls = X1 × ... × Xp → Y is a function that takes an
encoded sequence and estimates its class label.

Once a classifier is trained, the classifier can be applied to the traces of running processes in order
to determine if a process is likely to succeed with respect to the business goal. By doing this a
process manager can monitor how the process is doing and whether action is needed to steer a
process towards a more favorable outcome.

2.2.3 Agglomerative Hierarchial Clustering

A common practice in machine learning is clustering, which is the task of partitioning a dataset into
groups, called clusters [14]. The goal is to split up the data in such a way that points within a single
cluster are very similar and points in different clusters are different. Clustering algorithms assign
a number to each data point, indicating which cluster a particular point belongs to, similar to a
classifier as mentioned above. A very straightforward clustering technique is hierarchial clustering.
This creates a hierarchy of clusters, where each cluster is part of a higher order cluster. A common
type of hierarchial clustering is agglomerative hierarchial clustering, where each instance starts in
its own singleton cluster. Then pairs of clusters are formed by searching for the nearest cluster.
The joined cluster is then moved up in the hierarchy. This is repeated until all instances are in the
same cluster [18]. The result in a graphical representation in the form of a tree shaped dendogram.
A dendogram is shown in figure 2.1.
Figure 2.1 also shows a horizontal line. This line represents the chosen level of clustering. Moving
this line up and down in the dendogram results in larger or smaller clusters. Finding the optimal
level can be found by applying internal clustering measures, which validate the quality of clustering.
To optimize a hierarchial clustering, the Silhouette Score and the Calinski-Harabasz index(CH)
can be used. The Silhouette Score validates the clustering performance based on the pairwise
difference of between- and within-cluster distances [11]. The Calinski-Harabasz index evaluates
the cluster validity based on the average between- and within-cluster sum of squares. By varying
the level of a hierarchial clustering up to the point where both the Silhouette Score and CH-index
are maximized the optimal level can be found.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

9

Chapter 3

Initial Situation at UWV

3.1 The WW Reintegration Process

Removed for confidentiality reasons.

3.2 The Data

Removed for confidentiality reasons.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

11

Chapter 4

Prediction of KPI Outcomes

Now the context of the reintegration process at UWV is clear and the process data is prepared,
a predictive model for KPI’s can be generated. In chapter 2 outcome-oriented predictive process
monitoring has been introduced. In order to get to a predictive model that is usable in practice,
there is a number of steps that is usually taken in predictive process monitoring. This Chapter
defines a methodology which defines the steps that are used to create a predictive model and how
it is used in the monitoring of the reintegration process at UWV. To start, Section 4.1 discusses
(Outcome-Oriented) Predictive Process Monitoring in more detail. The state of the art in academic
research is discussed here. It also introduces a baseline framework for outcome oriented predictive
process monitoring as introduced by Teinemaa et al. [17]. This framework is the baseline of the
methodology created and presented in this research. Section 4.2 builds upon this framework and
discusses the design of the methodology. Then the implementation of the methodology using the
UWV data is discussed in Section 4.3. Conclusively, an evaluation of the methodology using the
UWV process data is given in Section 4.4.

4.1 State of the Art

The last couple of years have seen an increase in studies related to predictive process monitoring.
Interestingly, each research has its own view on predictive process monitoring (PPM). In related
work there are differences in the type of predictions that are made, as well as differences in the
techniques that have been used to get to these predictions such as groupings of traces, encodings
of traces and prediction techniques. With respect to the types of prediction, Tax et al. [16] define
three groups in PPM: 1) case outcome predictions, 2) time-related predictions and 3) prediction
of continuation of a case and/or related characteristics. Examples of time related predictions are
delays, deadline violations or prediction of the remaining life cycle of a running case. Examples
of continuation predictions are predictions of the next event in a trace and/or its attributes. This
thesis focuses on the prediction of case outcomes only, therefore literature related to only outcome-
oriented predictive process monitoring is discussed further.
According to Tax et al. the goal of outcome-oriented approaches is to predict cases that will end
up in an undesirable state. Senderovich et al. [15] define Outcome Oriented Predictive Process
Monitoring as:

Definition 4.1. Given a (possibly) running case σx, the predictive process monitoring problem is
to find a function f : E∗ → Y that accurately maps σx to the corresponding outcome label y(σx).

Note that the function introduced in Definition 4.1 is similar to the function for the labeling func-
tion in Definition 2.6 as introduced in the preliminaries of this research. The two definitions differ
since Definition 4.1 defines PPM as the process of finding a labeling function, where Definition 2.6
defines the function itself. Different papers address the predictive process monitoring problem but
each of them uses a slightly different approach to solving it. Teinemaa et al. [17] have done a liter-
ature review on outcome oriented predictions in the field and have identified the most important

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

13

CHAPTER 4. PREDICTION OF KPI OUTCOMES

steps in PPM. The first step in solving this problem is identified as prefix extraction and filtering.
In most studies prefixes are extracted directly from the event log as partial traces, but different
approaches to generate the partial traces are taken. Some studies only consider the first certain
number of events of a trace. For example, prefixes with fixed-lengths up to respectively 20 and 21
events are used in the studies by Leontjeva et al. [10] and Di Francescomarino et al. [5]. Another
approach is used in Di Francescomarino et al. [8]. Prefixes of multiple lengths are extracted based
on a certain gap between events. The resulting prefixes all have a length which is equal to a
multiple of numbers within a gap, e.g. when the gap is 5 events, the prefix lengths will be 5,
10, 15 and so on. According to [17] this approach is especially suitable when smaller prefix logs
are needed for example when calculations need to be efficient, or when dealing with already large
event logs.
Prefix extraction is often followed by trace bucketing as concluded by Teinemaa et al. [17]. In
trace bucketing groups of prefixes, called buckets, are created. This is done in approaches where
multiple classifiers are trained. While making a prediction on a running case, the case is assigned
to a bucket and then the appropriate classifier is used to make the prediction. In a single bucket
approach all prefixes are stored in a single bucket and only one classifier is trained. This approach
is suitable when process data is regularly refreshed and classifiers are trained on a regular basis.
Another situation would be when large numbers of running cases are predicted at the same time
such that applying a single classifier to all of them at once is more efficient. A popular approach
to creating multiple buckets is clustering. Maggi et al. [12] use K-nearest clustering to divide the
prefixes into buckets based on how similar they are. Interestingly, in this approach the bucketing
is done in the online phase, and the offline phase is skipped entirely. The bucket with prefixes most
similar to a running case is identified after which the classifier is trained and the case outcome is
predicted. The downside of such an online approach is that it can be very time consuming when
making predictions for large sets of running cases, since for each prediction a classifier needs to be
trained. Di Francescomarino et al. [8] and Verenich et al. [20] experiment with different clustering
approaches in the offline phase. Another approach to bucketing is using buckets of prefixes of
equal lengths, often resulting in many buckets, hence many classifiers that need to be trained, as
seen in the study by Leontjeva et al. [10]. Verenich et al. [20] combines prefix-length bucketing
with clustering and applies clustering after prefix-length buckets have been created, resulting in
even more buckets. Sometimes buckets are created by simply using domain knowledge to make
the distinction [17]. This is often done when different scenarios of a process need to be analyzed,
such as different process contexts or prefixes that are in different execution stages of the process.
Another approach is the state-based approach introduced by Lakshmanen et al. [9], where import-
ant states are derived from a process model, e.g. a transition system or Petri net. These states are
often important decision points in a process, after which the process moves into a certain direction.
Prefixes can be considered to be at a certain decision point based on the sequence of events that
have occurred, and are therefore belonging to a certain bucket. A classifier is then trained for
each of these buckets. This approach is suitable when a proper process model is available or can
be generated from the event log through process mining.
After trace bucketing the next step in PPM is the encoding of the prefixes in each bucket into a
feature vector(trace encoding or sequence encoding, see chapter 2). Again, multiple approaches are
used to realize this in relevant literature. As shown in chapter 2 a trace consists of case attributes
and event attributes. A different encoding is needed for event attributes since these are dynamic in
nature while the case attributes are static and do not change with each event execution. The case
attributes can therefore just be added to the feature vector without the loss of information [17].
A way to deal with the event attributes is to use last state encoding, which takes a snapshot from
the data at the last available moment, i.e. the values of attributes as stored with the last event in
the prefix are included in the feature vector. A requirement of this technique is that the feature
vector includes all possible event attributes. Last state encoding is a popular encoding technique
as it is used in many studies [8, 9, 12] where De Leoni et al. [4] mention it as one of the trace
manipulation solutions they suggest in the paper. A downside of this technique is that everything
that has happened prior to the last event is left out. Teinemaa et al. [17] suggest to use the values
of the attributes in the last m states as well, making the feature vector increase m times. Another

14 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 4. PREDICTION OF KPI OUTCOMES

Figure 4.1: The offline predictive process monitoring workflow, from [17].

solution for the drawbacks of last state encoding is to use a different encoding technique called
aggregation. In aggregation all previous events are considered but the order is neglected, which is
also the drawback of this technique. In the aggregation of the execution of events each possible
event label is a feature in the feature vector. These features can be assigned an integer value based
on the frequency of the event in the prefix(frequency-based encoding). Frequency-based encoding
has been used in the studies of Di Francescomarino et al. [5] and Leontjeva et al. [10]. Another
option is to assign a boolean value to each event label in the feature vector which represents if
that event has happened or not(boolean-based encoding) [4,17]. According to Leontjeva et al. [10]
frequency-based encoding outperforms boolean-based encoding. Aggregation techniques can also
be used on the values of event attributes in the form of using means, minimums, maximums and
sums of the values of these attributes throughout the trace [4]. If the order of the events needs
to be preserved in the feature vector, a technique called index-based encoding can be used. This
technique creates a feature in the vector for each event attribute for each event execution in the
trace, i.e. for each index [17]. A major drawback of this technique is that it can only be used
to prefixes with equal lengths, like in fixed-length buckets. Leontjeva et al. [10] did propose this
encoding and it is also used in the study of Verenich et al. [20].
When prefixes have been encoded, in most studies on PPM a classifier is trained through ma-
chine learning which is then used to predict outcomes on running cases. Different classification
algorithms have been used in different studies. The decision tree classifier yields results that are
easy to interpret and is used in multiple studies [4, 5, 9, 12]. Another popular algorithm is the
random forest algorithm, which creates many different decision trees with a random selection of
features, hence the randomness in ”random forest”. The eventual prediction generated by a ran-
dom forest classifier is the aggregated prediction of all these decision trees. In general random
forest have better accuracy than a single decision tree but its results are harder to interpret [17].
Leontjeva et al. [10] have used random forests to make predictions as well as a techniques called
gradient boosted regression (GBM) and support vector machines(SVM) but these techniques did
not perform as good as random forest classification. Fernandez-Delgado et al. [7] have evaluated
a large variety of classifiers on multiple datasets and they conclude that random forest algorithms
generally perform best, but not significantly better than support vector machines. Out of the top
five tested classification algorithms three are random forest algorithms and two are support vector
machines.
When a classifier has been trained it can be used to predict the outcome of a running case. The
proper bucket is assigned to a running cases and the classifier trained for that bucket is then used
to generate a prediction. A classifier usually returns the outcome value of the prediction itself as
well as the probability of that outcome.

