
 Eindhoven University of Technology

MASTER

GPU supported medical X-ray image simulation

Xu, X.

Award date:
2018

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/7fdc3b9e-617e-4ff0-8c9f-5f13db447de8

GPU Supported Medical X-ray Image
Simulation

Master Thesis

By

XIN XU

Department of Mathematics and Computer Science
EINDHOVEN UNIVERSITY OF TECHNOLOGY

OCTOBER 2018

ABSTRACT

Nowadays, X-ray imaging system plays an important role in the medical and health-care
chain, helping doctors diagnose and locate disease in organs and bones effectively. By
performing simulation of such system, especially the part of X-ray imaging physics, the

development of X-ray systems can be speeded up and X-ray systems can be tested and verified
virtually before they are actually built. The simulation of the X-ray system involves the ray
tracing of three-dimensional human body models (also known as phantoms). Currently, the
commonly used data model for phantoms is voxelized model. However, simulation of voxelized
phantoms is both time-consuming and cannot reach a satisfying image quality. Therefore, this
thesis will explore the possibility of a new data model, Non-Uniform Rational B-Spline(NURBS).

Two approaches related to the simulation of NURBS object are proposed. The first one is
X-ray tracking NURBS surface using ray tracing technique, employing Newton’s iteration as
the method to calculate intersection between ray and surface. The second approach is direct
mathematical projection of NURBS surface, which avoids intersection calculation for each ray
and directly approximates the value of each pixel. By comparison of these two approaches with
the voxelized model approach and the popular triangle meshed model approach, it turns out direct
mathematical projection of NURBS surface has a overall better performance (on a 9 megapixel
detector plane) and flexibility to adjust its accuracy to realize different spatial resolution for the
output X-ray image.

Thesis Committee:

Supervisor: Prof.dr. H. Corporaal, EE, ES, TU Eindhoven
In-company Supervisor: Dr.rer.nat. Klaus Juergen Engel, Philips Research
Committee Member: Dr.ir. A.T. Nelson, EE, ES, TU Eindhoven
Committee Member: Dr. M.A. Westenberg, CS, Algorithms&Visualization W&I, TU Eindhoven

i

ACKNOWLEDGEMENT

I would first like to thank my in-company supervisor Dr.rer.nat. Juergen Engel. Whenever I ran
into a trouble spot or had a question about my research or writing, he steered me in the right the
direction whenever he thought I needed it.

I would also like to thank Prof.dr. H. Corporaal who were involved in the whole process of
this thesis. With his participation and suggestion, the research is conducted as expected.

I would also like to thank Dr.ir. A.T. Nelson for providing me an opportunity to work in this
interesting field of research.

I would also like to thank Dr. Alberto Fazzi, department head of the image quality group at
Philips Healthcare Best, who provided the funding for my thesis and nice working conditions.

I would also like to acknowledge Dr. M.A. Westenberg as the second reader of this thesis, and
I am gratefully indebted to his very valuable comments on this thesis.

Finally, I must express my very profound gratitude to my parents for providing me with
unfailing support and continuous encouragement throughout my years of study and through the
process of researching and writing this thesis. This accomplishment would not have been possible
without them.

