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Abstract

In the machine learning field, data quality is essential for developing an effective machine learning
model. However, raw data always contain various kinds of data problems such as duplicated
records, missing values and outliers, which may weaken the model power severely. Therefore,
it is vital to clean data thoroughly before proceeding with the data analysis step. The process
that cleans the potential problems in the data is called data cleaning. Unfortunately, although
inevitable and primary as data cleaning is, it is also quite a tedious and time-consuming task.
People do not want to repeat this process endlessly and hence expect a tool to help them clean
data automatically.

In this thesis, a Python tool is developed in order to fulfill this expectation. This tool is able to
identify the potential issues in the data and report results and recommendations such that users
can clean data smoothly and effectively with its assistance. Compared with existing data cleaning
tools, this tool is specially designed for addressing machine learning tasks and can find the optimal
cleaning approach according to the characteristics of the given dataset. There are three aspects
meaningfully automated in this thesis: automatic discovery of data types, automatic missing value
handling, and automatic outlier detection.
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Chapter 1

Introduction

Data in the real world are acquired from a variety of sources. The raw data are usually inconsistent,
inaccurate and incomplete, which we call dirty data. The analytical results from dirty data are not
dependable since high-quality decisions are normally based on high-quality data. Consequently,
the raw data cannot be used directly for performing analytical procedures and need to be cleaned
beforehand. Data cleaning detects and removes the inconsistent, inaccurate and incomplete parts
from data to improve the quality of data. This process prepares data for future analysis and is
usually inevitable and essential.

In this thesis, we are concerned with the automation of data cleaning. A simple Python tool is
developed to offer automated, data-driven support to help users clean data easily. In this chapter,
we introduce the basic background and provide an overview of the whole project. In Section 1.1, we
explain why the automation of data cleaning is desirable. Section 1.2 presents the main objective
of the thesis. The results of this thesis are summarized in Section 1.3. The further outline of this
thesis is described in Section 1.4.

1.1 Motivation

Data cleaning is a primary task of data science. Potential problems such as missing values and
outliers in the raw dataset will bias the results of data analysis and need to be dealt with be-
forehand. However, the process of data cleaning is tedious and time-consuming, especially when
the availability of information increases day by day. People usually prefer other more interesting
tasks such as visualization or statistical computing instead of getting stuck in data cleaning. As
troublesome as data cleaning is, every data scientist is aware that thorough, well-documented data
cleaning is vital to the success of data analysis. Considering the inevitability and importance of
data cleaning, data scientists are eager to find ways to automate this process. As a consequence,
there is a great need of a powerful tool to help us effectively clean the raw datasets.

1.2 Thesis Objective

Datasets are an integral part of the machine learning field. The need for large amounts of data
to train and run machine learning models makes the quality of datasets especially crucial in the
machine learning field. For machine learning models to accurately learn, the datasets being used to
train them must be trustworthy. Moreover, it is widely known that Python is popular in machine
learning as it is elegant, flexible and straightforward. Therefore, there is a demand to develop an
automatic data cleaning tool in Python for machine learning.

This thesis is aimed at developing a Python tool which can offer automated, data-driven support
to help users clean data effectively and smoothly.

The objective of the Python tool can be formulated as follows: Given a random raw dataset
representing a machine learning problem, the Python tool is capable of automatically identifying
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CHAPTER 1. INTRODUCTION

the potential issues and reporting the results and recommendations to the end-user in an effective
way.

Considering the various dataset formats and machine learning tasks, for convenience and con-
sistency, we design the tool aimed for supervised learning tasks and based on the parsed datasets
from OpenML [65]. To be noticed, some datasets on OpenML may not be parsed, but we can
utilize the feature in the Python API that automatically maps original data to tabular numerical
data in that situation.

1.3 Results

The final version of the data cleaning tool is capable of presenting an overview report and cleaning
common data problems. With the OpenML dataset ID as the input, the tool can show useful
information about the given dataset, for example, the most important features and the data type
of each feature. The tool is also good at dealing with common data problems. It first detects the
data problems and presents them to the end-user using effective visualization techniques. Next,
it recommends the proper technique to help the end-user clean data easily. Strictly speaking, the
final tool is not only a data cleaning tool but also involves some other stages of data mining, for
example, data understanding (data type discovery). To make it more clear, we summarize the
capabilities of the tool as follows:

• Present an overview report of the given dataset

– The most important features

– Statistical information: mean, min, max and so on

– Data types of features

• Clean common data problems in the raw dataset

– Duplicated records

– Inconsistent column names

– Outliers

– Missing values

Among the capabilities above, we highlight the three aspects we meaningfully automated: auto-
matic discovery of data types, automatic missing value handling, and automatic outlier detection.

• Automatic discovery of data types

– Discover common data types: boolean, float, integer, date and string

– Discover statistical data types: real, positive-real, count and categorical

• Automatic missing value handling

– Identify missing values

– Visualize missing values

– Clean missing values

• Automatic outlier detection

– Identify both univariate and multivariate outliers

– Visualize both univariate and multivariate outliers

These three aspects are the main focus of the thesis. The concrete approaches will be elaborated
in Chapter 4.

2 Automatic Data Cleaning
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1.4 Outline

In Chapter 2, the problems to be solved in this thesis are formulated and challenges for each
problem are analyzed. Chapter 3 provides the background and describes the related work about
data cleaning. Common data problems and corresponding cleaning techniques are examined.
Chapter 4 demonstrates our approach to addressing common data problems and explains how we
design the data cleaning tool to assist users in cleaning data. Chapter 5 summarizes the thesis
and presents conclusions and possible improvements for future work.
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Chapter 2

Problem Statement

Data cleaning can be performed at different levels of granularity. For example, some data cleaning
tools may be dedicated in one specific data problem such as outlier detection, while some tools
may cover a wide range of data problems. For another example, for the missing value issue, we can
simply delete all the records containing missing values. However, this method may substantially
reduce the information of the given dataset (imagine the extreme case that every record in the
dataset contains missing values, and nothing would be left after deletion). We can also use
advanced methods such as multiple imputation to fill in missing data. Besides, we can even take
a step further by using different techniques according to the characteristics of the specific dataset.

The ultimate goal of this project is to develop a Python tool to help data scientists understand
and clean raw data. To develop such a tool, we first have to investigate what are the most common
data problems and the existing data cleaning techniques. Then we determine the core capabilities
of our tool, that is the main data problems our tool focuses on addressing. Afterward, we integrate
the state-of-the-art techniques into our tool to handle these issues. Last, we improve our tool a
further step on this basis. To summarize, this work answers the following questions:

• What are typical data problems in raw data?

• How do the state-of-the-art techniques deal with these data problems?

• How can we integrate these techniques into a data cleaning Python tool?

• How can we recommend the right techniques for the data at hand?

• Where can we improve the existing techniques?

We are interested in how existing techniques deal with dirty data and wish to find where
can we improve the current approaches. We wish to gain a deeper insight into state-of-the-art
data cleaning techniques through the design and implementation of the data cleaning tool. After
preliminary study, we determine the three key aspects we would like to address:

• Automatic discovery of data types

• Automatic missing value handling

• Automatic outlier detection

We further put forward the research questions next for each of the subtask above.

2.1 Automatic Discovery of Data Types

2.1.1 Problem Formulation

Automatic discovery of data types addresses the following two questions:
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• Which data types are important in the context of machine learning?

• How can we optimally detect the data types from a raw dataset?

2.1.2 Challenges

There are many data types in computer science. However, not all the data types are useful for
understanding machine learning problems. For instance, a feature known as ’object’ is not as
informative as a feature known as ’categorical’. Besides, since the datasets only contain a finite
number of samples, it is difficult for us to distinguish whether a variable takes values from a finite
set or infinite set. For example, it is complicated to know if a continuous variable can take values
from the entire real line or only an interval of it. Moreover, we may need background information
to determine the type of a variable. As an example, it is very difficult to distinguish between
categorical and ordinal data since the presence of an order in the data only makes sense given a
context. While colors in candies usually do not present an order, colors in the traffic lights clearly
do. The limitations above contribute to the complexity and difficulty of data type discovery.

2.2 Automatic Missing Value Handling

2.2.1 Problem Formulation

The following research questions are explored for the automatic missing value handling

• How are missing data usually encoded (0, 999, NAN or some other characters)?

• How can we visualize missing data effectively?

• How do existing approaches deal with missing data?

• How to recommend a proper technique to clean missing data for a given dataset?

2.2.2 Challenges

First, missing data may be encoded as a variety of numbers or characters such as 0, ’nan’ or
’?’. The identification of missing values should consider all these possibilities. Second, there are
a considerable amount of techniques available for dealing with missing values. It is challenging
to find the optimal approach from all these options. Last, understanding the missing data is
significant for a non-expert to select the proper approach. Hence we need to present the missing
data to users in a straightforward manner.

2.3 Automatic Outlier Detection

2.3.1 Problem Formulation

We put forward the following questions for the automatic outlier detection part.

• How do existing approaches detect outliers?

• How to recommend a proper outlier detection technique for a given dataset?

• How can we visualize outliers effectively?

Automatic Data Cleaning 5



CHAPTER 2. PROBLEM STATEMENT

2.3.2 Challenges

The main challenge of outlier detection is that we have very limited information given a random
dataset. To be more specific, we do not know the percentage of outliers in the dataset or which
samples are outliers or inliners. Consequently, it is difficult to know which algorithm performs
better on this dataset even though the outlier detection techniques have already been restricted in
the unsupervised learning field. Moreover, we are usually more interested in multivariate outliers
for machine learning problems. However, sometimes a dataset may contain hundreds of features
which makes the visualization of outliers more difficult as we are visualizing high dimensional
data.
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Chapter 3

Literature Analysis

In this chapter, we provide the background knowledge and related work concerning automatic
data cleaning. Section 3.1 state the concept of data cleaning. In Section 3.2, 3.3 and 3.4 we
explore the major data problems in raw data and investigate the corresponding state-of-art cleaning
techniques. We describe the visualization techniques which can be used to present data problems
in Section 3.5. Related data cleaning tools are discussed in Section 3.6.

3.1 Data Cleaning

There is a massive amount of data created every single day. Machine learning can learn and make
predictions on these data to make data valuable [48]. However, a major problem is that data
in real life almost never come in a clean way [31] and poor data quality may severely affect the
effectiveness of learning algorithms [17, 58]. Consequently, raw data need to be preprocessed before
being able to proceed with training or running machine learning models as shown in Figure 3.1.
Important and inevitable as data preprocessing is, this process is also tedious and troublesome.
Data scientist usually spend more than half of analysis time on it [46], nevertheless non-expert
users. As a result, data scientists are eager to find a tool to help them automate this process
[33, 36, 51].

Figure 3.1: A brief machine learning process

There are many different tasks in data preprocessing such as data cleaning, data integration,
and data transformation [29]. The task which aims at dealing with data problems is called data
cleaning. Common data problems are missing values, outliers, inconsistent column names etc [37].
We briefly introduce the major problems as follows.

• Inconsistent columns names: Column names have inconsistent capitalizations.

• Duplicated records: Different or multiple records refer to one unique real-world entity or
object in the dataset [73].