The state of the art shows that there are multiple steps and multiple ways of executing these steps
in order to create a working predictive process monitoring system. Therefore it is used to decide
on the techniques that are going to be used in the design of prediction system as discussed later
on in the chapter.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

15

CHAPTER 4. PREDICTION OF KPI OUTCOMES

Figure 4.2: The online predictive process monitoring workflow, from [17].

A Framework for Predicitive Proces Monitoring

Teinemaa et al. [17] have analyzed a lot of the techniques mentioned above and identified the most
common steps in PPM. These steps are embedded into a graphically represented set of workflows,
consisting of both an online and an offline workflow. Figure 4.1 shows the offline workflow in
predictive process monitoring according to the framework defined by Teinemaa et al. Prefixes
are extracted, grouped into buckets, encoded into feature vectors and eventually a classifier is
trained for each of the buckets. In the online phase, a running trace is assigned to one of the
buckets created in the offline phase. Then the running trace is encoded such that the already
trained classifier for the determined bucket can interpret the prefix. The classifier than makes a
prediction. The online phase as defined by Teinemaa et al. is shown in figure 4.2.
From these workflows is is assumed that classifiers are trained offline and then applied an online
setting. Online training of classifiers as in [12] can be seen as a combination of the two workflows
where a running case is placed into a bucket with similar traces for which a classifier is trained.
This framework functions as the baseline of the methodology presented in this thesis.

16 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 4. PREDICTION OF KPI OUTCOMES

Figure 4.3: The preprocessing workflow as designed in this research.

Figure 4.4: The training workflow as designed in this research.

Figure 4.5: The workflow for the prediction phase in PPM as designed in this research.

4.2 Design

The methodology for predictive process monitoring introduced in this research is a derivative of
the earlier presented workflow defined by Teinemaa et al. [17]. The offline and online phase for
PPM are updated and a separate standardized workflow for preprocessing of the data is introduced.
With respect to the workflows introduced in [17] the offline workflow is split up into a preprocessing
workflow and a training workflow, which both take place in an offline setting. The online workflow
is also updated and now includes additional preprocessing steps needed for making predictions.
The online workflow is also renamed to prediction workflow. The preprocessing workflow, the
training workflow and the prediction workflow are shown in figures 4.3, 4.4 and 4.5.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

17

CHAPTER 4. PREDICTION OF KPI OUTCOMES

In the preprocessing phase an event log is transformed into set of feature vectors that represent
prefixes of the traces in the log. The preprocessing starts with the generation of milestones.
Milestones resemble the length a process with respect to its duration up to some point. When a
process has been running for a certain amount of time it has reached a certain milestone. The
process reaches a new milestone with the passing of each new month, week or any other time
interval in the process. The milestones are generated by calculating the milestone value for each
new event in a trace, and storing it as an attribute of the event. Next, these milestone values are
then used to easily create prefixes resembling process executions of a certain duration. However,
a prefix log, like in the workflow in Figure 4.1, is not created. In the proposed methodology this
step is skipped and prefixes are encoded into a feature vectors directly from the event log using
the milestone values stored in each event. For each milestone all the events in a trace up to the
last event belonging to a certain milestone are selected and immediately encoded into a feature
vector. The milestone value of the prefix is an attribute in the feature vector itself. The result is
a prefix feature vector (or encoded prefix) for each milestone the process has reached. Doing this
for each trace in the log results in a set of prefix feature vectors that is used to train the classifier.
With respect to the workflow in Figure 4.1 buckets of prefixes are not created. A single classifier
is trained on a single bucket containing all prefix feature vectors in the event log.
In the training phase automatic feature selection is applied to decrease the number of variables
used to train a classifier. Only the best features are selected to be used in training the classifier
and the features that are not used are filtered out. Then, on the filtered dataset a hyperparameter
tuning is applied to find the optimal parameters for the classification algorithm that is going to be
used to train the classifier. The best parameters are then used to train a classifier on the filtered
dataset. Along with the classifier, a metadata file is generated that stores which features are used
and in which order. This metadata is used in the prediction phase to format new process data in
the exact same way such that the classifier can interpret the data to make predictions.
When making predictions with the classifier the encoding of running cases must be the same as for
the traces that are used to train the classsifier. Therefore, the milestone values are generated for
running cases as well but here a prefix feature vector is created using all the events of a running
case. The same encoding as in the preprocessing phase is used. Then the metadata belonging
to the trained classifier is used to remove and rearrange the features in the set of prefix feature
vectors such that the classifier interprets the vectors properly. Eventually, the classifier is used to
make predictions. The result is a predicted process outcome for each running case.

The next sections reason how the original framework by Teinemaa et al. introduced in Section
4.1 is used to create the methodology introduced above. The considerations that have been made
with respect to the state of the art in PPM as well as the applicability for the reintegration process
at UWV for each of the steps in the original framework are explained.

4.2.1 Preprocessing

Generally, the first step in PPM is the extraction of prefixes from the event log. Definition 2.5
states that a trace is cut off at a certain length l to create a prefix of length l. Since the amount of
events per trace is generally quite large in the UWV dataset and likely to be large in other process
data as well, cutting prefixes at every possible length creates a very large dataset to work with.
This might prove complicated to work with in later steps, especially when dividing prefixes into
buckets of prefixes of equal length. For example, training and optimizing a classifier for a large
number of buckets can become time consuming. A solution to this problem is based on extracting
prefixes over gaps between events as described in section 4.1. However, using gaps in the form of
m events between the lengths of two consecutive prefixes is not the best way to approach this.
The nature of the event execution of the reintegration process at UWV is that a lot of events are
repeated. Customers can repeatedly make use of online tools. Each time they use a tool, visit
a website or consult a coach this is logged as an event. These events are an indication of how
active a customer is in using the reintegration tools made available. On the contrary this is not
necessarily an indication of how far into the process the customer is. Therefore using gaps of a

18 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 4. PREDICTION OF KPI OUTCOMES

Figure 4.6: Selection of events based on milestone value to generate sequences needed for encoding.

certain length, might not be the best option. E.g. when creating prefixes for each multiple of 10
events, there might be two prefixes extracted from the same case which are one gap of 10 events
apart where in reality two hours have passed over these 10 events, while in other cases maybe 10
days have passed for the same gap. When predicting, prefixes of equal length are not similar at
all. Next to frequently repeated events customers also have a monthly obligation to communicate
to UWV which actions they took with respect to job applications. Examples of these activities
are sending a job application or having a job interview at a possible employer. These activities
itself are not logged but when the customer communicates his or her activities to UWV, then the
communication itself is logged as an event, indicating whether a customer has met the obligation.
When using gaps of certain lengths a prefix might contain this activity twice. A solution for these
issues might be to use gaps in the form of certain time periods. For example, a prefix is extracted
for each time a month has passed in the process. Any other interval can be used, depending on the
process characteristics. An advantage of this technique is that the time perspective of the process
is better represented in each prefix. In the case of UWV, the amount of time in which certain
events have been executed does matter, because it says something about how actively a customer
is using and interacting with the reintegration tools provided by UWV. In order to create prefixes
for which a multiple of a certain time period has passed, the elapsed time up to an event must
be determined. To determine the time that has passed upon the execution of an activity, the
timestamps of the event record of activities are used.

Definition 4.2. (Trace/Prefix Duration) Let σ = 〈e1, .., en〉 ∈ E∗ be a trace. The duration of
σ is the difference in time between the last event and the first event of the trace: λT (en)−λT (e1).

With the duration of a trace up to event ex the duration of the prefix up to ex is also known. This
duration can be used to determine intervals in the trace. The points in time where one interval
ends and a new one begins are called milestones. For each prefix in a trace the duration can be
calculated to assign a milestone value to the prefix. A milestone function m : E∗ → N0 maps
a sequence to a milestone value. The milestone value is stored as an attribute in the last event
belonging to that prefix. As a result each event in the log has a milestone attribute m, i.e. λM (e).
Now that each event has a milestone attribute a prefix for each milestone can be generated. A
prefix for a certain milestone includes all the events which have a milestone value equal to and
lower than the milestone for which the prefix is created. This is best illustrated by an example.
Figure 4.6 shows a trace 〈A,B,C,D,E, F,G〉. For each event in this trace the assigned milestone
is also shown. A prefix is created for each milestone by selecting all events with a milestone value
that is equal to or lower than the prefix milestone. The result is a set of prefixes for each possible
milestone, including the last milestone. The sequence in the prefix for the last milestone is always
equal to the trace itself. Note that the first milestone value is always zero since in the first part of
the trace a process has not reached the first milestone yet. A prefix for a milestone m is a simple
selection of events in a trace that have a milestone value that is less or equal to m:

prefixmilestone(σ,m) = σ′

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

19

CHAPTER 4. PREDICTION OF KPI OUTCOMES

such that
milestone(σ′) = m

and
∃l :

(
prefix(σ, l) = σ′

)
∧
(

(l + 1 ≤ |σ|)⇒ milestone(prefix(σ, l + 1)) > m
)

The prefixes generated using the technique above are basically still (a copy of) a selection of rows
in a datatable where the rows in the selection represent the events that have a milestone value
below or equal to the milestone value of the prefix. The next step is to find an encoding that is
able to transform these selections of rows into a feature vector.

