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Abstract

Variational autoencoders are considered an unsupervised learning method capable of estimating
a suitable generative model that emulates the process that produced a dataset with respect to a
set of unobserved variables denominated latent variables. The use of variational autoencoders for
retrievieng the underlying structure of a dataset in terms of the latent variables is of interest for a
wide range of applications. In this thesis we proposed the use of two variational autoencoders: a
baseline based on the work of D.P Kingma and M. Welling [16] and I. Higgins et al. [14] and a dif-
fusion variational autoencoder to retrieve the underlying structure of datasets with an underlying
circular/toroidal structure. The proposed diffusion variational autoencoder posits a circular/tor-
oidal latent structure for retrieving the underlying structure from a dataset. The results obtained
show that the proposed baseline and diffusion variational autoencoders are capable of retrieving
the underlying circular/toroidal structure for the example datasets.

Two variational autoencoders fed with the same dataset produce their own generative model to
explain the same data. We have proposed a definition for the concept of ∆-reducibility between the
trained generative models of variational autoencoders. The concept is based on functions called
∆-reductors that map the elements from the latent spaces of the variational autoencoders with the
purpose of reducing one generative model in terms of the other up to a certain tolerance level ∆ ∈
R+. For the generative models trained with the baseline and diffusion variational autoencoders we
have proposed an algorithm for constructing simple reduction maps between the recovered latent
spaces to reduce the corresponding generative models. The reduction maps obtained are limited
to generative models with a known underlying latent structure (circular/toroidal). The results
of this thesis provides a basis for research oriented to the connection of generative models with
respect to their underlying latent variables.

ii Latent Variable Separation with Variational Autoencoders



Acknowledgements

I would like to express my deep gratitude to Dr. Jim Portegies for his guidance and patience in
our weekly meetings, for his thorough revisions to my work, for teaching me how to structure my
entangled ideas into clear explanations and for giving me his support in every matter.

I would also like to thank Dr. Vlado Menkovski for his advice, support and supervision during
my biggest projects during the master and for introducing me into the world of deep learning.

I would like to express my very great appreciation to Dr Rui Pires da Silva Castro for his valu-
able advice and assistance while making my career choices and his valuable comments to this thesis.

A very special thanks to my grandmother for all her loving care, her love will remain with me in
every step that I take. I want to thank my girlfriend for supporting me in every challenge that
I have faced. I also want to thank my friends for their constant presence in my life. Finally, I
wish to thank my mother, my father, my sister and my uncle for their strong encouragement and
support not only in my studies but in every matter of my life.

Latent Variable Separation with Variational Autoencoders iii



Contents

Contents iv

1 Introduction 2
1.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Bayesian Models 6
2.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Generative models and the latent space . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 The evidence lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Variational Autoencoders 14
3.1 Minimization of the negative ELBO . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Monte Carlo estimation of the evidence lower bound . . . . . . . . . . . . . . . . . 15
3.3 Reparametrization trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Variational autoencoder training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Neural network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Baseline Variational Autoencoder 19
4.1 Encoding family & Kullback-Leibler regularization . . . . . . . . . . . . . . . . . . 19
4.2 Decoding family & reconstruction error . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 The σX parameter as a weighting term . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Benchmark Dataset 23
5.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Structure of the benchmark dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Baseline variational autoencoder training . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Benchmark Dataset and the Simplified Baseline Variational Autoencoder 32
6.1 Frequency domain benchmark dataset . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Simplified baseline variational autoencoder . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Diffusion Variational Autoencoder 40
7.1 Encoding family & Kullback-Leibler regularization . . . . . . . . . . . . . . . . . . 40
7.2 Benchmark dataset training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.4 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iv Latent Variable Separation with Variational Autoencoders



CONTENTS

8 Generative Model Reduction 46
8.1 ∆-Reduction of generative models . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.2 Equivalent ∆-reduction condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.3 Normal parametric decoding distributions reduction . . . . . . . . . . . . . . . . . 48

9 Construction of Simple Reduction Mappings 50
9.1 Reduction of generative models for the benchmark dataset . . . . . . . . . . . . . . 51
9.2 Matrix multiplication reductor mapping . . . . . . . . . . . . . . . . . . . . . . . . 52
9.3 Angle rotation reductor mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.4 Reduction mappings for benchmark dataset . . . . . . . . . . . . . . . . . . . . . . 54

10 Circular Dataset Examples 57
10.1 Circular pixel shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.2 Objects observed from multiple angles . . . . . . . . . . . . . . . . . . . . . . . . . 61

10.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

11 Toroidal Latent Space Structure 65
11.1 Extended benchmark dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11.2 Daset structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.3 Baseline variational autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.4 Diffusion variational autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.5 ∆-reductor maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

12 Conclusions 73

Bibliography 75

Appendix 76

A Diffusion Equation 77

Latent Variable Separation with Variational Autoencoders 1



Chapter 1

Introduction

During the course of their early years, humans learn about the world that surrounds them from
high dimensional sensory input received from the environment. The diverse range of stimuli in
the form of images, sound, acceleration, temperature, texture, etc. is combined by the brain to
produce valuable representations of the world. These learned representations are composed of
features organized to enable the performance of complex tasks [21].

One interesting example of such useful representations learned by the brain is the notion of
orientation and location obtained by the processing of external stimuli gathered from navigating
through space. A question that arises is whether this kind of notion has been ”programmed” into
the brain by years of evolution or if it is something that is learned with the experience of early years.

Consider for example a dataset of images from an object that is rotating along a fixed axis,
see Figure 1.1. Each observed image consists of an array of pixel values and we would like to find
a suitable efficient representation to describe it. Despite the angle being not explicitly shown in
each picture, for us as humans, a natural representation of these images would involve a certain
notion of angle-pose associated to each frame.

Figure 1.1: Object seen from different angles, a natural concept that can be learned from the
images is the notion of orientation.

We will restrict the data that we study to cases in which there is an underlying known struc-
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CHAPTER 1. INTRODUCTION

ture with a simple geometry (circular and toroidal). Variational autoencoders, developed by D.P.
Kingma and M. Welling [18], are based on the mathematical formalism of Bayesian inference.
They use neural networks to create generative models that can explain the observed data in terms
of unobserved quantities which are called latent variables. We test with different variational au-
toencoders whether the recovered latent variables of a dataset are suitable representations that
can capture the underlying structure of data.

Imagine a real setting in which two persons experience the same phenomenon. Their internal
representations created by their brain of the same event might differ. It is interesting to find
out whether these internal portrayals are equivalent or at least can be explained in terms of one
another. In our framework different variational autoencoders produce their own latent represent-
ations of the input data. We try to answer whether different latent representations that explain a
same dataset can be reduced in terms of one another. By constructing simple functions between
the different latent representations we try, up to a certain tolerance level, to reduce one generative
model in terms of another.

1.1 Previous work

Under the term dimensionality reduction, different techniques for producing lower dimensional
representations of complex data are grouped. These techniques are designed with the purpose of
preserving the original characteristics of the input data by assuming that high-dimensional data
lies close to a lower-dimensional structure [20]. In this thesis we will focus on the task of produ-
cing simple representations of high-dimensional data that can capture its underlying geometrical
structure.

The importance of having methods to obtain simple representations of data lies in the simplific-
ation of data analysis tasks. Lower dimensional representations can avoid the issues grouped into
the term of curse of dimensionality concerning the analysis of high dimensional data. Moreover,
good data representations can serve for improving the performance of tasks. The recovery of use-
ful representations for machine learning tasks corresponds to the research field of representation
learning [2, 9].

In this work we focus on a special subset of dimensionality reduction techniques denominated
as latent variable separation methods [20]. These approaches are based on probabilistic models
that assume the existence of unobserved quantities called latent variables that participate in the
generation of the observed data [3]. Latent variable separation methods proposes that each data-
point can be expressed in terms of a lower dimensional latent variable obtained from a probability
distribution determined by the observed data called the posterior distribution. Bayesian inference
is a method used for approximating to the underlying posterior distribution.

Within Bayesian inference it is important to select a suitable algorithm for obtaining the ap-
proximate posterior used to identify suitable latent variable representations of data. Some of these
algorithms include Markov Chain Monte Carlo (MCMC), and Expectation Maximization (EM).
These methods have the downside of being computationally expensive for big datasets and difficult
to assess their convergence [11].

An alternative to the computationally expensive MCMC and EM is stochastic variational in-
ference which provides a method that is scalable to large datasets. This technique estimates the
posterior over the latent variables via parameter optimization by minimizing an objective func-
tion [3, 15]. D.P Kingma and M. Welling introduced variational autoencoders (VAEs) which is a
method for variational inference that performs the parameter optimization by introducing the use
of neural networks.

Latent Variable Separation with Variational Autoencoders 3



CHAPTER 1. INTRODUCTION

In this thesis we have focused on the use of variational autoencoders for performing variational
inference and latent variable separation for our input datasets. VAEs are considered an unsu-
pervised learning method capable of estimating a suitable generative model that emulates the
process that produced a dataset with respect to the underlying latent variables. This means that
variational autoencoders can be used for both: creating new datapoints with a learned generative
model and for latent variable separation.

There are different modifications to the original variational autoencoder framework that at-
tempt to improve its performance with respect to the quality of the data produced from the learned
generative model and with respect to the latent variables recovered to represent data. Some of
the modification include changes to the optimization objective (INFO-VAE [27],β-VAE [14]), lossy
latent representations(Lossy VAE [1]) and the addition of autoregressive flows [17]. Another ex-
tension to the VAE framework is semi-supervised method that enforces the addition of a certain
feature of interest into the latent variables of the generative model (CVAE [16]).

We will focus the use of variational autoencoders to the task of recovering the underlying
geometrical structure within a dataset. It is important to note that the recovered latent repres-
entations of a dataset obtained with a variational autoencoder are determined by the assumptions
made for the latent variable structure. For most examples non-restrictive assumptions are made
for the latent variables in a VAE. In the settings studied , it can be valuable to include assumptions
that constrain the structure of the latent variables by incorporating the geometrical intuition of
the analyst with respect to the analyzed data. With this in mind, recent efforts are in the direction
of enforcing a certain latent variable geometry such as the hyper-spherical [6] and toroidal [22].
These assumptions on the structure of the latent variables can be used in tasks such as angle-pose
estimation of images [25].

The geometrical structure of a dataset can be identified beforehand by an analyst since it can
be often connected to the underlying generative process that produced the data. It is of interest to
identify whether the latent variable separation models are capable of obtaining lower dimensional
representations of data that capture intuitive concepts interpretable by humans [13]. With this
in mind we have identified the need to propose a mathematical definition for relating the latent
variables of different generative models in order to provide an interpretation to the recovered
representations attained by deep learning methods.

1.2 Overview of Thesis

This thesis is focused on the study of the latent representations obtained with variational autoen-
coders for different datasets with underlying geometrical structures (circular/toroidal).

Our contributions:

1. Proposed a simple benchmark dataset with underlying circular and toroidal structure.

2. Proposed a baseline variational autoencoder based on [18, 14] to test whether the recovered
latent structure captures the underlying structure of the input dataset.

3. Introduced the diffusion variational autoencoder. This variational autoencoder assumes a
latent space with a restricted circular/toroidal structure. Moreover, it employs a differ-
ent family of probability distributions for approximating the posterior different to the ones
proposed in [6] and [25].

4. Analyzed the recovered latent structures recovered for the datasets together with their data
reconstruction performance.

5. Provided a definition for the concept of ∆-reducibility between the trained generative models
of variational autoencoders. The concept is based on functions called ∆-reductors that map
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CHAPTER 1. INTRODUCTION

the elements from the latent spaces of the variational autoencoders with the purpose of
reducing one generative model in terms of the other up to a certain tolerance level ∆ ∈ R+.

6. For the generative models trained with the baseline and diffusion variational autoencoders we
have proposed an algorithm for constructing simple reduction maps between the recovered
latent spaces to reduce the corresponding generative models. We analyzed the effects of the
recovered reduction maps.

1.3 Thesis structure

Chapter 2 introduces the mathematical notation of the thesis together with the basic concepts
for Bayesian models and the corresponding variational inference methods for approximating the
posterior distribution. In Chapter 3 the underlying theory for variational autoencoders is intro-
duced and in Chapter 4 our baseline variational autoencoder is presented. Chapter 5 presents
a benchmark dataset with underlying circular geometrical structure used to train the baseline
variational autoencoder. Chapter 6 shows a proof for the recovered latent structure of a simplified
baseline variational autoencoder. Chapter 7 presents the proposed diffusion variational autoen-
coder that incorporates the assumption of a circular latent space, the results of training with
the benchmark dataset are presented in this section. In Chapter 8 we present the definition for
∆-reductions between recovered generative models and in Chapter 9 we provide a method for con-
structing these reductions between the learned generative models of the variational autoencoders.
Chapter 10 presents some results for different datasets with a circular underlying structure. Finally
on Chapter 11 we extend the examples from previous chapters for datasets with an underlying
todoidal geometry.

Latent Variable Separation with Variational Autoencoders 5



Chapter 2

Bayesian Models

In this thesis we will be focusing on mathematical models that attempt to explain the obser-
vations/data within a probabilistic formalism. This thesis will be conveyed in terms of a more
general mathematical framework based on measure theory. In the next section we review some
basic definitions from measure-theoretic probability theory. Once the mathematical language is
introduced we proceed to describe the Bayesian methods used in this thesis to process data.

2.1 Mathematical Background

Throughout lifetime, the experiences we gather from our interactions with the environment de-
termines our interpretation of how the world is structured. By performing actions and processing
the observed outcomes, we gather information that can be used to produce future predictions.
A model corresponds to a simple description of a process that may have produced the observed
outcomes [7].

The outcome of some processes given certain actions can be unpredictable. This can be due
to the the complexity of underlying mechanisms or unknown factors that produce the observed
outcomes and that, in a practical sense, are impossible to identify. In these cases, we need to
introduce a formal framework that is capable of producing predictions that incorporate certain
degree of uncertainty associated to our lack of information. This type of settings are the subject
of study for probability theory.

Probability theory can be considered as a ”rational framework for thinking about uncertainty”
[26]. Probability theory deals with the outcomes of trials or experiments which are ”any con-
trolled study with an outcome of an uncertain kind”[7] and involves the use of controlled actions
to identify observable results. The set of all possible outcomes from an experiment is denominated
sample space and is denoted as Ω. For example, in the experiment of throwing a fair six-sided
dice, the sample space is given by the numbers written in each of the faces Ω = {1, 2, 3, 4, 5, 6}.

Within the sample space we can define smaller subsets named events that represent the answer
to questions about the outcome of an experiment. An event, denoted as E ⊆ Ω is a subset of the
sample space Ω. The power set 2Ω is the set of all possible events of Ω. In our previous example of
the throw of a fair six-sided dice we could be interested in the outcome of rolling an even number,
the associated event to this question would correspond to E = {2, 4, 6} ⊆ Ω. Often, one does not
consider all possible subsets of Ω, but rather a restricted collection FΩ. This restricted collection
of subsets needs to satisfy certain properties. If FΩ contains the empty set and it is closed under
the formation of complements and countable unions we say that it is a σ-algebra. The pair (Ω,FΩ)
with FΩ a σ-algebra of Ω is called a measurable space. [24]

6 Latent Variable Separation with Variational Autoencoders



CHAPTER 2. BAYESIAN MODELS

Definition 2.1.1. σ-algebra
A collection of subsets of Ω, F ⊂ 2Ω is called a σ- algebra if

(i) ∅ ∈ F ,

(ii) E ∈ F =⇒ Ec = Ω \ E ∈ F ,

(iii) E1, E2, . . . ∈ F =⇒
∞⋃
i=1

Ei ∈ F .

Definition 2.1.2. Measurable space
The pair (Ω,FΩ) consisting of a set Ω and a σ-algebra FΩ is called a measurable space.

In an intuitive way we can think of the concept of probability as a value that describes how
likely an event is observed in an experiment. A probability measure, also called probability dis-
tribution, is a function over a σ-algebra F , PΩ : FΩ 7→ [0, 1] that associates to each event a
non-negative value between zero and one. The higher the probability, the more likely an event
is. The special properties of the probability measure functions are described within the axioms
of probability established in 1933 by the mathematician Andrey Nikolaevich Kolmogorov. The
probability measure is a special case of the more general concept of measure studied by the field
of measure theory which is out of the scope of this work. A probabilistic view of measure theory
can be consulted in [26].

Definition 2.1.3. Probability measure
Let F be a σ-algebra of Ω. A mapping P : FΩ 7→ [0, 1] is called a probability measure on (Ω,FΩ) if

(i) PΩ(Ω) = 1 ∧ PΩ(∅) = 0

(ii) If E1, E2, . . . are mutually disjoint events in FΩ then PΩ

( ∞⋃
i=1

Ei
)

=
∞∑
i=1

PΩ(Ei)

Probability theory involves the study of probability spaces which consist of the three elements
previously described: the sample space Ω, the σ-algebra FΩ from Ω and the probability measure
PΩ defined over FΩ.

Definition 2.1.4. Probability space
A probability space consists of the triple (Ω,FΩ,PΩ) of items such that

(i) Ω is a set,

(ii) FΩ ⊆ 2Ω is a σ-algebra of Ω,

(iii) PΩ is a probability measure on (Ω,FΩ).

There are several consequences that can be derived from these axioms and describe the prop-
erties of such spaces. Most of these results can be consulted in probability theory texts such as [4],
[12]. Here we will present some important definitions and results that will be used in the following
work.

Definition 2.1.5. Let (Ω1,FΩ1
), (Ω2,FΩ2

) be two measurable spaces. A function Y : Ω1 7→ Ω2

is (FΩ1
,FΩ2

)-measurable if for all B ∈ FΩ2
the preimage Y −1(B) ∈ FΩ1

. That is,

{ω ∈ Ω1|Y (ω) ∈ B} ∈ FΩ1
.

In probability theory measurable functions are called random variables.

Once that we have defined the concept of measure over a sample space, it is useful to mention
the concept of probability density of a measure. First we need to define what is absolute continu-
ity, then we will present the important result derived by Johann Radon and Otto Nikodym for
connecting two probability measures over a sample space and finally we will present the definition
of a density function with respect to a measure.

Latent Variable Separation with Variational Autoencoders 7



CHAPTER 2. BAYESIAN MODELS

Definition 2.1.6. Absolute Continuity
Let (Ω,FΩ) be a measurable space and let P1, P2 be two probability measures on (Ω,FΩ). We say
that P2 is absolutely continuous with respect to P1 if for all E ∈ FΩ then

P1(E) = 0 then P2(E) = 0 (2.1)

Theorem 1. Radon-Nikodym Theorem
Let (Ω,FΩ) be a measurable space and let P1, P2 be two probability measures on (Ω,FΩ) such that
P2 is absolutely continuous with respect to P1. Then there exists a P1 integrable function called
the Radon-Nykodym derivative denoted by

dP2

dP1
(2.2)

Such that

P2 =
dP2

dP1
P1 (2.3)

For all E ∈ FΩ, it holds that

P2(E) =

∫
E

dP2

dP1
dP1 (2.4)

Definition 2.1.7. Probability density
Given the probability space (Ω,FΩ,PΩ) and a measure P over (Ω,FΩ). A probability density of PΩ

with respect to a measure P is a function PΩ : Ω 7→ R+
0 such that for a given event E ∈ FΩ,

PΩ(E) =

∫
A

PΩ(ω)dP(ω). (2.5)

In this thesis we will assume the existence of the various probability densities that appear.

2.2 Generative models and the latent space

Bayesian models posit that the sample space Ω of an experiment can be divided into a set of
observable outcomes X called data space and a set of unknown unobservable outcomes Z called
latent space such that Ω = X × Z. The probability space that describes such an experiment is
given by (X × Z,FX ⊗ FZ ,PX×Z). In a trial, the outcome (x, z) ∈ X × Z is assumed to be
sampled from the probability measure PX×Z . The observed outcome x ∈ X is called datapoint,
the unobserved outcome z ∈ Z is called latent variable and the measure PX×Z is usually referred
to as the generative model.

We will assume that the observed outcomes obtained from an experiment can be identified with
elements in the D dimensional Euclidean space, i.e. X = RD. This can be a sensible assumption
if we consider that usually, while studying the world that surrounds us, we gather data by means
of a certain device that assigns a fixed number to the properties of a system.