iii

TABLE OF CONTENTS

1 Introduction and problem statement 1
1.1 Problem statement . 2

1.2 Contributions of the thesis . 3

2 Background 5
2.1 X-ray system simulation . 5

2.1.1 X-ray systems . 5

2.1.2 Human phantom . 7

2.2 Phantom model representation . 8

2.2.1 Voxelized model . 8

2.2.2 Triangle meshed model . 9

2.2.3 NURBS model . 10

2.2.4 Model comparison . 11

2.3 NURBS basics . 12

2.4 Ray tracing . 14

2.4.1 Ray tracing for visible optics . 14

2.4.2 Ray tracing for X-ray . 15

2.5 Ray tracing NURBS . 15

2.5.1 Ray-patch intersection . 16

2.6 General-purpose GPU computing . 18

2.6.1 CUDA programming model . 19

2.6.2 Optimization with GPU . 20

2.7 Related Work . 20

3 Development 23
3.1 X-Ray tracking NURBS surface with Newton’s iteration 23

3.1.1 Introduction . 23

3.1.2 Initial guess finding . 25

3.1.3 Discussion . 26

3.2 Direct mathematical projection of NURBS surface 26

3.2.1 Introduction . 26

iv

TABLE OF CONTENTS

3.2.2 Pipeline . 28

3.2.3 Discussion . 30

4 Results 31
4.1 Experimental Setup . 31

4.1.1 Test platform . 31

4.1.2 Test scene . 32

4.2 Image Quality . 33

4.2.1 X-ray tracking voxelized model . 34

4.2.2 X-ray tracking triangle meshed model . 34

4.2.3 X-ray tracking NURBS surface with Newton’s iteration 37

4.2.4 Direct mathematical projection of NURBS surface 37

4.2.5 Evaluation . 40

4.3 Performance . 40

4.3.1 X-ray tracking voxelized model . 40

4.3.2 X-ray tracking triangle meshed model . 41

4.3.3 X-ray tracking NURBS surface with Newton’s iteration 42

4.3.4 Direct mathematical projection of NURBS surface CPU version 43

4.3.5 Direct mathematical projection of NURBS surface GPU version 46

4.3.6 Evaluation . 48

4.4 Discussion . 49

4.4.1 Image quality . 49

4.4.2 Performance . 49

5 Future work 51

6 Conclusion 53

Bibliography 55

v

C
H

A
P

T
E

R

1
INTRODUCTION AND PROBLEM STATEMENT

In the medical and health-care domain, X-ray imaging systems play an important role as a tool to

help doctors diagnose and locate diseases in organs and bones effectively. X-ray imaging refers to

the physical properties of X-rays to transmit a patient in straight lines and generate a projected

image of the three-dimensional mass density distribution of the human body on a detector plane.

Virtualization and simulation of such system, especially the part of X-ray imaging physics, speeds

up the development of X-ray systems and can virtually test and verify them before they are

actually built. For example, for the verification of the X-ray system, a testing of an intended

clinical workflow can be performed.

The simulation of the X-ray system involves determining intersection points between X-rays

with human body model (phantom), in particular with three-dimensionally shaped volumes

representing different parts and organs of the human body. Currently, the commonly used data

model to represent phantom is voxelized model. However, simulation of voxelized model is both

time-consuming and cannot reach a satisfying image quality. Fig.1.1 demonstrates an X-ray image

simulated from a voxelized phantom, showing significant image artifacts and taking around 3

seconds to render. Therefore, this thesis will explore the possibility of a new data model with the

usage of parallel hardware architecture (such as graphics processing unit).

1

CHAPTER 1. INTRODUCTION AND PROBLEM STATEMENT

FIGURE 1.1. The result X-ray image from simulating a voxelized human phantom.
When zooming in the region where the vessel stent is, some stripes appear and the
edge of object is not curved. After further zooming in, blocks that actually indicate
voxels show up and they are much larger than the image pixels aligned to the
spatial resolution of the simulated X-ray detector.

1.1 Problem statement

There are two main use cases with different problems to solve: First, enabling real-time simulation

speed, and second, realizing realistic image quality.

1. The projection image needs to be created in real-time for X-ray simulation
The speed of the simulation is essential and an interactive speed should be achieved. The

real-time simulation speed would be the highest priority requirement in the thesis. This

problem is related to the wish of providing a "realistic user experience" by simulation. For

example, a simulation user would like to see the changing of the viewing angle of the X-ray

system immediately in the image. A reduced spatial resolution might be an acceptable

compromise.

2. A highly realistic image simulation is required
There are two aspects that indicate the definition of "highly realistic image simulation".

The first is that rendered image should have a high spatial resolution. The second is that

the rendered object surfaces should be smooth and without artifacts. This use case is for

analysis of image quality. A resolution higher than the real-world detector resolution is

absolutely required (i.e. to enable the simulation of detector blurring effects). The loss of

"real-time" can be accepted as a compromise.

2

1.2. CONTRIBUTIONS OF THE THESIS

1.2 Contributions of the thesis

To tackle the problems, advantages and disadvantages of different data models that represent

the human body has been investigated. The choice of data models is decisive for the image quality

and the computation performance. Based on that, two types of data models (triangle-meshed

model and NURBS model) are selected and implemented according to literature. Experiments are

performed to compare and evaluate both data models from the perspectives of image quality and

computation performance. Graphic processing unit is applied to further accelerate computation

of the algorithms. A novel method which has a high computation efficiency and flexibility is

presented based on NURBS. Tests has been done to compare this method with other existing

approaches. The contributions of the thesis are listed below:

1. An existing algorithm that directly calculate intersections with NURBS using numerical

approach for X-ray physics has been applied.

2. A novel method called direct mathematical projection of NURBS surface is proposed, which

promises higher computation efficiency and better image quality.

3. An algorithm that tracks triangle-meshed models for X-ray physics is adapted from ray

tracing algorithm.

4. Comparison among voxelized model, triangles-meshed model and the novel method (direct

mathematical projection of NURBS surface) on image quality and performance has been

done. Results show that the new method achieves a better image quality unless the object

is represented by huge amount of triangles or voxels. It also verifies that the new approach

has better scalability with the detector size than simulation with voxelized model.

In Chapter 2, more background information such as the basics of NURBS is reviewed. In

Chapter 3, two approaches regarding development on NURBS are proposed. In Chapter 4, tests

are conducted for two proposed approaches and existing approaches. They are compared and

evaluated according to the test result. In Chapter 5, suggestions for future development and

improvement are given. Chapter 6 concludes this thesis by summing up important observations.