4.2.2 Trace Bucketing

As discussed in Section 4.1, there are multiple approaches towards the encoding. Many studies
use buckets to divide prefixes into groups. For each of these groups a classifier is trained. In [4]
a single bucket approach is used. In this approach all prefixes are stored into one single bucket,
for which one classifier is trained. In this study this approach is initially tried. Since the quality
of the predictive model generated by using one bucket proved already very good, which is shown
later in this chapter, the single bucket approach is used throughout the rest of the study as well.
Considering the limited time that was available for this research this decision is reasonable.
With respect to the original framework by Teinemaa et al. the bucketing step is removed, and a
log of prefixes is also not stored. Instead a set of traces with milestone values for each event is
stored. The events can be directly selected from this set for each milestone and encoded directly.

4.2.3 Sequence Encoding

According to the framework prefixes need to be encoded into a feature vector which is interpretable
by a classifier. Recall the definition of a sequence encoder in Definition 2.7 which states that an
encoding is need to create a vector from a sequence. The most important aspect in choosing an
encoding is how to interpret the events and its attributes as a feature. There is a distinction to be
made between how to treat the occurrences of the events itself, i.e. what the process looks like up
to a certain point, and the attributes of these events. The challenge here is that each trace in a
bucket (independent of the number of executed events) should still be represented with the same
number of features, i.e. feature vectors of equal length as mentioned in [17]. A solution to this
problem is to use an aggregation method for both events and event attributes, which is discussed
later in this chapter.

Encoding Events as Frequency Vectors

In another research about predictive process monitoring [8] the frequency of events is used to
interpret the execution of a trace or prefix. A vector of event frequencies is used to represent
the executed events. For example, let t1 be a trace (A,B,B,A,C,D,D,E). From this trace an
ordered alphabet of events 〈A,B,C,D,E〉 can be created. Trace t1 can now be encoded as a vector
of frequencies 〈2, 2, 1, 2, 1〉. This encoding is achieved by replacing each event in the alphabet with
the number of executions of that event in the trace. The alphabet of events should be created
based on all the traces in the log since some traces contain different events than others. For
example let t2 = (A,A,B,C,D,E, F) be another trace in the event log which also contains t1.
The alphabet used above can no longer be used to encode trace t2 as well since event F is not
in it. Instead, alphabet 〈A,B,C,D,E, F 〉 should be used instead. In order to create a successful
encoding for all events in all traces, all events of the log need to be used to generate an alphabet
that suits all traces, and thus all prefixes.
This aggregation approach is used in this study instead of an index based encoding (see Section 4.1),
because the frequency of events is more important than the order of events, taken into account the
nature of the reintegration process where some activities are repeated and not necessarily executed
in a specific order. In order to create the feature vector for a prefix with milestone value k all

20 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 4. PREDICTION OF KPI OUTCOMES

events with a milestone value m ≤ k are selected and directly encoded into a feature vector. The
trace ID u and milestone value m of the sequence are also in the vector since the combination
(u,m) is used as the unique identifier of the vector. The definition of the frequency vector for a
sequence σ as it is created in this research is:

Definition 4.3. (Frequency Vector) Let L be an event log. For log L the ordered list of all

unique activity labels in the log is A =
⋃
σ∈L

⋃
e∈σ

λA(e). Let Ca(σ) =
∣∣∣{e ∈ σ : λA(e) = a}

∣∣∣ be the

number of occurrences of the event with activity label a ∈ A in σ. Then, encode freqV ector(σ) =(
u,milestone(σ), Ca1(σ), .., Can(σ)

)
.

For each combination of case id (u and milestone value m the rows are selected from the dataset.
These rows, representing the events in a prefix, are then transformed in to a frequency vector. As
a result a frequency vector is stored in a separate datatable that stores all feature vectors for all
prefixes in the dataset.

Last State Encoding of Case Attributes

Now an encoding for the event execution has been designed, both the case and event attributes for
each event record in a prefix need to be encoded into features as well. Eventually, these features
are combined with the frequency vectors of the prefix. But first a distinction is made between case
(static) and event (dynamic) attributes in the event record. Since the index based encoding is not
used, the intermediate values of event attributes at a certain index of the prefix can no longer be
used. Last state encoding can be used to capture the last state of the attributes. For the static
case attributes this approach works well since these attributes can as-is be used as a feature in
the feature vector. When using last state encoding for the event attributes a lot of information of
prior events is lost. An aggregation technique is needed to interpret the values of the other events
in the feature vector as well. For these event attributes feature engineering is applied to aggregate
the values of these attributes in the prefix. This solution is discussed later on.
The feature vectors that are a result of last-state encoding are uniquely identified by the combin-
ation of trace ID and milestone (u×m), exactly like the frequency vectors created earlier so the
two can easily be combined later on. When last state encoding is applied to the case attributes in
the dataset a case feature vector is created:

Definition 4.4. ((Case Attribute) Feature Vector) Let L be an event log. Let {c1, .., cn} be
the set of all case attributes in L, which is the same for each event in the log. Let λC last(σ, c) be a
function that returns the value for a case attribute c in the last event of σ. Let Vc(σ) = λC last(σ, c)
be the value of case attribute c in the last state.
Then, encode caseFeatureV ector(σ) =

(
u,milestone(σ), Vc1(σ), .., Vcn(σ)

)
.

These feature vectors for each prefix are created and stored in a similar way as the frequency
factors but in a separate datatable. The remaining attributes that need to be encoded are the
dynamic event attributes.

Feature Engineering

Concerning the event attributes in the event log of the reintegration process, an aggregation
method works well. In chapter 3 the existence of other event attributes next to activity label,
timestamp and case id has already been mentioned, but details about them are not yet given.
This section discusses these attributes in more detail. The event attributes are related to the com-
munication with the customer and the behavior of the customer within the process. E.g., these
attributes store whether a customer has read an email or SMS message send by UWV. The values
of these attributes are generally stored with the event record concerned with the occasion of such
a message. When predicting the outcome of a process instance using only a snapshot of an event
attribute at the last possible state, only the last values of this attribute is taken into account. This
ignores the previous values of the attribute in the prefix. When an aggregated attribute is used

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

21

CHAPTER 4. PREDICTION OF KPI OUTCOMES

instead, a snapshot at the last state would still capture a part of the information that would be
lost without aggregation. De Leoni et al. [4] suggest using the average and the sum of these values
to aggregate event attributes. When using an aggregation technique, last state encoding can be
applied at the same time for both case and event attributes, capturing their values in one feature
vector. Carefully analyzing attributes and their values and engineering them into useful features
for a classifier is called feature engineering, i.e. feature engineering is the process that aims to
represent your data best for a particular machine learning application [14]. In this research feature
engineering starts with a careful analysis of the attributes. Next, one or more proper aggregation
techniques are selected for each attribute. Then, for each event record the aggregated attribute
of all the attribute values of the events that happened before is added to the event record, i.e.,
for each event that is present in the dataset these features are calculated and stored. The values
of these features are cumulative which means that for each new event record these features are
recalculated with the latest value of the event attribute taken into account and then added to the
event record itself as a new attribute. This way each event record always carries the aggregate
value of the values in events that happened before. The result is a feature that is interpretable by
both people and classifiers, and makes sense from a business perspective.

In order to ease last state encoding, each event record should carry the last known possible value of
each possible aggregated attribute in the trace up to that point, even for the aggregated attributes
which are not related to that event. Once the last state of a prefix is captured using the attributes
in the last event record, the last possible values for all aggregated event attributes in the prefix
end up in the prefix as well. In order to end up with a feature vector with a fixed length for all
prefixes, each possible aggregated event attribute is a feature in the vector for a specific prefix even
if this attribute is void for that prefix because a specific event is not present in the prefix. This
results in null-values in some of the feature vectors, which is a drawback of using this approach.
An easy fix is to replace null − values in a feature by the median value of the feature in other
vectors.
The most interesting aggregate event attributes derived from the UWV dataset are shown in table
4.1.

22 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 4. PREDICTION OF KPI OUTCOMES

Table 4.1: A selection of the aggregated event attributes in the dataset after feature engineering.

Removed for confidentiality reasons.

Last State Encoding of (Aggregated) Event Attributes

For the dataset of the reintegration process, the aggregated values are calculated and stored in
each event record. Then the original event attributes are removed, except for the case id and
milestone since these are needed to uniquely identify the resulting vector later. Now the aggreg-
ated event attributes are stored in each event record, and the independent event attributes are
removed from the dataset a snapshot can be made at any intermediate point in time. This allows
for a last state encoding with less information loss.

While using aggregation, last state encoding can be applied to event attributes as well. This
means that the values for both the case and the event attributes can be grapped at the same time,
resulting in a feature vector for all attributes. The definition of the encoding for case attributes
can be extended to feature the aggregated event attributes as well:

Definition 4.5. (Feature Vector) Let L be an event log. Let {v1, .., vn} be the set of all attributes
in L, which is the same for each event in the log. Let λV last(σ, v) be a function that returns the
value for an attribute v in the last event of σ. Let Vv(σ) = λV last(σ, v) be the value of case
attribute v in the last state.
Then, encode caseFeatureV ector(σ) =

(
u,milestone(σ), Vv1(σ), .., Vvn(σ)

)
.

A feature vector is created for each determined prefix in the event log and stored in a datatable.

Combining the Vectors

Two datatables of vectors remain. One containing the frequency vectors, the other containing the
feature vectors for the case and event attributes. To create a final feature vector, the datatables
are combined through a natural join on the unique identifier (u,m) of the vectors(or rows) in both
datatables. The natural join on the unique identifier makes sure the vectors are correctly joined,
hence, there are no duplicate features in the final feature vector datatable.

One Hot Encoding of Categorical Attributes

Since the classifier algorithm is only able to interpret numerical variables, the categorical attributes
remaining in the last state also need to be encoded into numerical attributes. A technique called
one hot encoding is needed to do this [14, 17]. Let m be the number of possible levels of a
categorical attribute in the dataset. The categorical attribute is transformed into a bitvector
(v1, .., vm) where vi = 1 if the given value is equal to the i-th level of the attribute, and vi = 0
otherwise. For example, if a categorical attribute in the last state of a prefix has value A out
of possible values A,B,C, the feature A in the resulting feature vector for that prefix has value
1,i.e. A = True, where the other features related tot that categorical attribute have value 0,
i.e. B = False and C = False. One hot encoding is generally applied at the very last moment,
creating features only for the possible levels of categorical attributes that have ended up in the
feature vector.