The case of the latent space Z is treated differently since, as it has been stated, it represents
unobserved outcomes that in principle might not have a structure that can be reliably represented
with Euclidean space. Additionally, the latent space is assumed to be describable in terms of a
structure with a dimension smaller than that of the data space X.

For a given experiment, a datapoint x ∈ X is assumed to be dependent on the corresponding
latent variable z ∈ Z. Therefore latent variables, although unobserved, are considered to influence
the observed data. Consider an observed outcome x ∈ X and an unobserved outcome z ∈ Z, we
can express the probability density of the generative model PX×Z with respect to the LD ⊗ PZ
measure in terms of the conditional density PX|z with respect to the LD measure and the marginal

8 Latent Variable Separation with Variational Autoencoders



CHAPTER 2. BAYESIAN MODELS

density PZ with respect to the PZ measure,

PX×Z(x, z) = PX|z(x)PZ(z). (2.6)

The probability densities of Equation (2.6) are defined in terms of the D-dimensional Lebesgue
measure LD and the measure PZ over Z.

Definition 2.2.1. Radon-Nykodim applied to generative model
Let PX×Z and LD⊗PZ be probability measures over the measurable space (X ×Z,FX ⊗FZ) such
that PX×Z is absolutely continuous with respect to LD ⊗ PZ . Then there exists the LD ⊗ PZ-
integrable function PX×Z : X × Z 7→ R+

0 such that for every event EX × EZ ∈ FX ⊗FZ

PX×Z(EX × EZ) =

∫
EX×EZ

PX×Z(x′, z′)d(LD ⊗ PZ)(x′, z′) (2.7)

We denote PX×Z as the probability density function of the measure PX×Z with respect to the
LD ⊗ PZ measure.

Definition 2.2.2. Marginal probability
Consider the probability space (X × Z,FX ⊗ FZ ,PX×Z). Let PX×Z be the probability density of
PX×Z with respect to the LD ⊗ PZ measure. The marginal probability density PX : X 7→ R+

0 over
X with respect to the LD measure for a given outcome x ∈ X is given by the integral

PX(x) =

∫
Z

PX×Z(x, z′)dPZ(z′). (2.8)

Analogously, the marginal probability density PZ : X 7→ R+
0 over Z with respect to the PZ measure

for a given outcome z ∈ Z is given by the integral

PZ(z) =

∫
X

PX×Z(x′, z)dLD(x′). (2.9)

From the marginal probability densities, we define the probability spaces (X,FX ,PX), (Z,FZ ,PZ)
where each measure is defined in terms of the integral of their corresponding probability densities.
For a given event A ∈ FX and B ∈ FZ we have the marginal probability measures given by

PX(A) =

∫
A

PX(x′)dLD(x′),

PZ(B) =

∫
B

PZ(z′)dPZ(z′).

Definition 2.2.3. Conditional probability
Let PX , PZ be the marginal probability densities with respect to LD and PZ respectively. Let
PX×Z be the probability density of the generative model with respect to the LD ⊗ PZ measure.
The probability density function over X given an outcome z ∈ Z with PZ(z) 6= 0 is given by the
function PX|z : X 7→ R+

0 defined by

PX|z(x) =
PX×Z(x, z)

PZ(z)
.

Analogously, the probability density function over Z given an outcome x ∈ X with PX(x) 6= 0 is
given by the function PZ|x : Z 7→ R+

0 . For an outcome z ∈ Z this function takes the value

PZ|x(z) =
PX×Z(x, z)

PX(x)
.

From the conditional probability densities, we define the probability spaces (X,FX ,PX|z), (Z,FZ ,PZ|x)
were each measure is defined in terms of the integral of their corresponding densities. For a given
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event A ∈ FX and B ∈ FZ we have the conditional probability measures given by

PX|z(A) =

∫
A

PX|z(x
′)dLD(x′),

PZ|x(B) =

∫
B

PZ|x(z′)dPZ(z′).

Equation (2.6) provides an interpretation for the process that produces the outcome (x, z) ∈
X × Z which can be described in two steps involving the dependence of an observed outcome x
with respect to the latent variable z.

1. An unobserved outcome z ∈ Z is sampled according to the marginal distribution PZ .

2. The datapoint x ∈ X is obtained by sampling from the conditional distribution PX|z defined
by the outcome z ∈ Z.

In a practical setting, when we perform an experiment, the only information that we have
available is the observed outcomes represented by datapoints x ∈ X. Given an observation x ∈ X
obtained from an experiment, the underlying conditional distribution PZ|x over Z describes the
possible latent variables involved in the generation of x through the process described by Equation
(2.6). The probability measure PZ|x is called the posterior distribution since it provides a model
describing the latent variables after incorporating the information about observation x.

Inference corresponds to the techniques involved in estimating the properties of an underlying
distribution by processing the information provided by data [7]. In particular, Bayesian inference
is founded on Bayes’ theorem that provides a formula for the estimation of the probability density
function PZ|x of PZ|x in terms of x ∈ X.

Theorem 2 (Bayes’ theorem). Consider the probability space (X × Z,FX ⊗ FZ ,PX×Z) that
describes the outcomes of an experiment. For a given outcome (x, z) ∈ X×Z such that PX(x) 6= 0,
let PZ|x, PZ , be the probability densities of the measures PZ|x, PZ with respect to the PZ measure.
Let PX , PX|z be the probability densities of the measures, PX|z, PX with respect to the Lebesgue
measure LD. Bayes’ theorem states the relationship between densities is given by

PZ|x(z) =
PX|z(x)PZ(z)

PX(x)
. (2.10)

The distribution PZ associated to the probability density PZ of Equation (2.10) is called the
prior distribution and incorporates the knowledge of the underlying latent space before having
any information about the data. The value PX|z(x) represents the likelihood of datapoint x with
respect to a certain latent variable z. Intuitively, it provides information about how probable it is
that the latent variable z was involved in the generation of x.

For a given datapoint x ∈ X the probability density function PX(x) is called the evidence of
x. In order to estimate the probability density of the posterior distribution PZ|x, the value of
the evidence is needed. For some cases computing this value can be intractable, this is discussed
even further in the next section where we introduce the method of variational inference used for
approximating the posterior distribution from a dataset of N independent observations.

2.3 Variational Inference

Consider a dataset X = {xi}Ni=1 of N independent and identically distributed outcomes obtained
from an experiment. Variational inference is a method used for approximating the unknown pos-
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terior probability distribution PZ|x for datapoint x ∈ X via parameter optimization [3]. The main
idea is to identify the element of a proposed family of parametric distributions that is close to the
target unknown posterior. Closeness is measured with the Kullback-Leibler divergence.

Consider the set of all probability measures over the measurable space (Z,FZ) denoted as PZ .
A given family of parametric distributions QAZ ⊆ PZ corresponds to a set of probability measures
over the measurable space (Z,FZ) such that for each parameter α in a parameter set A, there is
a corresponding distribution QαZ

QAZ = {QαZ ∈ PZ | α ∈ A}. (2.11)

For example, in the case where the latent space Z can be identified with the d dimensional
Euclidean space Rd the parametric family of normal distributions over Z = Rd is defined as

QARd =

{
Q(µ,Σ)

Rd ∈ PRd

∣∣∣∣∣ Q(µ,Σ)

Rd =
det(Σ)−1/2√

(2π)d
exp

(
−1

2
(z − µ)TΣ−1(z − µ)

)}
. (2.12)

Here Q
(µ,Σ)

Rd is the probability density of Q(µ,Σ)

Rd with respect to the Lebesgue measure Ld. Each

member of the parametric family has a mean vector µ ∈ Rd and covariance matrix Σ ∈ Rd×d. The
set of possible parameters is then described as A = {(µ,Σ) ∈ Rd × Rd×d}.

The goal of variational inference is to find for each datapoint x ∈ X the appropriate parameters
α∗ ∈ A such that the optimal approximation Qα∗Z ∈ QAZ minimizes the Kullback-Leibler divergence
to the true posterior PZ|x. This condition is stated as

α∗ = arg min
α∈A

KL(QαZ ||PZ|x). (2.13)

From Bayes’ theorem, in order to calculate the probability density of the posterior PZ|x one
of the challenges is to estimate the evidence of datapoint x obtained by integrating the generative
model probability density over the latent space

PX(x) =

∫
Z

PX×Z(x, z)dPZ(z) =

∫
Z

PX|z(x)PZ(z)dPZ(z). (2.14)

In general, the value of this integral is not always available either because there is no ana-
lytical expression or the amount of computations required to calculate it can make it intractable
computationally [3]. The Kullback-Leibler divergence of Equation (2.13) involves the estimation
of the probability density for the evidence PX . First, we show that such term is included in the
condition of equation (2.13) and then provide a workaround to its intractability.

Let QαZ , PZ|x be the probability density functions of QαZ and PZ|x accordingly with respect to
the prior distribution PZ . The Kullback-Leibler divergence of the posterior PZ|x with respect to
an approximation QαZ is defined as

KL(QαZ ||PZ|x) = EQαZ

[
log

(
QαZ
PZ|x

)]
=

∫
Z

log

(
QαZ(z)

PZ|x(z)

)
dQαZ(z). (2.15)

Bayes’ theorem presented in section (2) provides a way of rewriting the density of the posterior
PZ|x in terms of the densities of the prior PZ , the likelihood PX|z and the evidence PX . By
substituting equation (2.10) into the Kullback-Leibler divergence of PZ|x with respect to QαZ we
obtain the equation

KL(QαZ ||PZ|x) =

∫
Z

log

(
QαZ(z)PX(x)

PX|zi(x)PZ(z)

)
dQαZ(z). (2.16)
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The terms can be rearranged within the integral and expressed as

KL(QαZ ||PZ|x) =

∫
Z

log PX(x) + log

(
QαZ(z′)

PZ(z′)

)
− log PX|z′(x) dQαZ(z′). (2.17)

The first term log PX(x) is independent of z ∈ Z and can be taken out of the integral. The
second term corresponds to the Kullback-Leibler divergence of the prior PZ with respect to QαZ .
The third term corresponds to the expected value of log PX|·(x) with respect to the measure QαZ .
Thus, the Kullback-Leibler divergence is rewritten as

KL(QαZ ||PZ|x) = log PX(x) + KL(QαZ ||PZ)− Ez∼QαZ [log PX|z(x)]. (2.18)

The presence of the evidence PX(x) of datapoint x can already be recognized in the first term of
the right hand side which we will move to the left,

KL(QαZ ||PZ|x)− log PX(x) = KL(QαZ ||PZ)− Ez∼QαZ [log PX|z(x)]. (2.19)

The terms in the right hand side of Equation (2.15) are grouped into the function L : X×A 7→ R+
0

of datapoint x ∈ X and the parameters α ∈ A given by

L (x, α) = Ez∼QαZ [log PX|z(x)]−KL(QαZ ||PZ) (2.20)

Since the logPX(x) term of the left hand side is independent of the distribution QαZ , we can
minimize the left hand side of Equation 2.19 with respect to QαZ by maximizing the function
L (x, α) or equivalently minimize −L (x, α) with respect to α. This new selection criteria avoids
the estimation of the evidence and corresponds to

α∗ = arg max
α∈A

L (x, α) = arg min
α∈A
−L (x, α). (2.21)

The function L is called the evidence lower bound (ELBO) since it provides a constraint for the
logarithm of PX such that logPX(x) ≥ L (x, α). Rearranging equation (2.18) shows this relation
between the ELBO and logPX(x),

logPX(x) = KL(QαZ ||PZ|x) + L (x, α) ≥ L (x, α). (2.22)

Where the second relation holds since the Kullback-Leibler divergence is non-negative for any pair
of distributions, i.e. KL(·||·) ≥ 0. In the case where the dataset X corresponds to N independent
and identically distributed samples from X, we can provide a lower bound to the joint probability
density of the complete dataset X ,

log

(
N∏
i=1

PX(x)

)
=

N∑
i=1

logPX(x) ≥
N∑
i=1

L (x, α). (2.23)

We define the ELBO of the complete dataset X of independent and identically distributed data-
points as

L (X , α) =
∑
x∈X

L (x, α) (2.24)

In summary, variational inference tries to approximate the unknown posterior PZ|x for a given
datapoint x ∈ X by using the available information gathered in a dataset X of N independent
and identically distributed datapoints. The posterior is approximated by finding the optimal
parameters α∗ ∈ A for a proposed distribution Qα∗Z member of a parametric family such that it
maximizes the ELBO of the complete dataset X given by L (X , α∗)

α∗ = arg min
α∈A
−L (X , α). (2.25)
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The main challenge is how to carry out this parameter optimization. Up until now we have not
introduced any assumptions on the underlying likelihood distribution PX|z or the prior PZ which
are necessary to calculate the ELBO from equation (2.20). There are different methods that can
be used for obtaining an approximate distribution based on different assumptions. In this work
we will focus on the variational autoencoders developed by Kingma and Welling [18] which use
neural networks to satisfy the selection criteria of the ELBO.

2.4 The evidence lower bound

The ELBO function L (x, α) for a single datapoint x ∈ X and parameter α ∈ A is conformed
of two terms. Maximizing the ELBO for datapoint x is equivalent to minimizing the negative
ELBO. In the machine learning context most problems are treated as a minimization of a certain
loss function. Thus, in the next sections we will consider variational inference as a technique for
approximating the posterior by finding the optimal parameters α∗ that minimize a loss function
equal to the negative ELBO. We will provide some intuition on each term of the negative ELBO
by considering the consequences of minimizing each term independently.

−L (x, α) = −EQαZ [log PX|·(x)] + KL(QαZ ||PZ) (2.26)

The first term of the negative ELBO corresponds to the average of logPX|·(x) over the latent
space Z with respect to the posterior approximation distribution QαZ given by

− EQαZ [logPX|·(x)] = −
∫
Z

logPX|z′(x)dPZ(z′). (2.27)

The goal of minimizing this term corresponds to finding the parameters of the approximate
posterior QαZ that places its mass over the latent variables z ∈ Z that maximize the likelihood
PX|z(x) for observing datapoint x ∈ X . This term is denoted as the reconstruction error since it
penalizes the parameters that fail to maximize the probability of observing the datapoints in a
dataset with respect to the latent variables sampled according to the approximate posterior.

The second term of Equation (2.20) corresponds to the Kullback-Leibler divergence between
the approximate posterior QαZ and the prior PZ . Recall that the Kullback-Leibler divergence
between two probability distribution is always nonnegative. Thus, the minimum value that this
second term can take corresponds to zero. The second term of the ELBO is expressed as

−KL(QαZ ||PZ) = −
∫
Z

log

(
QαZ(z′)

PZ(z′)

)
dPZ(z′). (2.28)

Optimizing α to maximize this second term forces the approximate distribution QαZ to mimic
the prior distribution. This term is referred to as the Kullback-Leibler regularization term since it
restricts the shape that the approximate posterior distribution can take. Maximizing the ELBO
of Equation (2.20) results in finding the optimal α∗ that balances both, the reconstruction error
and the Kullback-Leibler regularization term.

Latent Variable Separation with Variational Autoencoders 13



Chapter 3

Variational Autoencoders

Kingma and Welling [18] introduced a variational inference method that uses neural networks
to minimize the negative ELBO. Within the variational autoencoder context the latent space Z
is reinterpreted as the space of codes that represents the observed elements from X. For each
observed outcome x ∈ X, we can obtain an encoding/latent representation by sampling from the
posterior PZ|x. Thus we refer to the posterior PZ|x as the encoding distribution over Z that de-
scribes the possible latent variables associated to observation x ∈ X. Likewise, we refer to PX|z as
the decoding distribution that describes possible observations from X that can be obtained given
a specific latent variable z ∈ Z.

In a variational autoencoders both the encoder PZ|x and decoder PX|z distributions of the true
underlying model are approximated with members of parametric families of distributions whose
parameters are calculated with neural networks. The internal weights of those neural networks are
optimized via the minimization of a loss function corresponding to the negative ELBO through
stochastic gradient descent and backpropagation with respect to input data.

3.1 Minimization of the negative ELBO

Consider a dataset X = {xi}Ni=1 of N independent and identically distributed random variables.
In Section 2.3 we introduced the selection criteria for obtaining an approximation to the posterior
distribution PZ|x for an individual datapoint x ∈ X in terms of the negative ELBO function given
by

−L (x, α) = −EQαZ [log PX|·(xi)] +KL(QαZ ||PZ). (3.1)

Where QαZ is an approximation to the posterior distribution PZ|xi and a member of the parametric
family QAZ with possible parameters in the set A. In variational autoencoders, this family is chosen
such that for each member QαZ ∈ QAZ , its probability density function QαZ is differentiable almost
everywhere with respect to α.

Furthermore, it is also assumed that the decoding distribution PX|z for a given latent variable
z ∈ Z is also a member from a parametric family of distributions PBX ⊆ PX with

PBX = {PβX ∈ PX | β ∈ B}. (3.2)

Chosen such that, for each member, its probability density function is differentiable almost every-
where with respect to the parameters in B.

In Chapter 2 we described the prior PZ as the distribution that incorporates the assumptions
of the unknown latent variables before having any information about the data. This distribution
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is chosen beforehand as a fixed member from a parametric family of distributions PZ;γ ∈ PΓ
Z with

the set of parameters Γ such that its probability density P γZ is differentiable almost everywhere
with respect to γ.

The parameters α ∈ A for the encoder distribution QαZ are calculated from an observation
x ∈ X with the neural network function α(ψ) : X 7→ A. The neural network function is determ-
ined by the value of its internal weights ψ ∈ Ψ where Ψ is the set of all possible weights and
depends on the architecture of the network. Likewise, the parameters β for the decoder distri-
bution PβX are calculated from a given latent variable z ∈ Z with the neural network function
β(ξ) : Z 7→ B. Where ξ ∈ Ξ represents corresponding internal weights of the neural network.

For a fixed prior PγZ and considering the previously described assumptions, we redefine the
negative ELBO function for datapoint x ∈ X as a function of the internal weights of the neural
networks that calculate the parameters of the encoder and decoder distributions in QAZ and PBX .
Such function L : X ×Ψ× Ξ 7→ R+

0 for the neural network weights (ψ, ξ) ∈ Ψ× Ξ is equal to

−L (x, ψ, ξ) = −E
Qα

(ψ)(x)
Z

[
logP

β(ξ)(·)
X (x)

]
+ KL(Qα

(ψ)(x)
Z ||PγZ). (3.3)

For a dataset of N independent and identically distributed datapoints, the main goal of a vari-
ational autoencoder is to identify the optimal neural network weights (ψ∗, ξ∗) ∈ Ψ × Ξ that
produce the parameters for the optimal encoder and decoder distributions that minimizes the
negative ELBO of the complete dataset defined as

L (X , ψ, ξ) =
∑
x∈X

L (x, ψ, ξ) (3.4)

Therefore, the optimal parameters (ψ∗, ξ∗) ∈ Ψ× Ξ are obtained from the condition

(ψ∗, ξ∗) = arg max
(ψ,ξ)∈Ψ×Ξ

L (X , ψ, ξ) (3.5)

The previous equation states a minimization problem which can be optimized via stochastic
gradient descent coupled with backpropagation through the neural networks α and β. In general,
the evidence lower bound of equation (2.20) does not have a closed analytical form. Thus, for
some choices of parametric encoding and decoding families, the ELBO must be approximated via
the Monte Carlo method.

3.2 Monte Carlo estimation of the evidence lower bound

Notice that for each datapoint x ∈ X , the ELBO includes the computation of two expected values
over the latent space Z with respect to the measure QαZ . These expected values do not necessarily
have an analytical expression that can be computed. For such cases, an estimation via the Monte
Carlo method can be used.

For datapoint x, L samples {z(l)}Ll=1 are taken from latent space Z according to Qα
(ψ)(x)

Z where
z(l) is the l-th sample. The approximate expected value is obtained according to the Monte Carlo
method by calculating the average with respect to these samples,

− E
Qα

(ψ)(x)
Z

[log(P
β(ξ)(·)
X (x))] ≈ − 1

L

L∑
l=1

log(P
β(ξ)(z(l))
X (x)). (3.6)

The second term of the ELBO which corresponds to the Kullback-Leibler regularization term
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can then be estimated as

−KL(Qα
(ψ)(x)

Z ||PγZ) ≈ 1

L

L∑
l=1

log

(
Q
α(ψ)(x)
Z (z(l))

P γZ(z(l))

)
. (3.7)

The number of samples L needed for this approximation depends on the amount of data possessed
according to D.P. Kingma and M. Welling in [18]. For a large amount of data, for example one
hundred, the value of L can be chosen as one. It is important to mention that for some distribution
choices in this thesis, this term can be calculated analytically.

