EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Quality metrics for ASOME data models

Zhang, H.

Award date:
2018

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c6734533-57f9-4258-ae34-17da4ef1b166

EINDHOVEN UNIVERSITY OF TECHNOLOGY

MASTER’S THESIS

Quality metrics for ASOME data models

Author: Supervisor:
H. ZHANG Prof.dr.ir].F. GROOTE
MSc. J. MARINCIC

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in Computer Science and Engineering

in the

Department of Mathematics and Computer Science

November 5, 2018

https://www.tue.nl/en/
h.zhang.1@student.tue.nl
http://www.win.tue.nl/~jfg/
jelena.marincic@asml.com
https://www.tue.nl/en/university/departments/mathematics-and-computer-science/

Contents

1 Introduction
1.1 Problem Statement
1.2 GoalandQuestions
1.3 Thesis Organization.
2 Preliminaries
2.1 Model-Driven Engineering
21.1 Domain-specificmodel
2.1.2 Domain-specificlanguage
2.1.3 Domain-specific model representation
2.1.4 Quality of Model-Driven Engineering
2.2 Domain-Specific Modelsat ASML
23 ASOMEDataModels
2.3.1 Basic elements: type, enumeration, constant and multiplicity
constant Lo Lo
2.3.2 C(lass: entity and valueobject
2.3.3 Relation: association, composition and specialization
2.34 The definition of an ASOME Data Model
3 Quality
31 QualityinMDA
3.2 ThelISO Quality Standard
321 ISO9126
322 ISO25010 v vt
3.2.3 Summary of the ISO quality models
3.3 Other QualityModels
3.4 Quality Attributes L oo
341 Complexity o
342 Maintainability 0 000
3.43 Understandability
3.5 Software Metrics
4 Metrics
41 Metrics - LiteratureStudy L.
411 Chidamber and Kemerer’s Metrics (1994)
4.1.2 Marchesi’s Metrics (1998)
413 Genero’s Metrics (2000) e
414 Zhou'sMetrics (2003)
4.1.5 Main problems of the metrics in literature study

42 Metrics -Interview Studyo Lo

421
422

Metrics ininterviewstudy oo oL
Summary of the metrics in interview study

43 Metrics - Document Analysis

iii

iv

43.1 Metrics in documentanalysis
43.2 Summary of the metrics in document analysis
44 ToolDesign e
441 Advantages of our metricstool
442 Disadvantages of our metrics tool prototype

Evaluation

5.1 Evaluationapproaches

5.2 Experiment Settings and Data Collection

53 Resultsanalysis
53.1 Surveydataresults
53.2 Survey dataand metricsdata o 0L

Conclusion
Quality Attributes in Different Quality Models

Interview Guide and Results

B.1 Interview Guideo

B.2 Summary of Interview Results
B.21 Summary-Interview 1.
B.22 Summary-Interview 2. Lo L L
B.23 Summary-Interview3. L.

Summary of document analysis

C.1 Attributes and association
C.2 Entitylifetime
C.3 Multiplicitiesand ordering
C.4 Control and algorithm entities
C5 Mutability
C.6 Commonality between entities

Survey material
D.1 Anexampleofthesurvey
D.2 Survey questions of 26 ASOME datamodels

Survey Data and Metrics Data
E.1 Survey dataresults-proceeded

Bibliography

35

37

41
41
42
42
43
44

47
47
47
47
47
48
48

49
49
49

51
51

55

Basic Mathematical Concepts

Some basic mathematical concepts are presented, which help us to describe models
and metrics in this thesis.

Definition 0.1 (#X). Let X be a finite set. #X denotes the total number of the elements
of the set X.

Definition 0.2 (Transitive Closure). Let X be a finite set and R C X x X be a binary
relation. The transitive closure R* of R is inductively defined for all x, y,z € X:

* xRy = xR"y.
* xR*y N yR*z = xR"z.

Definition 0.3 (Data Types). The following table gives data types which are involved
in the ASOME data models:

Data type notation
Positive number (1,2,3,...) IN*
Natural numbers (0,1,2,...) IN

TABLE 0: Data Sorts with notations

Chapter 1

Introduction

1.1 Problem Statement

Software engineering has gained increasing importance for all fields of society and
individuals. The software development causes not only the complexity of software
products to grow tremendously but also the maintenance costs to increase signif-
icantly [60, 1]. This increasing demand in software engineering promotes several
new software development methodologies and MDE (Model Driven Engineering) is
one of them. Two main benefits of MDE are productivity improvement and flexibil-
ity improvement [49]. However, there is a lack of methods, especially is the software
metrics, to evaluate and guarantee the quality of the MDE products.

In this thesis, we will look how we can enhance the quality assessment of data
models designed in ASML with software metrics.

1.2 Goal and Questions

To address the problem statement, we formulate an overall goal:

Design software metrics to assess the quality of data models designed in ASML.
To achieve the overall goal, we have to answer the following questions:

Q1: How can the quality of data models be decomposed into quality attributes?

Q2: Can we reuse the existing software metrics to assess the quality of data
models?

Q3: What metrics can be defined for data models?
Q4: What metrics are effective as quality attributes of data models?

1.3 Thesis Organization

In this thesis, we first present the preliminaries in Chapter 2. Next, we discuss the
quality problem related to our design in Chapter 3. Chapter 4 contains the met-
rics we define and formalized by using the literature study, interview study and
document analysis. In Chapter 5, we evaluate these metrics and discuss their per-
formance in our survey experiment. Finally, Chapter 6 presents a conclusion.

Chapter 2

Preliminaries

In this chapter, preliminary material is presented. Section 2.1 provides an overview
of model-driven engineering. Section 2.2 gives an overview of domain-specific mod-
els in ASML and the definition of the models is given in the Section 2.3.

2.1 Model-Driven Engineering

The challenges in developing increasingly complex systems motivated the intro-
duction of MDE (Model Driven Engineering), which uses models to represent the
behaviors or other aspects of complex systems [55]. J.D. Haan uses an interesting
metaphor to explain the differences between the traditional programming method
and the MDE method [23]. In the Figure 2.1, traditional programming can be de-
scribed as a way of building a house brick by brick while MDE purposes to use a
model to generate a house.

Programming? I

ﬂ'%‘ -

FIGURE 2.1: A metaphor for Model Driven Engineering (MDE)[23]

Many organizations such as IBM and Object Management Group (OMG) have
been focusing on the development of MDE. The best known MDE approach is MDA
(Model-Driven Architecture) provided by OMG [22].

2.1.1 Domain-specific model

In MDE, models are typically domain-specific, which means they are tailored to cer-
tain domains or specific goals. We call these models DSMs (domain-specific models).

4 Chapter 2. Preliminaries

A complex system is usually specified with multiple DSMs. These models refer
to each other and can be combined to represent the whole system. They are exe-
cutable which means that code can be generated from them. A DSM is constructed
in a Domain-specific language, or DSL for short.

2.1.2 Domain-specific language

A. v. Deursen defines the DSL (Domain-specific language) as:

a programming language or executable specification language that offers, through appro-
priate notations and abstractions, expressive power focused on, and usually restricted to, a
particular problem domain [11].

Similar to a DSM, a DSL is also tailored to a certain domain. Actually, using DSLs
is a typical method to create or to modify DSMs. A sound DSL construction contains
an abstract syntax, one or more concrete syntax descriptions, mappings between ab-
stract and concrete syntax, and a description of the semantics [59], in which abstract
syntax is the key connection between DSL code and a DSM. The designers of a DSL
often use metamodels to define the abstract syntax. Models created by using DSLs
have to conform to the corresponding metamodels.

2.1.3 Domain-specific model representation
There are two typical ways to represent a DSM:

¢ Text: A DSM can be represented as a textual format. Since using DSLs is one
method to create DSMs, the corresponding DSL code can also be treated as the
textual representations of the models.

¢ Diagram: In order to improve the readability of a model, some developers
prefer to use graphical tool to design and view DSMs.

A simple example is given in Section 2.3.4.1, where Figure 2.3 is the textual rep-
resentation of the model and Figure 2.2 is its visual representation.

Some researchers use DSVL (domain-specific visual language) and DSTL (domain-
specific textual language) or textual DSL to differentiate the textual and visual rep-
resentations [21, 52].

2.1.4 Quality of Model-Driven Engineering

Quality is always an important factor for all software engineering approaches. In
general, MDE techniques and tools allow specifying constraints on the models and
validating the model against them. This helps to find errors early in the design
process [50]. These techniques are able to check the correctness of DSMs but cannot
evaluate the quality of the models. In Chapter 3, we explain the quality problem
further.

2.2 Domain-Specific Models at ASML

ASML has developed various model-based development environments. In this the-
sis we study one of them: ASOME (ASML SOftware Modeling Environment). ASOME
is developed to provide an integrated modeling environment allowing software en-
gineers to define specific models for ASML domains. A part of the ASOME envi-
ronment is the ASOME data modeling language for modeling data aspects of the

2.3. ASOME Data Models 5

system. The ASOME platform supports both textual and visual representations for
an ASOME data model. A simple example of an ASOME data model is given in
Section 2.3.4.1.

ASOME data models have been used in several projects. These models are re-
viewed for correctness and quality. There are modeling guidelines and some design
constraints are preset in the ASOME platform [61]. However, there is no software
metrics to guarantee and evaluate the quality of the ASOME data models.

2.3 ASOME Data Models

To study ASOME data models and find some methods to evaluate their quality, we
should understand the basics of the ASOME data model language. In this section,
the basic definitions of an ASOME data model is given. Please note that these defi-
nitions only contain the most important components. Less important parts are omit-
ted.

2.3.1 Basic elements: type, enumeration, constant and multiplicity con-
stant

In the following sections, we present the definitions of each basic element in detail.

2.3.1.1 Type

Types, also called primitive types, are used to specify the primitive data types such
as integer, boolean and string. More precisely:

Definition 2.3.1.1. (type). A type typ € Typ where Typ is a set of type names. We use
TYP to denote the set of all types.

2.3.1.2 Enumeration

Enumerations are used to specify a list of elements represented as enumeration lit-
erals. The definition of the enumerations is:

Definition 2.3.1.2. (enumeration). An enumeration enu is a two-tuple enu = (n, EL)
where

¢ 1 is the name of the enumeration.
e El is a set of enumeration literals.

The set of all enumerations is denoted as ENU.

2.3.1.3 Constant and multiplicity constant

Constants are used to specify some values that cannot be altered.

Definition 2.3.1.3. (constant). Let Typ C TYP be a set of types. A constant con is a
three-tuple con = (n, t, Val) where

¢ 1 is the name of the constant.

¢ t € Typ is the type of the constant.

6 Chapter 2. Preliminaries

e Val is the value of the constant, where Val has to conform to the type of the
constant.

The set of all constants is denoted as CON.

A multiplicity constant is a special constant which is used to specify a multiplic-
ity end. The concepts of multiplicity and multiplicity end are further explained in
Section 2.3.2. The definition of a multiplicity constant is given below.

Definition 2.3.1.4. (multiplicity constant). A multiplicity constant mc is a two-tuple
mc = (n, Val) where

* nis the name of the multiplicity constant.
e Val: N is the value of the multiplicity constant.

The set of all multiplicity constants is denoted as MC.

2.3.1.4 The definition of basic element

Types, enumerations, constants and multiplicity constants are the basic elements of
an ASOME data model. Formally:

Definition 2.3.1. (Basic Element). A basic element be can be a type, constant, mul-
tiplicity constant or an enumeration. The set of all basic elements is denoted as BE,
where BE = TYP UCON UMC U ENU.

2.3.2 Class: entity and value object

An entity and a value object are two main concepts to describe the objects in an
ASOME data model. Before we define the entity and the value object, we should
first explain what an attribute is.

2.3.2.1 Attribute

An attribute defines objects that can be attached to instances of an entity or a value
object in an ASOME data mode. An attribute needs a multiplicity property, which
is an indication of how many objects may participate in the corresponding entity or
value object. A multiplicity can be either ordered or unordered. More precisely:

Definition 2.3.2.1. (multiplicity). An ordered multiplicity is defined as [4..b] and a
unordered multiplicity is defined as {a..b}, where a is called the lower bound and b
is called the upper bound. The lower and upper bounds a and b satisfy:

e g€ N, and
e be (NTU{x}), and
e if b # x,thena < b,

where the star * represents the infinite upper bound. The set of all multiplicities is
denoted as M. For simplicity we write a..a as a. Specially, since * implies an upper
bound value of more than 1, we can also simplify 0..x as *.