Prefix Feature Vectors

The result of all the steps discussed above is one preprocessed dataset in the form of a datatable
where each row is feature vector for a prefix. In the remainder of this thesis these prefix feature
vectors are mentioned and used a lot. Therefore the following definition is introduced to formulate
the prefix feature vector, or prefix for short from here on.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

23

CHAPTER 4. PREDICTION OF KPI OUTCOMES

Definition 4.6. (Prefix Feature Vectors) A prefix feature vector σ′ is a tuple
(u,m, a1, .., an, cat1,1, .., catk,l, num1, .., nump, o) where u is the case id of the prefix, m is the
milestone the prefix has reached, (a1, .., an) are the frequencies of activity a1 up to and including
an in the prefix. cat1,1, .., catk,l are the boolean values of the one hot encoded categorical attributes
of the prefix, where cat1, .., catk are the different categorical attributes in the dataset, and indices 1-l
indicate the possible values cati can hold. num1, .., nump are the values of the numerical attributes
at the last event of the prefix. o is the KPI outcome of the original trace.

The end product is going to be used in training the classifier. This completes the workflow as
shown in Figure 4.3.
The next step in the methodology is choosing the best classifier and training a model.

4.2.4 Training

The second workflow in the introduced methodology is the training-workflow. In the original
workflow by Teinemaa et al. [17], a classifier is trained for each bucket of prefixes and this training
is part of the online phase in predictive process monitoring. Training a predictive model that can
accurately predict a process outcome is not as straightforward as shown in the original workflow.
A number of steps need to be executed before a training algorithm can be applied to train a
predictive model. The first step is to select the best features to use in training the classifier.
Reducing the number of features reduces the required time to train a model and it can even
increase prediction accuracy. The risk of overfitting is also reduced when using less features [14].
After the best features are selected, an algorithm needs to be chosen that suits the data best.
Through evaluation of the different options with respect to training time and prediction accuracy,
a classifier can be chosen that suits the data best. Tuning the hyperparameters of this algorithm is
also important, which is the third step. Since decisions on how to handle feature selection, model
selection and hyperparameter tuning are related to the type of data is used.

(Automatic) Feature Selection

Training a model on datasets with high dimensionality makes models more complex which increases
the risk of overfitting [14]. The UWV dataset, for example, has a high number of features, and
thus a high dimensionality. Therefore it can be a good idea to decrease the number of features,
since it reduces a model’s complexity and allows for models to generalize better. Identifying the
features that can predict an outcome well is hard to do manually. Luckily, there are techniques
in machine learning that can help identify the best features or even automatically select the best
features. Müller and Guido [14] propose three techniques for automatic feature selection:

1. Univariate Statistics: select best features based on statistics.

2. Model Training: Train a model, derive feature importances from the model, and select the
best features based on these importances.

3. Train a series of models: Recursively train a model to identify the best features.

The first option proposed by Müller & Guido is the use of univariate statistics to find the features
which have a statistically significant relationship to the target. The second approach is to train
a model on the data and then derive the most important features from the model afterwards.
Machine learning libraries for classification algorithms often have a build-in method that can
return the feature importances in the form of scores. This technique requires to set a scoring
threshold prior to using the method to select the best features, which is often hard to interpret
and chosen quickly. Instead of a threshold, a percentage of features or a fixed amount of features
can be used to make a final selection, e.g. select only the best k features. A third technique is to
recursively train a series of models with a varying number of features to identify most important
features. Percentage and amount of features can be used here as well to make a final selection.
The models do not need to be the model that is eventually going to be used in training the final

24 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 4. PREDICTION OF KPI OUTCOMES

model. Which method that is used to determine the features to be used in the model depends on
the data that is used.

Model Selection & Hyperparameter Tuning

Each time a prediction model needs to be created for a process, the most suitable classifier needs
to be determined. The decision tree classifier (DT), the random forest classifier (RF) and the sup-
port vector machine classifier (SVC) have been used in other studies (see Section 4.1. As shown
in section 4.1 the RF and SVC are algorithms that have generated reliable models in the past,
where RF performs slightly better than the SVC algorithm in some cases. To choose an algorithm
for a predictive process monitoring problem, different algorithms can be compared with respect
to training times, prediction accuracy and area-under-the-ROC-curve to see which algorithm per-
forms best. When determining a classifier to use, we suggest to test at least the RF and SVC
algorithms since these have proven to perform well. The decision tree algorithm can also used,
since it has been succesfully used in other studies (Section 4.1) and its models are easy to interpret.
It also has lower training times than RF and especially SVC.

When a classification algorithm is chosen, the parameters of the algorithm can be tuned to find
the parameter settings that result in the best possible model. Each combination of parameters
related to an algorithm can be tested, a technique that is called a grid search. How to set up a
grid search and which parameters to test is dependent on the data that is used.

Once the algorithm and corresponding parameters have been chosen a final classifier can be trained.

Training the Final Model

The dataset of prefix feature vectors generated in the preprocessing phase is a datatable where
each row is a prefix feature vector and each column can be seen as a feature in the vector. In
the feature selection step the best features are selected. From the datatable the features that are
not going to be used can be removed. The resulting datatable is used to train the classifier. It is
important to know which features are used, so when using the classifier to predict outcomes in the
prediction phase, the same features can be selected from the set of preprocessed traces for running
cases. Therefore, a metadata file is stored with the classifier which holds the list of features that
is used in training. The order of the features does matter.

4.2.5 Prediction

The prediction workflow consists of the same steps as in the preprocessing workflow, but is extended
with one more step in which the actual predictions are made. First, a set of prefix feature vectors is
created from the set of running cases. When making predictions we only care about the prediction
of the entire trace so only one prefix feature vector is created for each case. The same encoding is
used as in the preprocessing phase. Once a set of prefix feature vectors is created, the metadata
belonging to the classifier is used to format the vectors. Next, the classifier is applied to make
predictions for each of the cases.

4.3 Implementation

Removed for confidentiality reasons.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

25

CHAPTER 4. PREDICTION OF KPI OUTCOMES

Table 4.2: Parameters and statistics for the created random forest classifier.

Number of Estimators Max Features AUC Accuracy Precision Recall F1

1000 4 0.8145 0.8775 0.81 0.82 0.82

4.4 Evaluation of the Entire Methodology

Algorithms have been created in Python to incorporate the workflow introduced above and some
data cleansing functions such as the removal and imputation of null-values have been applied. In
order to evaluate the entire methodology for predictive process modeling a final model needs to
be trained using the available UWV datasets as described in the previous sector. Training is done
on the train set. Recall that the test consists of a set of completed traces. Therefore, testing is
done on the the test set where we randomly remove a certain number of events from the end of the
trace to simulate that the process execution is not yet completed. A grid search is applied on the
train set for a random forest classifier while using the grid of parameters introduced above. The
best parameters from the grid search are used to train a final model on all data in the train set.
The traces in the test set are processed into prefixes up to and for each milestone they contain,
just like the preprocessing in the train set. Then one randomly chosen prefix for each trace in the
test set is selected. Predictions are made on this preprocessed test set using the classifier trained
on the train set. Consecutively, a number of scoring metrics is calculated for these predictions.
The results are shown in Table 4.2.
From these results it becomes clear that the classifier performs quite good when applied on a
separate dataset. This implies it is not overfitting on the data that is used to train the model, and
it is capable of generalizing towards other data. According to the prediction 24.8% of the traces
will have a negative outcome. The actual amount of traces with a negative outcome is 27.11%
which is very close to the predicted outcome.

26 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 4. PREDICTION OF KPI OUTCOMES

Figure 4.7: The confusion matrix for the predictions generated by the classifier.

Another way to assess the quality of the prediction model is to create a confusion matrix, as shown
in Figure 4.7. The most important statistics here are the False Negatives and the False Positives. A
false negative implies that a negative outcome is predicted, where the actual outcome is positive.
For 8.13% of the traces a false negative is predicted. This is not a big problem in the case of
UWV since some cases might be given extra attention where none is required. A false positive
implies that a positive outcome is predicted where the outcome of the process is actually negative.
This is problematic for UWV, since these cases might require extra attention but according to the
prediction this is not necessary. In 10% of the cases a false positive is predicted. This indicates that
the classifier is able to predict outcomes quite accurately, but definitely needs some improvement.
The probability of a negative outcome can be used to determine how risky a case is. A solution
could be to target cases which have a positive prediction and a not very high probability of a
positive outcome as well. Another option is to create a set of classes based on the probability
of either a positive or negative outcome. For example, three groups of predictions are created,
a group with an evident positive prediction, a group with an evident negative prediction, and a
group for which the prediction is doubtful because the probability of the predicted outcome is
marginally bigger than the other option. The latter would be the case when the probability of
negative outcome is 0.51. Using this approach, groups with a negative prediction or doubtful
prediction can be labeled as risky.
The trained classifier is not perfect and needs some improvement. Features can be analyzed, the
dataset can be improved and additional settings of the classifier can be tried. Given the time
available for this master project, attempts to improve the classifier are not made.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

27

Chapter 5

Recommendation System for Key
Performance Indicator
Improvement

The previous chapter has shown that process outcomes can be predicted. Process managers want
to intervene in a process whenever a KPI prediction is negative. The second research goal of this
study is to create a recommendation system that can boost process KPI’s. This chapter introduces
an extension of the methodology introduced in chapter 4 which can generate recommendations for
running cases.