From both terms we define the approximate ELBO for datapoint x and the samples as L̃ :
X ×Ψ× Ξ 7→ R+

0 . For the neural network weights (ψ, ξ) ∈ Ψ× Ξ it is equal to

L̃ (x, ψ, ξ) =
1

L

L∑
l=1

log(P
β(ξ)(z(l))
X (x))− log

(
Q
αψ(x)
Z (z(l))

P γZ(z(l))

)
. (3.8)

The approximate ELBO for the complete dataset X is given by

L̃ (X , ψ, ξ) =
∑
x∈X

L̃ (x, ψ, ξ). (3.9)

The optimal parameters (ψ∗, ξ∗) ∈ Ψ×Ξ can be obtained by minimizing the approximate negative
ELBO expressed as

(ψ∗, ξ∗) = arg min
(ψ,ξ)∈Ψ×Ξ

−L̃ (X , ψ, ξ) (3.10)

The optimal weights for the neural networks described in the previous section can be attained
through gradient ascent by backpropagation through the neural network. An estimate of this
gradient is simply obtained also with Monte Carlo sampling and expressed in terms of the approx-
imate ELBO.

−∇ψ,ξ L̃ (X , ψ, ξ) = −
∑
x∈X
∇ψ,ξ L̃ (xi, ψ, ξ). (3.11)

3.3 Reparametrization trick

The Monte Carlo method for estimating the ELBO for a datapoint xi with Equation 3.8 requires

samples from Z according to the distribution Qα
(ψ)(x)

Z . The process of sampling latent variables
from Z does not allow the flow of gradients with backpropagation through the neural networks.
To solve this issue, we define a function RepZ that can transform elements from an auxiliary
probability space E into elements of Z. Such function has the property that sampling elements

of Z according to Qα
(ψ)(x)

Z is equivalent to sampling elements of E according to PE . Moreover,
sampled elements from E are provided as input to the variational autoencoder and gradients can
be backpropagated throughout the network.

Definition 3.3.1. VAE reparametrization function
Consider the auxiliary probability space (E,FE ,PE) from which we will obtain the auxiliary out-
come ε ∈ E by sampling over E according to PE. We denominate as reparametrization function
RepZ : A×E 7→ Z a function differentiable almost everywhere with respect to the parameters in A
with the property that for a given parameter α corresponding to datapoint xi, the law of this func-
tion RepZ(α, ·)#PE determines a distribution over the measurable space (Z,FZ). Furthermore,
the reparametrization function is such that for any bounded continuous function f : Z 7→ R and
parameter α ∈ A then
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EPE [f(RepZ(α, ·))] = EQαZ [f ]. (3.12)

For datapoint x, we can transform L elements {ε(l)i }Ll=1 sampled from E according to PE into
latent variables from Z given by z(l) = RepZ(α(ψ)(x), ε(l)). These latent variables have the prop-

erty to be distributed according to Qα
(ψ)(x)

Z . Thus, these transformed latent values can be used
for the estimation of the ELBO in Equation (3.8).

3.4 Variational autoencoder training

Given a dataset X of N independent and identically distributed outcomes obtained from an exper-
iment we can train a variational autoencoder that can recover the suitable probability distributions
that will optimize the evidence lower bound. A first step before training such autoencoder is to
define the candidate latent space together with the prior and the parametric families of encoding
and decoding distributions. These preliminary assumptions are summarized in the following list:

1. Latent space: The choice of the latent space Z is motivated by the goal of finding a suitable
set of unobserved outcomes that can explain the observations in X . Some of the important
characteristics of the latent space that are taken into account are dimensionality and the
intrinsic geometry which determines the overall structure of Z.

2. Prior distribution: The prior distribution PZ as stated in Section 3 is chosen as distri-
bution from a parametric family of distributions. It incorporates any assumptions on the
overall structure of the latent space and stays fixed for the whole training of the variational
autoencoder.

3. Family of encoding distributions: The family QAZ is picked for the approximation to
the underlying posterior PZ|x. More complex families can provide better approximations
but can result in longer computations. The reparametrization function needed for training
is also defined with respect to this parametric family, see Sectioon 3.

4. Family of decoding distributions: A suitable family PBX is chosen such that its complex-
ity provides the sufficient expressiveness for data reconstruction with respect to the latent
variables.

After stating the necessary assumptions we can train the neural networks of the variational
autoencoder by performing several training steps in which the ELBO is optimized via stochastic
gradient ascent. The algorithm for training a variational autoencoder from a dataset X is de-
scribed as follows:
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Input: X = {xi}Ni=1

Result: (ψ∗, ξ∗)
Initialize (ψ, ξ);
repeat

for x ∈ X do
Obtain α(ψ)(xi);
for l = 1, 2, . . . , L do

Sample ε(l) according to PE;

Obtain sampled latent variable as z(l) = RepZ(α(ψ)(x), ε(l));

Obtain β(ξ)(z(l));

end

Calculate −∇ψ,ξ L̃ (x, ψ, ξ);

end

Calculate −∇ψ,ξL̃ (X , ψ, ξ);
Update (ψ, ξ) according to the estimate of −∇ψ,ξL̃ (X , ψ, ξ) ;

until Convergence of (ψ, ξ);
Algorithm 1: Variational autoencoder training algorithm

Note: To avoid notational cluttering in the next sections we will suppress the explicit depend-
ance of the encoding and decoding neural networks on the internal weights ψ, ξ. Moreover, we will
distinguish a trained neural with an asterisk such that α∗ ≡ α(ψ∗) and β∗ ≡ β(ξ∗).

3.5 Neural network architecture

The chosen architecture for the encoding and decoding neural network throughout this thesis is
very simple. The encoding neural network takes an input datapoint x and produced the parameters
for the encoding distribution α with n dense hidden layers. On the other hand, the decoding neural
network takes an input latent variable z and produces the decoding distribution parameter β with
the same number of n dense layers. For the decoding and encoding neural networks the number of
neurons is fixed to D/3 with D the dimensions of the input data. See Figure 3.1 for a representation
of the neural network architectures.

Figure 3.1: Encoding and decoding neural network architecture. The parameters are the number
of hidden dense layers n and the number of neurons in each layer determined by the size of the
input data dimension D.
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Chapter 4

Baseline Variational Autoencoder

For a given dataset X = {xi}Ni=1 of N independent and identically distributed datapoints we want
to test whether a variational autoencoder is capable of recovering the underlying latent variables
responsible for the generation of X . As stated in the previous section, the variational autoencoder
can be interpreted as a method for encoding data in terms of the latent variables from latent space
Z.

In this chapter we present a baseline variational autoencoder that incorporates the same as-
sumptions stated by D.P. Kingma and M. Welling [18]. The latent space Z can be identified
with the d-dimensional Euclidean space Z = Rd. The prior is chosen to be the standard normal
distribution over Rd with probability density PZ with respect to the Lebesgue measure Ld given
by

PZ(z) =

(
1√

(2π)d

)
exp

(
−‖z‖22

2

)
. (4.1)

For the encoding QAZ and decoding PBX parametric families of distributions we propose a family
of normal probability distributions. This choice determines the ELBO estimation divided into the
likelihood and the Kullback-Leibler regularization term. The details are presented in the next
sections.

4.1 Encoding family & Kullback-Leibler regularization

Given that we assume that the latent space can be identified with the d-dimensional Euclidean
space Z = Rd, the encoding distribution used to approximate the posterior PZ|x is chosen to be a
member of the parametric family of normal distributions QAZ defined as

QAZ =

{
Q(µ,Σ)
Z ∈ PZ

∣∣∣∣∣ Q(µ,Σ)
Z =

1√
(2π)ddet(Σ)

exp

(
−1

2
(z − µ)TΣ−1(z − µ)

)}
. (4.2)

Here Q
(µ,Σ)
Z is the probability density of the distribution Q(µ,Σ)

Z with respect to the Lebesgue
measure Ld. The parameters for each member of this family correspond to a mean vector µ ∈ Rd
and a covariance matrix Σ ∈ Rd×d. Thus, the set of possible parameters A corresponds to the
pairs of mean and standard deviation

A = {(µ,Σ) ∈ Rd × Rd×d}. (4.3)

With these particular assumptions for the prior and encoding distribution, the Kullback-Leibler
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regularization term can be calculated analytically and does not require a Monte Carlo estimation.
It corresponds to

KL(Q(µ,Σ)
Z ||PZ) =

1

2

(
tr(Σ) + ‖µ‖22 − log (det(Σ))− d

)
. (4.4)

We will now analyze the case in which we restrict the parametric family QZ to distributions
with diagonal covariance matrix. The elements in the diagonal are represented by the variance
vector σ2 ∈ (R+

0 )d . In this case, the Kullback-Leibler regularization term is simplified to

KL(Q(µ,σ2)
Z ||PZ) =

1

2
(‖σ2‖1 + ‖µ‖22 − ‖log (σ2)‖1 − d). (4.5)

In the next section we will approximate the likelihood term of the ELBO via Monte Carlo
estimation. We can use the reparametrization trick introduced in Section 3.3 to obtain samples

of the latent space Z according to Q (µ,σ2)
Z with a reparametrization function RepZ : A× E 7→ Z,

RepZ((µ, σ2), ε) = µ+ ε�
√
σ2. (4.6)

The operator � corresponds to the entry-wise Hadamard product and the auxiliary value ε ∈ E
is sampled according to the standard normal distribution over E = Rd. Finally, we will denote
as µZ : X 7→ Rd and σ2

Z : X 7→ (R+
0 )d the neural networks that calculate the corresponding

encoding distribution parameters.

4.2 Decoding family & reconstruction error

The reconstruction error term of the negative ELBO is determined by the parametric family PBX
used to obtain the decoding distribution PX|z for a given latent variable z ∈ Z. For all the
proposed variational autoencoders presented in this thesis we consider this family as the family of
parametric normal distributions over data space X = RD,

PBX =

{
P(µ,Σ)
X ∈ PX

∣∣∣∣∣ P (µ,Σ)
X =

1√
(2π)Ddet(Σ)

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)}
. (4.7)

Here P
(µ,Σ)
X is the probability density of P (µ,Σ)

X with respect to the Lebesgue measure LD. The
parameter set is given by the pair of mean µ ∈ RD and covariance matrix Σ ∈ RD×D such that

B = {(µ,Σ) ∈ RD × RD×D} (4.8)

In the estimation of the negative ELBO we need to calculate the term corresponding to recon-
struction error of a datapoint x ∈ X. This term involves the negative logarithm of the decoding
distribution which corresponds to

− logP
(µ,Σ)
X (x) =

1

2

[
D log (2π) + log (det Σ) + (x− µ)TΣ−1(x− µ)

]
. (4.9)

For the baseline variational autoencoder we will focus on the particular case in which we
restrict PBX to distributions with a fixed diagonal covariance matrix Σ = σ2

XID where σX ∈ R+

corresponds to a fixed standard deviation. The effects of modifying this parameter when training
a variational autoencoder are presented in the next section. For datapoint x ∈ X, the logarithm
of the decoding distribution becomes

− logP
(µ,σ2

X)
X (x) =

1

2

[
1

σ2
X

‖x− µ‖22 +D log (2πσ2
X)

]
. (4.10)

The reconstruction error of the negative ELBO can be estimated via the Monte Carlo method

introduced in Section 3.2 by sampling L elements from Z according to Q(µ,σ2)
Z . For each of the L
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samples we calculate the parameters of the approximate posterior with the neural networks µZ

and σ2
Z . The location parameter of the decoding distribution P (µ,σ2)

X is calculated with the neural
network µX : Z 7→ RD while its variance is the fixed value σ2

X ∈ R+. The approximate likelihood
term is expressed as

− E
Q

(µZ (x),σ2
Z

(x))

Z

[
logP

(µX(·),σ2
X)

X (x)
]
≈ 1

2L

L∑
l=1

1

σ2
X

‖x− µX(z(l))‖22 +D log (2πσ2
X). (4.11)

The L samples from Z space {z(l)}Ll=1 according to the posterior approximate can be obtained
via the reparametrization trick discussed in the previous section by sampling L terms {ε(l)}Ll=1

from E = Rd according to the standard normal distribution. Thus, each latent variable z(l) is
calculated as

z(l) = RepZ((µZ(x),σ2
Z(x)), ε(l)) = µZ(x) + ε(l) �

√
σ2
Z(x) (4.12)

4.3 The σX parameter as a weighting term

The parameter σX of the decoding normal distribution has a special importance for the negative
ELBO minimization as it has been presented in [14] and [8]. Recall that in Section 2.4 we have
divided the negative ELBO into two terms: the reconstruction error and the Kullback-Leibler reg-
ularization. In the baseline variational autoencoder, the reconstruction error for a latent variable
z and datapoint x includes the logarithm of the decoding distribution

− logP
(µX(z),σ2

X)
X (x) =

1

2σ2
X

‖x− µX(z)‖22 +D log(2πσ2
X). (4.13)

The first term in the logarithm corresponds to a squared distance between an input datapoint x
and the mean value for the decoding distribution µX(z) for a latent variable z. If we consider the
calculated mean µX(z) as the average reconstructed datapoint associated to the latent variable
z, then minimizing the reconstruction error for the baseline variational autoencoder is minimizing
the squared error between the reconstruction and the original datapoint. The second term of the
logarithm is constant for a fixed value of σ2

X , minimizing the negative ELBO with respect to the
neural network weights is equivalent to minimizing the quantity

1

σ2
X

E
Q

(µZ (x),σ2
Z

(x))

Z

[
1

2
‖x− µX(·)‖22

]
+ KL

(
Q(µZ(x),σ2

Z(x))
Z ||PZ

)
(4.14)

In this case we can notice that the parameter 1/σ2
X acts as a weight that modulates the con-

tributions of the reconstruction error with respect to the Kullback-Leibler regularization term as
discussed by C. Doersch in [8], an alternative interpretation in terms of a constrained optimization
problem is presented by I. Higgins et al. in the β-VAE of [14]. Increasing the value of σX results
in a higher contribution of the Kullback-Leibler regularization, while decreasing σX makes the
reconstruction error term more important.

The intuition behind the effects of parameter σX is connected to its relationship with the

decoding distribution. Recall that the decoding distribution P
(µX(z),σ2

X)
X provides for a latent

variable z a distribution of all possible datapoints that can be reconstructed from it. Decreasing
the value of σX conditions the normal decoding distribution to be narrower and to produce more
certain reconstructions, therefore the reconstruction error has a higher contribution. On the other
hand, increasing σX conditions the decoding distribution to produce less certain reconstructions
and the Kullback-Leibler regularization becomes more important.
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The effects of the parameter σX will be explored throughout this thesis for the different datasets
used.
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Chapter 5

Benchmark Dataset

In order to test the baseline variational autoencoder we have devised a simple dataset X of D-
dimensional vectors generated artificially by sampling elements from a known generative model
PX×Z . In this simple case, a datapoint is generated from a latent variable sampled according
to a distribution PZ . The datapoint x ∈ RD is obtained from the sampled latent variable by
calculating a D-dimensional vector according to F : Z 7→ RD and adding some Gaussian noise.

In this chapter we introduce the process used to generate dataset X in terms of F . The
function F is chosen in such a way that it induces a circular structure for the generated data.
After describing the dataset we present the results obtained by training the baseline variational
autoencoder by assuming a 2-dimensional Euclidean latent space Z = R2.

5.1 Dataset description

As a first study case, we have considered an artificial experiment with an observable data space X
given by D-dimensional vectors X = RD. Each observation x in the dataset X is generated from
a sampled element of the interval Φ = [−π, π). We will later identify the set Φ as the latent space
from the underlying Bayesian model.

To generate the observations we have used the function F : Φ 7→ X which calculates the
average datapoint for a given phase ϕ ∈ Φ. The function F is defined as F (ϕ) = (fj(ϕ))Dj=1 where
each individual function fj : Φ 7→ R corresponds to

fj(ϕ) = sin

(
2πj

D
+ ϕ

)
. (5.1)

Notice that for each of these individual functions, the value of ϕ ∈ Φ can be considered as the
phase of a discrete sine function over the interval [0, 1] with angular frequency 2π . Hence, for
a particular datapoint x ∈ X we will refer to ϕ ∈ Φ as its corresponding underlying phase. A
representation of the function F for the phase ϕ = 0 is shown in Figure 5.1.
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Figure 5.1: Example of function F (ϕ) for phase ϕ = 0 with D = 25. The horizontal axis
corresponds to the entry index i of function F , the vertical axis shows the value of fi(ϕ). The line
indicates the shape of the continuous sinusoid function.

Consider the probability space (Φ,FΦ,PΦ) with PΦ the uniform probability measure over Φ.
Each element xi in the dataset Xσ = {xi}Ni=1, where σ ∈ R+ represents the amount of Gaussian
noise added, is obtained by following the process consisting of the steps:

1. Sample a phase ϕi from Φ according to the uniform probability distribution PΦ over Φ.

2. Sample datapoint xi from a normal distribution with mean F (ϕi) and diagonal covariance
matrix Σ = σ2Id with σ ∈ R+.

Translating this setting to the Bayesian model context presented in Chapter 2, we consider
the set Φ as the latent space Z = Φ of a Bayesian model with a uniform probability measure PΦ

defined in terms of the probability density with respect to the L1 measure,

PΦ(ϕ) =
1

2π
. (5.2)

For a given phase ϕ ∈ Φ, the conditional distribution PX|ϕ from which data is sampled corres-
ponds to the normal distribution with location parameter F (ϕ) and variance determined by the
standard deviation σ ∈ R+ which can be interpreted as the amount of noise added to the function
F . The probability density of this conditional distribution with respect to the LD measure is given
by

PX|ϕ(x) =
1

(σ
√

2π)D
exp

(
−‖x− F (ϕ)‖22

2σ 2

)
.

According to Equation (2.6) presented in Chapter 2, the probability density of the generative
model PX×Φ for a given datapoint x ∈ X and a phase ϕ ∈ Φ is given by

PX×Φ(x, ϕ) = PX|ϕ(x) · PΦ(ϕ) =
1

2π(σ
√

2π)D
exp

(
−‖x− F (ϕ)‖22

2σ 2

)
.

From the generative model that we have described we will produce different datasets that can be
characterized in terms of the value σ used for the conditional distribution PX×Φ. The dataset
with N datapoints generated according to a generative model with parameter σ will be denoted
as Xσ. In Figure 5.2 we present an example datapoint generated from the latent phase ϕ = 0 for
the corresponding datasets X1, X0.1 and X0.01.
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Figure 5.2: Example datapoint x from dataset Xσ with phase ϕ = 0, D = 25 and σ ∈ {1, 0.1, 0.01}.
The horizontal axis corresponds to the entry index j and the vertical axis shows the j-th datapoint
entry. The dotted lines shown the interpolated curve form by the datapoint entries.

5.2 Structure of the benchmark dataset

The generative model that produced the dataset Xσ is determined entirely by the function F and
the underlying probability distribution. Notice the periodicity of F with respect to the phases
such that F (0) = limθ→2π F (θ). In an intuitive way, we can expect that the periodicity of the
function F induces a circular structure upon the dataset X .

We consider that the encoding distribution learned in a variational autoencoder aims at identi-
fying the appropriate latent variables that explain each datapoint via the use of neural networks.
According to M. Carreira-Perpinam [5] for the cases in which the dataset has a circular structure,
in order to recover a continuous encoding of the datapoints into the latent space it is needed a
periodic set of latent variable representations.

