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Abstract

Convolutional Neural Networks (CNNs) can achieve human-like results in Computer Vision ap-
plications. Unlike other algorithms CNNs are not hard-coded to detect features and instead learn
them from a provided dataset. CNNs models are designed in special frameworks that most often
utilize Graphics Processing Units for image processing.

In this master thesis, three tools to port CNN models for execution on FPGAs are investigated.
Four CNN models for face recognition are trained and applied on the tools. The models have a
different number of layers and parameters according to the limitations of the investigated tools.
The model execution of BNN-PYNQ, CHaiDNN and ML Suite tools is compared to a GPU solu-
tion based on the accuracy, execution time, hardware utilization and power consumption. The
tools utilize different strategies like model quantization and hardware architecture setup to achieve
accuracy similar to a GPU with maximum of a 10% difference. NVIDIA K40m GPU has at aver-
age 2.64× better latency than CHaiDNN and ML Suite implementations but is 2.45× worse than
BNN-PYNQ. BNN-PYNQ utilizes 24 DSPs and 124 BRAM blocks, CHaiDNN utilizes 1352 DSPs
and 676 BRAM blocks and ML Suite utilizes 972 DSPs and 451 BRAM blocks. BNN-PYNQ and
CHaiDNN utilize most of the hardware on their respective FPGAs, where ML Suite utilizes less
as it is implemented in a relatively large FPGA. The GPU solution consumes 38.3×, 4.43× and
1.4× more power than BNN-PYNQ, CHaiDNN and ML Suite respectively.

In theory the FPGA solutions can have similar accuracy, better inference time and power con-
sumption compared to the GPUs, however it comes at the cost of limited CNN model support
and additional FPGA hardware design complexity.
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Chapter 1

Introduction

1.1 Context

Computer vision has a wide range of applications that include surveillance, automotive, robotics
and medical diagnostics. It requires a considerable amount of work to develop an algorithm cap-
able to process and understand an image efficiently. Algorithms like Viola-Jones [50], Eigenfaces
[22] or Kalman filter [25] make use of predefined features that can be present in an image. Defining
key features and using them in an optimal way is the hardest part of these algorithms. Contrary
to defining features, deep learning algorithms like Convolutional Neural Network (CNN) learn the
features from a provided dataset of images.

CNNs have gained popularity thanks to their ability to perform object detection and recognition
with human-competitive performance on certain tasks [8] and relative ease to construct compared
to the other algorithms. To correctly detect and recognize an object, CNNs have to perform
computationally intensive operations with floating point numbers. CNN models are usually trained
and executed on Graphics Processing Units (GPUs) as GPUs can utilize massive parallelism for
floating point number calculations. Alternatives to GPUs could be Central Processing Units
(CPUs), Field-Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits
(ASICs), namely Tensor Processing Units (TPUs) [24]. Each hardware platform has its own
limitations and advantages. Computer vision applications on embedded platforms could benefit
from accuracy of CNNs. GPUs would be consuming too much power for embedded applications,
CPUs would not be able to reach real-time performance and ASICs would be costly to design and
manufacture. Compared to other hardware platforms, FPGAs can offer flexible and energy efficient
solutions for CNN applications on embedded platforms. CNNs can be designed in frameworks like
Caffe, Theano, Tensorflow, etc. However, none of the frameworks offer solutions that could be
directly implemented on an FPGA.

1.2 Problem statement

As there is a lack of tools that allow to port CNNs on FPGAs the aim of this thesis is to give
an overview of tools available for designers and define if a CNN implementation on an FPGA is a
feasible solution. Available tools will be evaluated on performance of different CNN implementa-
tions. The chosen tools implement different architectures on FPGAs but synthesize hardware for
the same manufacturer of chips, namely Xilinx. Each tool has two essential parts of the design
flow which are hardware synthesis and application preparation. To evaluate the design flow and
performance of the tools a face recognition CNN will be implemented on FPGAs. Depending on
the size of the model and the available resources on an FPGA an appropriate CNN architecture
type will be synthesized by the tools.

Implementation Analysis of Convolutional Neural Networks on FPGAs 1



CHAPTER 1. INTRODUCTION

1.3 Research question

The research question can be formulated as follows: What are the trade-offs between different CNN
inference architectures implementations on an FPGA and what design flow(s) should be followed
to implement the architectures? The following sub research questions can be derived from the
main question:

• Which CNN model types can be synthesized on an FPGA?

• Which CNN hardware architecture types are available to perform inference of the CNN
models?

• What are FPGA requirements to support the CNN model types?

• Which actions are required from the designer to implement the CNN models on an FPGA?

• Which tools can be used to implement the CNN models on an FPGA?

1.4 Approach

This work performs a survey of the existing tools to port a CNN to an FPGA. A comparison
in hardware utilization, performance and the design flow between the tools will be drawn. The
hardware utilization will include the hardware requirements (e.g. BRAM, LUT and DSP) and
management (e.g. hardware-software ratio). Performance evaluation will include the power con-
sumption, inference time and result accuracy for image classification. Additionally, the design flow
will be analyzed for time and effort requirements to perform hardware synthesis, quantization and
deployment of a CNN on FPGAs. The survey will give an overview of tools available to designers
and will help to decide if a CNN implementation on an FPGA is a feasible solution.

1.5 Outline

Chapter 2 will present the necessary theory used in the thesis. In chapter 3 the publications
regarding CNNs and tools will be discussed. Chapter 4 will describe the CNN models and exper-
iments what were performed and used in the thesis. In chapter 5 the results of the experiments
and tool evaluation will be presented.
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Chapter 2

Background

In this chapter, information regarding the essential topics for the thesis is provided. First, artificial
neural networks and the class of convolutional neural networks are discussed. Next the frameworks
to develop neural networks are introduced. Then a description of hardware that is used by neural
networks is provided and a technique to utilize CNN models on FPGAs is presented.

2.1 Artificial neural networks

Artificial neural networks (ANNs) were the earliest learning algorithms intended to be computation
models of biological learning. ANNs are not realistic models of biological functions but rather
models to replicate the way brains (of human or mammals) learn [12]. Generally ANNs consist
of artificial neurons that form input, hidden and output layers of an ANN. The input layers
receive input for the ANN, which could be any data. The hidden layers are responsible for feature
extraction from the input data. Finally, the output layers present the output of the ANN, which
could be classification results for the input data.

Figure 2.1: Model of an artificial neuron k for a feedforward network described by [16].

Figure 2.1 depicts the artificial neuron model used in feedforward ANNs. Artificial neurons cal-

culate output yk = ϕ(
m∑
i=1

(xki × wki) + bk), where xki are the input signals to the neuron, wki

are weights associated to the input signals, bk is a bias term and ϕ is an activation function.
The weights define which inputs are dominant to calculate the output, wheres the bias acts as
a threshold to activate the output yk. Activation functions ensure non-linearity of the neuron
outputs thus enhancing the model’s capability to learn non-linear dependencies. Since the inform-
ation flows from the inputs xki to the evaluation function ε the network is called a feedforward
network. Feedforward networks can be extended with feedback connections within neurons, these

Implementation Analysis of Convolutional Neural Networks on FPGAs 3



CHAPTER 2. BACKGROUND

networks are called recurrent neural networks. The recurrent networks are usually used in machine
translation, speech recognition, rhythm learning and music composition application. Feedforward
networks are usually applied to computer vision (image classification, object detection) and pat-
tern recognition applications like sales, chemical reaction prediction, etc. An example of a simple
feedforward fully connected network is shown in Figure 2.2.

Figure 2.2: Example of a fully-connected feedforward network with two hidden layers and three
outputs by [16].

2.2 Convolutional neural networks

Convolutional neural networks (CNNs) are a class of feedforward networks that utilizes convolu-
tion operations on a 2D data like images, and thus are mostly used in computer vision applications.
Hidden layers of a simple artificial neural networks have all neurons fully connected to the previous
layers (depicted in Figure 2.2). Due to this connectivity networks would not scale well with larger
input images. For example if an input image is of size 32x32 RGB pixels (used in the CIFAR-10
dataset [29]) then a single neuron of the first hidden layer would have 32× 32× 3 = 3072 weights.
However, if the image size is larger like in the images of the ImageNet dataset [10] that have size
256x256x3 the first hidden layer would have 196608 weights. Considering that hidden layers con-
sist of multiple neurons the number of weights and the calculation complexity drastically increases
for additional hidden layers. CNNs assume that there is spacial locality of the features present
in an input image, in other words on an image local pixels usually contribute to the same object.
CNNs apply filters on a receptive field called a kernel (defined as a k × k matrix) for all hidden
layers. Figure 2.3 shows an example of a kernel applied on a hidden layer in a CNN.

Figure 2.3: Example of a 3× 3 kernel applied on a 5× 5 hidden layer.

4 Implementation Analysis of Convolutional Neural Networks on FPGAs
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Several types of hidden layers are utilized to extract features from images. A brief description of
the layers is shown next:

• A convolution layer is a hidden layer that performs convolution operations on the inputs
with a defined kernel. Kernels have filter weights that are applied in steps to the inputs
of the previous layer. The steps are described as a stride in a CNN model and define how
many values have to be shifted in the input matrix to apply the kernel filter. Applying a
kernel on an input matrix results in a smaller output matrix. The input matrix size can be
preserved by applying padding values around the input matrix (filled with 0s). Padding is
called “same” if the size of the output is equal to the size of the input matrix and “valid”
otherwise. Figure 2.4 shows an example of a convolution layer.

Figure 2.4: Example of a kernel filter is applied in a CNN Convolution layer by [12]. The example
has an 4×3 input matrix, 2×2 kernel, stride 1 and valid padding. The result is a 3×2 output
matrix.

