
 Eindhoven University of Technology

MASTER

Making QVTo transformations more understandable

Yu, T.

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f133bd65-e833-43ac-848e-542e357c3c87

Making QVTo
transformations more

understandable

Master’s Thesis

Tianshi Yu

Department of Mathematics and Computer Science
Software Engineering and Technology

Supervisor: prof. dr. M.G.J. van den Brand, dr. ir. J.G.M. Mengerink

Assessment Committee:

prof. dr. M.G.J. van den Brand
dr. ir. R.R.H Schiffelers
prof. dr. J.P.M.voeten

version 2.0

Eindhoven, December 2018

Abstract

Based on analysis of the QVT Operational Mappings (QVTo), which is a rich and imperative
model transformation language, we can improve the quality of the QVTo transformations. To
fulfill this task, we conduct a study which consists of two research questions. The first one is how
does the QVTo transformations quality evolve over time? To address this question, we apply a
set of metrics on multiple revisions of the QVTo transformation to analyze the evolution of QVTo
transformation’s quality. We observe that all the metrics adopted in our experiments indicate
the QVTo transformation becomes less understandable over time except for the metric which is
used to measure how imperative/declarative the QVTo transformations are. This contradictory
suggests that the existing metric for this measurement is not reliable. Hence, we design a set of new
metrics which can be reliable indicators for how imperative/declarative the QVTo transformations
are. Using these new metrics to analyze the evolution, we find that the QVTo transformation
becomes less declarative and less understandable. Therefore, our second research question arises:
can we rewrite the QVTo transformations to make them more declarative, and how does the
rewriting of QVTo transformations affect their quality? To investigate this question, we provide
a rewriting pattern and apply it to the QVTo transformations and then measure the quality
of the QVTo transformations before and after our rewriting with the metrics presented in the
research of our first question. Based on the experiment results, we conclude that the rewriting
makes QVTo transformations more declarative. Consequently, the transformations become more
understandable and more analyzable.

Making QVTo transformations more understandable iii

Preface

Acknowledgments
I would like to thank Mark for introducing me to the field of model transformation, and his
amazing guidance and fast feedback during the project. I also want to thank Josh for his inspiring
advice for the project and help with the data collecting tool, which made it much easier to process
the data. Big thanks to Ramon and Jeroen too for their feedback on the thesis. I want to thank
Nan, Kousar, and Arjen who are great colleges. It was an unforgettable experience to work with
them in ASML. I want to especially thank Mark for his patience when I got into trouble with the
project during the bad days.

Making QVTo transformations more understandable v

Contents

Contents vii

List of Figures ix

List of Tables xi

Listings xiii

1 Introduction 1
1.1 Motivation and Problem statement . 1
1.2 Methodology . 2

1.2.1 Industry Context . 2
1.2.2 Approach . 2

1.3 Organization of thesis . 4

2 Preliminaries 5
2.1 Imperative and declarative programming . 5
2.2 Overview of QVTo . 6
2.3 Software Quality and Quality measurements . 8

2.3.1 Software Quality . 8
2.3.2 Quality measurements . 10

2.4 Lehman’s Law . 11

3 Related work 13
3.1 Metrics . 13

3.1.1 Metrics for traditional software . 13
3.1.2 Metrics for object oriented paradigms . 15
3.1.3 Metrics for QVT . 18

3.2 Quality evolution . 21
3.3 From imperative to declarative . 23

3.3.1 RImperative/declarative conversion for Java 23
3.3.2 Imperative/declarative conversion for UML/OCL 23

3.4 Conclusion . 24

4 Quality evolution of QVTo transformation 25
4.1 Approach . 25

4.1.1 Results and Analysis . 26
4.2 Metrics . 28

4.2.1 Design metrics . 28
4.2.2 Apply metrics . 28

4.3 Conclusion . 31

Making QVTo transformations more understandable vii

CONTENTS

5 Rewriting QVTo transformation 33
5.1 Approach . 33

5.1.1 List of target expressions . 33
5.1.2 List of rewriting patterns . 35
5.1.3 Apply the rewriting patterns . 35

5.2 Results and Analysis . 36
5.2.1 Experiments Setup . 36
5.2.2 Imperative versus Declarative . 36
5.2.3 Quality . 39

5.3 Conclusion . 40

6 Conclusions 41

Bibliography 43

viii Making QVTo transformations more understandable

List of Figures

1.1 Exploring and analyze multiple revisions of the QVTo transformation 3
1.2 Verify the imperative/declarative rewriting with test cases 3

2.1 Transformation from metamodel BOOK to metamodel PUB 8
2.2 Product quality model. This model is described in ISO 25010 [1] 9
2.3 Relationship between quality and measurements. Demonstrate the model described

in ISO 25020 [2] . 10

3.1 a sample graph and its maximum linearly independent paths, described in [3] . . . 15
3.2 A sample inheritance tree . 17
3.3 A comparison between class A (LCOM = 2) and class B (LCOM = 0) 17
3.4 A example of QVTo metrics.(SimpleUml2RDB code presented in [4]) 21

4.1 Evolution of basic metrics . 26
4.2 Evolution of metrics for understandability . 27
4.3 Evolution of metrics related to Mapping . 30
4.4 Evolution of metrics related to Helper . 31

5.1 Imperative expressions hierarchy [4] . 34
5.2 Comparison of operations using variable initialization expressions in imperative and

rewritten declarative QVTo transformations . 37
5.3 Comparison of variable initialization expression usage in imperative and rewritten

declarative QVTo transformations . 37
5.4 Evaluate rewriting patterns on revision α . 38
5.5 Evaluate rewriting patterns on revision β . 39
5.6 The metrics of understandability . 40

Making QVTo transformations more understandable ix

List of Tables

2.1 Basic operators . 7
2.2 Lehman’s Law [5] . 11

3.1 Metrics related to Size or Complexity . 19
3.2 Metrics related to Dependency . 20
3.3 Topics of software evolution metrics [6] . 22
3.4 Rewriting Pattern for UML/OCL code [7] . 24

4.1 Metrics for Understandability . 26
4.2 List of metrics for measuring how imperative/declarative a QVTo transformation is 29

5.1 Rewriting patterns . 35
5.2 Observation for revision α and β . 38

Making QVTo transformations more understandable xi

Listings

5.1 Original imperative code . 35
5.2 Rewritten declarative code . 35

Making QVTo transformations more understandable xiii

Chapter 1

Introduction

1.1 Motivation and Problem statement

Quality is important for software, poor quality software usually consumes more cost and effort,
serious defects may even cause fatal damages at a later stage of the software’s life-cycle. Hence,
it is important to assess the quality of software. There is a considerable amount of literature on
the field of software quality measurements[2][8][9].

In recent years, there has been an increasing interest in model transformations in both science and
engineering context [10][11][12]. So several studies investigating the quality of model transforma-
tion languages have been carried out[11][13], especially for QVT Operational Mappings (QVTo),
which is a rich and imperative model transformation language. However, these studies focus on
the quality of a single revision of the QVTo transformations. What is not yet clear is how the
quality changes when the QVTo transformations evolve over time.

Therefore, the major aim of our study is to investigate the evolution of the quality in QVTo
transformations. This investigation is formalized into the following research questions:

Research Question 1: How does the quality of QVTo transformations evolve over
time?

To address this question, firstly we adopt the metrics presented in Gerpheide’s work [11] and
apply them on a series of revisions of QVTo transformations to analyze the evolution of QVTo
transformations’ quality. Based on the results, we observe that the metric, which is used to measure
how declarative the QVTo transformations are, suggests the QVTo transformations’ become more
understandable over time, while other metrics suggest the opposite. A possible reason for this
contradictory is that the existing metric for this measurement is not reliable as it is based on an
infrequent used construct (forEach).

Hence, we design a set of new metrics to measure how declarative the QVTo transformations are,
and investigate the quality evolution of the QVTo transformations with the proposed metrics.
The new metrics indicate that the QVTo transformations become less understandable and less
declarative over time, which raises the second research question of our study:

Research Question 2: Can we rewrite the QVTo transformations to make them more
declarative, and how does the rewriting of QVTo transformations affect their quality?

To investigate this question, we provide a proof of concept, by rewriting the latest revision of
a QVTo transformation. We rewrite the transformation by reducing the most frequently used
imperative parts, and then measure the quality of the QVTo transformations before and after our

Making QVTo transformations more understandable 1

CHAPTER 1. INTRODUCTION

rewriting with the metrics presented in the research of our first question.

Additionally, when the QVTo transformations are rewritten in more declarative style, they can
be more easily analyzed with some analyze tool, such as Alloy Analyzer [14] whose core is Alloy
[15]. Alloy is a declarative and powerful language to describe structural properties, and can be
used for expressing complex constraints. Besides, Alloy is useful to analyze model transformations
to reason their correctness [16]. Therefore, making the QVTo transformations more declarative is
helpful for analysis.

1.2 Methodology

1.2.1 Industry Context

This research is conducted within ASML, which provides complex lithograhpy systems for the
semiconductor industry. To design these systems, a model-based developing platform named
Control Architecture Reference Model (CARM) is provided, which relies on a set of Domain
Specific Languages (DSL) to describe the control logic and the execution platform of lithoscanners.
This developed multi-disciplinary integrated development environment (IDE) can validate the
designs in early stages and construct the software components efficiently [12]. This IDE adopts the
OMG [17] standard for model definition and model transformation. In terms of implementation,
Eclipse modeling Framework(EMF) [18], Eclipse QVTo [19] are used. Our research focuses on
these Eclipse QVTo based projects.

In this thesis, we evaluate a specific transformation named pgapp2dsgraph, which is a typical
example of QVTo transformations in ASML. The function of this transformation is to convert an
instance conforming to model pgapp into one conforming to model dsgraph. The latest revision of
the QVTo transformation contains 635 lines of code, a transformation declaration, an entry point
for execution, 26 Mappings and 8 Helpers. Besides, there are other relevant files such as library
files in the same folder with file pgapp2dsgraph to complete the function. We also refer this QVTo
transformation as “our QVTo transformation” or “the specific transformation” later in this thesis.

1.2.2 Approach

The first research question is to investigate the quality evolution of the QVTo transformation.
The following steps are performed to accomplish this task:

i Choose a number of metrics from Gerpheide’s quality model;

ii Choose a number of revisions of the QVTo transformation from the repository;

iii Apply the selected metrics on these chosen revisions. As can be seen in Figure 1.1, Revision 1
evolves into Revision N over time, hence, a series of values can be extracted and analyzed to
draw a conclusion;

iv Evaluate the results and verify whether the QVTo transformation become more imperative
over time;

v Design new metrics to indicate how imperative/declarative a QVTo transformation is;

vi Repeat step ii to step iv with our proposed metrics;

vii Analyze the results to answer the first research question.

Moreover, the following procedure is undertaken to investigate the second research question

2 Making QVTo transformations more understandable

CHAPTER 1. INTRODUCTION

Figure 1.1: Exploring and analyze multiple revisions of the QVTo transformation

i Rewrite the latest revision of our QVTo transformation based on the proposed rewriting pattern
to reduce the portion of imperative parts so that the transformation become more declarative;

ii Verify the rewritten “correctness”, which means in our case the functionality is not affected by
this rewriting. This verification can be done by comparing output models (test results) with
the same input models (test cases), before and after the rewriting. Figure 1.2 presents how
this step is done;

Figure 1.2: Verify the imperative/declarative rewriting with test cases

iii Apply the metrics proposed in the research of the first question on both the original trans-
formation and the rewritten transformation;

iv Choose another two revisions of the QVTo transformation, and perform step iii on them;

v Analyze the results to answer our second research question.

