
 Eindhoven University of Technology

MASTER

Software for interfacing and management of multiple FPGAs for high performance computing
in data centres

Vallavanthara, Amal Jose

Award date:
2018

Awarding institution:
Technische Universität Berlin

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/206b2f26-be61-40df-a46a-8ad6eaf96801

b
e
r
li
n

electronics
and medical

signal processing

Master Thesis

Software for interfacing and management of
multiple FPGAs for high performance computing

in Data Centres

Student
Amal Jose Vallavanthara

ID: 396462

Supervisor: Prof. Dr.-Ing. R. Orglmeister, TU Berlin
Examiner: Prof. Dr.-Ing. Benno Stabernack, Fraunhofer HHI

Technical University of Berlin, Faculty of Electrical Engineering and Computer Science
Department of Electronics and Medical Signal Processing

Berlin, October 1, 2018

Contents

Abstract 1

1 Introduction 3
1.1 Application Scenario . 3
1.2 Definition of Goals of the work . 4
1.3 State of the Art . 5

2 Theoretical background 7
2.1 PCI express and Nallatech Board . 7

2.1.1 PCI Express . 7
2.1.1.1 Structure . 7
2.1.1.2 Address Space . 9

2.1.2 Compute Acceleration Card - Nallatech 510T [1718] 10
2.2 Linux Kernel - Memory allocation and parallel programming 12

2.2.1 Kernel Space memory . 12
2.2.2 User Space Memory . 13
2.2.3 Parallel programming . 14

2.3 DMA Memory mapping . 15

3 Specification 17
3.1 Driver Development . 17

3.1.1 Connecting User Application to FPGA 19
3.1.2 Read and write the Device File . 21
3.1.3 Input-output Control . 22

3.2 DMA transfer . 24
3.2.1 Design of DMA transfer . 24

3.2.1.1 User Space to kernel space 24
3.2.1.2 Kernel Space to FPGA . 25

3.2.2 DMA Controller . 27
3.2.2.1 Read and write DMA descriptor format 31

3.2.3 Algorithms for efficient DMA transfer 33
3.2.3.1 Polling . 33
3.2.3.2 MSI - Minimal Performance 36
3.2.3.3 MSI - Maximal Performance 38

i

Contents

3.3 MSI interrupts . 40
3.3.1 MSI capability register . 41

3.3.1.1 Capability ID . 42
3.3.1.2 Message Address Register 42
3.3.1.3 Message Data Register . 42
3.3.1.4 Message control register . 43

3.3.2 Interrupt Handling . 44
3.4 PIO read/write . 45
3.5 Real-time Performance Altering . 46
3.6 Management Software for parallel programming 48
3.7 Acquisition, storage and display of FPGA Parameters 51

3.7.1 Telegraf . 51
3.7.2 InfluxDB . 54
3.7.3 Grafana . 54
3.7.4 Overall structure . 55

4 Final Design and Workflow 57

5 Test Evaluation and Results 59
5.1 Test environment . 59
5.2 Test Results . 61

5.2.1 DMA throughput . 61
5.2.2 IOCTL vs Device File Functions . 63
5.2.3 Comparison of Performance levels 64

6 Summary and Future Work 65

A User APIs 67

B Parallel Programming APIs 71

List of Figures 75

List of Tables 77

Bibliography 79

ii

List of Abbreviations

FPGA Field Programmable Gate Array
DMA Direct Memory Access
IRQ Interrupt Request
PCI Peripheral Component Interconnect
PCIe Peripheral Component Interconnect Express
PCX Peripheral Component Interconnect eXtended
MSI Message Signal Interrupt
PIO Programmed Input/output
MMIO Memory-mapped Input/Output
PC Personal Computer
IOCTL Input Output Control
SoC System on Chip
DDRAM Double Data Rate Random-access memory
RAM Random-access memory
InfluxDB Influx Database
SQL Structured Query Language
IP Intellectual Property
HPC High Performance Computing
TFLOP Tera floating point operations per second
OS Operating System
DWORD Double Word
DDR4 Double Data Rate Fourth-generation
SDK Software Developer’s Kit
GPU Graphics processing unit
TPU Tensor processing unit
ASIC Application-Specific Integrated Circuit

Declaration by the candidate

I hereby declare that this thesis is my own work and effort and that it has not been
submitted anywhere for any award. Where other sources of information have been used,
they have been listed.

Berlin, October 8, 2018

Signature

Contents

Acknowledgement

I thank God almighty for the blessings he had bestowed on me at every stage of my project. I
express my heartfelt gratitude to Prof. Dr.-Ing. R. Orglmeister, Technical University Berlin
and Prof. Dr.-Ing. Benno Stabernack, Fraunhofer HHI for being my thesis supervisors.
I would also like to thank Mr.Steinert Fritjof, Fraunhofer HHI for guiding me through
the implementation work. I extend my gratitude to Fraunhofer HHI for employing and
trusting me with the project. Last but not the least, I would like to thank my professors
and colleagues for the continued support. I thank my family for the continuous support
and the belief in me.

Amal Jose Vallavanthara v

Abstract

With the rise of new technologies like blockchain, Artificial Intelligence, Internet Of Things,
the demand for high performance computing is at its peak. Optimization in processors
are reaching a normalcy. This leads to the need of clustering large number of ASICs,
FPGAs, GPUs and TPUs to perform tasks. However, with the increase of cores leads
to increase in communication and management overheads. This leads to the need for
coherent services and driver management tools for efficient control of the devices and
data transfer between the cores. The thesis proposes a driver program which is used for
communication between the host PC with multiple Intel FPGAs. The driver will be able to
automatically detect and enumerate the FPGAs connected to the host device. Initial steps
include sending and receiving data over PIO through PCI express. The overall functioning
and optimization schemes of the PCIe will be studied in detail and implemented. Later,
DMA access will be implemented for faster data transfer between FPGAs. Choosing the
right size of the tokens in DMA transfer is of utmost importance for the overall speed of
data transfer and this varies from device to device. Various token sizes for transfer would
be analyzed and the best possible case will be implemented. The driver will be capable
of management of the different accelerators. The user gets real time information about
the parameters of the FPGA. It would also warn the user in case of inappropriate levels
of these parameters. This would enable the user to manage, maintain and control the
FPGAs connected to the server seamlessly. The SDK will be developed to enable developers
to use the functions without the need for understanding the minute framework details.
In a nutshell, the work would also provide a software layer that simplifies integration of
FPGAs into user applications and environments. It would consist of tools and libraries
to discover, enumerate, access, control and manipulate FPGAs. The project would also
include test programs to test its usability and to make sure that the management software
is implemented in perfection.

1

1 Introduction

1.1 Application Scenario

FPGA based accelerators are employed in a wide range of industries including communi-
cation, aerospace, defense, medical electronics, video and image processing, broadcasting,
automotive, security systems, high-performance computing, cryptography, artificial intel-
ligence, blockchain, etc. FPGAs are particularly beneficial compared to ASICs because
the cost is much lower especially for low volume productions. The time to market for an
application is also tremendously lower. FPGAs are increasingly adopted in enterprises,
scalable Data centers and high-performance computing centers in large numbers. FPGAs
are adopted as accelerators because complex problems in today’s industries cannot be
solved by faster CPUs. They require hardware specific acceleration.

These huge enterprises have a heavily armed IT team to manage and maintain the FPGAs.
However, many at times, the IT team isn’t fully knowledgeable in the hardware level details
of the FPGAs. Therefore they need an out of the box solution to manage and control the
FPGAs. This brings the need for a comprehensive package which could be installed and
used following a simple instruction set. The package should contain pre-developed tools
which could be used to obtain FPGA parameters like working conditions, throughput,
temperature, etc. A user-friendly GUI showcasing all the above parameters of every FPGA
would give the IT personals the ability to manage and maintain all its FPGAs with
ease.

The above is from the perspective of IT personals in charge of installation and maintenance
of the FPGAs. Another perspective to be considered is from the developer point of view. The
developer needs to use the FPGAs seamlessly in their user applications. These developers
need not know the hardware level details of the FPGA. They need their user applications
to enumerate, access, control and perform operations on the FPGA. They need user
applications to read and write data to the FPGA with maximum efficiency. The developer
needs to have a test environment to verify if the FPGAs are operating sustainably and
synchronously with their application. These would require robust test APIs which can
give immediate inspection results. The main purpose of FPGAs is to speed up the process.
Therefore parallel programming is an indispensable element of FPGA usage. Therefore
parallel programming APIs also need to be developed so that the user application can
perform operations on multiple FPGAs simultaneously.

In the particular case, the software is developed for an on-demand cloud-based HPC cluster

3

1 Introduction

solution provider which owns huge data centers and rents out its FPGA platform and
environment to clients to build test, simulate or run client applications. There would be
times when the FPGAs are shared among multiple clients. Therefore it is essential for the
different clients to be able to access the FPGAs simultaneously. There are cases where
multiple FPGAs need to be accessed by the same client simultaneously. Therefore serial
and parallel programming should be possible hand in hand. It would be an added selling
point for the solution provider if the clients could view the performance of the FPGAs from
anywhere around the world through a user-friendly interactive GUI.

In many cases, the performance of the driver needs to be varied. For instance, in cases of
usage within data centers, a huge amount of resources such as memory and CPU power
are available. Therefore, the driver would work at maximum efficiency in terms of latency.
However, if the FPGAs are to be used for development in a resource constrained server,
the available memory, power and cycles are limited. Therefore the driver should trade-off
overall speed to balance out all the other requirements. This arises the need for performance
altering of the system driver. In many enterprises, altering the performance of FPGAs in
real time is also a necessity. For instance, during the daytime, services which are customer
oriented should be prioritized. But during nighttime, when the customers are not so active,
operations and services within the enterprise could be provided more resources. Therefore
the driver software should be able to modify its resource usage in real time without affecting
the sustainability of the platform.

1.2 Definition of Goals of the work

Clear cut goals of the project were pre-defined so as to ensure speedy and efficient develop-
ment:

• Build a Character Device Driver to control and manage the FPGAs connected through
PCIe to the host server.

• Huge Data centres would have hundreds of FPGAs running in parallel. The driver
should detect and enumerate the FPGAs for management.

• The driver should be able to perform PIO read and write to each of the 16 sockets of
the FPGAs. The number of sockets might vary depending on the FPGAs.

• The driver should be able to perform DMA read/write operations from the user space
of the host server to the FPGA. This DMA transfer should be optimized in terms of
throughput, power consumption, latency, memory requirements, etc.

• The driver should be able to switch between polling and MSI interrupts to determine
completion of DMA transfers. MSI interrupts are efficient, but more complicated and
less versatile. Therefore depending on the platform the user should be able to switch
between the two.

4

1.3 State of the Art

• User space APIs to control and manage the FPGAs are to be developed. These APIs
gives the users the ability to control and manage the FPGAs without the need to
know the hardware level details. This enable speedy development of softwares and
applications.

• User friendly APIs and informative Documentation allows easy integration of the
FPGAs and its APIs into user applications.

• The driver could be used in different kinds of platforms and environments. Therefore
depending on the performance requirement, the performance of the FPGA need to
be altered.

• There are instances where several FPGAs need to be controlled from the same
application simultaneously. Separate APIs need to built be for this purpose.

• A test environment needs to be built which would test the sustainability and porta-
bility of the FPGA, the driver and platform. Test APIs are required to verify if all
the above requirements of the software are fulfilled all the time.

• For efficient control and management of the FPGAs, a user friendly GUI is to be
developed which would showcase FPGA parameters like temperature, performance
level, read and write throughput from anywhere around the world.

1.3 State of the Art

The section analyses the technological analysis and literature work done by experts in the
field. [KB12] shows a PCIe device driver using Xylinx FPGA used in IceCube Neutrino
Observatory(South Pole). It has a performance of upto 784MB/s for a 4 lane generation
PCIe bus. The [KMB14] also shows that the performance can be tremendously increased
by using a motherboard with a better chipset. The size of the buffer would also increase
the data rate. In 2014, [RCC+14] shows PCIe core adopted a new strategy wherein the
DMA descriptor list is stored inside the FPGA rather than the central memory. With
this approach a peak data transfer rate through the PCIe of upto 3.4GB/s was achieved.
[ZLBAM15] uses IOCTL functions to control the DMA read and write operations from
the user space.

[CPCAKMN18] writes about the PCIe DMA design for an FPGA developed for the detector
system at CERN LHC designed to study the properties of Quark Gluon Plasma. It is the
interface between the online-offline computing system and Common Readout Unit(CRU).
The design involves loop back flow of data for high performance data transfer. The length,
source and destination address are programmed into the descriptor table. The descriptor
table is then transported into the FPGA. Once the data transfer according to the descriptor
is complete, it updates the status register with the value 1. The paper mentions that a major
bottleneck for the implementation and increased latency was the register configuration for
source and destination addresses. This created dead time between two consecutive DMA

Amal Jose Vallavanthara 5

1 Introduction

data transfers. They reduced the dead time by looping over descriptor tables. This ensured
pipelining of descriptors. A series of tests were conducted to choose the appropriate number
of descriptors for maximum performance. Finally 128 descriptors were chosen and they
were able to achieve upto 6GB/s throughput in Gen3 8 lane mode. The design needs to
make sure some additional processes are performed to make sure that dead time for DMA
transfers is limited. [CPCAKMN18] states that the polling to check DMA status affects the
DMA performance considerably. It also states that future work is to consider developing
the same project on PCIe40 card.

[PDL15] implements PCIe readout with a throughput of upto 12GB/s using 16 lane PCIe.
The driver is developed for the LHCb experiment at CERN. The current hardware clocks
at 1.1 MHz and they need an upgrade to 40 Mhz. After careful consideration, they chose
the PCIe Gen3 technology. Performance analysis on i7-3820 CPU and i7-4770 CPU, shows
a variation of upto 10 percent. This shows the performance of the DMA operation is highly
dependent on the host platform as well.

6

2 Theoretical background

2.1 PCI express and Nallatech Board

2.1.1 PCI Express

PCIe was designed to add more features and performance to the older PCI [RB05]. PCIe
was designed such that it would be software compatible with PCI. This was done to make
sure that the older systems would be able to detect and configure the new PCIe without the
PCI express features. Therefore PCIe was designed with the same usage model and software
compatibility. However, they do come with differences, for instance, PCIe is designed
on serial bus technology whereas PCI was based on parallel bus [Abr15]. This reduced
the number of lines connecting the PCIe endpoint to the host PC thereby reducing the
complexity and cost. This increased the transaction frequency thereby increasing the overall
read and write throughput. Generation 3 of PCIe supports upto 8 GBps of transaction
rate theoretically. It has scalability where by the number of lanes used per device can be
varied. The data-sheet provides the specification for usage from 1 lane all the way upto 32
lanes. The lane width and the speeds are negotiated between the host complex and the
endpoint device during the enumeration process. Either the end point card or the root
complex can decide on the maximum lanes and throughput to be used. It is to be noted
that both the PCIe and PCI are only software compatible. Therefore a PCIe device cannot
be inserted into a PCI slot or vice versa.

