
 Eindhoven University of Technology

MASTER

Application of machine learning for polyhedral optimizations

Zhang, I.

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/cb069252-ce67-4a99-a2b2-1fb954f975a5

Application of Machine Learning for Polyhedral
Optimizations
Graduation Thesis

I. Zhang, 1032404, TU Eindhoven

Supervised by:
Prof. Dr. H. Corporaal, TU Eindhoven

Dr. R. Jordans, TU Eindhoven
Prof. Dr. B. Juurlink, TU Berlin

Dr. B. Cosenza, TU Berlin

December 12, 2018

Abstract

More and more computers are getting high-end architectures, including multicore processors and
SIMD units to vectorize programs. In order to actually make use of these, a method needs to be
found to conveniently optimize sequential code to parallel code.
The Polyhedral Model is a useful tool for automating Loop optimizations. By providing a numer-
ical abstraction of the loops, they can easily be transformed, or used for other calculations.
In this thesis, we will use the Polyhedral Model to provide us with Polyhedral Features of code.
These Features will be used to train a Machine Learning Model to predict which combination of
Polyhedral Optimizations will be optimal.
State of the Art Polyhedral Optimizers that use Machine Learning so far, required the unoptimized
code to compile and run once, in order to extract hardware counters to use as features that rep-
resent the code. Our approach using Polyhedral Features will improve on that method, by being
72.8x faster in terms of Selection Time due to not requiring a prior compile and run, while also
being faster in terms of Run Time.
Additionally, we provide a multimodel method that will sacrifice a bit of Selection Time, in order
to get the Run Time Speedup as high as 92.6% of the Run Time of Iterative approaches, while
still being 135x faster in terms of Selection Time.

Keywords— Loop Optimization, Polyhedral Model, Machine Learning

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Background Information . 3

1.2.1 Loop Optimizations . 3
1.2.2 Polyhedral Model . 4
1.2.3 Machine Learning . 5

1.3 State of the Art . 6
1.4 Problem Statement . 7
1.5 Contributions . 7
1.6 Outline . 7

2 Related Work 10
2.1 Conclusions . 11

3 Methodology 12
3.1 Park et al. 12

3.1.1 Training Data . 13
3.1.2 Features . 14
3.1.3 Modeling . 14
3.1.4 Step by Step . 14
3.1.5 Conclusions . 15

3.2 Improvements . 15
3.2.1 Features . 15
3.2.2 Optimization Space . 16
3.2.3 Conclusions . 17

3.3 Minimal Approach . 17
3.4 Complete Approach . 17
3.5 Conclusions . 17

4 Experiment Setup 20
4.1 Setup . 20

4.1.1 Hardware . 20
4.1.2 Software . 20

4.2 Reproduction Park et al. 20
4.3 Selection Time . 21
4.4 Performance Metrics . 21
4.5 Models . 23
4.6 Conclusions . 23

5 Results 24
5.1 Research Questions . 24
5.2 Polyhedral Features . 24
5.3 Change of Optimizations . 25
5.4 Feature Normalization . 26
5.5 Selection Time vs Run Time . 27

1

6 Conclusion 30
6.1 Conclusions . 30
6.2 Future Work . 30

Appendices 32

A Example Correlation 33

B Example OpenScop 34

2

Chapter 1

Introduction

Nowadays, computers have reached very complex architectures. Even Personal Computers have
Multicore processors, and are able to perform vector instructions. However, in order to get optimal
use out of these, efficient parallel code needs to be written. [Asanovic et al., 2006]
Since writing efficient parallel code gets more complex as the hardware gets more complex, meth-
ods to automatically tune these codes need to be explored. Especially the optimization of loops
tends to be important, since a high percentage of the time is spent within loops.

1.1 Motivation
A problem with tuning code optimizations, is that the optimization space is near infinite. For each
additional optimization, the time it takes for reaching a solution will increase multiplicatively. For
this reason, the optimization space needs to be limited.
Take the correlation.c code from the PolyBench benchmark as example, shown in Appendix A.
After iteratively compiling the code over the limited optimization space shown in Table 3.2 for 10
minutes, it reached a speedup of 115 times.
From the speedup, it’s clearly visible that the iterative loop optimization has improved the code
a lot, and that it has promising results. However, a method to reach similar results, that does not
take as much time as Iterative Compilation would, is necessary.

The Polyhedral Model is often used for automating optimization of loops, since it provides
a numerical abstraction of the loops, which can then easily be processed by code. Examples
of programs that use the Polyhedral Model are PLuTo [Bondhugula et al., 2008], LLVM/Polly
[Grosser et al., 2011] and PoCC [Pouchet et al.,].

Currently, there are numerous methods being applied for the optimization of loops. The most
efficient results would be reached by using Iterative compilation, while results can be collected faster
when using a Static Cost Model approach such as PLuTo. Alternately, research has been done on
the use of Machine Learning, in order to approximate the best sequence of loop optimizations that
is found by Iterative compilation, by finding patterns in the given features.

In this report we will cover the design of a novel Polyhedral Optimization solution, using
Machine Learning.

1.2 Background Information
This section will cover the background information that is necessary to properly understand the
content of the thesis. First the used loop optimizations will be discussed in Section 1.2.1, then the
concept of the Polyhedral Model in Section 1.2.2 and finally, Machine Learning and some models,
that will be used, will be discussed in 1.2.3

1.2.1 Loop Optimizations
Loop optimizations are often performed for improving memory locality and exploiting parallelism
[Bacon et al., 1994]. A small explanation on the optimizations that are applied and why they are

3

effective will follow.

Thread-Level Parallelization

While not actually an optimization, by allowing the compiler to parallelize the code on thread-
level, a lot of other optimizations become effective. Thread-Level Parallelization is based on the
concept of spreading tasks over different threads of a CPU or GPU. By spreading the tasks over,
for example, 2 threads, it is possible to speed the code up by nearly 2 times. However, this speedup
is gated by the overhead of splitting the tasks over the threads, and the amount of tasks that can
simply not be parallelized. In order to make a code so that this speedup is maximized, other
optimizations are done to exploit this parallelism.

Loop Tiling

Loop Tiling is a powerful optimization that divides the iteration space in tiles, to improve cache
reuse, and to exploit inner-loop parallelism. Tile Size is a very relevant factor for this optimization,
and the prediction of optimal tile size is currently still heavily being researched.

Loop Fusion/Distribution

Loop Fusion is the act of combining Loops, while Loop Distribution distributes them. By fusing
loops, loop overhead can be reduced, instruction parallelism can be increased and data cache
locality can be improved.
Loop Distribution can improve instruction cache locality by having shorter loop bodies and create
smaller loops with fewer dependences.
PLuTo, which we will use for the optimizations, defines Loop Fusion as either max-fuse, smart-
fuse or no-fuse. Max-fuse might prevent parallelization and vectorization by attempting to fuse all
loops. Smart-fuse tries to work towards those optimizations using a heuristic. No-fuse ignores all
fusions altogether.

Wavefronting

Wavefronting is an operation that allows for tiles to be executed in a different order, such that
the tiles are being executed in a pipeline parallel fashion. While this optimization can expose
coarse-grained parallelism, it does so at the cost of potential cache reuse.

Pre-Vectorization

One of the operations that is automatically optimized by compilers is Vectorization. By vectorizing,
it allows the processor to use hardware elements such as an SIMD to simultaneously perform
multiple independent operations. This is generally done for the inner-most loop.
By Pre-Vectorizing, the to be vectorized operations are pushed to the inner-most loop.

Loop Unrolling

When unrolling loops, the loop body is replicated a number of times and reduces the loop iteration
space by that same number. By doing so, loop overhead is avoided, instruction parallelism can
be exploited, and register and data cache locality can be improved. However, the pressure on the
registers and instruction memory do increase.

1.2.2 Polyhedral Model
The Polyhedral model serves for an abstraction of affine loops, also called Static Control Parts
(SCoPs), in the form of matrices. These matrices contain information on the Iteration Domain,
the Read/Write Accesses, the Schedule and the Dependences.

This abstraction can be used for static loop analyses and can serve a useful tool for performing
loop transformations.

4

Iteration Domain

The Iteration Domain is composed of the vectors that bound the iteration space. An example
is shown in 1.1. The dotted lines indicate the Iteration Vectors, and the Iteration Domain is a
collection of these Iteration Vectors.

Figure 1.1: A SCoP (left) and its Iteration Space for N=6 (right). Image from [Jimborean, 2012]

Schedule

Schedules are used to determine the relative order of statements and in which loop body they are
located. In case of the example code of Figure 1.1, there are 2 loops, the possible positions of the
statement are: Before loop i, between loop i and loop j, and after loop j. If there are multiple
statements, it would also differentiate which of the two statements occurs in which order.
The schedule is also where most optimizations take place. By exchanging positions in the schedule
it is possible to apply optimizations such as Loop Interchange.