The definition of an attribute is as follows:

2.3. ASOME Data Models 7

Definition 2.3.2.2. (attribute). Let Typ € TYP be the set of types in an ASOME data
model and Enu € ENU be the set of enumerations. An attribute att is a three-tuple
att = (n,t,m) where

¢ 1 is the name of the attribute.
e t € Typ U Enu is the type of the attribute.

* M € M is the multiplicity of the attribute.
The set of all attributes is denoted as ATT.

2.3.2.2 Entity

In an ASOME model, an entity is used to describe a category of objects that contains
the same identity. The formal definition is a follows:

Definition 2.3.2.3. (entity). Let Att € ATT be the set of attributes of an ASOME data
model. An entity ent is a three-tuple ent = (n, A, M) where

* n is the name of the entity.
o A c Attis a set of attributes.

* M € M is the multiplicity of the entity.
The set of all entities is denoted as ENT.

Let ent be an entity. The entity ent can be mutable or immutable. We use ent,;; to
indicate ent is mutable and use ent;,,,,,; to indicate ent is immutable. An immutable
entity can never be modified after creation while a mutable entity can be updated
after creation.

Similarly, the entity ent can be data type, control type or algorithm type. We use
ent g, enter and entyye to represent them.

2.3.2.3 Value object

Value objects are used to describe a category of objects that do not have identity. The
definition is as follows.

Definition 2.3.2.4. (value object). Let Att € ATT be the set of attributes in an
ASOME data model. A value object vo is a two-tuple vo = (1, A) where

* 1 is the name of the value object.

e A € Attis aset of attributes.
The set of all value objects is denoted as VO.

2.3.2.4 The definition of class

Entities and value objects are the basic building blocks of an ASOME data model. To
simplify the representation of elements in an ASOME model, we use a class to stand
for either a value object or an entity. The definition is as follows.

Definition 2.3.2. (Class). The set of all classes is denoted as C. Obviously, C =
ENTUVO.

Letent = (n, A, M) be an entity. We use ent. A to represent the set of attributes of
the entity ent and ent.M to represent the multiplicity of the entity ent. Similarly, let
c be a class. We use c.A to represent the set of attributes of the class c.

8 Chapter 2. Preliminaries

2.3.3 Relation: association, composition and specialization

A relation is a general term to describe a specific connection between different classes
in an ASOME data model. Each relation has two relation ends attached to one of
the classes. In an ASOME data model, relations are all unidirectional. We use an
arrow to present the direction of a relation in an ASOME diagram. To simplify the
representation of a relation with unidirection, we use

* apair (a,b) to represent an element of a unidirectional relation from the class
a to the class b.

Some relations also have multiplicity properties, which indicates how many en-
tities or value objects may participate in a given relation end. For relations with the
multiplicity property, we use

* apair ((a,m,), (b,my)) to denote an element of a unidirectional relation, where
a,b € C and m,, m, € M are the multiplicity symbols at the ends of the classes
a and b respectively.

Relations in ASOME data models include three sorts, which are Association, Com-
position and Specialization. The following are the definitions of these three relations:

1. association An association is a unidirectional relation from a source entity to a
target entity. Note that the source and target ends of an association are always
entities in an ASOME data model. The definition is as follows:

Definition 2.3.3.1. (association relation). Let Ent C ENT be a set of entities.
An association relation 7,55 C ((Ent x M) x (Ent x M)) is a unidirectional
relation among entities. If ((e1, m1), (e2,M2)) € 7455, then eg is called the source
entity, e, is called the target entity and m, m; are called the source multiplicity
and target multiplicity respectively. The association relation satisfies:

e if my = {a..b} or my = [a..b], thena = 0.

The source multiplicity m; cannot have a lower bound more than zero to keep
the consistency of the repository.

2. composition A composition is a relation from a source class to a target value
object. The composition relation is used to describe a containment of a value
object in an entity or in another value object. Hence, the target of a composition
is always a value object in an ASOME model.

Definition 2.3.3.2. (composition relation). Let C C C be a set of classes and
Vo C VO be a set of value objects. A composition relation 7, C ((C x M) X
Vo) is a unidirectional relation among entities.

3. specialization A specialization refers to one entity that inherits (or extends) the
identical attributes or methods of another entity.

Definition 2.3.3.3. (specialization relation). Let Ent € ENT be a set of entities.
A specialization relation 755, C Ent x Ent is a unidirectional relation among
classes. If (e1,e2) € rspe, then the entities ey and e; satisfy:

ce £ e

2.3. ASOME Data Models 9

2.3.4 The definition of an ASOME Data Model

Basic elements, classes and relations form the basic structure of ASOME data mod-
els. More formally:

Definition 2.3.3. (ASOME Data Model). An ASOME data model is a three tuple
ADM = (BE, C,R) where:

e BE € B€ is a finite set of basic elements.
e C € C is a finite set of classes.
* Ris the following set of relations: R = {7ss, Tcom, ¥spe } -

As we stated before, an ASOME data model can be presented as a visual repre-
sentation. We call the ASOME data model a diagram. An ASOME model diagram
shows the model elements in a graphical notation. Table 2.1 gives a summary of the
model elements and their icons in an ASOME model diagram.

Element name Icon
type
enumeration [E
constant c

multiplicity constant L'e

entity (E)
value object (VO)

association —
composition -~
specialization —>

TABLE 2.1: Model icons in an ASOME model diagram

Note that the ASOME platform allows model designers to hide some elements
in an ASOME model or add some other elements from multiple external models.

2.3.4.1 An example of an ASOME data model
The following ASOME data model (Figure 2.2) is an example.

3 Elementa {0..10}

name: String

position {|1}

Double Position

x: Double
y: Double
z: Double

String

FIGURE 2.2: ASOME data model diagram example

10 Chapter 2. Preliminaries

Model BasicModel{

DomainInterface iDomainlDM {
Entity Elementd [®, 18] {
lifecycle : Constructable Immutable Undeletable Volatile
attributes :
name : BasicModel.ilDomainlDM.String [1, 1] unordered;
position : BasicModel.1DomainlDM.Position [1, 1] unordered;
1
Type String;
Type Double;
ValueObject Position {
attributes :
¥ : BasicModel.iDomainlDM.Double [1, 1] unordered;
¥y : BasicModel.iDomainlDM.Double [1, 1] unordered;
z : BasicModel.iDomainlDM.Double [1, 1] unordered;

FIGURE 2.3: ASOME data model code example

2.3.4.2 Superclasses and subclasses

Let AMD = (BE, C, R) be an ASOME model and ¢ € C be a class. Classes which spe-
cialize the attributes from the class c, are called specialization superclasses, and the
classes which create the specialized attributes, are called specialization subclasses.
More precisely:

1. the set of specialization superclasses of the class c is
Supspe(c, AMD) = {c' € C| ¢' 13, ¢}
2. the set of subclasses of the class c is
Subspe(c, AMD) = {c" € C | c 13, ¢'}.

Similiarly, the set of association superclasses of the class ¢ is denoted as Sup,ss(c, AMD)
and the set of association subclasses of the class c is denoted as Subgss(c, AMD).

11

Chapter 3
Quality

Software quality is a multidimensional concept. In this chapter, we provide an
overview of the work relevant to the quality of ASOME models. We first analyse
the quality in the MDA field in Section 3.1. Then we explain two ISO standards in
Section 3.2. In Section 3.4, we analyse three quality attributes which are relevant for
the quality of ASOME models. In Section 3.5, an overview of software metrics is
presented.

3.1 Quality in MDA

Since models are the first-class citizens in MDE [55], developing high-quality sys-
tems depends on developing high quality models and performing model trans-
formations or code generations that preserve quality and even improve it. P. Mo-
hagheghi claimed that the quality of a model in MDE depends on four aspects [38].
They are:

1. the quality of the modeling platform which includes the quality of the corre-
sponding DSL(s) and tools for model transformations or code generations;

2. the quality of the model itself and its modeling process;

3. the knowledge of the model designers which includes the problem they face
and the modeling experience they have;

4. the quality assurance techniques applied to discover the design faults or weak-
nesses.

In this thesis, we mainly focus on the fourth method: using quality assurance
techniques to discover the design faults or weaknesses. There are several common
methods to check and ensure the quality in MDE [19] and here we briefly introduce
two of them:

* Model checking: Model checking is a formal verification technique based on
state exploration. When we give a state transition model and a requirement
property, model checking algorithms will exhaustively explore the state space
to determine whether the model satisfies the property.

* Model validation: In MDE, model validation checks the syntactic and seman-
tic correctness of a model. More precisely, this approach checks whether the
model conforms to its metamodel and semantic description. The model vali-
dation technique is usually integrated in the modeling platform.

12 Chapter 3. Quality

Most quality assurance approaches in MDE are formal verification techniques and
they are able to check the correctness of a model. However, when we want to eval-
uate the quality attributes like complexity and modifiability of a model, these ap-
proaches are not that useful. There are still some other techniques that can assess the
quality of models such as model-based testing [65], auditing and software metrics.
In this thesis, we mainly focus on using software metrics for assessing the quality of
an ASOME model.

3.2 The ISO Quality Standard

In order to evaluate the quality of a software project, many quality models have
been introduced [36, 3]. Among them, ISO 9126 and ISO 25010, provided by the
international standard for the evaluation of software quality (ISO/IEC), have been
widely used in the software industry [25, 24].

3.2.1 ISO 9126

In 1991, ISO 9126 was introduced to provide an explicit quality model which con-
tains six quality attributes (also called quality characteristics) [25]. Every quality
attribute can be further decomposed into several sub-attributes (also called factors
or sub-characteristics) and every sub-attribute can be measured by several software
metrics. The hierarchy structure concept [41] of the ISO 9126 standard is shown in
Figure 3.1 and the corresponding quality attributes are summarized in Figure 3.2(a).

Quality Quality Quality Overall
Metrics Sub-attributes Attributes Quality

FIGURE 3.1: Hierarchy structure of ISO 9126 quality model

3.3. Other Quality Models 13

1SO 9126

Functionality Reliability Maintainabiity Efficiency Portability

‘ Usability ‘

@

1SO 25010

Performance
Efficiency

Functionality

Suitability Compatibility

Reliability Maintainability Portability

‘ Usability ‘ ‘ Security

()

FIGURE 3.2: Quality attributes of ISO 9126 (a), Quality attributes of
ISO 25010 (b)

3.2.2 1ISO 25010

In 2007, ISO 25010 replaced the old standard ISO 9126 [24]. ISO 25010 is called a
product quality model. The model re-defines the quality attributes. Figure 3.2(b)
provides the new attributes of the new standard. ISO 25010 is also referred to

as Software engineering- Software product Quality Requirements and Evaluation
(SQuaReE).

3.2.3 Summary of the ISO quality models

ISO 9126 and 25010 have several things in common. Firstly, they are both hierar-
chical in structure since they decompose the concept of quality into a set of lower
quality attributes [2]. Secondly, they are general-purpose quality models since they
apply to any type of software product [37].

3.3 Other Quality Models

There are still some other quality models [57, 12, 4, 20]. We summarize these quality
models and their quality attributes in tables in Appendix A.

3.4 Quality Attributes

In the previous section, we observed several quality attributes from different quality
models. Since all these quality attributes have been defined in a general approach,
we should analyze which attributes are truly useful for an ASOME data model and
why these attributes are relevant for an ASOME data model.

3.4.1 Complexity

Complexity, as one quality attribute, has been studied extensively in the software
development process. Many researchers studied this topic in different approaches
[44, 46, 56]. Pippener suggests that the complexity of a system is based on the num-
ber of elements and the number of relations between the elements [44]. Similarly, we
generally define the complexity of an ASOME data model as the degree of the effort

14 Chapter 3. Quality

to understand the classes and relationships between these classes and the domain
itself.

3.4.2 Maintainability

Software maintainability is important since maintenance takes approximately 75%
of the cost related to a project [48]. ISO 25010 defines the maintainability as

the degree of effectiveness and efficiency with which a product or system can be modified
to improve it, correct it or adapt it to changes in environment, and in requirements.
In an ASOME data model, maintainability reflects the effort to modify the model. It
is important to understand that the maintainability of an ASOME data model does
not cover the maintainability of the code written around the data repositories.

3.4.3 Understandability

Understandability refers to the amount of effort that is requires to understand the
purpose of an ASOME data model. As stated in Section 3.4.2, software maintenance
is an expensive and highly demanding process. Activities which cause high mainte-
nance cost are mainly coming from understanding the program, generating changes
and testing the program. Among these, understanding an existing program is a ma-
jor factor [7] and takes around 66% of the time [45]. What’s more, understandability
of a model also directly affect the model’s complexity. Therefore, we pick under-
standability as the quality attribute we want to study.