• Redundant features: Irrelevant features barely contribute to model constructions and may
increase the training time and risk of overfitting [26].
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• Inaccurate data types: The absence or inaccuracy of feature data types makes it difficult to
understand the machine learning problem represented by the dataset.

• Missing values: No data value is stored for the feature in an instance [69]. Missing values
are common and can have a significant effect on the conclusions that can be drawn from the
data.

• Outliers: An outlier is an observation point that is distant from other observations which
can cause severe problems in statistical analysis [25].

Data cleaning intends to clean data by filling in missing values, smoothing noisy data, identi-
fying or removing outliers, and resolving inconsistencies [29]. This thesis seeks to develop a tool
capable of addressing all the problems mentioned above. Among these problems, we mainly focus
on inaccurate data types, missing values and outliers. In Section 3.2, 3.3 and 3.4, we elaborately
demonstrate these three issues and examine the corresponding existing cleaning techniques.

3.2 Automatic Discovery of Data Type

Data types are significant for users to understand a random dataset. As an example, a dataset
is usually presumed as representing a classification problem if the target feature is known as the
categorical type. The information of feature data types helps the user gain a general idea of
the meaning of the dataset. Moreover, features with different data types need to be processed
differently for future analysis, for example, we perform one-hot encoding for categorical features
and normalization for numerical features. Therefore, it would be a great advantage if we know
the accurate feature data types beforehand.

3.2.1 Useful Data Types in Machine Learning

Different type systems support different kinds of data types as shown in Table 3.1. In practice
of machine learning, we can quickly discuss and evaluate the preprocessing or encoding options
with the reference of feature data types. For example, we may perform regression to impute
missing values for a numerical feature and replace missing values by the most frequent value for a
categorical feature.

Type Systems Data Types
Statistics real-valued, count, binary, categorical, ordinal, etc.
Pandas dtype object, int64, float64, bool, datetime64, category, etc.
Python str, int, float, bool, list, etc.
NumPy type string , unicode , int , int8, uint16, float , float16, etc.
JSON schema string, number, integer, object, boolean, null, etc.

Table 3.1: Data types in different type systems

Despite various data types, they are not equally important in the machine learning field.
Experiments such as that conducted by Breiman [12] showed that statistical data types in a
dataset provides particularly useful information in the context of machine learning. Here, we
briefly describe six important statistical data types. As we know, the data type of a given feature
can either be continuous or discrete. Continuous data can be further classified as real valued,
positive valued or interval data whereas discrete data can be further classified as categorical,
ordinal or count data.

• Continuous variables:

1. Real-valued data, which takes values in the real number line.

2. Positive real-valued data, which takes values in the positive real number line.
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3. Interval data, which takes values in an interval of the real number line.

• Discrete variables:

1. Categorical data, which takes values in a finite unordered set, e.g., xdn ∈ {′blue′,′ red′,
′black′}.

2. Ordinal data, which takes values in a finite ordered set, e.g., xdn ∈ {′never′,′ sometimes′,
′often′,′ usually′,′ always′}.

3. Count data, which takes values in the natural numbers, i.e., xdn ∈ {0, · · · ,∞}.

The above are the six data types that matter in machine learning. In the next, we will
investigate the approaches to distinguish between these types.

3.2.2 Data Type Discovery Techniques

There are many feasible approaches to discover data types from a raw dataset. Some approaches
are simple, and may only require some statistics or heuristics. For example, to detect whether a
feature is discrete or continuous, we can count the number of unique values that feature takes and
compare it with the number of instances of that feature. Some approaches are more advanced or
complex, which may require machine learning models to detect.

Heuristic Method

A Python package messytables [39] guesses data types by brute force guessing. Brute force guessing
first takes a sample from a particular column and then tries to convert every single element in the
sample into all possible data types. The number of successful conversions is counted per data type
and then a majority vote determines the most probable data type for that column. The following
data types are considered in messytables: String, Integer, Decimal, Bool and Date. This approach
is flexible and easy to implement.

It is widely known that data can be stored in various formats such as CSV, XML, and JSON.
Data are stored in different formats according to different rules. For example, XSD (XML Schema
Definition) specifies how to formally describe the elements in an XML document [72]. Hence,
we can infer the data types of elements utilizing the schema information. Schema Inference is a
technique which is used to infer XSD after parsing the structure of any XML document, which
gives some rules to discover data types of elements from XML document. Table 3.2 shows some
of the schema inference rules to infer data types of attributes of elements from XML document.

Inferred Data Type Attributes Value for XML Element
boolean If it is true or false.
int If it is integer value between -2147483648 to 2147483647.
float If it is decimal value between -16777216 to 16777216.
byte If it is integer value between -128 to 127.
string If it is single or more than one Unicode format.

Table 3.2: Infer data types by schema inference [16]

Similar to messytables, the data types discovered by schema inference are not that useful for
machine learning. An Integer feature is still too general and we are more interested in knowing
the statistical types of a given feature. Even so, these approaches still provide a decent base on
which we can further detect the data types using advanced methods.

Bayesian Method

Isabel Valera [64] proposes a Bayesian method to determine the statistical types of features. This
proposed method is based on probabilistic modeling and exploits the following key ideas:
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1. There exists a latent structure in the data that captures the statistical dependencies among
the different objects and attributes in the dataset. Here, as in standard latent feature
modeling, Valera assumes that this structure can be captured by a low-rank representation,
such that conditioning on it, the likelihood model factorizes for both number of objects
and attributes [64]. In other words, Valera proposes that a dataset can be represented by
a matrix X which is the input of the probabilistic model and X can be factorized as two
low-rank matrices Z and B as shown in Figure 3.2.

Figure 3.2: Low rank representation of a dataset

2. Each attribute is represented by an observation model which can be expressed as a mix-
ture of likelihood functions, one per each considered data type, where the inferred weight
associated to a likelihood function captures the probability of the attribute belonging to the
corresponding data type [64]. Simply speaking, each attribute (feature) in the dataset xd

(dth attribute) has a likelihood model which is a mixture of likelihood functions (each like-
lihood function represents a data type). For each likelihood function, a weight is assigned,
and these weights sum up to one.

3. Then Valera derives an efficient Markov Chain Monte Carlo (MCMC) [8] inference algorithm
to jointly infer both the low-rank representation and the weight of each likelihood model for
each attribute in the observed data. The weights for each likelihood function are computed
after the algorithm and the likelihood function with the highest weight will be considered as
the data type of the given feature.

3.3 Automatic Missing Value Handling

Missing data is one of the common problems in practice as a result of manual data entry procedures,
equipment errors, incorrect measurements, intentional missing and so on. A relatively few absent
observations on some variables can dramatically shrink the sample size. As a result, the precision
and efficiency of data analysis are harmed, statistical power weakens, and the parameter estimates
may be biased due to differences between missing and complete data [40]. In machine learning,
missing data will increase the misclassification error rate of classifiers [2]. Thus missing data need
to be dealt with before training machine learning models.

3.3.1 Missing Data Mechanisms

In order to handle missing values effectively, the first step is to understand the data and try to
figure out why the data is missing. Sometimes attrition is caused due to social or natural processes,
for example, school graduation, dropout, and death. Skip pattern (the process of skipping over
non-applicable questions depending upon the answer to a prior question) in the survey will also
lead to missing data, for example, certain questions only asked to respondents who indicate they
are married. A good understanding of data helps us determine the mechanism of missing data.
Missing data mechanisms can be classified into three types [40, 55]:
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• Missing Completely at Random (MCAR): There is no pattern in the missing data on any
variable. For example, questionnaires get lost by chance during data collection.

• Missing at Random (MAR): Missing at random means that the propensity for a data point
to be missing is not related to the missing data, but it is related to some of the observed
data. As an example, suppose managers are more likely not to share income than staff, in
which case the missingness in feature income is related to the feature profession.

• Missing not at Random (MNAR): The probability of a missing value depends on the variable
that is missing. For example, respondents with high income may be less likely to report
income.

Identifying the missing data mechanism is important for choosing the strategy to deal with missing
data. For example, deletion is generally safe for MCAR while should be avoided for MAR and
MNAR [5].

3.3.2 Missing Value Handling Techniques

After determining the mechanism of the missing data, the next step is to decide the appropriate
method to clean them. In this part, we introduce the state-of-the-art techniques for dealing with
missing values.

Listwise Deletion

Listwise deletion [40] also known as complete case analysis, only analyzes cases with available data
on each variable, as shown in Figure 3.3(a). Listwise deletion is very simple but and works well
when missing mechanism is MCAR and sample size is large enough [47]. However, it reduces the
statistical power and may lead to biased estimates especially for MAR and MNAR [52].

Pairwise Deletion

Different from listwise deletion, pairwise deletion also known as available case analysis, analyzes
all cases in which the variables of interest are present, as shown in Figure 3.3(b). Compared with
listwise deletion, pairwise deletion uses all the available information for analysis. For example,
when exploring the correlation between two variables, we can use all the available cases of these two
variables without considering the missingness of other variables. However, like listwise deletion,
pairwise deletion only provides unbiased estimates in MCAR [52].

(a) Listwise deletion [32] (b) Pairwise deletion [32]

Figure 3.3: Listwise and pairwise deletion
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Mean/Median/Mode Imputation

We can substitute missing values under a variable with statistical information such as mean,
median or mode [27], as shown in Figure.3.4(a). This method uses all the data. However, it also
underestimates the data variability since the true missing value may be far from mean, median
or mode. Besides, it may also weaken the covariance and correlation estimates in the data due to
the ignorance of the relationship and dependency between variables.

Regression Imputation

Regression Imputation replaces missing values with the predicted score from a regression equation,
as shown in Figure.3.4(b). This method uses information from observed data but also presumes
that the missing values fit the regression trend. Thus all the imputed values fit the regression
model perfectly which leads to the overestimation of the correlation between variables. Stochastic
regression [20] is put forward to address this problem. It adds random error to the predicted
score, which supplies the uncertainty to the imputed values. Compared with simple regression,
stochastic regression shows much less bias [20], but variance can still be underestimated since the
random error may not be enough.

(a) Mean imputation shows the relation
between x and y when the mean value is im-
puted for the missing values on y [19].

(b) Regression imputation assumes that the
imputed values fall directly on a regression line
with a nonzero slope, so it implies a correlation
of 1 between the predictors and the missing
outcome variable in the example [19].

Figure 3.4: Mean and regression imputation

Multiple Imputation

In order to reduce the bias generated from imputation, Rubin [56] proposed a method for aver-
aging the outcomes across multiple imputed datasets. There are basically 3 steps in multivariate
imputation. First, impute the missing data of the incomplete datasets m times (m = 3 in Figure
3.5). Note that imputed values are drawn from a distribution. This step results in m complete
datasets. The second step is to analyze each of the m completed datasets. Mean, variance, and
confidence interval of variables of concern are calculated [75]. Finally, we integrate the m analysis
results into a final result.

Multiple imputation is the most sophisticated and most popular approach currently. The
most widely-used multiple imputation approach is Multivariate Imputation by Chained Equation
(MICE) [9] based on the MCMC algorithm [8]. MICE takes the regression idea further and take
advantage of correlations between responses. To explain the idea of MICE, we give an example of
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Figure 3.5: Multiple imputation process [56]

imputing the missing values for a simple dataset by MICE. Imagine we have three features in our
dataset: profession, age and income, and each variable has some missing values. The MICE can
be conducted through the following steps:

1. We first impute the missing values using a simple imputation method, for example, mean
imputation.

2. We set the imputed missing values of variable profession back to missing.

3. We perform a linear regression to predict the missing values of profession by age and income
using all the cases where profession are observed.