Root complex is basically the host controller present on the server and provides slots on
which other PCIe cards can be connected. PCIe has its own memory address space which
can be either 32 or 64 bit. This address space is visible only to the PCIe devices such as
root complex, PCIe endpoints, switches and bridges. Switches are used to connect multiple
PCIe devices to the root complex. These switches can be used when the board doesn’t
contain sufficient slots for all the endpoint devices.

2.1.1.1 Structure

The root complex connects the external PCI and PCIe devices to the CPU [Abr15]. The
CPU initially accesses the root complex to configure the root complex IP and then finally
the external devices connected through the root complex [RB05]. Once the endpoint devices
are configured, the CPU uses the root complex for all further transactions with the endpoint.

7

2 Theoretical background

Figure 2.1: PCIe structure diagram

The root complex can send interrupts to the CPU for any event completion of the root
complex or of any of the endpoint devices. The root complex has direct access to the PC
memory. This capability is employed to perform high-performance DMA transfers between
the endpoint devices and the host PC. To enable DMA transfer, the root complex must first
provide the ’Bus Master’ status to the endpoint device. Further, it should send addresses
in the host PC’s memory to which DMA transfer should be performed by the endpoint
device. Devices are to be connected to the root complex through the root ports. Figure 2.1
shows the particular root complex has three root ports embedded into it. The first root
port is connected to the PCI device through the bridge. PCI-X (Peripheral Component
Interconnect eXtended) devices can also be connected using PCX bridges. Multiple PCIe
devices are connected to the 2nd root port using a PCIe switch. A PCIe device is connected
directly to the third root port.

PCIe uses point to point topology. In the mechanism, a single point to point bus would
connect two devices. The root complex contains a host bridge which connects the root
ports to the CPU. The root ports are all simple Virtual PCI-PCI bridges. A root complex
may have multiple Virtual PCI-PCI bridge. The host bridge is connected to the Virtual
PCI-PCI bridge through Bus 0. Each of this Virtual PCI-PCI bridge spawns separate

8

2.1 PCI express and Nallatech Board

buses through which other PCI devices can be connected. A switch inturn has multiple
Virtual PCI-PCI bridges. The root complex is connected to the Switch through the Virtual
PCI-PCI bridge which in turn spawns out a new bus. The multiple endpoint devices are
connected to the switch through new Virtual PCI-PCI bridges which in turn spawns out a
new bus for each of the devices. Each of the buses would be given a bus number or an ID
during the enumeration process by the host PC. These given buses numbers will be used
henceforth for routing the data. Each bridge or switch contain information about 3 buses
[KMB14]:

• Primary Bus number: The bus number through which the particular device is
connected to the root complex.

• Secondary Bus Number: The lowest bus number which is greater than the primary
bus number.

• Subordinate Bus number: The highest Bus number which is connected to the switch
or bridge.

Any transaction to a bus number equal to or greater than Secondary Bus Number and less
than or equal to Subordinate Bus number will be routed through the switch/bridge [Zha10].
PCIe uses lesser number of lanes compared to the PCI because of serial transactions.
Each lane consists of 2 pairs of RX and TX lines. PCIe, unlike PCI, has no separate IRQ
lines.

2.1.1.2 Address Space

The root complex can access the PCIe configuration space using the PCIe address space
[Abr15]. The PCIe configuration space provides the server all the required information
about the device. This information is used to enumerate the device and to allocate sufficient
resources to the device by the server. PCIe address isn’t a physical entity and is completely
virtual. It is a list of information used in the transaction layer packet to identify the
destination and source of the packet. The root complex comprises of root registers which
store the IP of the devices. It registers information like the clock frequency, the vendor
ID, device ID, lane widths, transaction speeds, address translation unit, etc. The address
translational unit is used to translate the CPU address space to the PCI address space
and vice versa. The root complex also has the configurable address space. It is used by
the CPU to access the PCIe address space. Every root complex contains the following 4
address spaces associated with them according to PCI specification:

• Configuration Space

• IO space

• Message Space

• Memory Space

Amal Jose Vallavanthara 9

2 Theoretical background

Figure 2.2: PCIe Address Space

All the above address spaces except memory space have physical addresses associated with
them. The configuration space contains all the information required by the root complex
about the device. This includes device ID, vendor ID, MSI capability, device class and
other various capabilities of the device. It has various registers to configure the capabilities
of the device. For example, changing the configuration values can put the device to a lower
power state or disable interrupts. These kinds of additional capabilities were added to
PCIe by including a bigger configuration space. The size was increased from 256 Bytes (in
PCI) all the way up to 4KB. The first 64 bytes is called standardized headers and are of 2
types-type 0 and type 1. Type 1 is used by root ports, switched and bridges. Type 0 is
used by the end point devices and holds all the information regarding its configuration. A
PCIe Address Space is created as shown in Figure 2.2. it maps the Configuration space of
the endpoint devices to the configuration space of the root complex memory. This mapping
is virtual and there is no physical PCIe addresss space as such.

2.1.2 Compute Acceleration Card - Nallatech 510T [1718]

It is an accelerator card for high-performance applications in Data Centers. The board
is specifically designed to house 2 FPGAs (Intel Arria 10) to deliver maximum per watt
performance. It uses 16 lanes Gen 3 PCIe cards. The 16 lanes are split up among both the
FPGAs. Its characteristics are as follows :

10

2.1 PCI express and Nallatech Board

• Performance upto 3 TFLOPs

• 75 GBps Peak DDR4 Memory bandwidth

• Upto 150 GBps Aggregate memory bandwidth

It has already been employed in the following markets:

• HPC

• Datacenter

• Compute, Network and storage

• Communications

• Industrial, Broadcast

• Automotive

• Medical

Figure 2.3: Nallatech Board

The actual performance of data transfer between FPGA and server is highly dependent
on the host server’s hardware specifications and operating system. It contains 8 banks
of DDR4 SDRAM. Each of the bank is of 4GB. Therefore, the system houses a total of
32GB memory with a transfer rate of 2133 MT/s. The card is designed to deliver upto
225W power consumption. But the actual power consumption is highly dependent on the
application running on it. The power is derived from 12V PCIe slot and one 8 pin AUX
connector. It has inbuilt sensors to detect voltage and temperature variations. The board
is designed so that the developer need not know the hardware level details and can instead
use the top layer abstraction for speedy software development.

Amal Jose Vallavanthara 11

2 Theoretical background

2.2 Linux Kernel - Memory allocation and parallel programming

The kernel is the core of the PC that acts as an inter-connecting bridge which connects
the user programs/applications to the underlying hardware. In short, kernel is where the
operating system of the device operates. The kernel performs the management operations
at the hardware level including data processing, memory and task management. Since a
number of applications need to use the hardware at the same time, proper synchronization
and control of the kernel are of paramount importance. Clear steps should be taken
so that no application can take control or hack into the kernel and control the rest of
the system. The segregation is also done to make sure that no bugs in any userspace
application affect the rest of the system. Thus, the system memory is divided into two
regions:

1. Kernel Memory

2. User Space Memory

2.2.1 Kernel Space memory

The operating system runs in the kernel of the system. Usually, in x86 architectures, there
are 4 rings of operation. Ring 0 - Kernel Mode, Ring 1 and 2 - usually used by Device
drivers, Ring 3 - User Mode. Ring 1 and 2 have "higher" privileged mode of access in
a way that they can use kernel memory space and hypervisor pages, but they can’t use
a privileged instruction. So this is the ideal place for drivers. The initial section of the
kernel memory is contiguously mapped and is called the lowmem. This is done to help in
easy memory mapping for transfer of data. When a memory is required by an application,
it is not continuously allocated in the kernel memory. It is allocated based on the flags
the user specifies and the available free space. This is performed with the mechanism of
virtual addressing. Virtual addressing gives the user application the notion that all the
allocated memory is continuous even though in the actual physical memory the allocation
is disjointed and separated. The virtual memory gives the user the abiloity to use some
parts of its hard drive as if it were its RAM.

The user application is given continuous ’virtual’ addresses by the Memory Management
Unit. The page table maps the virtual address to the actual physical address. The memory is
divided into fixed small sized blocks called pages. Memory should be allocated only in multi-
ples of page sizes for DMA transfer. The page size in the x86 architecture used for the develop-
ment of driver is 4096 Bytes. In x86 - 64 architectures, the virtual memory has address width
of 64 bits. However, only the least significant 48 bits are valid and provide the entire needed
information about the actual location of the physical memory. All the bits from the 47th
bit to the 63rd bit are copies of the exact 47th bit. Therefore the addresses span from 0x00
to 0x00007FFFFFFFFFFF, and from 0xFFFF800000000000 to 0xFFFFFFFFFFFFFFFF.
The userspace usually occupies the lower part of the memory. The kernel space memory

12

2.2 Linux Kernel - Memory allocation and parallel programming

occupies from the upper part of the memory from 0xFFFFFFFFFFFFFFFF and expands
downwards [DSM18].

This is also a major concern during memory mapping for data transfer to and from 32-bit
external devices. The memory mapped from the 32-bit devices may not be able to access
the kernel memory because it can’t tap 64-bit addresses from 0xFFFF800000000000 to
0xFFFFFFFFFFFFFFFF. Thus naive memory mapping wouldn’t work. Therefore in
such special cases, care must be taken to make sure that the memory allocated in kernel
space is in the lower part from 0x00 to 0x00007FFFFFFFFFFF. This can be done in 2
ways:

1. Set up the driver configuration such that the driver is loaded during boot time. This
gives a higher rate of successful allocation as the memory is usually free during boot
time and other applications may not have already procured the available memory.
This, however, is not suitable for a driver which needs to be modular and portable.

2. Use _GFP_DMA while allocating using kmalloc. The memory of the kernel space
is divided into 3 zones: normal zone, DMA capable zone and high memory zone.
Usually kmalloc allocates memory in the normal zone. But setting flags would make
sure that the memory is allocated in either of the other two zones. These zones are
platform dependent. In x86 architectures, DMA zone lies in the first 16MB of the
RAM. This is also dangerous because the allocation fails in case the first 16MB of
RAM is already filled.

#include<linux/slab.h>

void *kmalloc(size_t size, int flags);

Kmalloc allocation can be made contiguous in physical memory by using the right flags
[5018]. In x86 architecture, the maximum contiguous memory that can be allocated is
4 MB. Any allocation more 4 MB needs to be allocated separately. In the particular
implementation which uses more memory, the memories are allocated separately of 1MB
size each. The argument of kmalloc ’size_t size’ is the length of the buffer that needs to be
allocated and the second argument ’int flags’ is the flags that need to be considered during
allocation. One can also pass multiple flags using the OR operation. GFP_KERNEL is the
flag used for allocation. This is used particularly in cases where the allocation is not needed
to be atomic. This is because, in case the memory allocation fails, kmalloc puts the process
to sleep until sufficient memory is freed to allocate successfully.

2.2.2 User Space Memory

Userspace memory also popularly called userland is where all the user applications are
implemented. They have no access to the kernel functionalities unless used in privileged
mode. All the applications written in this space need to be transferred to the kernel space

Amal Jose Vallavanthara 13

2 Theoretical background

before they can be used by device drivers for passing the data to the external devices through
the PCI express. This can be achieved by using the copy_to_user and copy_from_user
functions available in the library include <asm/uaccess.h> [5018].

int copy_to_user(void *dst, const void *src, unsigned int size);

The copy_to_user function copies ’size’ amount of bytes from the kernel memory space
pointed by src pointer to the user space memory location pointed by dst* [Mad17]. It
initially checks if the source and destination addresses are accessible. If they are accessible
then, it moves on to check if the memory location is pinned to memory because the virtual
address page table could change at any time.

int copy_from_user(void *dst, const void *src, unsigned int size);

The copy_from_user function copies ’size’ number of bytes from the user space to the
kernel space memory pointed by the src and dst pointers [Mad17]. The kernel page
fault handler treats this as an inaccessible address rather than a kernel code bug if the
memory is not accessible by the function. This is an added ability/feature of the function.
The user space applications can communicate with the kernel through system calls. In
addition, ioctl(input-output control) function can be used to control the modules in the
kernel.

2.2.3 Parallel programming

For simultaneous access of multiple FPGAs, parallel programming is an indispensable tool.
This can be achieved in the systems by using multi threading. A thread is an independent
stream of instructions that can act independently from the main function [BB18]. On
running a developed program, the process is created by the operating system.A process
contains an overhead with the following parameters:

1. Process ID, process group ID, user ID, and group ID

2. Environment

3. Working directory.

4. Program instructions

5. Registers

6. Stack

7. Heap

8. File descriptors

9. Signal actions

14

2.3 DMA Memory mapping

10. Shared libraries

11. Inter-process communication tools (such as message queues, pipes, semaphores, or
shared memory).

A thread uses some of the above parameters owned by the main function. They run as
independent entities and duplicate only some of the above basic resources (Registers, Stack
pointers, Scheduling properties, etc). Pthreads is a standard specified by the IEEE POSIX
1003.1c standard (1995) for multi threading applications. Creating and managing threads
can be performed by much lower resources and overhead as compared to a process [BN11].
Pthreads enable efficient data transfer between different entities. Any number of threads
can be created using the following command:

pthread_create(&tid, NULL, start_fn, arg);

It is common that the different threads try to access the same registers or resources. If
multiple threads access access and change the memory simultanoeusly, it could cause
inconcourrency in the memory. Therefore the idea of mutex is introduced. This makes
sure that once a thread accesses and locks a resource, it cannot be altered by any other
thread. This locking and unlocking can be performed by using the following command
[Ber96]:

pthread_mutex_lock(m)

... ...

pthread_mutex_unlock(m)

2.3 DMA Memory mapping

There are basically two types of mapping for DMA read/write:

1. Streaming DMA mapping

This kind of mapping is done when the mapping is done right before a read or write is
performed and then once the task is complete, it frees the memory. This provides the
capability to optimize immensely for an application-specific task. However, the process
of mapping and unmapping for every read and write creates too much overhead and
decreases the overall efficiency.

2. Coherent DMA Mapping

In this mechanism, the mapping is performed on detection and enumeration of the
device initially. Once the mapping is performed, it remains until the memory is
freed during unloading of the module. This is specifically done when both the device
and the PC needs to see changes made in the memory in real time. The memory

Amal Jose Vallavanthara 15

2 Theoretical background

needs to be updated with the need for separate software flushing. Most importantly,
memory access should be possible to access by both the device and the PC in parallel.
Therefore the mechanism is also called synchronous mapping.