3.5 Software Metrics

Software metrics have been studied extensively and have been proposed for measur-
ing various kinds of software artifacts [14]. In MDA, there are many metrics which
can be applied to model-based software artifact such as a UML class diagram and an
ER (entity-relation) diagram. Some of these metrics did evolve from classical met-
rics, for example, the size metrics in Li and Henry’s metrics [29] while some of them
are modified by the metrics in OO (Object-Oriented) design such as CK metrics [9].

In order to design the proper quality metrics for ASOME data models, we use
three approaches: literature study, interview study and document analysis. In the
next chapter (Chapter 4), we explain these three approaches and corresponding met-
rics further.

Chapter 4

Metrics

4.1 Metrics - Literature Study

15

Since ASOME models are domain-specific, it is not possible to directly search for the
metrics for an ASOME data model. However, we can learn from the metrics which
are designed for some similar data modeling technique namely UML diagrams [34,
5], ER (entity relation) diagrams [31, 26], data models [33] and multidimensional
schemas [8]. A selection of the metrics that could be used for ASOME data models
and corresponding metrics design, is given in Table 4.1.

Reference

Overview

M. Genero (2008) [18]

M. Piattini (2001) [32]

M. Genero (2001) [17]

M.Genero (2003) [5]

Childamber and Kemerer
(1994) [9]

M.Marchesi (1998) [34]

S. Kesh (1995) [27]

D.L.Moody (2005) [41]

D.L.Moody (1999) [40]

M. Serrano (2007) [51]

A suite of objective metrics is provided to be used as indi-
cators of the understandability of the ER diagrams.

The author provides a state of the art of measures for con-
ceptual data models, where five different metrics propos-
als have been summarized and analyzed.

A metrics suite is introduced for the structural complexity
and maintainability of conceptual data models. An exper-
iment is given as the empirical validation for the metrics
suite.

The paper introduces a metrics suite to predict the main-
tainability and structural complexity of UML class dia-
grams. A controlled experiment is conducted to gather the
empirical data for the metrics validation.

Six design metrics are introduced for object-oriented de-
sign. The authors claim that using several of their metrics
collectively helps managers and designers to make better
design decision.

A new metrics suite is introduced for UML use cases dia-
grams and class diagrams. An experiment is given to eval-
uate the metrics suite which includes three real projects.
This paper discusses a quality model and a methodology
of metrics for evaluating the quality of ER models.

This paper discusses several existing quality frameworks
for conceptual data models and some software metrics in
these frameworks.

This paper describes a methods for clustering the quality
of large data models. A set of principles and metrics has
been defined for evaluating the quality of the models.

The paper proposes a set of metrics in order to predict the
understandability of the conceptual schema used in the
early stages of a DW (data warehouses) design. The sec-
ond provides a empirical validation of the proposed met-
rics set.

16

Chapter 4. Metrics

A M. Ferndndez-Saez
(2016) [15]

Y.Lu (2016) [30]

A. Nugroho (2008) [43]

H. Eichelberger
[13]

(2005)

P. Mohagheghi (2009) [39]

S. Stevanetic (2015) [53]

T.J. McCabe (1976) [35]

F. Wu (2007) [62]

Zhou (2003) [63]

This paper focuses on how the LoD (level of detail) metrics
of multiple UML diagrams influences the understandabil-
ity and modifiability of source code.

This paper describes a case study for assessing software
maintainability based on UML class diagram design and
evaluate several metrics suites.

This paper proposes a novel approach to measure LoD
(level of detail) of a UML class diagram. LoD can be
treated as the indicator of the defect density in the empiri-
cal analysis.

This paper introduces two layout metrics to reflect the
magnitude or complexity which influences the size of el-
ements in UML class diagrams.

This paper presents on-going work on quality models and
discuss the use of metrics for assessing the quality based
on these quality models.

This article provides a systematic study of software met-
rics that measure the understandability of the higher-level
architectural structures. The article selects sets of metrics
based on different types of metrics.

This paper describes a graph-theoretic complexity calcula-
tion approach, which can be used as a software metric to
measure program complexity.

This paper presents a metrics suite to assess the structural
complexity of components.

This paper proposes a metric, namely entropy distance
based structure complexity metric. The metric is designed
to predict structural complexity of UML class diagrams.

TABLE 4.1: A selection of the software metrics in literature study

In these articles, metrics have been designed for different types of models and
for different different quality attributes. Also, they have different validation ap-
proaches. For example, M. Genero [18] provides a metrics set for ER diagrams and
discusses its usefulness for understandability prediction. D.L. Moody [40] starts
with the discussion of the existing quality models and then further analyzes some

metrics related to them.

The summary of the quality attributes, scopes and validation approaches is given
in Table 4.2. Note that we skip some articles that have not proposed their own met-

rics.
Reference Quality Attributes Scope Validation
M. Genero | understandability, ER diagram experiment, survey
(2008) [18] structural complexity
M. Genero | maintainability, struc- | ER diagram experiment
(2001) [17] tural complexity
S. Kesh (1995) | quality ER diagram
[27]
M. Serrano | understandability UML diagram experiment, survey
(2007) [51]
AM. understandability, UML diagram experiment
Fernandez- modifiability
Séez (2016)
(2016) [15]
A. Nugroho | software defect den- | UML diagram experiment
(2008) [43] sity, maintainability

4.1. Metrics - Literature Study

17

TJ. McCabe | testability, maintain- experiment, sur-
(1976) [35] ability vey, case study
Childamber complexity OO design, C++, | experiment, case
and Kemerer Smalltalk study

(1994) [9]

M.Marchesi complexity OO design, UML | experiment

(1998) [34] diagram, Smalltalk

M.Genero understandability, ER diagram experiment, survey
(2003) [5] maintainability

Zhou (2003) | structural complexity | OO design, UML | case study

[63], DaKung class diagram

TABLE 4.2: A comparison of the software metrics in literature study

As already stated above, since the metrics in our literature study cannot be used
directly, we make a selection of these metrics and re-interpret them for ASOME data
models in Section 4.1.1 to 4.1.4. In Section 4.1.5, a summary of the metrics in the
literature is given.

4.1.1 Chidamber and Kemerer’s Metrics (1994)

Let ADM = (BC,C, R) be an ASOME data model. The Chidamber and Kemerer’s
metrics is the following.

1. Maxpsr is the maximum value of the depth of the specialization tree !. More
precisely:
Maxpst = Max{DST(c) | c € C}

1+DST(c'), ifcrspec ,and

where DST(c) = {0 otherwise.

2. NOC(c) is the number of immediate classes (also called children) of ¢, where
¢ € C and we call it as base class. The definition of NOC(c) is:

The set of Chidamber and Kemerer metrics is a widely accepted standard for
measuring object-oriented software systems [54]. The metrics set originally con-
sists of 6 metrics. However, only Maxpsy and NOC(c) can be directly used since
the ASOME data models lack the concept of methods. Some researchers believed
that NOC(c) measures the breadth of a model, and Maxpsr measures the depth of
a model. They found higher NOC(c) may cause fewer faults while higher Maxpsr
may increase faults [10].

4.1.2 Marchesi’s Metrics (1998)

Let ADM = (BC,C,R) be an ASOME data model. The Marchesi’s metrics for the
ASOME data model ADM consist of the metrics 1 until 7 below:

1. #C is the total number of classes.

IDST is called DIT (depth of inheritance tree) in original metrics

Chapter 4. Metrics

2. #ROOQOTS is the total number of roots, where ROOTS is the set of classes satis-

fying:
ROOTS = {ce C |3 € C:{c,) € rope}

3. RES is the value of the average weighted responsibilities of the classes. The
definition of RES is:

—— RES

RES =S¢
where RES =) " Res(c).

ceC

RES is the value of total weighted responsibilities of the classes.

Marchesi thought that the responsibilities of a class are related to the informa-
tion it contains or the computation that must be performed for this class [42].
For simplicity we directly use the number of attributes to stand for the respon-
sibilities of a class. Thus, the definition of Res(c) is the following. Let ¢ € C be
a class where c.A is the set of attributes of the class c.

Res(c) =#c.A+K,-). (#HA)+K-)Y (#.A).
ieSub(c,ADM) j€Sup(c,ADM)

The values K, and K, are some weighted coefficients that satisfy 0 < K, <
K, < 1.

4. ||RES|| is the standard deviation of the weighted responsibilities of the classes,
where

IRES| = % Y (Res(c) — RES)2.

ceC

5. DEP is the value of the average direct dependencies of the classes. The direct
dependencies include all the relations except specialization. The definition is
the following:

DEP = ——
#C

where DEP = #r,55 + #7com-

6. ||DEP]| is the standard deviation of the direct dependencies of classes, defined
as

IDEP|| = [2 Y- (Dep(c) — DEP).

ceC

Let c € C be a class. Dep(c) is the value of the direct dependencies of the class
c. The definition of Dep(c) is as follows:

Dep(c) = Z dee

ceC

where d . is the number of the direct dependencies between the class ¢ and ¢/,
defined as

4.1. Metrics - Literature Study 19

7.

dc,c’ = dc,c’ (russ) + dc,c/ (rcom)

1, ifcrc,and

where dc,c/ (1’) = {O otherwise.

PSR is the percentage of specialized responsibilities of classes. The definition
is the following:
¥ SR(c)
__ceC
PSR = 3 TR()
ceC
where SR(c) is the specialized responsibilities of the class ¢ and TR(c) is the
total number of responsibilities of the class ¢ defined as:

SRe)= Y #.A
j€Sup(c,CD)

TR(c) = #c. A+ IR(c).

Marchesi applied these metrics for three real projects based on UML 1.0, all
developed in Smalltalk [42]. By analyzing the value of the metrics related to the
man-months needed to develop the systems, Marchesi concluded that a man-month
seems to be able to develop between 14 to 20.5 responsibilities. She also believed
that the productivity of Smalltalk is very high compared with other programming
languages for small or medium-sized projects.

4.1.3 Genero’s Metrics (2000)
Let ADM = (BC,C, R) be an ASOME data model. The Genero’s metrics are defined

as:

1.
2.

AN B

#C is the total number of classes.

#A is the total number of attributes where

#A =) #c A
ceC

#7r,455 is the total number of elements in the association relation.
#7com is the total number of elements in the composition relation.
#7'spe is the total number of elements in the specialization relation.
NCH is the total number of composition hierarchies, defined as:

NCH =#{ce C |3 e C.c remc}.

NSH is the total number of specialization hierarchies, defined as:

NSH =#{ce C| 3" € C.c rype c}.

20 Chapter 4. Metrics

8. Maxpgr is the maximum value of the depth of the specialization tree, which is
same as the first metric in Chidamber and Kemerer’s Metrics (Section 4.1.1)

The definition of Maxpgr is same with the definition in

the following 1:

Maxpst = Max{DST(c) | c € C}

1+ DST(c"), ifcrspec’,and

where DST(c) = {0 otherwise.

M. Genero’s metrics set is designed to evaluate the structural complexity of a
UML class diagram [6]. These metrics are related to the usage of the relations in a
UML class diagram, such as associations, generalisations, aggregations and depen-
dencies. Genero interpreted the above metrics into two types in a general way [6]:

¢ The metrics 1 and 2 are the size metrics for measuring the size or capacity of
an ASOME data model.

¢ The metrics 3-8 are the complexity metrics for evaluating the system complex-
ity or maintainability of an ASOME data model.

Compared with Marchesi’s metrics, Genero’s metrics is a compensation for the
relations measurements in a class diagram because Marchesi considered all types of
relations except inheritance as dependencies, without distinguishing between them
[16]. For empirical validation of the metrics, Genero also applied these metrics to a
real experiment, carried out by students of the Department of Computer Science at
the University of Castilla-La Mancha, in Spain [47].

The experimental result indicated that NAH (the total number of aggregation hi-
erarchies), NIH (the total number of inheritance hierarchies) and #A (the total num-
ber of attributes) are related to the complexity and maintainability of a UML class
diagram. Genero argued that, in a class diagram, lower NAH and NIH may benefits
the whole system because the aggregation and inheritance relations are highly re-
lated to the understandability time and modifiability correctness and completeness
based on the experiment data [16].