5.1 Concept

A classifier can predict process outcomes based on characteristics of a running case and the event
execution of the case. The goal of recommendations is to put forward mitigation actions in order
to prevent process outcomes to be negative. As shown in Chapter 2, a running case is represented
in a trace. A trace is a sequence of events where each event represents an activity in the process.
In case the KPI prediction of a running case is negative, we would like to know which activity to
execute next in order to prevent a negative process outcome. A recommendation is an activity
that, when executed next in a process, decreases a running process’ risk. Since each of these
activities is actually modeled as an event in the process and a classifier is available that can
map sequences of events to an outcome value, the foundations of a recommendation system is
already in place. When predicting process outcomes the classifier interprets a sequence of events
to make predictions. When these sequences are concatenated with an activity, as if a new activity
is executed in the process, a new prediction can be generated. If the predicted outcome value
changes in favor of the KPI, it implies that the activity is likely to have a positive effect. By doing
this for each possible activity, the predictions can be compared to identify the most effective ones in
a certain case. Consecutively, the best activities can be suggested to process managers. This is the
main concept of the recommendation system that is introduced in this chapter. Using the classifier
to make predictions for each possible combination of activity and sequence can be challenging and
not always necessary. From a business perspective, considering all activities for recommendation
might not make sense at all. Some activities are not suitable to use as as recommendation, since
they are automated, for example when executed by computers, or executed by actors a process
manager has no direct control over. Additionally, some activities can only happen in a specific
phase of a process so they cannot be recommended throughout the process but only at a specific
moment. To cope with these challenges two distinctions are needed. From the set of all possible
activities, the useful activities need to be determined first. These are the activities that can be
used as a recommendation in general, as labeled by process managers or business owners. This set

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

29

CHAPTER 5. RECOMMENDATION SYSTEM FOR KEY PERFORMANCE INDICATOR
IMPROVEMENT

usually is the same for all running cases. From this subset only a number of services are applicable
in the state the running case is at, so for each case the applicable services need to be individually
determined.
A recommendation system is created which is assessed on UWV’s reintegration process. One of
the most important types of activities within this process are the services offered by UWV. These
services are generally designed to help customers finding a job. They are related to coaching,
training, informing and testing a customer. These are the activities within the process that are
possible to suggest to customers or process managers, i.e. considered as a recommendation. The
recommendations are also tailored to a specific case, since one particular service could help for
one customer but not for another.
In the next section a methodology for a recommendations system is introduced. This methodology
extends the workflows that are introduced in Chapter 4. The methodology is implemented and
evaluated using the UWV dataset later on in this chapter.

5.2 Design

The workflows introduced in Chapter 4 can be extended to incorporate the recommendation sys-
tem as well. The preprocessing phase (see Figure 4.4) is not changed for the incorporation of a
recommendation system. The same feature vectors are used here. Some changes have been made
to the training and prediction phase of the workflow to incorporate the generation of recommend-
ations as well. The prediction phase is renamed to recommendation. The adjusted workflows for
the training and recommendation phase are shown in Figures 5.1 and 5.2 respectively.
In the original training workflow for prediction a classifier is trained using a set of selected fea-
tures generated by an automated feature selection technique. Recall that features are stored in
a prefix feature vector, which among other features, stores the number of times an activity has
been executed, or the frequency of an unique event in the trace (see Definition 4.3). In feature
selection the best features in the vector are selected and used to train the classifier. This classifier
is then used to make predictions for running cases. In the recommendation system however, using
only the best features to train the classifier is not sufficient. This classifier is namely also going to
be used to assess the effectiveness of an activity for the process outcome, by making predictions
on the trace of a running case concatenated with an activity. Therefore, the classifier must not
be trained on the set of best features only, but on the union of this set with the set of activities
suitable for recommendation. This total set of features can now be used to filter the preprocessed
dataset of prefix feature vectors. Then, hyperparameter tuning can be applied before training the
final classifier. In addition to the original workflow a transition system is created based on the
original event log. The transition system is used to assess which activities are applicable in the
state a running case is in. The transition system stores for each possible sequence in the original
event log (E∗) what the next possible activities are. So when making recommendations for a
running case, the transition system is used to check which activities are common to happen after
a sequence of events like the on in the running case. This overcomes the challenge to only use
activities that make sense at the point in the process the running case is at. For the creation of
the transition the total set of features is also needed since all the possible recommendations need
to be accounted for. The workings of the transition system within the methodology is explained
in more detail in the next subsections.

In the end of the training phase, the transition system is stored together with the classifier and
the metadata.

The recommendation phase is an extension of the prediction phase introduced in the previous
chapter. Running cases are preprocessed and consecutively a classifier is applied to make predic-
tions on the running cases. In parallel, the transition system is used to identify the next possible
activities for a running case. Then, each of the possible activities is concatenated with the trace
to create hypothetical prefixes. This concatenation is processed in the prefix feature vector by

30 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 5. RECOMMENDATION SYSTEM FOR KEY PERFORMANCE INDICATOR
IMPROVEMENT

Figure 5.1: The workflow for the training phase in the methodology for creating prediction and
recommendations, as designed in this research. Next to the classifier a transition system is also
created.

increasing the value in the frequency feature of an activity by one, simulating an extra activity
execution. The resulting slightly altered prefix feature vectors represent a running case in the
hypothetical situation that an activity (the recommendation) has happened next. So for each
running case we have a set of hypothetical prefixes based on the events that can happen next, as
determined through the transition system. The hypothetical prefixes for each running case are
combined with the ones for the other running cases to create a a large datatable of hypothetical
prefix feature vectors. The classifier is now applied to make predictions on the hypothetical vec-
tors. The predictions for these vectors are now compared to the original predictions to identify
the best recommendations. In the last step of the workflow all predictions and recommendations
for each running case are combined into one datatable. The set of possible activities for recom-
mendations is needed to filter out activities that are suggested by the transition system, which are
not suitable for recommendation.
In the next subsection the mechanisms for identifying possible next activities through the use of
a transition system are discussed in more detail, followed by a detailed description of how the
recommendations are eventually generated.

Identifying Next Activities

From all the possible activities in a process the activities that are possible to suggest for a certain
running case need to be determined. For each trace a set of useful and meaningful activities need to
be identified. Each running case is in a specific state prior to the generation of recommendations.
Once the next possible states are known for a state, the activities that divide these states from the
original last state of the trace are the activities that can be used for recommendations. The next
possible states can be derived from historical data. The idea behind this is that when an activity y
has been witnessed after a similar sequence of activities as the one in the running case, this activity
is considered to be common practice and can therefore be executed as the next activity in the
process. This can be illustrated by an example. Recall that an activity is represented by an event

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

31

CHAPTER 5. RECOMMENDATION SYSTEM FOR KEY PERFORMANCE INDICATOR
IMPROVEMENT

Figure 5.2: The workflow for the online phase in the methodology for creating predictions and
recommendations, as designed in this research.

in a trace. Let L be an event log containing of traces σ1 and σ2. Let σ1 be a complete trace with
an event execution sequence of 〈A,B,C,E〉, and σ2 be a complete trace with sequence 〈A,B,D〉.
Consider a running case with a sequence of events 〈A,B〉 for which the best next activity needs
to be suggested. Considering the two historical traces, the set of all events in the log initially is
(A,B,C,D,E). When looking at traces σ1 and σ2, the possible next events can be narrowed down
to only C and D and not A,B and E because the latter ones have not been witnessed after A
and B. So when considering events for a recommendation, only A and B are taken into account
when creating hypothetical prefixes. This is clearly an oversimplified example. The traces and
prefixes concerned with the reintegration process at UWV are far more complicated. The number
of unique activities that can happen in the process is far greater, resulting in a large number of
possible event sequences. These sequences need to be stored, and for each of the stored sequences
a set of next events must be stored as well. This can be problematic in complex processes, like in
the case of UWV, since it requires a lot of computing power and computation time. Therefore,
a technique is needed to simplify these sequences such that the storing of the sequences requires
less computation time, as well as the identification of the next events.
A solution to this complexity problem is derived from the definition of a transition system as
defined by van der Aalst et al. [18]. Where an event log is a set of traces, which stores the event
execution for each individual case, a transition system is an abstraction of an event log. It does not
hold detailed information for each trace in the log such as case attributes. Instead it is a process
model from which each possible sequence of activities within a process can be derived which makes
it very suitable for identifying possible next activities in a process. A transition system is a process
model and it can be described by a triplet TS = (S,A, T) where S is the set of states in a process,
A is the set of activities and T ⊆ S×A×S is the set of transitions. A =

⋃
σ∈L

⋃
e∈σ

λA(e) is considered

to be the set of all activities (events) in the event log L where the transition system is based on. A
transition connects two states and is labeled with the name of an activity that connects the both
states. When a process is in the first state and the activity happens, the process is considered to
be in the second state. When creating a transition system from an event log, the most challenging
aspect is to find a way to represent the set of states S. In order to determine the set of states, each
position in a trace needs to be mapped onto a corresponding state [18], i.e. E∗ → S. According to
van der Aalst [18] a state representation function lstate() is a function that, given some sequence
σ ∈ E∗ and a length k = |σ| produces some state. A state is then the set of activities that have

32 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 5. RECOMMENDATION SYSTEM FOR KEY PERFORMANCE INDICATOR
IMPROVEMENT

Figure 5.3: A transition system where each state represents the full history of events as a sequence,
from [18].

Figure 5.4: A transition system where each state represents the full history of events as a multiset,
from [18].

occurred in the first k events.
Van der Aalst defines three types of state representation functions:

• Set

• Multiset

• Sequence

Examples of transition systems that use the sequence and multiset for state representation are
shown in figures 5.3 and 5.4. These transition systems are created from the same set of traces.

The sequence abstraction represents a state as the sequence of events in the trace up to that point.
In processes with a large variety in activities within the process such as is the case in the reinteg-
ration process at UWV, this results in a large number of unique sequences, thus a larger number
of states that need to be stored in the transition system. The set abstraction is an abstraction of
the sequence approach, but here the number of occurrences of each activity is lost. The multiset
abstraction does keep this number of occurrences but ordering of the events in the sequence is lost,
as would also be the case in the set approach. Using the multiset of events to represent a trace is
similar to the encoding in the creation of frequency vectors in chapter 4. When using the multiset
abstraction traces [a, b, c] and [a, c, b] in Figure 5.3 are considered to be equal. This is especially
applicable in the reintegration process at UWV since a lot of events happen irregularly, repeatedly
and not necessarily in a similar order each time. Using the multiset abstraction still captures the
state of the process, but ignores the order. It is evident that a transition system build on the
basis of the multiset abstraction can be used to identify the next possible activities for a running
case. Whenever the state of a running case is known, the next possible states are also known. For
example, in figure 5.4, after state [a] the next possible states according to the transition system
are [a, b], [a, c] and [a, e]. So activities b,c and e are possible next activities and therefore taken
into account when creating recommendations. So when a transition system is created for all the
traces in the event log, the possible next activities can be identified, because they are basically
just the activities that lead to the next states as stored in the transition system.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

33

CHAPTER 5. RECOMMENDATION SYSTEM FOR KEY PERFORMANCE INDICATOR
IMPROVEMENT

At the point where a next activity for a running case is needed, the prefix feature vectors have
already been generated since they are also needed for prediction. In chapter 4 a prefix feature
vector is defined as the combination of a frequency vector and a feature vector. It makes sense
to use frequency vectors to represent the states in the transition system since frequency vectors
from the prefix feature vectors for the running cases can be directly matched with states in the
transition system to find the next activities. This is why a frequency vector is used to represent
a state in the transition system.
A frequency vector for a sequence of events as used in the preprocessing of the methodology (see
Definition 4.3) uses an ordering of elements and assign a frequency value to each possible event,
even if the event is not present in a trace. It differs from a multiset abstraction of a (partial) trace,
since events that are not in the trace are not included in the multiset. In the frequency vector the
values for these missing activities would just be 0.