4. We impute the missing values of profession by the values obtained in step 3. And variable
profession has no missingness at this point.

5. We repeat steps 2-4 for variable age.

6. We repeat steps 2-4 for variable income.

7. We repeat the entire process of iterating the three variables convergence.

Multiple imputation is aimed for MAR specially but it is found that it also produces valid estimate
in MNAR [5].

Matrix Factorization

Matrix factorization is basically factorizing a large matrix into two smaller matrices called factors.
Factors are multiplied to obtain the original matrix. There are many matrix factorization al-
gorithms which Nonnegative MF and Multi Relational Matrix Factorization, which can be used
to fill in missing data [11].

Matrix factorization is widely used to impute missing values in recommendations systems. We
take music recommendations as an example. Table 3.3 shows a user-music rating matrix. Imagine
we have 3 users u and 4 music m, we know that this matrix would be very sparse in real life as
every user only listens to a small part of music in the music library.

m1 m2 m3 m4

u1 wum
12

u2 wum
21

u3 wum
32

Table 3.3: User-Music rating matrix R

Automatic Data Cleaning 13



CHAPTER 3. LITERATURE ANALYSIS

Assume that they are only two music styles s1, s2 in the world, then we can factorize the matrix
R to user-style preference matrix U and style-music percentage matrix V , as shown in Table 3.4.

s1 s2
u1 wus

11 wus
12

u2 wus
21 wus

22

u3 wus
31 wus

32

m1 m2 m3 m4

s1 wsm
11 wsm

12 wsm
13 wsm

14

s2 wsm
21 wsm

22 wsm
23 wsm

24

Table 3.4: User-Style preference matrix U and Style-Music percentage matrix V

Hence if we can get matrix U and V , we can fill the missing values in R. U and V can be
computed by solving the loss function with gradient descent. The loss function is defined by the
distance between R̃ = UV T and R:

arg min
U,V

= L(R,UV T ) + λ(||U ||2F + ||V ||2F )

where λ(||U ||2F + ||V ||2F ) is the regularization to prevent from overfitting. And missing values can
be estimated as shown in Figure 3.6.

Figure 3.6: Matrix factorization

K Nearest Neighbor

There are other machine learning techniques such as XGBoost and Random Forest [62] for data
imputation. K Nearest Neighbor (KNN) is the most widely used. In this method, k neighbors are
selected based on the distance measure and their average is used as an imputation estimate. KNN
can predict both discrete attributes (the most frequent value among the k nearest neighbors)
and continuous attributes (the mean among the k nearest neighbors) [43]. The advantage of
the KNN algorithm is that it is simple to understand and easy to implement. Unlike multiple
imputation, the KNN basically asks for no parameter which gives it an edge in certain settings
where the information of dataset are barely provided [34]. One of the obvious drawbacks of
the KNN algorithm is that it becomes time-consuming when analyzing large datasets because it
searches for similar instances through the entire dataset.

Summary

Collectively, there are many feasible approaches to deal with missing values. Different approaches
apply to different situations. Deletion can only apply to MCAR without causing a big bias.
Imputations using statistical information basically also only apply to MCAR as they are making
up data without considering the correlation between variables. KNN, matrix factorization and
MICE are widely used in MAR. MICE performs well in all missing mechanisms generally. There
are also many other missing imputation techniques such as maximum likelihood [7] and missing
indicator [24]. We do not elaborate them since they are either too complicated to be automated
or can only be applied to MCAR.
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3.4 Automatic Outlier Detection

In machine learning, the process of detecting anomalous instances within the datasets is known as
outlier detection or anomaly detection. Even though modern classifiers are designed to be more
robust to outliers, there are still many classifiers quite sensitive to outliers [1]. Hence, users need
to be aware of the outliers in the dataset and select appropriate approaches to handle them before
inputting data into training models.

3.4.1 Categorization of Outlier Detection

Outliers exist in both one-dimensional and multi-dimensional space. Detection of outliers in
one-dimensional data depends on their distribution. The normal distribution is the most used
when the distribution is not known [14]. Compared with one-dimensional outlier detection, multi-
dimensional outlier detection is much more complicated. There are different setups of outlier
detection depending on whether the labels are available, as shown in Figure 3.7. In this section, we
introduce the three main types of outlier detection: supervised outlier detection, semi-supervised
outlier detection, and unsupervised anomaly detection.

Supervised Outlier Detection

Supervised anomaly detection describes the setup where training datasets and test datasets are
both fully labeled [23]. In this scenario, we know which data are outliers in the training datasets.
This scenario is very similar to traditional supervised classification tasks. The difference is that
classes in supervised anomaly detection are highly unbalanced.

Semi-supervised Outlier Detection

Semi-supervised anomaly detection also uses training and test datasets, whereas training data
only consists of normal data without any outliers [23]. A model is learned from normal data and
outliers can be detected as they deviate from this model.

Unsupervised Outlier Detection

Unsupervised anomaly detection is the most flexible setup which does not require any labels [23].
The idea is that unsupervised outlier detection techniques score the data solely based on the
intrinsic properties of the dataset such as distance and density.

Summary

When given a random unseen raw dataset, we barely have any information about it. This means
outliers are usually not known in advance. Consequently, the assumption that normal data and
outliers are labeled correctly of supervised anomaly detection unsupervised can be rarely satisfied.
Besides, as mentioned previously, data almost never come in a clean way, which also limits the use
of semi-supervised anomaly detection. Overall, unsupervised anomaly detection algorithms seem
to be the only reasonable choice for our data cleaning tool.

3.4.2 Outlier Detection Techniques

In this section, we take an insight into the most used unsupervised outlier detection algorithms
as well as the one-dimensional outlier detection standard deviation method which can be used to
serve our data cleaning tool.
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Figure 3.7: Outlier detection modes depending on the availability of labels in the dataset [23]

Standard Deviation

Standard deviation is a metric of variance, indicating how much the individual data points are
spread out from the mean. For this outlier detection method, the mean and standard deviation of
the residuals are calculated and compared. If a value is a certain number of standard deviations
away from the mean, that data point is identified as an outlier. The default value is 3. As we
can see from Figure 3.8, dark blue is less than one standard deviation from the mean. For the
normal distribution, this accounts for about 68% of data, while two standard deviations from
the mean (medium and dark blue) account for about 95%. The three standard deviations (light,
medium, and dark blue) account for about 88.7%. Data outside the three standard deviations are
considered as outliers. However, to be noticed, standard deviations can fail to detect outliers if
the outliers are extreme. Because the extreme outliers increase the standard deviation. The more
extreme the outlier, the more the standard deviation is affected [71]

Figure 3.8: Standard Deviation [71]

One-class Support Vector Machine

One-class support vector machine (OCSVM) by Scholkopf [57] intends to separate all the data
from the origin in the feature space F (Feature space refers to the n dimensions where features

16 Automatic Data Cleaning



CHAPTER 3. LITERATURE ANALYSIS

live [48]) by a hyperplane and maximizes the distance from this hyperplane to the origin [67], as
shown in Figure 3.9(a). Technically speaking, this OCSVM put forward Scholkopf is heavily used
as a semi-supervised method where training data needs to be anomaly-free. To make OCSVM
applicable for unsupervised scenario, an enhanced OCSVM is proposed [6]. A parameter v is
introduced to indicate the fraction of outliers in the dataset, which allows some data on the other
side of the hyperplane, as shown in Figure 3.9(b). And each instance in the dataset is scored by a
normalized distance to the determined hyperplane [23]. The basic idea is that outliers contribute
less to the hyperplane than normal instances. Due to the importance of the parameter v this
method is also called v-SVM.

(a) One-class SVM (b) Enhanced One-class SVM

Figure 3.9: One-class Support Vector Machine

Local Outlier Factor

Local outlier factor (LOF) is the most well-known local anomaly detection algorithm and also
introduced the idea of local anomalies first [13]. Today, its idea is carried out in many nearest-
neighbor based algorithms. The LOF algorithm computes the local density deviation of a given
data point with respect to its neighbors. The following steps show how to calculate the local
density deviation of a data point o:

1. Compute the k-distance of data point o: distk(o) = distance between o and its kth nearest
neighbor.

2. For each data point, compute set of points in k-distance Nk(o).

3. Compute reachability distance for each data point o with respect to data point o′, as shown
in Figure 3.10.

reach distk(o′, o) = max{k -distance(o), d(o′, o)}

4. Compute local reachability density (lrd):

lrdk(o) =
|Nk(o)|∑

o′∈Nk(o)
reach distk(o′, o)

5. Finally, compute Local outlier factor score:

LOFk(o) =

∑
o′∈Nk(o)

lrd(o′)
lrd(o)

|Nk(o)|

The local density deviation depends on how isolated the data point is with respect to the
surrounding neighborhood. More precisely, locality is given by k-nearest neighbors, whose distance
is used to estimate the local density. The samples with substantially lower local density will result
in larger LOF score, and are considered as outliers.
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Figure 3.10: Compute reachability distance (k=3)

Figure 3.11: Local outlier factor [68]
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Isolation Forest

Liu [41] proposed an unsupervised outlier detection algorithm isolation forest (iForest) on the basis
of decision trees. IForest partitions data by first randomly selecting a feature and then selecting
a random split value between the minimum and maximum value of the selected feature. These
partitions can be represented as a tree structure. The idea is that outliers are less frequent than
normal data and are different from them in terms of values. Hence, they lie further away from
normal data in the feature space. Consequently, outliers are easier to be separate from the rest of
the data and closer to the root of the tree, as shown in Figure 3.12. A score is derived based on
the path length, i.e., the number of edges a data point must pass in the tree going from the root
to the terminal node. The score s is defined as follows:

s(x, n) = 2−
E(h(x))

c(n)

where h(x) is the path length of observation x, c(n) is the average path length of unsuccessful
search in a binary search tree, n is the number of external nodes. It is worth noticing that this
method has a known weakness when the anomalous points are tightly clustered [41].

Figure 3.12: Isolation Forest [15]

3.4.3 Dealing with Outliers

It is definitely not a good idea to directly remove the outliers as not all the outliers are synonyms
for bad data. In general, outliers can either be a mistake in the data or a true outlier. The first
type, a mistake in the data, could be as simple as typing 5000 rather than 50.00, resulting a big
bias for the analysis process afterward. The second type, a true outlier, would be something like
the population of China in the world population dataset, which is so different from the population
of other countries but is true data. The following are some approaches to deal with outliers [22]:

• Drop the outlier records: remove the outliers completely from the dataset to keep that data
from affecting the analysis.

• Assign a new value: If an outlier seems to be a mistake, we can treat it as a missing value
and impute a new value.