4.1.4 Zhou’s Metrics (2003)

The metrics we mentioned above all use multiple indicators to measure the complex-
ity of class diagrams. In 2003, Y. Zhou argued that metrics with multiple indicators
might cause disorganized data results and he proposed a new metric with merely
one indicator, namely the entropy distance based on the structural complexity met-
ric, or Zhou’s metrics for short [64]. Let ADM = (BC,C,R) be an ASOME data

model. The entropy distance metric is built by the following three steps:

4.1.4.1 Weights of relations

Firstly, we give an order of the relation types. Each of the relation type is given an
individual weight, as indicated by the following table:

4.1. Metrics - Literature Study 21

Type of relations Weights(r)
association w1
composition wo
specialization w3

TABLE 4.3: Weights of Relations

Based on the features of those relations, the relation weights Weights(r) satisfy:

w < wy < W3

Note that Zhou [64] distinguished the relations into ten different types. However,
based on our relations in ASOME data model, we merely have three.
4.1.4.2 Weighted class dependency graphs (WCDG)

The second step is to transform the ASOME data model ADM to a weighted class
dependency graph WCDG. The definition of a WCDG is the following.

Definition 4.1.1. (Weighted Class Dependency Graph). A weighted class depen-
dency graph is a two tuple WCDG = (N, E) where

e N is a set of nodes.

* E: N x N X H is a set of unidirectional edges where H is the set of all weight
values.

If (n1,na, h) € E, then ny is called the source node, n; is called the target node and h
is called the edge weight.

The transformation rules from ADM to WCDG are defined as:
1. N=C.

2. Let ¢1,c2 € C be two classes of the class diagram and ny,1n, € N be the cor-
responding nodes of the WCDG. We build an edge (n1,n2,h) € E between
the nodes n; and n, iff there is at least one relation between the classes ¢; and
c; and the edge weight value & equals to the sum of all the relation weights
between c; and c¢;. More precisely:

hcl,cz = hC],Cz <rass) + hC],Cz (rcom> + hC1,C2 <rspe>

where hi¢, ¢, (r) = {O, otherwise.

Note that if there is no relation between the classes ¢; and ¢, in the ADM, the
weight value h equals to zero. In other words, i = 0 means that no edge from
the node 77 to n, in the WCDG.

A basic transformation rule from ADM to WCDG are given in Figure 4.1.

22 Chapter 4. Metrics

ci c1 ci Q
T = T

c2 c2 c2 @

Association ~ Composition Specialization

FIGURE 4.1: Transformation rule from ADM to WCDG

4.1.4.3 Entropy distance based metric

After transforming the class diagram ADM = (C, R) to the weighted class depen-
dency graph WCDG = (N, E), we use a matrix M(n, n’) to represent the weights of
the edges in the WCDG graph, where

M(n,n") =h, if (n,n',h) €E

We use two discrete random variables X and Y to denote the outgoing and incoming
edges weight of each note, where A, and A, represent the sets of the variables X and
Y separately.

Let Ay = Ay = N, for each x; € Ay and y; € A, we have the following proba-
bility equations:

p(xi) = ENM(X“”/)/,LENM(”’”/) (4.1)
plyj) = L Mlvy)/ L M) (4.2)
p(xi,y;) = M(xi,y,')/” H/ZEN M(n,n') 4.3)
p(xi | yj) = Mxiy)/ L Mlny) (4.4)

Based on the equations above, the structure complexity of the class diagram
ADM can be defined as the entropy distance between X and Y. More precisely:

H(X, Y) - I(X; Y), if rass U rcom U rspe # @
0/ if Tass U Teom U rspe =0

DH(X,Y) = {

where H(X,Y) is called joint distribution defined as:

HX,Y)=- Y px,y;)logp(x,y))

X,‘EAX/\]/]'EAy
and I(x;y) is the mutual-information defined as:
I(X;Y)=H(X)-H(X|Y)

=~ ¥ plx)logplx) — ¥ plxy)log

Xi€Ax x,'EAx/\y]'EAy Xi | yl)

Note that log means the common logarithm, where log x represents the logarithm of
x to base 10.

Through the above three steps, we can get the value of the entropy distance based
metric DH(X,Y) as the indicator to evaluate the structural complexity of a UML

4.2. Metrics - Interview Study 23

class diagram. Compared with previous metrics, DH(X,Y) only use one indicator.
Zhou [64] thought that the complexity of a UML class diagram is depended on the
complexity of relations in the class diagram in most cases. Furthermore, he also
pointed out that the weights of class relations can be reorded according to the real
conditions in a project.

4.1.5 Main problems of the metrics in literature study

We summarize some main problems in our literature study.

¢ Converting the metrics from their original scopes to ASOME data models re-
quires that we give our own interpretations.

¢ Several metrics cannot be used in ASOME data models since their scopes are
different, which causes some metrics sets not to be complete compared with
the original versions. CK metrics in Section 4.1.1 is an example.

4.2 Metrics - Interview Study

Interviews are useful methods to obtain information for personal experiences, per-
ceptions and opinions. To prepare the interviews, we need to answer the following
questions:

1. What information do we need to get from the interviews?
We need to know the insights of software engineers and architects about what
makes an ASOME model easy or difficult to comprehend and what makes it
complex.

2. What kind of interview we will conduct?

An interview can be structured, semi-structured or unstructured [28]. A struc-
tured interview is typically quite formal and well-organized while an unstruc-
tured interview is informal without any discussion limitation. We conduct
semi-structured interviews since semi-structured interviews need an ‘inter-
view guide’, which will give a main topic and a list of questions that need to
be covered during the conversation. The question list is built with both open-
ended and specific questions, which allows an interviewer to gather unantici-
pated and specific information.

3. How to choose respondents?
Senior architects and experienced model designers are the respondents to the
interview because they have useful insights related to data models in the ASML
domain.

According to the above questions, we designed an interview guide in Appendix B.1.
In Section 4.2.1, we formalize our findings from interviews into metrics. In Section
4.2.2, a summary is presented.

421 Metrics in interview study

Let ADM = (BC,C, R) be an ASOME data model, the metrics defined in our inter-
view study are the following:

e Size Metrics - basic element

24

Chapter 4. Metrics

1. #Typ is the total number of primitive types.
2. #Enu is the total number of enumerations.
3. #Con is the total number of constants.

4. #Mc is the total number of multiplicity constants.
* Size Metrics - class

1. #Ent is the total number of entities.

2. #0w is the total number of value objects.
¢ Size Metrics - relation

1. #r, is the total number of elements in the association relation.
2. #rcom is the total number of elements in the composition relation.

3. #7spe is the total number of elements in the specialization relation.
* Size Metrics - association relation

1. #r,s5(e) is the total number of elements in the association relation, where
the source entity is e. The definition is the following:

#rass(e) = {((e1,m1), (e, m2)) € 1ass | €1 = €}

2. #7455 |11 is the number of 1-1 associations, where

#rass [1-1= {{(e1,m1), (e2,m2)) € Tuss |
(m; =[0.1]Vmy = {0.1}) A (ma = [a.b]Vmy ={a.b}) A (b=1)}.

3. #74ss |1-N is the number of 1-N associations, where

#rass ‘1—N: {((61, ﬂ’l1>, (62/ TH2)> € Tass ’
(my = [0.1]Vmy = {0.1}) A (mp = [a.b]Vmy = {a.b}) A (b>1Ab# %)}

4. #7455 |1+ is the number of 1-Many associations, where

#rass [1-+= {((e1,m1), (e2,m2)) € Tass |
(mp =[0.1] Vm; = {0.1}) A (my = [a.b] V. my = {a.b}) N (b=x)}.

¢ Multiplicity Metrics
1. #MULT is the number of multiplicities. The definition is the following;:

#MULT = #Ent + 2 - #1455 + #7com.

2. #|MULT)| is the number of different multiplicities. The definition is the
following:

IMULT| ={m e M | m=eMAe € Ent}
U{me M |m=myA{(er,m1),(e2,m2)) € rass}
U{me M |m=myA((er,m1),(e2,m2)) € rass}
U{me M| {((c1,m),00) € recom}-

4.3. Metrics - Document Analysis 25

* Mutable Entity and Control Entity Metrics

1. #Ent,;; is the number of mutable entities, where Ent,,,; is the set of the
mutable entities.

#Enty = {ent € Ent | ent = entpy }.

2. ?Ent,,; is the existence of mutable entities,

1, if#Ent,,; > 1,and

where ?Enty,; = {o otherwise

3. #Enty, is the number of control entities. where Ent,;, is the set of the con-
trol entities.
#Enty, = {ent € Ent | ent = entqy }.

Note that metric number of cross reference is not defined in this section since this
metric is based on the scope of multiple ASOME data models. All the above metrics
are selected from the interview summary report B.2.

4.2.2 Summary of the metrics in interview study

Several metrics are derived through the interview study. Among these metrics, Size
Metrics - class might be more important than the others since two interviewers have
mentioned these metrics. It is also noteworthy that some metrics such as #E,,,; and
#E. are apparently domain specific and we cannot find them in literature study.

4.3 Metrics - Document Analysis

In order to provide some general rules or suggestions to the model designers, ASML
prescribes 57 guidelines and 55 standards for data models [61]. We analyze these
guidelines and standards to find whether some metrics may relate to them.

In Section 4.3.1, we formalize our findings into metrics and in Section 4.3.2 we
present a summary.

4.3.1 Metrics in document analysis

Let ADM = (BC,C, R) be an ASOME data model, the metrics defined in document
analysis are the following

1. #r,ss + #A is the total number of elements in the association relation combined
with the total number of the attributes, where it satisfies

#ross +HA <9

2. #1455 |Nz7 is the number of the associations without zero target multiplicity.
The definition is the following:

#rass [nzr={((e1,m1), (e2,m2)) € 7ass |
(mp = [a..b] Vimy = {a..b}) A (a #0)}.

26 Chapter 4. Metrics
3. #7455 |pr is the number of the associations with fixed target multiplicity, where
#rass ‘FT: {<(31/ m])/ (32/ m2)> € Tass |
(my = [a.b]Vvmy ={a.b}) N (a=Db)}.
4. #|rsss| is the number of the different kinds of associations, where
7ass| = {(m1,m2) | ((e1,m1), (e2,m2)) € Tass}-
5. #Ent, is the number of the control entities.
6. #Ent,, is the number of the algorithm entities.
7. #Ent,,,; is the number of the mutable entities.
8. #rgpe is the number the elements in specialization relation.
9. #rcom is the number the elements in composition relation.

4.3.2 Summary of the metrics in document analysis

The summary of the metrics based on the analysis of the modeling guidelines is
given in the Appendix C.

4.4 Tool Design

We developed an automated tool to calculate the metrics. This tool is based on the
ASOME development environment and it refers to the metamodels and textual syn-
tax of the ASOME language. Figure 4.2 describes a basic workflow of the prototype.
We we run the prototype:

1.

It will first search all the ASOME data models (the files end with .asome) in the
preset directory.

. And then for each ASOME data model, the prototype will resolve it and get

the resource set (also called a tree of related resource objects) and we can get
specific objects from this set.

. Finally, the prototype will calculate the corresponding metrics for each re-

source set of the ASOME model and the results will be stored in an SQL database.

Perset Directory

input
models ASOME Dev. -
- > Env.
.asome
SQL
send database
< . results
search Metrics Tool
models

FIGURE 4.2: The workflow of the Metrics Tool

4.4. Tool Design 27

Figure 4.3 gives an example of the metrics results in SQL database.

id project modelname -« 1 metricset metric value createtime comment
176 /KDDA_models Alignment_DI MetricsGeneral numvQ 5 2018-07-18 03:52:19 General metrics for some basic metrics
177 /KDDA_models Alignment_DI MetricsGeneral numEnt 0 2018-07-18 03:52:19 General metrics for some basic metrics
178 /KDDA_models Alignment_DI MetricsGeneral numAssoc 0 2018-07-18 03:52:19 General metrics for some basic metrics
179 /KDDA_models Alignment_DI MetricsGeneral numTyp 0 2018-07-18 03:52:19 General metrics for some basic metrics
180 /KDDA_models Alignment_DI MetricsGeneral numAttri 13 2018-07-18 03:52:19 General metrics for some basic metrics

FIGURE 4.3: An example of the metrics results

4.4.1 Advantages of our metrics tool

There are several advantages of our metrics tool:

* The tool supports processing the calculation of multiple ASOME models and
multiple metrics. The database also supports storing historical data by adding
a time stamp to each result.

¢ The tool is scalable for metrics. It allows you to write your own metrics by
adding teh code for a new metrics.

¢ Since the tool is based on the ASOME development environment, it can be
directly updated if the environment evolves.
4.4.2 Disadvantages of our metrics tool prototype

There are several disadvantages of the metrics tool prototype:

¢ The tool is only able to resolve the textual ASOME models (end with .asome).
Note that the data models in old versions (end with .hddd) should be converted
to the ASOME models first.

¢ The metrics prototype is developed for a single ASOME model scope. Thus, it
is not possible to calculate metrics at system level with multiple models.