Making QVTo transformations more understandable 3

CHAPTER 1. INTRODUCTION

1.3 Organization of thesis

The overall structure of this thesis is as follows: Firstly, Chapter 2 introduces the preliminary
material of our research, including a brief description of imperative and declarative programming,
an overview of QVTo, an introduction of quality and quality measurements, and a description
of Lehman’s Law; Chapter 3 introduces related work of software metrics, imperative-declarative
rewriting and quality evolution of software systems; Chapter 4 shows the approach to investigate
the first research question. Besides, in this chapter we present and analyze the results to answer
the first research question; Chapter 5 describes the methodology and the experiments to explore
the second research question; Finally, in Chapter 6, we conclude our work and draw the important
conclusions. Besides, we mentioned possible future work in Chapter 6.

4 Making QVTo transformations more understandable

Chapter 2

Preliminaries

This chapter describes the basic concepts and notions which are discussed in this thesis. As our
research is related to rewriting imperative QVTo transformations to declarative ones, Section 2.1
introduces basic concepts of imperative and declarative programming paradigms and Section 2.2
gives a brief introduction of QVTo language. Then, an overview of software quality and quality
measurements is presented in Section 2.3, and Lehman’s Law are described in Section 2.4

2.1 Imperative and declarative programming

Programming languages can be classified into different categories according to programming
paradigms, imperative programming and declarative programming are two typical paradigms.
Imperative programming languages are designed with considering the computer architecture, so
variables are used to model the memory cells and assignment statements can modify the variables
like the piping operations [20]. It should be noted that the memory cells are re-usable, so that
the assignments could affect the state of the machine. For example, the assignment statement for
x := x + 1 should be xt+1 = xt + 1 in mathematical view, where xt represents the value of x at
time t. The main features of imperative programming paradigms are:

1. Imperative programming describes how the computation is done with statement sequences
which change the states of the memory of computer;

2. imperative programming usually has side-effects (which means non-local variables are mod-
ified), such as input/output expressions.

On the other hand, declarative programming, which includes functional, logical and constraint
programming, are built based on logics which has a soundness and preferable completeness theorem
[21]. Declarative programming generally has the following features:

1. Declarative programming describes what the computation accomplishes with specifying a
set of rules or equations to solve without expressing how to solve them explicitly; The
computation is about evaluating these rules or equations, where the order of evaluating is
usually not important;

2. Declarative programming typically has no side-effects.

Both imperative and declarative programming have their advantages. Declarative programming
is suitable for formal analysis because of its mathematical nature, which means the programs
behavior is easier to predict and understand, while imperative programming implementations
usually has better performance. Hence, most programming languages are not purely imperative,
neither purely declarative. Some typical imperative languages, like C, Python, Java also have

Making QVTo transformations more understandable 5

CHAPTER 2. PRELIMINARIES

functional features, and declarative languages, such as SQL, support imperative style programming
as well.

Following is an example which shows the differences between these two program paradigms: The
first piece of code generates the nth Fibonacci number with imperative programming and the
second one accomplishes the same task with declarative programming.

i n t f i b = 0 ;
f o r (i n t i = 1 ; i<=n ; i++)
{

i f (i <3){
f i b = 1 ;
p r e f i b = 1 ;

} e l s e {
f i b += p r e f i b ;
p r e f i b = f i b ;

}
}
r e turn f i b ;

Listing 2.1(a) Generates Fibonacci numbers with imperative programming language

f i b : : Int−>Int {}
f i b n

| n < 2 = 1
| otherw i se = f i b (n−1)+f i b (n−2)

Listing 2.1(b) Generates Fibonacci numbers with declarative programming language

In this examples, a Fibonacci numbers generator is written in imperative language C and de-
clarative language Haskell. As can be seen, the C version 2.1(a) program defines the generator
by describing the instructions which are executed step by step. The Haskell version 2.1(b), in
contrast, does not give any instructions but specifies the rules should be satisfied, which are:

1. The first two numbers are 1;

2. Since the third number, every number is the sum of its two preceding ones.

2.2 Overview of QVTo

In the field of MDA(Model-driven architecture), the model transformation is an important tech-
nique which converts source models into target models. QVT (Query/View/Transformation)
defined by OMG (Object Management Group) [4] is a set of model transformation languages that
operate on models which conform to MOF 2.0 meta-model(Meta Object Facility). QVT is consist
of three languages: QVT Operational Mapping Language (QVTo), QVT core (QVTc) and QVT
relation language (QVTr). The character which distinguishes three QVT languages is that QVTo
is imperative while the other two are declarative. As our research only focus on QVTo, the major
features and concepts are presented in the following section:

1. Transformation framework: consists of a transformation declaration, an entry point
for execution and the model type definition. The transformation declaration indicates the
source and target models, which are the input and output of the transformation, the main()
function is the actual entry point for execution and model type definition is a reference to
the model type used in the transformation; besides, when- and where- clauses extended the
transformation with pre- and post- conditions.

2. Imperative operations: include mappings, helpers, queries and constructors, which are
operators to access or modify the elements;

6 Making QVTo transformations more understandable

CHAPTER 2. PRELIMINARIES

• Mappings: consist of a mandatory populate section, an optional init section and an
optional end section, are the core of transformations. They specify how the the elements
of input model are transformed into elements of output model.

• Helpers and Queries: helpers perform computation on source elements and return
the result while queries are helpers without any side-effects.

• Constructors: define how to create an instance of a class and populate the properties
of the instance. They are called with the keyword new.

3. Resolving: Trace resolution provides a method to extract a source or target object of the
last execution from the trace record. With the method, a source element doesn’t need to be
transformed again if a transformation has already been performed. There are four related
functions, resolve returns a set of results from the last mapping of the source element;
resolveone however returns only one target element (the last one if multiple results are
available). resolveIn and resolveoneIn are similar with the first two functions while they
specify the mapping’s name;

4. Intermediate data: intermediate classes and properties can be defined in a transformation
for the purpose of computation, hence they are not returned as the final results.

5. Inherits and merges: inheritance for mappings is possible with inherits and merges, the
keyword inherits indicates the inherited mapping is executed between the the init and pop-
ulation section while merges indicates the merged mapping is executed after end section.
Meanwhile, polymorphism for mappings is specified with keyword disjuncts. Disjuncts means
only the first mapping which matches the source object type is performed (if any precondi-
tions exists, they should also be satisfied).

6. Basic operators: Table 2.1 shows the basic operators that manipulate the meta data,
which are similar to other languages; Similarly, forEach, while Loop, if/else statements and

Table 2.1: Basic operators

Operator Description
:= assignments
= equals
<> not equals

. dot accessor
-> arrow accessor

switch/case statements are constructors for control flow. Additionally, log() and assert() are
useful functions while debugging.

Following is a simple example, Figure 2.1 shows two metamodels BOOK and PUB representing
books and publications, which are the input and output model respectively. Listing 2.2 describes
a transformation Book2Publication that coverts a BOOK object to a PUB object, where a entry
point main() and a mapping rule book to publication are declared.

// d e f i n i n g model BOOK
metamodel BOOK {

c l a s s Book { t i t l e : S t r ing ; com{} poses chapter s : Chapter [∗] ; }
c l a s s Chapter { t i t l e : S t r ing ; nbPages : I n t eg e r ;}

{}
}

// d e f i n i n g model PUB
metamodel PUB {

Making QVTo transformations more understandable 7

CHAPTER 2. PRELIMINARIES

Figure 2.1: Transformation from metamodel BOOK to metamodel PUB

c l a s s Pub l i ca t i on { t i t l e : S t r ing ; nbPages : I n t eg e r ;}

}

//Transformation d e c l a r a t i on with one input model BOOK, one output model PUB
trans fo rmat ion Book2Publ icat ion (in bookModel :BOOK, out pubModel :PUB) ;

//Entry po int
main () {

bookModel−>objectsOfType (Book)−>map book to pub l i c a t i on () ;

}

//Mapping the input Class to Pub l i ca t i on c l a s s
mapping Class : : b ook to pub l i c a t i on () : Pub l i ca t i on {

//Assign p r op e r t i e s to t a r g e t ob j e c t
t i t l e := s e l f . t i t l e ;
nbPages := s e l f . chapters−>nbPages−>sum() ;

}

Listing: BOOK2PUB transformation (Annex A.2.1 in [4])

2.3 Software Quality and Quality measurements

2.3.1 Software Quality

Quality is important for software, poor quality software generally consumes more cost and effort,
a serious defect may even cause fatal damages at a later stage of the software’s life-cycle. Software
quality can be observed from various perspectives, such as functional quality, non-functional qual-
ity, product quality, process quality, etc. Quality models are proposed to describe these different
aspects of software quality, a classic example is the ISO 25010 [1] quality model, which provides
two models to describe the quality of softwares: product quality model (which is shown in Fig-
ure 2.2) and “quality in use” model. The product quality model consists of eight characteristics

8 Making QVTo transformations more understandable

CHAPTER 2. PRELIMINARIES

that are all observed from the software products. It combines the internal quality model and
the external quality model, both specified in ISO 9126 [22] (the predecessor of ISO 25010). The
internal quality focuses on software artifacts itself, e.g. source code, design and architecture of
the software, while external quality concentrates on attributes in software process, e.g. execution
time. Another model provided in ISO 25010 [1] is “quality in use” model, which is composed of
five characteristics that are related to the interaction between software products and stakeholders.
All these characteristics can be further divided into several sub-characteristics.

Figure 2.2: Product quality model. This model is described in ISO 25010 [1]

It is notable that there are characteristics with different meanings given similar names in these two
models. For instance, context completeness defined in “quality in use” model means how usable
a software is in certain context (low network bandwidth, non-expert users, etc), but the function
completeness specified in the product quality model describes to which extent the tasks and
goals of the users are covered by the functions of software products. Hence, it is important to
distinguish theses characteristics when the quality models are used for analyzing requirements,
identifying design and test objects, defining quality control standard and acceptance criteria. Ad-
ditionally, some quality name are refined in the latest revision, for example, “Understandability”
is refined as “Appropriateness recognizability”. Considering all these mentioned product develop-
ment activities, establishing measurements is the common foundation.

Making QVTo transformations more understandable 9

CHAPTER 2. PRELIMINARIES

2.3.2 Quality measurements

A quality measurement reference model is defined in ISO 25020 [2], it illustrates the relation-
ship between quality and measurements, as shown in Figure 2.3. The basic element is defined as
quality measurement element, including base measurements which are directly observed from the
software artifacts and derived measurements defined as the function result of two or more base
measures. The quality measurement elements construct a high-level quality measures that can
be used as indicators for the characteristics of the software. A considerable amount of work has

Figure 2.3: Relationship between quality and measurements. Demonstrate the model described
in ISO 25020 [2]

been done to investigate measurements and metrics for various characteristics of software quality.
For example, internal metrics (static product metrics), such as lines of code, complexity meas-
ures and number of faults in the program, are proposed for quantifying internal quality. On the
other hand, external metrics (process metrics) are specified to measure the characteristics of ex-
ternal quality. For instance, the number of failures during testing, which is different with number
of faults in the program, as a fault can lead to multiple failures and testing may not find any faults.