All the above arguments prove that Coherent DMA mapping is the best option for the
particular implementation. The first step to mapping is to check if the device is capable of
reading any memory location in the kernel. 32 bit external devices usually wouldn’t be able
to access locations in the upper part of the kernel memory from 0xFFFF800000000000 to
0xFFFFFFFFFFFFFFFF. The PCI device capability to read this section is highly device de-
pendent even for 64-bit external devices. This can be checked by using pci_dma_supported()
function available in the linux/pci.h library. If the device supports only the bottom
32 bit addressing then the kernel can be informed about such special cases by using
the dma_set_mask() function. Once this is done, the actual mapping is done using
pci_alloc_consistent() [5018]:

void *pci_alloc_consistent(struct pci_dev *pdev, size_t size,

dma_addr_t *dma_handle);

The function allocates a buffer of length ’size’ for the device ’pdev’ for the bus address
*dma_handle and returns a virtual address that points to the bus address and can be used
by the driver for all further operations. The FPGA memory is not cache coherent to the
PC because the onboard DDR-RAM could change independently. The memory should be
deallocated before the device driver is unloaded. A maximum of 4096 bytes of data can
be contiguously allocated by the PC. In case more memory needs to be DMA mapped,
they should be broken down and split into smaller non-contiguous memory blocks as is
implemented in later sections. The DMA controller used by the FPGA uses scatter gather
mechanism of DMA transfer. By scatter gather mechanism, it enables data from different
locations to be transferred in bursts to locations that are separated from each other. Thus
the data is being gathered from different locations in the source memory and then scattered
in different locations in the destination device memory.

16

3 Specification

3.1 Driver Development

A device driver controls, manages, directs and monitor an external device connected to
the host PC. An external device like a mouse, FPGA, keyboard can be controlled by a
software or another hardware which in turn is controlled by a software. The FPGA in
this implementation is connected to the host PC through the PCIe bus. A device driver is
broadly divided into 2 parts :

1. OS Specific

2. Device Specific

The OS specific part basically deals with how the kernel deals with the external device. It is
highly dependent on the operating system. Thus, a Linux, MacOS and windows driver vary
highly. The device specific part of the driver is the same irrespective of the OS platform the
driver is hosted on. The part needs to be programmed based on the data sheet provided by
the vendor. The data sheet includes specifics like the programming, operations, registers,
performance, etc.

The device driver in Linux provides an interface for the user in the user space to the kernel
space through system calls [XL17]. This system calls is the methodology in which users
can interact with the kernel to control, modify, operate a hardware related service, creation
or operation of new processes or even basic scheduling of processes. In Linux systems, the
drivers can be broadly classified into three:

1. Packet-oriented

2. Block-oriented

3. Byte oriented or character devices

The particular implementation uses the character vertical because the application demands
byte-oriented accessibility. Linux character drivers have an advantage that they can be
loaded and unloaded on the fly. In the case of windows, the system needs a reboot to
enable and disable the device driver. The kernel architecture of Linux is designed such that
these dynamically loadable drivers are called modules and built into individual files. These
files have a .ko extension and are called kernel objects. To dynamically load or unload a
module, the user can use the following commands

17

3 Specification

insmod <kernel object> - loads a driver

rmmod <module> - unloads a driver

lsmod - lists all current drivers

modprobe <module> - loads the module and all its dependencies

These modules are located by design in the /lib/modules/<kernel_version>/kernel in the
root directory.

The driver does not contain a main() function. It uses the headers files from the source code
of the kernel and not from the standard ’/usr/include’ as it is linked/loaded to the kernel
[5018]. The kernel used for the particular implementation is 3.10.0-862.el7.x86_64. The
module’s constructor is invoked on loading the file using insmod. The destructor is called
on unloading the driver using rmmod. These two functions are named by module_init()
and module_exit() in the kernel headers [Lae12]. Note that to build the file one needs to
have the kernel headers installed on the host PC. It is usually installed at /usr/src/linux
and should be verified before building the driver. The developer can also install the source
code using the command line [5018]:

Linux - yum install kernel-devel

Mandriva - urpmi kernel-source

Ubuntu - apt-get install Linux-source

The driver uses printk statements to debug and print information to the user. The syslog
daemon picks the messages from the log buffer and redirects the messages to the devices
based on the configuration file /etc/syslog.conf. The developer has the option to print the
statements only during debugging rather than the bombing the kernel’s log throughout.
These can be controlled by setting the log levels for each printk statement. The various
printk log levels are given by the following table.

The developer has the option to set each printk statement to different levels. The developer
can choose to view only a certain level or higher log messages during debugging. The
log level helps the kernel determine if the message is of utmost importance or not even
necessary at all and can decide if it should be shown at all. To change the log level to be
shown, the user can simply write into the file /proc/sys/kernel/printk. Reading this file
gives information regarding the log level chosen by the developer for the particular console
and the default log level.

Macros __init and __exit is used at the beginning of the functions to show that it is to
be built along with the kernel. Thus the system loads the driver on bootup and unloads
the driver during system shutdown. These functions are executed once on bootup and
shutdown. It is not relevant in case the driver is to be dynamically loaded and unloaded.
All functions with the __init keyword are saved in the init section of the kernel. This
optimizes the system as once it is loaded during boot time, the function is removed from

18

3.1 Driver Development

Name String Meaning
KERN_EMERG "0" Emergency messages, the system is about to crash or

is unstable
KERN_ALERT "1" Something bad happened and action must be taken

immediately
KERN_CRIT "2" A critical condition occurred like a serious hardware/-

software failure
KERN_ERR "3" An error condition, often used by drivers to indicate

difficulties with the hardware
KERN_WARNING "4" A warning, meaning nothing serious by itself but might

indicate problems
KERN_NOTICE "5" Nothing serious, but notably nevertheless. Often used

to report security events.
KERN_INFO "6" Informational message e.g. startup information at driver

initialization
KERN_DEBUG "7" Debug messages

KERN_DEFAULT "d" The default kernel loglevel

Table 3.1: printk Message logging Levels

the RAM. This optimizes the PC because if the host PC is shutting down it doesn’t need
to clear the RAM anyway. The kernel can decide if the exit section needs to be invoked at
all based on the situation, thus optimizing the host PC. A user can communicate with the
driver of any device only through its character device file linked to it using the Virtual File
System [JC05]. When the user performs any operations on the device file, it is translated
by the VFS to its corresponding functions in the kernel space. These functions perform the
required actions in the low hardware level.

3.1.1 Connecting User Application to FPGA

A complete connection from the user to the endpoint device actually involves the synchro-
nized connection of the following four entities:

• Application

• Device File

• Device Driver

• FPGA

Each of these entities can exist independently but to truly connect from the user to the
FPGA, each of the entities should be linked to each other. The driver is linked to the
FPGA by low-level device specific operations. The driver is linked to the device file by
appropriate registration. The application connects to the device file by using open system
call functionality from the userspace. The application can connect to the device file using
the file name. The file name in the implementation is ’intelfpgadev<fpga number>’ By

Amal Jose Vallavanthara 19

3 Specification

Figure 3.1: General Working Scheme of a Driver

using the required <fpga number> the application can connect to the device file of any of
the FPGAs. The connection between the device file and device driver uses a combination
of numbers called the major number and minor number to establish the link. It is a pair
<major, minor> defined as dev_t in linux/types.h. The driver can be connected to the
device file by the following steps [JC05]:

1. Register the major and minor number of the device file.
The following function dynamically allocates a free major number to the device file
and sets cnt as the minor number [5018].

int alloc_chrdev_region(dev_t *first, unsigned int firstminor,

unsigned int cnt, char *name);

2. Link the device file operations to the driver functions.
Device files were created automatically by the kernel itself in earlier versions of Linux.
However, from kernel version 2.4, the kernel only populates the device information
and device class into the /sys window. The udev uses this information to create
the device file [1218]. Udev can then be configured to modify the device file names,
permission and types. The driver initially only needs to set in the right information
into the /sys window. The device class can be created by using the following function
[5018]:

20

3.1 Driver Development

struct class *fpgaclass = class_create(THIS_MODULE, "FPGA_class_name");

Further, the device major and minor number can be linked by using the func-
tion:

device_create(fpgaclass, NULL, <device number>, NULL, "<device name>");

On unloading the driver initially the device should be destroyed and then the class should be
deleted. The following functions should be invoked in the same order:

device_destroy(fpgaclass, <device number>);

class_destroy(fpgaclass);

The device file is like any other Linux file and hence any operation applicable on an ordinary
file is possible with device files. The only difference is that for device files, there is a VFS
layer underneath which converts the operations into functions in the kernel level. The VFS
should be informed about the link between the file and driver. This basically consists of
two steps[1218]: Populate the file operations structure (struct file_operatons) with the
desired operations to be performed by the driver (.open, .close, .read, .write, .probe) and
then initialize the character device structure using cdev_init(). Finally pass the initialized
structure to the VFS using the function cdev_add() from the header <linux/cdev.h>
[JC05].

3.1.2 Read and write the Device File

By using the above functions, the system creates the following device files in
/dev

/intelfpgadev1

/intelfpgadev2

Now on performing a read operation using the .read from the device file, the VFS in the
kernel decodes the major and minor number and directs the message to the appropriate
driver function defined by the structure file_operations. It performs the read operation
that has to be hardcoded by the developer in the driver. It finally returns the number of
bytes that is read. The driver reads the data from the external device and then writes
them into the specified buffer in the user space. The write operation performs the opposite.
The user specifies the number of bytes to be written from the user space into the external
device. The system actually reads the data from the user space and then writes them into
the external space [Buc04].

Amal Jose Vallavanthara 21

3 Specification

3.1.3 Input-output Control

Input/Output Control (ioctl) is a system call available in almost all driver categories [1218].
The advantage is that it can be used for all control operations of the external device.
In addition, it can be used for changing the parameters or operations of the driver by
itself. This is achieved by its arguments: command and argument. The command is the
number that represents the action to be performed. The arguments are the list of values
that need to be passed from the user space to kernel space or vice versa to perform the
operations. The ioctl() function implements a switch() such that based on the command
number, it can choose what operations to perform. The following is the function definition
[5018]:

long ioctl(struct file *f, unsigned int cmd, unsigned long arg);

Where:

struct file *f is the pointer to the device file

int cmd - command number for the operation to be performed

unsigned long arg - structure containing all variables to be passed

from user to kernel space or vice versa

It is initialized by filling the structure file_operations with the appropriate function pointer
.ioctl just like .read, .write, .open, described earlier. The function is invoked from the user
space just like pread, pwrite, open, close functions. The developer should use a number
that is unique throughout the system to issue an ioctl command. Else, it could cause errors
such as issuing the right command to the wrong device. To create unique command codes,
the bitfields of the command number has been split up. It uses 4-bit fields which have the
following meaning [1218]:

[bits 31:30] Direction: The field depicts the direction in which data

is transferred.

_IOR - Data is transferred from kernel space to user space.

_IOW - Data is transferred from user space to kernel space.

_IO - Data is transferred in both directions.

[bits 29:16] Size: The size of the argument that is passed.

[bits 15:8] Type: This is the 8-bit magic number and should be used throughout.

It is 8 bit wide.

[bits 7:0] Original command number - defined as per our requirement.

22

3.1 Driver Development

Another issue that arises with the ioctl function is the second argument. The second
argument passes a pointer to a structure with several variables. It is the driver’s duty
to make sure that the pointer in the user space is accessible by the driver in the kernel
space. This can be checked by using the access_ok() function. It checks that the pointer is
located in a region that is accessible by the driver. It also ensures that the pointer is not
present in the kernel space. In the implementation ioctl is used for the following purposes
by including the command number in system calls :

FPGARDGETTRANSFERRATE
To obtain the transfer rate of the last DMA read in GB/s

FPGAWRGETTRANSFERRATE
To obtain the transfer rate of the last DMA write in GB/s

FPGAMSIINT
To manually enable MSI interrupts to determine read or write completion

FPGAPOLLINT
To manually enable polling to determine read or write completion

FPGAWRITEDMA
To write data from user space to FPGA through ioctl function

FPGAREADDMA
To read data from FPGA to user space through ioctl function

FPGAPERFORMANCE
To control the performance level of the FPGA driver. The driver has 3 levels of operation
based on memory and speed constraints.

FPGATEMPERATURE
To read the temperature of the FPGA through ioctl function

FPGAGETPERFLEVEL
To obtain the performance level that the FPGA driver is currently working on

FPGAGETNUMOFDEVICES
To obtain the number of FPGAs that the driver has successfully enumerated and connected

Amal Jose Vallavanthara 23

3 Specification

3.2 DMA transfer

3.2.1 Design of DMA transfer

Implementation of DMA transfer between the host PC and the FPGA is the precarious
and most complex section of the implementation. The user has all its data in the user
space. However, there is a separation between the user space and kernel Space. A possibility
to solve the issue is by mapping the user space to the kernel space from which data is
transferred [XL17]. However, this mapping of DMA for character device files causes a
lot of complications as shown in section 3.2.1.1. Therefore the data needs to be copied
from the user space to the kernel space and then to the FPGA. This causes an increase
in latency in data transfer and decreases the performance of the whole system because
of the additional copy operation. Efficient algorithms need to be implemented to make
sure that the data transfer from the user space to kernel space and from the kernel space
to the FPGAs take place parallely without causing much utilization of the PC and time
overheads. From a software engineering point of view, the efficiency can be increased by
the formula [RG95]:

Tn = [f + (1− f)/N] ∗ T1

-Where f is the task that cannot be parallelized. 1−f is the section that can be parallelized
byN different threads/processors. Then Tn is the efficient timing derived from parallisation
by N threads and T1 is the naive timing.

However, the optimization task has to keep in mind the available resources as well. In huge
data centers with plenty of available resources in terms of memory and CPU power, timing
efficiency is the only parameter to be considered and optimized. But in cases where the
FPGA is to be used on the go, optimization should be done considering other parameters
like memory usage, power optimization, etc.

DMA transfer has to be done in two phases:

1. Data needs to be transferred between user space and kernel space

2. Data needs to be transferred between kernel space and the FPGA

3.2.1.1 User Space to kernel space

The first question that arises is can’t the user space and kernel space be memory
mapped. It is not the best option for character devices because of the following rea-
sons.

1. In kernel mode, the code has complete and unrestricted access to the memory and
underlying hardware. This is a serious threat as the it would create vulnerabilities

24

3.2 DMA transfer

to malicious activities. Hackers could use the loophole to disrupt the security of the
device.

2. Crashes in Kernel mode are catastrophic, they would crash the whole PC and in
worst case affect the operating system is such a way that there is no comeback. So
it wouldn’t be a good idea to let a device driver to device the fate of the entire PC
where many applications run in parallel.