• A poling layer combines input features over a kernel in a single output based on the layer
function. There are two main functions used: maximum and average. A Maxpool layer
takes a kernel of k×k of an input and returns the largest value, and an Avgpool returns the
average of all values within the kernel. Figure 2.5 shows an example of a maxpool layer.

• A fully-connected layer (FC) calculates features of an input for all filter weights in the layer.
The kernel for FC layers has the size of the outputs of the previous layer. FC layers are
usually used at the end of a CNN to calculate class prediction scores. Although FC layers
contribute more parameters than the other layers, they are less compute intensive. Figure 2.6
shows an example of a FC layer.

• Non-linearity layers are used after convolution and FC layers to apply non-linearity activa-
tion functions on the output values (depicted as ϕ in Figure 2.1). Sigmoid and Hyperbolic
Tangent Function (tanh) activations were the first to be used in deep learning networks. Rec-
tified Linear Unit (ReLU), its variants (leaky ReLU) and Exponential Linear Units (ELU)
were proven to achieve better results [2] [37], and thus are more often used in modern neural
networks.

Implementation Analysis of Convolutional Neural Networks on FPGAs 5
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Figure 2.5: Example of a Maxpool layer in a CNN. This Maxpool layer performs a max operation
over a 2× 2 matrix on 4× 4 input features with a stride of 2.

Figure 2.6: Example of a FC layer in a CNN. A FC layer has 2 weights in the filter and the output
is calculated for a 2× 2 kernel.
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• BatchNorm layers are used to normalize inputs for hidden layers across several batches of
training images. During network training implementation of BatchNorm layers can decrease
the training time and improve model accuracy [21].

• Dropout layers can be implemented to improve accuracy and convergence of CNN models.
The dropout layers randomly prevent some of the weights from activating during training,
and thus prevent a model from overfitting [45].

• A softmax layer is used as the last layer for classification applications. The layer implements
a softmax function that normalizes real values of the output classes in a vector whose com-
ponents sum to 1.

An example of a complete CNN model is presented in Figure 2.7.

Figure 2.7: Example of a CNN model used for object detection based on [31]. The model has two
convolution and pooling, a FC and a Softmax layer.

A designed CNN model initially has random parameters (weights, biases) that do not produce
any meaningful results. The parameters have to be modified during CNN model training that is
performed on a dataset. There are two possible approaches to train a CNN model: supervised
and unsupervised learning. Supervised learning assumes that the training dataset has labels for
all images that are used to correct error of a CNN model output. Unsupervised learning does
not have labels, and thus model has to learn relationships between elements on its own. A CNN
model is fed with training images in batches. Usually to speed-up training on a GPU batches of
128 images or more are used to utilize massive parallelism of the GPUs.

The duration of training a CNN model on whole set of training images is called an epoch. A
CNN model can converge (learn features and produce meaningful output) after training for sev-
eral epochs, which depends on the complexity of a task and the structure of a model. CNN
models use a loss function that defines the difference between the output of the model and the
input label (if present). The loss function is calculated for each image and is accumulated for the
training batch. After a batch of images is processed the accumulated loss is used in optimization
algorithms to update the parameters backwards in the model. The optimization algorithms are
used to minimize the error calculated as the loss. By updating the parameters and minimizing
the error CNN models learn features and dependencies to produce correct outputs. There are sev-
eral optimization algorithms that are used, namely Adaptive Moment Estimation (ADAM) [27],
Stochastic gradient descend (SGD) [26], Nesterov accelerated gradient (NAG) [4], etc.

During the training the performance of a model can be measured by the accuracy of the model to
predict correct results and by the loss function. Usually the performance is done on a validation
set, a set that contains images that were not used during training for the parameter update. The
performance of a training set can indicate on how well the network can generalize. If the network
has too many “free” parameters (not contributing for feature detection) it can start to overfit the
training set by simply memorizing features instead of generalizing them. This behaviour can be
detected if during training the training loss becomes smaller but the validation loss increases.
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2.3 Frameworks

CNN models can be designed in frameworks like Caffe [23], Theano [48], Tensorflow [1], DarkNet [40],
etc. The frameworks provide functionality to build layers for models, perform model training and
run inference (execute a model without backpropogation).

Caffe designs model layers and configuration (kernel, padding, stride, etc.) in special files called
.prototxt and stores the parameters in a .caffemodel file. The hyperparameters (base learning rate,
momentum, optimization algorithm, learning rate decay) are used to define how fast, aggressive
the model will modify the parameters of the hidden and output layers. The hyperparameters are
used only for training are defined in a different configuration .prototxt file. The configuration
files together with the model description can be passed as parameters to main Caffe scripts to
start training or inference. The model design and hyperparameters have to be described in py-
thon scripts for Theano and Tensorflow by using framework specific low level functions. Keras or
Lasagne APIs can be used to simplify usage of Tensorflow low level functions. Keras stores model
description and weights in a .h5 format but Lasagne in .npz (numpy arrays).

The frameworks are built to utilize CPU or GPU for training and inference. Depending on CUDA
configuration used by the frameworks, multiple GPUs could be used in parallel for training, for
example Caffe supports multiply GPUs but Tensorflow and Theano can work with only one. Due
to resource limitations on FPGAs and complexity of the backpropogation performing complete
training process on a FPGA is a challenging task. There is an ongoing research on performing
training on FPGAs and only some parts of the training can be accelerated [3]. Unfortunately, none
of the frameworks offer solutions that could be directly implemented on an FPGA, and thus third
party applications have to be used to run inference on FPGAs. A complete workflow is presented
in Chapter 4.5.

2.4 Hardware

To correctly detect and recognize an object CNNs have to perform multiply-accumulate (MAC)
operations with floating point numbers. The networks usually are trained and executed on Graph-
ics Processing Units (GPUs) as GPUs can utilize massive parallelism for floating point number
calculations. Running inference of neural networks requires much less computation. In addition to
GPUs inference can be executed on CPUs, FPGAs and ASICs, namely TPUs. A brief description
of the hardware platforms used for CNNs is shown next:

• CPUs can carry out instructions to perform necessary arithmetic calculation for the inference.
Although CPUs can utilize SIMD instructions and multiple cores to execute several arith-
metic computations in parallel, they still would lack the speed (compared to the alternatives)
to perform overwhelming amount of computations required for CNNs.

• GPUs are processors with multiple cores designed to process blocks of data in parallel. CUDA
and OpenGL are frameworks that can be utilized to distribute data over multiple processors
and internal memory of a GPU. GPUs can store up to 12GB of data in a high bandwidth
memory which allows fast access to floating point data. However, the immense processing
power comes at cost of power consumption of GPUs which can reach up to 250W [36].

• FPGAs offer a flexible hardware architectures as different computation units can be utilized
unlike CPU or GPU that are fixed to a single architecture. FPGAs can offer flexible solu-
tions to match the pace of rapid developments done in the neural network research. Neural
network layers can be placed on an FPGA and executed in parallel for an efficient inference.
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Table 2.1: CNN inference hardware comparison. TOP/s/W denote how many operations can be
done per second for a consumed watt.

Architecture Parallelism Memory TOP/s/W Precision
CPU [20] basic low 12MB x1 Float
GPU [36] co-processor high 12GB x1.2-4 Float
FPGA [52] streaming/dedicated/co-processor medium 512MB-4GB x90-244 1-16 bit
TPU [24] co-processor high 16GB x127 8 bit

However, memory bandwidth and operating frequency of FPGAs would become a bottleneck
for the inference time compared to a GPU solution. Nonetheless the bottleneck can be over-
come by reducing data precision from a floating point to a lower fixed point representation
or reusing data on an FPGA.

• TPUs are ASICs designed to perform inference of neural networks and improve cost-performance
over GPUs [24]. TPUs are optimized to perform 8 bit calculations for the basic layers that
are used in neural networks. As TPUs are optimized for certain layers rapid development
of neural networks could potentially make the design obsolete. Moreover, the design and
manufacturing of the TPUs is costly compared to the alternatives.

Each hardware platform has its own limitations and advantages. Table 2.1 shows relative com-
parison between the hardware platforms. GPUs have much more computing power than FPGAs
or TPUs, and thus can outperform any alternative in terms of time of execution. To compete
with GPUs FPGAs and TPUs quantize the data to a smaller representation than a 32 bit floating
point.

2.5 Quantization

There are several techniques that can be utilized to reduce memory footprint of CNNs or speed up
execution time. Techniques like Pruning [18], loop unrolling, reordering [56], tiling [49] and Wino-
grad Convolution [11] are implemented as a part of a framework or a tool and thus are passively
used. Quantization is a technique that has to be applied independently of a tool or a framework,
although the tools and frameworks are usually optimized to support certain quantizations. In this
work two data quantization techniques are explored that represent the data as a binary or fixed
point numbers.

2.5.1 Binary quantization

In Binary quantization both activation and weights are represented as a single bit data. XOR-Net
[39] proposed a strategy to binarize weights of a CNN. The strategy focuses on approximating float
precision tensor of weights W ∈ IRc×w×h as a product of a binary matrix B ∈ {+1,−1}c×w×h and
a scaling factor α ∈ IR+ such that W ≈ αB. The parameters c, w and h represent the number of
filter (or input) channels, width and height, respectively. A convolutional operation on the input
tensor of activations I can be approximated by:

I ∗W ≈ (I⊕W)α (2.1)

where, ⊕ indicates a convolution without any multiplication.