The prime issue of measurements is how to construct metrics to measure the quality of software.
Kitchenham [8] proposed a structural model of software measurement with identifying the key
elements:

1. Entities and attributes: entities are products, processes or resources, while attributes are
the properties of entities;

2. Units (metrics) and Scale Types: units define how a quality characteristic is mapped to
the mathematical world. Like Celsius is used when measuring temperature, Lines (of code) is
adopted for measuring the size of code. Different units can lead to different scale types, which
includes nominal, ordinal, interval and ratio. Scale type is a key factor when manipulating
the metrics, for example, nominal metric {0,1,2} that represents the fault categories can not
be summed or averaged;

3. Values and properties of values: the values are collected by applying particular measure-
ment units to the software. In most cases, values are numerical while non-numerical values,
such as a set of labels, can be mapped to numbers. The properties of values refer to the valid
set over which values are defined, they are finite or infinite, discrete or continuous, bounded
or unbounded, etc;

4. Measurement instrument: instruments are used to obtain values, for example a software
program can be used to count the lines of code of a program;

10 Making QVTo transformations more understandable

CHAPTER 2. PRELIMINARIES

5. Indirect measures, properties and compound units: Indirect measures are the meas-
ures that are calculated from one or more other measures, like lines of code per hour and
this type of measures has its corresponding properties and compound units;

6. Measurement validation: the validation presents the way in which an attribute is related
to the characteristic of quality.

If metrics are designed for a specific purpose, an effective approach is Goal/Question/Metrics
(GQM) proposed by Basili [9], which defines the measurements in a top-down way. The GQM
model focus on three levels:

1. Conceptual Level (Goal): a goal is set for a measurable objects (products, processes or
resources), considering different quality models and viewpoints;

2. Operational Level (Question): questions interpret a goal, each question is based on a
selected quality and viewpoint;

3. Quantitative Level (Metric): metric is the method to capture values answering questions.
The values can be objective or subjective.

2.4 Lehman’s Law

Analyzing the evolution of QVTo transformations is one research question in this thesis. In our
research, we validate whether the evolution of QVTo transformation conforms to the classic laws
of software evolution Lehman’s Law. In this section, a description of Lehman’s Law is presented.
In software engineering, software evolution is a domain which investigates how software adapts
to the change of requirements and environment, it also analyzes the change process and different
versions of software in the repository to predict trends. One classical view of software evolution
is proposed by Lehman [5]. In Lehman’s study, the observation of software evolution is concluded

Table 2.2: Lehman’s Law [5]

Name Law

Continuing change
An E-type system must be continually adapted otherwise
it becomes progressively less satisfactory in use

Increasing complexity
As an E-type system is evolved its complexity increases
unless work is done to maintain or reduce the complexity

Self Regulation Global E-type system evolution is regulated by feedback

Conservation of Organiza-
tional Stability (invariant
work rate)

The work rate of an organization evolving an E-type soft-
ware system tends to be constant over the operational life-
time of that system or segments of that lifetime

Conservation of Familiarity
In general, the incremental growth (growth rate trend) of
E-type systems is constrained by need to maintain famili-
arity

Continuing Growth
The functional capability of E-type systems must be con-
tinually enhanced to maintain user satisfaction over the
system lifetime

Declining Quality
Unless rigorously adapted and evolved to take into account
changes in the operational environment, the quality of an
E-type system will appear to be declining

Feedback System
E-type evolution processes are multi-level, multi-loop,
multi-agent feedback systems

as a set of laws. It should be noted the laws only applies to software belong to E-type software,

Making QVTo transformations more understandable 11

CHAPTER 2. PRELIMINARIES

which always changes because of the continuing modification of their requirements. Table 2.2
shows the total list of Lehman’s law. In our research, we check whether the evolution of our QVTo
transformation goes with the following laws Continuing change, Continuing Growth, Declining
Quality.

12 Making QVTo transformations more understandable

Chapter 3

Related work

In this chapter, we describe several studies related to our research. First of all, Section 3.1 discusses
the existing metrics, based on which we design new metrics according to our need. Then, in order
to find methods for analyzing the quality evolution of our QVTo transformation, Section 3.2
presents relevant research about the evolution of software quality. At last, Section 3.3 describes
related work for imperative/declarative rewriting as bases for proposing our rewriting pattern for
QVTo transformation.

3.1 Metrics

In order to design suitable metrics, we have a literature review of the existing software metrics.
The research of software metrics has evolved with developments in software engineering. For
instance, from traditional software metrics to metrics for objected oriented design. Since Model
Driven Software Engineering has been embraced by the industry, recent research has focused on
metrics for models and model transformations. In particular, we focus on QVTO transformations
[23]. This section describes and discusses these classic metrics as well as the state-of-art metrics.

3.1.1 Metrics for traditional software

First of all, we present a brief overview of the existing work about classic metrics for traditional
software, which inspire the research for designing metrics for objected oriented softwares and
models. A significant amount of research has been done to evaluate the software quality and
various of metrics have been proposed. Typical metrics used for estimating the quality of software
systems are related to the size and complexity of the software artifacts[24], which are described
and discussed in this section.

Lines of code

Size is an important attribute to be considered when measuring an software artifact. Lines of
codes (LOC), which measures the size of a software, is a widely used metrics, because of its easy
computation and high correlation with the software quality and development effort. A higher LOC
generally leads to more errors and costs more effort to develop and maintain the software. Hence,
many cost estimation models, such as Constructive Cost Model (COCOMO) [25] uses LOC as
an input, however the definition of SLOC is ambiguous, for instance, whether this metric counts
white spaces and comments, moreover the relationship between lines and statements may not be

Making QVTo transformations more understandable 13

CHAPTER 3. RELATED WORK

one-to-one. Measurements with LOC are inconsistent and incomparable among different compan-
ies and organizations[26]. To solve this problem, the Software Engineering Institute (SEI) has
provided a framework for defining LOC based on a checklist of the counted attributes of software
so that all involved stakeholders can confirm the definition of LOC [27], which is extended in [28]
and applied using a tool set CodeCount. Another major disadvantage of LOC is that it ignores
the structure of a software, which leads to the study of metrics related to complexity.

Halstead complexity

A well-known metric that analyzes software’s complexity is Halstead’s metrics. The Halstead [29]
metrics, which is defined in a manner analogy to thermodynamics, was designed for analyzing the
complexity of the source code regardless of the language is used. Based on the hypothesis that
the general structure of a program obeys the physical law, operators and operands are identified
as the only two independent properties of a program . Assuming the number of unique operators
and operands are η1,η2, and the number of accumulated operators and operands are N1, N2, then
the size of a program V is defined as

V = N ∗ log2η

where N is the sum of N1 and N2, η is the total occurrences of operators and operands. A program
can have multiple implementations, which is distinguished by a level indicator L. The program
level is calculated with the following formula

L =
2

η1
∗ η2
N2

The maximum value of L is 1, when the program is implemented in the highest level using only
2 distinct operators and every operand has only one occurrence. Combining V and L, a metric
E = V

L is defined to indicate the amount of mental effort required for understanding and main-
taining the program.

McCabe complexity

Since the Halstead’s metric has been proposed, more research has been conducted to explore the
complexity of a software. A classic metric is Cyclomatic Complexity(CC) that was introduced by
McCabe [30] based on graph theory. The main goal of cyclomatic complexity is to compute the
maximal linearly independent paths in a graph, which can be a basic set to construct the graph.
Based on this strategy, the cyclomatic complexity V (G) of a graph with n vertexes, e edges, and
p connected components is defined as V (G) = e− n+ 2p. For example, Figure 3.1 shows a simple
graph and its five linearly independent paths p1 . . . p5, which means any path of the graph can be
represented with the linear combination of p1 . . . p5. It is notable that V (G) only depends on the
number of decision made, so that McCabe [3] gives another definition of cyclomatic complexity
V (G) = the number of decision points +1.

Dependency complexity

Another significant metric proposed in this software’s complexity research is fan-in and fan-out
[31], which was introduced to describe the information flow between procedures. Henry [31] sug-
gested that there are two major factors affecting the complexity of a software, one is the complexity
of the code, and the other is the relations to its environments. However, Halstead [29] metrics
and McCabe [3] metrics shows little concern for the latter. Additionally, programming languages
have been developed to support functions and procedures. This evolution and the introduction of

14 Making QVTo transformations more understandable

CHAPTER 3. RELATED WORK

Figure 3.1: a sample graph and its maximum linearly independent paths, described in [3]

modularity motivated new ways to calculating program’s complexity. Therefore, Henry presented
an approach to estimate this complexity by counting the number of local information flows enter-
ing in a module or a procedure as the fan-in, and the number of local information flows exiting
out as the fan-out. The key to this strategy is identifying the local information flow, for instance,
information flow from module A to module B includes:

1. A calls B;

2. B uses the data returned from A when calling A;

3. Another module C calls A and B, and passes data from A to B.

The relations between Halstead, McCabe and the fan-in and fan-out metrics were also demon-
strated in [31] with a series of experiments undertaken on Unix operating system. Henry applied
these three metrics to 165 procedures in the UNIX operating systems and calculated the correla-
tion coefficient between measured values. Based on the correlation coefficient Henry [31] concluded
Halstead’s metrics and the Cyclomatic Complexity metric are highly correlated to each other, while
the fan-in and fan-out metrics is independent of the other two metrics.

3.1.2 Metrics for object oriented paradigms

Modeling languages are built on the basis of object oriented paradigms, for instance, studies for
OO design including Booch’s method [32], Rumbaugh’s OMT (object modeling technology) [33]
and Jacobson’s approach[34] lead to UML [17], a standard object oriented modeling language.
Hence, we discuss the existing studies about metrics for OO design in this section before further
exploring research about metrics for model transformations.

With the rise of object oriented technology, the previously discussed traditional metrics do not
reflect these object oriented paradigms properly. Object oriented programs solve problems by
simulating the real-world objects and their behavior. There are four fundamental characteristics
that make OO programs effective and convenient, which are encapsulation, data abstraction,
inheritance and polymorphism.

1. Encapsulation: OO programs hide the irrelevant information and provide a single unit which
contains data and methods. This characteristic protects data from misusing through restrict-
ing its access.

Making QVTo transformations more understandable 15

CHAPTER 3. RELATED WORK

2. Data abstraction: this means capturing the objects essential features and ignoring the imple-
mentation details. Only concerning the attributes which are relevant to the context makes
it possible to describe the complex real-world objects.

3. Inheritance: inheritance allows different objects sharing the same method implementation,
therefore it makes the programs more effective with code reuse.

4. Polymorphism: means methods of an object with the same name can have different im-
plementation, in this way objects respond differently depending on messages, for instance,
number of input arguments or their data type. This characteristic also makes programs more
effective.