• Transformation: A different approach to true outliers could be to try creating a transforma-
tion of the data rather than using the data itself. For example, convert data to a percentile
version or perform log transformation as shown in Figure 3.13.
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Figure 3.13: Deal with outliers by log transformation

3.5 Visualization Techniques

The basic purpose of visual representation is to efficiently interpret what is insight, as easy as
possible [35]. However, with various visualization techniques, it may be confusing to know which
one is appropriate to use in order to convey maximum possible understanding. A primary task of
our data cleaning tool is to present the data in visualizations to help users understand the unseen
dataset effectively. In this section, we introduce the common visualization techniques covered in
this thesis and demonstrate the different situations each technique can be used.

3.5.1 Bar Chart

The bar chart is the most common known data visualization technique. The rectangular bars
represent data and their lengths are proportional to the values they represent. There exist both
vertical and horizontal bar charts. Figure 3.14 is a typical example of a vertical bar chart, some-
times called a line graph or histograms. Bar chart is suitable for tasks to compare and look up. It
can be used when visualizing one quantitative value attribute and one categorical key attribute.

Figure 3.14: Bar chart

3.5.2 Box Plot

A box plot is another visualization technique for graphing numerical data. The box plot consists
of 4 quartiles in which 25% of the samples is in each quartile. To illustrate this with an example

20 Automatic Data Cleaning



CHAPTER 3. LITERATURE ANALYSIS

take Figure 3.15. A box plot is mainly used for finding distribution and outliers are distinctively
shown through it. As we can see in Figure 3.15, the values of these outliers are too much off in
comparison with the greatest bulk of the data and are labeled as outliers.

Figure 3.15: Box plot

3.5.3 Pie Chart

A pie chart is a circular statistical graphic which is divided into slices to illustrate numerical
proportion. In a pie chart, the arc length of each slice (and consequently its central angle and
area), is proportional to the quantity it represents, as shown in Figure 3.16. Pie chart shows the
part-whole relationship and can be used to visualize one quantitative attribute and one categorical
attribute.

Figure 3.16: Pie chart
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3.5.4 Scatter plot

A scatter plot is a type of mathematical diagram to display values for typically two variables for
a set of data. The purpose is to identify the type of relationship (if any) between two quantitative
variables. Scatter plot is good at tasks of finding correlations, trends or distribution. It can be
used when visualizing multi-key table as shown in Figure 3.17.

Figure 3.17: Scatter plot

3.5.5 Heatmap

A heatmap [74] is a graphical representation of data where the individual values contained in a
matrix are represented as colors, as shown in Figure 3.18. It is good choice to adopt heatmap
when dealing with tasks like finding clusters or summarizing. It can be used when there are two
categorical key attributes and one quantitative attribute to visualize.

Figure 3.18: Heatmap
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3.5.6 Parallel Coordinates Plot

The parallel coordinates plot (PCP) [30] is a common way of visualizing high-dimensional geometry
and analyzing multivariate data. In a parallel coordinates plot, each variable is given its own axis
and all the axes are placed in parallel to each other. Values are plotted as a series of lines that
connected across all the axes. This means that each line is a collection of points placed on each
axis, that have all been connected together. In this method, the trends, outliers, correlation, and
extremes values could be easily identified. If clusters of similar lines are found, it might suggest
the high chance to find a correlation. While similar crossing points might suggest a negative
correlation. As for the outliers, there should be isolated lines or lines with different slopes than
its neighbors. An example of parallel coordinates plot is given in Figure 3.19.

Figure 3.19: Parallel Coordinates Plot [35]

3.6 Related Work

There are a lot of great tools available for big data analytics such as Python, SAS, and Tableau.
These tools can be used for cleaning data themselves or providing a basis for developing more
fancy data cleaning tools. In this section, we first examine some commonly known data analytical
tools and then take an insight into some existing modern data cleaning tools.

3.6.1 Data Analytical Tools

Data Analytical Tools can be generally categorized into three groups: programming languages (R,
Python, SAS), statistical solutions (SPSS, STATA) and visualization tools (Tableau, D3). Users
can choose one or some of them based on their programming background and specific usage.

SAS: SAS (Statistical Analysis System) is a powerful software which provides capabilities
of accessing, transformation and reporting data by using its flexible, extensible and web-based
interface [61]. It is highly adopted by industries and well-known for being good at handling large
datasets.

SPSS: As a strong competitor of SAS, SPSS (Statistical Package for the Social Sciences) [49]
is used by various kinds of researchers for complex statistical data analysis. Compared with SAS,
SPSS is much easier to learn but very slow in handling large datasets.

Both SAS and SPSS are professional at dealing with dirty data. They are capable of dealing
with common data problems such as missing values, outliers, and duplicated records. We can
even find very advanced and complicated approaches such as multiple imputation and maximum
likelihood for dealing with missing values [60]. However, the problem is neither of these two is
free, and the visualization capabilities are purely functional. Moreover, they preprocess data on a
very general level, not specifically for machine learning tasks.

R: R [63] is the open source counterpart of SAS. It is primarily focused on statistical compu-
tation and graphical representations. R is equipped with many comprehensive statistical analysis
packages, which makes it popular among data scientists. Besides, libraries like ggplot2 make R
competitive in data visualization.
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Python: Python [45] is an interpreted high-level programming language and is developed with
a strong focus on applications. Python is famous for its rich useful libraries, for example, NumPy,
Pandas [44], Matplotlib, and scikit-learn [50]. NumPy and Pandas make it easy to operate on
structured data. Visualization can be realized by Seaborn and Matplotlib. Moreover, Python
has easy access to powerful machine learning packages such as scikit-learn, which makes Python
especially popular in the machine learning field.

R and Python can make a stronger team together. There are packages for R that allow running
Python code (reticulate, rPython), and there are Python modules which allow running R code
(rpy2). Many data cleaning tools are designed based on these two programming languages. We
will discuss them in the next section. SAS, SPSS, R, and Python can all be utilized to visualize
data. But apart from these, there are softwares which are specifically focusing on visualization.
Here, we briefly introduce two of them: Plotly and Tableau.

Plotly: Plotly is a data visualization library for python, R and javascript. Plotly provides a
various of visualization techniques to present data in a fancy and interactive manner. Users can
basically find any existing visualization techniques in Plotly which makes it possible to understand
data from different perspectives.

Tableau: Tableau is a powerful software which provides a fast and intelligent way to analyze
data visually and interactively. It can present any kind of data in the most perfect manner. And it
can also be used for data preparation, but mostly for data integration and data reshape. Users can
easily combine and transform data by moving and clicking the mouse. Tableau also provides simple
functions for data cleaning, such as unify column names and remove one-dimensional outliers. But
generally, it is aimed for data visualization.

Even though these tools can not satisfy our need to automatically clean data for machine
learning tasks, they do provide many advanced approaches to clean or visualize data, which we
can learn from when designing our tool.

3.6.2 Data Cleaning Tools

There are already a lot of tools which are capable of providing user support for different stages of
data analysis, including data cleaning. In this section, we take an overview of these data cleaning
tools such that we can find where to utilize and improve.

Pandas: Pandas is a powerful Python package which offers fast, flexible, and expressive data
structures designed to make working with relational or labeled data both easy and intuitive [44].
Pandas are good at tasks such as data reshape and data transformation. For data cleaning, Pandas
can be used to deal with problems such as duplicated records, inconsistent column names, and
missing values. However, these capabilities seem a little bit plain and fundamental. For example,
for imputing missing values, Pandas only provides three methods: use last valid observation, use
next valid observation, and use a specific value to fill gap. There exists a lack of more advanced
approaches. Pandas can also be used to detect data types. Data types supported by Pandas
are float, int, bool, datetime64[ns], timedelta[ns], category and object. As mentioned in 3.2, we
care more about statistical data types in machine learning. Hence data types need to be further
discovered.

scikit-learn: Scikit-learn [50] is a free and effective machine learning library for Python.
Compared with Pandas, Scikit-learn provides more powerful preprocessing functions, especially on
data transformation. Also, scikit-learn can fill in missing values. The SimpleImputer class provides
basic strategies for imputing missing values: mean, mode, median and specified value, which are
still very simple. However, to be noticed, Scikit-learn features various classification, regression and
clustering algorithms. Consequently, we can clean data utilizing these advanced algorithms. For
example, we can detect outliers by taking advantage of the anomaly detection algorithms such as
isolation forest, local outlier factor and one class support vector machine provided by scikit-learn.
The problem is scikit-learn does not offer user assistance to choose appropriate algorithm and
leaves room for us to improve on this aspect.

Weka: Weka [28] is an open source tool for data mining and allows users to apply preprocessing
algorithms. However, it does not provide a guidance for the user in terms of algorithms selection.
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Moreover, Weka is aimed at transforming data such that data can fit to the data mining algorithms.
This simple transformation does not take improving the performance of algorithms into account.
Overall, Weka focus more on the data mining step and the preprocessing part is more or less
neglected.

dataMaid: The up-to-date R-package dataMaid is created by data scientists to assist the
data cleaning process. It is aimed at helping the investigators to identify potential problems in
the dataset [51]. Compared with other data cleaning tools mentioned in this part, dataMaid
is the closest to the our thesis objective. The main capability of dataMaid is autogenerating
data overview documents that summarize each variable in a dataset and flags typical problems,
depending on the data type of the variable [51]. We can see that dataMaid focuses more on helping
users understand the random dataset. For detecting and cleaning data problem, there leaves room
for improvement.

We summarize the main characteristics or deficiencies these data cleaning tools may have as
follows:

• They may only provide simple and plain data cleaning approaches.

• They may focus on addressing a single data problem.

• User assistance is not provided for approach selection.

• Most of them are not aimed at machine learning tasks.

Therefore, we can try to improve on these aspects when designing our data cleaning tool.
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Methodologies and Results

In this thesis, we developed a Python tool to offer automated, data-driven support to assist users
clean data effectively. This tool can recommend the appropriate cleaning approaches according to
the specific characteristics of the given dataset. The tool aims at improving the data quality such
that better machine learning models can be trained. We address a wide range of data problems
using existing approaches. But to be clear, the main focuses are automatic data type discover,
automatic missing value handling and automatic outlier detection. In this chapter, we demonstrate
the methodologies for designing this tool and present the results we achieved.

4.1 Automatic Discovery of Data Types

From the literature analysis, we already know that statistical data types (real-valued, positive
real-valued, interval, categorical, ordinal, count) of features are more important in the machine
learning field, as explained in Section 3.2. Hence the ultimate goal of this function is to distinguish
between the statistical data types of features. To achieve this goal, we propose a solution which
combines the simple logic approach and the Bayesian method. The datasets to be discovered are
acquired from OpenML [65]. It is noticeable that, even though we limit our tool to supervised
learning tasks, for this function, our approach can be applied to any dataset from OpenML.

We already know that the Bayesian method has proved to be able to discover statistical data
types accurately [64]. Thus we decide to integrate the work of Valera [64] into our tool. However,
apart from the raw dataset itself, the Bayesian model also needs some extra dataset informa-
tion as the input such as MetaTypes which indicate whether a feature is continuous or discrete.
Consequently, our solution is to divide the task into two steps. In the first step, we discover the
basic data types (integer, float) of a feature using the simple logic approach. Then in step 2, we
extract the dataset information required by the Bayesian model and apply the Bayesian method
to discover the statistical data types. To provide an overview, we describe the workflow in Figure
4.1.