XOR-Net uses a deterministic binarization approach for the CNN layer parameters. The determ-
inistic binarization defines the output depending on the sign of the CNN parameters:

xb = Sign(x) =

{
+1, if x ≥ 0,

−1, otherwise.
(2.2)
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BinaryConnect [9]is an alternative that uses a stochastic binarization, that is defined as:

xb =

{
+1, with probability p = σ(x),

−1, with probability 1− p,
(2.3)

where σ is the “hard sigmoid” function:

σ(x) = max(0,min(1,
x+ 1

2
)) (2.4)

Parameter quantization is performed during training of a model on all parameters except the
parameters of the input and the output layers. Parameters for the input and the output layers are
saved as floating point numbers, to keep the information of the image and the rest are represented
as binary values. The binary representation is used in accumulation and then converted to floating
point for multiplication. For all parameters the Sign function is used as it is easy to implement
in the hardware and fast to compute. The stochastic binarization is used in some activations of a
model and requires the hardware to generate random bits.

Half-wave Gaussian Quantization [5] improves the quantization methodology and achieves a higher
accuracy. The quantization is based on non-linearity activation (ReLU) parameters (represented
as tensor I). The parameters are quantized in Forward approximation as:

Q(x) =

{
qi, if x ∈ (ti, ti+1],

0, x ≤ 0,
(2.5)

where qi ∈ IR+ and ti ∈ IR+ (t1 = 0 and ti+1 =∞). During training the parameters are quantized
in Backward approximation as a clipped ReLU:

Q̃c(x) =


qm, if x > qm,

x, if x ∈ (0, qm],

0, otherwise.

(2.6)

The clipped ReLU helps to mitigate problems with inaccurate gradients during the backpropoga-
tion.

2.5.2 Fixed point quantization

The fixed point quantization described in [42] dynamically quantizes parameters across CNN
layers. For each layer a threshold value γ is defined that can be expressed as:

γ = α× β (2.7)

where, α is a scaling factor and β = 2exponent × singed integer represents a reduced precision
floating point value. The β fixed point representation is defined by quantization parameters n and
p that represent the bit width and the number of significant bits, and is represented as

β =


(−1)bn−1 ×

p−1∑
i=0

(bi × 2i), if e = 0,

2e−1 × (−1)bn−1 × (2p +
p−1∑
i=0

(bi × 2i)), if e > 0,

(2.8)

where e is defined as

e =


0, if p = n− 1,
n−2∑
i=p

(bi × 2i−p)), if p < n− 1,
(2.9)

10 Implementation Analysis of Convolutional Neural Networks on FPGAs



CHAPTER 2. BACKGROUND

During the quantization procedure γ values for all layer parameters (tensors) are estimated with
the Kullback-Leibler-I from the previous tensor. For the estimation a calibration forwardpass of
the network is executed on a calibration dataset. To prevent information loss by removing least
significant bits the estimation of the threshold values is done after the activation layers for each
convolution layer. Each floating point value in a tensor is clipped by [−γ; γ] and then divided by
its scale α. The α is calculated as the smallest positive value depending on n, p values that are the
bit width and the number of significant bits in a signed integer. When inference is performed, the
obtained thresholds and scaling factors during offline quantization are used to improve accuracy
of the fixed point values, that are calculated from the floating-point values by Equation 2.8.

The thesis will focus on training CNNs on GPUs and executing inference on FPGAs. Several com-
binations and different number of CNN layers will be used to design CNN model types. FPGA
resource restrictions will be taken into account during the CNN model design phase. Since the
optimization techniques depend on a tool, parameter quantization to binary and fixed-point rep-
resentation will be evaluated.
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Chapter 3

State of the art

The popularity of CNNs and potential implementations on embedded devices has motivated re-
searchers to investigate the possibilities to implement CNNs on FPGAs. FPGAs can offer real-time
performance, high energy efficiency and flexible designs. Multiple studies have performed different
approaches on improving performance optimization and power consumption.

3.1 CNN hardware architectures on FPGAs

Based on how CNN layers are handled on the hardware of an FPGA three architectures can be
defined. For a Streaming accelerator all CNN layers are separately synthesized on an FPGA.
As the output values of each layer can be streamed in the input buffers for the next layer. The
parameters are loaded once in the layers from the global memory and reused locally. A Dedicated
accelerator synthesizes layer classes on an FPGA and schedules layer execution with a controller.
The controller defines which layers are executed and when the necessary parameters are loaded,
usually from the global memory to local. A programmable co-processor architecture is based on
the implementation of the TPU from Google. The MAC operations for the layers are executed
in a systolic array and a controller is responsible for scheduling layer execution by managing the
inputs and the outputs of the systolic array calculations. Some of the implementations of the
presented classes also use a CPU to execute non-compute intensive layers (FC, Softmax) or as a
scheduling controller. Figure 3.1 shows the CNN hardware architectures that will be evaluated in
the thesis.

3.1.1 Streaming accelerator

Courbariaux et al. [9] have shown that performing binarization of the floating point parameters of
a CNN can yield nearly state-of-the art results. Y. Umuroglu et al. [49] have presented FINN, a
framework that optimizes CNNs and synthesizes a Streaming accelerator on an FPGA. FINN per-
forms binarization of floating point numbers to keep all neural network parameters in the on-chip
memory. Additionally, FINN optimizes hardware on the FPGA to utilize binary calculations, like
using a boolean XOR operation for Maxpool layer and a pop-count for the accumulation. Li et
al. [31] performed binarization of the CIFAR-10 dataset and managed to outperform GPU in the
inference time and power consumption, however only for small batches of images. In addition to
using binary gates for parameter computation, the model also utilized a double buffering scheme
and pipelining to ensure massive computing parallelism on an FPGA.

Nakahara et al. [34] has implemented object detection and recognition on an FPGA that achieves
real-time performance for the inference. The proposed model utilizes the FPGA to execute CNN
layers in a streaming manner. Additionally, an ARM processor is used to define a multiscale slid-
ing window, supply input images to the FPGA layers and compute Softmax function. Multiple
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Figure 3.1: CNN hardware architecture layer and buffer (grey) placement on FPGAs.

sliding windows allow to precisely detect an object in the input image.

3.1.2 Dedicated accelerator

Chen et al. [56] have implemented a CNN with 32-bit floating point parameters on an FPGA
containing Processing Engines (PEs) which accelerate layers called by a microprocessor. The PEs
are configured with the theoretical roofline model [51], that relates system performance to off-chip
memory traffic and performance of the hardware.

Preuer et al. [38] use an ARM CPU on a heterogeneous FPGA to process less computation intens-
ive layers, while accelerating the other layers on the FPGA. Parallel test execution with the FPGA
allows to increase the inference performance and resource utilization. DiCecco et al. [11] also use
a CPU to reduce DSP utilization in a Winograd convolution algorithm. The FPGA is used to
accelerate convolution layers. Huang et al. [16] use a CPU to perform pooling and fully connected
layer computations, in addition to quantizing parameters of a CNN and Butterfly pipelining of
the input data. As convolution layers are executed in pipelined manner, the delay of FC layer
execution on a CPU is hidden.

Xilinx has released CHaiDNN a High Level Synthesis (HLS) library for Xilinx Ultrascale+ MPSoCs [53].
CHaiDNN can perform quantization of the given network parameters and map the network on an
FPGA via HLS. At its core, CHaiDNN synthesizes default layers (Conv., Pool., ReLU, etc.) on
FPGA and schedules the execution by a CPU. Additionally, CHaiDNN allows a configuration of
initially unsupported layers, however those are executed on a CPU.
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3.1.3 Programmable co-processor

Xilinx has also released ML Suite [54] a set of tools that can parse a CNN described in frame-
works like Caffe and Tensorflow to an FPGA. ML Suite synthesizes a systolic array, instruction
memory and execution controller on the FPGA that can perform acceleration of the convolution
and pooling layers. FC and Softmax layers are computed on an ARM processor. Additionally,
ARM processor schedules layer execution to reuse instructions for the systolic array.

Kiningham et al.[28] have implemented ConvAu a systolic array architecture that accelerates
Convolutional, FC and BatchNorm layers. They have achieved 200× improved TOPs/W than
inference on a K80 GPU and 1.9× improvement compared to the TPU.

3.2 Design flow

In previous works authors designed the FPGA hardware synthesis by themselves. ML Suite from
Xilinx provides tools to compile CNNs for FPGA. xDNN IP tool synthesizes the Processing En-
gines of systolic arrays on FPGA and configures them for maximum throughput or lowest latency.
xDNN Middleware is a software library that provides tools to optimize networks described in
the supported frameworks and compile instructions for the synthesized systolic arrays. xDNN
Quintizer is a tool that quantizes the parameters for all layers.

Sharma et al. [43] proposed a tool called DNNWeaver, which can synthesize hardware for an FPGA
for a required network. The output of the synthesis is focused on the power consumption rather
than the inference time. To achieve good results the tool utilizes handmade template accelerators
to build the network.

The Streaming accelerator architecture can provide the fastest execution time as it has the least
overhead for layer execution and communication to the global memory. However, it requires
parameters of the CNNs to be binary to store them in local buffers. The parameter binarization can
lead to worse accuracy compared to floating or fixed point parameters. The Dedicated accelerator
architecture can support fixed point parameters of various sizes which can yield small accuracy drop
compared to floating point parameters. A careful layer scheduling is required to run execution
smoothly. The Programmable co-processor can be optimized well for a high throughput as it
mainly accelerates the core operations (MAC) performed in convolution, pooling and FC layers.
The co-processor can efficiently utilize hardware but comes with a larger overhead for operation
executions compared to the other architectures. In this thesis a Streaming accelerator, Dedicated
accelerator and Programmable co-processor architectures will be implemented with BNN-PYNQ,
CHaiDNN and ML Suite tools respectively. Additionally, the design flows from training CNN
models to running inference on FPGAs will be derived for the tools.
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Chapter 4

Experimental setup

In this chapter, the setup on which experimental CNN models were implemented are presented.
First, an application for the CNNs is chosen. Then the designed CNN models that use the
application are presented. The models are the trained on a GPU to obtain useful parameters
for successful application execution. Finally, the trained models are implemented on FPGAs and
evaluated on inference performance. Additionally, the metrics used to evaluate the results and the
design flow of the setup are given.