When creating frequency vectors for each state in the transition system an important aspect is
that the frequencies of activities are in exactly the same order as in the prefix feature vectors
used for training the classifier. Therefore a transition system needs to be created alongside the
creation of the classifier such that both the classifier and the transition system use the same
ordered list of activity labels to create frequency vectors, since the same dataset is used to train
both models. Then, and only then, the transition system can be used to find the applicable events
to use in the creation of hypothetical prefixes. The ordered list of events that is used to create
the frequency vector in the preprocessing is the ordered list of all activity labels in the entire log.
When creating the transition system we only need to consider the activities that are possible to use
as a recommendation. In the case of UWV this would be all the activities in the process that can
be suggested to customers and/or process managers. This set of activities is complemented with
other encoded activities selected by the automatic feature selection. If we derive the ordering of
the activities from the prefix feature vectors we can derive the ordered list of activities A′ for which
a frequency vector for state representation can be generated. Let A′ be the ordered list of activity
labels (a1, .., an) where A ⊆

⋃
σ∈L

⋃
e∈σ

λA(e). We can define the count of an event with activity

a ∈ A′ in a sequence σ as Ca(σ) =
∣∣∣{e ∈ σ : λA(e) = a}

∣∣∣. The resulting state representation

lstatefv (σ) would be the tuple
(
Ca1(σ), .., Can(σ)

)
where the ordering of A′ is followed.

The resulting transition can be defined as follows:

Definition 5.1. (Transition System) Let L be an event log. A transition system is a triplet
TS = (S,A, T) based on L and lstatefv with:

• S =
⋃
σ∈L

|σ|⋃
k=1

lstatefv

(
prefix(σ, k)

)
is the state space.

• A =
⋃
σ∈L

⋃
e∈σ

λA(e) is the set of all activity labels.

• T =
⋃
σ∈L

|σ|−1⋃
k=0

(
lstatefv

(
prefix(σ, k)

)
, σ(k + 1), lstatefv

(
prefix(σ, k + 1)

))
where σ(i) is the i-th

event in σ, is the set of transitions.

From the set of transitions T in the transition system the set of possible next events for a prefix

can be derived.
(
lstatefv

(
prefix(σ, k)

)
in
(
lstatefv

(
prefix(σ, k)

)
, σ(k + 1), lstatefv

(
prefix(σ, k + 1)

))
is matched with the frequency vector of the prefix feature vector for a running case. Then, all
combinations of this state with σ(k + 1) in T results isn a set of activities that can be used for
recommendation for that prefix.
The next subsection discusses how this set of next activities is used to generate hypothetical
prefixes, how predictions are made on these prefixes and how the recommendations are finalized.

34 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 5. RECOMMENDATION SYSTEM FOR KEY PERFORMANCE INDICATOR
IMPROVEMENT

Generation of Recommendations

Once a dataset of prefix feature vectors for running cases, a classifier and a transition system are
available, recommendations can be generated. Generating recommendations for a running case σ
works as follows: Given a transition system (S,A, T) and a running case σ:

1. Find R =
{
a ∈ A : ∃s ∈ S : (lstatefv (σ), a, s) ∈ T

}
.

2. Encode σ ⊕ {a} for each a in R to create a set of hypothetical prefixes H.

3. Compute a prediction for each h ∈ H.

4. Compute a prediction for σ.

5. Compare the predictions for H with the prediction for σ and choose the best one(s). Activity
a ∈ A is the actual recommendation.

For Step 1, the set of transitions T in the created transition system the set of possible next activities
for a prefix can be derived. The encoding of σ ⊕ {a} in Step 2 is derived by increasing the value
of the count of activity a by 1 in the original prefix feature vector of the running case. The
hypothetical prefix feature vector for a process generated from a prefix usedh length k represents
the same process in the hypothetical position k + 1 as if a possible next event r has happened.
The classifier can now make a prediction for each of the hypothetical prefix feature vectors to
estimate what the effect of an event r would be on the process outcome, as in Step 3. In Step
4 the classifier is used to predict the running case itself. When looking at a negative outcome
label, the predicted probabilities for the outcome for the original prefix σ and the hypothetical
prefix h ∈ H can be compared to determine a decrease in risk. Then the risk decreases for all the
hypothetical prefixes can be compared to identify which recommendations to use, and to determine
which recommendations is the best. The event that generates the highest decrease in risk is the
best recommendation. The set of activities that are selected as suitable for recommendation can
be used here to filter out activities that are not suitable. These activities are removed from the
set of generated recommendations. This completes Step 5. Repeating steps one to five for each σ
in the set of running cases creates recommendations for all of these traces.
The next section discusses the implementation of the recommendation system as introduced above
while using the dataset related to the reintegration process at UWV.

5.3 Implementation

Removed for confidentiality reasons.

5.4 Evaluation using Historical Data

Removed for confidentiality reasons.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

35

Chapter 6

The Koala System

The third research goal of this study is to incorporate the prediction and recommendation techno-
logies into a graphical user interface (GUI). For convenience the GUI is named Koala. The Koala
system should include all steps from preprocessing up to the generation of recommendations while
being easy to use. This chapter discusses the functions incorporated in Koala, describes how it
was created and shows it’s design.

The creation of Koala started with an evaluation of the requirements. These requirements were
then translated into a graphical design in the form of sketched mockups. Since the rest of the
methodology is all written in Python code, a Python compatible GUI package is used to create the
actual GUI from the mockups. For the creation of Koala the PySide2 -package is used1. Pyside2
is a Python port for Qt, which is a C++ based GUI creation package that also has cross-platform
portability. The software is also open-source and therefore reproducible. The GUI is created
for and working in MacOS, but since the software is cross-platform, the widgets should work in
Windows and Linux as well. This is not tested, since it is outside the scope of this research. The
development of a prototype is in itself sufficient.

The interface consists of 3 main functions; prediction model generation, (predictions and) recom-
mendations generation and recommendation tuning. These 3 functions are accessible through the
home screen. The home screen is shown in figure 6.1. This screen is showed when the GUI is
launched. From here one of the three main functions can be accessed.

1https://wiki.qt.io/QtforP ython

36 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 6. THE KOALA SYSTEM

Figure 6.1: The home window of the Koala GUI.

6.1 Classification

When clicking the Classification-button on the home screen a new window is opened where a
classification algorithm can be trained. The functions available in the classification section are:

• Loading a dataset in CSV format.

• Manual feature selection out of all events, prior to automated feature selection.

• Automated feature selection (Select best k features)

• Selection of events to be used for recommendations out of all events.

• Select scoring method to optimize for.

• Preprocess data for training.

• Run grid search over data.

• Select parameters to train final model with.

• Train and save final model and save metadata to disk.

The main window of the classification-section allows the user to upload a CSV file. This file should
be a event log in the form of a datatable where each row represents an event record in an event
log. In comparison, the widely used standard in process mining .XES cannot be directly used
here. Upon opening a CSV file, the contents of the file are showed in the element to the right as
shown in figure 6.2. Once a event log is loaded, the user can select which columns represent what
in the datatable.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

37

CHAPTER 6. THE KOALA SYSTEM

Figure 6.2: The main window in the training section, after a .csv dataset is uploaded. The dataset
is visualized automatically.

By clicking the Select Attributes-button a dialog window opens where a number of basic attributes
can be set. For example, the algorithms behind the GUI need to know which variable represents
the case id or timestamp of the events. The dialog window is showed in figure 6.3. The main
window also lets the user set the score to optimize the grid search for when hyperparameter tuning,
such as AUC, Accuracy and Recall, as well as the number of features to select in the automatic
feature selection.

38 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 6. THE KOALA SYSTEM

Figure 6.3: The dialog window for setting the main attributes.

The dialog window has multiple tabs, one to set the main attributes, one to set the categorical
attributes, one to set the numerical attributes and one to select out of all events the ones the
system takes into account when creating recommendations. A list of available attributes is given
in each tab and the user can select the needed ones. When an attribute has been selected it is not
available anymore in other tabs, making sure a column in the datatable is not used for more than
one attribute type.
The general variables can be set in the first tab of the dialog window by clicking the dropdown
bars. The available attributes are shown as the names of the columns. Each variable that is set
must be unique and all variables must be set before confirming them. When this is not the case
an error message is shown. Once confirmed, the other three tabs are unlocked and clickable. Here
the other attributes can be selected.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

39

CHAPTER 6. THE KOALA SYSTEM

Figure 6.4: The dialog window to select the categorical features.

Figure 6.5: The dialog window to select the numerical (or continuous) features. note that the
attributes that are selected in fig. 6.4 are no longer available.

40 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 6. THE KOALA SYSTEM

Figure 6.6: The dialog window to select the events to use as recommendations.

The events that are listed in the last tab of the dialog window are directly derived from the column
that is selected as the column that represents the event name in the first tab(fig. 6.3).

When all tabs are set the ’OK’ -button saves all the settings and closes the dialog window, returning
the user to the main ’classification’ -window(fig. 6.2). Clicking ’Continue’ in the main window
starts the main algorithms behind the GUI. These algorithms executes the preprocessing and the
grid search in the background. Once these steps are completed, the results of the grid search are
showed in a scrollable table widget, as shown in figure 6.7.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

41

CHAPTER 6. THE KOALA SYSTEM

Figure 6.7: The results of the grid search on the uploaded dataset as showed in Koala. The proper
model can be saved here.