We first detect the basic data types of the features by applying some simple logic rules as
follows:

• Bool: exactly 2 unique values in a feature

• Date: max 10 characters, contains ’-’ or ’/’ symbol

• Integer: try convert to integer with the int() function

• Float: try convert to integer and check for . symbol

• String: everything that remains

Then on this basis, we further determine whether a feature is discrete or continuous by checking
the number of unique values:
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• Discrete: limited number of unique values

• Continuous: unlimited number of unique values

Finally, we apply the Bayesian model to distinguish between the statistical data types. We
make it more specific next.

Figure 4.1: Workflow of discovering the statistical data types

4.1.1 Discover Basic Data Types

There are already many libraries such as Pandas which can be used to detect a general data type
for each feature automatically. Unfortunately, missing values and outliers in the raw dataset will
affect the judgment of Pandas. In practice, we can see many features are classified as ’object’ by
Pandas. And we can never promise that there are no problems in the dataset since data tend to
come dirty. Therefore, we need an approach which is more robust to missing values and outliers.

Inspired by Brute Force Guessing and Anjelo’s work [42], we check the type of every element
in the feature and the type of the entire feature is determined through a majority vote. As an
example, imagine there are ten elements in a feature, and nine elements are detected as the float
type and one as the string type. In this case, the data type of this feature will be considered as
float. It is worth noting that some datasets may be massive, in which case it would take a very
long time to detect the type of every single element. Hence, every time we only take a sample of
the given feature (10 percent in our tool) and perform Brute Force Guessing on the sample. The
sample and majority vote mechanism weaken the effect of the missing values and outliers to some
extent. The data types to be inferred in this step are date, bool, integer, float, and string. Next,
we elaborate on how to detect every one of these types.

Starting from the most basic type bool, we first compute the number of unique values in the
sample before checking the type of every elements. If there are exactly two unique values, the
feature will be assigned the bool type directly. As we can see, there is a priority on these data
types. If a feature is determined as bool, we do not further detect if it is float or string.

The next data type to be inferred is date. Dates can be encoded in various notations. To be
regarded as a date, the elements need to satisfy the following two rules:

• A value only has a maximum length of ten characters.

• A value belongs to one of the four patterns: xx/xx/xxxx, xxxx/xx/xx, xx − xx − xxxx
and xxxx− xx− xx where x stands for a number.

Floats and integers are both numeric types and are easy to be detected. We can simply try
to convert the element to a integer with the Python built-in function int(). If this conversion
succeeds, we know that this should be a numeric type. We continue to check the occurrence of
the floating point to distinguish between integers and floats.

Finally, when an element is not either a bool, a date, an integer or a float, it will be assigned
the string type.
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As mentioned previously, the datasets acquired from OpenML have already been parsed into
tabular numerical data mostly, hence actually only float, integer and and bool are used, as shown
in Figure 4.2.

Figure 4.2: Discover basic data types for a parsed OpenML dataset

However, this heuristic implementation makes it possible to detect data types for unparsed
datasets as well. Figure 4.3 shows we detect the data types of an unparsed csv format dataset
using the heuristic method.

Based on the results of these basic data types, we can further detect the statistical data types.

Figure 4.3: Discover basic data types for an unparsed csv format dataset

4.1.2 Discover Statistical Data Types

We implement the Bayesian method based on Valera’s work. The Bayesian model asks for three
kinds of information as shown in Figure 4.4:

• X: Parsed dataset

• T : MetaTypes of each feature

• R: Cardinality
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Figure 4.4: Input of the Bayesian model

For the parsed dataset, as we know, raw datasets usually contain much redundant information.
Some information such as name, date, notes may not be that useful in the data analysis. Hence
this kind of information can be dropped in the analytical process. Besides, many discrete variables
may be encoded in text form, for example, ”never”, ”sometimes”, ”usually”. In order to train the
machine learning model, these values need to be transformed to the numerical type. Fortunately,
we can easily acquire the parsed datasets from OpenML and input them to the Bayesian model.

MetaType basically is used to indicate whether a feature is continuous or discrete. There are
four types of MetaTypes:

• MetaType 1: positive real-valued, real-valued, interval

• MetaType 2: real-valued, interval

• MetaType 3: binary

• MetaType 4: categorical, ordinal, count

There are some overlaps between MetaTypes, for example, MetaType 1 covers MetaType 2.
This means MetaType 1 is more general than MetaType 2 and more possible data types will be
considered. The MetaType aims to limit the number of data types to guess. As mentioned in
Section 3.2, each feature gets a likelihood model which is a mixture of likelihood functions. The
likelihood function varies according to the data type. Hence if we know a feature is MetaType
2, the likelihood model of this feature will be represented as the mixture of real-valued likelihood
function and interval likelihood function, which makes the model more efficient than infer from
all the statistical data types. Hence, it is safe to assign MetaType 1 to a feature which is actually
MetaType 2, but not vice versa. The important thing is to distinguish between MetaType 1, 2 and
MetaType 3, 4. It is obvious that MetaType 1, 2 are continuous and Metatype 3 4 are discrete.
Hence, the primary task is to determine whether a feature is continuous or discrete.

We already have the basic data types of the features: bool, integer and float (for numerical
data). Bool is certainly the discrete type. However, it is a little tricky for integers and floats. At
the beginning, we directly classified integers as the discrete type and floats as the continuous type.
However, the detection accuracy turns out to be so disappointing that sometimes the data type
predictions are even completely wrong for OpenML datasets. The problem is that many integers
are encoded as floats in the parsed dataset, for example, 1.0, 2.0. We can fix this by calling the
Python built-in function is integer to check if a float is actually an integer.

However, this is still not enough. We notice that sometimes, a float variable may only take
a very limited number of unique values. For example, it may only take values from 0.5, 1.5 and
2.5. So in this case, this float variable should be considered as the discrete type. On the other
hand, it is not safe to classify integers as discrete either. The reason is that sometimes the integer
variables we observed are actually the result of truncation. As an example, the variable income
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may take values 1650, 1349, 3432, 2000 and so on. In this case, it can take any value within a
certain range such as 1890.5.

Therefore, instead of simply classify integers as discrete and floats as continuous, we apply
some simple logic rules to distinguish between the continuous and the discrete types.

We count the number of unique values that the feature takes and the number of instances of
the feature. A feature with less than 10 unique values will be directly regarded as the discrete
type. If a feature has more than 10 unique values but less than 2% of number of instances, it will
be considered as discrete too. The percentage 2% is subjective and can be modified according to
the specific application. This implementation may seem ad hoc, but in order to automate this
process, we can only consider the most general cases. And according to our experiments, it works
well mostly.

However, this requirement may still be too loose. Imagine a dataset has 1,000,000 instances
and 2% unique values, which still leaves 20,000 unique values. It is barely possible for a discrete
feature to have so many categories. After inspecting the most-run datasets on OpenML, we notice
that the discrete features usually have less than 100 unique values. Hence we set 100 as the
upper bound of the number of unique values a discrete feature can have. To summarize, if a
feature satisfies either of the following requirements, it will be considered as discrete, otherwise
continuous.

• The feature has less than 10 unique values.

• The number of unique values is less than 100 and not more than 2% of the number of
instances.

After finding the discrete variables, the next step is to determine the cardinality. In mathemat-
ics, the cardinality of a set denotes the number of elements of the set. Here it is slightly different.
If we set the number of unique values as the cardinality of a discrete feature, there would be errors
running the Bayesian model for some OpneML datasets. With the help of the author Antonio
Vergari [66] who implements the Bayesian model, we figured that we should actually consider the
maximal value of the discrete variable. The reason is that generally the acquired dataset is finite,
and we may only observe a part of all the possible values. As an example, consider the current
samples for a certain feature: [0, 1, 1, 90, 2, 0]. The number of unique values of this sample is 4
but we can clearly see that the domain stretches up to 90. Besides, for continuous variables, the
cardinality is set to 1.

Figure 4.5: Discover statistical data types using the Bayesian model

Now we have all the necessary information that the Bayesian model needs and we input them
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to the Bayesian model and the statistical data types can be discovered, as shown in Figure 4.5.
The type with the higher weight will be considered as the type of the feature.

4.1.3 Results

To evaluate the performance of our approach, we detect the data types for the 20 most-run datasets
from OpenML. These datasets are frequently explored and have various feature data types. Since
some of the data types provided by OpenML may not be accurate, we manually label the ground
truth for each dataset used for evaluation. In addition, the Bayesian model needs a pre-set number
of iterations, hence we compare the performance after running different iterations.

We compute the accuracy by comparing the number of features whose types are predicted
correctly with the total number of features. For the record, the implemented Bayesian model is
still naive in the current stage, and the ordinal and interval types remain to be further extended.
Hence, we label the ordinal data as the category for now. The interval data are labeled as real-
valued or positive real-valued depending on whether there are negative data in it. Considering
that the iterations of running the Bayesian model may affect the result, we run the Bayesian model
for 1 iteration, 5 iterations, and 10 iterations respectively to see if there is any difference. The
evaluation results are summarized in Table 4.1. We also visualize the results in the bar chart as
in Figure 4.6.

Dataset ID Accuracy 1 Accuracy 5 Accuracy 10 Features Checked

31 0.524 0.857 0.809 21
1464 1.0 1.0 1.0 5
334 0.0 0.428 0.571 7
50 0.0 0.4 0.7 10
333 0.0 0.143 0.429 7
1494 0.547 0.285 0.309 42
3 0.081 0.568 0.703 37
1510 0.838 0.806 0.838 31
1489 0.5 1.0 1.0 6
37 1.0 1.0 1.0 9
1479 0.990 0.990 0.990 101
1487 0.931 0.931 0.876 73
1063 0.909 0.909 0.863 22
1471 1.0 1.0 1.0 15
1467 0.905 0.905 0.619 21
1480 0.545 0.909 1.0 11
1068 1.0 0.955 0.955 22
1492 0.984 0.984 0.984 65
1050 0.684 0.684 0.71 28
1462 0.4 0.4 0.8 5

Table 4.1: Results of statistical data type discovery after running Bayesian model for 1, 5 and 10
iterations

As we can see from Table 4.1, the performance of Bayesian model is not very ideal after 1
iteration. The predictions of data types for datasets 334, 50, 333 are even completely wrong.
Fortunately, after 5 iterations, Bayesian model achieves a decent performance overall. Compared
with the accuracy after 1 iteration, the accuracy after 5 iterations has been greatly improved. The
result achieves the best after 10 iterations, but the improvement is not that significant compared
with that after 5 iterations. We compute the mean accuracy after 1, 5 and 10 iterations respectively
and a bar chart is used to determine the relationship between accuracy and number of iterations
as shown in Figure 4.7.
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Figure 4.6: Results of statistical data type discovery after running Bayesian model for 1, 5 and 10
iterations

As we can see from Figure 4.7, a positive correlation is found between the accuracy and the
number of iterations. However, there are also exceptions. For example, the accuracy for the
dataset 1494 decreases with the increase of the number of iterations. We inspect the dataset 1494
and we find that this dataset contains a lot of count type features. The Bayesian model tends
to take count type as the categorical type when the number of iterations are increased. Hence,
it is not a good idea to run the Bayesian model for too many iterations. Moreover, it also takes
more time to run the program with more iterations. Generally speaking, the running time of
the Bayesian model is acceptable. Among the evaluated datasets, it takes at most 6 minutes to
discover the data types of a dataset.