The following section presents study about metrics designed for object oriented softwares. The
most popular OO metrics are the suite metrics proposed by Chidamber and Kemerer[35], which
consists of six metrics that focus on key OO concepts, These six metrics are listed as follows:

1. Weighted Method Per Class (WMC): The complexity of a class is highly depends on the
complexity of its methods, since methods comparing to variables are considered by developers
to be more time consuming. Therefore, the complexity of a class C is evaluated through
measuring these methods.

WMC =

n∑
i=1

ci

where ci is the complexity of the ith method defined in class C. For the purpose that WMC
can be used more generally, the definition of ci is decided by developers. Any complexity
metric which are summable can be adopted, for instance, McCabe’s cyclomatic complexity.
In the case that complexities of all methods are the same, WMC is equal to the number of
methods. A higher WMC indicates a more complex class which needs more effort to develop
and maintain.

2. Depth of Inheritance Tree (DIT): Inheritance is an important characteristic for OOD, so
its impact must be considered when estimating the complexity of OO software. The DIT
of a class is defined as the depth of the longest path from the class node to the root in
the inheritance tree. A higher DIT metric value tends to indicate a more complex design,
as more classes and methods may affect the class which makes it harder to interpret its
behavior.

3. Number of Children (NOC): NOC is another metric related to inheritance. Different from
DIT which focuses on the relation between a class and the whole design, NOC value concerns
the relation between a class and its immediate subclasses. The NOC of a class C is defined
as the total number of the classes which inherits from class C. When observing the class C
in the inheritance tree, NOC are the values measured in a horizontal view, while DIT are
values in a vertical view. Figure 3.2 illustrates NOC and DIT metrics with a very simple
instance. The NOC indicates how many subclasses can be impacted by the class, a higher
NOC value means the class is highly reused and has more influence in the design, hence the
class requires more testing effort.

4. Coupling between object classes (CBO): Dependency between classes is a crucial factor when
estimating the complexity of a software. For traditional software, fan-in, fan-out values,
which measure the number of information flows, are used for this purpose. Likewise, CBO
for a class is defined as the total number of its coupled classes to indicates this dependency.
By definition, a class is coupled to class C, when it uses methods or instance variables that
defined in class C, therefore, CBO for class C can be computed by summarizing the total
number of classes which coupled to class C and the number of classes that class C is coupled
to. Because a high CBO value indicates a higher complexity of the design, a minimal CBO
value is suggested to improve modularity and reduce the maintenance effort.

16 Making QVTo transformations more understandable

CHAPTER 3. RELATED WORK

Figure 3.2: A sample inheritance tree

5. Response For a Class (RFC): this metric is designed to measure the maximal methods that
can be executed when using an instance object of the measured class. The value is extracted
by counting the number of methods contained in the response set RS of the class, which is
formalized as follows,

RS = {M} ∪∀i {Ri}

where {M} is the set of methods defined in the class, and {Ri} is the methods called by
method i in the class. With this definition, RFC can also be seen as a measurement of
dependency between different classes, but differing from CBO, RFC measures at the method
level rather than the class level, in other words, CBO counts the number of corresponding
classes while RFC counts the number of methods. A class with a higher RFC value means
the class can invoke more methods, therefore it is more difficult while debugging and costs
more time for maintenance.

6. Lack of Cohesion in Methods (LCOM): Similar to RFC, LCOM also investigates relations
between methods, but this metric is aimed at measuring the intra-class methods relationships
instead of inter-class methods relationships. Assuming Mi is a method defined in class C,
and a set {Ii} is the corresponding instances variables set of Mi. The definition of LCOM is

LCOM =

{
|P | − |Q| if |P | > |Q|
0 otherwise

where for all methods in class C, P = {(Ii, Ij)|Ii ∩ Ij = ∅} and Q = {(Ii, Ij)|Ii ∩ Ij 6= ∅}.
On the basis of the definition, a high LCOM suggests that the class may be divided into two
or more separate classes. For example, Figure 3.3 shows two classes with different LCOM
values, where Mi are methods, and Vi are variables, when a variable belongs to the instance
variables set of a class, the corresponding block is marked with A. It can be observed that
class A is more likely divided into two classes due to its higher LCOM value.

Figure 3.3: A comparison between class A (LCOM = 2) and class B (LCOM = 0)

Making QVTo transformations more understandable 17

CHAPTER 3. RELATED WORK

3.1.3 Metrics for QVT

Having discussed the traditional metrics and the OO metrics, we finally present the relevant work
about metrics for QVTo in this section. Like traditional metrics, these metrics can be categorized
into three classes: size metrics, complexity metrics, and dependency metrics.

1. Size metrics: The metrics related to the size of transformation mostly count the number
of elements of a transformation. Kapova [36] presents a series of metrics including lines of
codes that measures the code size as the original LOC, number of relations, number of top
level relations, number of relations without when- clause that measure the transformation
rules in QVTr cases.

In Nguyen’s study [13], several different metrics related to size for various elements for QVTo
are also proposed, like number of overloaded mappings, number of helpers, and number of
modules, number of input models, number of output models etc. Gerpheide [11] adapted the
metrics in [13][37] to quality attributes and constructed a quality model with these attributes,
such as small transformation size, more mappings than helpers, more queries than helpers,
few nested if statements.

2. Complexity metrics: In model transformation, the when- and where- clauses, forEach
and while Loop lead to multiple path for execution, therefore average cyclomatic complexity
per Mapping and average cyclomatic complexity per Helper are computed in [37] analogy to
Cyclomatic Complexity metric for traditional software.

3. Dependency metrics: Dependency between different elements is a key aspect for estim-
ating the quality of model transformations. Hence, fan-in and fan-out can be adapted to
several useful indicators for the complexity of information flows of model transformation.

In the case of QVTr, Kapova [36] defines the information flow on two levels, number of
variables which are called in the when- or where- clauses are extracted as val-out metric,
and val-in is the average number of arguments in the form of its domains, which is always
the same as number of domains in QVTr. On the relations level, counting the number of
times relation r uses other relations or queries as fan-out, and fan-in is the number of times
that other relations uses r.

For QVTo, dependency is measured with various metrics. Nguyen [13] proposed a series
of metrics to estimate various types of dependencies including dependencies between dif-
ferent mappings, different helpers, different modules, and dependencies between mappings
and helpers. Nguyen further derived more complex metrics, such as number of calls from
mappings in other Modules per Module, number of calls from Helpers in other Modules per
Module, number of calls to resolve expressions per module, number of calls from mappings
to resolve expressions per mapping, and number calls from helpers to resolve expression per
Helper to describe dependencies in details. Figure 3.4 demonstrates a selected set of metrics
of the sample QVTo code, which is partial SimpleUml2RDB code [4].

Additionally, metrics can be collected in different ways to assess the external quality. Gerpheide
[11] assessed the QVTo transformation quality by using quality attributes, which combined metrics
and a preferable direction, such as small transformation size, few dependencies between modules
and more mappings than helpers. Metrics can also be embedded to the systems, Saeki [39] adopted
OCL to express the metrics and binded them to the systems. Table 3.1 and Table 3.2 presents a
set of major metrics for model transformation.

18 Making QVTo transformations more understandable

CHAPTER 3. RELATED WORK

Table 3.1: Metrics related to Size or Complexity

Metric
Transformation
Language

Reference

lines of code QVTr
Kapova[36],
Amstel[38]

When- clauses
QVTr, QVTo

Kapova[36]

Where- clauses
Relations

QVTr

Top level relations
Starts
OCL queries
Metamodels in transformation
Avg. domains per relation
Avg. domain pattern nodes per relation
Avg. when- clauses per relation
Avg. where- clauses per relation
Avg. local variables per relation
Mappings

QVTo

Amstel[37]

Mappings with Condition
Helpers
Elements per Mapping
Parameters per Mapping
Operations on collections per Mapping
Sub-Objects per Helper
Parameters per Helper
Overloaded mappings

Nguyen[13]

Unused mappings
Abstract mappings
Mapping Inheritances
Mapping Mergers
Mapping Disjunctions
Unused Helpers
Overloaded Helpers
Modules
Library Modules
Operational Transformation Modules
Input models
Output models
Imported Metamodels
Intermediate Classes
Intermediate Properties
End section

Gerpheide [11]
Blackboxes
Configuration properties
Queries with side-effects
When and where clauses
ForEach Loops
Size of init sections

Making QVTo transformations more understandable 19

CHAPTER 3. RELATED WORK

Table 3.2: Metrics related to Dependency

Metric
Transformation
Language

Reference

Val-in per relation

QVTr Kapova[36]
Val-out per relation
Fan-in per relation
Fan-out per relation

Fan-in per mapping

QVTo
Amstel[37],
Nguyen[13]

Fan-out per mapping
Fan-in per Helper
Fan-out per Helper
Calls to resolve expressions
Avg. resolve from mapping
Calls to log()
Calls to assert()
Calls from Mappings in other Modules per
Module
Calls from Helpers in other Modules per Mod-
ule
Calls from Other Modules per Module
Calls to Mappings in Other Modules per Mod-
ule
Calls to Helpers in Other Modules per Module
Calls to Other Modules per Module
Calls from Mappings to Mappings per Map-
ping
Calls from Mappings to Helpers per Mapping
Calls from Mappings to Mappings/Helpers per
Mapping
Calls to Mappings from Mappings per Map-
ping
Calls to Mappings from Helpers per Mapping
Calls to Mappings per Mapping
Calls from Helpers to Helpers per Helper
Calls from Helpers to Mappings per Helper
Calls from Helpers to Mappings/Helpers per
Helper
Calls to Helpers from Mappings per Helper
Calls to Helpers from Helpers per Helper
Calls to Helpers per Helper
Calls to log() per Module
Calls from Mappings to log() per Mapping
Calls from Helpers to log() per Helper
Calls to assert() per Module
Calls from Mappings to assert() per Mapping
Calls from Helpers to Resolve Expressions per
Helper

20 Making QVTo transformations more understandable

CHAPTER 3. RELATED WORK

Figure 3.4: A example of QVTo metrics.(SimpleUml2RDB code presented in [4])

3.2 Quality evolution

Another related topic for our thesis is quality evolution because the first step in our research is to
analyze the evolution of QVTo transformations. Software systems evolve over time because of the
adaptation to requirements or environment. Software evolution is a key role in the whole life-cycle
of the software since the maintenance of the software needs the most effort and cost. Therefore,
it is important to assessing the quality of the software during the evolution process. There has
been an increasing investigation into the quality evolution of software since the awareness of its
importance [40][6][41].

In Men’s work [6], a list of research topics related to metrics for analyzing software evolution is
presented. These topics can be classified into two categories: predictive analysis before evolution
or retrospective analysis after evolution. Among all these topics, we focus on Measuring software
quality and Long term evolution in our research. Table 3.3 presents all the topics.

Drouin’s [41] study presents an empirical analysis of software evolution using metrics. A novel
metric named Qi which integrates different OO (Object Oriented) metrics described in the previous
section is proposed and used to observe how the software systems evolve. The value of metric Qi
is normalized, and a lower value indicates the complexity of the software is higher and needs
more quality assurance effort. An empirical study is conducted on multiple versions of three open
source software: two Eclipse components (JDT.Debug, PDE.UI) and Tomcat project. With CVS
(Concurrent Versions System), values of metrics are collected from historical data of several years
(4 years for the first two software, and 7 years for the other one). By analyzing the collected data,
Drouin states that metric Qi reflects the quality evolution of software systems properly.