The phases in the latent space Z = Φ can be embedded into R2 to enforce the periodicity of
the latent variables. In particular, we can embed the phases from Φ into the unit circle within R2

via the function EmbR2 : R 7→ R2, defined as

EmbR2(ϕ) = (cos(ϕ), sin(ϕ)) (5.3)

For the purpose of visualizing such embedding we will consider the set ΦVis of 100 phases
corresponding to the regular partition of Φ = [−π, π) given by

ΦVis =

{
−π +

2πi

100

}99

i=0

(5.4)

In Figure 5.3 we present the embedded phases from ΦVis in R2 together with the corresponding
value of F (ϕ). It is important to realize that such continuous latent variable structure can only
be obtained from at least a 2-dimensional space. Therefore, in the next section we will describe
the results of training a variational autoencoder with the benchmark dataset by assuming a latent
space Z = R2 with the purpose of identifying a suitable periodic encoding of the datapoints into
the latent space.
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Figure 5.3: Embedding of phases ϕ ∈ ΦVis into R2 with the embedding function EmbR2(ϕ). Each
point in the unitary circle represents an embedded phase which is responsible of generating a
datapoint according to x = F (ϕ).

5.3 Baseline variational autoencoder training

For training the baseline variational autoencoder, we generated three datasets Xσ with different
values of σ denoted by X0.01, X0.1 and X1. Each dataset consists of N = 10000 datapoints ob-
tained via the generative model described in the first section of this chapter. The number of latent
samples is chosen as L = 1.

For each dataset Xσ we have trained three different variational autoencoders with the decod-
ing distribution parameter σX ∈ {0.01, 0.1, 1}. Moreover, due to the random initialization of the
neural network weights the outcome of each training is variable. For each pair of dataset Xσ and
σX we have repeated five times the neural network training to evaluate the reproducibility of the
results.

The variational autoencoders have been trained for 105 epochs via stochastic gradient descent
using the Adam optimizer with initial learning rate of 10−4, β1 = 0.9 and β2 = 0.999. The archi-
tecture of the neural networks is shown in Section 3.5. Two dense layers where used for both the
encoder and decoder neural networks with D/3 = b25/3c neurons each.
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5.4 Qualitative results

To analyze and evaluate the trained variational autoencoders we generated an extra dataset XVis

from the regular partition ΦVis described in Equation (5.4),

XVis =
{
x ∈ RD

∣∣ x = F (ϕ) ; ϕ ∈ ΦVis

}
. (5.5)

This auxiliary dataset corresponds to noiseless datapoints generated from the function F eval-
uated at equally spaced phases within Φ = [−π, π). It is used to effectively visualize the learned

approximate posterior Q(µZ(x),σ2(x))
Z of the trained variational autoencoder characterized by the

location and scale parameters calculated with the neural networks µZ and σ2
Z respectively.

We will refer to the value µZ(x) as the latent variable representation of datapoint x. Since
each datapoint x ∈ XVis can be associated to the underlying phase that generated it, our purpose
is to study the learned relationships between the latent variable representations for datapoints
with consecutive phases. As we stated in the previous section, the function F has induced circular
structure upon each dataset, thus we are expecting to obtain a periodic latent variable represent-
ation.

The approximate posterior distribution Q(µZ(x),σ2
Z(x))

Z for a datapoint x can be visualized with
respect to the high probability areas in latent space associated to each datapoint x ∈ XVis. In
the case of normal encoding distributions these areas are visualized with an ellipse centered at
µZ(x) ∈ R2. The major and minor axis correspond to the entries of the standard deviation vector√
σ2
Z(x) ∈ (R+)2. For each datapoint x, the corresponding ellipses are given by the set of points

in Z = R2 defined as {
z ∈ R2

∣∣∣∣ ‖(z − µZ(x))�
√
σ2
Z(x)‖2 ≤ 1

}
. (5.6)

Here the operation � corresponds to the Hadamard element-wise division. The representation
of the approximate posterior for datapoints in XVis is presented in Figure 5.4. Each plot corres-
ponds to the obtained approximate posterior for dataset Xσ (Rows) and parameter σX (Columns).

Each of the plots in Figure 5.4 shows that the learned latent representations of the datapoints
in dataset XVis forms a loop with respect to the underlying consecutive phases that generated
the data. Thus, the latent representation has a periodic behavior with respect to the underlying
phases as expected but the markers do not necessarily lie on a circle in latent space.. It is import-
ant to notice the different shapes obtained by varying the amount of noise in each dataset Xσ and
the proposed decoding distribution parameter σX .

First of all consider a row of plots in Figure 5.4 with a fixed dataset Xσ and a parameter
σX ∈ {1, 0.1, 0.01}. As it was discussed in Section 4.3, the value of σX acts a weighing factor
within the negative ELBO by modulating the contribution of the reconstruction error and the
Kullback-Leibler regularization.

The combination of forcing more precise reconstructions and the decreased effect of the Kullback-
Leibler regularization results in posterior approximates that for a given datapoint x produce more

precise latent embeddings. The approximate posterior Q(µZ(x),σ2(x))
Z resemble less the prior hav-

ing a smaller standard deviation σ2
Z(x) and therefore smaller high-probability ellipses.

On the other hand when we increase the value of σX , we allow less precise reconstructions of
datapoints with respect to the latent variables. The Kullback-Leibler regularization has a higher
contribution and the encoding distribution has a higher standard deviation represented with big-
ger ellipses which overlap. This overlapping represents the uncertainty of the encoder distribution
to determine for a given datapoint the corresponding latent variable that generated it.
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We can observe the effects of using the datasets X0.01,X0.1 and X1 with different noise levels.
The plots shown in each column of Figure 5.4 present the recovered structure of the latent vari-
ables for a fixed parameter σX across each dataset. We can identify that for datasets X0.01 and
X0.1 the learnt latent representations have a similar structure.

For the dataset with the highest noise X1 and the parameters σX ∈ 0.1, 0.01, there is still a
noticeable cycle in the latent representation for datapoints with consecutive phases, but the struc-
ture appears to be discontinuous with an intricate shape and small standard deviation (ellipses
have a very small scale). The variational autoencoders with small values of σX ∈ {0.1, 0.01} have
decoding distributions that enforce less variability of the reconstructed datapoints with respect
to the latent variables. It seems that due to the variability of the input dataset Xσ the encoding
distribution is less capable of identifying the shape of the underlying latent structure.

It is interesting to notice that for this noisy dataset X1, if we choose the value σX = 1,
the structure of the latent variables becomes smooth and circular. Therefore, by allowing more
uncertainty in the data reconstructions we can recover a latent structure that is closer to the
expected circular shape.
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Figure 5.4: Representation of the approximate posterior Q(µZ(x),σ2(x))
Z obtained by training the

baseline variational autoencoder for the different combinations of input dataset Xσ (Rows) and
decoding distribution parameter σX (Columns). The markers in each plot represents the calculated
values for the encoding distribution’s mean µZ(x) for each datapoint x ∈ XVis. The hue of each
marker represent the underlying phases ϕ ∈ ΦVis corresponding to each datapoint x ∈ XVis and
helps identify the relationships between datapoints with consecutive phases. The ellipses represent
the high probability regions of the encoding distribution for each datapoint determined by σ2

Z(x).
In some cases these ellipses have a smaller size compared to the size of the mean markers and can
not be observed.
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5.5 Quantitative results

For each of the trained variational autoencoders we calculated the quantities corresponding to the
negative evidence lower bound and the squared error. In order to test the reproducibility of the
results for each pair of dataset Xσ and parameter σX five variational autoencoders are trained.
Each of the quantities presented in Table 5.1 correspond to the average quantities over these
repetitions, the standard deviation for each quantity is also presented. Now we describe each of
the quantities presented in Table 5.1 for a single repetition.

In order to analyze the reconstruction capabilities of the variational autoencoder we measure
the squared error SE : x 7→ R+

0 between an input datapoint x ∈ XVis with respect to the re-
constructed datapoint generated by the variational autoencoder. The reconstructed datapoint is
obtained by first encoding the datapoint in latent space with µZ(x) and then decoding this latent
variable with the neural network µX(µZ(x)). The squared error corresponds to

SE(x) = ‖x− µX(µZ(x))‖22 (5.7)

To evaluate the reconstruction capabilities for the entire dataset XVis we aggregate the squared
error results by averaging them with respect to the cardinality of the dataset |XVis| = 100. The
mean squared error MSE of XVis corresponds to

MSE(XVis) =
1

|XVis|
∑

x∈XVis

SE(x). (5.8)

In this section we also present the values of the negative ELBO averaged over the complete dataset.
The negative ELBO is formed of the reconstruction error and the Kullback-Leibler regularization.
In the baseline variational autoencoder, the averaged reconstruction error is estimated using the
Monte Carlo method described in Section 3.2 by sampling L = 100 latent variables according to
the reparametrization trick presented in Section 3.3. The reconstruction error averaged over the
entire dataset is calculated as

1

L · |XVis|
∑

x∈XVis

L∑
l=1

1

σ2
X

‖x− µX(z(l))‖22 +
D

2
log
(
2πσ2

X

)
. (5.9)

The averaged Kullback-Leibler regularization is calculated according to

1

2 · |XVis|
∑

x∈XVis

‖σ2
Z(x)‖1 + ‖µ(x)‖22 − ‖ log (σ2

Z(x))‖1 − 2 (5.10)

Therefore the negative ELBO averaged over dataset XVis corresponds to the sum of the two afore-
mentioned terms. The reproducibility of all the described quantities is tested by averaging the
values over the five trained neural networks. Uncertainty intervals are calculated from the stand-
ard deviation of the measurements across the five trained neural networks.

We can notice that calculated quantities for datasets X0.01 and X0.1 are the same for each
value of σX taking into account the uncertainty intervals. This goes in accordance to the observed
qualitative behavior described in the previous section where the recovered encoder distributions
for both datasets present a similar behavior.

The only observable difference is that the mean squared error for the dataset with the lowest
noise X0.01 and σX = 0.01 is lower by one order of magnitude compared to the result obtained by
training with X0.1 and σX = 0.01.

A possible explanation can be that decreasing the value of σX forces the decoding distribution
to produce more precise reconstructions of a datapoint for a given latent variable. Moreover,
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Table 5.1: Values for the average negative ELBO, Kullback-Leibler regularization, reconstruction
error and mean squared error. Each value is obtained by averaging the results of five repetitions
for each corresponding variational autoencoder trained with dataset Xσ and parameter σX . The
calculated quantities are obtained with respect to dataset XVis. For the reconstruction error
L = 100 samples from the latent space are taken according to the trained posterior distribution.

Xσ σX -ELBO KL Regularization Reconstruction MSE

X0.01

0.01 −79.90± 0.19 11.18± 0.15 −91.09± 0.04 (1.59± 0.64)× 10−5

0.1 −28.87± 0.03 4.95± 0.02 −33.81± 0.02 (1.68± 0.23)× 10−3

1 25.41± 0.01 1.74± 0.01 23.67± 0.01 (4.22± 0.34)× 10−2

X0.1

0.01 −79.01± 0.11 11.10± 0.07 −90.11± 0.08 (2.08± 0.17)× 10−4

0.1 −28.74± 0.16 5.04± 0.10 −33.77± 0.06 (1.52± 0.17)× 10−3

1 25.37± 0.01 1.75± 0.01 23.62± 0.07 (4.51± 1.08)× 10−2

X1

0.01 919.28± 213.64 17.53± 3.35 901.75± 215.37 (1.99± 0.43)× 10−2

0.1 −12.99± 3.09 7.79± 0.3 −20.79± 2.90 (2.59± 0.59)× 10−2

1 25.53± 0.01 1.79± 0.01 23.74± 0.01 (4.61± 0.15)× 10−3

decreasing the value of σX increases the contribution of the reconstruction error to the negative
ELBO and masks the Kullback-Leibler regularization term which forces the posterior to resemble
the prior standard normal distribution.

On the other hand, the quantities calculated for dataset X1 have higher standard deviations
which means that the recovered variational autoencoders have more variability. The highest vari-
ability is obtained for the variational autoencoders with σX = 0.01 and the least variability is
observed for models with σX = 1. It is important to notice that for the noisy dataset X1, the
variational autoencoder with σX = 1 produces reconstructions with a low mean squared error and
less variability in the other calculated quantities.

As we have seen in the results obtained with the baseline variational autoencoder, we can
recover from the benchmark dataset a latent representation that captures the underlying periodic
latent structure. Moreover, we have analyzed the results obtained for different values of input noise
within the dataset and for the parameter σX . It is important to note that our qualitative results
for the latent representations for different values of σX follow the results presented in [13, 14].
Compared to these literature results we have analyzed as well the behavior of the approximate
posterior’s standard deviation σZ . In conclusion our baseline variational autoencoder is capable
of recovering periodic latent variables by producing latent representations of data with cyclic be-
havior. The parameter σX participates as a tradeoff between the shape of the recovered latent
structures and the reconstruction error.

After having discussed the obtained results for the baseline variational autoencoder applied
to the benchmark dataset, we will introduce in the next chapter a proof for the recovered latent
structure for a special restricted and simplified case of the baseline variational autoencoder. This
proof provides a very simple setting in which the recovered latent structure for the benchmark
dataset is circular.
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Chapter 6

Benchmark Dataset and the
Simplified Baseline Variational
Autoencoder

As it was presented in the previous chapter, the baseline variational autoencoder assumes an Euc-
lidean latent space and recovers a cyclic latent variable representation for the benchmark dataset.
In particular, for the benchmark dataset we have identified that in order to retrieve a circular
structure for the latent variables the smallest dimension required is d = 2 such that Z = R2.

Consider the benchmark dataset X described in Chapter 5 where each datapoint is given in
terms of the function F : Φ 7→ X which maps a phase/latent variable ϕ ∈ Φ with Φ = [−π, π) into
the D-dimensional Euclidean space X = RD via

F (ϕ) =

(
sin

(
2πi

D
+ ϕ

))D
i=1

(6.1)

As it was stated, this dataset has a circular structure induced by the function F due to its period-
icity. In this chapter we prove that minimizing the negative ELBO with the baseline variational
autoencoder subject to certain restrictions and simplifications, enforces a circular structure of the
latent variables.

6.1 Frequency domain benchmark dataset

Each of the datapoints in the benchmark dataset described in Chapter 4 corresponds to a discrete
sinusoid signal with a fixed frequency and a given phase. In order to simplify our problem, we will
be working with an equivalent representation of our data in the frequency domain with respect to
the discrete orthonormal basis of sines and cosines through the discrete Fourier series. The i-th
data entry of x = F (ϕ) is obtained from the linear combination of the Fourier basis functions as

sin

(
2πi

D
+ ϕ

)
= a0 +

D−1∑
k=1

ak cos

(
2πki

D

)
+ bk sin

(
2πki

D

)
. (6.2)

The discrete Fourier series takes the D-dimensional datapoint x = F (ϕ) and produces an equi-
valent representation in terms of the (D × 2)-dimensional vector (ak, bk)D−1

k=0 ∈ RD×2 where the
coefficient pair (ak, bk) ∈ R2 represents the contribution of the k-th frequency [19]. Notice that
the i-th datapoint entry can be decomposed by using the trigonometric formula

32 Latent Variable Separation with Variational Autoencoders



CHAPTER 6. BENCHMARK DATASET AND THE SIMPLIFIED BASELINE
VARIATIONAL AUTOENCODER

sin

(
2πi

D
+ ϕ

)
= sin(ϕ)cos

(
2πi

D

)
+ cos(ϕ)sin

(
2πi

D

)
(6.3)

The previous formula shows that the coefficients of the discrete Fourier series are non zero only
for the frequency component with k = 1. Therefore, the k-th entry of the Fourier vector is given
by

(ak, bk) =

{
(sin(ϕ), cos(ϕ)) if k = 1

(0, 0), otherwise
(6.4)

Therefore a datapoint is characterized in the frequency domain by only the components of one
frequency. The non-zero components are represented with 2-dimensional vectors. We denote the
obtained transformed data space as X ′ = R2 . Each datapoint x ∈ X ′ is obtained with respect to
the phase ϕ via the function F : Φ 7→ R2 given by

F (ϕ) = (sin(ϕ), cos(ϕ)) (6.5)

The generative model for the transformed data space corresponds to PX′×Φ which can be
described in terms of the normal probability density function with respect to the measure L2⊗L1

with diagonal covariance matrix Σ = σ2I2 is given by

PX′×Φ(x, ϕ) = PX′|ϕ(x)PΦ(ϕ) =
1

4π2σ2
exp

(
−‖x−F (ϕ)‖22

2σ2

)
. (6.6)

Which can be subdivided into a normal conditional distribution PX′|ϕ(x) with probability density

PX′|ϕ(x) =
1

2πσ2
exp

(
−‖x−F (ϕ)‖22

2σ2

)
(6.7)

And the corresponding uniform distribution over Φ,

PΦ(ϕ) =
1

2π
. (6.8)

6.2 Simplified baseline variational autoencoder

Moreover, within the baseline variational autoencoder context we propose the encoding and de-
coding distributions as members of parametric families of normal distributions. In this chapter
we will restrict ourselves even further to the case in which the covariance matrices of the encoding
and decoding distributions correspond to diagonal matrices ΣZ = σ2

Z · I2, ΣX′ = σ2
X′ · ID. Here

the diagonal is characterized entirely by the constant values σ2
Z ∈ R+ and σ2

X′ ∈ R+.

The conventional neural networks make use of nonlinear transformations for approximating
functions. In particular variational autoencoders use them to calculate the encoder and decoder
distribution parameters. Due to the non-linearities, it is difficult to identify analytically the
optimal neural network weights obtained by minimizing the loss function corresponding to the
negative ELBO. Therefore we will study the baseline variational autoencoder when we restrict
ourselves to simple linear matrix multiplications for calculating the location parameters for the

encoder and decoder distributions. Thus, our neural network functions µ
(G)
Z : X ′ 7→ Z and

µ
(H)

X′
: Z 7→ X ′ are given by

µ
(G)
Z (x) = Gx (6.9)

µ
(H)

X′
(z) = Hz (6.10)

Where the neural weights correspond to the matrices G ∈ R2×D and H ∈ RD×2. We will identify
that, in this very simple case, one particular minimizer matrix for the encoding distribution G
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sends the image of F into a circle within latent space.

6.3 Optimal solution

Theorem 3. Let PX′×Φ be the generative model with probability density function with respect to
the L2 ⊗ L1 measure given by

PX′×Φ(x, ϕ) =
1

4π2σ2
exp

(
−‖x−F (ϕ)‖22

2σ2

)
(6.11)

Consider the baseline variational autoencoder with the restrictions stated in the previous section.
An optimal encoding neural network µZ : R2 7→ R2 with weights G that minimizes the average
negative ELBO according with respect to the marginal distribution PX′ has the property that for
all ϕ ∈ Φ and x = F (ϕ)

‖µ(G)
Z (x)‖2 = ‖Gx‖2 = max

{
σZ
Γ

(√
Γ− σX′σZ
σX′σZ

)
, 0

}
(6.12)

With Γ =
(

1
2 + σ2

)
Proof. Our goal is to prove that an optimal encoding neural network µ

(G)
Z that minimizes the

negative ELBO averaged over the data space X ′ according to PX′ . First we will define the ELBO
for a datapoint x ∈ X ′ as the function L : X ′ 7→ R given by

−L (x) = KL
(
Q(µZ(x),σ2

Z)
Z ||PZ

)
− E

Q
(µZ (x),σ2

Z
)

Z

[
logP

(µX′ (·),σ
2
X′ )

X′ (x)
]

By substituting the Kullback-Leibler regularization and the reconstruction error in terms of the
encoding and decoding neural networks we obtain:

−L (x) =
1

2

(
2σ2

Z + ‖µZ(x)‖22 − 2log(σ2
Z)− 2

)
+ E

Q
(µZ (x),σ2

Z
)

Z

[
1

2σ2
X

‖x− µX′(·)‖22 + log(2πσ2
X′)

]
Notice that we can group the terms that do not involve the encoding and decoding neural networks
whose weights are optimized.

C = σ2
Z − log(σ2

Z) + log(2πσ2
X′)− 1.

Substituting the constant into the negative ELBO we obtain,

−L (x) =
1

2

(
‖µZ(x)‖22 +

1

σ2
X

E
Q

(µZ (x),σ2
Z

)

Z

[
‖x− µX′(·)‖22

])
+ C.

First we will calculate the expected value with respect to the posterior approximate within
the ELBO function. We can change this expected value over Z with respect to the approximate

posterior Q(µZ(x),σ2
Z)

Z by using the reparametrization trick defined in Section 3.3. The reparamet-
rization function is defined as

Rep((µZ(x), σZ), ε) = µZ(x) + σZε.