Figure 4.7: Mean accuracy with respect to different number of iterations

4.2 Automatic Missing Value Handling

To handle the missing values, we first have to detect them and then select the appropriate approach
to clean them. As mentioned in Section 3.3, there is no algorithm always superior to others. The
performance of an algorithm is closely related to the missing mechanism [5]. Hence we divide this
task into three subtasks: detect missing values, identify missing mechanisms, and clean missing
values.

To provide an overview, we describe the workflow in Figure 4.8. We start from detecting the
missing values. Then we present them in effective visualizations to help the user understand the
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missing mechanism. Afterward, we evaluate the candidate approaches for the given mechanism
and recommend the optimal approach to the user.

Figure 4.8: Workflow of dealing with missing values

4.2.1 Detect Missing Values

Missing values may appear in the dataset as different formats such as ’na’ and ’?’. In some
datasets, missing values may even be encoded as 0. We cannot take 0 as missing for every dataset.
Thus it would be better to detect the missing values in an interactive manner. To be more specific,
apart from the most common missing characters such as ’na’, we ask the user whether to add any
other specific value to be identified as missing every time before the detection. We show this
process in Figure 4.9.

Figure 4.9: Detect missing values in an interactive manner

The missing information of the number of missing values in each feature and the records
containing missing values will be shown as in Figure 4.10.
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Figure 4.10: Information of missing data

This kind of information seems a bit rough and not that helpful for users to understand the
data. In the next section, we will introduce some visualizations which present the missing data in
a more fancy way and able to assist users in understanding the data adequately.

4.2.2 Identify Missing Mechanisms

We already know that there are three types of missing mechanisms: MCAR, MAR and MNAR.
Unfortunately, the MNAR assumption is not testable since the information that is needed for such
a test is missing. We may have reasons to suspect that the probability of missingness depends on
the values that are missing, for example, people with high incomes may be less likely to report
their incomes. But nothing in the data will tell you whether this is the case or not [5]. For MCAR
and MAR, we can detect whether there is some correlation of a value being missed in a feature
and the value of any other of the features. And if there is, we inform the user that the missing
mechanism is possibly MAR, otherwise MCAR. For the record, the test result is not definite. Even
if we do not find any correlation between two features, it is still possible to be MAR since a value
may be missing as a function of many other features. We only provide information and the user
has to make the decision, as shown in Figure 4.11.

Figure 4.11: User chooses the missing mechanism
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Compute Missing Correlation

To help users make the decision, we first detect whether there is some missing dependency between
the features. For this purpose, we compute the Pearson correlation coefficient (PCC) [70]. PCC
is a measure of the linear correlation between two variables. We denote the occurrence of the
missing values as 1 and absence as 0, then each pair of features can be represented by a series
of coordinates as shown in Figure 4.12 (coordinates: (0, 0), (0, 1), (1, 0), (1, 1) ). If there is a
missing dependency between these two features, then (0, 0) and (1, 1) should be frequently appear
and a linear correlation will be detected.

Figure 4.12: Occurrence of missing values denoted as 1, otherwise 0

The PCC is defined as follows:

ρX,Y =
cov(X,Y )

σXσY
where:

· cov is the covariance

· σX is the standard deviation of X

· σY is the standard deviation of Y

This correlation is symmetric, i.e., ρX,Y = ρY,X , since cov(X,Y ) = cov(Y,X). The higher the
correlation, the stronger the missing dependency. When the PCC between two features is higher
than 0.8, the tool will prompt the user that the missing mechanism is probably MAR.

Visualize Missing Values

Another effort we made to help users understand the missing data is to present the missingness in
effective visualizations. We take advantage of a powerful missing data visualization library miss-
ingno [3]. We provide the following missing data visualizations: bar chart, matrix and heatmap.

Bar chart: Bar chart is the most basic visualization. It presents the missingness by showing
the number of observed records for each feature, as shown in Figure 4.13. Thus users can quickly
see which features contain missing values.
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Figure 4.13: Visualize missing data with bar chart

Matrix: Matrix basically does the same thing as bar chart. It shows the completeness of
a dataset by a density display. Compared with bar chart, matrix is more useful for identifying
the missing patterns. As an example, we compare the matrix of two datasets as shown in Figure
4.14(a) and Figure 4.14(b). We can clearly see that the missingness in Figure 4.14(a) is totally
random. On the other side, in Figure 4.14(a), it is apparent that there exists some missing
correlation in feature 11 to feature 16. Whenever one of them is missing, the others are always
missing as well. The matrix pattern can help users understand the data and give clues about the
missing mechanism. For example, Figure 4.14(b) tends to be MCAR while Figure 4.14(a) is more
probable to be MAR. Besides, the sparkline at right summarizes the general shape of the data
completeness and points out the maximum and minimum rows.

(a) Matrix: no obvious feature dependency (b) Matrix: significant feature dependency

Figure 4.14: Visualize missing data with matrix

Heatmap: Heatmap is specially aimed at visualizing the missing correlation between two
features both containing missing values: how strongly the presence or absence of one variable
affects the presence of another. The missing correlation is computed by the Pearson Correlation
Coefficient (PCC) as we discussed previously. Since PCC is symmetric, the heatmap is symmetric
too. The correlation ranges from -1 to 1. When correlation is -1, it means if one variable appears
(not missing) the other definitely does not. When correlation is 0, the presence or absence of one
variable has no effect on the other. If correlation is 1, then as long as one variable appears the
other definitely also does. Features without missing values will be neglected in this heatmap.
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Figure 4.15: Visualize missing data with heatmap

The visualizations are aimed to help users understand data better such that users can infer
the missing mechanism by themselves. The missing mechanism decides how the tool recommends
the missing cleaning approach.

4.2.3 Clean Missing Values

Drop Redundant Information

After detecting the missing values in the dataset, sometimes we may observe that the values of
some records or feature are largely missing. In this situation, these features or records do not
provide any information for training the machine learning model. Hence, before choosing the
specific approach to deal with the missing values, we first preprocess the dataset to remove the
useless information. We directly drop the empty records as they are meaningless. For the features
with a substantial proportion of missing values, we detect them and report them to the users.
The reason we do not delete them directly is that sometimes these features may be important and
have a significant effect on the result of classification.

Candidate Approaches for Each Missing Mechanism

The various approaches may be confusing to a non-expert user. Consequently, it is important that
the tool can recommend the optimal approach to the user. Different approaches are suitable for
different missing mechanisms. In this thesis, the following approaches are considered: list deletion,
mean, mode, k nearest neighbor, matrix factorization, and multiple imputation. We implement
these approaches using scikit learn and fancyimpute [4]. Based on the literature study in Section
3.3, we summarize the candidate approaches for each mechanism as follows:

• MCAR: list deletion, mean, mode, k nearest neighbor, matrix factorization, multiple im-
putation.

• MAR: k nearest neighbor, matrix factorization, multiple imputation.

• MNAR: multiple imputation

MCAR: MCAR is not usually the case, but if MCAR is a reasonable assumption, then there
are a lot of convenient methods for handling missing data. All the methods provided in this thesis
can be considered. For the list deletion approach, we further detect the missing percentage. We
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will only recommend the list deletion if the missing percentage is very low. If there are too many
records containing missing values, list deletion should be avoided. Otherwise too much information
would be dropped.

MAR: Most research papers assume MAR. In this case, there are strong correlations between
features. Consequently, statistical methods mean and mode should not be used since they are just
making up data without considering the feature dependency.

MNAR: MNAR is the most difficult case to handle. Technically speaking, data should be
cleaned manually using deductive methods in this case. As an example, if we observed that
someone has two children in year 2014, NA children in year 2015, and two children in year 2016,
we can probably impute that they have two children in 2015. This deductive imputation normally
requires context. However, since we are trying to automate the cleaning process, we take the
multiple imputation as the only candidate because it can still achieve a decent performance even
in MNAR [47].

Recommend the Approach

To recommend an approach, we first have to predict the performance of the candidate approaches.
Strictly speaking, the performance of an imputation approach should be computed by comparing
the imputed values and the ground truth. However, acquiring the ground truth of missing values is
not realistic in practice. Moreover, it is difficult to find that many real datasets with different types
of missing mechanisms. Most papers evaluate the imputation methods by applying a classifier
after the data has been completed to see if the classifier performance has been improved [59]. List
deletion usually produces better performance than imputation methods in this kind of evaluation
[59]. Consider the extreme case that a dataset only has one record that does not contain missing
values, after list deletion, only one record remains. And there is no need to perform classification
at this point. Apparently it is not reasonable. Hence list deletion are not considered in this case.

To predict the performance of imputation methods, our approach is to apply some simple
classifiers after the imputation and compute mean accuracy as the score of the approach. The
following simple classifiers are used:

• Naive Bayes Learner: Naive Bayes Learner is a probabilistic classifier, based on Bayes’
Theorem:

p(X|Y ) =
p(Y |X) · p(X)

p(Y )

where p(X) is the prior probability and p(X|Y ) is the posterior probability. It is called
naive, because it assumes independence of all attributes to each other.

• Linear Discriminant Learner: Linear Discriminant Learner is a type of discriminant ana-
lysis, which is understood as the grouping and separation of categories according to specific
features. Linear discriminant is basically finding a linear combination of features that sep-
arates the classes best. The resulting separation model is a line, a plane, or a hyperplane,
depending on the number of features combined.

• One Nearest Neighbor Learner: One Nearest Neighbor learner is a classifier based on
instance-based learning, which means instead of performing explicit generalization, it com-
pares new problem instances with instances already seen in training. A test point is assigned
to the class of the nearest point within the training set.

• Decision Node Learner: Decision Node Learner is a classifier based on the information gain
of attributes. The information gain indicates how informative an attribute is with respect to
the classification task using its entropy. The higher the variability of the attribute values, the
higher its information gain. This learner selects the attribute with the highest information
gain. Then, it creates a single node decision tree consisting of the chosen attribute as a split
node.
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• Randomly Chosen Node Learner: Randomly Chosen Node Learner is a classifier that results
also in a single decision node, based on a randomly chosen attribute.

These simple learners are often used to compute landmarking meta-features for describing a data-
set, which we will discuss in the outlier detection section later.

Instead of cleaning data with the approach with the highest score, we show the scores of each
candidate approach and recommend the approach with the highest score to the user. The user
can decide whether to adopt the recommendation or apply other approaches. Figure 4.16 shows
the interactive process of cleaning missing values.

Figure 4.16: Clean missing data interactively

4.3 Automatic Outlier Detection

One-dimensional outliers can be detected through standard deviation easily. While for multi-
dimensional outliers, there are more available approaches. As we discussed in Section 3.4, isolation
forest (iForest), local outlier factor (LOF) and one class support vector machine (OCSVM) are
all feasible algorithms. However, the performance of these algorithms may vary a lot on different
datasets, and there is no algorithm uniformly better than all the others. Consequently, it is
difficult for a non-expert to decide which algorithm to use. Our strategy is to leverage the idea
of meta-learning [53, 21] which is a technique for predicting the performance of an algorithms
on a given dataset. For a new dataset, we first describe it by meta-features. Next we apply the
trained meta-learner to recommend the optimal outlier detection algorithm for the given dataset.
Then we detect outliers and report them to the user. Finally we ask the user whether to drop the
outliers. The workflow is described in Figure 4.17.