29

Chapter 5

Evaluation

In this chapter, we present our evaluation for the metrics provided in the previous
chapter. First we review several existing evaluation approaches for software metrics.
Then we define our evaluation settings and data collection. Finally, we analyse and
interpret the results.

5.1 Evaluation approaches
In general, there are two main methodologies to evaluate metrics [32]:

* Theoretical validation: The main goal of theoretical validation is to check if
the intuitive or formal idea of the data being measured is reflected in the mea-
surement [32]. Although several researchers have attempted to establish their
validation frameworks, there is no satisfactory standard to be able to validate
metrics theoretically [58].

* Empirical validation: Empirical validation is another methodology to eval-
uate the quality of metrics. The goal of empirical validation is to prove the
practical utility of the proposed metrics [32]. M. Piattini divides the empirical
validation into experiments and case studies [32].

We carried out an empirical validation with experiment to evaluate these metrics.

5.2 Experiment Settings and Data Collection

The participants in our experiment study were 8 staff members of ASML who were
using ASOME data models. The participants were asked to complete a survey we
specifically designed. The survey includes:

* Twenty six ASOME data models: we selected 26 ASOME models from four
different projects in the ASML repository. In this survey experiment, we pro-
vided the model diagrams to the participants and we used two questions for
each ASOME model.

* Two questions for each ASOME model: we designed two questions for each
ASOME model, where

- Question 1is a "Yes / No’ question to check whether the participant really
understood the information conveyed by the model diagram. Question 1
is an objective question with a correct answer. There are several aspects
which question 1 covers:

1. the relations between entities and value objects,

30 Chapter 5. Evaluation

2. the multiplicity of association and composition relations,
3. the dependency between entities and value objects,
4. the multiplicity of an entity.

— Question 2 is a ranking question which asks the participants to rate the
complexity and maintainability of the model. Both complexity and main-
tainability use the scale which consists of five linguistic labels in the fol-
lowing table (Table 5.1). Question 2 is a subjective question.

0 1 2 3 4
very low low middle high very high

TABLE 5.1: complexity and maintainability linguistic labels

¢ Time consumption for each ASOME data model: when a participant com-
pletes the two questions of an ASOME data model, we record the starting time
and ending time to get his time consumption on this model.

Since the 26 models which ASML were using were real and not public, we used
Microsoft Forms !. An example of the survey questions is given in the Appendix
D.1.

5.3 Results analysis

5.3.1 Survey data results

In our survey, each ASOME data model has two questions. For the response of a
model to be considered as complete, it is a prerequisite that both question 1 and
question 2 of this model are answered. If only one of the questions or both questions
are not answered, the response is considered incomplete and will not be added to
our data results.

A general survey result is given in the following table (Table 5.2), where the Com-

. Number of responses 193 __
pleteness 18 Number of ideal responses 2648 93%.
Number of models 26
Number of participants 8
Number of complete responses 193
Completeness 93%

TABLE 5.2: A summary of survey results

The survey results can be downloaded from the MS forms. Since the raw survey
results are separated into different models, we need to process the survey results
and combine these results into one data set.

We first process the correctness (according to question 1) of the survey results.
There are 158 correct responses and the general correctness ratio is 158/193 = 82%.
We exclude the responses with wrong answers and keep the remaining 157 responses.

Then we consider the time consumption. The time consumption of the survey is
depicted in box-plot (see Figure 5.1). The horizontal axis represents the model id and

Microsoft Forms: https://forms.office.com/

https://forms.office.com/

5.3. Results analysis 31

the vertical axis shows the time consumption for each model. We found 13 outliers in
the box-plot of Figure 5.1. These 13 points were also excluded in the further analysis.
Figure 5.2 gives the box-plot of the time consumption without outliers.

1000000 -

750000~

500000 -

time consumption (ms)

.
250000 -

$95Q¢$EEQQQ HQQQ éga i Q$

3 4 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

model id

FIGURE 5.1: Time consumption for different models
250000-
200000-
150000

100000~ —

QQ Eﬁ QT 55 Ega5*§

i é é 1‘1 é é } é é 1‘0 l‘l 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1‘8 1‘9 2‘0 2‘1 2‘2 2‘3 2‘ 4 2‘5 2‘ 6

model id

time consumption (ms)

50000~

L [}

FIGURE 5.2: Time consumption for different models (outliers re-
moved)

We also process the results of complexity and maintainability for different mod-
els. Figure 5.3 and Figure 5.4 show the results of complexity and maintainability

32 Chapter 5. Evaluation

respectively, which gives the means and medians of complexity or maintainability
for different models.

30 30
3-

factor(name)

. mean

B median
|i 12 1.2 ||

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
model id

N

complexity value

=

FIGURE 5.3: Complexity for different models

20 20 20
2-
factor(name)
. mean
i ‘ B median

2345"891011121314151617181920212223242526
model id

maintainability value

FIGURE 5.4: Maintainability for different models

After excluding both the incorrect answers and the time consumption with out-
liers, we consider the rest of the 145 responses as our final data of survey results.
The processed data of survey results is given in Appendix E.1.

This experiment did not have a number of responses large enough to conduct
statistic analysis. Also to be able to be validate every metric, we would need to
conduct multiple experiments in which we would change one variable and have
everything else the same. This is very difficult to organize in an industrial setting in
a limited time scope. To really assess which metric is useful and which not requires

5.3. Results analysis 33

more extensive analysis. The analysis in the following section is a first step, the
analysis we would perform in a larger experiment.

5.3.2 Survey data and metrics data

As stated in pervious section, we consider the 145 responses as our survey data
results. In this section, we use the survey data and software metrics data to analyze
the performance of the metrics we defined in Chapter 4.

We start with the Kolmogorov-Smirnov test, which can indicate whether the data
distributions are normal or not. Then we use Spearman’s correlation coefficient as
a non-parametric test statistic to analyze the survey data and metrics data. The ob-
tained Spearman’s correlation coefficients are partially provided in Table 5.3. The
full version of correlation results can be checked in Appendix.

time consumption complexity maintainability
#Ent 0.099 0.211 -0.073
#Vo 0.462 0.437 -0.117
#C 0.251 0.355 -0.111
#7ass 0.018 0.190 -0.056
#7 com 0.553 0.549 -0.175
#rspe -0.214 -0.353 0.027
#r 0.018 0.190 -0.056

TABLE 5.3: Spearman’s correlation coefficients between the metrics
data and survey data

Since we have multiple types of metrics, to pick the metrics which have higher
correlation with the time consumption, complexity or maintainability, we compared
these correlation values and selected the values larger than 0.5. There metrics and
corresponding correlation coefficients are given in the following table.

Metrics Correction type ‘ Value

#7com time consumption | 0.553
#7 com complexity 0.549
#ROOTS complexity 0.531
#A complexity 0.605

TABLE 5.4: Spearman’s correlation coefficients larger than 0.5

The findings that Table 5.4 reveals are:
¢ The highest correction value is the metric of the number of attributes

¢ The metric of the number of composition has high correlation with both time
consumption and complexity.

* Unfortunately, we did not find any metrics which has correlation with main-
tainability larger than 0.5. The highest one is the number of composition with
value of -0.175.

35

Chapter 6

Conclusion

In this chapter, the main findings with regard to the design goal and research ques-
tions are summarized. We first study the quality attributes of the ASOME data mod-
els and select understandability, maintainability and complexity as the goals of our
metrics design. Then we we discover three categories of metrics defined for models
so far: metrics in literature study, metrics in interview study and metrics in docu-
ment analysis. In total 57 metrics are defined and formalized although some of them
are repetitive. These metrics measure the the syntactic properties of ASOME data
models, which means they can be calculated automatically, without human inter-
vention. We also evaluate these metrics by using a survey experiment. The correla-
tion analysis shows that some metrics could be validated as indicators of the quality
of ASOME data models.

There are still some limitations in this thesis. The first limitation is that not all
the metrics we formalized have been evaluated in our survey experiment since some
metrics are not supported in our tool. A second limitation is our research scope is
based on a single ASOME data model while some may claim that the scope of a
system level (with multiple ASOME data models) is more reasonable.

Appendix A

37

Quality Attributes in Different
Quality Models

In this chapter, six software quality models are summarised in the following tables,
including their quality attributes and attributes descriptions. Note that we omit the
descriptions of some attributes if the author did not give the clear definitions for

them.

Quality attributes

Descriptions

Functional Suitability

The degree to which a product or system provides func-
tions that meet stated and implied needs when used un-
der specified conditions.

Performance efficiency

The performance relative to the amount of resources used
under stated conditions.

Compatibility

The degree to which a product, system or component
can exchange information with other products, systems
or components, and/or perform its required functions,
while sharing the same hardware or software environ-
ment.

Usability

The degree to which a product or system can be used by
specified users to achieve specified goals with effective-
ness, efficiency and satisfaction in a specified context of
use.

Reliability

The degree to which a system, product or component per-
forms specified functions under specified conditions for a
specified period of time.

Security

The degree to which a product or system protects infor-
mation and data so that persons or other products or sys-
tems have the degree of data access appropriate to their
types and levels of authorization.

Maintainability

The degree of effectiveness and efficiency with which a
product or system can be modified to improve it, correct
it or adapt it to changes in environment, and in require-
ments.

Portability

The degree of effectiveness and efficiency with which a
system, product or component can be transferred from
one hardware, software or other operational or usage en-
vironment to another.

TABLE A.1: Quality attributes in ISO 25010 quality model [24]

38 Appendix A. Quality Attributes in Different Quality Models

Quality attributes | Descriptions

Functionality A set of attributes that bear on the existence of a set of func-
tions and their specified properties. The functions are those
that satisfy stated or implied needs.

Reliability A set of attributes that bear on the capability of software to
maintain its level of performance under stated conditions for
a stated period of time.

Usability A set of attributes that bear on the effort needed for use, and on
the individual assessment of such use, by a stated or implied
set of users.

Efficiency A set of attributes that bear on the relationship between the
level of performance of the software and the amount of re-
sources used, under stated conditions.

Maintainability A set of attributes that bear on the effort needed to make spec-
ified modifications

Portability A set of attributes that bear on the ability of software to be
transferred from one environment to another.

TABLE A.2: Quality attributes in ISO 9126 quality model [25]

Quality attributes | Descriptions

Functionality The ability of a component to provide the required services
and functions, when used under the specified conditions.

Reliability The capability of a component to maintain a specified level of
performance when used in stated conditions in a stated period
of time.

Usability

Efficiency The capability of a component to provide appropriate perfor-
mance, relative to the amount of resources used under stated
conditions.

Maintainability The effort required to replace a COTS (commercial off-the-
shelf) component with the corrected version and to migrate an
existing, software component from a current component based
software system to a new version of the system.

Portability The ability of a component to be transferred from one environ-
ment to another with little or no modification.

Reusablity

Traceability The extent of a component’s built in capacity of tracking the

status of component attributes and component behavior.

TABLE A.3: Quality attributes in SCQM quality model [57]

Appendix A. Quality Attributes in Different Quality Models 39

Quality attributes

Descriptions

Correctness Properties

Correctness properties fall broadly into three categories
that deal with computability, completeness and consis-
tency.

Structural Properties

The structural properties we have used focus upon the
way individual statements and statement components are
im- plemented and the way statements and statement
blocks are composed, related to one another and utilized.

Modularity Properties

The modularity properties employed largely address the
high-level design issues associated with modules and how
they interface with the rest of a system.

Descriptive Properties

Refinement Properties

TABLE A.4: Quality attributes in Dromey’s quality model [12]

Quality attributes | Descriptions

Portability The software can be operated easily and well on computer
configurations other than its current one.

Reliability The software can be expected to perform its intended func-
tions satisfactorily.

Efficiency The software fulfills its purpose without waste of resources.

Usability The software is reliable, efficient and human-engineered.

Testability The software facilitates the establishment of verification crite-
ria and supports evaluation of its performance.

Understandability | The software purpose is clear to the inspector.

Flexibility The software facilitates the incorporation of changes, once the

nature of the desired change has been determined.

TABLE A.5: Quality attributes in Boehm’s quality model [4]

Quality attributes | Descriptions

Functionality it may include feature sets, capabilities, and security.

Usability it may include human factors, aesthetics, consistency in the
user interface, online and context sensitive help, wizards and
agents, user documentation, and training materials.

Reliability it may include frequency and severity of failure, recoverabil-
ity, predictability, accuracy, and mean time between failures
(MTBE).

Performance it imposes conditions on functional requirements such as
speed, efficiency, availability, accuracy, throughput, response
time, recovery time, and resource usage.

Supportability it may include testability, extensibility, adaptability, maintain-

ability, compatibility, configurability, serviceability, installabil-
ity, and localizability.