Read/Write Accesses

Read and Write accesses are also being displayed in the form of matrices. The amount of read and
write accesses are tracked and for each access, the dimensions of the array can be tracked.

Dependences

Dependences between statements are also part of the model. For each dependence, it keeps track
which iteration of which statement depends on which iteration of another statement. Checking
the Dependences is very important for making sure that the function of the code is not altered by
applying optimizations.
For each Dependence, the type of Dependence is also tracked. These include Read-After-Write
(RAW), Write-after-Read (WAR) andWrite-after-Write (WAW). Note that Read-After-Read (RAR)
is generally not tracked, due to being a false dependence, meaning that it would not affect the
functionality of the code.

1.2.3 Machine Learning
Machine Learning is used to create a model, that is found by recognizing patterns. [Nasrabadi, 2007]
Generally, when solving problems with Machine Learning, the process will be as follows:

1. Features of the problem will be extracted and used as input for the model.

2. A collection of features of example problems will be used as training set, which will be used
to create a model.

3. Then, the model will be tested in a test set, which contains example problems that are not
used in the training set.

5

Problems are generally categorized as being supervised or unsupervised.
In supervised problems, the training data already contains the answer of the problem, while in
unsupervised it does not. In the case of supervised problems, which are mostly relevant for this
thesis, the problems are further categorized as being classification problems and regression prob-
lems.
For classification problems, the goal is to find the category that the input belongs to. Regression
problems want to predict a number of continuous variables as an output. A simple illustration is
shown in Figure 1.2.

Figure 1.2: Classification (left) and Regression (right). Image from [Ngoma, 2017]

Ordinal Regression

One of the Machine Learning models that will be introduced in this thesis is Ordinal Regression, as
implemented by Joachims [Joachims, 2002], based on SVM. This method, rather than regressing
towards a value such as Execution Time or Speedup, tries to predict a relative rank. such that the
high difference in execution time does not weigh in too heavily.

Multimodel

Besides using single Machine Learning algorithms without compiling and running any of the pre-
dicted results, it’s also possible to use the results of compiling and running multiple Machine Learn-
ing algorithms, and select the best result out of that, as suggested by Park et al. [Park et al., 2013].
At the cost of some Selection Time, the Run Time will increase.

1.3 State of the Art
For transforming code to a Polyhedral Representation, LLVM/Polly [Grosser et al., 2011] and
PoCC [Pouchet et al.,] are big names.

LLVM/Polly transforms LLVM Intermediate Representation (LLVM-IR) code to a Polyhedral
Representation. LLVM-IR can be generated from multiple different programming languages, which
makes this method very portable. LLVM/Polly also implements a number of Polyhedral Optimiz-
ers, like PLuTo [Bondhugula et al., 2008], and also allows for importing and exporting of Schedules,
so that loops can manually be optimized.

PoCC (The Polyhedral Compiler Collection) is a collection of Polyhedral Representation and
Optimization tools. It implements a toolchain containing CLooG, Clan and Candl for Polyhedral
Representation, and Polyhedral Optimizers like PLuTo and LeTSeE.

Currently, Polyhedral Optimizations are generally done through a Static Cost model, like
PLuTo [Bondhugula et al., 2008], or through Iterative Search, like LeTSeE [Pouchet et al., 2007a]
[Pouchet et al., 2007b] [Pouchet et al., 2008]. Recently, people have started experimented with so-
lutions to include Machine Learning as well, as done by [Ganser et al., 2017] and [Park et al., 2013].

6

We will compare Iterative Search, Park et al. and PLuTo in terms of Selection Time (the time
it takes to select a solution), and Run Time (the time the selected solution takes to finish running
once). To display this, a Pareto graph of the State of the Art solutions has been made and is
displayed in Figure 1.3.
Notable is that Park et al.’s best model, even though it’s a Machine Learning method, takes hours
to select the 30 results, while having results that are similar to simply running PLuTo –tile –
parallel, which does the same thing within minutes.
Park et al.’s Multimodel does reach better times and does a better job approaching Iterative, at
the cost of a bit of Selection Time.

1.4 Problem Statement
As was prefaced in Section 1.3, the main problem that we want to solve, is that there is a big
trade-off between Selection Time and Run Time, and by using Machine Learning, we want to find
a method that approaches the Run Time reached by Iterative methods, while also being fast in
terms of Selection Time. The proposed solution would be to use the execution times of an Iterative
method, then inserting it, together with other Polyhedral Features of the code, as input data of a
Machine Learning application, which would in turn learn to predict which solution is optimal.
Since this implementation uses a similar approach as [Park et al., 2013], we will set their results
as a baseline for the possible improvements.
In terms of Figure 1.3, the goal is to achieve similar or better Run Times than "Best Park et al.",
while reducing the Selection Time to something similar to "PLuTo –tile –parallel".

1.5 Contributions
This thesis will have the following contributions on the area of Polyhedral Optimizations:

• An analysis of the State of the Art for Polyhedral Optimizers, in terms of Selection Time
(time it takes to find a solution) and Run Time.

• A Machine Learning approach purely based on Polyhedral Information, rather than a pure
flag tuning approach, that does not require any prior compiling and running of the test
program has been created.

– It is a direct improvement compared to Park et al.’s purely flag tuning based approach
in terms of Run Time and is 72.8x faster in terms of Selection Time.

– Unlike Park et al.’s approach, it has better results than simply performing PLuTo –tile
–parallel, while also having a similar Selection Time as PLuTo

• A Multimodel approach, similar to the one by Park et al. has been created.

– It is a direct improvement compared to Park et al.’s Multimodel approach in terms of
both Run Time and is 10.90x faster in terms of Selection Time.

– It reaches approximately 92.6% of the Run Time of Iterative Approaches in a factor
135x lower Selection Time, making it a good alternative for Iterative.

• The usage of Ordinal Regression, a Machine Learning model that has not been used in the
context of Polyhedral Optimizations as of yet.

1.6 Outline
The thesis will follow the following structure:

• Chapter 2 will go over the related works in the area of Loop Optimizations, Polyhedral
Optimizers, application of Machine Learning for Iterative Compilations, Polyhedral Repre-
sentation Tools .

7

(a) Total Run Time

(b) Geometric Mean of Run Time

Figure 1.3: Pareto graphs of the current state of the art. Selection Time is the time to select a result
for all 30 PolyBench benchmarks. Total Run Time is the sum of the 30 Run Times, and GeoMean Run
Time indicates the Geometric Mean of those 30 Run Times.

8

• Chapter 3 will go in-depth on how Park et al. implemented their work, how we will alter
it to a purely Polyhedral Model approach to improve its Selection Time, and how we will
further improve on that.

• Chapter 4 will discuss the setup of the experiments, the differences in implementation for
the reproduction of Park et al.’s method and go over how the results of these experiments
will need to be interpreted.

• Chapter 5 will formulate research questions that need to be answered using experiments,
and discuss the results of the experiments.

• Chapter 6 will deliver the conclusions and discuss on potential improvements for future
work.

9

Chapter 2

Related Work

For Loop Optimizations, several approaches have been made. Pochoir [Tang et al., 2011] is a com-
piler that optimizes stencil codes for parallelism. Halide [Ragan-Kelley et al., 2013] has designed
a Domain Specific Language that can be used to make it easier to write efficient image processing
code.

Polyhedral Optimizations have been researched in multiple methods. A purely iterative method
would be LeTSeE [Pouchet et al., 2007a] [Pouchet et al., 2007b] [Pouchet et al., 2008]. LeTSeE
limits the almost infinite search space, then filters it out so that only the legal and distinct sched-
ules are left in order to be more time efficient. It also tries solving its time issues by generating a
heuristic and solving it with a Genetic Algorithm.

Polyite [Ganser et al., 2017] finds a problem in LeTSeE, namely that it does not properly op-
timize for parallelization, so they add tiling and parallelization to the search space. Additionally,
they also utilize a Genetic Algorithm to try and solve the search space more efficiently.

PLuTo [Bondhugula et al., 2008] is a purely heuristics-based method, that is also widely used
for other optimizers. Both LeTSeE and Polyite implement it as well. The cost-model that is
implemented can be used for, among other things, tiling, parallelization and loop fusion.

PoCC [Pouchet et al.,] implements a number of other optimizers, such as LeTSeE and PLuTo,
so that they can be used in the same toolchain.

Park et al. [Park et al., 2013] uses a Machine Learning approach to solve the time issues. They
try to predict the best combination of high-level optimizations that PLuTo (implemented within
PoCC) can solve, by using either one of their 6 Machine Learning Models, or by using their multi-
model that will run the best predicted combination of each of the models, and then choose the
fastest one. The Machine Learning models in question are trained with the flags of the high-level
optimizations and PAPI performance counters [Terpstra et al., 2010], such as L1 Cache Misses,
amount of branch instructions and total amount of cycles, as features.
They also experiment using two different hardware setups, and two different compilers, and play
around with flags to optimize the Machine Learning Models with.