If we choose the auxiliary the auxiliary value ε ∈ E = R2 to be distributed according to the
standard normal distribution PE then we can change the expected value over Z into an expected
value over E,

E
Q

(µZ (x),σ2
Z

)

Z

[
‖x− µX′(·)‖22

]
= EPE

[
‖x− µX′(µZ(x) + σZ(·))‖22

]
.
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By substituting the encoding and decoding neural networks as matrix multiplications we can
calculate the expected value with respect to the auxiliary space E according to,

EPE
[
‖x− µX′(µZ(x) + σZ(·))‖22

]
= EPE

[
‖x−H(Gx+ σZ(·))‖22

]
= ‖(HG− I2)x‖22 + 2σZ((HG− I2)x)T (HEPE [(·)]) + σ2

ZEPE
[
‖H(·)‖22

]
.

Since the auxiliary variables are distributed according to a standard normal distribution, the
second term with EPE [(·)] = (0, 0) cancels out. The third term involves the expected value of the
norm of the auxiliary variable multiplied by matrix H which is calculated as

EPE
[
‖H(·)‖22

]
= ‖HEPE [(·)] ‖22 + tr(HTHΣE).

Since PE corresponds to the standard normal distribution in R2 then EPE [(·)] = (0, 0) and the
covariance matrix ΣE = I2,

EPE
[
‖H(·)‖22

]
= tr(HTH) = ‖H‖2F .

Here the operator ‖ · ‖F corresponds to the Frobenius norm of a matrix. Therefore we have the
final form for the expected value over the auxiliary space given by

EPE
[
‖x− µX′(µZ(x) + σZ(·))‖22

]
= ‖(HG− I2)x‖22 + σ2

Z‖H‖2F ,

which we can subsitute into the negative ELBO function.

−L (x) =
1

2

(
‖Gx‖22 +

1

σ2
X′
‖(HG− I2)x‖22 +

σ2
Z

σ2
X′
‖H‖2F

)
+ C.

Recall that our goal is to find the matrices G, H that minimize the expected value with respect
to PX′ of the negative ELBO expressed by

EPX′ [−L (x)] = EPX′

[
1

2

(
‖Gx‖22 +

1

σ2
X′
‖(HG− I2)x‖22 +

σ2
Z

σ2
X′
‖H‖2F

)]
+ C. (6.13)

The expected value of

EP′X

[
‖G(·)‖22

]
= ‖GEPX′ [(·)] ‖22 + tr(GTGΣX′)

In order to calculate the expected value we neet to identify the mean of a datapoint according
to PX′ which is calculated as

EPX′ [·] =

∫
X′
x

∫
Φ

PX′|ϕ(x)PΦ(ϕ)dL1(ϕ)dL2(x). (6.14)

For a fixed phase ϕ, the expected value of datapoint x distributed according to the conditional
distribution is calculated with the function F (ϕ)

EPX′|ϕ [(·)] =

∫
X′
xPX′|ϕ(x)dL2(x) = F (ϕ).

Subsituting into Equation (6.14) we obtain the mean for a datapoint distributed according to the
marginal PX′

EPX′ [·] =
1

2π

∫
Φ

F (ϕ)dL1(ϕ) =
1

2π

∫
Φ

(cos(ϕ), sin(ϕ))dL1(ϕ) = (0, 0)

Since the mean of a datapoint distributed according to PX′ is (0, 0), we can calculate the i-th
diagonal entry from the covariance matrix according to the second moment of the conditional
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distribution for the i-th datapoint entry Exi∼PX′|ϕ
[
x2
i

]
,

(ΣX′)i,i =

∫
Φ

Exi∼PX′|ϕ
[
x2
i

]
dL1(ϕ).

We have that the second moment of the i-th entry of a datapoint xi can be calculated with the
formula

Exi∼PX′|ϕ
[
x2
i

]
= Exi∼PX′|ϕ [xi]

2
+ Vxi∼PX′|ϕ [xi]

Here the operator Vxi∼PX′|ϕ corresponds to the variance of the i-th datapoint entry which is

equal to σ2. Substituting the mean value for the conditional distribution EPX′|ϕ [(·)] = F (ϕ) we
have that the i-th element of the diagonal covariance matrix is calculated as

(ΣX′)i,i =
1

2π

∫
Φ

(
EPX′|ϕ [(·)]2i + σ2

)
dL1(ϕ) =

1

2π

∫
Φ

(
F (ϕ)2

i + σ2
)
dL1(ϕ)

We have that the i-th entry of the conditional distribution mean corresponds to the i-th value
of the function F (ϕ) = (sin(ϕ), cos(ϕ)), therefore

(ΣX′)1,1 =
1

2π

∫
Φ

(
sin(ϕ)2 + σ2

)
dL1(ϕ)

(ΣX′)2,2 =
1

2π

∫
Φ

(
cos(ϕ)2 + σ2

)
dL1(ϕ)

The covariance matrix then corresponds to

ΣX′ =

(
1

2
+ σ2

)
I2 = ΓI2.

For notation simplicity, we have rewritten the constant diagonal terms as Γ, i.e.

Γ =

(
1

2
+ σ2

)
.

Therefore the first term in Equation (6.13) is calculated as

EPX′
[
‖Gx‖22

]
= ‖GEPX′ [(·)]‖

2
2 + tr(GGTΣX′) = Γ‖G‖2F .

The second term of Equation (6.13) is obtained in a similar fashion,

EPX′
[
‖(HG− I2)x‖22

]
= Γ‖(HG− I)‖2F .

Substituting both expected values into the negative ELBO we have the formula

EPX′ [−L (x)] =
1

2

(
Γ‖G‖2F +

Γ

2σ2
X

‖HG− I2‖2F +
σ2
Z

σ2
X

‖H‖2F
)

+ C.

We can simplify our minimization objective by taking out the constants which are independent
of the parameters that we are aiming to optimize. The simplified objective function used to obtain
the optimal parameters is renamed as a function Loss : R2×2 × R2×2 7→ R. The condition for
minimization is therefore

arg min
G∈R2×2,H∈R2×2

Loss(G,H) = arg min
G∈R2×2,H∈R2×2

Γ‖G‖2F +
Γ

σ2
X

‖HG− I2‖2F +
σ2
Z

σ2
X

‖H‖2F .

The necessary condition that the parameters G,H must fulfill to be a local minimum is that the
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gradient must be equal to zero, that is

∇G(Loss(G,H)) = 2ΓG+
2Γ

σ2
X

(
1

2
+ σ2

)
HT (HG− I2) = 0,

∇H(Loss(G,H)) = 2
σ2
Z

σ2
X

H +
2Γ

σ2
X

(HG− I2)GT = 0.

(6.15)

Multiplying the first condition in Equation (6.15) to the right by GT and the second to the left
by HT we can substract them to obtain

HTH = Γ
σ2
X′

σ2
Z

GGT

Let G and H be optimizers of the loss function. If we express matrix G in terms of its singular
value decomposition G = UGΛGV

T
G where UG, V

T
G ∈ R2,2 are orthogonal matrices and ΛG ∈ R2,2

is a diagonal matrix then we can rewrite the loss function as

Γ‖UGΛGV
T
G ‖2F +

Γ

σ2
X

‖HUGΛGV
T
G − I2‖2F +

σ2
Z

σ2
X

‖H‖2F

Since UG and V TG are orthogonal matrices, we have that UTGUG = I2 and V TG VG = I2. Because of
this property, we have that for any matrix A ∈ R2×2, the Frobenius norm of A multiplied by an
orthogonal matrix UG is

‖UGA‖2F = tr(ATUTGUGA) = tr(ATA) = ‖A‖2F

We can then express the identity matrix of Equation (6.3) as I2 = VGV
T
G and introduce identity

matrices in the second and third term such that

Γ‖ΛG‖2F +
Γ

σ2
X

‖VGV TGHUGΛGV
T
G − VGV TG ‖2F +

σ2
Z

σ2
X

‖H‖2F

We can then factorize from the left and from the right the matrix V TG and VG in the second term
and remove them from the norm since they are orthogonal,

Γ‖ΛG‖2F +
Γ

σ2
X

‖VG(V TGHUGΛG − I2)V TG ‖2F +
σ2
Z

σ2
X

‖H‖2F

Due to the orthogonality of VG then

Γ‖ΛG‖2F +
Γ

σ2
X

‖V TGHUGΛG − I2‖2F +
σ2
Z

σ2
X

‖H‖2F

Finally since multiplying by the orthogonal matrices V TG and UG does not affect the Frobenius
norm, we introduce them to the third term

Γ‖ΛG‖2F +
Γ

σ2
X

‖V TGHUGΛG − I2‖2F +
σ2
Z

σ2
X

‖V TGHUG‖2F

If we define the optimizer matrices G′ = ΛG and H ′ = V TGHUG then our loss function becomes

Loss(G′, H ′) = Γ‖ΛG‖2F +
Γ

σ2
X

‖H ′ΛG − I2‖2F +
σ2
Z

σ2
X

‖H ′‖2F

By performing a polar decomposition of matrix H ′ = QH′SH′ with QH′ ∈ R2 an orthogonal
matrix and SH′ a symmetric matrix with SH′ =

√
H ′TH ′ therefore by the condition in Equation
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(6.3)

S2
H′ = Γ

σ2
X′

σ2
Z

G′G′T = Γ
σ2
X′

σ2
Z

Λ2
G

Therefore SH′ =
√

ΓσX′
σZ

ΛG, substituting this into the loss function

Loss(G′, H ′) = Γ‖ΛG‖2F +
Γ

σ2
X

∥∥∥∥(√Γ
σX′

σZ

)
QH′Λ

2
G − I2

∥∥∥∥2

F

+ Γ‖ΛG‖2F

We can express the second term of the minimization objective in terms of the norm of the
projections into the canonical vectors ei ∈ R2.

∥∥∥∥(√Γ
σX′

σZ

)
QH′Λ

2
G − I2

∥∥∥∥2

F

=

2∑
i=1

∥∥∥∥((√Γ
σX′

σZ

)
QH′Λ

2
G − I2

)
ei

∥∥∥∥2

2

≥
2∑
i=1

∥∥∥∥((√Γ
σX′

σZ

)
Λ2
G − I2

)
ei

∥∥∥∥2

2

=

∥∥∥∥(√Γ
σX′

σZ

)
Λ2
G − I2

∥∥∥∥2

F

.

In this way we have reduced the dependence of our minimization objective to only the matrix ΛG,
therefore we are searching to minimize

arg min
ΛG∈R2×2

Γ‖ΛG‖2F +
Γ

σ2
X′

∥∥∥∥(√Γ
σX′

σZ

)
Λ2
G − I2

∥∥∥∥2

F

+ Γ‖ΛG‖2F .

In general the diagonal matrix ΛG can be described in terms of its diagonal entries (λ1, λ2). It
can be seen from the fact that the minimization problem splits into two independent minimization
problems that the diagonal entries must be equal, i.e. λ1 = λ2 = λ. Therefore the minimization
criteria can be simplified to only depend on the scalar λ ∈ R

arg min
λ∈R

4Γλ2 +
Γ

σ2
X′

[
2
σ2
X′Γ

σ2
Z

λ4 − 4

(√
ΓσX′

σZ

)
λ2 + 2

]

We can then identify the sufficient conditions for a global minimum by taking the gradients
with respect to λ2 of the loss function. By identifying that the second derivative of the loss
function is always positive we conclude that it is convex.

∇λ2Loss(λ) = 4Γ

(
1−

√
Γ

σX′σZ
+
λ2Γ

σ2
Z

)
= 0

∇2
λ2Loss(λ) =

2Γ2

σ2
Z

> 0

The critical value for λ2 corresponds to

λ2 =
σZ
Γ

(√
Γ− σX′σZ
σX′σZ

)
. (6.16)

Notice that due to the convexity of the loss function, there is always a critical solution, even for
negative values of λ2. Since we are interested in the value of λ we restrict the domain of the
possible critical values for λ2 from Equation (6.16) to only non-negative values. In the case where√

Γ− σX′σZ < 0 the optimal lies in the boundary of our restricted domain i.e. the optimal value
corresponds to λ2 = 0 . We have that the value for an optimal λ subject to the restriction to only
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non-negative values is

λ = max

{
σZ
Γ

(√
Γ− σX′σZ
σX′σZ

)
, 0

}
Therefore we have identified that a minimal solution to the optimization of the negative ELBO
for the simplified baseline variational autoencoder satisfies

‖G′x‖22 = ‖ΛGx‖22 = max

{
σZ
Γ

(√
Γ− σX′σZ
σX′σZ

)
, 0

}
(6.17)

Even though this is a very restrictive result that limits the expressiveness of the baseline
variational autoencoder it provides a proof for a simple setting in which we can naturally recover
the circular underlying latent structure of the dataset. In the next section we will now further
explore the consequences of restricting the latent space of a variational autoencoder. We will
propose a variational autoencoder that assumes a circular latent space and propose a special
family of parametric distributions to approximate the posterior.
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Chapter 7

Diffusion Variational Autoencoder

In the previous chapter we introduced a benchmark dataset in which we have the complete in-
formation about the generative model PX×Z and the latent variables Z = Φ used to generate it.
Moreover, we have noticed that the function F : Φ 7→ X induces a spherical structure over the
benchmark dataset with respect to the latent variables. The baseline variational autoencoder used
in the previous chapter proposes a latent space corresponding to the Euclidean space without any
special structure or restrictive assumptions.

In this chapter we will study the case in which we incorporate to a variational autoencoder
the assumption that the latent space has a circular geometry. The purpose of this is to identify
the effects of imposing the assumptions of having circular latent variables that generated dataset
X and test whether a periodic latent structure is recovered. In this setting, we propose that the
latent space can be identified with the unit circle Z = S1 embedded in R2,

S1 = {z ∈ R2 | ‖z‖22 = 1}. (7.1)

We describe the latent space Z = S1 in terms of an auxiliary set Θ = [−π, π) and an embedding
function EmbR2 : Θ 7→ R2. Moreover, we will introduce a family of parametric distributions based
on the solutions to the diffusion equation with periodic boundary conditions to approximate the
posterior. For this variational autoencoder we propose the decoding distribution as a member of
the parametric family of normal distributions just like in the baseline variational autoencoder.

7.1 Encoding family & Kullback-Leibler regularization

Let (Θ,FΘ,PΘ) be a probability space over the interval Θ = [−π, π) were the measure PΘ cor-
responds to the uniform probability distribution over Θ. The probability density PΘ of PΘ with
respect to L1 for a certain θ ∈ Θ corresponds to

PΘ(θ) =
1

2π
. (7.2)

We define the latent space Z as the unit circle Z = S1 embedded in R2 described in terms of
the elements of the interval Θ through the measurable function EmbR2 : Θ 7→ R2,

EmbR2(θ) = (cos(θ), sin(θ)). (7.3)

Thus, the latent space corresponding to the unit circle is described with respect to the set Θ as
the image of the embedding function,

S1 = {z ∈ R2 | z = EmbR2(θ) ; θ ∈ Θ}. (7.4)
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We propose the prior distribution PS1 over the latent space S1 as the pushforward measure of
the measurable embedding function EmbR2#PΘ which corresponds to the uniform measure over S1.

For estimating the posterior distribution, first we choose a family of parametric distributions

PAΘ defined in terms of the probability densities P
(µΘ,tΘ)
Θ obtained from the solutions to the diffu-

sion equation in the domain Θ with periodic boundary conditions P
(µΘ,tΘ)
Θ (−π) = limθ→π P

(µΘ,tΘ)
Θ (θ)

(See derivation in Appendix A). This family is characterized as

PAΘ =

{
P(µ,t)

Θ ∈ PΘ

∣∣∣∣∣ P (µ,t)
Θ (θ) =

1

2π

∞∑
m=0

cos(m(θ − µ))exp(−m2t)

}
(7.5)

Here the parameter µ ∈ Θ corresponds to the location parameter and t ∈ R+
0 corresponds to the

scaling parameter
A = {(µ, t) ∈ Θ× R+

0 }. (7.6)

From the parametric family over the set Θ we define its counterpart in the latent space determined
by the pushforward measure of the embedding. The parametric family of encoding distributions
that approximate to the posterior is thus defined in terms of the same parameter set A as

QAS1 =
{
Q(µ,t)
S1 ∈ PZ | Q(µ,t)

S1 = EmbR2#P(µ,t)
Θ

}
. (7.7)

The Kullback-Leibler divergence regularization term of the ELBO can be calculated in terms

of the probability distributions over the set Θ since KL(Q(µ,t)
S1 ||PS1) = KL(P(µ,t)

Θ ||PΘ) with

KL
(
P(µ,t)

Θ ||PΘ

)
=

∫
Θ

log

( ∞∑
m=0

cos(m(θ − µ))exp(−m2t)

)
dP(µ,t)

Θ (θ). (7.8)

This integral can be approximated with the Monte Carlo method introduced in Section 3.2 by

sampling L elements {θ(l)}Ll=1 from the interval Θ according to Q(µ,t)
Θ . The parameters µ, t from

the distribution Q(µ,t)
Θ are calculated with the neural networks µΘ : X 7→ R and tΘ : X 7→ R+

0

with a datapoint x ∈ X. The Monte Carlo estimate of the Kullback-Leibler divergence is given by

KL(P(µΘ(x),tΘ(x))
Θ ||PΘ) ≈ 1

L

L∑
i=1

P
(µΘ(x),tΘ(x))
Θ (θ(l))log

(
P

(µΘ(x),tΘ(x))
Θ (θ(l))

PΘ(θ(l))

)
. (7.9)

The sampling of elements {θ(l)}Ll=1 from Θ in the variational autoencoder is performed by
applying the reparametrization trick introduced in Section 3.3. The reparametrization function
RepΘ : A × R 7→ Θ produces each sampled value θ(l) from the calculated parameters µ, t of

Q(µ,t)
Θ and the auxiliary element ε(l) sampled from space E = R according to the standard normal

distribution. Therefore, the sampled θ(l) is calculated as

θ(l) = RepΘ((µΘ(x), tΘ(x)), ε) = [(π + µΘ(x) + ε · tΘ(x)) mod (2π)]− π. (7.10)

7.2 Benchmark dataset training

The conditions used for training with the benchmark dataset correspond to the same ones used for
the baseline variational autoencoder. The three datasets X0.01, X0.1 and X1 with different levels
of noise were employed for training. The number of latent samples is chosen as L = 1.

For each dataset three variational autoencoders were trained with decoding distribution para-
meter σX ∈ {0.01, 0.1, 1}. The number of epochs and the optimizer used for training were the
same as the ones presented in Section 5.3. The architecture of the neural networks is shown in
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Section 3.5. Two dense layers where used for both the encoder and decoder neural networks with
D/3 = b25/3c neurons each.

7.3 Qualitative results

To analyze and evaluate the results obtained by the trained variational autoencoder the same
dataset XVis defined in Section 5.4 was used.

The approximate posterior distribution Q(µ∗Θ(x),t∗Θ(x))

S1 for a datapoint x is visualized with
respect to its high probability region within the latent space Z = S1. In the diffusion variational
autoencoder, these regions are characterized as arcs of the unit circle. Each arc spans an angle
range within Θ determined by the scale parameter tΘ(x). The center of each arc associated to a
datapoint x is located at the embedded mean value EmbR2µΘ(x). Each arc is therefore described
as {

EmbR2(θ) ∈ R2
∣∣ ‖θ − µΘ(x)‖2 ≤ tΘ(x)

}
. (7.11)

Each of the plots in Figure 7.1 corresponds to a representation of the approximate posterior

Q(µ∗Θ(x),t∗Θ(x))

S1 for datapoint x ∈ XVis obtained by training a diffusion variational autoencoder for
each pair of dataset Xσ and parameter σX . In each plot it can be noticed that the recovered lat-
ent variables have a periodic latent structure since datapoints with consecutive associated phases
are encoded next to each other in the unit circle. This can be clearly identified by noticing the
continuous change in color hue for each latent variable representation.

Even though the recovered latent variables are apparently periodic for each trained diffusion
variational autoencoder it is important to notice that there are some differences in the structure
with respect to the dataset used for training Xσ and parameter σX .