TABLE A.6: Quality attributes in FURPS quality model [20]

41

Appendix B

Interview Guide and Results

B.1 Interview Guide

¢ Pre-interview information: Some pre-interview questions are asked to get a

basic information about the respondent. The information includes his/her
name and job background (relevant with ASOME data models).

Main question:

"Understandability (ISO 25010) is the degree to which data has attributes that enable
it to be read and interpreted by users, and are expressed in appropriate languages,
symbols and units in a specific context of use.”

Note that we use the ISO definition of understandability (ISO 25010) as an
introduction to start our main questions. The questions include the following
three parts:

1. general feeling about the term understandability,
2. habit when reading an ASOME model, and

3. specific cases.

Here we give our question lists of the interview, where the question 1-4 cover the
pre-interview information and the question 5-8 are the main questions.

1.
2.

What is your role (or position) in ASML?
How long have you had it?
How would you rate your knowledge about the ASML domain?

e Expert
* Medium

* Beginner

. In what way do you interact with ASOME data modeling tool and data mod-

els? (multiple choices)

* Tool co-designer
* Designer of the models (how many projects and how many models)

¢ Reviewer of the models (how many projects and roughly how many mod-
els)

* Designing software for accessing data repositories or interacting or de-
pending them

42 Appendix B. Interview Guide and Results

5. How would you define understandability of an ASOME data model?

6. What criteria do you use to evaluate understandability of an ASOME data
model? Number of entities, attributes, relations?

What kind of relations? (internal, external relations; understanding of the do-
main described with the model, how ‘elegant’ the model is; diagram layout,
naming, etc.)

7. When you review a model, how do you read it, what is the process?
And what is difficult?

8. Do you have an example of a difficult to understand model?

B.2 Summary of Interview Results

Goal of the interviews

The goal of the interview is to determine the quality attributes of ASOME data mod-
els most relevant for their understandability, maintainability and complexity

B.2.1 Summary - Interview 1

Interview date 13 June 2018

Duration around half an hour

Role senior software architect, ASOME tool co-designer

Experience level between the expert and medium for ASML domain knowl-
edge, expert for tools for model-driven engineering

¢ Insights about model quality that can be formalized into metrics:

1. If we look at an ASOME data model as a graph structure, in which entities
and value objects represent nodes and their relation edges, then increas-
ing number of nodes in the graph may increase model’s complexity; it will
take more time to think about these nodes (entities and value objects).

2. Consider the ASOME data model as a tree-structured graph, the struc-
tural complexity of the graph will influence the understandability of the
model, where the structural complexity covers the maximum hierarchies,
number of roots, number of leaves and cross reference.

3. Specialization (inheritance) relationship increases the complexity of an
ASOME data model.

No. | Related metrics

1 number of entities, number of value objects, number of primitive types, number
of enumerations, number of constants, number of multiplicity constants

2 number of cross references

3 number of Specializations (inheritance)

TABLE B.2: Summary of the related metrics of intervew 1

B.2. Summary of Interview Results 43

* Insights about quality that cannot be formalized int metrics but are useful to
design guidelines:

1. Some complexity on the system cannot be changed (or improved) since
we should keep a basic functionality of the system, we describe this be-
havior as necessary or inherent complexity. One should not try to reduce
this complexity, as the model will not be correct any more.

2. Some models cannot be refactored since it may change the internal be-
havior of the system. E.g. a model with 50 entities => 5 models with 10
entities for each.

3. Consistent naming scheme helps the quality of data models.

4. A good documentation is important for viewers to understand the models
since it describes the models in detail, through a well-written story.

B.2.2 Summary - Interview 2

Interview date 18 June 2018

Duration around half an hour

Role data architect for the Twinscan machine software. ASOME
co-designer, designer of the models and reviewer of the
models

Experience level expert for everything relates to data for the Twinscan ma-
chine (data inside the machine, external communication
with the customer data)

¢ Insights about model quality that can be formalized into metrics:

1. Hierarchy (including association, composition and specialization) may
influence the understandability. In an ASOME data diagram, the classes
(entities or VOs) with higher hierarchies are more important than the
those with lower hierarchies.

2. The total number of the model elements will influence the understand-
ability of an ASOME data model. The higher number of the elements, the
worse understandability. The elements include the entities, value objects,
types, enumerations and also the three relations (associations, composi-
tions and specializations).

3. Many-to-many associations are more difficult than the normal associa-
tions (Many-to-one, many-to-N).

No. | Related metrics

1 maximum association hierarchy, maximum composition hierarchy, maximum
specialization hierarchy

2 number of entities, number of value objects, number of primitive types, number
of associations, number of composition, number of specializations

3 number of associations of an entity, Number of different multiplicities 1-N asso-
ciations, number of 1-Many associations, number of 1-1 associations

TABLE B.4: Summary of the related metrics of intervew 2

44

Appendix B. Interview Guide and Results

* Insights about quality that cannot be formalized int metrics but are useful to
design guidelines:

1.

The classes (entities and value objects) with the same hierarchy should be
grouped in the diagram. For example, the classes with the same hierarchy
is good to place in the same horizontal position.

A logic layout of an ASOME data model (in the graphical representation)
will be easy to read but hard to implement because line crossing and ele-
ments covering may occur sometimes.

Some elements (such as composition relation) or features (such as im-
mutability of an entity) in an ASOME data model are allowed to be hid-
den. It is important to have a balance of these elements or features are
hidden or not hidden in the model.

. Some external elements (especially some elements in the core models) will

improve the understandability since they give some relevant context.

If there is an association to a core data model, then the association should
be present in the diagram.

B.2.3 Summary - Interview 3

Role

Interview date 18 June 2018
Duration around one hour

Experience level between the expert and the medium for ASML domain

senior design engineer (focus on data models), designer of
the models, reviewer of the models

knowledge (around 4 year experience on several projects,
expert on Leveling part), expert on data models

¢ Insights about model quality that can be formalized into metrics:

1. Multiplicities, especially the source multiplicities of an ASOME data model

will require more attention of the reviewer of the model.

Often, f there are no control entities in an ASOME data model, it is diffi-
cult to understand the model. Control entities in an ASOME data model
will help the viewers to understand the runtime behaviors of the model.
The mutability of the ASOME data model will influence the correctness
checking and modifiability of the model.

No. | Related metrics

1 number of multiplicities, number of different multiplicities
2 number of control entities

3 number of mutable entities, existence of mutable entities

TABLE B.6: Summary of the related metrics of interview 3

¢ Insights about quality that cannot be formalized int metrics but are useful to
design guidelines:

B.2. Summary of Interview Results 45

1. Naming and elements grouping will influence the understandability of
an ASOME data model.

2. While designing an ASOME data model, it is important to identify what
data is an input and what data is an output for different software actions.

3. If an entity’s lifetime should not be linked to the lifetime of another entity,
but still be associated to that entity, create an optional association, with a
target multiplicity including zero.

4. Run-time behavior understanding will influence one’s understandability
of the corresponding data model.

47

Appendix C

Summary of document analysis

In this Appendix, a summary of the analysis of data model guidelines is present.

C.1

C.2

C3

C4

Attributes and association

"Due to code generator and compiler limitations, the number of associations combined
with the number of attributes may not exceed 9. ”

Related metrics: the number of associations and attributes should not exceed
9.

Related metrics: the number of associations and attributes should not exceed
9.

Entity lifetime

“If an entity’s lifetime should be linked to the lifetime of another entity, create an
association to the other entity with a target multiplicity of at least 1"

"If an entity’s lifetime should not be linked to the lifetime of another entity, but still
be associated to that entity, create an optional association, with a target multiplicity
including 0.”

" An entity with a fixed multiplicity may only have non-optional associations in case
the target is also an entity with a fixed multiplicity.”

Related metrics: number of associations without zero target multiplicity, num-
ber of associations with fixed target multiplicity, number of different kinds of
associations.

Rationale: The multiplicity of an association relation not only give the entity
number constraints but also may influence the lifetime and cascade deletion.

Multiplicities and ordering

Related metrics: number of unordered multiplicities, number of order multi-
plicities

Control and algorithm entities

Related metrics: number of control entities, number of algorithmic entities

48 Appendix C. Summary of document analysis

C.5 Mutability

* "Immutable entities are easier to reason about and do not have locking or race condition
issues. In addition the execution architecture impact of immutable entities is lower as
some additional optimizations are possible. ”

’ Related metrics: number of mutable entities.

C.6 Commonality between entities

» "Use inheritance in case entities need to refer to a generic concept and are not interested
in the differences between various specializations of the generic concept.”

"Inheritance is the only way to model this, without having to use additional con-
straints.”

’ Related metrics: number of specializations

”

* "Using composition prevents the complications of inheritance.

’ Related metrics: number of compositions.

49

Appendix D

Survey material

D.1 An example of the survey

This section presents an example of the survey, including an ASOME data model
and two questions.

Double Int string Value Object1

%: Double
y: Double

entityd {1} entityB {1}

1. Atruntime, if EntityA is deleted, will any of the instance of EntityB be changed?

O Yes
O No

2. How would you rate the complexity and maintainability of the above ASOME
data model?

very low low middle high veryhigh

complexity O O O O O
maintainability O O O O O

D.2 Survey questions of 26 ASOME data models

This section gives all the survey questions and the corresponding data models. The
number in box refers to the corresponding model id in Appendix E. Note that we
put the answers for all question 1 and we omit the question 2 for each model after
model 2 because they are the same.

Appendix E

Survey Data and Metrics Data

E.1 Survey data results - proceeded

I model id

2 participant name (we replaced the real names to alphabets A to H)
3 time consumption

-
Q.
—

part. name

2

t.c.3 (ms)

maintainability

complexity

59000
34000
60000
14000
99000
77000
70000
38000

31000
35000
62000
98000
98000
32000
51000

30000
105000
67000
36000
60000

36000
29000
44000
101000
72000
35000
27000

26000
31000
38000
73000
52000
31000
35000

AN GT U UT GO ERERERERPROLWLWWRXIINDNDNDNNNDNRPRRRRR R R R=

CNFIPIOTONI>ITOTHORTIOTNRITOHTONTI > TOTEHINT

15000
40000
70000
102000

W WDNDNORFR P NOORROFRPDNNEFERERDNNONDNDNREAFEREWQWRERROFEDNNRERRE s =

W INDNNDNEWONRPRPERRPRPAEQRPPRPRPORONOWOWODRNNNWWORFRP,ONORPREORPLPNP, QW

51

Appendix E. Survey Data and Metrics Data

— continued from previous page

id! | part. name? | t.c.® (ms) maintainability| complexity
6 F 104000 3 1
6 H 76000 3 1
7 A 27000 1 1
7 B 22000 0 3
7 C 65000 1 4
7 D 73000 1 1
7 E 63000 0 0
7 F 75000 1 3
7 G 31000 1 3
7 H 31000 2 2
8 A 23000 1 1
8 B 23000 0 4
8 D 69000 0 0
8 E 52000 0 0
8 F 58000 0 3
8 G 31000 1 4
8 H 49000 2 1
9 B 53000 1 2
9 D 77000 1 1
9 E 132000 1 1
9 G 51000 1 3
9 H 56000 2 1
10 | A 14000 1 2
10 | B 25000 1 3
10 | C 49000 3 3
10 | D 57000 3 2
10 | F 92000 2 1
10 | G 27000 1 3
10 | H 35000 2 3
1 | A 85000 2 1
11 | B 23000 0 4
11 | C 85000 1 3
11 | D 108000 1 1
11 | E 38000 0 0
11 | F 50000 1 3
1 |G 48000 1 4
11 | H 24000 0 4
12 | D 87000 3 3
12 | F 89000 4 2
12 | H 76000 3 1
13 | B 35000 2 2
13 | C 231000 3 3
13 | F 139000 3 1
13 | H 59000 1 2
14 | A 153000 2 2
14 | B 109000 2 2
14 | D 95000 3 3
14 | E 184000 2 1
14 | G 126000 3 2
14 | H 132000 4 0
15 | B 100000 2 2
15 | D 139000 3 3
15 | E 244000 1 1
15 | F 115000 3 1
15 | G 161000 3 1

E.1. Survey data results - proceeded

53

— continued from previous page

id! | part. name? | t.c.® (ms) maintainability| complexity
15 | H 97000 4 0
16 | A 68000 2 2
16 | B 95000 2 2
16 | H 141000 4 0
17 | A 29000 1 1
17 | B 25000 0 4
17 | D 65000 1 1
17 | E 54000 0 0
17 | F 65000 1 3
17 | G 32000 0 4
17 | H 48000 0 4
18 | A 18000 1 1
18 | B 22000 1 3
18 | D 32000 1 1
18 | E 118000 0 0
18 | H 29000 0 4
19 | B 46000 1 3
19 | D 85000 1 1
19 | E 133000 2 2
19 | F 88000 2 1
19 |G 69000 1 3
19 | H 36000 0 4
20 | B 27000 1 3
20 | D 50000 1 1
20 | F 80000 2 1
20 | G 64000 1 3
20 | H 45000 1 4
21 | B 56000 2 3
21 | D 81000 3 3
21 | G 43000 2 2
21 | H 72000 3 1
22 | A 27000 1 2
22 | B 28000 0 4
22 | D 39000 1 1
22 | E 48000 0 0
22 |G 30000 1 3
22 | H 31000 0 4
23 | A 9000 1 1
23 | B 13000 0 4
23 | D 8000 0 0
23 | E 31000 0 0
23 | G 20000 1 3
23 | H 21000 0 4
24 | D 42000 2 1
24 | F 49000 1 1
25 | A 75000 2 2
25 | B 56000 2 2
25 | E 141000 1 1
25 | G 93000 3 1
25 | H 96000 2 2
26 | B 74000 2 2
26 | D 132000 3 3

TABLE E.1: Proceeded Survey data results

55

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Rajiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig. “Soft-
ware Complexity and Maintenance Costs”. In: Commun. ACM 36.11 (Nov. 1993),
pp- 81-94. DOI: 10.1145/163359.163375. URL: http://doi.acm.org/10.1145/
163359.163375.