Joachims et al. [Joachims, 2002] alters the classical SVM to a Ranking SVM, also called Ordinal
Regression, that regresses through relative ranking rather than using actual values. This Machine
Learning algorithm will also be used in this thesis.

Multiple methods have used Iterative Compilation as a baseline for training Machine Learning
Models. Milepost GCC [Fursin et al., 2011] uses the results of Iterative Compilation, alongside
several flags and program features, to train a Decision Tree. Cosenza et al. [Cosenza et al., 2017]
iteratively compiled stencil tuning configurations and used the execution time for training an
Ordinal Regression Model for autotuning stencil computations.

A number of tools exist for extracting Polyhedral Representation; Clan [Bastoul, 2008] can
be used to output an OpenSCoP file [Bastoul, 2011] that contains Polyhedral Information, Candl
[Bastoul and Pouchet, 2012] can extract code dependences from code, CLooG [Bastoul, 2013] can
generate normal code back from that OpenSCoP file. An example of such an OpenSCoP file is

10

shown in Appendix B

LLVM/Polly [Grosser et al., 2011] is an entire framework around that can transform code to
LLVM/IR, an intermediate representation in which polyhedral optimizations can be done. It can
generate a jSCoP file, which has a similar goal as the OpenSCoP file, and can be directly compiled
from the LLVM/IR code.

2.1 Conclusions
Park et al. is one of the most direct references in the area of Polyhedral Optimizations using a
Machine Learning approach. This is why we will take this as a baseline for our own approach.

In the following chapter, we will go more in depth on Park et al.’s method, why it is not quite
what we want to reach, and how we plan to change it, such that it will solve our problems.

11

Chapter 3

Methodology

This Chapter will discuss the methods that are used, and will explain the thought process of why it
would be an improvement, compared to the method that Park et al. used. To start off with, we will
take Park et al.’s method as a baseline in Section 3.1, and discover improvements in Section 3.2,
then implement a minimal approach that should be sufficient in Section 3.3 and a more complete
approach in Section 3.4.

3.1 Park et al.
As earlier explained in Chapter 2, Park et al. also uses a Machine Learning approach for estimating
optimal optimization sequences. A model of their approach is shown in Figure 3.1.

Figure 3.1: Model of Park et al.’s approach. Training method (left) and Prediction for new code
(right)

12

3.1.1 Training Data
An important aspect of the design of a Machine Learning model is the Training Data. If the
amount of training data is too limited, the model could become biased.
The idea of Park et al. is to use the 30 PolyBench benchmarks as training data. These are displayed
in Table 3.1.

Benchmark Description
2mm 2 Matrix Multiplications (alpha * A * B * C + beta * D)
3mm 3 Matrix Multiplications ((A*B)*(C*D))
adi Alternating Direction Implicit solver
atax Matrix Transpose and Vector Multiplication
bicg BiCG Sub Kernel of BiCGStab Linear Solver

cholesky Cholesky Decomposition
correlation Correlation Computation
covariance Covariance Computation
deriche Edge detection filter
doitgen Multi-resolution analysis kernel (MADNESS)
durbin Toeplitz system solver
fdtd-2d 2-D Finite Different Time Domain Kernel
gemm Matrix-multiply C=alpha.A.B+beta.C
gemver Vector Multiplication and Matrix Addition
gesummv Scalar, Vector and Matrix Multiplication

gramschmidt Gram-Schmidt decomposition
heat-3d Heat equation over 3D data domain
jacobi-1d 1-D Jacobi stencil computation
jacobi-2d 2-D Jacobi stencil computation

lu LU decomposition
ludcmp LU decomposition followed by Forward Substitution
mvt Matrix Vector Product and Transpose

nussinov Dynamic programming algorithm for sequence alignment
seidel-2d Seidel stencil computation
symm Symmetric matrix-multiply
syr2k Symmetric rank-2k update
syrk Symmetric rank-k update
trisolv Triangular solver
trmm Triangular matrix-multiply

Table 3.1: PolyBench/C 4.2.1 benchmark codes

They apply Leave-One-Out Cross-Validation on these benchmarks, meaning that for each
benchmark, they take the other 29 benchmarks as training set, and the chosen benchmark as
test set.
They also limit the Optimization Space to the ones shown in Table 3.2. These are the optimizations
that they considered as optimizations with an actual trade-off. Each benchmark will be compiled
and ran with each of these optimizations.

Optimization Options Park et al. Reproduced?
Loop Fusion/Distribution Max-fuse, smart-fuse, no-fuse Yes
Loop Tiling No tiling, tiling with size 32 Yes
Wavefronting On, off Yes
Thread-level Parallelizations On, off Yes
Pre-vectorization On, off Yes
SIMD-level Parallelizations On, off No
Register Tiling Unroll factors: 1, 2, 4, 8 Yes

Table 3.2: Optimizations used for Park et al.

13

3.1.2 Features
The Features that Park et al. selected for training the Machine Learning Model, exist of several
parts. First of all is the Execution Time of the optimized program. This is necessary for the
prediction of future Execution Times.
Second are the optimization flags to encode the optimizations, and last are the PAPI hardware
features, which are used as a static description of the code. This method was inspired by a previ-
ous work from Cavazos et al. [Cavazos et al., 2006]. The exact PAPI hardware counters that are
extracted are shown in Table 3.3.

Category of PCs List of PCs selected
Cache Line Access CA-CLN, CA-ITV, CA-SHR
Level 1 Cache L1-DCA, L1-DCH, L1-DCM, L1-ICA, L1-ICH,

L1-ICM, L1-LDM, L1-STM, L1-TCA, L1-TCM,
Level 2 & 3 Cache L2-DCA, L2-DCM, L2-DCR, L2-DCW,

L2-ICA, L2-ICH, L2-ICM, L2-LDM,
L2-STM, L2-TCA, L2-TCH, L2-TCM,
L2-TCR, L2-TCW, L3-TCA, L3-TCM

Branch Related BR-CN, BR-INS, BR-MSP, BR-NTK,
BR-PRC, BR-TKN, BR-UCN

Floating Point DP-OPS, FDV-INS, FML-INS, FP-INS,
FP-OPS, SP-OPS

Interrupt/Stall HW-INT, RES-STL
TLB TLB-DM, TLB-IM, TLB-SD, TLB-TL
Total Cycle or Instruction TOT-CYC, TOT-IIS, TOT-INS
Load/Store Instruction LD-INS, SR-INS
SIMD Instruction VEC-DP, VEC-INS, VEC-SP

Table 3.3: PAPI Counters used in Park et al. (Data from Park et al. [Park et al., 2013])

3.1.3 Modeling
For the Machine Learning Modeling, Park et al. experimented with multiple regression algorithms:

• Linear Regression (LR)

• Support Vector Machine (SVM)

• Instance-based Learning using K-Nearest Neighbor and Euclidean Distance (IBk)

• Instance-based Learning using Entropic Distance (K*)

• M5 Model Tree Based Learning (M5P)

• Multi-Layer Perceptron (MLP)

• Ordinal Regression (OR) Own Addition

3.1.4 Step by Step
Park et al. essentially follows the following steps for training and testing the model:

1. Compile and run all unoptimized codes that are used for training with PAPI to extract PAPI
hardware counters [Terpstra et al., 2010]. (See Table 3.3)

2. Compile and run every combination of optimizations to get execution time. (See Table 3.2)

3. Use the combination of optimizations, PAPI hardware counters and execution time as training
data for each of the Machine Learning models.

4. Compile and run the test code with PAPI to extract the PAPI hardware counters.

14

5. Add the combinations of optimizations as features for the test code

6. Predict the speedup for each optimization using the created model.

7. (Optional) When calculating for multi-model: Compile and run the predicted best optimiza-
tions for each Machine Learning model, and select the best result.

3.1.5 Conclusions
The method proposed by Park et al. has one big issue that do not comply with the problem we want
to solve. First of all, when compiling a new code, in order to extract features, a single compilation
and run with PAPI is necessary. While this seems like it would add a rather low overhead, running
with PAPI counters actually can end up taking up to half an hour.
Our goal is to create a method that does not need a single compilation for the prediction of new
codes at all, and this does not comply with that prerequisite.

3.2 Improvements
In this section we will discuss the improvements over Park et al.’s method that will be implemented.
These changes will be mainly about the Features and the Optimization Space.

3.2.1 Features
Since the biggest problem with Park et al.’s method is that they require a single compilation and
run using PAPI to achieve a representation of the code, the solution would be to use alternate
features to represent the code. This will be done in the form of Polyhedral Features. Another issue
is the lack of Feature Normalization, which will be tested in multiple ways.