In this section, we first explain how meta-learning works for outlier detection. After that
we describe the benchmarking of outlier detection algorithms and present the results. Then we
demonstrate how we train the recommendation model. Finally, we illustrate how we present the
outliers to users.
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Figure 4.17: Workflow of outlier detection

4.3.1 Meta-learning for Outlier Detection

Experiment Design

Meta-learning aims to find the relationships between dataset characteristics and algorithms [53].
In meta-learning, datasets are described as meta-features. These meta-features along with the
performance of the target algorithm form a training record which will be used to train the meta-
learning model. This process is described in Figure 4.18.

Figure 4.18: Meta-learning for predicting the performance of an algorithm on a given dataset

As we can see, the target algorithm is performed on each training dataset and the performance
metric accuracy is computed. Then each pair of meta-features and the accuracy is treated as a
training record, and a regression learner is trained on these records. Hence, when a new dataset
comes, we only have to compute the meta-features of this new dataset and use the trained regres-
sion learner to predict the accuracy of the target algorithm on this dataset. Thus in our case, we
can predict the performance of iForest, LOF and OCSVM on the new dataset respectively and
then recommend the outlier detection algorithm with the best performance to the user. However,
it is noticeable that the predicted performance may not be that accurate and these biases add
together may weaken the best algorithm prediction badly. Consider that the true score of iForest,
LOF and OCSVM on a random dataset is 0.4, 0.5 and 0.6 respectively and the best algorithm
is OCSVM in this case. While the predicted score is 0.52, 0.45 and 0.5, in which case the pre-
dicted best algorithm is iForest. As we can see, although the predicted score are all close to their
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true score, these small biases together may lead to the worst algorithm. Besides, this method is
not robust either, once the prediction of one algorithm has a big bias, the prediction of the best
algorithm will be considerably affected.

In fact, we do not really need to know the performance of each outlier detection algorithm
on the new dataset. We only care about which algorithm is the optimal. Hence, we made a
improvement on the current design. We first evaluate all the candidate algorithms on the training
datasets. Then instead of pairing the meta-features and the performance to get three regression
learners (iForest, LOF, OCSVM), we pair the meta-features with the optimal algorithm, as shown
in Figure 4.19. After that we train a classifier which can predict the best algorithm for a given
dataset directly.

Figure 4.19: Meta-learning for predicting the optimal outlier detection algorithm on a given dataset

Metric Selection

It is essential to evaluate the outlier detection algorithms with the proper performance metric.
We should be aware that datasets are usually imbalanced since outliers only take a small part.
Consequently, the metric accuracy should not be used. Before determining the metric, we first
review the terms in binary classification and explain the meanings in the outlier detection context.

• True Positive (TP): Outliers predicted as outliers.

• False Positive (FP): Normal data predicted as outliers.

• False Negative (FN): Outliers predicted as normal data.

• True Negative (TN): Normal data predicted as normal data.

• Precision: Precision is used when the goal is to limit FPs. In our case, precision represents
the ratio of correctly predicted outliers to the total predicted outliers.

Precision =
TP

TP + FP

• Recall: Recall is used when the goal is to limit FNs. In our case, recall represents the ratio
of correctly predicted outliers to all the actual outliers.

Recall =
TP

TP + FN

Apparently we want the precision and recall both to be high, hence we finally take f1-score as the
metric.

F1 = 2 · Precision ·Recall
Precision+Recall

F1-score trades off precision and recall and is robust when the data are imbalanced.
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Meta-features selection

Most meta-learning systems are aimed for the classification task, thus most of the proposed meta-
features describe datasets with known class labels [21].Meta-features can be divided into several
categories [10]:

• Simple: Simple meta-features are easily accessible from the given dataset, such as number
of attributes, number of classes and dataset dimensionality.

• Statistical: Dataset characteristics are computed by statistical approaches such as linear
correlation coefficient, skewness, kurtosis and standard deviation.

• Information theoretic: These meta-features class label and entropy measures of attributes
such as normalize attribute entropy and mutual information and signal to noise ratio.

• Model based: Model based meta-features are based on the assumption that data can be
modeled in a decision tree structure. Different properties of this tree are used as meta-
features such as number of leaves, number of nodes and node per attribute.

• Landmarking: Landmarking meta-features are computed by simple and significant machine
learning algorithms. They include one nearest neighbor learner, decision node, naive bayes,
linear discriminant, worst node and random node.

There are so many meta-features, and obviously, we cannot use all of them. We need to
select out the effective meta-features with less computational cost. Feuer et al. [53] empirically
evaluated all these five categories of meta-features and found that landmarking meta-features can
achieve nearly the same performance with using all the meta-features above, but with times less
computational effort. Therefore, we adopt the accuracy of the following five simple learners along
with their running time to describe the datasets: one nearest neighbor, decision node, naive
bayes, linear discriminant and random node. We already described them in Section 4.2.3.

Moreover, remember that we are evaluating the unsupervised learning algorithms iForest, LOF,
OCSVM (the dataset represents a supervised classification problem but which data are outliers
are unknown), we add three clustering metrics of the unsupervised learning algorithm K-means as
meta-features to describe the dataset: Silhouette Coefficient, Calinski-Harabaz Index and Davies-
Bouldin Index. We select these three clustering metrics because they do not need the ground truth
of outliers. Other clustering metrics such as purity and mutual information based score require
the ground truth, while we do not have advanced knowledge of which are the outliers in a new
dataset. We further describe the three metrics next.

Silhouette Coefficient [54]: A higher Silhouette Coefficient score relates to a model with
better defined clusters. Silhouette Coefficient is defined for each sample and is composed of two
scores:

• a: The mean distance between a sample and all other points in the same class.

• b: The mean distance between a sample and all other points in the next nearest cluster.

The Silhouette Coefficient s for a single sample is then given as:

s =
b− a

max(a, b)

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient
for each sample.

Calinski-Harabaz Index [38]: A higher Calinski-Harabaz score relates to a model with
better defined clusters. For k clusters, the Calinski-Harabaz score s is given as the ratio of the
between-clusters dispersion mean and the within-cluster dispersion:

s(k) =
Tr (Bk)

Tr (Wk)
× N − k

k − 1
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where N is the number of points in the data, Bk is the between group dispersion matrix and Wk

is the within-cluster dispersion matrix.
Davies-Bouldin Index [18]: A lower Davies-Bouldin index relates to a model with better

separation between the clusters. The index is defined as the average similarity between each cluster
Ci for i = 1, . . . , k and its most similar one Cj . In the context of this index, similarity is defined
as a measure Rij that trades off:

• si: the average distance between each point of cluster i and the centroid of that cluster.

• dij : the distance between cluster centroids i and j.

Then the Davies-Bouldin index is defined as:

DB =
1

k

∑
i = 1k max

i 6=j
Rij

The above are all the meta-features we are going to use to describe the dataset.

4.3.2 Benchmarking of Outlier Detection Algorithms

Now we have determined the metrics to evaluate algorithms and the meta-features to describe the
datasets, we can start the benchmarking of the outlier detection algorithms.

Benchmarking Datasets

It is not easy to find that many datasets with the ground truth of outliers for benchmarking.
Our solution is using the highly imbalanced datasets from OpenML and treat the minority class
as outliers. We select the highly imbalanced datasets by reference to ODDS (Outlier Detection
Datasets) which is a website recommending the datasets suitable for outlier detection. For each
benchmarking dataset, we map the minority class label to 1 (outlier) and the other classes to 0
(normal).

Benchmarking Setting

All the three outlier detection algorithms have an important parameter (iForest: contamination,
LOF: contamination, OCSVM: nu) which indicates the contamination of the outliers in the dataset
and this parameter has a great effect on f1-score, as can be seen in Figure 4.20.

Figure 4.20: The effect of parameter contamination on f1-score

The f1-score reaches the highest when the parameter contamination is set at the actual outlier
percentage. Hence, for the sake of fairness, we set this parameter as the actual contamination
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value during the evaluation. For a random unseen dataset, we do not know the outlier percentage
in advance. We will explain how to estimate the outlier percentage for a new dataset later.

Benchmarking Results

After the benchmarking, we get the meta-features for each dataset and corresponding f1-score of
each outlier detection algorithm. We show a part of the results in Figure 4.21.

Figure 4.21: Part of benchmarking results

We briefly compare the three outlier detection algorithms. We compute the mean f1-score and
the count of being the optimal algorithm for each of them, and the results are summarized in
Table 4.2 and visualized in Figure 4.22.

Outlier Detection Algorithm iForest LOF OCSVM
Count of being the optimal algorithm 27 13 2
Mean f1-score 0.843 0.818 0.741

Table 4.2: Comparison between iForest, LOF and OCSVM

(a) Mean f1-score (b) Count of being the optimal algorithm

Figure 4.22: Comparison between iForest, LOF and OCSVM

As we can see, even though their mean f1-scores are very close, the count of being the optimal
varies a lot. IForest performs mostly better than the other two algorithms. OCSVM, however,
only performs best 2 of 32 datasets. Considering that the datasets are collected randomly, we
conclude that iForest generally performs best.

Moreover, we also wonder which meta-features contribute more useful information. Hence we
build the random forest model and compute the important features which are shown in Figure
4.23. It can be seen that naive bayes times has the highest importance. The time of running a
machine learning algorithm is related to many factors such as the number of instances, number
of features and dataset complexity. Moreover, we can observe that the three clustering metrics
(Silhouette Coefficient, Calinski-Harabaz Index and Davies-Bouldin Index) rank second, third and
fifth, which are higher than most other meta-features. They are indeed informative as we expected.
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Figure 4.23: Important meta-features

4.3.3 Recommendation Model

With the benchmarking results, we can now train the meta-learners (classifiers) to recommend
the optimal outlier detection algorithm based on the meta-features of the dataset. The following
meta-learners are considered:

• Random forest: Random forests creates decision trees on randomly selected data samples,
gets prediction from each tree and selects the best solution by means of voting. It can also
compute the feature importance as we saw previously.

• Support vector machine (SVM): Support vector machine aims to find hyperplane that sep-
arates the examples of each class. When dealing with a non-linear classification, SVM can
create a non-linear boundary by projecting data to the high-dimensional space using what
is called the kernel trick.

• K nearest neighbor: The principle behind k nearest neighbor methods is to find k training
samples closest in distance to the new point, and predict the label from these samples.

We tune the hyperparameters of these meta-learners by the grid search and save the model
with the best score. We summarize the best performance of these three meta-learners in Table
4.3.

Meta-learner Accuracy
Random Forest 0.718
Support Vector Machine 0.656
K Nearest Neighbor 0.687

Table 4.3: Meta-learner best performance

We can see that the random forest has the highest performance, hence we save the learned
random forest model as our recommendation model. Now, for an unseen raw dataset, we can
compute the meta-features of this dataset and predict the optimal outlier detection algorithm
using our recommendation model. The recommended approach can be used to identify multi-
dimensional outliers. There still remains one problem, we do not know the outlier percentage
of this new dataset. Our strategy is to estimate the outlier percentage through the results of
one-dimensional outlier detection. We estimate the outlier percentage by the ratio of the number
of records containing one-dimensional outliers and the number of records.