3. Kernel Mode code has higher performance. The only extra time consumption is the
time taken to transfer data from user space to kernel space. If this latency is overcome,
using driver in kernel space is beneficial. The following section elaborates on how to
reduce this time and increase performance.

3.2.1.2 Kernel Space to FPGA

The ideology for DMA mapping is that an external device will be able to perform and control
the data transfer without the CPU usage of the server [Buc04]. By letting the external device
control the DMA transfer, the PC doesn’t lose clock cycles and can be revert to perform
more indispensable tasks. The DMA transfer is performed by the DMA controller in the
FPGA using 128 descriptors (Detailed explanation in section 3.2.2).

The driver is implemented by 3 different mechanisms. The DMA read and write com-
mand can be performed from user space by using the APIs developed. The 2 APIs used
are:

void dmaread(ssize_t file, char *buf, u_int64_t len, u_int64_t off)

void dmawrite(ssize_t file,char *buf, u_int64_t len, u_int64_t off)

Dmaread API transfers data from the host PC user space to the FPGA. Dmawrite API
transfers data from the FPGA to the host PC user space. The user has to pass the following
arguments while invoking the function in case of DMA read:

• Driver file opened using opendriver function (the number that is used to reference
the FPGA)

• The pointer to the data that is to be transmitted.

• The size of data to be transmitted

• The offset address location in the FPGA to which data needs to be transmitted.

In the present driver, the read is done through driver built-in function .read. Additional
capability is also provided for the driver to implement using input-output control functions
(ioctl). In the kernel driver, the function copy_from_user is used to transmit data from
the user space to the kernel space [Lin12].

Amal Jose Vallavanthara 25

3 Specification

The next step in DMA transfer is to calculate the number of descriptors required to
transmit the data. Each descriptor can send a maximum of 1MB of data. There are only
128 descriptors in total. So in case, the user needs to transmit 8.5MB of data, the driver
needs to deploy 9 descriptors. The first 8 descriptors transfer 1MB each. The final descriptor
transmits the last 0.5MB of data. In cases where the user needs to transmit more than
128MB of data, complex algorithms are developed such that the data is transmitted in
blocks of 128MB each. Each block consists of 128 descriptors which transmit 1MB of data
each. Algorithms are also developed such that the offset address from which data needs to
be read and the destination address to which the data needs to written is calculated for
each descriptor within each block.

Total_Number_of_Blocks = Total_Data_Size / 128

Total_Number_of_descriptors = Total_Data_Size / 1

If(Total_Data_Size / 128 == 0) Total_Number_of_Blocks++

If(Total_Data_Size / 1 == 0) Total_Number_of_descriptors++

Data Size transferred per descriptor = 1

Source address of each descriptor data = (1*Descriptor Number)

+ (128*Block Number) + Base address of source data

Destination address of each descriptor data = (1*Descriptor Number)

+ (128*Block Number) + Base address of Destination data

Data Size for last descriptor of last block =

Total_Data_Size % Total_Number_of_descriptors

The above algorithm divides the total data size by 128 to calculate the number of blocks
because the DMA controller of the FPGA possesses only 128 descriptors. The total data
size is divided by 1 to calculate the number of descriptors because the Data size transferred
per descriptor is 1 MB. In figure 3.2, 258 MB of data needs to be transferred by DMA
write. 258 MB of data is split into 3 blocks. The first 2 blocks transfer maximum capacity
of 128 MB using 128 descriptors each. The third block transmits 2 MB using only 2
descriptors.

In this mechanism of data transfer, buffers of 1 MB are used to transfer data. This basically
involves two steps:

1. Transfer of data from user space to kernel Space

2. Transfer of data from kernel Space to FPGA memory

The maximum efficiency from the driver point of view can be derived if the above two
operations are done in parallel. Transfer of data from User Space to Kernel space takes

26

3.2 DMA transfer

Figure 3.2: Splitting Data Chunks for DMA Transfer

around 11 percent of the total time to transfer data from the user space all the way to the
FPGA memory [WsCTS03]. This 11 percent time is the maximum that the driver could
save if an efficient parallel algorithm is implemented.

Figure 3.3: Maximum Parallelization Possible for DMA transfer

3.2.2 DMA Controller

The DMA controller present in the FPGA controls the read and write operations of the
FPGA. The particular FPGA supports 128 descriptors each for read and write operations.
The read and write are from the point of view of the FPGA. They are controlled by the

Amal Jose Vallavanthara 27

3 Specification

read data mover and the write data mover. The read data mover transfers data from
the PCIe address space in the root complex memory to the FPGA memory. The write
data mover transfers data from the FPGA memory to the PCIe address space in the root
complex memory. Initially, the driver should program the 128 descriptors and its contents
in the PCI address space. The descriptors basically consist of information regarding the
length, source and the destination address for each data transfer. the DMA controller
works similar to Intel FPGAs as mentioned in [Ua17a]. In addition to the descriptors, the
PCIe address space in the root complex memory should also have 128 status registers each
of 1 DWORD. In the particular implementation, each DWORD is 4 Bytes. The status
table consisting of 128 DWORDS. On completion of the task by each DMA descriptor,
the status register corresponding to the descriptor byte is updated. The DMA controller
has the capability to update the corresponding status register by a single ’Done’ bit after
completion of each and every enabled descriptor. This option can be enabled by setting
the configurations in the DMA controller table. Polling can be done by the root host PC
to check if the descriptor task is completed. In addition, the DMA controller sends an MSI
interrupt after completion of all the enabled descriptors. Receiving MSI interrupts rather
than polling will not improve the latency by a considerable amount but in turn, saves
clock cycles of the host PC as it can avoid polling to check if the status register has been
updated. The descriptor table is located in the PCIe address space in the root complex
memory after the 128 status registers. The 128 status registers and the descriptors should
be in a 32-byte boundary in the root complex memory [Ua17a].

The descriptors are numbered from 0 to 127. Therefore Descriptor would have ID 0, the
second descriptor would have ID 1 and so on until the 128th Descriptor has ID 127. The
RD_DMA_LAST_PTR is a location 0x010 in the descriptor table. A read from this
register specifies the last ID of the descriptor that was read. To trigger more reads one
should write the ID of the descriptors to be read. The user could trigger all the descriptors
by writing the last ID of the descriptor to be enabled. To enable all the 128 Descriptors, the
ID number 127 should be written into RD_DMA_LAST_PTR. For example, if the read
ID at RD_DMA_LAST_PTR is 71 and the user needs to enable 3 more descriptors, the
user should fill in the details of the Descriptors of ID 72 73 and 74. Finally, the user should
write 74 to the location RD_DMA_LAST_PTR. The same is applicable for DMA write.
The user should similarly use the RD_DMA_LAST_PTR register at location 0x110. It is
important to note that the descriptors could have out of order completion i.e. Descriptor
ID 72 could complete before Descriptor ID 73. The MSI interrupt is shot the moment ID 73
is completed. Therefore the MSI interrupts cannot be completely depended on for deciding
whether all the descriptors have completed their tasks. Many commercial systems are based
on out-of-order completion so as to optimize the access to host memory channels. This is
especially the case when the descriptors transfer data of different lengths. To overcome this
issue, the implementation of the driver has taken the following steps:

• All the descriptors except the final descriptor transfers data of the same length.

28

3.2 DMA transfer

Address Offset Register Description
0x0000 RC Read Status and Descriptor

Base (Low)
Specifies lower 32 bits of the 32-
byte boundary read status and
descriptor table in the root com-
plex memory

0x0004 RC Read Status and Descriptor
Base (High)

Specifies upper 32 bits of the 32-
byte boundary read status and
descriptor table in the root com-
plex memory

0x0008 EP Read Descriptor FIFO Base
(Low)

Specifies lower 32 bits of the 32-
byte boundary read status and
descriptor table in the FPGA
memory

0x000C EP Read Descriptor FIFO Base
(High)

Specifies upper 32 bits of the 32-
byte boundary read status and
descriptor table in the FPGA
memory

0x0010 RD_DMA_LAST_PTR The user should write the ID
of the descriptors to be enabled.
When read, specifies the last de-
scriptor that was requested by
the user.

0x014 RD_TABLE_SIZE Specifies the total number of read
descriptors. Set to the value =
number of descriptors-1. The de-
fault and maximum value is 127.

0x018 RD_CONTROL 0 - Update only the last status
register after all reads are com-
pleted.1 - Update every status
register immediately after com-
pletion of corresponding descrip-
torâ€™s task.

Table 3.3: Read Descriptor Controller format [Ua17a]

• The final descriptor always transfers data of a length equal to or less than the previous
descriptor.

• In case of polling, the register RD_CONTROL at 0x0018 is enabled. This makes
sure that each status register corresponding to each descriptor is updated with Done
bit the moment the descriptor completes its task. However, this can be useful only in
cases where polling is done.

Amal Jose Vallavanthara 29

3 Specification

Address Offset Register Description
0x0100 RC Write Status and Descriptor

Base (Low)
Specifies lower 32 bits of the 32
byte boundary write status and
descriptor table in the root com-
plex memory

0x0104 RC Write Status and Descriptor
Base (High)

Specifies upper 32 bits of the 32
byte boundary write status and de-
scriptor table in the root complex
memory

0x0108 EP Write Descriptor FIFO Base
(Low)

Specifies lower 32 bits of the 32
byte boundary write status and
descriptor table in the fpga mem-
ory

0x010C EP Write Descriptor FIFO Base
(High)

Specifies upper 32 bits of the 32
byte boundary write status and
descriptor table in the fpga mem-
ory

0x0110 WR_DMA_LAST_PTR User should write the ID of the
descriptors to be enabled. When
read, specifies the last descriptor
that was requested by the user.

0x0114 WR_TABLE_SIZE Specifies the total number of write
descriptors. Set to the value =
number of descriptors-1. The de-
fault and maximum value is 127.

0x0118 WR_CONTROL 0 - Update only the last status
register after all writes are com-
pleted.1 - Update every status reg-
ister immediately after completion
of corresponding descriptorâ€™s
task.

Table 3.5: Write Descriptor Controller format [Ua17a]

30

3.2 DMA transfer

Address Offset Register Name Description
0x00 RD_RC_LOW_SRC_ADDR Lower 32 bit address of data to

be read in root complex mem-
ory

0x04 RD_RC_HIGH_SRC_ADDR Upper 32 bit address of data to
be read in root complex mem-
ory

0x08 RD_CTLR_LOW_DEST_ADDR Lower 32 bit address of destina-
tion address in FPGA memory

0x0C RD_CTRL_HIGH_DEST_ADDR Upper 32 bit address of destina-
tion address in FPGA memory

0x10 CONTROL Specifies the following informa-
tion:Descriptor ID. Size of Data
to be transmitted

0x14 Reserved N/A

Table 3.6: Read Descriptor format [Ua17a]

3.2.2.1 Read and write DMA descriptor format

The read and write descriptor tables are present separately at different offsets. For the par-
ticular implementation, they are present at offsets 0x00000004 and 0x00002000 respectively
in the FPGA memory. The read and write table have 128 descriptors each respectively of 8
DWORDS each. The locations of the status registers and descriptors in the root complex
memory and the FPGA memory should be programmed initially into the registers in the
DMA descriptor controller tables. The descriptor table is to be present at offset 0x200
from the status table base address. The DMA controller automatically adds this offset
into the base address of status register entered in the descriptor controller table to find
the descriptor table. Each descriptor can transmit a maximum of 1MB data. Writing the
descriptor ID into the location in the descriptor controller table triggers the DMA read
or write operation. Therefore precaution should be taken to write into the register only
after initializing the controller table, status table and the descriptor table. Programming
the controller table during DMA transfers isn’t allowed. In addition, programming the
controller table until all the previously specified number of descriptors is not allowed
because it follows a FIFO model.

Amal Jose Vallavanthara 31

3 Specification

Address Offset Register Name Description
0x00 WR_RC_LOW_SRC_ADDR Lower 32 bit address of data

to be transferred from FPGA
memory

0x04 WR_RC_HIGH_SRC_ADDR Upper 32 bit address of data
to be transferred from FPGA
memory

0x08 WR_CTLR_LOW_DEST_ADDR Lower 32 bit address of desti-
nation address in root complex
memory

0x0C WR_CTRL_HIGH_DEST_ADDR Upper 32 bit address of desti-
nation address in root complex
memory

0x10 CONTROL Specifies the following informa-
tion:Descriptor IDSize of Data
to be transmitted

0x14 Reserved N/A

Table 3.7: Write Descriptor format [Ua17a]

32

3.2 DMA transfer

3.2.3 Algorithms for efficient DMA transfer

Once this is done, based on the previously selected performance level, the appropriate
transaction algorithm is employed. The three different developed options for DMA transfer
are the following:

• Polling

• MSI - Minimal Performance

• MSI - Maximal Performance

3.2.3.1 Polling

In this algorithm for implementation, 4 buffers are used for transmitting data from user
space to kernel space. The number of buffers can be varied before loading the driver. The
algorithm is implemented such that the number of buffers can be changed from 2 to 4
before loading the driver. The user has the ability to choose the number of buffers based
on the memory constraints of the system. The implementation uses polling to determine
if the user DMA controller has finished the task i.e. if the descriptor has completed the
transfer of data. The DMA controller updates the value of the status register corresponding
to the descriptor number on completion of the task. The CPU needs to keep polling this
register to determine if the transaction is completed. In case of N buffers, the CPU copies
1 MB of data to each of the N buffers in the kernel space from the block of data from
the userspace. The moment it completes writing to the (N-3)rd buffer, the DMA transfer
by the FPGA is triggered. On updating the Nth status register with the done bit, the
copying from userspace starts again to the buffers. This increases the efficiency of the DMA
read operation by 9 percentage compared to the Naive implementation. This is the default
configuration chosen on driver startup. Figure and depicts the timeline diagrams for DMA
read and DMA writes respectively.

Amal Jose Vallavanthara 33

3 Specification

F
igu

re
3.4:

D
M
A

transfer
from

user
space

to
F
P
G
A

for
P
olling

34

3.2 DMA transfer

F
ig
u
re

3.
5:

D
M
A

tr
an

sf
er

fr
om

F
P
G
A

to
us
er

sp
ac
e
fo
r
P
ol
lin

g

Amal Jose Vallavanthara 35

3 Specification

3.2.3.2 MSI - Minimal Performance

The implementation varies from the Polling implementation in the following
ways:

• Uses MSI interrupts rather than polling to determine if the DMA read/write task is
completed.