Polyhedral Features

From the OpenSCoP files, generated by Clan, Polyhedral Information can be generated. An
example file is shown in Appendix B. Shortly summarized, there is a number of information that’s
about the entire code, and information such as Iteration Domain, Schedule (or Scattering Function),
and Read/Write Accesses are done per statement. This means that depending on the number of
statements in a SCoP, the number of features can vary.
The following Polyhedral Features are extracted:

• Number of Statements

• Number of Dependences

• Number of Iterators

• Number of different Iteration Domain edges

• Number of Read accesses

• Number of Read accesses per statement

• Number of Write accesses

• Number of RAW Dependences

• Number of WAR Dependences

• Number of WAW Dependences

• For each Statement:

– Iteration Domain rows
– Scattering rows
– Amount of Reads
– Amount of Write Access rows
– Amount of Read Access rows

15

Feature Normalization

Numerous Machine Learning models can get influenced by the Feature Vector Size. This is generally
the case if the model uses Euclidean distance for calculations. To avoid this, it’s important to
normalize the Feature vector to values between 0 and 1. This was, as far as visible from Park et
al.’s paper, not done for their models, and therefore has been reproduced as without normalization.
The normalization can be done in multiple ways, and the following will be evaluated:

• Unit Vector Normalization

• Manual Normalization (If applicable, normalize using another feature, otherwise Min-Max
normalization)

For Unit Vector Normalization, the method shown in Equation 3.1 is used for the features
shown in Chapter 3.2.1. In the equation, x’ is the normalized Feature Vector and x is the original
Feature Vector.

x’ =
x
||x||

(3.1)

In case of Manual Normalization, a number of features can be normalized using other features.
The ones that are normalized this way are as follows:

• Number of RAW Dependences -> Number of RAW Dependences divided by Number of
Dependences

• Number of WAR Dependences -> Number of WAR Dependences divided by Number of
Dependences

• Number of WAW Dependences -> Number of WAW Dependences divided by Number of
Dependences

• Iteration Domain rows -> Iteration Domain rows divided by Number of Iteration Domain
edges

• Amount of Reads -> Amount of Reads divided by Number of Read Accesses

For the other features, a min-max normalization is applied, as shown in Equation 3.2. Here,
xn is a value in the feature vector, x′

n the normalized value, and max(xn) and min(xn) are defined
as the maximum and minimum values of xn over all feature vectors.

x′
n =

xn −max(xn)

max(xn)−min(xn)
(3.2)

The results of the different Normalizations will be tested in Chapter 5.4.

3.2.2 Optimization Space
The Optimizations that Park et al. used, are shown in Table 3.2. The first proposed change will be
to omit the flag for Thread-level Parallelization. Since the goal of this thesis is to optimize towards
parallel compilation, the end result should always include Thread-level Parallelization. Leaving
the option to not parallelize in, will likely only improve the failure rate of the Machine Learning
models.
Another optimization that was missing in Park et al.’s approach was more options for Tiling. Tile
Size is often researched for parallel optimization [Coleman and McKinley, 1995] [Ryoo et al., 2008],
and is yet unsolved, since it depends on a lot of hardware factors. By changing Tile Size, the amount
of cache misses can heavily decrease, increasing the spatial locality of the code.
For the scope of this project, tile size shall only be checked for sizes of 16, 32, 64 and 128 in all
dimensions (i.e. 16x16x16x16 if the code consists of 4 loops), since the amount of iterations that
are added for each tiling configuration, would end up being too high. However, the implementation
could be altered for a pure tile size estimation in future works.
The final Optimization set is shown in Table 3.4.

16

Optimization Options
Loop Fusion/Distribution Max-fuse, smart-fuse, no-fuse
Loop Tiling No tiling, tiling with size 16, 32, 64 or 128 in all dimensions
Wavefronting On, off
Thread-level Parallelizations On
Pre-Vectorization On, off
Register Tiling Unroll factors: 1, 2, 4, 8

Table 3.4: Our Optimization Space

3.2.3 Conclusions
By switching the PAPI hardware features out for Polyhedral Features, the Selection Time should
be reduced down to seconds, and if proper features have been selected, the Run Time should stay
approximately the same.
Feature Normalization has been added so that a specific feature’s significance does not get blown
up in case of models that use Euclidean distance or would get influenced by the feature size in
some other way.
By removing the option to turn Thread-level Parallelization off, the miss-rate of the Machine
Learning should decrease, and therefore it should improve the average results. In exchange, we
also try the addition of Tile Sizes, which could lead to better results.

3.3 Minimal Approach
A minimal approach for achieving a faster Selection Time has been made and can be seen in Figure
3.2. This model changes only the PAPI hardware features to Polyhedral Features, and does not
apply Feature Normalization and the alternate Optimization Space yet. This is done to compare
the Features in vacuum.

3.4 Complete Approach
Once the minimal approach has been completed and tested, a second, more in-depth approach will
be performed. This will include the change of the Iterative version that is being used, and the
addition of Feature Normalization. This is shown in Figure 3.3. This approach should be purely a
Run Time improvement compared to the Minimal Approach

3.5 Conclusions
Park et al.’s method has been observed, and from the observations came a number of possible
improvements. These improvements include the usage of Polyhedral Features rather than PAPI
hardware counters as static code describing features, so that the high overhead of extracting those
PAPI hardware counters can be removed. Additionally, Feature Normalization methods are ex-
plored and a different Optimization Space is explored.
These improvements are then implemented in a minimal approach, that only changes the features
to Polyhedral Features, and a complete approach, that include all of the aforementioned changes.

17

Figure 3.2: Model of the minimal approach. Training method (left) and Application for new code
(right). Red indicates the change compared to Park et al.’s model.

18

Figure 3.3: Model of the complete approach. Training method (left) and Application for new code
(right). Red indicates the change compared to Park et al.’s model.

19

Chapter 4

Experiment Setup

This Chapter will explain the Hardware setup and the tools used for performing the experiments,
the differences between Park et al.’s approach in their own paper and in our reproduction of it. It
will also explain how to interpret the results.

4.1 Setup

4.1.1 Hardware
The benchmarks are being performed on a system with

• Intel Xeon E5-2697v4 18x 2.30GHz Processor

4.1.2 Software
The following versions of software are being used:

• PLuTo 0.11.4

• Clan 0.8.0

• Candl 0.6.2

• CLooG 0.18.4

• PolyBench/C 4.2.1

4.2 Reproduction Park et al.
There’s a number of differences with the original method of Park et al. and our reproduction of it.
This could lead to a difference in the results of their paper and this thesis. The differences between
the reproduction and the original method are as follows:

• PolyBench 4.2.1 has been used for benchmarking instead of PolyBench 2.1

– Since PolyBench 2.1, a number of benchmarks has been removed and added.

• PLuTo 0.11.4 has been used instead of the PLuTo (0.5.5) implementation within PoCC (1.4.2)
for optimizations

– PoCC could not handle newer codes of PolyBench 4.2.1 and ended up slower for the
other codes. This is probably due to the older version of PLuTo installed in PoCC.

– SIMD-level Parallelizations were not available on PLuTo, so these have been skipped.

• Not all of the PAPI hardware counters used in Park et al. could be extracted. Instead, all
available PAPI hardware counters have simply been used.

20

• Ordinal Regression has also been tested as Machine Learning model in addition to the other
models.

As a result of the changes in the setup, the results of Park et al.’s paper are not directly
comparable, and only the results of the reproduction will be used for comparison.

4.3 Selection Time
The term Selection Time has been used a number of times so far, defined as the time it takes to
select a solution. This is not to be confused with Compilation Time, which is the time to compile
a solution.
In the case of Iterative compilation, the time to select a solution is equal to the sum of the compi-
lation time and run time of all optimizations. This is mathematically visualized in Equation 4.1.

tselect,iterative = tcompile,unoptimized + trun,unoptimized +
∑
k

tcompile,k + trun,k (4.1)

For PLuTo and PLuTo –tile –parallel, a selection is already made, so it only needs to be
precompiled with PLuTo for that optimization sequence, as shown in Equation 4.2.

tselect,PLuTo = tprecompile (4.2)

Park et al. requires the time to compile and run the unoptimized code, then the time for a
Machine Learning Model to find a solution, and finally the time for precompiling. This is shown
in Equation 4.3.

tselect,park = tcompile,PAPI_unoptimized + trun,PAPI_unoptimized + tML + tprecompile (4.3)

Our methods using Polyhedral Features, both the minimal and the complete approaches, replace
the compilation time and run time of the unoptimized code with PAPI by a feature extraction time,
as shown in Equation 4.4.

tselect,polyfeat = tfeature extract + tML + tprecompile (4.4)

Estimates for what these times would be are shown in Table 4.1. These times will later be
confirmed in Chapter 5.