4.1 Evaluation metrics

The thesis evaluates three tools that port CNNs on FPGAs. To evaluate the performance of the
tools and the implemented CNN models on FPGAs the following metrics are defined below.

(A) CNN model architecture

• Learnable parameters
The total number of parameters represents how much data is required to store weights
and biases of the CNN models. The parameters can be calculated from the layers that
store them e.g. Convolution, FC. Based on the number of parameters a depth and size
of a model can be approximated.

• Number of operations
The total number of operations (MACC, compare, add, div) that are necessary to
calculate outputs for all layers in a CNN model. The number can be calculated from
the applied layer configurations (kernel, filters, padding, etc.) during the design phase.
The number of operations can be used to determine the complexity of a CNN model
and the load on hardware.

(B) CNN model training

• Time
Time (hours) needed to train a CNN model on a GPU until the model starts to saturate
on validation loss. The time will consist of the number of hours needed to train CNNs
in Keras and re-train the parameters in Caffe. The hours are combined as Caffe failed
to converge and model format created by Keras is not supported by the used tools. The
comparison between CNN model training time and prediction accuracy can contribute
to the trade-offs between the CNN models.

• Accuracy (TOP-1)
Top-1 accuracy is the fraction of test images for which the correct label (class) has
the highest score. The Top-1 score will be calculated based on the results of 1470 test
images (six images per class) for the large CNN models and 364 test images for the
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smaller model. If the highest probability is given to the correct class label, then the
test image will be added to the fraction of the correct predictions for Top-1 accuracy.
This metric can help to define how well CNNs perform in a face recognition task.

(C) CNN model mapping on FPGA

• Hardware to software ratio
The metric represents the ratio of work performed on the hardware accelerated part
of an FPGA and software executions on a CPU that is present on a board. The
metric will be defined as the number of operations in the convolutional parts and in
the fully-connected parts from the CNN models. It will show how well CNN parameter
calculations are balanced between an FPGA and CPU.

• FPGA hardware utilization
The metric will be defined as a number of hardware parameters (DSP/LUT/FF/BRAM)
used in the inference architecture of the FPGAs over the total hardware parameters
available on the FPGAs. The numbers of used hardware parameters will be obtained
from the corresponding synthesis reports and the total available numbers from the
FPGA datasheets. The utilization will show the requirements on FPGA hardware to
perform CNN inference.

(D) CNN model inference

• Accuracy (TOP-1)
Top-1 accuracy is measured in the same as for training. The measured accuracy during
inference will be affected by the applied quantizations for the FPGA solutions.

• Power consumption
The power consumption metric will represent the power (W) required to run inference
of an image on an FPGA. To measure the power consumption of a BNN-PYNQ tool
on the small FPGA an USB cable will be connected to a power measurement device
that measures the voltage and current during the inference. To measure the power
consumption of the medium FPGA used by the CHaiDNN tool, a multimeter will
be used to define the input current and voltage for the medium FPGA. A software
tool that measures on-board power consumption will be used for the GPU. The power
consumption metric will show the trade-offs between the tools and will be combined
with the number of operations per second.

• Latency and throughput
Latency represents the time (ms) needed to execute a CNN model on an FPGA for
one image without the network initialization. The time will be measured between the
start and the end of the inference messages for all test images. Throughput (images/s)
represents the number of images an FPGA can process in a second. The throughput
will be measured as the number of batches of images that are performed over their
latency. This metric will be used to evaluate the trade-offs between the CNN model
sizes and FPGA architectures.

• Number of operations per second (GOP/s)
A number of (Giga) operations per second a hardware type (FPGA, GPU) can perform.
The metric will be defined as the number of operations (MAC, compare, add, divide)
that have to be performed over the measure throughput for each tool. The metric will
show compute possibilities of the hardware and combined with the power consumption
the computation efficiency will be derived.

4.2 Face recognition application

During the application selection for the thesis an abstract problem that could be solved with CNNs
on FPGAs was in mind. There are several problems that CNNs can solve, namely object classifica-
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Table 4.1: The investigated datasets for the face recognition application.

LFW [17] CelebFaces [32] MS-Celeb-1M [13] CASIA [55] VGGFace2 [6]
Total images 13K 202K 10M 500K 3.3M
Total classes 5K 10K 100K 10K 9K
Images/class 2 20 100 50 366

tion, object detection, picture segmentation, natural language processing. Since CNNs are mostly
used in image processing, natural language processing was not considered. From the applications
object classification was considered more interesting to explore as this type of CNNs would have
to learn features to classify different classes, while in object detection CNNs would learn features
of a single class to locate it in an image. It was decided to narrow down the application to a face
recognition problem as it fits the object classification domain and potentially could be performed
independently from a face detection.

The face recognition application is a CNN model that predicts actor labels based on the input im-
ages. An image would be loaded on a hardware platform, then CNN inference would be performed
to define the face of the actor present in the image. Since it is an object classification problem,
it is assumed that an existing class label (from learned actor features) is present for the input image.

The first step to create a face recognition application is choosing a dataset with faces. During the
dataset selection only publicly available datasets were investigated. Ideally, the desired dataset
should have 1000 images per class (suggested for best classification results). Unfortunately, not
many publicly available datasets exceed more than 100 images per class. Additionally, some
datasets are noisy with duplicate or irrelevant (no face present, faces of other people) images,
which could influence the prediction accuracy of CNNs. Table 4.1 shows the datasets of faces that
were investigated for the thesis.

It was decided to use 245 classes of the CASIA WebFace as these classes have at least 200 unique
images per class and a few duplicate/noisy images. The dataset was divided in 70K images for
training, 13K images for validation and 1,5K for testing. An alternative dataset that could be used,
but was not considered is VGGFace2. It offers 9K classes with on average 362 images per class. As
the dataset was found after the CNN models were trained on the CASIA WebFace it was not used.

4.3 Hardware

The hardware was chosen based on what the three tools BNN-PYNQ, CHaiDNN and ML Suite
can support.

BNN-PYNQ is a tool that implements Binary Neural Networks (BNNs) from the FINN paper [49]
on the small FPGAs (in terms of available hardware) Pynq-Z1, Pynq-Z2 and the medium ZCU104
FPGA boards. CHaiDNN is a tool that can perform synthesis of a CNN with quantized 8-bit and 6-
bit parameters for the medium ZYNQ Ultrascale+ ZCU102 and ZCU104 boards. Xilinx ML Suite
offers a set of tools to optimize and deploy a trained CNN on the large FPGAs like VCU1525
and Alveo U200/U250. When the thesis was conducted, ML Suite only supported VCU1525
and BNN-PYNQ supported Pynq-Z1 and Pynq-Z2. For the experiments Pynq-Z2, ZCU102 and
VCU1525 were available, and will be referred as small, medium and large respectively. Figure 4.1
shows the small FPGA, Figure 4.2 shows the medium FPGA and Figure 4.3 shows the large FPGA.

The small and medium FPGAs were available in house, and thus the programming and experiments
were executed directly on the FPGAs. The large FPGA was used via Nimbix cloud [35], and thus
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Figure 4.1: Pynq-Z2 board (small) Figure 4.2: ZCU102 board (medium)

Figure 4.3: VCU1525 board (large) Figure 4.4: Nvidia Tesla K40m GPU

Table 4.2: FPGA board hardware overview.

FPGA small medium large
# LUTs (K) 53.2 274 1182
# FF (K) 106.4 548 2364
BRAM (KB) 630 4108.8 9715.2
DSP slices 220 2520 6840

not all desired experiments could be performed. For the power measurement, additional hardware
was required to be connected to the large FPGA, to which there was no access. The CNN models
and test images were implemented via Python scripts accessed through a shh connection to the
Nimbix servers. Table 4.2 summarizes the total available FPGA hardware parameters that can be
utilized by CNN models. The actual utilized hardware parameters are later compared in section
5.2. The Nvidia Tesla K40m GPU was used for the face recognition CNN model training. The
GPU was part of the Nimbix cloud service and accessed through Nvidia DIGITS framework for
Caffe training and through Python scripts executed via shh commands for training in Keras.
Figure 4.4 shows the Nvidia K40 GPU used for CNN model training.

4.4 Applied CNN model configurations

There are different models publicly available for CNN training and inference. Some of the pop-
ular CNN models are AlexNet [30], VGG [44], ResNet [14], GoogleNet [47], MobileNet [15],
SqueezeNet [19], Inception-v4 [46] and YOLO [41]. As BNN-PYNQ supports only VGG type mod-
els, to compare BNN-PYNQ to the other tools and for the sake of consistency a VGG-16 model
was used as the base. The overview of all implemented CNN models is presented in Table 4.3.
Due to CNN layer compatibility complications in ML Suite and BNN-PYNQ, two different VGG
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Table 4.3: Composition of the Casia245 and Casia64 models. For each convolution and maxpool
layer the parameters are denoted as [stride, pad, kernel, filters]

Model name Casia64 Casia245-t1 Casia245-t2 Casia245-t3
input 32×32×3 128×128×3

Conv1 x
[1, 0, 3, 64]
[1, 0, 3, 64]

[1, 1, 3, 64]
[1, 1, 3, 64]
[1, 1, 3, 64]

[1, 1, 3, 64]
[1, 1, 3, 64]
[1, 1, 3, 64]
[1, 1, 3, 64]

Maxpool1 [2, -, 2, 64]

Conv2 x
[1, 0, 3, 128]
[1, 0, 3, 128]

[1, 1, 3, 128]
[1, 1, 3, 128]
[1, 1, 3, 128]

[1, 1, 3, 128]
[1, 1, 3, 128]
[1, 1, 3, 128]
[1, 1, 3, 128]

Maxpool2 [2, -, 2, 128]

Conv3 x
[1, 0, 3, 256]
[1, 0, 3, 256]

[1, 1, 3, 256]
[1, 1, 3, 256]
[1, 1, 3, 256]

[1, 1, 3, 256]
[1, 1, 3, 256]
[1, 1, 3, 256]
[1, 1, 3, 256]

Maxpool3 [2, -, 2, 256]

Conv4 x - [1, 1, 3, 256]
[1, 1, 3, 256]
[1, 1, 3, 256]

[1, 1, 3, 256]
[1, 1, 3, 256]
[1, 1, 3, 256]
[1, 1, 3, 256]

Maxpool4 - [2, -, 2, 256]

Conv5 x - [1, 1, 3, 512]
[1, 1, 3, 512]
[1, 1, 3, 512]

[1, 1, 3, 512]
[1, 1, 3, 512]
[1, 1, 3, 512]
[1, 1, 3, 512]

Maxpool5 - [2, -, 2, 512]
FC1 512 245
FC2 512 -
FC3 64 -

derivative models were used for the tools. Since the goal of this thesis was to investigate available
tools, no modifications were made to ML Suite, CHaiDNN and BNN-PYNQ to support additional
layers/settings.