Hecht’s research [40] tracks the quality evolution of Android applications with metrics. The authors
use a tool called PAPRIKA to detect antipatterns (aka. poor design choices) from 3568 versions
of 106 Android applications and further analyze the quality evolution based on antipatterns.

Making QVTo transformations more understandable 21

CHAPTER 3. RELATED WORK

Table 3.3: Topics of software evolution metrics [6]

No. Topic Discription

1 Measuring software quality
Using metrics to measure the quality of software
and whether the quality has improved between
different revisions of the software

2 Coupling/cohesion metrics
Using metrics to quantify coupling and cohesion,
which can further measure a system’s structural
complexity

3 Scalability issues

Using metrics to analyze the scalability of soft-
ware. Considering the explosion of number of
measurements to be interpreted, the key problem
is how to visualize the measurements.

4
Empirical validation and
realistic case studies

Empirical research are important topic since we
can only validate the evolution metrics when they
are tested on a sufficient number of examples

5 Long term evolution
Long term evolution of software are important as
it may show different nature of the software

6 Data gathering
Avoiding the lost of data, we need tools to
maintain precise logs about the changes applied
between revisions

7
Detecting and understanding
different types of evolution

Using metrics to detect the types of evolution

8 Process issues
Using metrics to predict changes in evolution,
such as cost estimation, effort estimation and pro-
grammer productivity

9 Language independence

Using evolution metrics in a language-
independent way to extract results about
software evolution that are not bound to a
specific language

22 Making QVTo transformations more understandable

CHAPTER 3. RELATED WORK

3.3 From imperative to declarative

Since we need to convert the original imperative QVTo transformations to more declarative ones in
our research, a review of related work is necessary before we try to propose our rewriting pattern
to fulfill the task for imperative-declarative conversion. There have been a considerable number of
published studies describing methods which can accomplish the task of rewriting or optimizing for
both general programming language, like Java [42][43], and modeling language, such as UML/OCL
[7][44].

3.3.1 RImperative/declarative conversion for Java

In a study which coverts imperative parts of Java code to declarative parts, Gyori [42] proposed and
implemented two refactoring patterns: the first one can replace the AIC (Anonymous Inner Class)
with Lambda expressions and the second one converts for Loops which iterate over an instance of
Java.util.Collection to Lambda expressions. The Lambda expression refers to a function defined
without binding to an identifier, and it consists of three parts: a parameter, an arrow, and a body.
For example, the following Lambda expression

p→ p.getGender() == Person.Sex.MALE

checks the gender of p (an instance of Class Person), where p is the parameter and expression
p.getGender() == Person.Sex.MALE is the body of this Lambda expression [45]. With Lambda
expressions, the imperative code can be rewritten based on the refactoring patterns described in
Gyori’s study.

Listing 3.3.1 shows a simple example for the first refactoring pattern, which implements a function
that adds a listener to a button. The one shown in (a) uses an inner class, and its equivalent
Lambda expression is presented in (b).

button . addAct ionLis tener (new Act ionL i s t ene r () {
pub l i c void act ionPerformed (ActionEvent e) {

ui . dazz l e (e . g e tMod i f i e r s ()) ;
}

}) ;

Listing 3.3.1(a) Anonymous inner class [42]

button . addAct ionLis tener (
(ActionEvent e)−>{ui . dazz l e (e . g e tMod i f i e r s ()) } ;

) ;

Listing 3.3.1(b) Equivalent lambda expression [42]

For the second pattern, here is an example. Given a collection of blocks, we try to change all blue
color to red. Instead of iterating the blocks with a for loops, a lambda expression is adopted

blocks.stream().filter(b→ b.getColor() == BLUE).forEach(b→ b.setColor(RED))

3.3.2 Imperative/declarative conversion for UML/OCL

Unlike Radoi’s work, Cabot’s [7] investigates into the imperative/declarative conversion of UM-
L/OCL code instead of Java code. Additionally, the goal of this investigation is to find a rewriting
method between declarative and imperative UML/OCL specifications. Before discussing these
methods, it is necessary to have a brief description of UML (Unified Modeling Language).

Making QVTo transformations more understandable 23

CHAPTER 3. RELATED WORK

Since the emergence of OO programs, various notations for OO design had been proposed includ-
ing Booch’s method [32], Rumbaugh’s OMT (object modeling technology) [33] and Jacobson’s
approach[34]. Their studies lead to UML [17], a standard object oriented modeling language that
is controlled by Object Management Group (OMG). UML provides a variety of model elements,
such as classes, states and relationships to represent artifacts of software systems:

1. Classes: represent a group of objects that have the same attributes;

2. States: capture a set of conditions of objects in time, the objects transit through different
states responding to events;

3. Relationships: describe the associations between UML model elements. There are four
widely used types of relationships: associations (a general link relates objects two each other,
it also specifies how many objects are evolved), generalizations (describes the inheritance),
dependency and aggregation.

OCL (Object Constraint Language) is a declarative language which specifies the rules applied to
UML models. In OCL expressions, constructs like forAll, select are very powerful when iterating
over collections. For instance, a rule “A person is younger than its parents” can be expressed as
follows,

context Person inv : self.parents→ forAll(p|p.age > self.age)

where self is the object which the rule is applied on and parents is an attribute of object self.

Cabot’s study presents the target pattern in the original UML/OCL code and the corresponding
rewritten pattern. The rewriting pattern only covers the structural events in UML for simplicity.
Table 3.4 shows examples, where Bi is a boolean expression, o refers to an object, and o.r stands
for a navigation from object o to a related object of an associate class.

Table 3.4: Rewriting Pattern for UML/OCL code [7]

N Expression Rewritten code Description

1 B1 and . . . and Bn
Translate(B1);
. . .
Translate(Bn);

A set of boolean expressions
linked by ANDs are trans-
formed by translating each
single expression sequentially.

2 o.r→includes(Y) CreateLink(r.association,o,Y);
A link is created between
o and the single object re-
turned by Y

3 o.r→excludesAll(Y)
foreach o in Y
DestroyLink(r.association,o,o)
endfor;

All links between o and the
objects in Y are destroyed.

3.4 Conclusion

Having discussed the relevant work, which includes an overview of existing software metrics, a
description of related work for quality evolution and the introduction of methods for imperative-
declarative programming conversion. With knowledge of these techniques, we can analyze the
quality evolution of our QVTo transformation and design new metrics in Chapter 4, and further-
more, we can propose methods to rewrite the imperative QVTo transformation in more declarative
style in Chapter 5.

24 Making QVTo transformations more understandable

Chapter 4

Quality evolution of QVTo
transformation

This section investigates the first research question. The exploration is divided into two parts:
in Section 4.1, inspired by the methods described in Section 3.2, we analyze the evolution of the
quality of the QVTo transformation with a set of metrics. The results show that the old metrics,
which are used for measuring how imperative/declarative the QVTo transformation is, are not
suitable in our case, hence in Section 4.2 we design a set of new metrics and validate these new
metrics.

4.1 Approach

The first research question in this thesis is explore how the quality of QVTo transformations
evolve over time. The goal of this question is to analyze the evolution of the quality of the
QVTo transformation quantitatively. As discussed in Chapter 3, metrics can be used to perform
quantitative analysis. First of all, we need to select suitable metrics for analyzing the quality
evolution.

Selecting the suitable metrics

As discussed in Section 3.1.3, a considerable number of metrics for QVTo are presented in the
literature. Gerpheide’s research [11] provides a useful quality model for QVTo transformation,
within the model multiple metrics are adopted as indicators for understandability, which is sug-
gested as the most ubiquitous quality goal by Gerpheide. Hence, in our study, these metrics are
applied to a series of revisions of the QVTo transformations to analyze how the quality evolves.
Table 4.1 presents the total list of metrics related to understandability. As described in Section
2.2, forEach, init, where, when are notions for blocks in QVTo transformations and mapping,
helper, query notions for operations.

Quality attribute refers to quality-carrying properties of the target objects, which are QVTo
transformations in our research. All the quality attributes presented in Table 4.1 improve the
quality (understandability in our case) of QVTo transformations based on Gerpheide’s quality
model. However, in Gerpheide’s work, a survey of developer’s point of view is performed to
confirm the relationship between the quality attributes and their corresponding quality. Based
on the analysis of the results of this survey, Little imperative programming, Small init section,
and Few queries with side-effects are considered as the validated attributes, and the attribute

Making QVTo transformations more understandable 25

CHAPTER 4. QUALITY EVOLUTION OF QVTO TRANSFORMATION

Table 4.1: Metrics for Understandability

Metric Quality attribute
#forEach loops Little imperative programming
Size of init section Small init section
#where clauses Few where clauses
#when clauses Few when clauses
Ratio #mappings to #helpers More mappings than helpers
Ratio #queries to #helpers More queries than helpers
#Configuration properties Few configuration properties
#Intermediate properties Few intermediate properties
#end sections Few end sections
#Queries with side-effects Few queries with side-effects

Few when clauses is considered positive but less important than the three attributes mentioned
previously for understandability. Therefore, we select their corresponding metrics to explore the
quality evolution of the QVTo transformation in our experiments.

Mining the repository

The second step is to decide which revisions of the QVTo transformation are analyzed in the
experiments. The number of revisions of the QVTo projects in the repository is so large that
it is necessary to find a sufficient number of revisions to make analyzing the quality evolution
reasonable. As our research focuses on the quality of a specific QVTo transformation, we track
the file which contains this QVTo transformation.

4.1.1 Results and Analysis

We apply the validated metrics from Gerpheides model to the chosen revisions of the QVTo
transformation. Overall, 60 revisions where the file pgapp2dsgraph.qvto, which have been discussed
in Section 1.2, has been modified are chosen out from 4419 revisions and the selected metrics are
extracted from each revision of the QVTo transformation. Additionally, we extract values of basic
metrics, like LOC and Number of Mappings from these 60 revisions of the QVTo transformation.
The metrics are analyzed based on the commit time of each chosen revision, Figure 4.1 and Figure
4.2 illustrates how the values of metrics evolve from the earliest to the latest revision. As can

Figure 4.1: Evolution of basic metrics

be seen in Figure 4.1, the size of our QVTo transformation is relatively stable over time, but the
total number of Mappings increases over time. These observations conform to the rule Continuing
change, Continuing Growth of Lehman’s Law which has been introduced in Section 2.4.

26 Making QVTo transformations more understandable

CHAPTER 4. QUALITY EVOLUTION OF QVTO TRANSFORMATION

• Continuing change: both the size and the metric Number of Mappings change over time;

• Continuing Growth: metric Number of Mappings increases along the evolution of the QVTo
transformation. As the Mappings are crucial for the functionality of a QVTo transformation,
the rise of this metric indicates the QVTo transformation is continually enhanced over time
in terms of functions.

Figure 4.2: Evolution of metrics for understandability

Quality evolution trends

Based on the results shown in Figure 4.2, the following conclusion can be made.