• Uses 128 1MB buffers in the kernel space to perform the task

In this mechanism, the driver receives the offset, size and pointer to starting address in
user space. The program splits the huge data chunk into blocks of 128 MB each. The 128
MB blocks are further divided into sub blocks of 1 MB each. The starting address of each
of the blocks are programmed into the descriptors with appropriate lengths and offsets,
Precautions should be taken such that the destination offsets are also programmed into the
descriptors with appropriate destination offsets. The status registers should be initialized
to 0. In case of DMA read, the data is copied from the user space to kernel space using
the copy_from_user function. Once this is completed, the DMA transfer is enabled by
triggering the RD_DMA_LAST_PTR in the descriptor controller table. The process
goes to sleep after RD_DMA_LAST_PTR is triggered until it receives an MSI interrupt
from the FPGA. Once the MSI interrupt is received, it performs the same operations with
new block of data until the entire chunk is transferred. In case of DMA write, the chunk
of data in the FPGA DDRAM memory is split into separate blocks. These blocks are
subdivided into sub blocks of 1 MB each. The offset address of each of the sub block is again
programmed into the descriptors. These are copied to the kernel memory by triggering the
WR_DMA_LAST_PTR. Then the thread goes to sleep until it receives the MSI interrupt.
The process is repeated until the entire chunk of data is transmitted. To parallelize the copy
from user space to kernel space and transfer to FPGA, atleast 2 set of buffers is required.
Using 2 sets of 64 buffers rather than a single set of 128 buffers increases the overhead as
the descriptors and DMA controller needs to be reprogrammed after every 64MB transfer
of data. In addition the thread has to be put to sleep and wait for MSI interrupts after
every 64MB of data which is additional latency. The tradeoffs between efficiency gained to
memory utilized should be considered. In applications where the memory utilization and
CPU utilization are constrained, the particular implementation can be used. Figure 3.6
and 3.7 depicts the DMA read and write using MSI interrupts.

36

3.2 DMA transfer

Figure 3.6: DMA transfer from user space to FPGA for MSI - Minimal Performance

Figure 3.7: DMA transfer from FPGA to user space for MSI - Minimal Performance

Amal Jose Vallavanthara 37

3 Specification

3.2.3.3 MSI - Maximal Performance

The implementation uses 256 Buffers of 1MB each for DMA read and write. 256 buffers
are used so that copy from user space to kernel space and transfer of data from kernel
space to FPGA can be done in parallel. This saves the 10 percent time of total time
taken to transfer data from user space to kernel space. It wouldn’t be technically feasible
to decrease the number of buffers, the FPGA by designed to transfer 128 MB with its
provided 128 descriptors at one go. Therefore trying to decrease the buffer by any smaller
amount and performing overlap wouldn’t optimize much considering the overhead involved
in parallelizing the code including waiting for MSI interrupts twice rather than once every
128 MB of data and reprogramming the descriptor controller and triggering the transfer.
This is the reason the implementation is parallelized with exactly 2 sets of 128 buffers. In
case of DMA read, the data is first split into smaller blocks of 128 MB. The block is copied
to kernel space from user space. Then the Descriptors are programmed and finally the
DMA controller is programmed and RD_DMA_LAST_PTR is triggered. The thread then
moves on to process the next block of data and are then copied again from user space to
kernel space. The FPGA parallely transmits the first block of data to the FPGA DDRAM.
Once the copy of the 2nd block to kernel space is done, the thread goes to sleep until the
FPGA completes its task and sends the MSI interrupt. On receiving the MSI interrupt,
the RD_DMA_LAST_PTR is triggered again and the FPGA passes the 2nd block of
data to the FPGA DDRAM. This process repeats again until the entire chunk of data
from user space is transmitted to the FPGA DDRAM. Similarly for DMA write, the host
PC, initially divides the data in the FPGA DDRAM into separate blocks. The FPGA
DMA controller’s RD_DMA_LAST_PTR is triggered so that the first block of data is
transmitted. On completion the 2nd block of data is triggered. On completion of transfer
of the first block of data to the kernel space, it sends an MSI interrupt to the host PC.
On receiving the first MSI interrupt, the host PC transfers the 1st block of data to the
user space from the kernel space. Likewise on receiving the 2nd MSI interrupt it copies
the 2nd block of data from the user space to the kernel space. This process is repeated
until the entire chunk of data is transmitted from the FPGA to the host PC’s user space.
Figure 3.8 and 3.9 depicts the DMA read and write operation for the implementation.

38

3.2 DMA transfer

Figure 3.8: DMA transfer from user space to FPGA for MSI - Maximal Performance

Figure 3.9: DMA transfer from FPGA to user space for MSI - Maximal Performance

Amal Jose Vallavanthara 39

3 Specification

3.3 MSI interrupts

A Message Signal Interrupt is a write operation from an external device to a predefined
location in the CPU [RB05]. This write triggers an interrupt in the CPU. The MSI
interrupt was initially first introduced in PCI 2.2. A new optimized implementation was
also introduced from PCI 3.0 onwards called MSI-X. The external device can support
both MSI and MSI-X. It is designed by specification and possible to use only either of the
interrupts for any particular driver implementation. The device driver implementation uses
only MSI interrupts and doesn’t support MSI-X interrupts. The MSI interrupts are preferred
over pin based interrupts because of the following reasons [Bot18]:

• Pin-based Interrupts are shared among several external devices. When an interrupt is
received, that is, when a write is done to the special address, the kernel has to invoke
the interrupt handler associated with each device and need to finally determine which
device had sent the interrupt. This causes additional latency and undermines the
idea of using interrupts to speed up the process.

• Functions in PCI devices support only a single pin-based interrupt [Bot18]. The
function then has to analyze, query and determine what the interrupt was for. This
increases the latency. However, the PCI devices can program the driver such that
each MSI interrupt has a separate reason. Thus making the interrupt and subsequent
decision making faster.

• Usually, the external device sends the data and then triggers the interrupt. But there
is a huge possibility that the interrupt sent by the external device reaches the host
PC before all the data reaches. This is a problem and the host PC needs to reconfirm
the same. The PCI transaction rule states that the value of the special register
should not be returned before all the data arrives in memory. In MSI interrupts, the
interrupt generating write is a separate entity compared to the data write entity.
Since the interrupt generating write sends a signal after the data write is complete,
it is reaffirmed and need no further verification by the host PC.

From the Linux kernel point of view, the following flags should be set in the kernel config
file [Bot18].

CONFIG_PCI_MSI:
This allows device drivers to enable MSI (Message Signaled Interrupts). MSI enable a
device to generate an interrupt using an inbound memory write on its PCI bus instead of
asserting a device IRQ pin.
X86_UP_APIC:
A local Advanced Programmable Interrupt Controller) is an integrated controller in the
CPU. The local APIC supports CPU-generated self-interrupts.
CONFIG_IRQ_REMAP:
Supports Interrupt remapping for IO_APIC and MSI devices

40

3.3 MSI interrupts

The following function allocates the special address for the interrupt write in the host PC
and enables the MSI interrupt [5018].

int pci_alloc_irq_vectors(struct pci_dev *dev, unsigned int min_vecs,

unsigned int max_vecs, unsigned int flags);

The device has the capability to request for a number of MSI interrupts. The maximum
number allowed per device is 32 [Buc04]. It allocates MSI interrupts in the order of 2.
Therefore 2, 4, 8, 16 or 32 interrupts can be requested by the device. However, the number
of interrupts that are actually allocated to the device is decided by the kernel and is
returned by the function. The function returns a negative value if no interrupts were
allocated to the device. The driver should specify if it requires MSI or MSI-X capability as
well during the function call.
The driver then should determine the IRQ number by using the following function
[5018]:

int pci_irq_vector(struct pci_dev *dev, unsigned int nr);

When a PC receives the interrupt request (IRQ), it pauses its present running program
and invokes an interrupt handler to run instead. An external device sends its interrupts
through the IRQ line. The x86 system used in the implementation has a separate Advanced
programmable Interrupt handler (APIC) that is integrated with the system. The APIC has
255 physical hardware IRQ lines each. Two devices are allowed to share the IRQ by using
the IRQ shared flag. However, both the devices are not allowed to use them simultaneously.
The external device derives all the information it requires about where and what signal to
send as MSI interrupt through the MSI capability register. The register is configured by
the kernel of the host PC during loading of the driver. The MSI capability register provides
the following information to the device:

• Target address for interrupt write

• The number of MSI messages possible

• Value to be written into the address

3.3.1 MSI capability register

Every PCIe device has an MSI Capability register set within its configuration space. This is
used for communication between the driver and the device to exchange the above-mentioned
information.

Amal Jose Vallavanthara 41

3 Specification

Figure 3.10: MSI capability register [RB05]

3.3.1.1 Capability ID

The capability ID for the MSI capability register is 05h and is hardwired and can only be
read by the driver [RB05].

Finally, the API pci_enable_msi() is used to enable the MSI capability.

The values present in the current implementation is help. This shows that MSI interrupts
were requested and help requests were allocated.

3.3.1.2 Message Address Register

The lower 2 bits of the address register is 0 by default [RB05]. The upper 32 bits of the
address register will be set to 0 by the system software if the bit 7 of the control register
is 0. If the 7th bit of the control register is set, it means that the device is capable of
addressing 64-bit addresses in the host PC. The system software hence sets the upper 32
bits as well.

3.3.1.3 Message Data Register

The upper 16 bits of the device is always set to 0 [RB05]. The value in the Message
Data Register is written to the host PC’s memory whenever the device wants to send
an interrupt. The lower 16 bits of the register varies depending on the number of MSI
Interrupts allocated to the device. The lower 16 bits change such that it can convey the
appropriate message to the host PC through its interrupt.

42

3.3 MSI interrupts

3.3.1.4 Message control register

Bit Field Name Description
7 64 bit address Capable 0 = Function can read only the lower

32 bits of the Message address register
and is not capable of generating 64 bit
addresses.1 = Function can read all the
lower 64 bits of the Message address
register and is capable of generating 64
bit addresses.

6:4 Multiple Message Enable The system software writes the value.
It reads the Multiple Message Capable
register and checks if the requested num-
ber of messages can be allocated. Based
on its decision it updates the register
to indicate the number of messages are
allocated.

3:1 Multiple Message Capable The register value indicates the number
of messages the device requests to be
allocated. It should be a value of the
power of 2 and maximum 32.

0 MSI Enable 0 = indicates MSI capability is disabled1
= indicates MSI capability is enable-
dReturns back to 0 when device is reset.

15:0 Reserved Always 0

Table 3.8: MSI control register format [RB05]

Amal Jose Vallavanthara 43

3 Specification

Figure 3.11: MSI control register [RB05]

3.3.2 Interrupt Handling

Programming the external device to send interrupts to the host PC isn’t all that is sufficient.
The host PC should be also be programmed. A software handler should be programmed in
the host PC to perform operations on receiving an interrupt. The host PC should also be
made aware of the external devices which would be sending interrupts. Else, the Linux
kernel just ignores the interrupt. The Linux kernel maintains a registry of all the interrupt
lines. It allocates an interrupt line to an external device on request and updates the registry.
On removal of the device, it deallocates the IRQ line making it available for other devices.
In some special cases, the IRQ line can be shared by multiple devices. An interrupt line can
be reserved by the device driver on its initialization or only when it is required. Reserving
an interrupt line during initialization is not advised if the number of IRQ lines are limited
and the number of external devices is higher. But allocating and deallocating the IRQ line
before and after every usage is too much overhead and decreases the performance of the
system, Therefore, the driver is implemented such that the IRQ line is requested during
initialization. Once the IRQ line is set, the PC should set up asynchronous notification.
There are several steps to be taken to do that [JC05]:

1. The user needs to allow asynchronous notification from the input file. The process
invokes the F_SETDOWN command using system call. This ensures that the kernel

44

3.4 PIO read/write

notifies the process on receiving an interrupt. The kernel saves the process ID in
filp->f_owner. Without this step, the kernel just ignores the interrupt.

2. The next step is to actually enable the asynchronous notification for the process by
setting the FASYNC flag by using system calls.

3. The final step is to request delivery of SIGIO signal whenever it receives an interrupt.
The interrupt data is sent to the process ID stored in the pointer filp->f_owner.

The 2 functions invoked are as follows [JC05]:

int fasync_helper(int fd, struct file *filp, int mode,

struct fasync_struct **fa);

void kill_fasync(struct fasync_struct **fa, int sig, int band);

Fasync_helper is used to notify the kernel that the particular process should be inter-
rupted by the kernel on receiving an interrupt signal by the particular external device.
It adds the process into the list of processes to be notified. The kill_fasync signals the
processes that have been set by the Fasync_helper function. Its arguments include the
band which is POLL_IN for the particular implementation and the signal to send which is
POLL_IN or POLL_OUT based on whether it is an interrupt received on DMA read or
write.

3.4 PIO read/write

Programming Input Output (PIO) is a mechanism to control and configure the FPGA from
the host PC. In PIO, the software written in the PC is responsible for transferring data to
and from the FPGA. PIO data transfers can be done by Port mapping or Memory mapping.
The implementation performs PIO using memory mapping. MMIO refers to mapping
wherein the memory is allocated in the address space usually used for program and data.
At the low level, it implements the data transfer by using instructions like LOAD, STORE,
etc. The PIO read/writes are much slower than DMA read/writes.

The FPGA has 16 sockets each of which have a unique ID. These IDs are located at 0x8
and 0x10 offset from the starting address of each socket. The lower addresses are located
at 0x8 and the upper addresses are located at 0x10. Each of the sockets also has a test
register at 0x28 to which PIO read and writes can be done. Each of the sockets comprises
of 8192 bytes. Therefore to access the UUID addresses the following formulas can be
used:

Accelerator Slave UUID low addresses: N*2048 + 0x8

Accelerator Slave UUID high addresses: N*2048 + 0x10

Test Register = N*2048+0x28

where N=Accelerator Socket Number

Amal Jose Vallavanthara 45

3 Specification

Figure 3.12: FPGA sockets for PIO read/write

3.5 Real-time Performance Altering

The driver has the ability to perform several levels of optimization based on the requirement.
Many at times, the driver needs to work in environments where the memory is a major
constraint for instance when the server has limited memory or has many applications
working in parallel. In such cases taking a toll in the rate of data transfer is allowed.
But in other cases where the memory is not a constraint like in data centers where high-
performance hardware and huge memory RAMs are completely available for the sole
purpose, performance should be maximal. Therefore the driver has three implementations
for DMA transfer:

1. Polling

2. MSI - Minimal Performance

3. MSI - Maximal Performance

There are instances even in data centers where the maximum performance allowed per
application varies greatly depending on the time of the day. For instance, during the
daytime, there could be larger customer care calls and services being used. Therefore host
services and internal services should give space to the customer care services for better
output. During the night time, when the customer care services have decreased, the host
and internal services can work using maximum capacity. Therefore real-time performance
altering is an indispensable tool in today’s industry where time, cost and performance are
trivial. The driver works in Polling mode by default on being loaded. The user can use ioctl
commands to change the performance level. In addition, the user can use the ioctl command
to discover the level of operation currently in. Using grafana, the user has the ability to
view the performance level remotely from any location which has access rights to the FPGA.
The following scenarios were considered when building the design:

46

3.5 Real-time Performance Altering

• The user may use multiple applications to connect to the driver at the same time.