We recommend the optimal algorithm to the user and user can decide whether to adopt these
approach, as shown in Figure 4.24.
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Figure 4.24: User chooses the outlier detection algorithm

We then apply the algorithm decided by the user to detect the outliers. As outliers are not
equal to bad data, we ask the user whether to drop outliers or not.

4.3.4 Visualize Outliers

We present the outliers to users in multiple visualizations.

Box Plot: The one-dimensional outliers are presented to users by box plot, as shown in Figure
4.25. The outliers are represented by the black dots outside the box. The distribution of data is
clearly shown.

Figure 4.25: Visualize one-dimensional outliers by box plot

Styled DataFrame: The visualization of multi-dimensional outliers is a bit more tricky since
we are visualizing high-dimensional data. Our first solution is the styled Pandas DataFrame, as
shown in Figure 4.26. We compute the anomaly score of each record and concatenate it to the
original DataFrame. Then we rank the DataFrame by the anomaly score and combine it with
the heatmap. The red color indicates the anomaly score of each record. The redder, the more
anomaly. We also highlight the one-dimensional outliers in yellow as can be seen from Figure 4.26.
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Figure 4.26: Visualize outliers by styled DataFrame

Parallel Coordinates: As discussed in Section 3.5, parallel coordinates is a common way of
visualizing high-dimensional data. The outliers can be distinguished as they are isolated or with
different slopes than its neighbors. We also color the normal data and outliers respectively such
that they can be more easily distinguished.

Figure 4.27: Visualize outliers by parallel coordinates plot
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Scatter Plot and Bar Chart: The last visualization is by combining the scatter plot and
the bar chart. We select out two features most likely to have outliers and then plot them as shown
in Figure 4.28.

Figure 4.28: Visualize outliers by combination of scatter plot and bar chart

4.4 Other Capabilities

There are some other capabilities of this data cleaning tool but they are not the focus in this
thesis. Hence we briefly present them in this section.

4.4.1 Show Important Features

The tool computes the most important features of the given dataset using random forest and
present the 15 most useful features to the user, as shown in Figure 4.29.

Figure 4.29: Show important features
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4.4.2 Show Statistical Information

To help users gain a better understanding of the data distribution, statistical information are
presented as in Figure 4.30.

Figure 4.30: Show statistical information

4.4.3 Detect Duplicated Records

The tool is capable of detecting the duplicated records in the data and report them to users. Users
can decide whether to drop these duplicated records. Figure 4.31 shows this process.

Figure 4.31: Detect duplicated records

4.4.4 Unify Inconsistent Capitalization

Inconsistent capitalization of column names can also be detected and reported to users. Users can
decide whether to unify them or not. The capitalization can be unified to either upper case or
lower case, as shown in Figure 4.32.

Automatic Data Cleaning 49



CHAPTER 4. METHODOLOGIES AND RESULTS

Figure 4.32: Unify Inconsistent Capitalization
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Chapter 5

Conclusions

In this thesis, we automated the process of data cleaning. We investigated the common data
problems and the existing techniques to clean them. To support the study, a Python tool is
developed to identify the potential issues in the data and report results and recommendations to
the user. The tool is aimed for the machine learning field and the following aspects are meaningfully
automated: data type discovery, missing value handling, and outlier detection.

5.1 Contributions

As mentioned in Section 3.6, existing data cleaning tools normally have the following limitations:

• They may only provide simple and plain data cleaning approaches.

• They may focus on addressing a single data problem.

• User assistance is not provided for approach selection.

• Most of them are not aimed at machine learning tasks.

Our data cleaning tool makes an improvement on these aspects. Instead of addressing one
specific data issue, our tool covers a variety of data problems, including incorrect data types,
missing values, outliers, duplicated records, and inconsistent column names. Advanced approaches
are integrated such as the Bayesian method for discovering data types and multiple imputation
for handling missing values. For each data problem, our tool evaluates the available approaches
and recommends the optimal one based on the characteristics of the given dataset. The evaluation
of approaches takes the performance of classifiers into account such that better machine learning
models can be obtained after cleaning data. Besides, instead of cleaning the data problems, we
also present the data in various visualizations to help the user understand the data better. Users
can clean data smoothly with our tool. Moreover, our data cleaning tool is designed with a strong
connection to OpenML which is a platform where people can easily share data, experiments and
machine learning models. Users can easily inspect and clean the datasets from OpenML with the
dataset ID using our tool.

For automatic discovery of data types, we introduced the approach to discover statistical data
types which are more important for machine learning tasks. For automatic missing value handling,
we examined the state-of-the-art techniques and summarized the different situations each approach
can be applied according to the missing mechanism. For automatic outlier detection, we took
advantage of meta-learning to select the optimal algorithm effectively.

5.2 Future Work

Data cleaning is a quite general task and there are so many aspects we can focus on, for example,
the algorithm, the visualization or a specific data problem. Each aspect can be investigated
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individually as a project. Our data cleaning tool tries to cover as many data problems as possible,
and consequently, there leaves much room for improvement on many aspects. We make it more
specific next.

• Automatic Data Type Discovery: The tool can discover four statistical data types at
the current stage: real-valued, positive real-valued, category, and count. There are still two
types left out: ordinal and interval. The implemented Bayesian model can be extended by
adding the likelihood functions of ordinal and interval. Also, the Bayesian model can be
run at different settings of parameters, we can further automatically tune these parameters
according to the characteristic of the dataset.

• Automatic Missing Value Handling: For the missing value detection, we predict the
performance of an approach by evaluating it on some simple machine learning classifiers.
However, this does not guarantee that the recommended approach is also optimal for user’s
classifier. We can interactively ask the user to input their classifier and directly evaluate the
approaches on this user-specified classifier.

• Automatic Outlier Detection: We only considered iForest, LOF and OCSVM in our tool
and there are more available outlier detection algorithms. Besides, the datasets we used for
training our recommendation model is not really enough, and more datasets need to be used.
There are also more possibilities for selecting the meta-features to describe the dataset. A
further project can be performed to explore more meaningful meta-features for the outlier
detection task. Moreover, we can also let the users choose to run multiple techniques and
report all outliers detected by different techniques.

• Visualization: We provide various ways for users to visualize data while this may still be not
enough considering the data are complex and high-dimensional. An interactive visualization
is a better choice, the user can directly operate on the visualization to see what they want.

• Machine Learning Tasks: Our tool is limited to supervised classification while it can
be extended to more kinds of tasks such as clustering. In that case, the evaluation of
missing value imputation approaches should be adjusted to clustering algorithms such as
k-means and DBSCAN. In addition, meta-features to describe the datasets should avoid
using landmarkings which require the class label.
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Appendix A

Demo

This chapter shows how to clean a random dataset from OpenML using the automatic data
cleaning tool developed in this thesis.

A.1 Acquire Datasets from OpenML

The first step is to acquire the datasets from OpenML. The dataset ID can be found in the address
bar as shown in the red circle in Figure A.1. We need the dataset ID as the input of the automatic
data cleaning tool.

Figure A.1: Demo: get dataset ID on OpenML
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A.2 Auto Clean with Automatic Cleaning Tool

We take the dataset 51 heart-h as an example to show how to use the tool. The process is
quite simple as shown in the code below. We only have to input the dataset ID to the function
autoclean() and the cleaned data will be returned in DataFrame. During the automatic cleaning
process, the information of the dataset will be presented to the user and questions will be put
forward when it is necessary for the user to intervene.

A.2.1 Input dataset ID

import datac l ean as dc

# input openml datase t id
d f c l e a n e d = dc . autoc l ean (51)

A.2.2 Show important features

Figure A.2: Demo: show important features

A.2.3 Show statistical information

Figure A.3: Demo: show statistical information
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A.2.4 Automatic discovery of data types

Figure A.4: Demo: automatic discovery of data types

A.2.5 Detect duplicated rows

Figure A.5: Demo: detect duplicated rows

A.2.6 Detect inconsistent column names

Figure A.6: Demo: detect inconsistent column names
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A.2.7 Automatic missing value handling

Figure A.7: Demo: identify missing values

Figure A.8: Demo: show information of missing values
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Figure A.9: Demo: visualize missing values with matrix

Figure A.10: Demo: visualize missing values with bar chart

Figure A.11: Demo: visualize missing values with heatmap
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Figure A.12: Demo: clean missing values

A.2.8 Automatic Outlier Detection

Figure A.13: Demo: visualize outliers with box plot
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Figure A.14: Demo: visualize outliers with styled dataframe

Figure A.15: Demo: visualize outliers with scatter plot
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Figure A.16: Demo: visualize outliers with parallel coordinates plot

Figure A.17: Demo: drop outliers
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Appendix B

Datasets

B.1 Datasets Used in Automatic Discovery of Data Types

Table B.1 shows the datasets used for the evaluation of Bayesian method in Section 4.1. These
datasets are the twenty most-runs datasets with various features types. They can be acquired
from OpenML through the dataset ID.

OpenML Dataset ID Name Number of Features

31 credit-g 21
1464 blood-transfusion-service-center 5
334 monks-problems-2 7
50 tic-tac-toe 10
333 monks-problems-1 7
1494 qsar-biodeg 42
3 kr-vs-kp 37
1510 wdbc 31
1489 phoneme 6
37 diabetes 9
1479 hill-valley 101
1487 ozone-level-8hr 73
1063 kc2 22
1471 eeg-eye-state 15
1467 climate-model-simulation-crashes 21
1480 ilpd 11
1068 pc1 22
1492 one-hundred-plants-shape 65
1050 pc3 28
1462 banknote-authentication 5

Table B.1: Datasets used in automatic discovery of data types

B.2 Datasets Used in Automatic Outlier Detection

Table B.2 shows the datasets used in automatic outlier detection part. They are used for bench-
marking of outlier detection algorithms and training the recommendation model as described in
Section 4.3. These datasets have to be preprocessed by taking the minority class as outliers. All
these datasets can be acquired from OpenML though the dataset ID.
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OpenML Dataset ID Name Outlier Percentage(%)

10 lymph 4.1
214 glass 4.21
1510 wdbc 37.26
40910 speech 1.65
294 satellite image 31.64
185 baseball 9.33
39 ecoli 2.68
1489 phoneme 29.35
1216 click prediction small 16.84
1116 musk 15.41
31 credit g 30.0
37 diabetes 34.89
13 breast w 34.48
1464 blood transfusion service center 23.79
1565 heart 45.54
1017 arrhythmia 45.79
44 spambase 39.4
1063 kc2 20.49
1480 ilpd 28.64
1068 pc1 6.94
183 abalone 0.43
40536 speed dating 16.47
1560 cardiotocography 12.94
38 sick 6.12
179 adult 23.93
1053 jm1 19.35
312 scene 17.91
1467 climate model simulation crashes 8.52
772 quake 44.49
40597 yeast 0.34
40701 churn 14.14
40983 wilt 5.39
719 veteran 31.39
1054 mc2 32.3
11 balance scale 7.84
34 postoperative patient data 2.22
23 cmc 22.61
2 anneal 0.89
26 nursery 2.54
4134 bioresponse 45.77
1075 datatrieve 8.46
338 grub damage 31.61

Table B.2: Datasets used in automatic outlier detection
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