J. Bansiya and C. G. Davis. “A hierarchical model for object-oriented design
quality assessment”. In: IEEE Transactions on Software Engineering 28.1 (Jan.
2002), pp- 4-17. DOI: 10.1109/32.979986.

B. W. Boehm, J. R. Brown, and M. Lipow. “Quantitative Evaluation of Software
Quality”. In: Proceedings of the 2nd International Conference on Software Engineer-
ing. ICSE '76. San Francisco, California, USA: IEEE Computer Society Press,
1976, pp. 592-605. URL: http://dl.acm.org/citation.cfm?id=800253.
807736.

B. W. Boehm, J. R. Brown, and M. Lipow. “Quantitative Evaluation of Soft-
ware Quality”. In: Proceedings of the 2Nd International Conference on Software
Engineering. ICSE "76. San Francisco, California, USA: IEEE Computer Society
Press, 1976, pp. 592—605. URL: http://dl.acm.org/citation.cfm?id=800253.
807736.

M. Genero and M. Piattini and C. Calero. “Building UML Class Diagram Main-
tainability Prediction Models Based on Early Metrics”. In: 9" International Sym-
posium on Software Metrics (Metrics 2003). Proceedings IEEE Computer Society,
2003, pp. 263-275.

M. Genero and M. Piattini and C. Calero. “Building UML Class Diagram Main-
tainability Prediction Models Based on Early Metrics”. In: 9" International Sym-
posium on Software Metrics (Metrics 2003). Proceedings IEEE Computer Society,
2003, pp. 263-275.

G. Canfora. “Software Maintenance”. In: Software Engineering and Knowledge
Engineering. World Scientific Publishing Co.Pte.Ltd, 2001, pp. 91-93.

Samira Si-Said Cherfi and Nicolas Prat. “Multidimensional Schemas Quality:
Assessing and Balancing Analyzability and Simplicity”. In: Conceptual Model-
ing for Novel Application Domains. Ed. by Manfred A. Jeusfeld and Oscar Pastor.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 140-151.

S. R. Chidamber and C. F. Kemerer. “A metrics suite for object oriented de-
sign”. In: IEEE Transactions on Software Engineering 20.6 (June 1994), pp. 476—
493. DOI: 10.1109/32.295895.

Munkhnasan Choinzon and Yoshikazu Ueda. “Detecting Defects in Object
Oriented Designs Using Design Metrics”. In: Proceedings of the 2006 Confer-
ence on Knowledge-Based Software Engineering: Proceedings of the Seventh Joint
Conference on Knowledge-Based Software Engineering. Amsterdam, The Nether-
lands, The Netherlands: I0S Press, 2006, pp. 61-72. URL: http://dl.acm.org/
citation.cfm?id=1565098.1565107.

http://dx.doi.org/10.1145/163359.163375
http://doi.acm.org/10.1145/163359.163375
http://doi.acm.org/10.1145/163359.163375
http://dx.doi.org/10.1109/32.979986
http://dl.acm.org/citation.cfm?id=800253.807736
http://dl.acm.org/citation.cfm?id=800253.807736
http://dl.acm.org/citation.cfm?id=800253.807736
http://dl.acm.org/citation.cfm?id=800253.807736
http://dx.doi.org/10.1109/32.295895
http://dl.acm.org/citation.cfm?id=1565098.1565107
http://dl.acm.org/citation.cfm?id=1565098.1565107

56

BIBLIOGRAPHY

(1]

Arie van Deursen, Paul Klint, and Joost Visser. “Domain-specific Languages:
An Annotated Bibliography”. In: SIGPLAN Not. 35.6 (June 2000), pp. 26-36.
DOI: 10.1145/352029.352035. URL: http://doi.acm.org/10.1145/352029.
3520365.

R. Geoff Dromey. “A Model for Software Product Quality”. In: IEEE Trans.
Softw. Eng. 21.2 (Feb. 1995), pp. 146-162. DOI: 10.1109/32.345830. URL: http:
//dx.doi.org/10.1109/32.345830.

Holger Eichelberger. “On Class Diagrams, Crossings and Metrics”. In: Graph
Drawing. 2005.

Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rigorous
and Practical Approach. 3nd. Boston, MA, USA: PWS Publishing Co., 2014.

Ana M. Ferndndez-Séez, Marcela Genero, Danilo Caivano, and Michel R. V.
Chaudron. “Does the level of detail of UML diagrams affect the maintainabil-
ity of source code?: a family of experiments”. In: Empirical Software Engineering
21.1 (Feb. 2016), pp. 212-259. DOI: 10.1007/s10664-014-9354-4. URL: https:
//doi.org/10.1007/s10664-014-9354-4.

M. Genero. “Early Measures for UML Class Diagrams”. In: Hermes Science
Publications, 2003, pp. 263-275.

Marcela Genero, Jose A. Olivas, Mario Piattini, and Francisco Romero. “Knowl-
edge Discovery For Predicting Entity Relationship Diagram Maintainability”.
In: (2001). URL: https://www.researchgate .net/publication/221389885_
Knowledge _Discovery_For _Predicting_Entity_Relationship_Diagram_
Maintainability.

Marcela Genero, Geert Poels, and Mario Piattini. “Defining and validating
metrics for assessing the understandability of entity-relationship diagrams”.
In: Data & Knowledge Engineering 64.3 (2008), pp. 534-557. DOI: https://doi.
org/10.1016/j.datak.2007.09.011. URL: http://www.sciencedirect.com/
science/article/pii/S0169023X07001796.

Carlos A. Gonzalez and Jordi Cabot. “Formal verification of static software
models in MDE: A systematic review”. In: Information and Software Technology
56.8 (2014), pp. 821-838. DOI: https://doi.org/10.1016/j.infsof .2014.
03 .003. URL: http: //www . sciencedirect . com/science/article/pii/
S0950584914000627.

Robert B. Grady. Practical Software Metrics for Project Management and Process
Improvement. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1992.

Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Volkel. “MontiCore: A Framework for the Development of Textual Domain
Specific Languages”. In: Companion of the 30th International Conference on Soft-
ware Engineering. ICSE Companion '08. Leipzig, Germany: ACM, 2008, pp. 925—-
926. DOI: 10.1145/1370175.1370190. URL: http://doi.acm.org/10.1145/
1370175.1370190.

Object Management Group. Model Driven Architecture (MDA) MDA Guide rev.
2.0. OMG Document Number formal/2014-06-01 (https://www . omg . org/
mda/). 2014.

J.D. Haan. A metaphor for Model Driven Engineering. http://www .theenter -
prisearchitect.eu/blog/2009/08/05/a-metaphor-for-model-driven-
engineering/. 2009.

http://dx.doi.org/10.1145/352029.352035
http://doi.acm.org/10.1145/352029.352035
http://doi.acm.org/10.1145/352029.352035
http://dx.doi.org/10.1109/32.345830
http://dx.doi.org/10.1109/32.345830
http://dx.doi.org/10.1109/32.345830
http://dx.doi.org/10.1007/s10664-014-9354-4
https://doi.org/10.1007/s10664-014-9354-4
https://doi.org/10.1007/s10664-014-9354-4
https://www.researchgate.net/publication/221389885_Knowledge_Discovery_For_Predicting_Entity_Relationship_Diagram_Maintainability
https://www.researchgate.net/publication/221389885_Knowledge_Discovery_For_Predicting_Entity_Relationship_Diagram_Maintainability
https://www.researchgate.net/publication/221389885_Knowledge_Discovery_For_Predicting_Entity_Relationship_Diagram_Maintainability
http://dx.doi.org/https://doi.org/10.1016/j.datak.2007.09.011
http://dx.doi.org/https://doi.org/10.1016/j.datak.2007.09.011
http://www.sciencedirect.com/science/article/pii/S0169023X07001796
http://www.sciencedirect.com/science/article/pii/S0169023X07001796
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2014.03.003
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2014.03.003
http://www.sciencedirect.com/science/article/pii/S0950584914000627
http://www.sciencedirect.com/science/article/pii/S0950584914000627
http://dx.doi.org/10.1145/1370175.1370190
http://doi.acm.org/10.1145/1370175.1370190
http://doi.acm.org/10.1145/1370175.1370190
https://www.omg.org/mda/
https://www.omg.org/mda/
http://www.theenter-prisearchitect.eu/blog/2009/08/05/a-metaphor-for-model-driven-engineering/
http://www.theenter-prisearchitect.eu/blog/2009/08/05/a-metaphor-for-model-driven-engineering/
http://www.theenter-prisearchitect.eu/blog/2009/08/05/a-metaphor-for-model-driven-engineering/

BIBLIOGRAPHY 57

[24] ISO/IEC. ISO/IEC 25010 - Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) - System and software quality
models. Tech. rep. 2010.

[25] ISO/IEC.ISO/IEC 9126. Software engineering — Product quality. ISO/IEC, 2001.

[26] S. Kesh. “Evaluating the quality of entity relationship models”. In: Information
and Software Technology 37.12 (1995), pp. 681-689. DOI: https : / /doi . org/
10.1016/0950-5849(96) 81745-9. URL: http://www.sciencedirect . com/
science/article/pii/0950584996817459.

[27] Someswar Kesh. “Evaluating the quality of entity relationship models”. In: In-
formation and Software Technology 37.12 (1995), pp. 681-689. DOI: https://doi.
org/10.1016/0950-5849(96)81745-9. URL: http://www.sciencedirect.
com/science/article/pii/0950584996817459.

[28] N.King. “The qualitative research interview”. In: Qualitative methods in organi-
zational research: A practical guide. 1994.

[29] W.Liand S. Henry. “Maintenance metrics for the object oriented paradigm”.
In: Proceedings First International Software Metrics Symposium. May 1993, pp. 52—
60. DOI: 10.1109/METRIC. 1993.263801.

[30] Yao Lu, XinJun Mao, and Zude Li. “Maintainability Based on Class Diagram
Design : A Preliminary Case Study”. In: 2016.

[31] M.Piattini M. Genero G. Poels. “Defining and validating metrics for assessing
the understandability of entity-relationship diagrams”. In: Data and Knowl-
edge Engineering 64.3 (2008), pp. 534-557. DOI: https://doi.org/10.1016/
j .datak.2007.09.011. URL: http://www.sciencedirect . com/science/
article/pii/S0169023X07001796.

[32] C. Calero M. Piattini M. Genero. “Data Model Metrics”. In: (2001).

[33] S. Marche. “Measuring the stability of data models”. In: European Journal of
Information Systems 2.1 (Jan. 1993), pp. 37—-47. DOI: 10.1057/ejis.1993.5. URL:
https://doi.org/10.1057/ejis.1993.5.

[34] M. Marchesi. “OOA Metrics for the Unified Modeling Language”. In: Proceed-
ings of second Euromicro Conference on Software Maintenance and Reengineering.
Palazzo degli Affari, 1998, pp. 67-73.

[35] T.J. McCabe. “A Complexity Measure”. In: IEEE Transactions on Software Engi-
neering SE-2.4 (Dec. 1976), pp. 308-320. DOI: 10.1109/TSE. 1976.233837.

[36]] McCall. Factors in Software Quality: Preliminary Handbook on Software Quality
for an Acquisiton Manager. Vol. 1-3. ADA049055. General Electric, Nov. 1977.
URL: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=
html&identifier=ADA049055.