• The user may connect to device files of multiple FPGAs at the same time i.e. the
user may simultaneously access multiple FPGAs.

Figure 3.13: Work flow of management layer software

Therefore precautions should be taken such that no alteration is possible while a DMA
read or write is being done by any of the applications or FPGAs. Care should also be
taken such that simultaneous alterations of the performance level does not take place from
multiple applications. These issues have been solved by introducing a new layer called the
configuration protection layer in the kernel space. This layer makes sure that all the above
conditions are fulfilled and changing configuration will not disrupt the driver or affect
any other application. Once this is verified the application or user is given access to the
change any configuration. A unique variable is introduced for universal synchronization.
This variable "dmaspeed" can be accessed only with mutex locks. Conditions also have
to be fulfilled by the driver and the application for the user to be allowed to make
alterations. Once these alterations are made, the driver is updated and the mutex is
unlocked.

Amal Jose Vallavanthara 47

3 Specification

3.6 Management Software for parallel programming

The user APIs initially developed work serially. Once the user issues a read or write, it has
to wait until the task is completed. The user can operate a second FPGA from a completely
different application, but not from the same application. This, however, turns out to be
inefficient in cases where the user needs to access many FPGAs from the same application
at the same time. Secondly, according to traditional approaches, the user application needs
to reach all the way to kernel level to figure out that the FPGA is already being used. The
APIs would be more efficient if the user application can determine the state of the FPGA
from the user space itself. Thirdly, the traditional approach uses serial programming. Once
the user issues a DMA read or write, the process has to wait until the task is complete to
perform other tasks. All the above drawbacks of the traditional driver show the need for a
new novel mechanism. This implementation deploys an additional layer at the userspace
level to eliminate all the above pitfalls of the orthodox drivers.

Figure 3.14: Optimization Achieved through management layer for parallel program-
ming

The top management layer works in such a way that when a DMA read or write is issued,
the parent kernel which is linked to the main function initializes a new thread which
foresees the subsequent checks and issues the DMA read or write. The new thread performs
the following operation:

48

3.6 Management Software for parallel programming

1. It verifies if the FPGA is already in use or is executing some other task issued by the
same application.

2. If the FPGA is not already being used by the current application, it creates a lock so
that the current application cannot issue another task to the FPGA.

3. The thread then issues the command and passes on the information to the device file
and then to the kernel driver level.

4. The driver checks if the FPGA is being used by any other application.

5. The driver verifies that the driver configuration file is stable i.e. all the configuration
changes have been implemented and executed.

6. DMA read or write is executed as per command.

7. The management layer waits for the execution to be completed

8. Once the DMA transfer is completed, it removes the inuse flag for the FPGA so that
any other application can use the FPGA.

9. The thread changes its ’in use flag’ at the user level so that the parent application
can use the FPGA.

10. It removes the mutex lock and self-destructs the thread on closing the device file.

The parent thread can simultaneously work on other tasks or other FPGAs while the above
actions are executed. It can decide if the transfer is complete by checking the inuse flag of
the FPGA. Pthreads are used for the parallel implementation. In the traditional approach
when the device file is opened to access the driver, the user is returned the file number
which is used for all subsequent actions and references. However in this case when the
device file is opened successfully a pointer to a structure is returned. The structure is as
follows:

struct fpgacontrol {

ssize_t file, len;

pthread_mutex_t lock;

u_int32_t inuseflag, testoption;

pthread_t userthread;

u_int64_t offset;

char *buf; u_int64_t off;

};

This structure contains all the information that would be needed by the user application.
The variable "file" contains the file number. It contains the threads which are already
initialized so that the user does not need to initialize and destroy them for every DMA
read or write. The variable inuseflag can be polled to check if the FPGA is currently being
used by the FPGA. ’inuseflag’ can also be polled to check the completion of a task by the

Amal Jose Vallavanthara 49

3 Specification

FPGA. Each of the device file opened for each FPGA in each application would have a
unique ’fpgacontrol’ structure linked to it.

Figure 3.15: Work flow for Management layer

50

3.7 Acquisition, storage and display of FPGA Parameters

3.7 Acquisition, storage and display of FPGA Parameters

Huge Data centers have thousands of high-performance devices that work round the clock
to fulfill the services. With more power comes more responsibility. Efficient management
and control of these devices is indispensable for the smooth functioning of the data centers.
This needs appropriate tools to procure, store and view the data. The implementation uses
a combination of telegraf, influxdb and Grafana to fulfill the above mentioned needs of the
FPGA in real-time from any location. It presents a user-friendly GUI interface for easy
manipulation and control of the data.

3.7.1 Telegraf

Telegraf is InfluxData’s open source server for collecting data of the connected devices
and server performance [2218]. This is the first piece of the collection, reporting, storage
and analyzing of data. It comprises of various plugins to collect data about the CPU, pull
metrics from the system, third-party APIs or read metrics from external devices. It has
the capability to send data to different services or datastores including InfluxDb, Datadog,
Kafka, Graphite, Labrata and many others. Telgraf is entirely written in GO and compiles
into a single binary. It is useful as it has no external dependencies and therefore can be used
out of the box. The implementation creates a container which can be easily installed on
any server and used on the go. It has minimal footprint and new input and output plugins
can be easily added by the user dynamically. It has a configuration file in which the user
needs to specify the desired sources of data and the destination database to which the data
needs to be sent. On installation, a default configuration file is deployed in /etc/telegraf
. The file has to be configured based on the user’s requirement. For the implementation,
two plugins have been used. The output data formats of telegraf basically consist of four
parts:

1. Measurement name

2. Tags

3. Fields

4. Timestamp

These four parts are exactly similar to InfluxDB Line Protocol. The protocol is a text-based
format that lays the ground rules for writing into the InfluxDB [2118]. Each line elucidates
a single point. Multiple lines can be written at once. But they need to be separated by a
newline character. The line protocol format consists of three parts:

[key][field][timestamp]

Each of the parts is separated by spaces. Timestamp need to not be entered by the user.
In case of no timestamp, telegrapf automatically includes the timestamp with nanosecond

Amal Jose Vallavanthara 51

3 Specification

precision. Key is the name of the measurement. The user can add tags to the key to enable
search query and segregation. Fields are metrics or measurements associated with the key.
Each point should have atleast one measurement. Each of the measurements should be
separated by commas. Field values can be of any of the four types. The user doesn’t have
to specify the type initially. On entering the first sample, telegraf automatically identifies
the field and sets the data type. All subsequent fields should have the same datatype. Data
types can be any of the following:

1. Integers: numerical values that are followed by an ’i’ (example: 24i, 273i)

2. Floats: Floats are numerical values that are not followed by a trailing ’i’. Any
numerical value that does not contain an ’i’ are treated as floats. (example: 75, 32.1,
1)

3. Boolean: Indicate True or False. Can have any of the following formats: t, T, True,
TRUE, FALSE, False, f, F.

4. Strings: All field values surrounded by double quotes.

The timestamp as mentioned is automatically added in nanoseconds precision. However, it
can work in precisions ranging from hours, minutes, seconds, milliseconds or microseconds.
Tags are optional. Tags are faster on querying compared to keys and therefore it is
advantageous to use them. Tags are indexed while fields aren’t.
Using the above line protocol the value entered by the telgraf into the InfluxDB is as follows:

Example 1:

esgfpga,FPGA_NUMBER=fpga1 temp=76,fpga_performance_level=0,

fpga_read_throughput=0.000000,fpga_write_throughput=0.000000

Example 2:

esgfpga,FPGA_NUMBER=fpga2 temp=76,fpga_performance_level=0,

fpga_read_throughput=0.000000,fpga_write_throughput=0.000000

Esgfpga is the name of the database to which the data is sent. FPGA_NUMBER
is used to distinguish between the different FPGAs enumerated by the driver.
fpga_performance_level, temp, fpga_read_throughput, fpga_write_throughput are the
different metrics that are passed on. Fpga_performance_level conveys the performance
level that the FPGA is currently working on. Temp metric displays the temperature of the
FPGA. fpga_read_throughput and fpga_write_throughput convey the rate at which the
DMA completed its last DMA read and write respectively.

Telegraf, in addition, provides an option to use an aggregator. The aggregator is rightfully
placed in between the input and output sections of telegraf. Originally data passes only

52

3.7 Acquisition, storage and display of FPGA Parameters

through the processor. The processor process the measurements that it derives from the
input. It filters, transforms and decorates the data and immediately emit the data results.
Aggregators process the data and provide a more refined result. It can be used for computing
parameter mean, standard deviation, total, maximum or minimum over a period of time
that the user presets. This preset time gap is called the period. Many at times, the user
just needs to know this period data and not every metric as such. So if the user decides to
view/store only the aggregated values and not every metric, the configuration can be set as
such. However, the historical data of raw metrics is not supported.

Figure 3.16: Work flow of the complete experiment.

The telegraf uses the exec plugin to read data from the FPGAs. The exec plugin executes a
file every preset period of time. This file is designed such that it executes a user application.
The particular user application to is programmed to determine the number of devices
that have been successfully enumerated by the device driver. Then, it reads the FPGA
measurements of each of the FPGAs that is on the loop. It obtains the ID of the FPGA,
performance level, temperature, DMA read and write rates. Finally, the obtained data
is converted into the InfluxDB line protocol format and written into separate data files.
These files serve as the input material for the telegraf to process. The Data is overwritten

Amal Jose Vallavanthara 53

3 Specification

into the separate data files of each FPGA after a period of 5 seconds so as to not overload
the memory of the server.

3.7.2 InfluxDB

InfluxDB is a database that is optimized for using time series data [2118]. This includes
sources like financial transactions, distributed sensors, device metrics, etc. Databases that
have a lot of time-related data have more ’creating and reading of data’ rather than ’update
and destroy of data’ behaviors. InfluxDB is targeting this niche market of ’creating and
reading of data’ and is particularly optimized only for the purpose. InfluxDB is useful for
performing real-time analysis on a large amount of data much more quickly compared to
SQL which is more broadly used. SQL too can operate on time series data, but research has
shown that InfluxDB is quicker and easier for the purpose. An advantage of the InfluxDB
is the developer need not specify the schema up front. It can be changed or updated in
real time. For instance, as of now, the FPGAs has the ability to display temperature and
performance measurements. But in future, when the FPGA is capable of updating other
parameters like voltage, power consumption, etc, the schema can be updated dynamically.
In addition, InfluxDB has the following advantages:

• Influx Data is out of the box solution. Therefore the time of development is lower.

• Easy to use tools to find value in the data by identifying patterns and predict the
future.

• Millions of writes per second and clustering of data to avoid failure of any sort.

InfluxQL is an SQL like language for interacting and updating the InfluxDB. InfluxDB is
similar to SQL as follows:

• Replication policies and continuous queries are identical to that of SQL Database.

• An influxDB measurement table called ’foodships’ is similar to an SQL table

• InfluxDB tags are exactly the same as indexed columns in SQL Database

• InfluxDB fields are similar to unindexed columns in SQL Database.

• Points in InfluxDB is similar to rows in SQL.

Therefore a user with experience in SQL can easily grasp the methodologies of the InfluxDB
with minimal effort. InfluxDB, hence, provides the advantage of an enhanced time series
database with little effort from the developer.

3.7.3 Grafana

Grafana is an online analytics platform tool that can be used to query, visualize, alert
and understand the time series data metrics irrespective of where it is stored [2018]. It

54

3.7 Acquisition, storage and display of FPGA Parameters

allows the developer to create and share dashboards with informative and user-friendly
GUIs to enable efficient data understanding. Grafana supports different storage backends.
Graphite, InfluxDB, Prometheus, Elasticsearch, Cloud and graphite are officially supported.
Each Data source has a separate Query Editor which supports all its specific features.
Grafana has the ability to combine metrics from different sources to a single dashboard.
It can also deploy its metrics to different organizations with each organization having its
own limited access to the metrics. Each organization can have multiple users. A user can
belong to different organizations as well. Each user can have different levels of privilege
within the same organization. Panel is the basic block of any dashboard. Each panel has
its own query editor so that the user can extract the right amount of data and build the
perfect visualization to suit the needs. It consists of basically four types of panels: Graph,
Singlestat, Dashlist and text. Graph allows the user to view the metrics based on a timeline.
Graphs are used in the implementation to display FPGA DMA read and write throughput
and temperature of the FPGA. Singlestats are used when the user needs to extract the
data and show a single status. Singlestats is used to display the performance level of the
FPGAs.

3.7.4 Overall structure

Figure 3.17: Design flow of user application’s access to FPGA

The following flowchart shows the overall structure. The user application specifically
designed to obtain data regarding the FPGAs retrieve the data by accessing the device
file of the FPGAs. It writes the data into data sheets specifically for the FPGAs. Telegraf

Amal Jose Vallavanthara 55

3 Specification

takes in this information from the data sheets and processes it to the right format. It also
retrieves information regarding the server performance statistics and passes it on to the
remote database. The Database InfluxDB stores the data in the specified format. The user
form any part of the world can access this information stored in the database using its
online analytic platform.

56

4 Final Design and Workflow

Figure 4.1: Work flow of the complete experiment.

The section portrays the final blend of all the above features put together. On loading the
driver, it detects and enumerates the FPGAs connected to the system through PCIe. These
devices are then labeled and device files are created. The user can access these FPGAs from
the user space through the device files by using the opendriver functionality. Once opened,
it can connect, control and transfer data to the FPGA from the user space or vice versa. It
can also control the performance level of the driver depending on the requirements. As the
figure shows, the user can choose to use serial or parallel programming APIs which are
provided in the package. Based on the chosen API, the user can control multiple devices in
parallel or cut out the overhead and use serial programming. Many applications can access
the FPGA simultaneously at the same time. Applications can run with or without the top
management layer functionality which enables parallel programming.

The driver package comes with an additional application which detects all the FPGAs
that are available to the system. This application stores values like the temperature,
performance levels, read and write throughput to separate datasheets. these datasheets
are refreshed periodically so to avoid occupation of too much space in the system. The
telegrapf application consumes the data present in the data sheets and processes them

57

4 Final Design and Workflow

into the right format and passes them on to a remote server. This is done every few
seconds. This period can be predefined by the user. In addition, the telegraf also sends
CPU usage statistics to the remote database. The remote database InfluxDB stores and
saves the data. Grafana uses the data from the InfluxDB to create a user-friendly GUI
for the user to track the performance of all the FPGAs and the server remotely. Alarms
are also set to warn the user in case of disruptions or unusually low performance or high
temperature.