For a fixed dataset Xσ we can see the effects of varying the value of the parameter σ within
a row of Figure 7.1. As it was mentioned in previous chapters, the effect of changing σX is that
of weighting the contribution of the reconstruction error with respect to the Kullback-Leibler reg-
ularization. Increasing the value of σX decreases the contribution of reconstruction error within
the negative ELBO with respect to the Kullback-Leibler regularization.

Minimizing the Kullback-Leibler divergence forces the approximate posterior to resemble the
prior over the latent space which is a uniform distribution over the unit circle. Therefore, we can
notice that higher values of σX result in approximate posterior distributions with a larger scale
value tΘ(x) which results in longer arc portions of the unit circle associated to each datapoint
x ∈ XVis. In the case of σX = 1, the complete circle is covered with overlapping high probability
regions.

For the parameter σX = 0.1 the high probability arcs of the posterior tend to cover less area
of the unit circle and the scaling parameter tΘ(x) calculated for each datapoint is still noticeable.
When further reducing σX = 0.01 the latent variables do not span the complete circle and the
scaling value makes the resulting arcs small and appear to be lines perpendicular to the unit circle.

For small values of σX , the reconstruction error dominates the negative ELBO forcing the vari-
ational autoencoder to favor better reconstructions without restricting the shape of the encoding
distribution. Therefore in this cases the diffusion variational autoencoder for σX = 0.01 creates
latent representations of the datapoints that only span a small section of the unit circle.

Finally if we analyze the effects of increasing the noise of a dataset by looking at the plots in the
columns of Figure 7.1 a similar effect can be observed as in the baseline variational autoencoder.
There is no apparent difference in the structures recovered for datasets X0.1 and X0.01.
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The biggest difference in the results is observed for dataset X1 where the learned structure
for the diffusion variational autoencoder with σX ∈ {0.01, 0.1} is different to that of the dataset
X0.01 and X0.1. In these cases the latent structure appears fragmented and only certain regions of
the circle are occupied. This can be due to the variability of the dataset that does not allow the
variational autoencoder to identify similarities in the underlying latent variables that generated
the dataset. Nonetheless it is interesting to note that the order of datapoints with consecutive
phases is maintained (the color hue increases gradually within the circle).
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Figure 7.1: Representation of the approximate posterior Q(µ∗Θ(x),t∗Θ(x))

S1 obtained by training the
baseline variational autoencoder for the different combinations of input dataset Xσ (Rows) and
decoding distribution parameter σX (Columns). The markers in each plot represent the calculated
values for the encoding distribution’s mean µZ(x) for each datapoint x ∈ XVis. The hue of each
marker represents the underlying phase ϕ ∈ ΦVis corresponding to each datapoint x ∈ XVis and
helps identify the relationships between datapoints with consecutive phases. The arc portions
of the unit circle in each plot represent the high probability regions of the encoding distribution
determined by tΘ(x). In some cases these arcs have a smaller size compared to the size of the
mean markers and are observed as lines perpendicular to the circle.

44 Latent Variable Separation with Variational Autoencoders



CHAPTER 7. DIFFUSION VARIATIONAL AUTOENCODER

7.4 Quantitative results

The quantities used to evaluate the diffusion variational autoencoder are the same as the ones
used for the baseline variational autoencoder discussed in Section 5.5, they are presented in Table
7.1.

Table 7.1: Values for the average negative ELBO, Kullback-Leibler regularization, reconstruction
error and the mean square error. Each value is obtained by averaging the results of five repetitions
for each corresponding variational autoencoder trained with dataset Xσ and parameter σX . The
calculated quantities are obtained with respect to dataset XVis. For the reconstruction error
L = 100 samples are taken from latent space according to the trained posterior distribution.

Dataset σX -ELBO KL Regularization Reconstruction MSE

X0.01

0.01 −84.99± 1.49 3.49± 0.21 −88.48± 1.30 (6.78± 2.52)× 10−4

0.1 −32.16± 0.29 2.14± 0.29 −34.30± 0.03 (8.40± 7.02)× 10−4

1 24.04± 0.06 (7.69± 0.01)× 10−1 23.27± 0.06 (7.26± 12.4)× 10−1

X0.1

0.01 −80.96± 3.39 3.47± 0.07 −84.43± 3.32 (1.49± 0.66)× 10−3

0.1 −31.45± 1.77 1.98± 0.01 −33.43± 1.77 (1.83± 3.57)× 10−2

1 24.05± 0.09 (7.68± 0.01)× 10−1 23.28± 0.09 (9.51± 17.5)× 10−2

X1

0.01 1849.45± 943.38 5.03± 0.33 1844.42± 943.40 (3.87± 1.89)× 10−1

0.1 1.32± 23.47 3.20± 0.86 −1.88± 22.71 (6.50± 4.54)× 10−1

1 24.15± 0.09 (7.78± 0.06)× 10−1 23.37± 0.09 (2.86± 1.88)× 10−1

A very interesting result that can be observed in Table 7.1 is the noticeable increase in the
mean squared error when the noise in the data is increased. Higher noise produces worse recon-
structions with bigger mean squared error. One possible explanation to this effect is that since
the latent variables of the model are restricted to the unit circle which is low dimensional, the
variability of the input dataset with respect to the noise can not be captured .

It is interesting to notice that as with the baseline variational autoencoder, the results obtained
with dataset X0.1 and X0.01 are similar and the only changes are with respect to the value of the
mean squared error where the order of magnitude can be up to two orders of magnitude different.

Another result is the high variability of the measured quantities with the models that have
σX = 0.01 with the most extreme changes observed for the noisy dataset X1 and the lowest vari-
ability is within models that have σX = 1. These results are similar to the obtained with the
baseline variational autoencoder.

We have already presented two variational autoencoders that attempt to recover the under-
lying latent variable structure of a particular dataset. These variational autoencoders create a
representation of the input osberved data and impose a structure on the latent variables that can
explain these observations. Moreover this learned structure can be used to produce new datapoints
through the learned generative model defined by the variational autoencoder.

Therefore for a datapoint x we have obtained a latent representation in latent space Z = R2

and Z = S1. One interesting question that arises is whether these latent variable representations
can be connected in such a way that the corresponding generative models are equivalent. This
question is addressed in the next chapter.
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Chapter 8

Generative Model Reduction

In the previous chapters we have presented the structure for two different variational autoencoders:
The baseline variational autoencoder of Chapter 4 which assumes an Euclidean latent space and
the diffusion variational autoencoder of Chapter 7 which posits a circular latent space. These
variational autoencoders have been employed to recover the underlying structure of the latent
variables that generated the benchmark dataset of Chapter 5.

For each variational autoencoder a decoding distribution is obtained which relates the cor-
responding latent variables with datapoints in dataspace X. This decoding distribution together
with the proposed prior over the latent space defines a generative model that attempts to explain
the process that generated the data (See Chapter 2). In this chapter we will propose a method
for reducing the generative models obtained from training different variational autoencoders with
a dataset X .

Consider the case in which K variational autoencoders with different preliminary assumptions
have been trained from dataset X . Each of them is entirely characterized by the choice of the latent

space Zk, the prior PZk , the trained encoding distribution Qα
∗(·)

Zk
and trained decoding distribution

Pβ
∗(·)

X . Therefore the k-th trained variational autoencoder is specified as the quadruple of elements

(Zk,PZk ,Q
α∗k(·)
Zk

,Pβ
∗
k(·)
X ). Moreover, the choice of the prior together with the trained decoder

distribution determines a generative model with respect to the corresponding latent variables.

Definition 8.0.1. Generative model of a variational autoencoder

Given a variational autoencoder represented by the quadruple (Zk,PZk ,Q
α∗k(·)
Zk

,Pβ
∗
k(·)
X ) the gener-

ative model associated to the variational autoencoder PX×Zk is defined in terms of the probability
density function PX×Zk with respect to the Ld ⊗ PZ measure given by:

PX×Zk(x, z) = P
β∗k(z)
X (x)PZk(z) (8.1)

As it was described in Chapter 2, the process of generating a datapoint according to the k-th
variational autoencoder generative model is comprised of the process of first sampling a latent
variable z according to the prior PZk and then sampling a datapoint x from the corresponding

distribution Pβ
∗
k(z)
X (x).

One question that arises is whether for a given dataset X the generative models obtained from
two variational autoencoders can be expressed in terms of one-another. In this chapter we will
discuss a condition for obtaining an approximate reduction of one generative model in terms of a
map function between the latent spaces of each variational autoencoder.
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8.1 ∆-Reduction of generative models

Consider the case in which two variational autoencoders have been trained with dataset X and are
characterized by the corresponding quadruples (Z1,PZ1

,Qα
∗
1(·)

Z1
,Pβ

∗
1(·)
X ) and (Z2,PZ2

,Qα
∗
2(·)

Z2
,Pβ

∗
2(·)
X ).

We will define a condition for approximately reducing the corresponding generative models in terms
of a mapping function between latent spaces.

Intuitively, a datapoint x ∈ X has a representation in terms of the latent variables in Z1 and
Z2 learned by the corresponding variational autoencoders. In order to reduce the generative model
in terms of another we would like to find a mapping function that relates the latent variables in
Z1 and Z2 that are associated to a same datapoint x ∈ X on average.

Definition 8.1.1. ∆- Reduction of generative models

Let (Z1,PZ1
,Qα

∗
1(·)

Z1
,Pβ

∗
1(·)
X ) and (Z2,PZ2

,Qα
∗
2(·)

Z2
,Pβ

∗
2(·)
X ) represent two variational autoencoders

trained with a dataset X . Let PX×Z1
and PX×Z2

denote the generative models associated to
the corresponding variational autoencoders.

Let M1;2 : Z1 7→ Z2 be a continuous function that maps elements from latent space Z1 to Z2.
We say that the function M1;2 is a ∆-reductor of the generative model PX×Z1

from Z1 into Z2 if
for the value ∆ ∈ R+, then

KL(PX×Z1 ||PX×M1;2(Z1)) ≤ ∆. (8.2)

Here the generative model PX×M1;2(Z1) is defined in terms of the probability density function
PX×M1;2(Z1) : X × Z1 given by

PX×M1;2(Z1)(x, z) = P
β∗2(M1;2(z))
X (x)PZ1(z). (8.3)

By symmetry, this definition also applies to a ∆-reductor M2;1 : Z2 7→ Z1.

The condition presented in Equation (8.2) determines that a generative model with a latent
space Z1 obtained by training a variational autoencoder can be expressed in terms of another over
the latent space Z2 by using a suitable mapping function M1;2. This mapping M1;2 is such that
these generative models are close to one another up to a tolerance level ∆ with respect to the
Kullback-Leibler divergence.

In the next section we will discuss a method for estimating the value of the reduction condition
of Equation (8.2) for two trained variational autoencoders.

8.2 Equivalent ∆-reduction condition

The integral over the latent space Z1 involved in the Kullback-Leibler divergence condition of
Equation (8.2) is intractable due to the use of the neural networks to calculate the parameters of
the decoding distributions since it involves an integral over the complete latent space Z1. Thus,
we will show an alternative form of the condition for ∆-reduction that can be approximated via
Monte Carlo sampling. This condition will result useful for the construction of the interpretation
mappings as it is presented in the following sections.

Lemma 4. Equivalent ∆-reduction condition

Consider two trained variational autoencoders represented by the quadruples (Z1,PZ1
,Qα

∗
1(·)

Z1
,Pβ

∗
1(·)
X )

and (Z2,PZ2
,Qα

∗
2(·)

Z2
,Pβ

∗
2(·)
X ). For a constant ∆ ∈ R+ the ∆-reductor M1;2 : Z1 7→ Z2 fulfills,

EPZ1

[
KL(Pβ1(·)

X ||Pβ2(M1;2(·))
X )

]
≤ ∆. (8.4)
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Proof. In the ∆-reduction definition the left hand side of the condition in Equation (8.2) corres-
ponds to

KL
(
PX×Z1

||PX×M1;2(Z1)

)
=

∫
Z1

∫
X

PX×Z1
(x, z)log

(
PX×Z1

(x, z)

PX×M1;2(Z1)(x, z)

)
dLD(x)dPZ1

(z) (8.5)

By substituting the value of the probability densities for the variational autoencoder generative
models into the logarithm we obtain the following equivalence

PX×Z1(x, z)

PX×M1;2(Z1)(x, z)
=

P
β1(z)
X (x)PZ1

(z)

P
β2(M1;2(z))
X (x)PZ1

(z)
=

P
β1(z)
X (x)

P
β2(M1;2(z))
X (x)

(8.6)

Thus, after substituting the previous result into Equation (8.5) we obtain the formula

KL
(
PX×Z1

||PX×M1;2(Z1)

)
=

∫
Z1

PZ1
(z)

∫
X

P
β1(z)
X (x)log

(
P
β1(z)
X (x)

P
β2(M1;2(z))
X (x)

)
dLD(x)dPZ1

(z)

(8.7)
Notice that right hand side of Equation (8.7) corresponds to the left hand side for the condition
in Equation (8.4), therefore for a ∆-reductor M1;2,

EPZ1

[
KL(Pβ1(·)

X ||Pβ2(M1;2(·))
X )

]
= KL(PX×Z1

||PX×M1;2(Z1)) ≤ ∆. (8.8)

For a given ∆-reductor mapping M1;2 : Z1 7→ Z2 we can calculate the condition for ∆-reduction
by approximating its value via the Monte Carlo method presented in Section 3.2 through the
sampling of elements in Z1. The equivalent ∆-reduction condition presented in Lemma 4 is
therefore approximated by taking L samples {z(l)}Ll=1 according to the prior PZ1

and averaging
the Kullback-Leibler divergence with respect to these samples as

EPZ1

[
KL(Pβ1(·)

X ||Pβ2(M1;2(·))
X )

]
≈ 1

L

L∑
l=1

KL(Pβ1(z(l))
X ||Pβ2(M1;2(z(l))

X ). (8.9)

In the next section we will present the value of the Kullback-Leibler divergence between the
decoder distributions of two variational autoencoders with parametric families of normal distri-
butions. This result will be used to approximate the ∆-reduction condition of Equation (8.9)
between the baseline variational autoencoder and the diffusion autoencoder.

8.3 Normal parametric decoding distributions reduction

Consider the case in which the decoding probability distributions of the two variational autoen-

coders Pβ1(·)
X and Pβ2(·)

X are members of a parametric family of normal distributions. In this section
we will analyze the ∆-reduction condition for this particular case.

Lemma 5. Kullback-Leibler divergence between normal distributions

Consider two normal probability distributions over X = RD given by P(µ1,Σ1)
X and P(µ2,Σ2)

X .

The Kullback-Leibler divergence of P(µ1,Σ1)
X with respect to P(µ2,Σ2)

X corresponds to

KL(P
(µ1,Σ1)
X ||P (µ2,Σ2)

X ) =
1

2

(
tr(Σ−1

2 Σ1) + (µ2 − µ1)TΣ−1
2 (µ2 − µ1)−D + log

(
detΣ2

detΣ1

))
(8.10)
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Corollary 6. The Kullback-Leibler divergence between two normal probability distributions P (µ1,σ
2
1)

X

and P (µ2,σ
2
2)

X corresponds to

KL(P (µ1,σ
2
1)

X ||P (µ2,σ
2
2)

X ) =
1

2σ2
2

‖µ1 − µ2‖22 +
D

2

(
log

(
σ2

2

σ2
1

)
+
σ2

1

σ2
2

− 1

)
. (8.11)

Now, consider the trained neural network functions µ∗X,1 : Z1 7→ R2 and µ∗X,2 : Z2 7→ R2

that calculate the parameters for the decoding distributions of two variational autoencoders. The
∆-reduction condition approximation presented in Equation (8.9) is calculated with respect to L
sampled latent variables according to PZ1 and becomes

EPZ1

[
KL(P (µ∗X;1(·),σ2

1)

X ||P (µ∗X;2(M1;2(·)),σ2
2)

X )

]
≈ 1

2Lσ2
2

L∑
l=1

‖µ∗X;1(z(l))− µ∗X;2(M1;2(z(l)))‖22

+
D

2

(
log

(
σ2

2

σ2
1

)
+
σ2

1

σ2
2

− 1

)
≤ ∆. (8.12)

In this chapter we have established the definition of ∆-reduction for the variational autoencoders
that have normal decoder distributions. In the next chapter we will focus in determining an
algorithm for the construction of the ∆-reductors between latent spaces.
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Chapter 9

Construction of Simple Reduction
Mappings

Consider the case in which given two variational autoencoders with normal parametric decoding
distributions we want to reduce the corresponding generative model PX×Z1

from Z1 to Z2 via
a suitable ∆-reductor map M1;2 that fulfills the conditions of ∆-reducibility. Intuitively we can
think that we can construct an arbitrarily complex mapping that identifies the structure of latent
space Z1 with the structure of Z2, thus achieving an arbitrarily low tolerance level ∆. We are
interested in answering the question on whether we can find simple ∆-reductor functions that
achieve a low ∆-reduction tolerance.

With the purpose of constructing an appropriate reduction mapping, we posit a parametric
family of low complexity linear mappings between latent space Z1 and Z2 such that each member is

a ∆-reductor denoted by M
(λ)
1;2 : Z2 7→ Z1 with parameters λ ∈ Λ. Our main goal is to identify the

member of such family that produces the lowest tolerance level ∆. For the decoding distributions
with fixed values σ1, σ2, the parameters λ∗ that determine the lowest tolerance ∆-reductor fullfill
the condition

λ∗ = arg min
λ∈Λ

EPZ1

[
‖µ∗X;2(M

(λ)
1;2 (·))− µ∗X;1(·)‖22

]
. (9.1)

The functions µ∗X;1 : Z1 7→ X and µ∗X;2 : Z2 7→ X correspond to the neural networks that cal-
culate the location parameters for the corresponding variational autoencoder. The corresponding

mapping M
(λ∗)
1;2 satisfies the ∆-reduction condition with a tolerance level given by the formula

∆ = EPZ1

[
1

2σ2
2

‖µX;2(M
(λ∗)
1;2 (z))− µX;1(z)‖22

]
+
D

2

(
log

(
σ2

2

σ2
1

)
+
σ2

1

σ2
2

− 1

)
. (9.2)

The first term can be approximated via the Monte Carlo method as it is presented in Equation
(8.12). Thus, we will restrict ourselves to simple parametric families of functions.

The condition of Equation (9.1) is visualized in Figure 9.1 and states that if we sample latent
variables from Z1 according to PZ1 , the data obtained by following the red path and the blue path
are close up to a certain tolerance level ∆ on average.
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Z1

X

Z2

µ∗X;1

M
(λ)
1;2

µ∗X;2

Figure 9.1: Diagram that represents a generative process in which latent variables are sampled
from Z1 according to PZ1 and are mapped into Z2 and X with the corresponding functions by
following the arrows. The double arrows represent neural networks. The condition in Equation
(9.1) states that the datapoints obtained by following the red path should be close to the results
obtained by following the blue one on average up to a certain tolerance ∆.

As it was stated in Section 8.2, the expected value included in the ∆-reduction condition can
be estimated via the Monte Carlo method by sampling L elements from Z1 according to the prior
PZ1

. We can optimize the parameters λ by perfoming stochastic gradient descent by minimizing
the right hand side of Equation (9.1) via backpropagation through the decoding neural networks
µ∗X;1, µ∗X;2. Note that the gradient is only estimated with respect to the parameters of the

proposed M
(λ)
1;2 .

Input: µ∗X;1 and µ∗X;2

Result: λ∗

Initialize λ;
repeat

for l = 1, 2, . . . , L do
Sample latent variable z(l) from Z1 according to PZ1 ;

Store value of ‖µ∗X;2(M
(λ)
1;2 (z(l)))− µ∗X;1(z(l))‖22;

end

Update λ according to ∇λ( 1
L

∑L
l=1 ‖µ∗X;2(M

(λ)
1;2 (z(l)))− µ∗X;1(z(l))‖22)

until Convergence of λ;

Algorithm 2: Construction of ∆ reduction mapping M
(λ∗)
1;2 via parameter optimization.

The algorithm for identifying reduction mappings can be used between any generative model
that can be described in terms of functions that are differentiable almost everywhere since the
gradients of the loss function in the Algorithm 2 can be backpropagated. In particular, the gen-
erative model used to produce the benchmark dataset of Chapter 5 is differentiable everywhere.
In the next section we will analyze the recovered reductions between the generative model that
produced the benchmark dataset together with the obtained from the baseline and diffusion vari-
ational autoencoders.