1. Overall Rise: the metrics Size of init section, Number of when clauses and Number of quer-
ies with side effects all increase along the evolution. As stated in Table 4.1, the overall rise
of these metrics indicate that the understandability of the QVTo transformation decreases
over time;

2. Overall Decline: however, there is a clear trend of declining for the metric Number of
forLoops, which implies improvement of understandability along the QVTo transformation’s
evolution;

3. Sudden Rise: as can be seen, there are cases where the value increases sharply at a specific
revision for metric Size of init section, Number of when clausesand Number of queries with
side effects. This sudden rise infers a turning point where the understandability of the QVTo
transformation drops rapidly;

4. Sudden Decline: In contrast, Number of forLoops shows sudden decreases at some revi-
sions, therefore, at these turning points, the understandability improves suddenly.

It is notable that the first conclusion represents an opposite trend of quality evolution with the
second conclusion, and the last two findings are contradictory as well. The reason for this contra-
diction is that metric Number of forLoops leads to different conclusions with other metrics, which
indicate a decline of the understandability of the QVTo transformations. Moreover, according

Making QVTo transformations more understandable 27

CHAPTER 4. QUALITY EVOLUTION OF QVTO TRANSFORMATION

to Lehman’s Law, the quality of a software system should decline over time. Hence, we further
investigate metric Number of forLoops in the following section.

As presented in Table 4.1, metric Number of forLoops are used for quality attribute Little im-
perative programming which has been validated to improve the understandability in Gerpheide’s
evaluation. However, the relationship between the metric and quality attribute has not been
confirmed. As can be seen in the results, forLoops are not used frequently in our QVTo trans-
formation, they are only used three times in the latest revision. Therefore, metric Number of
forLoops is not reliable to indicate Little imperative programming, this could be the reason why
there are conflicting conclusions drawn from the results shown in Figure 4.2. To address this
problem, we need to design more suitable metrics to measure how imperative/declarative a QVTo
transformation is. The following section discusses how to design suitable metrics and proposes our
solution.

4.2 Metrics

4.2.1 Design metrics

Using the Goal/Question/Metrics model discussed in Section 2.3.2, we decide a goal and inter-
preted with several questions and finally design the metrics to answer these questions. The three
steps are performed as follows:

• Goal: improving understandability for the QVTO transformation

• Question 1: how imperative is the QVTo transformation?
Metric 1: number of imperative operations contained in the QVTo transformation;

• Question 2: how imperative are these imperative operations which are counted in Metric 1?
Metric 2: number of imperative expressions contained in the imperative operations.

Metric 1 and 2 can be defined differently according to which imperative operation is measured. As
described in Section 3.1.3, there are various types of metrics designed for measuring the quality
QVTo transformation, but they are not suitable in our case. Following the GQM model presented
previously, metrics proposed in our study can be divided into three categories:

• Operation metrics: the imperative operations including Mapping, Constructor, Helper, and
Query are fundamental elements for QVTo transformations. Hence, metrics belong to this
category are related to operations;

• Expression metrics: the operations consist of multiple expressions, which can further be
measured using metrics in this category;

• Occurrence metrics: the occurrence of an expression should also be measured, the metrics
classified in this category solve this problem.

Table 4.2 presents all the metrics designed for measuring how imperative/declarative a QVTo
transformation is.

4.2.2 Apply metrics

In this section, we apply the metrics proposed in Table 4.2 on those revisions of QVTo transforma-
tion that are analyzed in Section 4.1.1 and then compare the new results with those demonstrated
in Section 4.1.1.

28 Making QVTo transformations more understandable

CHAPTER 4. QUALITY EVOLUTION OF QVTO TRANSFORMATION

Table 4.2: List of metrics for measuring how imperative/declarative a QVTo transformation is

Category Metric Description

#Mappings which contain
VariableInitExp

The number of Mappings which contain
one or more variable initial expressions

#Constructors which contain
VariableInitExp

The number of Constructors which con-
tain one or more variable initial expres-
sions

#Helpers which contain Vari-
ableInitExp

The number of Helpers which contain
one or more variable initial expressionsOperation metrics

#Queries which contain Vari-
ableInitExp

The number of Queries which contain
one or more variable initial expressions

Total #VariableInitExp in
Mappings

The total number of variable initial ex-
pressions in Mappngs

Avg. #VariableInitExp in
Mappings

The average number of variable initial
expressions in Mappngs

Total #VariableInitExp in
Constructors

The total number of variable initial ex-
pressions in Constructors

Avg. #VariableInitExp in
Constructors

The average number of variable initial
expressions in Constructors

Total #VariableInitExp in
Helpers

The total number of variable initial ex-
pressions in Helpers

Avg. #VariableInitExp in
Helpers

The average number of variable initial
expressions in Helpers

Total #VariableInitExp in
Queries

The total number of variable initial ex-
pressions in Queries

Expression metrics

Avg. #VariableInitExp in
Queries

The average number of variable initial
expressions in Queries

Total #Occurrence of vari-
ables in Mapping

The sum of the times of all variables
are used in Mappings

Occurrence metrics Max #Occurrence of a vari-
able in Mapping

The max of the times of all variables
are used in Mappings

Making QVTo transformations more understandable 29

CHAPTER 4. QUALITY EVOLUTION OF QVTO TRANSFORMATION

Metrics related to Mapping

Figure 4.3 shows the values of metrics related to Mapping in Table 4.2 extracted from the chosen 60
revisions of QVTo transformation. The values are demonstrated according to the commit time from
earliest to latest. As can be seen, values of Number of Mappings which contain VariableInitExp
and Total number of VariableInitExp in Mappings increase overall, which implies that the QVTo
transformation becomes more imperative regarding Mapping operations. Meanwhile, the rise of
Total number of occurrence of variables in Mapping over time indicates the Mappings become
more imperative during the evolution of the QVTo transformation.

Figure 4.3: Evolution of metrics related to Mapping

Metrics related to Helper

On the other hand, Figure 4.4 presents the values of metrics related to Helper in Table 4.2. Ac-
cording to the decrease trend of values of metric Number of Helpers which contain VariableInitExp
and Total number of occurrence of variables in Mapping, we can conclude that the QVTo trans-
formation are less imperative in terms of Helper operations, while the overall decline of values of
metricTotal number of occurrence of variables in Mapping and Average number of VariableInit-
Exp in Helpers indicates the Helper operations become less imperative along the evolution of the
transformation.

It is notable that metrics related to Mapping indicates the QVTo transformation become more
imperative, but metrics related to Helper draws the opposite conclusion. The evolution of Mapping
operation are more important because they are the critical elements of QVTo transformation,
we, therefore, focus on the evolution of Mapping which shows an overall growth of imperative
programming. However, as discussed in Section 3.2, Little imperative programming can improve
the understandability of QVTo transformation, hence the increase of imperative programming of
the QVTo transformation results in a decline of understandability, which are not desirable. To
improve the quality, we explore how to make the QVTo transformation more declarative in the
next chapter.

30 Making QVTo transformations more understandable

CHAPTER 4. QUALITY EVOLUTION OF QVTO TRANSFORMATION

Figure 4.4: Evolution of metrics related to Helper

4.3 Conclusion

We investigate the quality of our QVTo transformation using the quality model provided by
Gerpheide [11], and analyze the changes of QVTo transformation’s quality over time by applying a
set of metrics on 60 revisions of the pgapp2dsgraph.qvto file. Based on the results, we can observe
that for understandability, which is the most ubiquitous quality goal suggested in Gerpheide’s
model, all the relevant metrics indicate a declining except metric Number of forLoops, which is
used for indicating Little imperative programming. However, unlike Little imperative programming
improving understandability is confirmed in the quality model, the relationship between metric
Number of forLoops and Little imperative programming is not validated. Hence, we design a set
of new metrics to measuring how imperative/declarative the QVTo programming is, and find that
these novel metrics indicate our QVTo transformation becomes less declarative over time.

Making QVTo transformations more understandable 31

Chapter 5

Rewriting QVTo transformation

In this chapter, we propose a rewriting pattern to convert the imperative QVTo transformations
to declarative ones and present the experiments where this proposed translate pattern is applied
to three different revisions of the QVTo transformation.

5.1 Approach

The second research question of the thesis is to find a method to rewrite imperative QVTo trans-
formations to declarative ones. As discussed in Section 3.3, there are various approaches to ac-
complish the rewriting task. Among these methods, the pattern-based method adopted in Cabot’s
research [7], which investigates rewriting of DSL (UML/OCL in their study), is the most suitable
for our study. Hence, first of all, we identify the imperative parts which should be rewritten into
declarative QVTo expression. Secondly, a list of patterns are proposed, where each pattern indic-
ates the target imperative QVTo expressions and its corresponding declarative QVTo expressions.
At last, the list of patterns are applied to the QVTo transformation.

5.1.1 List of target expressions

In Query/View/Transformation specification [4], OMG defines QVT Operational with two pack-
ages: QVTOperational and ImperativeOCL. Within the ImperativeOCL package, the imperative
expressions are defined as the base for all side-effect oriented expressions in QVTo specification.
The imperative expressions extend OCL expressions and allow expressing complex transformations
in a comfortable way while in the meantime keep the functional features of OCL. Figure 5.1 shows
the hierarchy of imperative expressions in the QVT specification.

As can be observed in the hierarchy tree, multiple classes inherit the imperativeExpression class.
These classes are designed for various usages:

• VariableInitExp a variable initial expression declares a variable and possibly initialized it;

• AssignExp an assignment expression represents the assignment of a variable, a new value
is assigned to a variable if the variable is mono-valued, otherwise the value the variable can
be reset or appended based on whether the isReset property is true;

• InstantiationExp an instantiation expression creates an object of a class;

• AssertExp an assert expression checks if a condition is satisfied, and sends a message if
the condition fails;

Making QVTo transformations more understandable 33

CHAPTER 5. REWRITING QVTO TRANSFORMATION

Figure 5.1: Imperative expressions hierarchy [4]

• LogExp a log expression prints a log to the environment;

• ReturnExp a return expression is the exit of an imperative operation, it assigns the value
to the result of the imperative operation if a value is indicated;

• ImperativeLoopExp an imperative loop expression executes an imperative loop statement
over a collection, the predefined constructors forEach, forOne, xcollectselect, xcollectselec-
tOne are all defined based on the imperative loop expressions;

• WhileExp a while expression iterates until the condition is no longer satisfied;

• ForExp a for expression iterates over a collection for each element that satisfies a given
condition;

• SwitchExp the switch expression executes alternatives according to the give conditions, it
acts like the nested if expressions in OCL but can be interrupted by the control expressions;

• BlockExp block expressions execute a list of expressions sequentially, but the execution can
be interrupted by control expressions, like break expressions;

• ComputeExp a compute expression is where a variable is declared and possibly initialized
followed with a body that updates the variable. The return value of a compute expression
is the variable value;

• TryExp, CatchExp, and RaiseExp these three expressions are used for exceptions;

• ContinueExp and BreakExp these two types of expressions are used within an iteration,
a continue expression is used to jump to next iteration and a break expression is used to
terminate the iteration.

By analyzing the usages of these classes, we can observe that using instances of certain two or more
classes together could be imperative in most cases. For example, using a variable initial expression
in an assignment expression is a typical imperative pattern in most scenarios. In the next section,
we find more combinations of this kind and then propose them as the target imperative patterns.