The VGG model for BNN-PYNQ consists of six convolutional layers, three max pooling layers
and three FC layers at the end. BNN-PYNQ can support maximum of 64 output classes, thus
only 64 actors are used for the VGG model from the CASIA WebFace dataset. This model was
implemented in BNN-PYNQ tool as a BNN and in CHaiDNN as a 6-bit and 8-bit CNN. The VGG
model will be referred as Casia64.

Due to limitations on the number of FC layers in ML Suite (v1.1) another type of a VGG model
had to be designed. The new model could only use a single FC layer as the ML Suite xDNN
compiler tool can save parameters for one FC layer. To investigate the impact of the CNN size on
accuracy and throughput three VGG model types were implemented for ML Suite and CHaiDNN.
The first type model (Casia245-t1) implements one convolutional layer followed by a maxpool
layer five times and ends with an FC layer. The second type model (Casia245-t2) doubles the
number of Conv. layers between the maxpool layers and the third type (Casia245-t3) quadruples
compared to the Casia245-t1 model. Rectification non-linearity (ReLU as in VGG-16) layers are
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Table 4.4: The number of parameters for the investigated CNN models.

Casia64 Casia245-t1 Casia245-t2 Casia245-t3
Parameters 1.57M 4.15M 7.87M 15.32M
GOPs 0.31 1.73 5.95 14.40

used after each Conv. layer in all models.

The original VGG-16 model uses 224×224 input images and a valid padding, but with these set-
tings Casia245-t3 would not have any input parameters in the last FC layer. To make sure that
the only difference between the Casia245 type models is in the number of Conv. layers (and thus
learning parameters) the Conv. layer parameters were fixed to stride 1, kernel 3×3 and padding 1.
Additionally, the image input size was set to 128×128×3 (RGB) to reduce the computational load
of the models as FPGAs have less computational power compared to GPUs. The image input for
Casia64 is fixed by BNN-PYNQ tool to 32×32×3 due to memory restrictions of the small FPGA.

The number of parameters in a model is defined by the total number of weights and biases. The
higher the number of parameters the more time it takes for a model to learn, and thus more
features can be extracted. The total number of operations for a CNN model is defined by the
total number of MACs×2, compare, addition, division and exponent operations. Table 4.4 shows
the number of parameters and (Giga) operations for the investigated models.

4.5 CNN model design flow

In this section, the preparation and setting up the Casia64 and Casia245 models on the FPGA
are described. Additionally, design flows for the evaluated tools (BNN-PYNQ, CHaiDNN and ML
Suite) are presented and summarized in Figure 4.8.

CHaiDNN and ML Suite tools are designed to work with Caffe files but unfortunately without an
apparent reason the designed CNN models were not able to learn anything in Caffe framework.
Thus the models were trained in Keras API [7] with Tensorflow backend and later converted and
re-trained in Caffe. BNN-PYNQ is designed to work with Theano generated files and did not
have problems like Caffe. More details regarding Caffe and Keras training process can be found
in Appendix A.

To execute inference on FPGAs supported by the BNN-PYNQ, CHaiDNN and ML Suite tools
some additional modifications had to be made to the trained models. For BNN-PYNQ tool hard-
ware has to be synthesized in Vivado, a driver and application have to be rewritten. The hardware
synthesis was run in Vivado to prepare a bitstream file. The bitstream file programs hardware
on the FPGA that defines memory allocation, number of LUTs, FFs and DSPs. It synthesized
the model on the FPGA fabric by setting up the connections between the layers. The software
drivers have to be created to enable the communication between the application and the hardware.
During the application setup, the location of the images can be configured to read and execute
one image or run several images in a pipeline manner. Hardware synthesis, driver and application
code has to be rewritten for new models as these depend on the model layer composition and
settings. The existing hardware configuration and drivers were used for Casia64, and thus no
Vivado synthesis and driver update was done. The parameters learned by Casia64 in Theano were
already quantized during training to fit on the BRAM of the small FPGA. The layers for the
Casia64 model are placed in a stream like fashion with input and output buffers to ensure efficient
pipelining. The model parameters are stored within the layers and the layer calculation results
are stored in the input/output buffers. Figure 4.5 shows how the layers for the Casia64 model are
placed on the small FPGA.
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Figure 4.5: CNN hardware architecture layer and buffer (grey) placement on the small FPGA by
BNN-PYNQ tool.

CHaiDNN utilizes a CPU to schedule layers of a CNN model and executes the most computa-
tion extensive layers sequentially on an FPGA tile. The user can build hardware configurations in
Vivado and setup an application for the inference. There are four possible hardware configurations
that can be used for the inference. The configuration that uses the most of the hardware was built
in Vivado, as it promises the fastest inference and the best utilization of the available hardware.
The user can define the start and the end layers of a caffemodel, input image dimensions, dataset
pixel mean values, model and picture locations in the application. Once these parameters are
defined, the application can be build as an executable .elf file. The CNN model quantization is
done by calling a python script that implements the dynamic fixed point quantization described
by S. O. Settle et al. [42]. The script creates a prototxt file with quantized weights, which is
used by an elf executable. Convolution and pooling layer classes are synthesized on an FPGA.
Additionally, the activation class (ReLU) is combined with the Convolution synthesized block on
an FPGA. FC layers and Softmax are executed on a CPU. Figure 4.6 shows how the layers for
the Casia64 and Casia245 models are placed on the medium FPGA.

ML Suite is composed of xDNN Intellectual Property (IP) cores, xfDNN and ML Framework.
xDNN IP that is used for the experiments was included in the tool and designed for the large
FPGA. No changes to the IP core could be made as the source files were not publicly available.
The xfDNN middleware consists of two parts: a compiler and a quantizer. The compiler is a
script used to optimize CNN model and divide it in instructions used by the xDNN. The quant-
izer is a script that implements the same quatization method as CHaiDNN but with additional
optimization for the xDNN IP. The ML Framework provides Python APIs to configure the CNN
model parameters (first, last layers, FC and Conv. layer inputs) and image location. Addition-
ally, the framework calls the model files and instructions created by the xfDNN for the inference
execution. The systolic array placed on the large FPGA is responsible for the convolution and
pooling operations of the respective layers. The FC and Softmax layers are executed on a CPU.
Additionally, the CPU is responsible for controlling layer execution and parameter loading on the
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Figure 4.6: CNN hardware architecture layer, buffer (grey) and controller (blue) placement on the
medium FPGA by CHaiDNN tool.

FPGA. Figure 4.7 shows how the layers for the Casia245 models are handled on the large FPGA.

Figure 4.8 summarizes the flows for BNN-PYNQ, CHaiDNN and ML Suite tools. The blue rect-
angles represent common steps that have to be done for all tools. The orange represents steps
that are specific for each tool and red is the final goal to run the inference.

The tools to port CNN models on FPGAs target devices of various sizes. The tool restrictions
on supported layers and CNN model configurations force to utilize different model layouts. A
compromise had to be made for the applied CNN models to compare the tool performance. Model
design flow is similar for all tools and mainly consists of designing a model, training and synthes-
izing the model on an FPGA. However, ML Suite and CHaiDNN tools are more generic and are
easier to implement in the model synthesis step compared to BNN-PYNQ.
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Figure 4.7: CNN hardware architecture systolic array, buffer (grey), controller (blue) placement
on the large FPGA by ML Suite tool.



Figure 4.8: Design flows performed on the three tools BNN-PYNQ, CHaiDNN and ML Suite.



Chapter 5

Experiments and result analysis

In this chapter, the performed experiments on the FPGAs will be presented. Additionally, the
results of the inference and training of the CNN models will be discussed and analyzed.

5.1 Performed experiments

The experiments were performed during training and inference on two datasets (one for Casia245
and one for Casia64). Training tests were performed on 13K validation images and 70K training
images for the Casia245 models. During inference tests, a test set of 1430 images was used for the
Casia245 models and a test set of 384 images for the Casia64 model. Both test sets use six images
per class. The images for inference were taken from the Casia WebFace dataset and never used in
training.

5.1.1 Training time and accuracy

The first conducted experiment involved measuring the time needed to train the models until the
validation loss stopped improving. The measurement starts from the network initialization to the
last epoch with the lowest validation loss. These measurements were performed for the Keras
training phase. The Caffe recalibration was fixed to 50 epochs for Casia245 and to 200 epochs for
Casia64. The time to recalibrate the models was added to time needed to train in Keras. During
the CNN model training the accuracy of the test set was reported by the Nvidia DIGITS 5 tool
after each epoch.