9.1 Reduction of generative models for the benchmark data-
set

In the previous chapters we have trained and analyzed the recovered latent structure for the
proposed baseline and diffusion variational autoencoder with respect to a benchmark dataset gen-
erated from a known latent space Z = Φ via a proposed generative model.

In this section we will describe the parametric reduction mappings that we propose between
the latent spaces of the baseline variational autoencoder Z = R2 and the diffusion variational
autoencoder Z = S1. Moreover, the described reduction method will also be applied to the known
generative model that produced the benchmark dataset from the latent space Z = Φ shown in
Chapter 5. The corresponding reduction mappings and connections between the latent spaces are
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visualized in the diagram of Figure 9.2.

S1

R2 Φ

M
(θ′)
S1;Φ

M
(θ′)
S1;R2

M
(θ′)
R2;S1

M
(θ′)
R2;Φ

M
(θ′)
Φ;S1

M
(θ′)
Φ;R2

Figure 9.2: ∆-reductor mappings between latent spaces of the baseline variational autoencoder
Z = R2, diffusion variational autoencoder Z = S1 and the latent space of the original generative
model Z = Φ.

We propose low complexity mappings between the latent spaces, these are enlisted in Table
9.1. These mappings can be classified into two types: the matrix multiplication mappings with
parameter C ∈ R2×2 and the angle rotation mappings with parameter θ′ ∈ R. Some general
intuition of the behavior of these mappings is presented in the next sections.

Table 9.1: Functional form of the reduction mappings between the latent spaces of the R2, S1 and
Φ together with the corresponding parameters.

Mapping Parameter Functional Form

M
(C)
S1;R2 C ∈ R2×2 C · z

M
(θ′)
S1;Φ θ′ ∈ R (atan2(z) + θ′ + π)mod(2π)− π

M
(θ′)
R2;S1 θ′ ∈ R EmbR2(atan2(z) + θ′)

M
(θ′)
R2;Φ θ′ ∈ R (atan2(z) + θ′ + π)mod(2π)− π

M
(C)
Φ;R2 C ∈ R2×2 C · EmbR2(z)

M
(θ′)
Φ;S1 θ′ ∈ R EmbR2(z + θ′)

The special function atan2 : R2 7→ Θ takes a vector in R2 and returns its corresponding
angle in the range Θ = [−π, π). The modulo operation is denoted as (·)mod(·) with the first
entry the dividend and the second entry the divisor. The embedding function corresponds to
EmbR2 : R 7→ R2,

EmbR2(z) = (cos(z), sin(z)). (9.3)

9.2 Matrix multiplication reductor mapping

The matrix multiplication reductor mappings have a parameter matrix C ∈ R2×2. By performing
singular value decomposition of matrix C we obtain the matrices U, S, V T such that C = U ·S ·V T .
Where U ∈ R2 and V T ∈ R2 are orthogonal matrices while S ∈ R2 corresponds to a diagonal
matrix.
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The transformation C can be reinterpreted as the successive rotation/reflection via matrix
V T , a scaling along the canonical directions with the diagonal matrix S and a second rotation/re-
flection with matrix U . Such process is visualized for the reduction mapping between the latent
space Z = S1 of the diffusion variational autoencoder into the latent space Z = R2 of the baseline
variational autoencoder in Figure 9.3.

Figure 9.3 shows the effects of the reduction mapping between the latent space Z = S1 of
the diffusion variational autoencoder into the latent space Z = R2 of the baseline variational
autoencoder. The input latent space S1 (top left) is transformed via the succesive transformations
with matrices V T , S and U . These transformations form the resulting matrix multiplication with
C. The final transformed latent variable representation is shown in the bottom left plot.

MS1;R2(z) = C · z. (9.4)

Figure 9.3: Reduction mapping MS1;R2 between the encoded latent representation in S1 of dataset
XVis into R2 via matrix multiplication with C ∈ R2×2. The encoded latent representation for each
datapoint x ∈ X calculated as µS1(x) is transformed via the optimal matrix C = USV T . The
matrix multiplication is the result of first a rotation with matrix V T , then a scaling with respect
to the principal axes with S and a further reflection with matrix U . The effect of the matrix
components that forms C is visualized. The black arrow points at the datapoint corresponding to
phase 2π helps visualize the effects of transforming the latent variables.
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9.3 Angle rotation reductor mappings

The rotation reductor mappings have a parameter θ′ ∈ R that represents an angle rotation of the
latent variables in the input latent space.

Figure 9.4 shows the effects of the reduction mapping between the latent space R2 into Φ.
For the sake of visualization, the resulting latent variables in Φ are embedded into R2 via the
embedding function EmbR2 . The input latent variable representation of dataset XVis (top left)
is first projected into the unit circle and then rotated by an angle θ′ into the plot in the bottom right

MR2;Φ(z) = (atan2(z) + φ′ + π)mod(2π)− π. (9.5)

Figure 9.4: Mapping of the encoded latent representation in R2 of dataset XVis into Φ via Mθ′

R2;Φ,

for visualization purposes the mapped latent variables in Φ are then embedded into R2 with
EmbR2 . The encoded latent representation for each datapoint x ∈ XN ′ calculated as µ∗Z1

(x) is
transformed by first projecting to the unit circle in R2 and then rotating the projection within
the circle by an angle θ′. The black arrow which points at the datapoint corresponding to phase
2π helps visualize the effects of transforming the latent variables

9.4 Reduction mappings for benchmark dataset

In this section we present the results obtained for the trained reduction maps between the latent
spaces of the baseline and the diffusion variational autoencoders trained with dataset X0.1 and
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parameter σX = 0.01 . We visualize the effects of transforming the latent spaces with respect to
the encoded datapoints from the dataset XVis.

The reduction maps are trained over 10000 epochs by taking L = 10000 samples over the
latent space according to the corresponding prior, see Algorithm 2. For each reduction map, three
repetitions are trained in order to assess the repeatability of the maps.

Recall that the latent representation of a dataset XVis corresponds to the set of latent variables
obtained from the encoding distribution’s mean calculated with the trained neural network µZ(x).
In the case of the benchmark generative latent space Φ, the latent representations correspond to
the phases ϕ ∈ Φ associated to each datapoint in XVis which, for the sake of visualization, are
embedded into R2 via EmbR2 .

Figure 9.5 shows the mapped latent representations from Z1 to Z2 via MZ1;Z2 where Z1 is
an input latent space and Z2 is the target. In each case the mapped latent representation
MZ1;Z2

(µZ1(x)) of each datapoint x ∈ XVis is shown with a green hue. Baseline variational
autoencoder latent representations are shown in red. Diffusion variational autoencoder latent
representations are shown in blue.

As a qualitative result we can identify that the learned reduction mappings map latent variable
representations with the same underlying phases close to one another. This is seen in the similarity
of the color hues of the mapped latent variable representation compared to the target.

We have also calculated the tolerance level ∆ corresponding to each of the reduction maps
between the corresponding latent spaces. The values are shown in Table 9.2. Three repetitions for
each reduction map are trained and the resulting tolerance is averaged. The uncertainty interval
is calculated with the standard deviation of the measurements.

Table 9.2: ∆-tolerance for the trained reduction mappings from latent space Z1 into Z2.

MZ1;Z2

Z2

R2 S1 Φ

Z
1

R2 N/A 91.36± 2.16 70.62± 2.04
S1 10.37± 0.23 N/A 13.45± 0.36
Φ 6.59± 0.22 13.77± 0.22 N/A

Notice from Table 9.2 that the tolerance values with an input latent space Z1 = R2 have a
bigger uncertainty interval, this can be a result of the sampling of latent space R2 with the wide-
spread normal standard prior. Possibly more iterations were needed to obtain more consistent
results. Nevertheless we have decided to give all the reduction maps the same training conditions
parameters.

The highest values of ∆ are obtained for the reduction maps with latent space Z1 = R2. The
shapes of the recovered latent representation for dataset XVis are more intricate and therefore the
projection into the unit circle might be not completely adequate.The ∆ values for the remaining
reduction maps with Z1 = S1 and Z1 = Φ are very similar with a smaller value compared to those
of Z1 = R2.

We have presented a benchmark dataset for datasets with underlying circular geometry. We will
test in the next chapter for different example datasets the result obtained by training the baseline
and difussion variational autoencoders to test whether the underlying geometrical structure can
be recovered.
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Figure 9.5: Mapping of the encoded latent representation of dataset XVis in Z1 into Z2 via the
corresponding learned reduction map MZ1;Z2

. The plot in the i-th row and the j-th column
shows the mapped latent space representation of the i-th latent space into the j-th latent space
together with the original latent representation of the j-th latent space for comparison. Plots
are the representations of dataset XVis in the corresponding latent space. Each latent space
representation has a corresponding color code. Red: baseline variational autoencoder. Blue:
diffusion variational autoencoder. Gray: benchmark generative model. Green: Mapped latent
representation. Color hue represents the underlying phases associated to dataset XVis. Latent
variables in latent space Φ are embedded in R2 with function EmbR2 for the sake of visualization,
moreover latent representations in the unit circle are scaled to allow the comparison between
representations.
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Chapter 10

Circular Dataset Examples

The benchmark dataset used in the previous chapters provided a basis for comparing results
with respect to more complex datasets that share a similar underlying circular structure. In this
chapter we seek to test whether the proposed baseline and diffusion variational autoencoder is
capable of recovering this underlying circular structure for different datasets. Additionally for the
trained variational autoencoders recovered in each example, we test the developed method for con-
structing reduction mappings between the latent spaces of the baseline and diffusion variational
autoencoders. The importance of focusing in these types of problems lies in the wide range of
applications that can be described with respect to circular variables [22].

10.1 Circular pixel shift

Consider a gray-scale image which can be represented as a H×W matrix I ∈ [0, 1]H×W consisting
of H pixels of height and W pixels of width with entry values Ii,j ∈ [0, 1] for i ∈ [H] and j ∈ [W ]
where [H] = {1, 2, . . . ,H} and [W ] = {1, 2, . . . ,W}.

In this section we present a dataset consisting of gray-scale images from dataspace X =
[0, 1]H×W with an underlying circular latent structure enforced by a function F : [W ] 7→ [0, 1]H×W

that shifts an image by a certain amount of pixels in a circular fashion. Each individual component
of the function is determined in terms of the entries of the image. For a pixel shift s, the i, j-th
resulting pixel value corresponds to

fi,j(s) = Ii,[(j+s)mod(W )]+1

A complete dataset is thus a set of W images described by

X =
{
F (s) ∈ [0, 1]H×W

∣∣ s ∈ [W ]
}

(10.1)

Figure 10.1 shows a representation of some example images obtained for different values of
F (s) with s the corresponding number of pixels shifted in the horizontal direction.
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Figure 10.1: Shifted images obtained with function F (s) for different pixel shift values s. The
underlying pixel shift value s is represented by embedding it into the unit circle.

10.1.1 Results

Both the baseline and the diffusion variational autoencoders are trained for 100000 epochs with
a dataset consisting of 64 pixel shift images of 64 × 64 pixels as the ones presented in Figure
10.1. The neural network architecture presented in Section 3.5 is used, with three hidden layers
for the encoding and decoding neural network. The number of neurons for each hidden dense
layer corresponds to b642/3c. Three values for the parameter σX = 0.01, 0.1, 1.0 were used. The
number of latent samples is chosen as L = 1.

Figure 10.2 presents the latent representation for the pixel shift dataset for different values
of σX recovered with the baseline variational autoencoder. It is noticeable once again that for
the parameters σX = {0.01, 0.1} the recovered latent structure is cyclic as it was also seen in the
benchmark dataset. For these values of σX , the standard deviation calculated from σZ is smaller.

For the recovered latent structures corresponding to the variational autoencoders with σX = 1
we obtain latent representations with higher standard deviation represented by the surrounding
ellipses of each datapoint representation. Moreover we can notice that for this case the cyclical
latent structure is not explicitly apparent. In this sense it appears that higher values of σX (which
favor the Kullback-Leibler regularization term) push the distribution towards the center of the
plane i.e. to the prior distribution corresponding to the standard normal distribution.
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Figure 10.2: Latent representation for baseline variational autoencoder. Each point represents
the calculated value for the mean µZ . The ellipses represent high probability regions for each
data representation defined with respect to the scale parameter µZ . The color hue represents the
different values for s ∈ [W ] in the pixel shift function.

Figure 10.3 presents the latent representation for the pixel shift dataset for different values of
σX obtained by the diffusion variational autoencoder. In this case the behavior of the recovered
latent structure for different values of σX appears to be the same. An important feature of the
recovered latent structure is once again the periodicity of the latent variables with respect to the
pixel shift corresponding to each datapoint.

One noticeable characteristic of the recovered latent representation for σX = 0.01 is the non-
continuous representation, with respect to the phases there is no continuous loop. This type of
behavior can be seen for some repetitions of the experiment and shows is possibly related to the
initialization of the neural network parameters where a piece of the recovered latent structure is
severed from the whole network.

One noticeable difference with respect to the benchmark dataset for both the baseline and
diffusion variational autoencoder is the small uncertainty associated to the latent variable repres-
entation for each datapoint. This can be due to the lack in variability of the provided datapoints.
It can be interesting to investigate for example the changes in this behavior by introducing noise
to the input data.
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Figure 10.3: Latent representation for the diffusion variational autoencoder. Each point represents
the calculated value for the mean EmbR2µΘ. The arc sections represent the high probability
regions for each data representation defined with respect to the scale parameter t. The color hue
represents the different values for s ∈ [W ] in the pixel shift function.

Figure 10.4 shows the recovered maps between the latent spaces of the baseline and diffusion
variational autoencoder. In this case, the optimal orientations for each of the mapped structure
does not fit as closely as with the benchmark dataset for latent variables with similar datapoints
possibly due to the spacing between the recovered latent structure for the diffusion variational
autoencoder.

60 Latent Variable Separation with Variational Autoencoders



CHAPTER 10. CIRCULAR DATASET EXAMPLES

Figure 10.4: Mapping of the encoded latent representation the pixel shift dataset in Z1 into Z2 via
the corresponding learned reduction map MZ1;Z2 . The plot in the i-th row and the j-th column
shows the mapped latent space representation of the i-th latent space into the j-th latent space
together with the original latent representation of the j-th latent space for comparison. Each latent
space representation has a corresponding color code. Red: baseline variational autoencoder. Blue:
diffusion variational autoencoder. Green: Mapped latent representation. Color hue represents the
underlying shift associated to each image.

10.2 Objects observed from multiple angles

The Columbia University Image Library (COIL-20) [23] is a database consisting of processed gray-
scale photographs of 20 common objects taken at 72 different angles between 0 and 360 with 5
between each capture. Each image is a 128× 128 pixel image.

Even though the true underlying generative process is unknown, we as humans can identify
possible latent variables that explain the observations in the dataset in terms of the camera angle
used to capture each photograph. Therefore it is intuitive to propose the existence of an underly-
ing circular structure for this dataset.

Figure 10.5 shows some example images from this dataset together with the embedded angles
that correspond to each image.
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Figure 10.5: Example object observed from different angles between 0 and 360 varying the angle
5 between each capture. The underlying camera angle is represented by an embedding it into the
unit circle with function EmbR2

10.2.1 Results

Both the baseline and the diffusion variational autoencoders are trained for 100000 epochs with
a dataset consisting of 72 a single object images from COIL-20 dataset of 128× 128 pixels as the
ones presented in Figure 10.5. The neural network architecture presented in Section 3.5 is used,
with two hidden layers for the encoding and decoding neural network. The number of neurons for
each hidden dense layer corresponds to b1282/3c. The number of latent samples is chosen as L = 1.

In this case both, the baseline and the diffusion variational autoencoder present a similar be-
havior to the one observed for the pixel shift as shown in Figure 10.6 and Figure 10.7. For the
baseline variational autoencoder the bevarior changes from a clear cyclic structure to a more in-
tricate by varying the value of σX . The diffusion variational autoencoder is capable of recovering
also the periodic latent variables in the three cases.

The mapping of the encoded latent representations for the object dataset is shown in Figure
10.8. It is obtained from the latent representations obtained with the baseline and diffusion
variational autoencoder with σX = 0.1. As we have seen in previous examples the learned reduction
maps tend to map the latent representations corresponding to similar datapoints together as it
can be seen from the hue colors in the representation.

The corresponding datasets presented in this chapter and the qualitative results support the
performance of the proposed variational autoencoders for the task of recovering the underlying
circular structure of a dataset. For different datasets produced from different underlying generat-
ive models we have been able to obtain also the ∆ reduction maps that reduce the corresponding
generative models by mapping latent variable representations close together if they represent the
same datapoint.
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Figure 10.6: Latent representation for baseline variational autoencoder. Each point represents
the calculated value for the mean µZ . The ellipses represent high probability regions for each
data representation defined with respect to the scale parameter µZ . The color hue represents the
underlying angles for the object orientation.

Figure 10.7: Latent representation for the diffusion variational autoencoder. Each point represents
the calculated value for the mean EmbR2()µΘ). The arc sections represent the high probability
regions for each data representation defined with respect to the scale parameter t. The color hue
represents the underlying angles for the object orientation.

In the next chapter we will present a different setting in which the dataset has an underlying
toroidal structure. For this case we will propose an extension of both the benchmark and the
diffusion variational autoencoder with the corresponding simple reduction maps.
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Figure 10.8: Mapping of the encoded latent representation of object rotated dataset in Z1 into Z2

via the corresponding learned reduction map MZ1;Z2 . The plot in the i-th row and the j-th column
shows the mapped latent space representation of the i-th latent space into the j-th latent space
together with the original latent representation of the j-th latent space for comparison. Each latent
space representation has a corresponding color code. Red: baseline variational autoencoder. Blue:
diffusion variational autoencoder. Green: Mapped latent representation. Color hue represents the
underlying angles associated to each objects pose.
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Chapter 11

Toroidal Latent Space Structure

In previous chapters we have focused completely on datasets that have an underlying circular
structure. In this chapter we will analyze datasets with a different underlying geometry which
corresponds to a simple extension to the already studied circular geometry. We will study the
cases in which the underlying structure is toroidal. These type of models have an ample range of
applications associated to motion capture, electroencephalograms and audiosignals [22].

In this chapter we introduced the benchmark dataset of D×D-dimensional datapoints that can
be identified to images. The dataset will be constructed with respect to a function F : Φ × Φ 7→
RD×D that induces a toroidal structure into the data.

Moreover we will present the equivalent version of the baseline and diffusion variational autoen-
coder for this geometrical setting and the corresponding ∆-reduction maps between the learned
latent representations.

11.1 Extended benchmark dataset

We propose a new benchmark dataset based on the one described in Chapter 5. This toroidal
benchmark dataset considers an artificial experiment with an observable data space X given by
D × D-dimensional datapoints X = RD×D. Each observation x in dataset X is generated from
the pair of phases from the set Φ×Φ with Φ = [−π, π). To generate each datapoint we have used
the function F : Φ × Φ 7→ X which calculates the average datapoint for a given pair of phases
ϕ(1)×ϕ(2) ∈ Φ×Φ. The function F is defined as F (ϕ(1), ϕ(2)) = (fi,j(ϕ

(1), ϕ(2)))D,Di,j=1 where each

individual function fi,j : Φ(1) × Φ(2) 7→ R is given by the expression

fi,j(ϕ
(1), ϕ(2)) = sin

(
2πi

D
+ ϕ(1)

)
+ sin

(
4πi

D
+ ϕ(2)

)
. (11.1)

Notice that for each of these individual functions, the pair of values of ϕ(1) × ϕ(2) ∈ Φ can
be considered as the phases of two discrete sine functions defined over a discrete meshgrid of
[0, 1] × [0, 1]. Each of sine has an angular frequency of 2π and 4π respectively. Hence, for a
particular datapoint x ∈ X we will refer to (ϕ(1), ϕ(2)) ∈ Φ × Φ as its corresponding underlying
phases. A representation of the function F for the phase ϕ(1)×ϕ(2) = (0, 0) is shown in Figure 11.1.