Type Selection Time Estimate
tselect,iterative hours
tselect,PLuTo seconds
tselect,park hours

tselect,polyfeat seconds
tcompile,unoptimized less than a second
trun,unoptimized seconds to minutes∑
k tcompile,k + trun,k hours

tcompile,PAPI_unoptimized less than a second
trun,PAPI_unoptimized minutes

tprecompile seconds
tfeature extract seconds

tML seconds

Table 4.1: Estimates for the Selection Times

4.4 Performance Metrics
There’s a lot of room of interpretation when talking about performance, so this section will explain
a little bit on how the results will be evaluated and the reasoning behind it.

21

An example of results is displayed in Figure 4.1. The bolded results are the best result per
benchmark per criterium. When looking at the results, there is no clear ’better’ model; for some
benchmarks, OR Park et al. performs better, for others MLP Park et al. performs better. For some
performance metrics, such as Total Time and Average Time, MLP Park et al. performs better, for
GeoMean of Time, OR Park et al. performs better.

Figure 4.1: Example results that will result from the experiment. For each of the PolyBench
benchmarks, Time, Speedup and Speedup Percentage can be found. The best results are bolded.
Speedup is the speedup compared to the Unoptimized code, Speedup Percentage is the percentage of
speedup reached compared to the Optimal code found by Iterative Compilation

For this reason, it needs to be distinguished which metrics will be considered important in this
thesis.

Total Time, Average (Arithmetic Mean) Time and Total Speedup are essentially the same,
except that Average is normalized by the number of benchmarks, and Total Speedup is normalized
by the total Run Time of the unoptimized code. A problem with the Total Time metric, is that
high Run Time codes will have a bigger influence on the result than smaller codes. Therefore this
metric will be used when optimization of high Run Time codes is actually more important than
the ones of low Run Time codes.

GeoMean (Geometric Mean) of Time on the other hand, is less influenced by high Run Time
codes, and will be used in a more average case.

Speedup is the speedup of the code compared to the unoptimized code. It’s generally frowned
upon to use the arithmetic mean for normalized numbers, due to the inaccuracies created when
observing high variance results [Fleming and Wallace, 1986]. For this reason, only the GeoMean
will be observed in regards of Speedups.

Speedup Percentage is the speedup of the code normalized to the optimal Speedup achieved with
Iterative Compilation. Since this is also a normalized number, only the GeoMean shall be observed.

However, since the GeoMean of Time, GeoMean of Speedup and GeoMean of Speedup Percent-
age all have similar results, only the GeoMean of Time will be used.

22

4.5 Models
After running all results, a total of 7 columns of results per approach will be outputted. However,
in the end, when using the models on a completely unknown code, only one of the 7 predictions
will be used. For future reference, "Best Total Time Approach (Model)" will be the name of the
model that had the best Total Time, "Best GeoMean Time Approach (Model)" will be the name
of the model that had the highest GeoMean Time.

In addition to the "Best" models, the codes will also be tested using the Multimodel approach
that Park et al. used. This means that, per benchmark, each predicted optimization will be com-
piled and run, and the prediction with the lowest Run Time will be chosen as final optimization.
While this is against the goal of creating an optimizer that does not require any compiling and
running, it is still an option to sacrifice a bit of Selection Time for a better Run Time. Additionally,
it serves as a good evaluation method to see if the changes made it so that more optimal results
are reached.

4.6 Conclusions
The Research Questions from 5.1 will be answered in the next Chapter. The results will be
compared with the results of our reproduction of Park et al. and will mostly be evaluated using
the Total Time and GeoMean of Time metrics.

23

Chapter 5

Results

This Chapter will go over the Research Questions, and the respective results of the experiments.

5.1 Research Questions
Experiments will be performed to answer the following Research Questions:

1. How does performance change when using Polyhedral Features instead of PAPI hardware
counters as features? (Section 5.2)

2. How does changing the optimizations influence the average Run Time and the selected Run
Time? (Section 5.3)

3. How do different types of Feature Normalization affect performance? (Section 5.4)

4. How do the results of every model look in terms of Selection Time and Run Time? (Section
5.5)

5.2 Polyhedral Features
The results of comparison of our minimal approach of Chapter 3.3 and Park et al.’s approach of
Chapter 3.1, are seen in Figure 5.1.
In these graphs, each of the Machine Learning Models, as well as the Multimodels for Park et al.’s
approach and our Minimal Polyhedral Features approach are shown.
Regarding individual Machine Learning Model results, OR, IBk and LR performed similar for both
approaches, SVM and MLP performed better for Park et al., and M5P and K* performed better
for our approach in terms of Total Time. In terms of Geometric Time, OR, SVM, M5P, K* and LR
had similar times, Ibk performed better for Park et al. and MLP performed better for our minimal
approach.
A more compact version of the results can be found in Table 5.1. PolyFeat has a better Best Total
Time model than Park et al. in terms of Total Run Time and GeoMean Run Time. The results
for Best GeoMean Time are the same. PolyFeat also improves on Park et al. for the Multimodel
in terms of both Total Run Time and GeoMean Run Time.

Model Total Run Time (s) GeoMean Run Time (s)
Best Total Time Park et al. (MLP) 49.568 0.205
Best Total Time PolyFeat (M5P) 39.491 0.142

Best GeoMean Time Park et al. (OR) 55.309 0.130
Best GeoMean Time PolyFeat (OR) 55.309 0.130

Multimodel Park et al. 24.879 0.071
Multimodel PolyFeat 14.639 0.065

Table 5.1: Total Run Time and GeoMean Run Time of the different approaches

24

(a) Total Run Time

(b) Geometric Mean of Run Time

Figure 5.1: The resulting times and speedups of our Minimal Polyhedral Features approach
(PolyFeat) and Park et al.’s approach (Park et al.)

5.3 Change of Optimizations
The results of the changes explained in Chapter 3.2.2, have been tested and compared per bench-
mark in Figure 5.2. Note that the results are on a logarithmic scale.

In the figures, Old Iterative indicates the Iterative Compilation of the optimizations that Park
et al. used, and the New Iterative means the new optimizations that were proposed in Chapter
3.2.2.
In Figure 5.2a, the New Iterative approach tends to reach better results for all but one benchmark.
This benchmark, ludcmp, tended to have some optimizations for which it wouldn’t complete run-
ning within 5 minutes. For these optimizations, a Run Time of 5 minutes is taken for training.
In Figure 5.2b, most results are fairly similar. The increase in speedup of deriche is likely an error,
since this result was reached for optimizations that were also included in the old Iterative.

25

(a) Average Run Time

(b) Selected Run Time

Figure 5.2: The average Run Time of the Iterative Compilations per benchmark, and the Run Time
that was selected as the best one from the Iterative Compilations.

Model Total Run Time (s) GeoMean Run Time (s)
Iterative Park et al. 13.545 0.061

Iterative Our Approach 13.110 0.050

Table 5.2: Total Run Time and GeoMean Run Time of the different versions of Iterative

When looking at the Total Run Time and GeoMean Run Time of the Iteratives, as shown in
Table 5.2, our approach reaches better times for both of these.

5.4 Feature Normalization
After changing the Optimizations, 2 different types of Feature Normalizations are applied on the
Features, as explained in 3.2.1. The results are displayed in Figure 5.3.

One first thing to notice is the lack of K* for both Normalizations. For some reason it couldn’t
find predictions for K*, so this is omitted. Besides the lack of information for K*, it also means
that the Multimodel will be less accurate than the previous Multimodels.

The summarized results are displayed in Table 5.3.
In terms of Total Run Time, the individual models seemed to take longer for the Manual Normal-
ization. The MultiModel performed slightly better when using Unit Normalization, but the Best
model performed better for Manual, due to SVM’s performance.
In terms of GeoMean Time, the seperate models seem similar. The Multimodels are comparable,

26

(a) Total Run Time

(b) GeoMean Run Time

Figure 5.3: The Total Run Time and GeoMean of Run Time of the Unit Vector Normalized Features
(Unit) and Manually Normalized Features (Manual)

but the Manual normalization is slightly better. For the Best Model, Manual performed better
again.

5.5 Selection Time vs Run Time
An updated Pareto graph is shown in Figure 5.4 and the data used for it in Table 5.4. A significant
improvement compared to Park et al.’s method can be seen for all of the proposed methods; Selec-
tion Time is significantly reduced, and Run Time has improved. The proposed methods reached a
Selection Time that is similar to PLuTo –tile –parallel, and improved on Run Times.