5.1.2 Inference accuracy

The Top-1 accuracy was measured for all models based on the predictions of the corresponding
test sets. The accuracy of the models with the weights stored as floats was measured on retrained
Caffe models on a GPU. Caffe test option was used to report Top-1 accuracy. The single bit model
of Casia64 was run from Jupyther notebook on the small FPGA. The inference on CHaiDNN was
executed as an elf file on the medium FPGA. The inference for ML Suite was run on the provided
python script batch classify.py.

5.1.3 Inference latency and throughput

The inference setup and actions for time measurements were almost the same as for accuracy. The
time of inference on the GPU was obtained by running Caffe time command. The average forward
pass time was taken to measure latency as it is the time needed to process an image from the input
layer to the output layer. The time was measured only for the inference thus the time to load
images or allocate memory was not measured. ML Suite inference script reported the time needed
to write weights to an FPGA, execute main layers on the FPGA, read outputs and execute layers

Implementation Analysis of Convolutional Neural Networks on FPGAs 27



CHAPTER 5. EXPERIMENTS AND RESULT ANALYSIS

on the CPU. The total inference time was measured starting from layer execution on the FPGA
and ending with FC layer execution on the CPU. The throughput was measured by setting batch
number to 128 for BNN-PYQN and GPU, 2 for CHaiDNN and 4 for ML Suite. BNN-PYNQ and
GPU implementations did not gain much for setting a larger batch size, CHiaDNN and ML Suite
can support max batch size of 2 and 4 respectively.

5.1.4 Power consumption

The power consumption was measured during inference on the FPGAs and the GPU. The con-
sumed power for small (BNN-PYNQ) and medium (CHaiDNN) FPGAs was calculated as Vin×Iin.
The small FPGA was powered with a USB cable. The input voltage and current was measured
with a KCX-017 power bank capacity tester attached to the USB cable. The medium FPGA was
powered with an TENMA 72-6905 power supply. The input voltage and current to the FPGA
board were measured with a multimeter. The power consumption of the GPU was obtained from
nvidia-smi tool. Unfortunately, no power measurements could be done for the large FPGA (ML
Suite) as the FPGA was located in Nimbix data center and the additional hardware to measure
the power consumption could not be connected. According to datasheet of the large FPGA it
consumes 75W and can increase the power consumption by additional 150W if necessary.

5.2 Results

In this sections the results of the performed experiments are presented according to the metrics
discussed in the previous chapter.

5.2.1 Model training time

The time spent on training the models is summarized in Figure 5.1 and the number of epochs are
presented in Table 5.1. The bigger the model the more time has to be spent on training in terms of
the number of epochs to reach optimal validation loss and time spent per epoch processing. With
the increased number of learning parameters in the models the frameworks had to perform more
computations to update the parameters. Since the computations were performed on a GPU data
parallelism and computation optimization improved the time to compute larger networks. The
time spent on re-calibration is significant compared to the training time due to Caffe requiring
more time to process an epoch compared to Keras as can be seen in Figure 5.2. This could be due
to inefficient data (images and weights) representation in Caffe. Similar issue can be observed with
Theano training time compared to Keras and Caffe. However, Theano trained Casia64 model with
special BinaryConvolution layers designed with HWGQ [5]. Theano spends on average 16 seconds
on image cropping which could be removed as the training set images are already cropped. For
image batch processing it spends 26 seconds but Caffe 17. Theano sequentially processes images
in a loop and GPU CUDA does not run in parallel the loop itself, instead the calculations are
done within the loop, which could be the reason for the difference with Caffe.

5.2.2 Model accuracy

Figure 5.3 shows Top-1 accuracy for the Casia245 models and Figure 5.4 shows Top-1 accuracy
for the Casia64 model. The accuracy of Casia64 with floating point weights after training for both

Table 5.1: The number of epochs spent on training in Keras, Theano and retraining in Caffe.

Casia64 Casia245-t1 Casia245-t2 Casia245-t3
Keras 188 48 89 143
Caffe 200 50 50 50

Theano 200 - - -
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Figure 5.1: Total time (hours) spent on training
the models and time distribution over the frame-
works.

Figure 5.2: Average time (seconds) spent on
training for one epoch for all models in the three
frameworks.

Theano and Caffe retrained models (used for CHaiDNN) are 40.32% and 53.12% respectively.
The development on Theano stopped on November 2017, however Caffe is still somewhat being
updated, thus Caffe has a better weight calculation methodology. Moreover, Caffe retrained the
models based on the weights trained in Tensorflow. The accuracy of the model was significantly
reduced after quantization was applied. The poor accuracy of 1-bit weights could be explained by
the lack of accuracy of the float model, although it only dropped by 5%. The drop in accuracy
for the 6-bit and 8-bit models of Casia245-t3 for CHaiDNN is approximately 10%. However, the
accuracy of the Casia245 models stayed the same as the base floating precision models except
Casia245-t3 models for CHaiDNN. Xilinx quantization used for CHaiDNN and ML Suite mainly
scaled the floating precision weights to a fixed point representation. Perhaps the increased number
of parameters and round up of floating point parameters accumulated an error in quantization
which lead to worse results for Casia245-t3.

Figure 5.3: Top-1 accuracy of the Casia245 mod-
els after training on the GPU (float) and inference
on the FPGAs.

Figure 5.4: Top-1 accuracy of Casia64 model
after training on the GPU (float) and inference
on the FPGAs.

5.2.3 Accuracy compared to training time

Figure 5.5 shows the training efficiency of the examined Casia245 models. The efficiency was
calculated as follows:

train efficiency =
accuracy

training time
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Table 5.2: Hardware software ratio of the CNN models.

Casia64-BNN Casia64-CHai Casia245-t1 Casia245-t2 Casia245-t3
Total GOPs 0.3108 0.3108 1.7254 5.9458 14.4096
Software GOPs 0 0.0016 0.004 0.004 0.004
Software fraction 0 0.005 0.002 0.0006 0.0002
Hardware fraction 100 99.995 99.998 99.9994 99.9998

As it can be observed from the figure the Casia245-t1 model has the best time to accuracy ratio.
The model was big enough to learn face features to execute the face recognition task and took
less time to train than the other models. Increasing the model sizes did not improve the accuracy
enough to justify the increased training time. Since the quantized models had similar accuracy
there is almost no deviation in training efficiency compared to the models with the float parameters.
The Casia64 model trained with Theano has worse accuracy on the test set than the model trained
in Keras and retrained in Caffe. Due to long training in Theano the model has worse efficiency
than Keras and Caffe combined.

Figure 5.5: Training efficiency of the Casia245
models that shows the average accuracy improve-
ment of a model after an hour of training.

Figure 5.6: Training efficiency of Casia64 that
shows the average accuracy improvement of a
model after an hour of training.

5.2.4 Hardware-software ratio

Table 5.2 shows the hardware-software partitioning of the operations executed during inference of
the CNN models based on which layer are executed on an FPGA or CPU. Both CHaiDNN and
ML Suite execute on FPGAs Conv. and max-pool layers but FC and Softmax layers on CPUs. As
only a small fraction of all operations has to be done for FC and Softmax layers (noted in Table 5.2
as software GOPs) most of the calculations are performed on the FPGAs. This calculations do
not count instructions that are used to issue calculations for ML Suite and control scheduling on
CHaiDNN. As all layers are synthesized on the FPGA fabric for BNN-PYNQ all calculations are
done on hardware.

5.2.5 Tool FPGA utilization

The hardware utilization is presented as a number of LUTs, FFs, DSPs and BRAM used for
inference as these are main components required for calculations on FPGAs. Figure 5.7 shows the
hardware utilization of the examined tools. The highest hardware utilization is in BNN-PYNQ and
CHaiDNN tools as these use much less hardware than ML Suite. BNN-PYNQ tool processes 1-bit
weights thus it does not require additional DSPs or BRAM. Instead it relies on XOR and SHIFT
operations that are executed by FFs and on LUTs to store the CNN parameters. CHaiDNN uses
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6.2 times more LUTs, 3.6 times more FFs, 56 times more DSPs and 5.45 times more BRAM than
BNN-PYNQ. CHaiDNN uses a substantial amount of DSPs on the medium FPGA for calculating
6-bit and 8-bit convolution operations. Although ML Suite hardware utilization of the large FPGA
is relatively low, it utilizes 9 times more LUTs and FFs, 40 times more DSPs and 3.6 times more
BRAM compared to BNN-PYNQ mapped on the small FPGA. ML Suite uses instructions to
execute CNN layers on a systolic array, which consists of DSPs paired with LUTs. The BRAM is
used to store all the weights of the CNN models on the FPGA and for executions the weights are
saved in LUTs of the systolic array.

Figure 5.7: Hardware utilization of the examined tools.

5.2.6 Tool power consumption

The power consumption for the GPU inference is 4.5 times higher than for the medium FPGA
(CHaiDNN) and 54 times higher than for the small FPGA (BNN-PYNQ). The GPU utilizes more
hardware and has a more intensive cooling than FPGAs and thus the power consumption is larger.
However, the GPU is used in a data center and can have passive cooling which reduces the load
on cooling on the GPU, and thus reducing power required for it. The power consumption is less
for Casia245-t1 as it utilizes slightly less hardware than Casia245-t2 and Casia245-t3. The power
consumption of the medium FPGA for is the same across all models as CHaiDNN constantly
utilizes the same hardware on the FPGA. Casia64 uses the least amount of power as it has less
hardware to process the model and passive cooling system, while the medium FPGA and GPU
utilize active cooling systems. Since power consumption for the large FPGA (ML Suite) could
not be measured only optimistic theoretical value is used. Figure 5.8 shows the power consumed
during CNN inference.