58

5 Test Evaluation and Results

5.1 Test environment

The FPGA driver needs to be tested to make sure that it works sustainably in all kinds
of situation. Tests are done to make sure everything from the FPGA, PCIe, host PC and
application are able to synchronously work together in harmony. The implementation
comes with a large number of test APIs out of the box so that the user can use them
based on the requirements. The test APIs are designed to be robust and modular. Separate
test APIs have been designed for serial programming and for parallel programming. Both
the set of APIs employ the same testing methods but have different interfaces to the user
application. The following APIs are included in the test package:

• PIO UUID Address Test
The test reads the UUID low and high addresses present at the offset locations 0x08
and 0x10 respectively of all the 16 sockets and compared them with the preset values.
These preset values are predefined by the user. It alerts the user in case any of socket’s
UUIDs don’t match.

• PIO read-write test
Each of the 16 sockets has a test register at offset address 0x28. The test writes a
random value and reads back the value using PIO write and read. It compares if the
values match and raises an alarm otherwise.

• Basic DMA test
The socket creates a string of random lengths ranging from 64 bytes to 2GB. It writes
the value to a location in the first DDRAM. Once the DMA write is completed, it
performs a DMA read of the exact same length from the exact location. Finally, it
compares if the read and written values are identical.

• Multiple DDRAM DMA test
The FPGA consist of 4 DDRAMs. Reading and writing to each of the DDRAM one
after another involves a more complicated hardware level design. This sustainability
is tested by reading and writing into different DDRAMs one after another randomly
with data of different lengths. It then compares if the values written into and read
from each of the DDRAM randomly are identical.

• Marathon DMA test
This tests the sustainability of the algorithm involved in splitting the data chunks

59

5 Test Evaluation and Results

into different blocks, sub-blocks and then finally into 1MB data. This algorithm of
splitting needs to be tested. The best case would be to test the DMA read and write
for all sizes of data. The minimum resolution of the DDRAM memory access is 64
bytes. Therefore this test writes all multiples of 64 bytes into DDRAM and reads the
same amount of data back into the userspace. The user needs to define to what value
the tests should be done. It then performs basic DMA tests with 64 bytes, 128 bytes,
256 bytes and so on until the predefined value.

• Complete FPGA test
This test includes PIO UUID address test, PIO read-write test and multiple DDRAM
DMA tests for each performance level. It is recommended that the user performs just
this one test which includes the entire package before actually running the device.

60

5.2 Test Results

5.2 Test Results

5.2.1 DMA throughput

Figure 5.1: DMA read throughput for different Data Sizes

Figure 5.2: DMA Write throughput for different Data Sizes

Robust testing methods were used to enhance and improve the driver. Many levels of

Amal Jose Vallavanthara 61

5 Test Evaluation and Results

testing during the initial phase let the developer identify issues with the hardware level and
software level codes. These bugs were rectified and tested over and over until sustainability
was proven. The previously mentioned test APIs were used in different situations to track
and analyse the driver systems.

The area of usage and time latency are the two main factors used for testing the performance
of DMA transfers as shown in [SS17]. It was noted that the read and write throughput
rate varied depending on the number of applications running on the system and other
background activities. Therefore the results shown may vary slightly. The throughput rate
for DMA read and write was highly dependent on the data chunk size that was transmitted
per command. Figure 5.1 and 5.2 depicts the same. The major amount of time consumption
took place for setting up the descriptor and the descriptor controller values. Therefore
this is a clear proof that increasing the number of descriptors could significantly improve
the performance of the driver. The codes are written such the number of descriptors can
be varied based on requirement. Thus the codes are reusable. It can be seen that at 128
MB transfer size, it hits the maximum throughput and remains constant henceforth. This
is because the FPGA’s descriptor controller can use only a maximum of 128 descriptors
at a time. Therefore after every 128 MB data transfer, the driver needs to reprogram
the status register, DMA controller and the descriptors. This pays a major toll on the
throughput.

62

5.2 Test Results

5.2.2 IOCTL vs Device File Functions

Figure 5.3: IOCTL vs Device File Function read and write rate

There are basically two ways to control the FPGA’s read and write opera-
tions:

• IOCTL Function

• Device File inbuilt functions

The user application can use IOCTL functions to control the DMA transfer from the user
space. In this method, a pointer is passed on to the kernel space which contains information
about the source buffer size, offset and destination address. These address are received at
the kernel space to control and trigger DMA transfer. The second and more broadly used
mechanism is to use inbuilt device file functionalities. The user application can then just
use these functions to transfer data. The implementation consist of both the methods of
DMA transfer. Separate APIs are available to use either of the methods for DMA transfer.
The test results show that the time taken for DMA transfer is significantly higher for
smaller data sizes. But as the data size increases above 1MB, the transfer throughput is
the same for both IOCTL and Device file read/write functions.

Amal Jose Vallavanthara 63

5 Test Evaluation and Results

5.2.3 Comparison of Performance levels

Figure 5.4: Comparison of Performance Levels

The three performance levels are compared and the average speed is taken for transfer
of 640 MB of data. It can be seen that the throughput is fairly high for Polling. This is
because of the efficient algorithm that employs parallel transfer of data from buffer user
space to kernel space and from FPGA to kernel space. During polling, the status register
is updated after every 1 MB transfer of data by the DMA descriptor. This immediate
updating mechanism allows the next copy from user space to kernel space to take place
immediately. In the case of MSI interrupts rather than polling, the driver needs to wait for
all the descriptors to complete transaction for the interrupt to be triggered. Only when this
interrupt is triggered will the kernel send the next copy from user space to kernel space.
This increased performance of polling comes at a bigger cost - CPU clock cycles. Polling
is a computer intensive task, as it needs to load the register continuously and compare if
the status register has been updated. In the case of MSI interrupts, the thread goes to
sleep until the interrupt is received. Therefore the CPU utilization will be much lower.
The MSI - Maximal Performance is the best suited, as it overcomes the side-effects of
polling with an increased throughput. However, it is to be noted that the the amount of
buffers used by the MSI - Maximal Performance system is twice as that of MSI - Minimal
Performance.

64

6 Summary and Future Work

By the end of the project, specification standards for PCIe, FPGA, Linux Centos 7 kernel
have been studied and investigated in detail. A Linux management software was developed
which would probe, enumerate and access the FPGAs connected to the host server through
the PCIe. The driver creates device files and performs PIO read-write operations on the
FPGA through device file functions. The driver would also perform DMA read and write
operations from the user space to the FPGA and vice versa. Three levels of optimization
were developed using MSI interrupts and polling. The performance of the three levels of
optimization has been analyzed and depicted in the results section. The control of DMA
read and write has been implemented through both ioctl and device file functions. The
user has the option to choose between them. These three levels of optimization could be
altered in real time by the user without creating any harm to the users currently using the
system.

The driver has been developed such that multiple users and applications can simultaneously
control and manage the FPGAs. A management layer parallelization was developed so that
the user can manage and control multiple FPGAs simultaneously. The user has the option
to choose the management layer as it comes with its own overhead. Separate user APIs
have been developed to be used with and without the management layer for parallelization.
A test environment has been developed for robust and versatile testing of the FPGA read-
write operations. Separate test APIs have been developed for testing serial and parallel
programming APIs based on the user’s needs. A well-organized documentation has been
produced to install, setup, test and use the driver and its APIs. In addition, an application
has been developed to detect the number of FPGAs connected to the host server through
PCIe. This application obtains the parameters of the running FPGAs including throughput,
performance levels, temperature, etc to telegraf. Telegraf processes this information and
sends them to a remote Database - InfluxDB. The users could access manage and view all
these parameters of each and every FPGA connected through a user-friendly GUI from
anywhere around the world.

Future work could include the following:

• Try to increase the number of descriptors for DMA transfer. The study has shown that
the number of descriptors could increase the overall performance of DMA transfer.

• Partial Reconfiguration of the different FPGA sockets can be performed through
PCIe. This would provide an added edge to the solution provider and increase the
overall efficiency of the FPGA.

65

6 Summary and Future Work

• In future, rather than connecting the FPGA through a PCIe to the server, it could be
deployed as an individual entity that can be accessed through TCP or UDP packets.

• Tests could be conducted on different linux platforms to study the impact of the
kernel and the hardware.

66

A User APIs

Note: Use -lpthread keyowrd during compilation of user application developed us-
ing the APIs. For example to compile exampleprogram.c using gcc, use command
line:

gcc exampleprogram.c -o exampleprogram -lpthread

1.1. void getlasttransferrate (ssize_t file)
Prints the transfer rate of the FPGA Transfer rate includes read and write transfer rate.
Read rate = transfer data rate from PC to FPGA. Write Rate = transfer data rate from
FPGA to PC.

1.2. double getreadrate (ssize_t file)
Returns the data transfer rate from the host PC to the FPGA

1.3. double getwriterate (ssize_t file)
Returns the data transfer rate from FPGA to the host PC

1.4. ssize_t opendriver(int fpgacur)
Used to open the driver. Pass the ending digit of the FPGA to be opened. For example to
open intelfpga1 device file, send 1 as argument. Returns 0 on failure. Returns file number
on success. This file number should be used for all subsequent operations of the FPGA.
The file number is used to identify the FPGA.

1.5. u_int64_t get_temperature(ssize_t file)
Returns Temperature of the Device

1.6. u_int64_t get_perflevel(ssize_t file)
Returns Performance Level of the Device

1.7. void performance_cntl(ssize_t file, int num_input)
Control the performance of the device. User can select which performance level the driver
should work in by using the The 3 speeds specify the operating performance of the device
driver.
0 - SPEED0 : Minimal Performance Â Uses Polling, 4 buffers of 1 MB each for read and
write
1 - SPEED1 : Optimized Performance Uses MSI interrupts. 128 Buffers of 1MB each for
read and write
2 - SPEED2 : High PErformance Uses MSI interrupts. 256 buffers of 1Mb each for read
and write

67

A User APIs

This can be modified during runtime by user. Default performance is SPEED0

1.8. u_int64_t get_numofdevices(ssize_t file)
Returns Number of devices detected and enumerated by the driver.

1.9. void enable_msi(ssize_t file)
Enable MSI for DMA transfer. This API need not be used manually by the user as it is
controlled by the 3 performance level. The user can just use the default performance levels
to use msi or polling.This functionality is provided for developers who want to experiment
further.

1.10. void enable_polling(ssize_t file)
Enable Polling for DMA transfer. This API need not be used manually by the user as it is
controlled by the 3 performance level. The user can just use the default performance levels
to use msi or polling. This functionality is provided for developers who want to experiment
further

1.11. ssize_t fpgaread(ssize_t file, void *buf, size_t count, off_t offset)
PIO read. Used to transfer data from FPGA to user space in host PC. make sure the
Â PIO is enabled before using enable_polling() function Arguments:
fd is the fpgadevice number to read
buf is the location pointer
count is the number of bytes to be read
offset is the offset location from which to be read
returns number of bytes read. returns -1 on failure;

1.12. ssize_t fpgawrite(ssize_t file, void *buf, size_t count, off_t offset)
PIO/DMA write. Used to transfer data from Host PC userspace to FPGA device. make
sure the Â PIO is enabled before using enable_polling() function fd is the fpgadevice
number to write
buf is the location pointer
count is the number of bytes to be written
offset is the offset location from which to be written
returns number of bytes written. returns -1 on failure;

1.13. void dmaread(ssize_t file, void Â *buf, u_int64_t len, u_int64_t
off)
DMA read using ioctl functionality

1.14. void dmawrite(ssize_t file,void Â *buf, u_int64_t len, u_int64_t off)
DMA write using ioctl functionality

68

1.15. ssize_t fpgadmafromfpga(ssize_t file, void *buf, size_t count, off_t
offset)
DMA read. Used to transfer data from FPGA to user space in host PC.
make sure the PIO is enabled before using enable_polling() function
fd is the fpgadevice number to read
buf is the location pointer
count is the number of bytes to be read
offset is the offset location from which to be read
returns number of bytes read. returns -1 on failure;

1.16. ssize_t fpgadmatofpga(ssize_t file, void *buf, size_t count, off_t offset)
DMA write. Used to transfer data from Host PC userspace to FPGA device. make sure the
PIO is enabled before using enable_polling() function fd is the fpgadevice number to write
buf is the location pointer
count is the number of bytes to be written
offset is the offset location from which to be written
returns number of bytes written. returns -1 on failure;

1.17. void closedriver(ssize_t file)
Closes the driver file. Make sure to use this API on completion of application/usage of driver.

2. Test APIs
The following robust APIs are provided to give the developer ability to build the test
environment custom needs

2.1 int pioaddresstest(ssize_t file)
PIO read test to check UUID It reads all the values of UUID and checks. The default
UUID and LUID is present in this header file. Please make changes depending on the
device. Returns 1 on success, 0 on failure.

2.2 int pioreadwritetest(ssize_t file)
PIO test to read and write into test registers. The location of the test register is given
defined by TESTRGST_OFF in esg_fpga_pcie_userspace_api.h If successful returns 1
On failure returns 0;

2.3 int dmatest_diffoffset(ssize_t file, ssize_t rndlen, u_int64_t offset)
DMA test to read and write at multiple offset locations including different memory
locations. returns -1 on if read or write is not possible, 0 on read write done but failed to
be identical, 1 on successful completion

Amal Jose Vallavanthara 69

A User APIs

2.4. int fpgatest(ssize_t file)
Complete test of fpga Includes the following tests:
1. UUID read and checks if the IDs of all sockets match the requirement
2. Writes and reads random values to test registers of all the sockets. Verifies if the values
written to test registers are identical.
3. Reads and then writes random data using DMA transfer and verifies if they are identical.
Returns 1 on success, 0 on failure

70

B Parallel Programming APIs

The following APIs are used for parallel programming and for usage and control of multiple
FPGAs in parallel. This is an additional top layer used. The above functions should not
be used in conjunction with the following APIs. Above functions return a file number on
opening the driver file using opendriver() API. This file number is used for all subsequent
actions including operation and control of the FPGA. The following layer returns a struct
pointer variable struct ’fpgacontrol’ (defined in esg_fpga_pcie_userpace_api.h) on opening
the driver file using useropendriver() API. This pointer should be used for all subsequent
actions and control of the FPGA.

struct fpgacontrol{

Â ssize_t file, len;

Â pthread_mutex_t lock;

Â u_int32_t inuseflag, testoption;

Â pthread_t userthread;

Â u_int64_t offset;

Â char Â *buf; u_int64_t off;

};

On using any of the following APIs, a new thread is called which performs the functions.
Therefore the user can parallely do/work on other FPGAs on the main thread. This function-
ality can be used for any number of FPGAs. The variable inuseflag can be polled to check
if the fpga has completed the work or if the fpga is currently in use.

IMPORTANT: Do not use the additional layer APIs in conjunction with the low level APIs
above.