In regards of the Multimodel approach, all of the proposed methods reached an improved Run
Time compared to Park et al., as well as a 10.9x improvement in Selection Time for Minimal

27

Model Total Run Time (s) GeoMean Run Time (s)
Best Total Time Unit (SVM) 32.278 0.140

Best Total Time Manual (SVM) 22.047 0.110
Best GeoMean Time Unit (MLP) 49.005 0.118

Best GeoMean Time Manual (SVM) 22.047 0.110
Multimodel Unit 16.901 0.062

Multimodel Manual 17.817 0.059

Table 5.3: Total Run Time and GeoMean Run Time of the different versions of Feature Normal-
ization

Model Total Selection Total Run GeoMean Run
Time (s) Time (s) Time (s)

No Optimization 8.79 131.16 0.784
Iterative 105969.84 13.55 0.061

New Iterative 119519.27 13.11 0.050
PLuTo 41.14 115.12 0.544

PLuTo –tile –parallel 78.06 42.04 0.139
Best Total Time Park et al. (MLP) 7943.47 49.57 0.205

Best GeoMean Time Park et al. (OR) 7943.47 55.31 0.130
Best Total Time PolyFeat (M5P) 109.06 39.49 0.142

Best GeoMean Time PolyFeat (OR) 109.06 55.31 0.130
Best Total Time Unit (SVM) 109.10 32.28 0.140

Best GeoMean Time Unit (MLP) 109.10 49.00 0.118
Best Total Time Manual (SVM) 109.10 22.05 0.110

Best GeoMean Time Manual (SVM) 109.10 22.05 0.110
Multimodel Park et al. 8540.25 24.88 0.071
Multimodel PolyFeat 783.78 14.64 0.065
Multimodel Unit 676.60 16.90 0.062

Multimodel Manual 676.60 17.82 0.059

Table 5.4: Selection Times and Run Times of every model

Approach (PolyFeat) and 12.6x improvement for the complete approach (Unit and Manual).
The Run Time of the Multimodel approaches are very similar to that of Iterative, and reaches 92.6%
of Run Time Speedup of the old Iterative at a more than 135x lower Selection Time (PolyFeat).
The Run Time for Unit Normalization reaches 77.5% of the Run Time Speedup of the new Iterative
that it was based on, and the one for Manual Normalization reaches 73.6%, while being 176.6x
faster in terms of Selection Time.

The Normalized models (Unit and Manual) tend to have better results in terms of Best single
models. In terms of Multimodels, as they were missing one Machine Learning model (K*), they
performed worse than PolyFeat, but still reached a better GeoMean. Also, the Selection Time is
lower than PolyFeat due to the lack of K

28

(a) Total Run Time

(b) Geometric Mean of Run Time

Figure 5.4: Pareto graphs of our Approaches, compared to the state of the art.

29

Chapter 6

Conclusion

This chapter concludes the results of the thesis. It will also discuss about the potential future
works.

6.1 Conclusions
The initial problem to create a Polyhedral Optimizer, that does not require a prior compilation
or run of the code, has been fulfilled, using the Polyhedral Features method of Chapter 3.3. This
minimal method using Polyhedral Features already surpassed Park et al.’s method in terms of both
Total Run Time and GeoMean Run Time and Selection Time, as shown in Chapter 5.2
In order to improve the results more, extra improvements have been added in Chapter 3.4. Chang-
ing the Optimizations led to slightly better average iterative results as shown in Chapter 5.3 and
normalization of the Features led to a better Run Time for the "Best" Model, as seen in Chapter
5.5. However, the Run Time for the Multimodel seems to have worsened, due to the lack of the
K* Machine Learning model.
Chapter 5.5 shows the placement of all of the results and the final results of all models. The
placement of all of our approaches in the Pareto graph of Figure 5.4 fill a relevant spot, and serve
as a direct improvement on Park et al.’s approach.
To summarize: a Polyhedral Optimizer based on Machine Learning has been created. It does not
require a single prior compile or run of the code, due to the use of Polyhedral Features instead
of PAPI hardware counters. This makes our approach significantly faster in Selection Time than
Park et al.’s approach. Additionally, it turned out to reach a faster Run Time as well, and reached
a better Total Run Time than PLuTo –tile –parallel, which Park et al.’s approach could not beat.
Additionally, although not in the original scope of the thesis, a Multimodel has been made, that
would compile and run 7 optimizations; the selected optimization for each of the Machine Learning
Models. At the cost of Selection Time, a higher Run Time can be reached using this method. This
Multimodel is also faster in Selection Time than Park et al., due to not requiring any prior com-
pilations and runs. The MultiModel of the minimal approach also reaches approximately 92.6% of
the Iterative Run Time, while being more than 135 times faster with the selection process.
When using the Complete approach, only up to 77.5% of the Run Time Speedup can be reached
while being 176.6x faster than the Iterative approach that was used for generating this. This is
partially due to the lack of K* in this multimodel.

6.2 Future Work
Originally, LeTSeE [Pouchet et al., 2007a] and Polyite [Ganser et al., 2017] were also supposed to
be part of the performance comparisons, in order to have more Iterative Approaches to compare
with. There was sadly no time to include this, so this has been omitted.
Additionally, Polyite seemed like an interesting Iterative Compilation base, to use for Machine
Learning. This was also not reached due to time constraints, and difficulties getting Polyite to
work.
Originally, there was a third approach planned. This approach would use only Polyhedral Features
of the optimized code as Features, rather than Flags and Polyhedral Features of the unoptimized

30

code.
Currently, the approaches have only be tested on a single Hardware setup, with a single compiler.
Park et al. tested this method on two Hardware setups, and two different compilers. Generating
better results than Park et al. on multiple platforms rather than just one would prove more con-
vincing than the single setup used in this thesis.
It’s yet unclear why K* did not predict values for the Normalized approaches. By getting K* to
work, the Run Time of the Multimodel should improve.
There is one big issue currently with the Polyhedral Features. Features with index i are only
compared with other features with index i. In the case of the Polyhedral Features, this means that
one code can have 42 Statements, another code can have 2. But only 2 Statements of each of the
codes would be compared. And the 2 Statements don’t necessarily are the most significant ones.
To solve this, a special machine learning model can be made with a certain custom made kernel.
This kernel would need to find either the most significant Statements, or would need to summarize
all the Statement data within a smaller amount of Features that would be comparable.
It is also possible to change the scope of the project; Instead of trying to predict the best combina-
tion of optimizations, it’s possible to use the same method to try and find the optimal Tile Sizes.
The amount of different Tile Sizes that were currently tested are rather limited, due to the high
amount of iterations caused by the other optimizations. But when it’s not restrained by other op-
timizations, it would be possible to use this to approximate ideal Tile Sizes on a higher granularity.

31

Appendices

32

Appendix A

Example Correlation

for (j = 0; j < _PB_M; j++)
{

mean[j] = SCALAR_VAL (0.0);
for (i = 0; i < _PB_N; i++)

mean[j] += data[i][j];
mean[j] /= float_n;

}

for (j = 0; j < _PB_M; j++)
{

stddev[j] = SCALAR_VAL (0.0);
for (i = 0; i < _PB_N; i++)

stddev[j] += (data[i][j] - mean[j]) * (data[i][j] - mean[j]);
stddev[j] /= float_n;
stddev[j] = SQRT_FUN(stddev[j]);
/* The following in an inelegant but usual way to handle

near -zero std. dev. values , which below would cause a zero -
divide. */

stddev[j] = stddev[j] <= eps ? SCALAR_VAL (1.0) : stddev[j];
}

/* Center and reduce the column vectors. */
for (i = 0; i < _PB_N; i++)

for (j = 0; j < _PB_M; j++)
{

data[i][j] -= mean[j];
data[i][j] /= SQRT_FUN(float_n) * stddev[j];

}

/* Calculate the m * m correlation matrix. */
for (i = 0; i < _PB_M -1; i++)

{
corr[i][i] = SCALAR_VAL (1.0);
for (j = i+1; j < _PB_M; j++)

{
corr[i][j] = SCALAR_VAL (0.0);
for (k = 0; k < _PB_N; k++)

corr[i][j] += (data[k][i] * data[k][j]);
corr[j][i] = corr[i][j];

}
}

corr[_PB_M -1][_PB_M -1] = SCALAR_VAL (1.0);

33

Appendix B

Example OpenScop

Example OpenScop of PolyBench’s 2mm.c
#
<|
A
/.\
<| [""M#
A | # Clan McCloog Castle
/.\ [""M# [Generated by Clan 0.8.0]
[""M# | # U"U#U
| # | # \ .:/
| # | #___|
| "--’ .-"
|"-"-"-"-" -#-#-##
| # ##
\ .::::’/
\ ::::’/
:8a| # #
::88a
::::888a 8a ##::.
::::::888 a88a []::::
::::::::: SUNDOGa8a ::::. ..
:::::8::::888: Y8888 :::::::::...
#::’:::88::::888:: Y88a__
#:: ::::88a::::88a:Y88a __---__-- __
#’ .: ::Y88a :::::8a:Y88a __----_-- -------_-__
:’ ::::8P::::::::::88 aa. _ _- -- --_ --- __ --- __--
#.:: ::::::::::::::::::: Y88as88a ... s88aa.
#
[File generated by the OpenScop Library 0.9.0]