PΦ×Φ(ϕ(1), ϕ(2)) =
1

4π2
. (11.2)

For a given pair of phases (ϕ(1), ϕ(2)) ∈ Φ× Φ, the conditional distribution PX|(ϕ(1),ϕ(2)) from

which data is sampled corresponds to the normal distribution with location parameter F (ϕ(1), ϕ(2))
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and covariance matrix Σ = σ2ID determined by the scalar σ ∈ R+ which can be interpreted as the
amount of noise added to the function F . The probability density of this conditional distribution
with respect to the LD×D measure is given by

PX|(ϕ(1),ϕ(2))(x) =
1

(σ
√

2π)D2
exp

(
−‖x− F (ϕ(1), ϕ(2))‖22

2σ 2

)
.

According to Equation (2.6) presented in Chapter 2, the probability density of the generative
model PX×Φ for a given datapoint x ∈ X and a phase ϕ ∈ Φ is given by

PX×(Φ×Φ)(x, ϕ) = PX|(ϕ(1),ϕ(2))(x)·PΦ×Φ(ϕ(1), ϕ(2)) =
1

4π2(σ
√

2π)D2
exp

(
−‖x− F (ϕ(1), ϕ(2))‖22

2σ 2

)
.

From the generative model that we have described we will produce different datasets that can be
characterized in terms of the value σ used for the conditional distribution PX×ϕ. The dataset
with N datapoints generated according to a generative model with parameter σ will be denoted
as Xσ. In Figure 5.2 we present an example datapoint generated from the latent phase ϕ = 0 for
the corresponding datasets X1, X0.1 and X0.01.

Figure 11.1: Representation of the mean function F with D = 25 calculated for the pair of phases
(ϕ(1), ϕ(2)) with ϕ(1) = ϕ(2) = 0.

We will propose a simplified dataset for this setting defined in terms of the regular partition
of the phase space Φ× Φ denoted as

(Φ× Φ)Vis =

{
−π +

2πi

50

}50

i=0

×
{
−π +

2πi

100

}50

i=0

(11.3)

From the regular phases set (Φ×Φ)Vis of Equation 11.3 we construct the corresponding visualiz-
ation dataset

XVis =
{
x ∈ RD×D

∣∣∣x = F (ϕ(1), ϕ(2)) ; (ϕ(1), ϕ(2)) ∈ (Φ× Φ)Vis

}
(11.4)

We propose this simplified dataset for both training and visualization with the purpose of
simplifying the training and visualization.
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11.2 Dataset structure

In this case the chosen function F has the property of being periodic with respect to the two
possible phases (ϕ(1), ϕ(2)). As it was seen for the benchmark dataset of the circular geometry of
Chapter 5, the minimum dimension needed for retrieving the periodic structure expected for the
latent variables was two.

In this case we can notice that the smallest dimension needed to capture the periodic structure
of the two phases is three. Take as an intuitive example Figure 11.2. In the three dimensional
torus we can identify two perpendicular circular directions that can represent each of the phases.

Figure 11.2: Visual intuition for the geometry of a torus embedded in R3 . The surface of the
torus can be described in terms of two periodic variables ϕ(1), ϕ(2) .

Even though it is possible to represent the toroidal geometry in three dimensions we will be pro-
posing a baseline variational autoencoder with a latent space corresponding to the 4-dimensional
Euclidean space Z = R4. The reason for this is to provide a smooth connection to the diffusion
variational autoencoder extended to the Clifford torus presented in the next sections which is
embedded in R4.

11.3 Baseline variational autoencoder

Both the baseline and the diffusion variational autoencoders are trained for 100000 epochs with
a dataset consisting of 2500 images of D × D = 25 × 25 pixels as the one presented in Figure
11.1. The neural network architecture presented in Section 3.5 is used, with two hidden layers for
the encoding and decoding neural network. The number of neurons for each hidden dense layer
corresponds to b252/3c. The number of latent samples is chosen as L = 1.

Figure 11.3 shows the recovered latent representations for the dataset XVis. Each recovered
representation has a clear structure with respect to the underlying phases of the corresponding
datapoints. For instance in the case of the baseline variational autoencoder with parameter σX we
can identify that phase ϕ(1) increases by following along the torus shape while phase ϕ(2) varies
along a perpendicular direction with respect to this projection.

There is an interesting behavior for the recovered structure with respect to the parameter σX
(rows). We can identify that the value of σX appears to either contract or expand the shape of
the torus. As we have discussed for the ciruclar benchmark dataset, this can be due to the change
in the weight of the Kullback-Leibler regularization term which favors posterior approximations
close to the prior.
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Figure 11.3: Encoded latent representation of the dataset XVis obtained with the mean µ(·)) from
the baseline variational autoencoder. Only three projected dimensions are shown corresponding to
three entries of the latent representation 1, 2, 3. Each column represents a fixed phase of interest
ϕ(1) or ϕ(1). The rows showed the encoded representations for values of σX ∈ {0.01, 0.1, 1.0}. The
color hue represents the values for the phases ϕ(1), ϕ(2)
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11.4 Diffusion variational autoencoder

We can extend the diffusion distribution introduced in Chapter 7 over the auxiliary set Θ × Θ.
We will consider a uniform measure PΘ×Θ over Θ×Θ, the probability density PΘ×Θ with respect
to the L2 measure corresponds to

PΘ×Θ(θ1, θ2) =
1

4π2
(11.5)

We define the latent space Z as the Clifford torus Z = T 2 embedded in R4 described in terms
of the elements of Θ×Θ through the measurable function EmbR4 : Θ×Θ 7→ R4 given by

EmbR4(θ1, θ2) =
1√
2

(cos(θ1), sin(θ1), cos(θ2), sin(θ2)). (11.6)

Thus the latent space corresponding to the Clifford torus is described by the set

T 2 =
{

EmbR4(ϕ(1), ϕ(2)) ∈ R4
∣∣∣ϕ(1) ∈ Θϕ(2) ∈ Θ

}
(11.7)

We propose the prior distribution PT 2 over the latent space T 2 as the pushforward measure
of the measurable embedding function EmbR4 #PΘ×Θ which corresponds to the uniform measure
over T 2.

For estimating the posterior distribution we choose the family of parametric distributions
PA×AΘ×Θ defined in terms of the probability densities obtained from the solutions of the diffusion
equation from Appendix A. We assume that each of the entry values from the pair (θ1, θ2) ∈ Θ×Θ
is independent. Therefore the family is characterized in terms of the product measure between
elements of the family PAΘ as

PA×AΘ×Θ =
{
P(µ1,t1)

Θ ⊗ P(µ2,t2)
Θ ∈ PΘ×Θ

∣∣∣ P(µΘi
,tΘi )

Θ ∈ PAΘ
}
. (11.8)

Here the family of distributions PAΘ is defined in Chapter 7 and in Equation (7.5) The parameter
set A is given by

A =
{

(µ, t) ∈ Θ× R+
0

}
(11.9)

From the parametric family over the set Θ × Θ the latent space distribution over Z = T 2 is de-
termined by the pushforward measure of the embedding. The posterior approximation is therefore
defined as

QA×AT 2 =
{
Q(µ1,t1,µ2,t2)
T 2

∣∣∣Q(µ1,t1,µ2,t2)
T 2 = EmbR4#(P(µ1,t1)

Θ ⊗ P(µ2,t2)
Θ )

}
(11.10)

Due to the independence of the elements in Θ × Θ the calculation of the Kullback-Leibler di-
vergence regularization term is performed in a similar fashion as in Chapter 7 via Monte Carlo.
Moreover, each element in the pair (θ1, θ2) ∈ Θ×Θ can be sampled with the same reparametriz-
ation function defined in Equation (7.10).

Figure 11.4 shows the obtained latent representations for dataset XVis. From the images it can
be clearly identified a pattern and a direction for each of the phases ϕ(1) and ϕ(2) with respect
to the geometry of the Clifford torus. For example in the diffusion variational autoencoder with
parameter σX = 0.01 the phase ϕ(1) increases and decreases along the vertical direction while the
second phase ϕ(2) changes horizontally.

Unlike the baseline variational autoencoder, there is no noticeable qualitative differences between
the retrieved latent representations. The only changes are with respect to the direction of change
for each phase since there should be no preferred direction for a specific phase.
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Figure 11.4: Encoded latent representation of the dataset XVis obtained with the mean
EmbR4(µ(·)) from the diffusion variational autoencoder. Only three projected dimensions are
shown corresponding to three of the entries 1, 2, 3 of the embedding function EmbR4 . Each
column represents a fixed phase of interest ϕ(1) or ϕ(1). The rows showed the encoded repres-
entations for values of σX ∈ {0.01, 0.1, 1.0}. The color hue represents the values for the phases
ϕ(1), ϕ(2)
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11.5 ∆-reductor maps

We propose simple reductor maps between the latent spaces of the corresponding baseline vari-
ational autoencoder Z = R4 and the diffusional variational autoencoder Z = T 2. These simple
mappings are constructed based on the algorithm presented in Chapter 9.

The mapping from the 4-dimensional Euclidean space into the Clifford torus Z = T 2 is per-
formed via first a matrix multiplication with C ∈ R4×4 with a subsequent projection into Clifford
torus by taking the . First we define the matrix product of the latent variable z ∈ R4 with matrix
C as

y = C · z, (11.11)

such that the reduction map from T 2 into R2 is given by

M
(C)
R4;T 2(y) =

1√
2

(
y1√
y2

1 + y2
2

,
y2√
y2

1 + y2
2

,
y3√
y2

3 + y2
4

,
y4√
y2

3 + y2
4

)
. (11.12)

Here yi corresponds to the i-th entry of the vector y. The mapping from the latent space of the
Clifford torus Z = T 2 into the 4-dimensional Euclidean space is performed via a simple matrix
multiplication with C ∈ R4×4 such that for an element z ∈ T 2 we have

M
(C)
T 2;R4(z) = C · z (11.13)

We present the obtained results for the mapped latent spaces corresponding to the models
trained with dataset XVis with parameter σ2

X = 0.1. In Figure 11.5 we can observe the mapped
latent representations from the baseline and diffusion variational autoencoders. Qualitatively we
can identify that the mapped latent spaces tend to align as close as possible similar phases, i.e.
similar color hues are mapped together. It is noticeable that the overlap between the mapped
latent space and the target Z2 is not completely perfect due to the shape difference from the
original latent representations.

Table 11.1: ∆-tolerance for the trained reduction mappings from latent space Z1 into Z2.

MZ1;Z2

Z2

R4 T 2

Z
1 R4 N/A 6216.02± 43.05

T 2 446.84± 6.42 N/A

The quantitative results show that the value ∆ is higher for the transformation from latent
space R4 into T 2. A similar result was obtained for the benchmark dataset were the reduction
maps from the baseline variational autoencoder latent space had a higher variability and larger ∆
values. In this case the lower value for ∆ is attained for the mapping between the Clifford torus
Z = T 2 into R2.

We have presented in this chapter the extended results for a different geometry for the proposed
baseline and diffusion variational autoencoder. As it can be noticed the results are similar to the
circular case in which the models are capable of recovering the underlying geometrical structure
expected from the dataset.
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Figure 11.5: Mapping of the encoded latent representation of the XVist dataset from Z1 into
Z2 via the corresponding learned reduction map MZ1;Z2

. The plot in the i-th row and the j-th
column shows the mapped latent space representation of the i-th latent space into the j-th latent
space together with the original latent representation of the j-th latent space for comparison.The
plots in the diagonal correspond to the original latent space representations. Each latent space
representation has a corresponding color code. Red: baseline variational autoencoder. Blue:
diffusion variational autoencoder. Green: Mapped latent representation. Color hue represents the
underlying angles associated to each objects pose. The hue represents the corresponding phase for
ϕ(1), a similar qualitative result is obtained for ϕ(2).
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Chapter 12

Conclusions

In this thesis we have focused on the the capabilities of variational autoencoders for latent vari-
able separation by studying datasets with two types of underlying geometrical structures (circular
and toroidal) . We have tested the retrieval of the underlying geometrical structure of the input
dataset by the latent representations created by the encoding distributions learned by variational
autoencoders. For this thesis we have used two variational autoencoders: a baseline VAE that
incorporates the elements from [18, 14], and a proposed diffusion VAE which enforces a circular/t-
oroidal geometry over the latent variables. We have found that both variational autoencoders are
capable of recovering periodic latent variables associated to the geometry of our datasets.

The diffusion variational autoencoder is presented as a latent variable separation method that
assumes periodic latent variables restricted to either the unit circle Z = S1 ⊆ R2 or the Clifford
torus Z = T 2 ⊆ R4. The diffusion VAE introduces a parametric family for the approximation to
the posterior based on the solutions to the diffusion equation with periodic boundary conditions.
This parametric family provides a different alternative to the distributions presented in the ex-
isting literature of [6, 25, 22]. Our results show that the diffusion variational autoencoders are
capable of identifying the periodic latent structure assumed for the studied datasets in a natural
way by restricting the geometry of the latent space.

For both variational autoencoders we have assessed the effects of the parameter σX with re-
spect to the latent variable representations obtained and the data reconstruction. As in [13, 14]
we have connected the effects of varying the value of σX (β in the literature) with the quality of
the reconstructed datapoints and the recovered latent structure. Moreover, we have discussed the
effects of modifying σX with respect to the structure of the recovered latent representations from
a geometrical point of view.

The trained variational autoencoders obtained from the different example datasets have provided
each a generative model for producing new datapoints with respect to the learned latent structure
determined by the data. We presented a mathematical definition for reducing a generative model
obtained with a variational autoencoder in terms of another up to a certain tolerance level ∆.

From our mathematical definition we proposed an algorithm for constructing simple ∆-reductor
maps via backpropagation of the gradients through the trained variational autoencoders. These
reductor maps were proposed specifically for the data with the expected underlying circular and
toroidal structure and we assessed their performance with respect to the tolerance value ∆ at-
tained. We conclude from these experiments that we can obtain connections between learned
generative models for the cases in which we expect similar underlying geometrical structure for
the latent variables.
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Further Work
We have presented in this thesis a discussion on the latent variable separation for datasets with an
underlying geometrical structure is important together with a new variational autoencoder that
enforces geometrical restrictions to the latent space. Moreover we have provided a mathematical
definition and a practical algorithm for reducing generative models obtained from variational
autoencoders. We propose different lines of study for future work based on the results presented
in this thesis.

• Compare the latent variable representations and reconstruction performance obtained from
the parametric family of distributions of the diffusion variational autoencoder with respect
to other circular/toroidal distributions from literature [6, 25, 22].

• Extend the variational autoencoders to incorporate other geometries. Moreover, test the
framework developed in this thesis for practical cases that involve representation learning
for datasets with spherical/toroidal underlying geometries.

• Study the reduction maps from the point of view of their complexity. Now we have proposed
simple reduction maps between latent spaces with a specific geometry but have not studied
any formal measure for the complexity of the reduction map. Try to propose general reduc-
tion maps between latent spaces that are not restricted to the underlying geometry of the
dataset .

• Explore the concept of interpretability of a latent variable representation within the reduction
map context. By finding connections between interpretable and non-interpretable recovered
generative models we can find explanations to the decisions performed by deep learning
methods.

• Extend the construction of ∆-reduction maps to generative models obtained from other deep
learning frameworks for instance to Generative Adversarial Networks (GANs) [10].
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Appendix A

Diffusion Equation

The diffusion equation is a second order parabolic partial differential equation which describes
the transport of mass in a medium with diffusion coefficient D > 0 over time . The solutions are
described by the function ρ : [−π, π] × R+

0 7→ R which is the concentration of mass ρ(r, t) for a
given point r in one-dimensional interval r ∈ [−π, π] at time t ∈ R+

0 . The diffusion equation is
given by:

D ∂2

∂r2
ρ(r, t) =

∂

∂t
ρ(r, t). (A.1a)

In our setting we assume D = 1 and enforce the periodic boundary conditions in terms of a
symmetric interval [−π, π] centered at zero given by:

ρ(−π, t) = ρ(π, t) ∀t ∈ R+
0 , (A.1b)

∂

∂r
u(−π, t) =

∂

∂r
ρ(π, t) ∀t ∈ R+

0 , (A.1c)

Due to the conservation of mass within the diffusion equation. For a unitary mass. This assumption
is important for using the solutions to the equation as probability distributions. Therefore we have
that the solutions to this equation must fulfill.∫

[−π,π]

ρ(r, t)dL1 = 1 (A.1d)

The initial conditions are chosen with respect to the Dirac measure δµ : F[−π,π] 7→ R+
0 centered at

µ ∈ [−π, π]. Such that for an event E ∈ F[−π,π] at time t = 0,∫
E
ρ(r, 0)dL1 = δµ(E). (A.1e)

We assume that the solutions are separable i.e. they can be explained in terms of the product
of a spatial function R : R 7→ R and a temporal T : R+

0 7→ R

ρ(r, t) = R(r) · T (t). (A.2)

Substituting the separable solutions assumption into the diffusion equation yields

T (t)
d2

dr2
R(r) = R(r)

d

dt
T (t). (A.3)

Equation (A.3) is valid for all values of r ∈ R and t ∈ R+
0 . This implies that the left and right

Latent Variable Separation with Variational Autoencoders 77



APPENDIX A. DIFFUSION EQUATION

hand side are equal to a constant c ∈ R.

1

T (t)

d

dt
T (t) = c (A.4)

1

R(r)

d2

dr2
R(r) = c (A.5)

The solutions to the temporal and spatial equation are of the general form

T (t) = A exp (−ct), (A.6)

R(r) = Bcos(r
√
c) + Csin(r

√
c), (A.7)

With A,B,C constant values in R that are determined by the boundary conditions. In order to
obtain solutions that do not diverge in time we choose values c ≥ 0. The first boundary condition
in Equation (A.1b) becomes

A exp (−ct)Bcos(π
√
c)− Csin(π

√
c) = A exp (−ct)Bcos(π

√
c) + Csin(π

√
c) (A.8)

Due to the orthogonality of the sine and cosine functions we have the corresponding conditions,

Bcos(π
√
c) = Bcos(π

√
c), (A.9)

Csin(π
√
c) = −Csin(π

√
c). (A.10)

The second condition states that either C = 0 or sin(π
√
c) = 0. If we focus on the condition

sin(π
√
c) = 0 we have that for a value m ∈ Z then

c = m2. (A.11)

Now, for the second boundary condition of Equation (A.1c) we have

m(Bsin(πm) + Ccos(πm)) = m(−Bsin(πm) + Ccos(πm)) (A.12)

Which is already fulfilled since sin(πm) = 0 for all m ∈ Z. Finally to satisfy the initial conditions
at time t = 0 we will take a linear combination of the spatial solutions for different values of m ∈ Z

ρ(x, 0) =

∞∑
m=0

Bmcos(rm2) + Cmsin(rm2) (A.13)

The coefficients are calculated by integrating with respect to the Dirac measure δµ

Bm =

∫
[−π,π]

cos(rm)dδµ(r) = cos(µm) (A.14)

Cm =

∫
[−π,π]

sin(rm)dδµ(r) = sin(µm) (A.15)

The spatial solutions are given by:

∞∑
m=0

cos(µm)cos(rm) + sin(µm)sin(rm) =

∞∑
m=0

cos(m(r − µ)) (A.16)

Finally to enforce the conservation of mass we have to comply with∫
[−π,π]

ρ(r, t)dL1(r) =

∫
[−π,π]

A

∞∑
m=0

cos(m(r − µ))dL1(r) exp (−m2t) = 1 (A.17)
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The integral of the cosine over [−π, π] is only non-zero for m = 0 therefore∫
[−π,π]

AdL1 = 2πA = 1 (A.18)

Therefore A = 1/2π. The final solution to the diffusion equation with initial conditions centered
at µ is therefore

ρµ(r, t) = T (t)R(r) =
1

2π

∞∑
m=0

cos(m(r − µ))exp(−m2t) (A.19)

A visualization of the solutions for different values of t is shown in figure A.1.

Figure A.1: Obtained solutions to the diffusion equation for a fixed location parameter µ = 0 and
variable time parameter t.

The solutions to the diffusion equation for each pair of parameters (µ, t) ∈ [−π, π]× R+
0 form

the parametric family for the diffusion variational autoencoders. In Figure A.1 we present some
solutions of the diffusion equation for different values of t for a fixed parameter µ = 0
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