3.1. struct fpgacontrol* useropendriver(int fpganum)
Use this function to open a device driver. This opens up a driver and returns the fpga
pointer which consist of various parameters like its lock, threadid, etc These parameters
are not relevant to the layman user and is just used for high reliability and robustness. All
subsequent read and writes should be made using the returned struct fpga. user should
pass the fpganum that is the number of the device to be opened.

3.2. static int userfpgawrite(struct fpgacontrol *fpga, void Â *buf, u_int64_t
len, u_int64_t off)

71

B Parallel Programming APIs

This function is used for user DMA write - transfer data from host PC user space to FPGA
Pass the fpgacontrol struct that is returned on using fpgaopendriver() function. Other
parameters that need to be passed includes:
buf: char pointer buf to which data needs to be written.
off: location from which data is to be read in fpga
len: length of the data to be written

3.3 static int userfpgaread(struct fpgacontrol *fpga, void Â *buf, u_int64_t
len, u_int64_t off)
This function is used for user DMA read - transfer data from FPGA to host PC user space.
Pass the fpgacontrol struct that is returned on using fpgaopendriver() function. Other
parameters that need to be passed includes:
buf: char pointer buf from which data needs to be read.
off: location to which data is to be written in fpga
len: length of the data to be written

3.4 u_int64_t userget_temperature(struct fpgacontrol *fpga)
Returns Temperature of the Device

3.5 u_int64_t userget_perflevel(struct fpgacontrol *fpga)
Returns Performance Level of the Device. The 3 speeds specify the operating performance
of the device driver.
0 - SPEED0 : Minimal Performance Â Uses Polling, 4 buffers of 1 MB each for read and
write
1 - SPEED1 : Optimized Performance Uses MSI interrupts. 128 Buffers of 1MB each for
read and write
2 - SPEED2 : High PErformance Uses MSI interrupts. 256 buffers of 1Mb each for read
and write
This can be modified during runtime by user. Default performance is SPEED0 3.7 void
userperformance_cntl(struct fpgacontrol *fpga, int num_input)
Control the performance of the device
0 = Polling
1 = MSI
2 = Enhanced MSI

3.6 u_int64_t userget_numofdevices(struct fpgacontrol *fpga)
Returns Number of devices detected and enumerated by the driver.

3.7 Â void userenable_msi(struct fpgacontrol *fpga)
Enable MSI for DMA transfer. This API need not be used manually by the user as it is
controlled by the 3 performance level. The user can just use the default performance levels
to use msi or polling. This functionality is provided for developers who want to experiment
further

72

3.8 Â void userenable_polling(struct fpgacontrol *fpga)
Enable Polling for DMA transfer. This API need not be used manually by the user as it is
controlled by the 3 performance level. The user can just use the default performance levels
to use msi or polling. This functionality is provided for developers who want to experiment
further

Parallel TEST APIs

4.1. static int userfpgatest(struct fpgacontrol *fpga, int option, ssize_t rndlen,
long long int offset)
Used for testing the fpga. â€œOptionâ€ argument of function allows the user to test
different types of testing based on the option parameter that is passed as argument.The
options can be chosen as follow:

PIOADDRTST 110:
pioaddresstest()
Reads the UUID of each socket and checks if the value is the desired value as given by the
UUIDH UUIDL

PIORDWRTST 111
pioreadwritetest()
Reads and writes multiple values to the fpga PIO test registers and checks if the values are
correct.

BASICDMATST 112
basicdmatest()
Reads and writes random values into the FPGA and reads back and verifies if
the read and write worked perfectly by comparing the written value to the read
value.

FULLDMATST 113
fulldmatest()
Performs all the read and write DMA tests of the FPGA

FPGATST 114
fpgatest()
Performs all test of both the PIO and DMA read and write tests mentioned
above.

IMPORTANT** the length and offset to be tested need to be passed only in case of
basicdmatest

4.2. static int userbasicdmatest(struct fpgacontrol *fpga, ssize_t rndlen, long
long int offset)
Used for direct DMA testing of FPGA without the need for using the â€œoptionâ€
argument as shown in the userfpgatest() API. Both userbasicdmatest() and with option
BASICDMATST performs the same test function.

Amal Jose Vallavanthara 73

List of Figures

2.1 PCIe structure diagram . 8
2.2 PCIe Address Space . 10
2.3 Nallatech Board . 11

3.1 General Working Scheme of a Driver . 20
3.2 Splitting Data Chunks for DMA Transfer 27
3.3 Maximum Parallelization Possible for DMA transfer 27
3.4 DMA transfer from user space to FPGA for Polling 34
3.5 DMA transfer from FPGA to user space for Polling 35
3.6 DMA transfer from user space to FPGA for MSI - Minimal Performance . 37
3.7 DMA transfer from FPGA to user space for MSI - Minimal Performance . 37
3.8 DMA transfer from user space to FPGA for MSI - Maximal Performance . 39
3.9 DMA transfer from FPGA to user space for MSI - Maximal Performance . 39
3.10 MSI capability register [RB05] . 42
3.11 MSI control register [RB05] . 44
3.12 FPGA sockets for PIO read/write . 46
3.13 Work flow of management layer software . 47
3.14 Optimization Achieved through management layer for parallel programming 48
3.15 Work flow for Management layer . 50
3.16 Work flow of the complete experiment. 53
3.17 Design flow of user application’s access to FPGA 55

4.1 Work flow of the complete experiment. 57

5.1 DMA read throughput for different Data Sizes 61
5.2 DMA Write throughput for different Data Sizes 61
5.3 IOCTL vs Device File Function read and write rate 63
5.4 Comparison of Performance Levels . 64

75

List of Tables

3.1 printk Message logging Levels . 19
3.3 Read Descriptor Controller format [Ua17a] 29
3.5 Write Descriptor Controller format [Ua17a] 30
3.6 Read Descriptor format [Ua17a] . 31
3.7 Write Descriptor format [Ua17a] . 32
3.8 MSI control register format [RB05] . 43

77

Bibliography

[1218] Linux Device Drivers. Accessed : 2018
https://opensourceforu.com/tag/linux-device-drivers/

[1718] Nallatech 510T- Compute Acceleration Card Datasheet. Accessed : 2018
http://www.nallatech.com/wp-content/uploads/

Nallatech-510T-Product-Brief-V2.2d.pdf

[1910] PCI Express Base Specification Revision 3.0. November 10, 2010
http://composter.com.ua/documents/PCI_Express_Base_

Specification_Revision_3.0.pdf

[2018] Grafana Documentation 5.2. Accessed : 2018
http://docs.grafana.org/

[2118] InfluxDB 1.6 Documentation. Accessed : 2018
https://docs.influxdata.com/influxdb/v1.6/

[2218] Telegraf 1.8 documentation. Accessed : 2018
https://docs.influxdata.com/telegraf/v1.8/

[5018] Linux Kernel Source Code, Accessed : 2018

[Abr15] Abraham, Kishon V.: PCI Express System Architecture, 1st Edition. In:
Overview of PCI(e) Subsystem, Linux Foundation Events, 2015

[BB18] Blaise Barney, Lawrence Livermore National L.: POSIX Threads
Programming, Accessed : 2018

[Ber96] Berg, Bil Lewis Daniel J.: PThreads Primer, A Guide to Multithreaded
Programming, 1996

[BN11] Bradford Nichols, Jacqueline Farrell Jackie F. Dick Buttlar B.
Dick Buttlar: PThreads Programming: A POSIX Standard for Better
Multiprocessing, 2011

[Bot18] Bottomley, James: Linux Journal, Kernel Korner - Using DMA,
Accessed : 2018

[Buc04] Buchanan, W. J.: "The Handbook of Data Communications and
Networks", Springer Nature, 2004

79

https://opensourceforu.com/tag/linux-device-drivers/
http://www.nallatech.com/wp-content/uploads/Nallatech-510T-Product-Brief-V2.2d.pdf
http://www.nallatech.com/wp-content/uploads/Nallatech-510T-Product-Brief-V2.2d.pdf
http://composter.com.ua/documents/PCI_Express_Base_Specification_Revision_3.0.pdf
http://composter.com.ua/documents/PCI_Express_Base_Specification_Revision_3.0.pdf
http://docs.grafana.org/
https://docs.influxdata.com/influxdb/v1.6/
https://docs.influxdata.com/telegraf/v1.8/

Bibliography

[CPCAKMN18] CostaR. PaulA. ChakrabartiS. A. KhanJ. MitraT. Nayak,
S. M.: An efficient approach to evaluate PCIe DMA design and DMA
performance for Common Readout Unit(CRU), 24 February 2018

[Dow21] Downey, Allen B.: The Little Book of Semaphores. Version 2.2.1

[DSM18] David S. Miller, Jakub J. Richard Henderson H. Richard Henderson:
The Linux Kernel documentation, Accessed : 2018

[IQPDS17] Intel Quartus Prime Design Suite: 18.0, Updated for: Intel Arria
10 or Intel Cyclone 10 GX Avalon-MM DMA Interface for PCI Express*
Solutions User Guide, Nov 2017

[Jan15] Jangir, Mohn L.: Linux Kernel and device driver programming : a
simpler approach to Linux Kernel. April 2015

[JC05] Jonathan Corbet, Greg Kroah-Hartman Alessandro R.
Alessandro Rubini: Linux Device Drivers, 3rd Edition. In: Linux Device
Drivers, 3rd Edition, 2005

[KB12] Kavianipour, H. ; Bohm, C.: High performance FPGA-based
scatter/gather DMA interface for PCIe. In: 2012 IEEE Nuclear Science
Symposium and Medical Imaging Conference Record (NSS/MIC), 2012. –
ISSN 1082–3654, S. 1517–1520

[KMB14] Kavianipour, H. ; Muschter, S. ; Bohm, C.: High Performance
FPGA-Based DMA Interface for PCIe, 2014. – ISSN 0018–9499, S.
745–749

[KÅF+18] Kekely, L. ; Å¡pinier, M. ; Friedl, Å¡. ; Å¡ikora, J. ; KoÅ™enek, J.:
Live demonstration of FPGA based networking accelerator for 200 Gbps
data transfers. In: NOMS 2018 - 2018 IEEE/IFIP Network Operations
and Management Symposium, 2018. – ISSN 2374–9709, S. 1–3

[Lae12] Laeeq, Shaikh M.: Mechanism of determining page faults
instantaneously via device driver based approaches in Linux, IEEE
CONFERENCE ON ELECTRICAL AND ELECTRONICS AND
COMPUTER SCIENCE, 2012

[Lin12] Linux, Embedded: Peter Barry, Patrick Crowley. 2012

[Mad17] Madieu, John: Linux Device Drivers Development. October 2017

[PDL15] Paolo Durante, Rainer Schwemmer-Umberto Marconi Gabriele B.
Niko Neufeld N. Niko Neufeld ; Lax, Ignazio: 100 Gbps PCI-Express
Readout for the LHCb Upgrade, IEEE TRANSACTIONS ON
NUCLEAR SCIENCE, VOL. 62, NO. 4, AUGUST 2015

[RB05] Ravi Budruk, Tom S. Don Anderson A. Don Anderson: PCI Express
System Architecture, 1st Edition. In: PCI Express System Architecture,
1st Edition, 2005

80

Bibliography

[RCC+14] Rota, L. ; Caselle, M. ; Chilingaryan, S. ; Kopmann, A. ; Weber,
M.: A new DMA PCIe architecture for Gigabyte data transmission. In:
2014 19th IEEE-NPSS Real Time Conference, 2014, S. 1–2

[RG95] RAYMOND GREENLAW, WALTER L. R. H. JAMES HOOVER H.
H. JAMES HOOVER: Limits to Parallel Computation: P-Completeness
Theory. 1995

[SS17] Shanehsazzadeh, F. ; Sadri, M. S.: Area and performance evaluation
of central DMA controller in Xilinx embedded FPGA designs. In: 2017
Iranian Conference on Electrical Engineering (ICEE), 2017, S. 546–550

[Ua17a] UG-01145avmmdma :

Arria 10 Avalon-MM DMA Interface for PCIe Solutions, Dec2017

[Ua17b] UG-01145avmmdma :

PCI Express* AvalonÂ®-MM DMA Reference Design, Dec2017

[Ven08] Venkateswaran, Sreekrishnan: Essential Linux Device Drivers. March
27, 2008

[WsCTS03] Web services", Analysis "NAM: a network adaptable middleware to
enhance response time o. 11th IEEE/ACM International Symposium
on Modeling M. 11th IEEE/ACM International Symposium on Modeling
; Computer Telecommunications Systems, Simulation of: S.
Ghandeharizadeh, C. Papadopoulos, P. Pol, R. Zhou. 2003

[XL17] Xiaoxiao Li, Jingguo Ge Hongbo Zheng Yuepeng E Chunjing Han
Honglei L. Yulei Wu W. Yulei Wu: "A kernel-space POF virtual switch",
Computers Electrical Engineering, 2017

[Zha10] Zhang, Peng: "Industrial control system operation routines", Advanced
Industrial Control Technology„ 2010

[ZLBAM15] Zazo, J. F. ; Lopez-Buedo, S. ; Audzevich, Y. ; Moore, A. W.: A
PCIe DMA engine to support the virtualization of 40 Gbps
FPGA-accelerated network appliances. In: 2015 International Conference
on ReConFigurable Computing and FPGAs (ReConFig), 2015, S. 1–6

Amal Jose Vallavanthara 81

	Abstract
	Introduction
	Application Scenario
	Definition of Goals of the work
	State of the Art

	Theoretical background
	PCI express and Nallatech Board
	PCI Express
	Structure
	Address Space

	Compute Acceleration Card - Nallatech 510T 17

	Linux Kernel - Memory allocation and parallel programming
	Kernel Space memory
	User Space Memory
	Parallel programming

	DMA Memory mapping

	Specification
	Driver Development
	Connecting User Application to FPGA
	Read and write the Device File
	Input-output Control

	DMA transfer
	Design of DMA transfer
	User Space to kernel space
	Kernel Space to FPGA

	DMA Controller
	Read and write DMA descriptor format

	Algorithms for efficient DMA transfer
	Polling
	MSI - Minimal Performance
	MSI - Maximal Performance

	MSI interrupts
	MSI capability register
	Capability ID
	Message Address Register
	Message Data Register
	Message control register

	Interrupt Handling

	PIO read/write
	Real-time Performance Altering
	Management Software for parallel programming
	Acquisition, storage and display of FPGA Parameters
	Telegraf
	InfluxDB
	Grafana
	Overall structure

	Final Design and Workflow
	Test Evaluation and Results
	Test environment
	Test Results
	DMA throughput
	IOCTL vs Device File Functions
	Comparison of Performance levels

	Summary and Future Work
	User APIs
	Parallel Programming APIs
	List of Figures
	List of Tables
	Bibliography