[37] Jose P. Miguel, David Mauricio, and Glen Rodriguez. “A Review of Software
Quality Models for the Evaluation of Software Products”. In: CoRR abs/1412.2977
(2014). arXiv: 1412.2977. URL: http://arxiv.org/abs/1412.2977.

[38] P. Mohagheghi and]J. Aagedal. “Evaluating Quality in Model-Driven Engi-
neering”. In: International Workshop on Modeling in Software Engineering (MISE'07:
ICSE Workshop 2007). May 2007, pp. 6-6. DOTI: 10.1109/MISE. 2007 .6.

[39] P. Mohagheghi and V. Dehlen. “Existing model metrics and relations to model
quality”. In: 2009 ICSE Workshop on Software Quality. May 2009, pp. 39-45. DOI:
10.1109/W0SQ.2009.5071555.

http://dx.doi.org/https://doi.org/10.1016/0950-5849(96)81745-9
http://dx.doi.org/https://doi.org/10.1016/0950-5849(96)81745-9
http://www.sciencedirect.com/science/article/pii/0950584996817459
http://www.sciencedirect.com/science/article/pii/0950584996817459
http://dx.doi.org/https://doi.org/10.1016/0950-5849(96)81745-9
http://dx.doi.org/https://doi.org/10.1016/0950-5849(96)81745-9
http://www.sciencedirect.com/science/article/pii/0950584996817459
http://www.sciencedirect.com/science/article/pii/0950584996817459
http://dx.doi.org/10.1109/METRIC.1993.263801
http://dx.doi.org/https://doi.org/10.1016/j.datak.2007.09.011
http://dx.doi.org/https://doi.org/10.1016/j.datak.2007.09.011
http://www.sciencedirect.com/science/article/pii/S0169023X07001796
http://www.sciencedirect.com/science/article/pii/S0169023X07001796
http://dx.doi.org/10.1057/ejis.1993.5
https://doi.org/10.1057/ejis.1993.5
http://dx.doi.org/10.1109/TSE.1976.233837
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA049055
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA049055
http://arxiv.org/abs/1412.2977
http://arxiv.org/abs/1412.2977
http://dx.doi.org/10.1109/MISE.2007.6
http://dx.doi.org/10.1109/WOSQ.2009.5071555

58

BIBLIOGRAPHY

[40]

Daniel L. Moody and Andrew Flitman. “A Methodology for Clustering En-
tity Relationship Models — A Human Information Processing Approach”. In:
Conceptual Modeling — ER ’99. Ed. by Jacky Akoka, Mokrane Bouzeghoub,
Isabelle Comyn-Wattiau, and Elisabeth Métais. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 114-130.

D.L. Moody. “Theoretical and practical issues in evaluating the quality of con-
ceptual models: current state and future directions”. In: Data & Knowledge
Engineering 55.3 (2005). Quality in conceptual modeling, pp. 243-276. DOI:
https://doi.org/10.1016/j.datak.2004.12.005. URL: http: //www .
sciencedirect.com/science/article/pii/S0169023X04002307.

M. Mrerearchesi. “OOA Metrics for the Unified Modeling Language”. In: Pro-
ceedings of second Euromicro Conference on Software Maintenance and Reengineer-
ing. Palazzo degli Affari, 1998, pp. 67-73.

Ariadi Nugroho, Bas Flaton, and Michel R. V. Chaudron. “Empirical Analysis
of the Relation between Level of Detail in UML Models and Defect Density”.
In: Model Driven Engineering Languages and Systems: 11th International Confer-
ence, MoDELS 2008, Toulouse, France, September 28 - October 3, 2008. Proceedings.
Ed. by Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and
Markus Vélter. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 600-
614. DOI: 10.1007/978-3-540-87875-9_42. URL: https://doi.org/10.1007/
978-3-540-87875-9_42.

Nicholas Pippenger. “Complexity Theory”. In: Scientific American 238.6 (1978),
114-125B. URL: http://www. jstor.org/stable/24955758.

V. Rajlich. “Program Reading and Comprehension”. In: Proc. of summer school
on Engineering of Existing Software. Giuseppe Laterza Editore, 1994, pp. 161-
178.

Fabrizio Riguzzi and Fabrizio Riguzzi. A Survey of Software Metrics.

M. Genero and M. Piattini and J. Olivas and F. Romero. “A controlled experi-
ment for validating class diagram structural complexity metrics”. In: 8" Inter-
national Conference on object-oriented Information Systems (OOIS 2002). Montpel-
lier, 2002, pp. 372-383.

A.F. Rosene,]. E. Connolly, and K. M. Bracy. “Software Maintainability - What
It Means and How to Achieve It”. In: IEEE Transactions on Reliability R-30.3
(Aug. 1981), pp. 240-245. DOI: 10.1109/TR.1981.5221065.

D. C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering”. In:
Computer 39.2 (Feb. 2006), pp. 25-31. DOI: 10.1109/MC.2006.58.

D. C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering”. In:
Computer 39.2 (Feb. 2006), pp. 25-31. DOI: 10.1109/MC.2006.58.

Manuel Serrano, Juan Trujillo, Coral Calero, and Mario Piattini. “Metrics for
data warehouse conceptual models understandability”. In: Information and Soft-
ware Technology 49.8 (2007), pp. 851-870. DOI: https://doi.org/10.1016/j.
infsof . 2006 . 09 . 008. URL: http: //www . sciencedirect . com/ science/
article/pii/S0950584906001327.

Jonathan Sprinkle and Gabor Karsai. “A domain-specific visual language for
domain model evolution”. In: Journal of Visual Languages & Computing 15.3
(2004). Domain-Specific Modeling with Visual Languages, pp. 291-307. DOI:
https://doi.org/10.1016/j. jvlc.2004.01.006. URL: http: // wuw .
sciencedirect.com/science/article/pii/S1045926X0400014X.

http://dx.doi.org/https://doi.org/10.1016/j.datak.2004.12.005
http://www.sciencedirect.com/science/article/pii/S0169023X04002307
http://www.sciencedirect.com/science/article/pii/S0169023X04002307
http://dx.doi.org/10.1007/978-3-540-87875-9_42
https://doi.org/10.1007/978-3-540-87875-9_42
https://doi.org/10.1007/978-3-540-87875-9_42
http://www.jstor.org/stable/24955758
http://dx.doi.org/10.1109/TR.1981.5221065
http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2006.09.008
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2006.09.008
http://www.sciencedirect.com/science/article/pii/S0950584906001327
http://www.sciencedirect.com/science/article/pii/S0950584906001327
http://dx.doi.org/https://doi.org/10.1016/j.jvlc.2004.01.006
http://www.sciencedirect.com/science/article/pii/S1045926X0400014X
http://www.sciencedirect.com/science/article/pii/S1045926X0400014X

BIBLIOGRAPHY 59

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Srdjan Stevanetic and Uwe Zdun. “Software Metrics for Measuring the Un-
derstandability of Architectural Structures: A Systematic Mapping Study”. In:
Proceedings of the 19th International Conference on Evaluation and Assessment in
Software Engineering. EASE "15. Nanjing, China: ACM, 2015, 21:1-21:14. DOTI:
10.1145/2745802.2745822. URL: http://doi.acm.org/10.1145/2745802.
2745822.

Giancarlo Succi, Witold Pedrycz, Snezana Djokic, Paolo Zuliani, and Barbara
Russo. “An Empirical Exploration of the Distributions of the Chidamber and
Kemerer Object-Oriented Metrics Suite”. In: Empirical Software Engineering 10.1
(Jan. 2005), pp. 81-104. DOI: 10 .1023/B: EMSE . 0000048324 . 12188 . a2. URL:
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2.

M. Voelter T. Stahi. “MDSD - Basic Ideas and Terminology”. In: Model-Driven
Software Development. John Wiley & Sons Ltd, 2006, pp. 11-27.

Douglas A. Troy and Stuart H. Zweben. “Measuring the Quality of Structured
Designs”. In: J. Syst. Softw. 2.2 (June 1981), pp. 113-120. DOI: 10.1016/0164-
1212(81)90031-5. URL: http://dx.doi.org/10.1016/0164-1212(81)90031-
5

Nitin Upadhyay, Bharat M. Despande, and Vishnu P. Agrawal. “Towards a
Software Component Quality Model”. In: Advances in Computer Science and In-
formation Technology. Ed. by Natarajan Meghanathan, Brajesh Kumar Kaushik,
and Dhinaharan Nagamalai. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 398-412.

Klaas van den Berg and P.M. van den Broek. “Validation in the Software Met-
ric Development Process”. Undefined. In: Memoranda informatica 95-10 (Feb.
1995),

M. Voelter. “Modeling and Model-Driven Development”. In: DSL Engineering:
Designing, Implementing and Using Domain-Specific Languages. 2013, pp. 31-34.

E. J. Weyuker. “Evaluating software complexity measures”. In: IEEE Transac-
tions on Software Engineering 14.9 (Sept. 1988), pp. 1357-1365. DOI: 10 . 1109/
32.6178.

ASML tech wiki. Guidelines for data models. (https://techwiki . asml . com/
index.php/Guidelines_for_datamodels).

F. Wu and T. Yi. “A Structural Complexity Metric for Software Components”.
In: The First International Symposium on Data, Privacy, and E-Commerce (ISDPE
2007). Nov. 2007, pp. 161-163. DOTI: 10.1109/ISDPE. 2007 . 127.

7

Y. Zhou and B. Xu. “Measuring Structure Complexity of UML Class Diagrams”.
In: Journal of Electronics (China). Vol. 20(3). 2003, pp. 227-231.

Y. Zhou and B. Xu. “Measuring Structure Complexity of UML Class Diagrams”.
In: Journal of Electronics (China). Vol. 20(3). 2003, pp. 227-231.

Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman. Model-Based Test-
ing for Embedded Systems. 1st. Boca Raton, FL, USA: CRC Press, Inc., 2011.

http://dx.doi.org/10.1145/2745802.2745822
http://doi.acm.org/10.1145/2745802.2745822
http://doi.acm.org/10.1145/2745802.2745822
http://dx.doi.org/10.1023/B:EMSE.0000048324.12188.a2
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2
http://dx.doi.org/10.1016/0164-1212(81)90031-5
http://dx.doi.org/10.1016/0164-1212(81)90031-5
http://dx.doi.org/10.1016/0164-1212(81)90031-5
http://dx.doi.org/10.1016/0164-1212(81)90031-5
http://dx.doi.org/10.1109/32.6178
http://dx.doi.org/10.1109/32.6178
https://techwiki.asml.com/index.php/Guidelines_for_datamodels
https://techwiki.asml.com/index.php/Guidelines_for_datamodels
http://dx.doi.org/10.1109/ISDPE.2007.127

	Introduction
	Problem Statement
	Goal and Questions
	Thesis Organization

	Preliminaries
	Model-Driven Engineering
	Domain-specific model
	Domain-specific language
	Domain-specific model representation
	Quality of Model-Driven Engineering

	Domain-Specific Models at ASML
	ASOME Data Models
	Basic elements: type, enumeration, constant and multiplicity constant
	Class: entity and value object
	Relation: association, composition and specialization
	The definition of an ASOME Data Model

	Quality
	Quality in MDA
	The ISO Quality Standard
	ISO 9126
	ISO 25010
	Summary of the ISO quality models

	Other Quality Models
	Quality Attributes
	Complexity
	Maintainability
	Understandability

	Software Metrics

	Metrics
	Metrics - Literature Study
	Chidamber and Kemerer's Metrics (1994)
	Marchesi's Metrics (1998)
	Genero's Metrics (2000)
	Zhou's Metrics (2003)
	Main problems of the metrics in literature study

	Metrics - Interview Study
	Metrics in interview study
	Summary of the metrics in interview study

	Metrics - Document Analysis
	Metrics in document analysis
	Summary of the metrics in document analysis

	Tool Design
	Advantages of our metrics tool
	Disadvantages of our metrics tool prototype

	Evaluation
	Evaluation approaches
	Experiment Settings and Data Collection
	Results analysis
	Survey data results
	Survey data and metrics data

	Conclusion
	Quality Attributes in Different Quality Models
	Interview Guide and Results
	Interview Guide
	Summary of Interview Results
	Summary - Interview 1
	Summary - Interview 2
	Summary - Interview 3

	Summary of document analysis
	Attributes and association
	Entity lifetime
	Multiplicities and ordering
	Control and algorithm entities
	Mutability
	Commonality between entities

	Survey material
	An example of the survey
	Survey questions of 26 ASOME data models

	Survey Data and Metrics Data
	Survey data results - proceeded

	Bibliography