5.2.7 Tool throughput and latency

The execution latency of the Casia245 and Casia64 models are shown in Figures 5.9 and 5.10. The
throughput is presented in Figure 5.11 and Figure 5.12. BNN-PYNQ 1-bit implementation on the
small FPGA provides the lowest latency for Casia64 due to reduced operations performed for the
inference. BNN-PYNQ greatly reduces the latency by implementing XOR and shift operations,
instead of executing MAC on fixed point model weights. Inference on the GPU has the highest
throughput and lower latency compared to other tools. The GPU implementation can exploit high
computation parallelism and abundance of hardware to achieve the best results. Additionally,
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Figure 5.8: Power consumption for the evaluated FPGAs.

the GPU runs on 800MHz while ML Suite runs on 500MHz, CHaiDNN and BNN-PYNQ on
200MHz. CHaiDNN has the worst results as the application is executed at 200MHz and with
fixed point numbers can process maximum two images in parallel. Although the GPU can have
high throughput, it is not very power efficient. BNN-PYNQ tool, on the other hand, can deliver
high throughput at lower power consumption for the small FPGA. CHaiDNN and ML Suite
have similar efficiency compared to the GPU, since the tools have small throughput and power
consumption. Table 5.3 shows how many images can be processed per consumed power (W).

Figure 5.9: Latency in ms to execute an image
for the Casia245 models.

Figure 5.10: Latency in ms to execute an image
for Casia64.

5.2.8 GOP performance

Table 5.4 shows the number of GOPs that can be performed in a second for the investigated CNN
models. The number is calculated as follows:

GOP/s = (MACC× 2 + Comp + Div + Add + Exp)× throughput

Figures 5.13 and 5.14 show how many GOPs per second (GOP/s) can be done for consuming
one watt. GOP/s/W can show how efficiently the power is consumed for the inference execu-
tion. Casia64 BNN-PYNQ has the best GOP/s/W performance as it uses single bits and XOR
operations. Moreover, it is executed on a low power device which improves the performance even
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Figure 5.11: Throughput in images per second
for the Casia245 models.

Figure 5.12: Throughput in images per second
for Casia64.

Table 5.3: Number of images processed per consumed watt.

Casia64 Casia245-t1 Casia245-t2 Casia245-t3
1-bit BNN 1431.06 - - -
6-bit CHai 29.11 7.02 3.13 1.46
8-bit CHai 25.95 4.67 1.79 0.81
8-bit ML - 9.71 3.88 1.84
16-bit ML - 8.39 3.76 1.82
float GPU 87.98 9.42 3.69 1.67

further. CHaiDNN falls behind the other solutions in GOP/s/W most likely because of the ad-
dtional overhead for the layer control needed for the inference. ML Suite performs reasonably well
assuming the consumed power is capped at 75W. However, theoretically it could be consuming
235W and in that case it would have the worst performance. Although the GPU can perform
complex calculations fast, it consumes a significant amount of power and thus has mostly lower
performance per watt than the FPGA solutions.

Table 5.4: Number of operations performed in a second for the investigated CNN models.

Casia64 Casia245-t1 Casia245-t2 Casia245-t3
1-bit BNN 889.81 - - -
6-bit CHai 219.91 290.7 447.77 505.92
8-bit CHai 196.07 193.66 256.73 278.82
8-bit ML - 1257.15 1733.46 1990.28
16-bit ML - 1086.89 1678.41 1968.53
float GPU 3282.42 2113.6 2853.98 3142.31
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Figure 5.13: Number of GOP that can be per-
formed in a second per consumed watt for the
Casia245 models.

Figure 5.14: Number of GOP that can be
performed in a second per consumed watt for
Casia64.

5.3 Discussion

Creating a CNN model that can provide acceptable results (90% accuracy or more) is not a trivial
task. A clean and large dataset is required as 287 pictures per class on average was not enough.
The more there are pictures per classes the better a model can extract features from the classes
and thus differentiate them. Fine-tuning layer composition in a CNN model and hyperparameter
configurations can be a time consuming task.

Hyperparameters of the training setup can play a crucial role for model ability to learn and train-
ing time. Finding an optimal setting for the learning rate, batch size, number of epochs and initial
parameters can take time.Learning rates of 0.002 and 0.001 worked best in pair with Stochastic
Gradient Descend and no learning decay to start CNN model training. A learning rate of 2e-07
was used for fine-tuning Casia245 models in Caffe as higher learning rates were too unstable for
the models to converge. Smaller batch sizes improve the models faster. The experimental models
were trained and fine-tuned with the batch sizes set to 128, 16 and 2. The batch size of 16 was
used for training the Casia245 and Casia64 models as it provided to be the optimal solution. A
precise number of epochs for a model can not be estimated as it depends on the ability of a model
to converge. The epochs trained in Keras in Table 5.1 show when each of the models stopped
improving the validations loss. Since hyperparameters used for training were the same for all mod-
els, the difference in the model composition and the training set had an impact on the number of
necessary epochs. 100 would be a good value for the number of epochs to start training new CNN
models. Although initial parameters were not extensively tested, Glorot & Bengio initialization
had a higher success rate in training than Gaussian initialization.

Increasing CNN complexity does not necessarily improve the accuracy. Casia245-t1 has a better
accuracy than Casia245-t3 and was trained faster. Instead of increasing the number of Conv. lay-
ers, Dropout or BatchNorm layers can be introduced to improve feature generalization of a CNN
model. Adding Dropout layers or BatchNorm for the models increased the training accuracy by
10% but using both did not improve inference results at all. Reducing FC layers for Casia245 from
3 to 1 decreased Top-1 accuracy by 20%.

The results of a model training also depends on a framework used for the training. Caffe failed to
train Casia64, Casia245-t2 and Casia245-t3 from random weights and required pretrained models.
Keras and Theano frameworks were able to train the models from randomized weights. Setting up
models is easier and clearer in Keras than in Caffe. Model layers can be described in a single line
in Keras thus all settings can be seen and accessed, while Caffe has a more cumbersome structure.
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The limitations of the tools to implement CNNs on FPGAs have an impact on the CNN design as
unsupported layers in the tools has to be taken into account. ML Suite could not support several
FC layers thus two layers had to be removed form the VGG base model. The lack of document-
ation of BNN-PYNQ layer synthesis and CNN model design limits the number of models that
could be executed by BNN-PYNQ. QNN-PYNQ can quantize weights of models to a fixed point
representation and execute them on a Pynq FPGAs. Unfortunately, the tool to quantize custom
models for QNN was not publicly available thus this tool was not evaluated.

Implementing a CNN model on FPGA can be simplified by adding compilation and quantization
scripts. CHaiDNN and ML Suite had the scripts available which made implementation of the
trained models straightforward. Model implementation for BNN-PYNQ requires extensive know-
ledge about the target FPGA and layer processing. Since the tool does not have a script to compile
CNN models, the layers have to be programmed for the FPGA manually. Synthesized new models
on FPGAs manually would not be a practical solution as the design could become obsolete due
to extensive development in the CNN field. CHaiDNN and ML Suite generalize layer calculation
approach at cost of additional hardware thus are more robust to possible changes in CNN model
layers.
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Conclusion

In this thesis three implementations of CNN face recognition applications on FPGAs have been
presented and analyzed. Although CNN models do not have to be hard-coded like other feature
detection algorithms, training a CNN model with proper hyperparameters and dataset can be
challenging. Based on the trained CNN models some hyperparameters were defined as a good
start for models to learn.

Three tools to port CNNs on FPGAs were analyzed and compared to a GPU implementation. The
tools come with limitations on supported CNN model layers, however some can be extended with
unsupported layers to be executed on a CPU rather than on an FPGA. The tool setup and port-
ing CNN models on FPGAs can be easy to use, for example synthesizing hardware and running
application setup scripts like in CHaiDNN and ML Suite or hard as with BNN-PYNQ. The tools
can support various FPGA designs and sizes, however come at the cost of hardware setup and
flexibility as smaller FPGA come with stricter requirements. The tool restrictions can affect the
performance of CNN models as happened with ML Suite and reduction of Fully-Connected layers.
Additionally, weight file format support can affect the design time and results. Since CHaiDNN
and ML Suite supported only Caffe models, which failed to learn features, Keras had to be used
instead to get successful models. From the performed experiments, the FPGA can achieve accur-
acy with 10% difference as the GPU implementation. Although the power consumption for the
computed operations (GOP/s/W) on CHaiDNN and ML Suite is 1.3× worse and 1.04× better
that the GPU respectively, BNN-PYNQ has 16.26× better power efficiency than the GPU.

FPGA solutions are flexible and can be relatively small (hardware), and thus could be implemen-
ted as an end device. Quantization techniques (especially 1-bit) can greatly improve inference
time with almost no loss in accuracy. However, in general the GPUs provide better execution
time at cost of additional power consumption. Additionally, GPUs can perform inference immedi-
ately after training in a framework (Caffe, Tensorflow, etc.) but the FPGA porting tools require
additional work that includes setting up hardware, software application and performing weight
quantization. The GPU solution would be a better choice compared to the investigated FPGA
solutions as without any additional porting tools, GPUs can provide a better execution time and
accuracy.

Some improvements can be done for the tools to get better results and design flow compared to the
GPU solution. CHaiDNN and ML Suite can greatly benefit from implementing binary parameter
support. Although it comes with a slight drop in the accuracy, the throughput and latency of ex-
ecution can be greatly improved. The support of binary values would require rework in Dedicated
accelerator and Programmable co-processor architecture structures, as binary values require less
memory and can be executed faster. Implementation of streaming architectures (FINN, BNN-
PYNQ) is a challenging task as it requires knowledge about the target FPGA hardware. The
implementation complexity and design time could be improved with scripts that could generate
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the architecture from predefined classes of the used layers. The script could receive a CNN model
and layer configuration as the inputs to synthesize whole CNN hardware architecture.