<OpenScop >

=== Global
Language
C

Context
CONTEXT
0 6 0 0 0 4

Parameters are provided
1
<strings >
_PB_NI _PB_NJ _PB_NK _PB_NL
</strings >

Number of statements
4

=== Statement 1
Number of relations describing the statement:
3

-- 1.1 Domain

34

DOMAIN
6 8 2 0 0 4
e/i| i j |_PB. _PB. _PB. _PB.| 1

1 1 0 0 0 0 0 0 ## i >= 0
1 -1 0 1 0 0 0 -1 ## -i+_PB_NI -1 >= 0
1 0 0 1 0 0 0 -1 ## _PB_NI -1 >= 0
1 0 1 0 0 0 0 0 ## j >= 0
1 0 -1 0 1 0 0 -1 ## -j+_PB_NJ -1 >= 0
1 0 0 0 1 0 0 -1 ## _PB_NJ -1 >= 0

-- 1.2 Scattering
SCATTERING
5 13 5 2 0 4
e/i| c1 c2 c3 c4 c5 | i j |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 0 0 0 ## c1 == 0
0 0 -1 0 0 0 1 0 0 0 0 0 0 ## c2 == i
0 0 0 -1 0 0 0 0 0 0 0 0 0 ## c3 == 0
0 0 0 0 -1 0 0 1 0 0 0 0 0 ## c4 == j
0 0 0 0 0 -1 0 0 0 0 0 0 0 ## c5 == 0

-- 1.3 Access
WRITE
3 11 3 2 0 4
e/i| Arr [1] [2]| i j |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 5 ## Arr == tmp
0 0 -1 0 1 0 0 0 0 0 0 ## [1] == i
0 0 0 -1 0 1 0 0 0 0 0 ## [2] == j

-- 1.4 Statement Extensions
Number of Statement Extensions
1
<body >
Number of original iterators
2
List of original iterators
i j
Statement body expression
tmp[i][j] = SCALAR_VAL (0.0);
</body >

=== Statement 2
Number of relations describing the statement:
7

-- 2.1 Domain
DOMAIN
9 9 3 0 0 4
e/i| i j k |_PB. _PB. _PB. _PB.| 1

1 1 0 0 0 0 0 0 0 ## i >= 0
1 -1 0 0 1 0 0 0 -1 ## -i+_PB_NI -1 >= 0
1 0 0 0 1 0 0 0 -1 ## _PB_NI -1 >= 0
1 0 1 0 0 0 0 0 0 ## j >= 0
1 0 -1 0 0 1 0 0 -1 ## -j+_PB_NJ -1 >= 0
1 0 0 0 0 1 0 0 -1 ## _PB_NJ -1 >= 0
1 0 0 1 0 0 0 0 0 ## k >= 0
1 0 0 -1 0 0 1 0 -1 ## -k+_PB_NK -1 >= 0
1 0 0 0 0 0 1 0 -1 ## _PB_NK -1 >= 0

-- 2.2 Scattering
SCATTERING
7 16 7 3 0 4
e/i| c1 c2 c3 c4 c5 c6 c7 | i j k |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c1 == 0

0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0
c2 == i

0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
c3 == 0

0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0
c4 == j

0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1
c5 == 1

35

0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0
c6 == k

0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
c7 == 0

-- 2.3 Access
READ
3 12 3 3 0 4
e/i| Arr [1] [2]| i j k |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 0 5 ## Arr == tmp
0 0 -1 0 1 0 0 0 0 0 0 0 ## [1] == i
0 0 0 -1 0 1 0 0 0 0 0 0 ## [2] == j

WRITE
3 12 3 3 0 4
e/i| Arr [1] [2]| i j k |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 0 5 ## Arr == tmp
0 0 -1 0 1 0 0 0 0 0 0 0 ## [1] == i
0 0 0 -1 0 1 0 0 0 0 0 0 ## [2] == j

READ
1 10 1 3 0 4
e/i| Arr| i j k |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 9 ## Arr == alpha

READ
3 12 3 3 0 4
e/i| Arr [1] [2]| i j k |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 0 10 ## Arr == A
0 0 -1 0 1 0 0 0 0 0 0 0 ## [1] == i
0 0 0 -1 0 0 1 0 0 0 0 0 ## [2] == k

READ
3 12 3 3 0 4
e/i| Arr [1] [2]| i j k |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 0 11 ## Arr == B
0 0 -1 0 0 0 1 0 0 0 0 0 ## [1] == k
0 0 0 -1 0 1 0 0 0 0 0 0 ## [2] == j

-- 2.4 Statement Extensions
Number of Statement Extensions
1
<body >
Number of original iterators
3
List of original iterators
i j k
Statement body expression
tmp[i][j] += alpha * A[i][k] * B[k][j];
</body >

=== Statement 3
Number of relations describing the statement:
5

-- 3.1 Domain
DOMAIN
6 8 2 0 0 4
e/i| i j |_PB. _PB. _PB. _PB.| 1

1 1 0 0 0 0 0 0 ## i >= 0
1 -1 0 1 0 0 0 -1 ## -i+_PB_NI -1 >= 0
1 0 0 1 0 0 0 -1 ## _PB_NI -1 >= 0
1 0 1 0 0 0 0 0 ## j >= 0
1 0 -1 0 0 0 1 -1 ## -j+_PB_NL -1 >= 0
1 0 0 0 0 0 1 -1 ## _PB_NL -1 >= 0

-- 3.2 Scattering
SCATTERING
5 13 5 2 0 4
e/i| c1 c2 c3 c4 c5 | i j |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 0 0 1 ## c1 == 1
0 0 -1 0 0 0 1 0 0 0 0 0 0 ## c2 == i
0 0 0 -1 0 0 0 0 0 0 0 0 0 ## c3 == 0

36

0 0 0 0 -1 0 0 1 0 0 0 0 0 ## c4 == j
0 0 0 0 0 -1 0 0 0 0 0 0 0 ## c5 == 0

-- 3.3 Access
READ
3 11 3 2 0 4
e/i| Arr [1] [2]| i j |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 13 ## Arr == D
0 0 -1 0 1 0 0 0 0 0 0 ## [1] == i
0 0 0 -1 0 1 0 0 0 0 0 ## [2] == j

WRITE
3 11 3 2 0 4
e/i| Arr [1] [2]| i j |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 13 ## Arr == D
0 0 -1 0 1 0 0 0 0 0 0 ## [1] == i
0 0 0 -1 0 1 0 0 0 0 0 ## [2] == j

READ
1 9 1 2 0 4
e/i| Arr| i j |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 14 ## Arr == beta

-- 3.4 Statement Extensions
Number of Statement Extensions
1
<body >
Number of original iterators
2
List of original iterators
i j
Statement body expression
D[i][j] *= beta;
</body >

=== Statement 4
Number of relations describing the statement:
6

-- 4.1 Domain
DOMAIN
9 9 3 0 0 4
e/i| i j k |_PB. _PB. _PB. _PB.| 1

1 1 0 0 0 0 0 0 0 ## i >= 0
1 -1 0 0 1 0 0 0 -1 ## -i+_PB_NI -1 >= 0
1 0 0 0 1 0 0 0 -1 ## _PB_NI -1 >= 0
1 0 1 0 0 0 0 0 0 ## j >= 0
1 0 -1 0 0 0 0 1 -1 ## -j+_PB_NL -1 >= 0
1 0 0 0 0 0 0 1 -1 ## _PB_NL -1 >= 0
1 0 0 1 0 0 0 0 0 ## k >= 0
1 0 0 -1 0 1 0 0 -1 ## -k+_PB_NJ -1 >= 0
1 0 0 0 0 1 0 0 -1 ## _PB_NJ -1 >= 0

-- 4.2 Scattering
SCATTERING
7 16 7 3 0 4
e/i| c1 c2 c3 c4 c5 c6 c7 | i j k |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
c1 == 1

0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0
c2 == i

0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
c3 == 0

0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0
c4 == j

0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1
c5 == 1

0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0
c6 == k

0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
c7 == 0

-- 4.3 Access

37

READ
3 12 3 3 0 4
e/i| Arr [1] [2]| i j k |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 0 13 ## Arr == D
0 0 -1 0 1 0 0 0 0 0 0 0 ## [1] == i
0 0 0 -1 0 1 0 0 0 0 0 0 ## [2] == j

WRITE
3 12 3 3 0 4
e/i| Arr [1] [2]| i j k |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 0 13 ## Arr == D
0 0 -1 0 1 0 0 0 0 0 0 0 ## [1] == i
0 0 0 -1 0 1 0 0 0 0 0 0 ## [2] == j