34 Making QVTo transformations more understandable

CHAPTER 5. REWRITING QVTO TRANSFORMATION

5.1.2 List of rewriting patterns

The rewriting focus on Variable Initial expressions and Assignment expressions because they are
the most frequently used expressions in QVTo transformations of CARM. These two types of
QVTo expressions can form an imperative pattern with each other or with other expressions, like
AssertExp, LogExp. Table 5.1 presents a list of rewriting patterns, the rewriting uses a simple
method to replace a variable with its initialization expression if possible so that imperative patterns
which related to VariableInitExp and AssignExp can be reduced.

Table 5.1: Rewriting patterns

No
Imperative expres-
sion

Rewritten declarat-
ive expression

Description

1
var a:= initExpression ;
lhs := f(a) ;

lhs := f(initExpression) ;

When a variable is used in a func-
tion which is the right hand side
expression of an assignments, re-
place the variable with its initial
expression when the variable is de-
clared.

2
var a:= initExpression ;
assert(a) ;

assert(initExpression) ;

When a variable is used in an
assertion operation, replace the
variable with its initial expression
when the variable is declared.

3
var a:= initExpression ;
log(a) ;

log(initExpression) ;

When a variable is used in a
log operation, replace the variable
with its initial expression when the
variable is declared.

5.1.3 Apply the rewriting patterns

Using the patterns listed in the previous section, a QVTo imperative operation can be rewritten
into declarative operation. Listing 5.1 shows an example of an imperative mapping, where two
variable initial expressions and two assignment expressions are defined within the init section.
By applying pattern 1 in Table 5.1, the mapping is specified in declarative style as presented in
Listing 5.2.

mapping Block : : c reateBlockDependency (s r c : Block , con : Connection) : Dependency
{

i n i t {
var t a r g e t := s e l f . r e s o l v eone (ds graph : :Task) ;
var source := s r c . r e s o l v eone (ds graph : :Task) ;
r e s u l t := source .map createDependency (t a r g e t) ;
r e s u l t . connect ion := con ;

}
}

Listing 5.1: Original imperative code

mapping Block : : c reateBlockDependency (s r c : Block , con : Connection) : Dependency
{

i n i t {
r e s u l t := s r c . r e s o l v eone (ds graph : :Task) .map createDependency (s e l f . r e s o l v eone

(ds graph : :Task)) ;
r e s u l t . connect ion := con ;

}

}

Making QVTo transformations more understandable 35

CHAPTER 5. REWRITING QVTO TRANSFORMATION

Listing 5.2: Rewritten declarative code

5.2 Results and Analysis

The purpose of our experiments is to measure the changes on quality when a QVTo transformation
is rewritten in a more declarative style. The following section describes the setup of experiments
and presents the results, and then analyze the results.

5.2.1 Experiments Setup

The experiments are conducted with ASML code. First of all, we rewrite the latest revision of
a specific QVTo transformation pgapp2dsgraph. When applying rewriting pattern to the QVTo
transformation, it is necessary to validate whether the rewritten transformation is equivalent to the
original one. In this experiment, two QVTo transformations are considered equivalent as long as
they produce the same results when tested by the same test cases suite which contains 73 test cases.

Secondly, a suite of metrics which are proposed in Section 3.1.3 is applied to the latest revision
of these .qvto files. Furthermore, based on the observation in Section 4.2.2 that the metrics are
changed significantly at two revisions (revision α and revision β), the measurement is also applied
on these two revisions of our QVTo transformation. However, validating the functionality of an
inactive revision of QVTo transformation is unnecessary. The experiments are carried out as the
following steps:

• Step 1: Rewrite the QVTo transformation and its relevant Library .qvto files manually;

• Step 2: Validate the equivalence of the original QVTo transformation and the rewritten one;

• Step 3: Extract the value of metrics of both original QVTo transformation and the rewritten
one with EMMA [23]

• Step 4: Execute Step 1 and Step 3 on revision α and revision β.

5.2.2 Imperative versus Declarative

Firstly, we try to figure out whether the rewriting effectively makes the QVTo transformations
more declarative. Hence, we extract a series of values of our proposed metrics, which are used
to measure how imperative/declarative the QVTo transformation is in our experiments. Figure
5.2 shows the results of the experiments on imperative operations level, where the blue portion
of the bar represents the number of imperative operations (Mappings, Constructors, Helps, and
Queries) which contains variable initialization expression. On the other hand, the orange portion
represents the number of these imperative operations which does not have any variable initializa-
tion expression in it.

As can be seen in Figure 5.2 (a), for Mapping, Helper, and Query, more than half of these opera-
tions use variable initialization expressions. In contrast with the other three imperative operations,
Constructors in our QVTo transformations only use one variable initialization expression. The
major function of a Constructor is to initialize a given class, hence the body of a constructor
typically consists of instantiated assignments, where introducing new variables are unnecessary.
Figure 5.2 (b) shows the metrics value of rewritten QVTo transformations. As can be observed,

36 Making QVTo transformations more understandable

CHAPTER 5. REWRITING QVTO TRANSFORMATION

Figure 5.2: Comparison of operations using variable initialization expressions in imperative and
rewritten declarative QVTo transformations

there are no variable initialization expressions in Constructors and only one in Mappings, two in
Helpers and less than 10 in Queries. Comparing the two results in Figure 5.2 (a) and (b), it can
be seen that the orange parts (also known as the imperative parts) are reduced significantly after
the rewriting. Hence, we can conclude that our proposed imperative-declarative rewriting makes
the QVTo transformation more declarative in terms of operations.

Figure 5.3: Comparison of variable initialization expression usage in imperative and rewritten
declarative QVTo transformations

Moreover, in our experiments not only the imperative operations which contain VariableInitExp are
investigated, but also these variable initial expressions themselves are explored. Figure 5.3 presents
the results on expressions level, the blue bar indicates the total number of variable initialization
expressions defined in operations, while the orange dots represent the average number. As Figure
5.3 (a) shows, Mappings use more variable initialization expressions than other operations both in
total and on average, which means Mappings are the most imperative operations before rewriting.
On the other hand, Figure 5.3 (b) illustrates that except for Constructors which no longer contains
any variable initialization expression, Mapping, Helper, Query all has the same average number
of variable initialization expression usage. While for the total number of variable initialization
expressions, there is a sharp decrease for all operations. As a result, Queries has the most variable
initialization expressions. A comparison of Figure 5.3 (a) and (b) reveals that our rewriting makes
operations of QVTo transformation more declarative, whilst the rewriting has the greatest impacts
on Mappings than all the other operations. Overall, the observations can be concluded as follows:

Making QVTo transformations more understandable 37

CHAPTER 5. REWRITING QVTO TRANSFORMATION

1. The rewriting reduces the number of imperative operations; (Observation 1)

2. The rewriting reduces both the total and the average number of imperative expressions;
(Observation 2)

3. The rewriting affects Mappings more than other operations. (Observation 3)

To evaluate our rewriting, we apply the pattern to another two revisions of the QVTo transform-
ation. Figure 5.4 (a) and (b) shows the comparison of operations using variable initialization
expressions before and after rewriting revision α of the QVTo transformation, and Figure 5.4 (c)
and (d) presents the comparison of variable initialization expression usage in these two QVTo
transformations. Figure 5.5 shows the results for revision β.

Figure 5.4: Evaluate rewriting patterns on revision α

As can be seen in Figure 5.4 and 5.5, we find that the major differences among revision α, β,
and the latest revision is the total number of Mapping operations. Furthermore, we can check
whether the previous observations hold for revision α and β. Table 5.2 shows that the first two
observations hold for all three revisions, but Observation 3 does not hold for revision α, due to
its relatively small number of Mapping operations.

Table 5.2: Observation for revision α and β

Revision Observation 1 Observation 2 Observation 3
α Yes Yes No
β Yes Yes Yes

Based on the previous discussion, we can conclude that our imperative-declarative rewriting makes
the QVTo transformations more declarative because of the decrease in the number of imperative
operations. Meanwhile, the rewriting also makes the operations more declarative since they contain
less imperative expressions both in total and on average after rewriting.

38 Making QVTo transformations more understandable

CHAPTER 5. REWRITING QVTO TRANSFORMATION

Figure 5.5: Evaluate rewriting patterns on revision β

5.2.3 Quality

The previous section shows that our rewriting can make the QVTo transformation more declarat-
ive. In this section, we explore how this rewriting affects the quality of the QVTo transformation.

Understandable

Because the metrics are designed to improve understandability, we firstly investigate how the
imperative-declarative rewriting affect the understandability of QVTo transformations. We apply
our metrics designed in the research of the first question to the QVTo transformation before and
after rewriting. Furthermore, the metrics proposed as indicators for quality of QVTo in Gerpheide’s
research [11] are used as a comparison. Since Mapping operation plays a key role in a QVTo
transformation, first of all, we explore how Mappings’ quality changes because of the rewriting.
We extract values of metric Size of init , which is a metric measuring Mapping operation in Table
4.1, from 12 Mappings in the latest revision of QVTo transformation pgapp2dsgraph. Moreover,
our proposed metrics related to Mapping are applied as well. Figure 5.6 shows the results, where
the blue bars refer to the metrics before rewriting (imperative) and the orange bars represent the
ones after rewriting (declarative).

We can draw the following conclusions from Figure 5.6:

• The average number of both metrics from Gerpheide’s and our proposed metrics dropped
after rewriting;

• The orange box (the values after rewriting) is lower than the blue one (the values before
rewriting);

• The values of our proposed metrics are reduced to zero after rewriting;

Making QVTo transformations more understandable 39

CHAPTER 5. REWRITING QVTO TRANSFORMATION

Figure 5.6: The metrics of understandability

• The blue box of metric Number of VariableInitExp is lower and comparatively short than
that of metric Size of init.

Overall, we can observe that size of init section in Mapping reduces and considering Gerpheide’s
model states that smaller size of init section improves the understandability of QVTo trans-
formations, we can draw the conclusion that our rewriting makes the QVTo transformation more
understandable in this perspective.

Analyzable

Multiple tools have been developed to analyze or assess the quality of software. For example,
Alloy Analyzer [14] is a widely used and discussed tool to ensure the quality of modeling by find-
ing structures to satisfy all the constraints of a model. If models and model transformation are
analyzed with Alloy Analyzer , they need to be represented by declarative language, because of
the declarative nature of Alloy [16], which is the core of Alloy Analyzer. Based on the discussion
in Section 5.2.2, we draw a conclusion that the QVTo transformation become more declarative
after rewriting. Hence, it is easier to analyze the QVTo transformation using Alloy Analyzer.

5.3 Conclusion

In this chapter, inspired by methods proposed for rewriting JAVA or UML/OCL, we design a
rewriting pattern to convert the QVTo transformation into more declarative one. Based on the
analysis using metrics presented in the previous chapter, we find that our rewriting makes the
QVTo transformation more declarative by reducing the imperative parts in the transformations.
Besides, the QVTo transformation becomes more understandable according to Gerpheide’s quality
model and easier to be analyzed by Alloy Analyzer.