Future work on this thesis includes the implementation of the suggested improvements for the
tools and investigation of RTL scripts that could implement a streaming accelerator architecture
on FPGAs.

38 Implementation Analysis of Convolutional Neural Networks on FPGAs



Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, and et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org. 8

[2] Giovanni Alcantara. Empirical analysis of non-linear activation functions for deep neural
networks in classification tasks. CoRR, abs/1710.11272, 2017. 5

[3] and, W. Luk, , , , and and. F-cnn: An fpga-based framework for training convolutional
neural networks. In 2016 IEEE 27th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pages 107–114, July 2016. 8

[4] A. Botev, G. Lever, and D. Barber. Nesterov’s accelerated gradient and momentum as
approximations to regularised update descent. In 2017 International Joint Conference on
Neural Networks (IJCNN), pages 1899–1903, May 2017. 7

[5] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision
by half-wave gaussian quantization. In CVPR, 2017. 10, 28

[6] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2: A dataset for recognising
faces across pose and age. In International Conference on Automatic Face and Gesture
Recognition, 2018. 19

[7] François Chollet et al. Keras. https://keras.io, 2015. 22

[8] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image
classification. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages
3642–3649, June 2012. 1

[9] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. CoRR, abs/1511.00363, 2015. 10,
13

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009. 4

[11] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S. Areibi. Caffeinated FPGAs:
FPGA framework for convolutional neural networks. In 2016 International Conference on
Field-Programmable Technology (FPT), pages 265–268, Dec 2016. 9, 14

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org. ix, 3, 5

[13] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. MS-Celeb-1M: A
dataset and benchmark for large scale face recognition. In European Conference on Computer
Vision. Springer, 2016. 19

Implementation Analysis of Convolutional Neural Networks on FPGAs 39

https://keras.io
http://www.deeplearningbook.org


BIBLIOGRAPHY

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015. 20

[15] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017. 20

[16] C. Huang, S. Ni, and G. Chen. A layer-based structured design of CNN on FPGA. In 2017
IEEE 12th International Conference on ASIC (ASICON), pages 1037–1040, Oct 2017. ix, 3,
4, 14

[17] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in
the wild: A database for studying face recognition in unconstrained environments. Technical
Report 07-49, University of Massachusetts, Amherst, October 2007. 19

[18] Qiangui Huang, Shaohua Kevin Zhou, Suya You, and Ulrich Neumann. Learning to prune
filters in convolutional neural networks. CoRR, abs/1801.07365, 2018. 9

[19] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb
model size. CoRR, abs/1602.07360, 2016. 20

[20] Intel. Core i7-9700K, 2 2018. 9

[21] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167, 2015. 7

[22] Fares Jalled. Face recognition machine vision system using eigenfaces. CoRR, abs/1705.02782,
2017. 1

[23] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014. 8

[24] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, and et al. In-datacenter performance analysis of a tensor processing
unit. CoRR, abs/1704.04760, 2017. 1, 9

[25] R. E. Kalman. A new approach to linear filtering and prediction problems. ASME Journal
of Basic Engineering, 1960. 1

[26] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.
Ann. Math. Statist., 23(3):462–466, 09 1952. 7

[27] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. 7

[28] Kevin Kiningham. Design and analysis of a hardware cnn accelerator. 2017. 15

[29] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. 4

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran
Associates Inc. 20

[31] Yixing Li, Zichuan Liu, Kai Xu, Hao Yu, and Fengbo Ren. A 7.663-tops 8.2-w energy-efficient
FPGA accelerator for binary convolutional neural networks. CoRR, abs/1702.06392, 2017.
ix, 7, 13

40 Implementation Analysis of Convolutional Neural Networks on FPGAs



BIBLIOGRAPHY

[32] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), 2015. 19

[33] Microsoft. Mmdnn. https://github.com/Microsoft/MMdnn, 2019. 43

[34] H. Nakahara, H. Yonekawa, and S. Sato. An object detector based on multiscale sliding
window search using a fully pipelined binarized CNN on an FPGA. In 2017 International
Conference on Field Programmable Technology (ICFPT), pages 168–175, Dec 2017. 13

[35] Nimbix. Nimbix jarvice cloud service, 2018. 19

[36] NVIDIA. Tesla K40M, 11 2013. 8, 9

[37] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Activa-
tion functions: Comparison of trends in practice and research for deep learning. CoRR,
abs/1811.03378, 2018. 5

[38] T. B. Preuer, G. Gambardella, N. Fraser, and M. Blott. Inference of quantized neural networks
on heterogeneous all-programmable devices. In 2018 Design, Automation Test in Europe
Conference Exhibition, pages 833–838, March 2018. 14

[39] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Im-
agenet classification using binary convolutional neural networks. CoRR, abs/1603.05279,
2016. 9

[40] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.com/

darknet/, 2013–2016. 8

[41] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015. 20

[42] Sean O. Settle, Manasa Bollavaram, Paolo D’Alberto, Elliott Delaye, Oscar Fernandez, Nich-
olas Fraser, Aaron Ng, Ashish Sirasao, and Michael Wu. Quantizing convolutional neural
networks for low-power high-throughput inference engines. CoRR, abs/1805.07941, 2018. 10,
23

[43] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and H. Es-
maeilzadeh. From high-level deep neural models to FPGAs. In Proceedings of the 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016. 15

[44] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014. 20

[45] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15:1929–1958, 2014. 7

[46] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-resnet and
the impact of residual connections on learning. CoRR, abs/1602.07261, 2016. 20

[47] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. CoRR, abs/1409.4842, 2014. 20

[48] Theano Development Team. Theano: A Python framework for fast computation of mathem-
atical expressions. arXiv e-prints, abs/1605.02688, May 2016. 8

[49] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong,
Magnus Jahre, and Kees Vissers. FINN: A framework for fast, scalable binarized neural
network inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’17, pages 65–74. ACM, 2017. 9, 13, 19

Implementation Analysis of Convolutional Neural Networks on FPGAs 41

https://github.com/Microsoft/MMdnn
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/


BIBLIOGRAPHY

[50] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001, volume 1, pages I–I, Dec 2001. 1

[51] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual
performance model for multicore architectures. Commun. ACM, 52(4):65–76, April 2009. 14

[52] Xilinx. ZCU102, 11 2016. 9

[53] Xilinx. A HLS-based Deep Neural Network Accelerator library for Xilinx Ultrascale+ MPSoC
devices, 2018. 14

[54] Xilinx. Xilinx ML Suite tool description, 2018. 15

[55] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z. Li. Learning face representation from scratch.
CoRR, abs/1411.7923, 2014. 19

[56] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing
FPGA-based accelerator design for deep convolutional neural networks. In Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA
’15, pages 161–170, New York, NY, USA, 2015. ACM. 9, 14

42 Implementation Analysis of Convolutional Neural Networks on FPGAs



Appendix A

Training details

This appendix presents the details of CNN model design and training setup performed for the
evaluated tools and CNN models.

Initially for the CNN model training Caffe and Theano frameworks were used. Tools CHaiDNN
and ML Suite are designed to work with caffemodel files thus all models were trained in Caffe.
However, because BNN-PYNQ works with Theano files, Casia64 had to be also trained in Theano.
The training procedure for the models used in CHaiDNN and ML Suite was mostly based on the
VGG paper with some modifications. The training starts with Casia245-t1 that used SGD op-
timizer with a weight decay, learning rate of 0.001, batch size of 128 and initial random variables
based on Gaussian distribution. After 100 epochs the network had validation accuracy of 85% and
started to overfit the training set. Then Casia245-t2 was trained with the same initial parameters
and random variables, however after 100 epochs there was no progress in training. The learning
rate was varied from 0.1 to 0.00001 but in both cases there were no meaningful results. SGD was
replaced with Adam, however the model still was not able to converge after 100 epochs. Since
Casia245-t1 model was able to extract features, it was taken as a base for Casia245-t2. The new
Conv. layers were iteratively added one by one on top of Casia245-t1. The iterative Conv. layer
addition was done as follows: first a new Conv. layer is added and the learning modifiers of the
previous layers were set to 0 to ensure that only the new layer learns features. The model with
the new layer was trained for 50 epochs. After that learning modifiers for all layers were enabled
(set to 1) to calibrate the whole model. Then the process was repeated until all Conv. layers
for Casia245-t2 model were added. At the end of the process Casia245-t2 had accuracy of 78%
on the validation set. The same process was employed to make Casia245-t3 where Casia245-t2
was taken as the base. However, this time after six iterations there was no progress in learning
and the model was not able to converge. Changing the model and its hyperparameters in Caffe
did not give any meaningful results for Casia245-t3, thus another framework was used. As tools
CHaiDNN and ML Suite require .caffemodel files the output file of the new framework should be
compatible with or converted to caffemodel format. Unfortunately, Theano output files could no
be converted to caffemodel format, so Tensorflow with Keras API was used instead as MMdnn
[33] tool could convert Keras output files to caffemodel format. Keeping the same parameters
and training from randomly initialized weights by Glorot, Keras proved to be successful with all
models. MMdnn tool was able to convert weights of Conv. layers as it mixed the weights for FC
layers. The converted caffemodels had to be recalibrated to ensure that the FC layers have proper
weights. The recalibration was done in two steps. For the first step the Conv. layer learning
modifiers were disabled, so that only the FC layer weights are adapted. The learning rate was set
to 2-7e as with higher rates the models would not be able to learn. In the second step Conv. layer
learning modifiers were enabled to recalibrated the models. The Casia64 model for BNN-PYNQ
was trained in Theano with the same learning parameters as Casia245. As Casia64 is a much
smaller model than the others it was recalibrated for 200 epochs.
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Figure A.1 shows the steps performed for creating Casia245 models in Caffe and Keras. Each
circle repsents a trained model and the difference to the previous models is written in the center
of a circle.
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