Clicking the ’Save Best Model’ -button automatically trains a model using the parameters in the
top row, which are the best parameters according to the grid search and the scoring that was
selected earlier to optimize for. In the result table a row can also be selected if a classifier must be
trained with the parameters in that row. Clicking the ’Generate Model with Selected Parameters’ -
button trains a new model using these parameters. Metadata that is needed for prediction and
recommendation is also generated followed by the generation of the transition system for the
recommendations. The model, the metadata and the transition system are stored together. This
file is needed by Koala for prediction and recommendation generation as described in the next
section. The ’Finish’ -button returns the user to the ’Home’ -window of the GUI.

42 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 6. THE KOALA SYSTEM

6.2 Prediction and Recommendation Generation

By clicking the ’Use Classifier’ -button in the main window the user is directed to the ’Gener-
ate Recommendation’ -section of the GUI as shown in figure 6.8. The functions available in the
recommendation generation section are:

• Upload a classifier and a dataset of unfinished traces.

• Visualize metadata of uploaded model and uploaded dataset.

• Preprocess dataset into proper feature vector for the classifier.

• Generate predictions for dataset

• Generate recommendations for dataset

• Save a datatable consisting of the predictions and recommendations to disk.

Figure 6.8: The main window within the ’Generate Recommendations’ part of the GUI. The model
and dataset are already loaded here.

A dataset containing the event logs for incomplete traces and a Koala trained model file are loaded
here. The metadata of the model is shown in the top widget where the contents of the dataset are
shown in the bottom widget. This helps in identifying if the loaded dataset is compatible with
the model with respect to the used variables.
Clicking ’Continue’ will launch the algorithms that create a datatable containing both predictions
for each case and a set of recommendations for each case. In a next window, this datatable can
be saved as a CSV file for analysis. Viewing and tuning this datatable is also possible in the GUI
as described in the next section.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

43

CHAPTER 6. THE KOALA SYSTEM

6.3 Recommendation Tuning

Once the recommendations are generated for a set of running cases, a user might want to analyze
and filter them in the GUI as well. A third section is created that facilitates this. The reason
that tuning is separate from the generation of recommendations is because a user might want to
tune a set of recommendations multiple times or at later moments, so it must also be accessible
directly. The functions available in the recommendation tuning section are:

• Upload a dataset with recommendations as generated by Koala.

• Filter datatable based on risk levels.

• Filter datatable based on recommendation effectiveness.

• Filter datatable based on realism of suggested recommendation. I.e. the proximity of the
altered prefix (prefix concatenated with an event) with a prefix as stored in the transition
system(based on historical data).

• Save tuned recommendation table to disk.

The ’Recommendation Tuning’ -section consists of one window where the recommendations file
generated in the second section can be loaded into the GUI. Koala then shows this table. A set
of tools is available to filter the datatable, as shown in figure 6.9.

Figure 6.9: The screen where recommendations can be tuned. A recommendations source file as
generated by Koala is already loaded here.

44 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 6. THE KOALA SYSTEM

One of the options for tuning is to include high risk cases only. These cases are identified as
having a probability of failure of 70% or higher. Medium risk cases have a 50-70% chance of
failing. Cases with a positive prediction probability are considered as low risk cases. Unchecking
one of the risk options in the GUI automatically refreshes the table but now without that option.
Koala includes all events in the generation of recommendations. When setting up the classifier
in the first section, a subset of all events is selected to use as recommendations. To filter the
recommendations here the user can select to include only the events to be considered useful by
checking the ’Useful Events Only’ -option. The table is refreshed automatically on checking and
unchecking here as well. The user can also set two thresholds for filtering of the table. The
first option is the predicted amount of risk decrease when a recommendation is applied, i.e. the
effectiveness of the recommendation according to the system. This can be done by typing in a
percentage in the ’Risk Decrease Percentage Threshold’ -form. The other threshold describes the
euclidian distance of the altered prefix with a similar case in the transition system, as described in
chapter 5. This describes the realism of using such a recommendation, based on if it has happened
in similar cases before or not. Setting this threshold leaves out recommendations that are not
very realistic from a business point of view as set by the user. After a threshold is set in either
one of the boxes, the user clicks the ’Update Table’ -button which checks if the typed in number(s)
are formatted correctly and then updates the table for the ones where the number if formatted
correctly.
A filtered table can be saved to an additional CSV for further applications.

6.4 Improvements & Extensibility

The created GUI is an early version of a process prediction tool. Since it is an early version, the
layout and scaling of the GUI is not yet very good. There is also some room for improvement
in the navigation between the sections, for example direct links between the creation of the re-
commendations and the tuning could be established. Another improvement might be the options
for interaction and filtering in the scrollable tables that are now part of the GUI. Functionalities
could be added to these tableviews, e.g. sorting of columns by clicking on them. Tooltips can be
added while hovering over something to give some additional information about how everything
works.

The GUI can also be extended to incorporate regression predictions as well. The home window
of Koala(fig. 6.1) already incorporates the buttons for this. Although a regression technique is
tested at some point during this study, it has not matured into a working version for the GUI.
Next to regression the GUI could also be extended with advanced settings for the training. A tab
for this is already added to main train window as shown in figure 6.2. Within this tab settings
for alternative classifiers, alternative hyperparameter and grid search settings could be placed in
order to provide the user with more options to train and optimize a model. The GUI could be
extended such that it can leave out certain events as well, in a similar way as how the categorical
and continuous attributes are selected. This creates more flexibility in training a model. At this
point the GUI only works with CSV files, but it could be extended to also be able to interpet XES
files as seen in other process mining tools. In addition a data analysis component could be useful
as well. This component should be able to visualize the data and the individual variables and show
important statistics like average values. Perhaps a statistical distribution could be visualized for
variables in order to look for outliers or strange patterns in the data that might affect the quality
of the models. An univariate analysis, as introduced in the feature selection section of chapter 4,
could even be added.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

45

Chapter 7

Conclusions

This thesis introduced a framework for the prediction of process outcomes. This places this study
within the academic field of predictive process monitoring, which uses machine learning techniques
to create models that can predict the outcome of running processes in order to estimate perform-
ance. The framework is designed for all types of processes but is especially tailored to fit the core
subject of the case study at UWV. This subject is the reintegration process, in which UWV helps
unemployed people to get back to work while supporting them financially in the meantime. An
important Key Performance Indicator of this process is its duration, which represents how long
a person has been unemployed. This duration should be minimized as much as possible, and it
should not surpass the max duration which is assigned to a case. A methodology has been created
for the creation of a classifier that can accurately predict whether a case will have a favorable KPI
outcome at the end of the process. In the case of the reintegration process this KPI is whether
the maximum duration of a reintegration process is reached. Within the methodology introduced
in this research, a number of workflows have been designed. First, a preprocessing workflow has
been created that can automatically transform an event log into a set of feature vectors that are
used to train a classifier. Data from the reintegration process at UWV is used to implement and
test this workflow. This data is analyzed and cleaned first. Since the data has a lot of null -values,
null -values in many cells in the dataset needed to be imputed, which is the replacement of null -
values with another, more generic, value. This could result in a lot of rows having the same value
for a certain column, which can cause overfitting towards the values the null -values are replaced
with. Eventually, this was not the case, the classifier was tested on a totally separate dataset, and
it still performed very well. Feature Engineering is applied to deal with the certain variables in
the dataset, that would otherwise be less useful and meaninful. After data cleaning and feature
engineering, a mechanism to generate prefixes from the event log is created and implemented in
the workflow. For the generation of prefixes out of traces, a milestone approach is introduced to
overcome some of the issues with other options for prefix generation such as the fixed-length, index
or gaps abstractions. These other options had problems with the irregularity and lack of structure
in the UWV event log, and would result in prefixes that do not make sense from a business point
of view. Using milestones overcomes this problem. The next step in predictive process monitoring
usually is to divide the prefixes into buckets. In this research the single bucket approach is used for
convenience, which works fine regarding the quality of the predictions. Other bucketing methods
have not been tried out, which is a drawback of this research. After bucketing, the prefixes are
encoded into feature vectors. The sequence of events in a prefix is encoded using a frequency
vector. This approach does not take into account the order of events, only the amount of each
event in the prefix. Considering the irregularity and variation of traces in the data, other encoding
might have resulted in a lot of unique feature vectors, which might have decreased the quality of
the prediction model due to overfitting. Once again other techniques have not been tested in this
study. For the encoding of attributes in the trace, last state encoding is used. The vectors for the
event execution and attributes are combined into a final prefix feature vector for each prefix in the
event log. A classifier is trained on this set of vectors and tested on a different dataset using the

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

47

CHAPTER 7. CONCLUSIONS

random forest classifier, which parameters have been optimized for the dataset. Other algorithms
have briefly been tested, but the random forest classifier proved to be a reasonable choice. The
trained classifier proved to be capable of predicting process outcomes for the reintegration process
at UWV, which fulfills Research Goal 1. The classifier can still be improved with respect the the
amount of false positives that are predicted.

Next a recommendation system is created. The main mechanism of the recommendation system
is to concatenate a trace of a running case with an activity and then use the classifier to identify
whether the activity decreases the predicted risk. The concatenation is encoded by adding one
event, representing the activity, to the frequency vector of the original prefix feature vector. This
assumes that that event has hypothetically happened in that running case. If the resulting pre-
dicted risk is lower than the prediction for the original prefix feature vector the event can be use
as a recommendation. The major problem with this approach is that not each event can be used
to tweak a prefix, since some events are not suitable for recommendations because of their nature,
and some events do not happen at each moment within a process. The latter implies that an event
can only be used as a recommendation if it is has happened in other process instances before at a
similar point in time within the process. Therefore, a set of traces needed to be identified which
have a partial trace that is similar to the prefix of the running case. For these similar traces,
events that happened after the partial trace can be used as a recommendation the running case.
To identify these similar traces, a transition system is created on historical data to identify all
the states that the process has been in. Similar states to the one of the running case can be
found in the transition system such that the events that happened directly after that state can be
identified. These are the events that make sense to be used as a recommendation, from a historical
point of view. However, while creating a transition system for the reintegration process at UWV,
the amount of different states proved to be huge, so finding an exact match between states in
the transition system and the state of the running case caused a problem. To overcome this, also
states that are quite similar to the state of the running case are taken into account. This similarity
is assessed using the distance between two frequency vectors, which makes the claim that only
activities are used that have happened before in a similar context, less strong. With the set of
events (representing an activity in the process) that can be used as a recommendation, the original
prefix feature vector of the running case is transformed into a set of hypothetical prefixes, one for
each event in the set of selected events. Predictions are generated for these prefixes to identify
which of the activities are most effective, and a set of ranked recommendations is created. With
the introduction of this mechanism the recommendation sytem has been created, which fullfils
Research Goal 2. However, the evaluation of the recommendation system using historical data
is not perfect. The approach introduced in this thesis only used the historical data to identify
if a suggested recommendation has worked in similar cases to the case the recommendation is
created for. Conclusions for the effect of the recommendation on the actual running case cannot
be drawn from this approach. Since the amount of time available for this study was limited, and
the processes at UWV usually take quite some time, the recommendations could not be tested
within process instances that are currently still running at UWV. Only if the recommendations
are tested in a real life scenario, their actual effect on process outcome can be determined.