READ
3 12 3 3 0 4
e/i| Arr [1] [2]| i j k |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 0 5 ## Arr == tmp
0 0 -1 0 1 0 0 0 0 0 0 0 ## [1] == i
0 0 0 -1 0 0 1 0 0 0 0 0 ## [2] == k

READ
3 12 3 3 0 4
e/i| Arr [1] [2]| i j k |_PB. _PB. _PB. _PB.| 1

0 -1 0 0 0 0 0 0 0 0 0 15 ## Arr == C
0 0 -1 0 0 0 1 0 0 0 0 0 ## [1] == k
0 0 0 -1 0 1 0 0 0 0 0 0 ## [2] == j

-- 4.4 Statement Extensions
Number of Statement Extensions
1
<body >
Number of original iterators
3
List of original iterators
i j k
Statement body expression
D[i][j] += tmp[i][k] * C[k][j];
</body >

=== Extensions
<scatnames >
b0 i b1 j b2 k b3
</scatnames >

<arrays >
Number of arrays
15
Mapping array -identifiers/array -names
1 i
2 _PB_NI
3 j
4 _PB_NJ
5 tmp
6 SCALAR_VAL
7 k
8 _PB_NK
9 alpha
10 A
11 B
12 _PB_NL
13 D
14 beta
15 C
</arrays >

<coordinates >
File name
polybench -c-4.2.1 - beta/linear -algebra/kernels /2mm/2mm.c
Starting line and column
88 0
Ending line and column
103 0

38

Indentation
2
</coordinates >

</OpenScop >

39

Bibliography

[Asanovic et al., 2006] Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P.,
Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., et al. (2006). The
landscape of parallel computing research: A view from berkeley. Technical report, Technical
Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley.

[Bacon et al., 1994] Bacon, D. F., Graham, S. L., and Sharp, O. J. (1994). Compiler transforma-
tions for high-performance computing. ACM Computing Surveys (CSUR), 26(4):345–420.

[Bastoul, 2008] Bastoul, C. (2008). Clan-a polyhedral representation extractor for high level pro-
grams.

[Bastoul, 2011] Bastoul, C. (2011). Openscop: A specification and a library for data exchange in
polyhedral compilation tools. Technical report, tech. rep., Paris-Sud University, France.

[Bastoul, 2013] Bastoul, C. (2013). Cloog: The chunky loop generator.(2013).

[Bastoul and Pouchet, 2012] Bastoul, C. and Pouchet, L. (2012). Candl: the chunky analyzer for
dependences in loops. Technical report, tech. rep., LRI, Paris-Sud University, France.

[Bondhugula et al., 2008] Bondhugula, U., Hartono, A., Ramanujam, J., and Sadayappan, P.
(2008). A practical automatic polyhedral parallelizer and locality optimizer. In Acm Sigplan
Notices, volume 43, pages 101–113. ACM.

[Cavazos et al., 2006] Cavazos, J., Dubach, C., Agakov, F., Bonilla, E., O’Boyle, M. F., Fursin,
G., and Temam, O. (2006). Automatic performance model construction for the fast software
exploration of new hardware designs. In Proceedings of the 2006 international conference on
Compilers, architecture and synthesis for embedded systems, pages 24–34. ACM.

[Coleman and McKinley, 1995] Coleman, S. and McKinley, K. S. (1995). Tile size selection using
cache organization and data layout. In ACM SIGPLAN Notices, volume 30, pages 279–290.
ACM.

[Cosenza et al., 2017] Cosenza, B., Durillo, J. J., Ermon, S., and Juurlink, B. (2017). Autotuning
stencil computations with structural ordinal regression learning. In Parallel and Distributed
Processing Symposium (IPDPS), 2017 IEEE International, pages 287–296. IEEE.

[Fleming and Wallace, 1986] Fleming, P. J. andWallace, J. J. (1986). How not to lie with statistics:
the correct way to summarize benchmark results. Communications of the ACM, 29(3):218–221.

[Fursin et al., 2011] Fursin, G., Kashnikov, Y., Memon, A. W., Chamski, Z., Temam, O., Namo-
laru, M., Yom-Tov, E., Mendelson, B., Zaks, A., Courtois, E., et al. (2011). Milepost gcc:
Machine learning enabled self-tuning compiler. International journal of parallel programming,
39(3):296–327.

[Ganser et al., 2017] Ganser, S., Grösslinger, A., Siegmund, N., Apel, S., and Lengauer, C. (2017).
Iterative schedule optimization for parallelization in the polyhedron model. ACM Transactions
on Architecture and Code Optimization (TACO), 14(3):23.

[Grosser et al., 2011] Grosser, T., Zheng, H., Aloor, R., Simbürger, A., Größlinger, A., and
Pouchet, L.-N. (2011). Polly-polyhedral optimization in llvm. In Proceedings of the First Inter-
national Workshop on Polyhedral Compilation Techniques (IMPACT), volume 2011.

40

[Jimborean, 2012] Jimborean, A. (2012). Adapting the polytope model for dynamic and speculative
parallelization. PhD thesis, Strasbourg.

[Joachims, 2002] Joachims, T. (2002). Optimizing search engines using clickthrough data. In
Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 133–142. ACM.

[Nasrabadi, 2007] Nasrabadi, N. M. (2007). Pattern recognition and machine learning. Journal of
electronic imaging, 16(4):049901.

[Ngoma, 2017] Ngoma, Y. M. (2017). Analysis of Control Attainment in Endogenous Electroen-
cephalogram Based Brain Computer Interfaces. PhD thesis, Tshwane University of Technology.

[Park et al., 2013] Park, E., Cavazos, J., Pouchet, L.-N., Bastoul, C., Cohen, A., and Sadayappan,
P. (2013). Predictive modeling in a polyhedral optimization space. International journal of
parallel programming, 41(5):704–750.

[Pouchet et al.,] Pouchet, L.-N., Bastoul, C., and Bondhugula, U. Pocc: the polyhedral compiler
collection, 2010. URL http://www. cse. ohio-state. edu/˜ pouchet/software/pocc.

[Pouchet et al., 2007a] Pouchet, L.-N., Bastoul, C., and Cohen, A. (2007a). Letsee: The legal
transformation space explorator. Third International Summer School on Advanced Computer
Architecture and Compilation for Embedded Systems (ACACES’07), L’Aquila, Italia, pages 247–
251.

[Pouchet et al., 2008] Pouchet, L.-N., Bastoul, C., Cohen, A., and Cavazos, J. (2008). Iterative
optimization in the polyhedral model: Part ii, multidimensional time. In ACM SIGPLAN
Notices, volume 43, pages 90–100. ACM.

[Pouchet et al., 2007b] Pouchet, L.-N., Bastoul, C., Cohen, A., and Vasilache, N. (2007b). Iterative
optimization in the polyhedral model: Part i, one-dimensional time. In Proceedings of the In-
ternational Symposium on Code Generation and Optimization, pages 144–156. IEEE Computer
Society.

[Ragan-Kelley et al., 2013] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and
Amarasinghe, S. (2013). Halide: a language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. ACM SIGPLAN Notices, 48(6):519–530.

[Ryoo et al., 2008] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B., and
Hwu, W.-m. W. (2008). Optimization principles and application performance evaluation of
a multithreaded gpu using cuda. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pages 73–82. ACM.

[Tang et al., 2011] Tang, Y., Chowdhury, R. A., Kuszmaul, B. C., Luk, C.-K., and Leiserson, C. E.
(2011). The pochoir stencil compiler. In Proceedings of the twenty-third annual ACM symposium
on Parallelism in algorithms and architectures, pages 117–128. ACM.

[Terpstra et al., 2010] Terpstra, D., Jagode, H., You, H., and Dongarra, J. (2010). Collecting
performance data with papi-c. In Tools for High Performance Computing 2009, pages 157–173.
Springer.

41

	Introduction
	Motivation
	Background Information
	Loop Optimizations
	Polyhedral Model
	Machine Learning

	State of the Art
	Problem Statement
	Contributions
	Outline

	Related Work
	Conclusions

	Methodology
	Park et al.
	Training Data
	Features
	Modeling
	Step by Step
	Conclusions

	Improvements
	Features
	Optimization Space
	Conclusions

	Minimal Approach
	Complete Approach
	Conclusions

	Experiment Setup
	Setup
	Hardware
	Software

	Reproduction Park et al.
	Selection Time
	Performance Metrics
	Models
	Conclusions

	Results
	Research Questions
	Polyhedral Features
	Change of Optimizations
	Feature Normalization
	Selection Time vs Run Time

	Conclusion
	Conclusions
	Future Work

	Appendices
	Example Correlation
	Example OpenScop