40 Making QVTo transformations more understandable

Chapter 6

Conclusions

Our main contribution in this thesis to provide insight into software metrics (especially for QVTo
transformations) and imperative/declarative rewriting. We design a suite of metrics to meas-
ure how imperative/declarative a QVTo transformation is and quantitatively analyze the quality
evolution of our target QVTo transformation with metrics. Additionally, we propose a rewrit-
ing pattern to convert imperative QVTo transformations into declarative ones so that the QVTo
transformations become more understandable. In this chapter, we present the major conclusions
we draw from the research and mention some ideas for future work.

In this thesis, we first check whether the QVTo transformations conform to Lehman’s Law, and
then try to improve the quality of QVTo transformations. The first research question is formulated
as follows:

RQ 1: How does the quality of QVTo transformations evolve over time?

Conclusion for RQ1 We analyze the quality evolution of our QVTo transformation by collecting
values of a series of metrics proposed in Gerpheide’s model [11]. We find that the trend of all
metrics is declining over time except for the metrics which is designed to indicate how imperat-
ive/declarative a QVTo transformation is. Hence, a set of novel metrics are presented and applied
to the QVTo transformations to get new values, we further observe that the trend of the new
proposed metrics is consistent with the other metrics’ in Gerpheide’s model, which is our QVTo
transformation becomes more imperative and less understandable over time. Additionally, it is
notable that this trend also conforms to the rule of Continuing Change, Continuing Growth and
Declining Quality in Lehman’s Law.

To tackle the problem of quality declining, we try to find methods to make the QVTo transform-
ation more declarative. The second research question is stated as follows:

RQ 2: Can we rewrite the QVTo transformations to make them more declarative, and how does
the rewriting of QVTo transformations affect their quality?

Conclusion for RQ2 In the research of the second question, we rewrite our QVTo transforma-
tion according to the pattern we described. To validate whether the QVTo transformation is more
declarative after rewriting, we applied the metrics designed in the research of the first question.
These metrics are applied to three major revision of our QVTo transformation to collect the values.
The results show that our rewriting pattern makes the QVTo transformation more declarative.
Because Gerpheide’s model suggests that quality attribute Little imperative programming improves
the understandability, we can also conclude that the QVTo transformation becomes more under-
standable after rewriting. Additionally, the rewriting is helpful when the QVTo transformation is

Making QVTo transformations more understandable 41

CHAPTER 6. CONCLUSIONS

analyzed by some tool (such as Alloy) that only suitable for declarative language.

Future work Firstly, we manually rewrite the imperative QVTo transformation into declarative
one, which can be further automatically done. Secondly, more rules can be added so that more
imperative parts can be rewritten, and then the QVTo transformation can be fully declarative
without any imperative patterns. At last, declarative QVTo transformations can be more easily
analyzed with Alloy [15], hence representing QVTo transformations with Alloy and analyzing
QVTo transformations with Alloy Analyzer [14] can be done in future work.

42 Making QVTo transformations more understandable

Bibliography

[1] ISO/IEC 205010:2011. https://www.iso.org/standard/35733.html, 2011. ix, 8, 9

[2] ISO/IEC 25020:2007. https://www.iso.org/standard/35744.html, 2007. ix, 1, 10

[3] Thomas J McCabe and Charles W Butler. Design complexity measurement and testing.
Communications of the ACM, 32(12):1415–1425, 1989. ix, 14, 15

[4] QVT Omg. Meta object facility (mof) 2.0 query/view/transformation specification. Final
Adopted Specification (November 2005), 2008. ix, ix, 6, 8, 18, 21, 33, 34

[5] Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry, and Wladyslaw M Turski.
Metrics and laws of software evolution-the nineties view. In Software metrics symposium,
1997. proceedings., fourth international, pages 20–32. IEEE, 1997. xi, 11

[6] Tom Mens and Serge Demeyer. Future trends in software evolution metrics. In Proceedings of
the 4th international workshop on Principles of software evolution, pages 83–86. ACM, 2001.
xi, 21, 22

[7] Jordi Cabot. From declarative to imperative uml/ocl operation specifications. In International
Conference on Conceptual Modeling, pages 198–213. Springer, 2007. xi, 23, 24, 33

[8] Barbara Kitchenham, Shari Lawrence Pfleeger, and Norman Fenton. Towards a framework for
software measurement validation. IEEE Transactions on software Engineering, 21(12):929–
944, 1995. 1, 10

[9] Victor R Basili. Software modeling and measurement: the goal/question/metric paradigm.
Technical report, 1992. 1, 11

[10] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electronic Notes in
Theoretical Computer Science, 152:125–142, 2006. 1

[11] Gerpheide Christine. Assessing and improving quality in QVTo model transformations. Mas-
ter’s thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2014. 1, 18, 19,
25, 31, 39, 41

[12] Ramon RH Schiffelers, Wilbert Alberts, and Jeroen PM Voeten. Model-based specification,
analysis and synthesis of servo controllers for lithoscanners. In Proceedings of the 6th Inter-
national Workshop on Multi-Paradigm Modeling, pages 55–60. ACM, 2012. 1, 2

[13] Phu hong Nguyen. Quantitative analysis of model transformations. Master’s thesis, Technis-
che Universiteit Eindhoven, Eindhoven, The Netherlands, 2010. 1, 18, 19, 20

[14] Alloy. http://alloytools.org/, 2018. 2, 40, 42

[15] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002. 2, 42

Making QVTo transformations more understandable 43

https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35744.html
http://alloytools.org/

BIBLIOGRAPHY

[16] Kyriakos Anastasakis, Behzad Bordbar, and Jochen M Küster. Analysis of model transform-
ations via alloy. In Proceedings of the 4th MoDeVVa workshop Model-Driven Engineering,
Verification and Validation, pages 47–56, 2007. 2, 40

[17] OMG. Unified modeling language (omg uml). Superstructure, 2007. 2, 15, 24

[18] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse modeling
framework. Pearson Education, 2008. 2

[19] Eclipse QVT Operational. https://projects.eclipse.org/projects/modeling.mmt.

qvt-oml, 2018. 2

[20] Robert W Sebesta and Soumen Mukherjee. Concepts of programming languages, volume 8.
Addison-Wesley Reading, Massachusetts, 1999. 5

[21] John W Lloyd. Practical advtanages of declarative programming. In GULP-PRODE (1),
pages 18–30, 1994. 5

[22] ISO/IEC 9126-1:2001. https://www.iso.org/standard/22749.html, 2001. 9

[23] Josh GM Mengerink, Alexander Serebrenik, Ramon RH Schiffelers, and Mark GJ van den
Brand. Automated analyses of model-driven artifacts. 2017. 13, 36

[24] Ian Sommerville et al. Software engineering. Addison-wesley, 2007. 13

[25] Barry W Boehm et al. Software engineering economics, volume 197. Prentice-hall Englewood
Cliffs (NJ), 1981. 13

[26] IEEE. Standard for Software Productivity Metrics (IEEE Std 1045 1992). The Institute of
Electrical and Electronics Engineers, Inc), 1993. 14

[27] Robert E Park. Software size measurement: A framework for counting source statements.
Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGIN-
EERING INST, 1992. 14

[28] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. A SLOC counting stand-
ard. In Cocomo ii forum, volume 2007, pages 1–16, 2007. 14

[29] Maurice H Halstead. Natural laws controlling algorithm structure? ACM Sigplan Notices,
7(2):19–26, 1972. 14

[30] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering,
(4):308–320, 1976. 14

[31] Sallie Henry, Dennis Kafura, and Kathy Harris. On the relationships among three software
metrics. ACM SIGMETRICS Performance Evaluation Review, 10(1):81–88, 1981. 14, 15

[32] Grady Booch. Object Oriented Design with Applications. Benjamin-Cummings Publishing
Co., Inc., Redwood City, CA, USA, 1991. 15, 24

[33] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William E Lorensen,
et al. Object-oriented modeling and design, volume 199. Prentice-hall Englewood Cliffs, NJ,
1991. 15, 24

[34] Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven Approach. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004. 15, 24

[35] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented design. IEEE
Transactions on software engineering, 20(6):476–493, 1994. 16

[36] Lucia Kapová, Thomas Goldschmidt, Steffen Becker, and Jörg Henss. Evaluating maintain-
ability with code metrics for model-to-model transformations. In International Conference
on the Quality of Software Architectures, pages 151–166. Springer, 2010. 18, 19, 20

44 Making QVTo transformations more understandable

https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://www.iso.org/standard/22749.html

BIBLIOGRAPHY

[37] Marcel Van Amstel, Steven Bosems, Ivan Kurtev, and Lúıs Ferreira Pires. Performance in
model transformations: experiments with ATL and QVT. In International Conference on
Theory and Practice of Model Transformations, pages 198–212. Springer, 2011. 18, 19, 20

[38] MF Van Amstel, CFJ Lange, and MGJ van den Brand. Metrics for analyzing the quality
of model transformations. In 12th ECOOP Workshop on Quantitative Approaches on Object
Oriented Software Engineering, 2008. 19

[39] Motoshi Saeki. Embedding metrics into information systems development methods: An ap-
plication of method engineering technique. In International Conference on Advanced Inform-
ation Systems Engineering, pages 374–389. Springer, 2003. 18

[40] Geoffrey Hecht, Omar Benomar, Romain Rouvoy, Naouel Moha, and Laurence Duchien.
Tracking the software quality of android applications along their evolution (t). In Automated
Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on, pages 236–
247. IEEE, 2015. 21

[41] Nicholas Drouin, Mourad Badri, and Fadel Touré. Analyzing software quality evolution using
metrics: An empirical study on open source software. Journal of software, 8(10):2462–2473,
2013. 21

[42] Alex Gyori, Lyle Franklin, Danny Dig, and Jan Lahoda. Crossing the gap from imperative
to functional programming through refactoring. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pages 543–553. ACM, 2013. 23

[43] Cosmin Radoi, Stephen J Fink, Rodric Rabbah, and Manu Sridharan. Translating imperative
code to mapreduce. In ACM SIGPLAN Notices, volume 49, pages 909–927. ACM, 2014. 23

[44] Jesús Sánchez Cuadrado. Optimising ocl synthesized code. In European Conference on Mod-
elling Foundations and Applications, pages 28–45. Springer, 2018. 23

[45] The Java Tutorial, Lamda expression. https://docs.oracle.com/javase/tutorial/java/
javaOO/lambdaexpressions.html, 7/19/2016. 23

Making QVTo transformations more understandable 45

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation and Problem statement
	Methodology
	Industry Context
	Approach

	Organization of thesis

	Preliminaries
	Imperative and declarative programming
	Overview of QVTo
	Software Quality and Quality measurements
	Software Quality
	Quality measurements

	Lehman's Law

	Related work
	Metrics
	Metrics for traditional software
	Metrics for object oriented paradigms
	Metrics for QVT

	Quality evolution
	From imperative to declarative
	RImperative/declarative conversion for Java
	Imperative/declarative conversion for UML/OCL

	Conclusion

	Quality evolution of QVTo transformation
	Approach
	Results and Analysis

	Metrics
	Design metrics
	Apply metrics

	Conclusion

	Rewriting QVTo transformation
	Approach
	List of target expressions
	List of rewriting patterns
	Apply the rewriting patterns

	Results and Analysis
	Experiments Setup
	Imperative versus Declarative
	Quality

	Conclusion

	Conclusions
	Bibliography