A GUI has been created in parallel with the development of the algorithms involved in creating a
prediction and recommendation system for process outcomes. This system incorporates both the
prediction and recommendation system and is usable with different datasets. Therefore Research
Goal 3 has been fulfilled. The system is only a prototype, and it still has it flaws and imperfections.
In the future Koala can be optimized with respect to its design and its algorithms, and new
functions can be added, like the option to also predict continuous process outcomes through
regression.

48 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

CHAPTER 7. CONCLUSIONS

7.1 Suggestions for UWV

In the evaluation of the recommendation using historical data it became clear that in processes
where the recommended activity was executed the process overall performed better. We recom-
mend that UWV investigates the possibilities of implementing and testing the recommendation
system within the reintegration process. The amount of data that is stored by UWV for the
reintegration process is large. The full potential of the data can be unlocked if the workflows are
further fine tuned to fit the data better. If implementation of the system proves to be challenging,
at least the methodology for prediction of process outcomes should be used to assess the risks of
customers within the process. Work coaches and other employees involved with the reintegration
process can use these prediction to focus their attention on the customers that actually need help
reintegrating. With respect to the greated GUI, UWV should investigate the option to build and
implement a similar system that can generate predictions and recommendations for processes in
an automated manner. Such a system should be easy to use by different types of employees but
leave room for more advanced functionalities that can be used by, for example, business analysts.

7.2 Future Work

This research extends the work in the field of predictive process monitoring by adding a system for
the generation of recommendations. The methodology in this research is only a proof-of-concept
and it should therefore be tested using different datasets which originate from different types of
processes. It should also be tested within a set of running processes, to see if the recommendations
actually work in practice. The methodology in this research predicts categorical KPI outcomes
through classification. It can be extended to implement regression as well. Regression has been
experimented with in the beginning of the project and the results were promising. Extending
the recommendation system to work with regression models as well can therefore be valuable.
The created Koala system can be transformed into an open-source tool for researchers and process
managers to experiment with. The mechanisms of the system could also be added as a functionality
to (open-source) process mining tools such as PROM and RapidMiner.

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

49

Bibliography

[1] UWV - About Us. https://www.uwv.nl/overuwv/english/

about-us-executive-board-organization/detail/about-us. Accessed: 17-10-18.
1

[2] Wil M. P. Van Der Aalst. Data scientist: The engineer of the future. Enterprise Interoper-
ability VI, page 1326, 2014. 5

[3] David Hand, Heikki Mannila and Padhraic Smyth. Principles of Data Mining. MIT press,
Cambridge, MA, 2001. 7, 8

[4] Massimiliano De Leoni, Wil M.P. Van der Aalst, and Marcus Dees. A general process mining
framework for correlating, predicting and clustering dynamic behavior based on event logs.
Information Systems, 56:235257, 2016. 14, 15, 20, 22

[5] Chiara Di Francescomarino, Marlon Dumas, Fabrizio Maria Maggi, and Irene Teinemaa.
Clustering-based predictive process monitoring. IEEE Transactions on Services Computing,
2016. 14, 15

[6] Marlon Dumas, Macello La Rosa, Jan Mendling, and Hajo A. Reijers. Fundamentals of
business process management. Springer, 2013. 7

[7] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need
hundreds of classifiers to solve real world classification problems? The Journal of Machine
Learning Research, 15(1):3133–3181, 2014. 15

[8] Chiara Di Francescomarino, Marlon Dumas, Fabrizio Maria Maggi, and Irene Teinemaa.
Clustering-based predictive process monitoring. IEEE Transactions on Services Computing,
page 11, 2017. 14, 20

[9] Geetika T Lakshmanan, Songyun Duan, Paul T Keyser, Francisco Curbera, and Rania Khalaf.
Predictive analytics for semi-structured case oriented business processes. In International
Conference on Business Process Management, pages 640–651. Springer, 2010. 14, 15

[10] Anna Leontjeva, Raffaele Conforti, Chiara Di Francescomarino, Marlon Dumas, and Fab-
rizio Maria Maggi. Complex symbolic sequence encodings for predictive monitoring of busi-
ness processes. In International Conference on Business Process Management, pages 297–313.
Springer, 2015. 14, 15

[11] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. Understanding of
internal clustering validation measures. 2010 IEEE International Conference on Data Mining,
2010. 9

[12] Fabrizio Maria Maggi, Chiara Di Francescomarino, Marlon Dumas, and Chiara Ghidini. Pre-
dictive monitoring of business processes. In International Conference on Advanced Informa-
tion Systems Engineering, pages 457–472. Springer, 2014. 14, 15, 16

Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

51

https://www.uwv.nl/overuwv/english/about-us-executive-board-organization/detail/about-us
https://www.uwv.nl/overuwv/english/about-us-executive-board-organization/detail/about-us

BIBLIOGRAPHY

[13] Marcus Dees, Massimiliano de Leoni and Felix Mannhardt. Enhancing process models to im-
prove business performance: A methodology and case studies. In On the Move to Meaningful
Internet Systems. OTM 2017 Conferences, pages 232–251. Springer International Publishing,
2017. 7

[14] Andreas C. Mller and Sarah Guido. Introduction to machine learning with Python: a guide
for data scientists. OReilly, 2017. 9, 22, 23, 24

[15] Arik Senderovich, Chiara Di Francescomarino, Chiara Ghidini, Kerwin Jorbina, and Fab-
rizio Maria Maggi. Intra and inter-case features in predictive process monitoring: A tale
of two dimensions. Lecture Notes in Computer Science Business Process Management, page
306323, 2017. 13

[16] Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Dumas. Predictive business process
monitoring with lstm neural networks. Advanced Information Systems Engineering Lecture
Notes in Computer Science, page 477492, 2017. 13

[17] Teinemaa, I., Dumas, M., La Rosa, M., Maggi, F. M. Outcome-Oriented Predictive Process
Monitoring: Review and Benchmark. 2017. iiiiii, ixix, ixix, 6, 7, 8, 9, 13, 14, 15, 16, 17, 20,
23, 24

[18] Wil M.P. Van der Aalst. Process Mining: Data Science in Action. Berlin: Springer-Verlag,
2011. ixix, ixix, ixix, 5, 8, 9, 32, 33

[19] Wil M.P. Van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Berlin: Springer-Verlag, 2011. 5

[20] Ilya Verenich, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi, and Chiara
Di Francescomarino. Complex symbolic sequence clustering and multiple classifiers for pre-
dictive process monitoring. In International Conference on Business Process Management,
pages 218–229. Springer, 2015. 14, 15

[21] Wil M.P. van der Aalst, Arya Adriansyah, Ana Karla Alves de Medeiros, Franco Arci-
eri, Thomas Baier, Tobias Blickle, Jagadeesh Chandra Bose, Peter van den Brand, Ron-
ald Brandtjen, Joos Buijs, Andrea Burattin, Josep Carmona, Malu Castellanos, Jan Claes,
Jonathan Cook, Nicola Costantini, Francisco Curbera, Ernesto Damiani, Massimiliano de
Le- oni, Pavlos Delias, Boudewijn F. van Dongen, Marlon Dumas, Schahram Dustdar, Dirk
Fah- land, Diogo R. Ferreira, Walid Gaaloul, Frank van Geffen, Sukriti Goel, Christian Gu
nther, Antonella Guzzo, Paul Harmon, Arthur ter Hofstede, John Hoogland, Jon Espen In-
gvaldsen, Koki Kato, Rudolf Kuhn, Akhil Kumar, Marcello La Rosa, Fabrizio Maggi, Donato
Malerba, Ronny S. Mans, Alberto Manuel, Martin McCreesh, Paola Mello, Jan Mendling,
Marco Mont- ali, Hamid R. Motahari-Nezhad, Michael zur Muehlen, Jorge Munoz-Gama,
Luigi Pontieri, Joel Ribeiro, Anne Rozinat, Hugo Seguel P erez, Ricardo Seguel P erez, Mar-
cos Sepu lveda, Jim Sinur, Pnina Soffer, Minseok Song, Alessandro Sperduti, Giovanni Stilo,
Casper Stoel, Keith Swenson, Maurizio Talamo, Wei Tan, Chris Turner, Jan Vanthienen,
George Varvaressos, Eric Verbeek, Marc Verdonk, Roberto Vigo, Jianmin Wang, Barbara
Weber, Matthias Weidlich, Ton Weijters, Lijie Wen, Michael Westergaard, and Moe Wynn.
Process mining manifesto. Business Process Management Workshops, 2012. 6

52 Design, Implementation and Evaluation of a KPI-driven Recommender System based on
Predictive Process Monitoring

	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Context
	Research Goal
	Research Approach
	Thesis Outline

	Preliminaries
	Process Mining Principles
	Events
	Traces
	(Outcome-Oriented) Predictive Process Monitoring

	Data Mining Principles
	Machine Learning: Supervised vs. Unsupervised
	Machine Learning in Predictive Process Monitoring
	Agglomerative Hierarchial Clustering

	Initial Situation at UWV
	The WW Reintegration Process
	The Data

	Prediction of KPI Outcomes
	State of the Art
	Design
	Preprocessing
	Trace Bucketing
	Sequence Encoding
	Training
	Prediction

	Implementation
	Evaluation of the Entire Methodology

	Recommendation System for Key Performance Indicator Improvement
	Concept
	Design
	Implementation
	Evaluation using Historical Data

	The Koala System
	Classification
	Prediction and Recommendation Generation
	Recommendation Tuning
	Improvements & Extensibility

	Conclusions
	Suggestions for UWV
	Future Work

	Bibliography