3

C
H

A
P

T
E

R

2
BACKGROUND

In this chapter the basic concepts and influential techniques in the field of ray tracing and NURBS

are introduced. Literature research has been done by reviewing related work. Additionally, the

advantages and disadvantages of those techniques are discussed, both from the perspective of

X-ray simulation and GPU computing.

2.1 X-ray system simulation

2.1.1 X-ray systems

X-ray imaging systems are an important part of the medical health-care chain. As an example,

Fig.2.1 shows a typical “C-arm” system used for medical diagnosis and interventional treatment.

The system got its name from the shape of a mechanical rotatable “C” with an X-ray source and

an X-ray sensitive image detector mounted at its ends, respectively.

The mechanical “C” can be highly flexible positioned around a patient lying on the table. The

“point-like” X-ray source can emit an X-ray beam directed towards the detector. The detector

itself is typically a digital version of a “photographic plate” having a size up to 40 cm x 40 cm.

5

CHAPTER 2. BACKGROUND

FIGURE 2.1. Philips Allura Xper FD20/20 biplane neuro X-ray system

In order to accelerate the development of such systems, it is necessary to test and verify them

virtually before actual construction, in especially the part of X-ray imaging physics. Its principle

is demonstrated in Fig.2.3. In contrast to an optical ray, an X-ray does not reflect and refract

upon a surface but transmit through all objects on its path. Due to the property of X-ray, optical

effects such as refraction and reflection are not considered. Instead, the X-ray attenuation is the

key concept in the simulation and the depth of each intersection on each ray is the essential

variable to generate a X-ray image. The intensity of an X-ray is reduced when its depth inside a

object becomes larger, known as X-ray attenuation. The definition of X-ray attenuation is shown

in Equation 2.1. By obtaining the information of depth, the various intensities of X-rays that

transmit through different types of objects can be transformed using Equation 2.1. The major

goal of the simulation algorithm in this thesis is to obtain a depth map (in projection geometry)

of the examined objects. In addition, Equ.2.2 shows the case when there are segments depth(i)

of multiple materials µ(i) (see Fig.2.2).

(2.1) Intensity= IntensityO × e−µ×depth

where IntensityO is the X-ray intensity emitted from a focal spot as detected without any object

present in the beam and µ is the linear attenuation coefficient depending on the material assigned

to the depth segment.

6

2.1. X-RAY SYSTEM SIMULATION

FIGURE 2.2. The situation when multiple objects overlapping each other in an X-ray
scene.

(2.2) Intensity= IntensityO∗ e−µ(1)∗depth(1)∗ e−µ(2)∗depth(2)∗ ...= IntensityO∗ e
∑

(−µ(i)∗depth(i))

(a)

(b)

FIGURE 2.3. (a) The setting up of an X-ray system. Objects lie between x-ray focal spot
and detector plane. (b) The expected output of this application. [x,y] represents the
coordinate of pixels on the detector plane. [depth] represents the distance from the
x-ray focal spot to the intersection of ray with respect to the object surface.

2.1.2 Human phantom

Human phantoms are the artificial models of human body commonly used for computerized

analysis in the field of health-care (Fig.2.4). As the evolution of computer technology, phantom

has developed to higher complexity, from representation by elementary geometrical shapes

like ellipsoids and cylinders to voxelized model, and currently represented by more advanced

7

CHAPTER 2. BACKGROUND

mathematics such as Non-uniform rational B-spline (NURBS) and triangle meshes. Human

phantoms have been developed to represent a wide range of humans, children and adults, male

and female. The requirement for the precision of human phantoms has also grown since they

are needed to perform test simulations of imaging systems and treatment procedures during the

development phase. A human phantom composed by free-form and naturally curved surfaces is

favored in almost all use cases.

Current X-ray simulation is commonly realized by rendering phantoms represented by

voxelized model, which is time-consuming, has image artifacts and additionally needs huge

memory to store its data. A ray tracing algorithm combined with NURBS human phantom can

hopefully reduce memory usage, increase performance and image quality (i.e. produce natural

and smooth object surfaces even in high resolution).

FIGURE 2.4. An example of human phantom scanned from patient[SW].

2.2 Phantom model representation

2.2.1 Voxelized model

A voxel is a unit of graphic information in 3D space that defined by a 3D coordinate and the

information (color, intensity) at that coordinate. Voxels are commonly used for representing the

output data of a Computed Tomography Scan (CT scan), Magnetic Resonance Imaging (MRI),

or Ultrasound. Voxels was selected as the data model for human phantom mainly because of

it is easy to be handled in software and almost all medical scans exports voxelized model data.

Voxelized model can contain a large amount of data that specifies every coordinate in the 3D

space (Fig.2.5), however adding up to a large amount memory at the same time. Data size of

surfaces represented by two dimensions scales quadratically to resolution while that of voxels

represented by three dimensions scales cubically to resolution. The other disadvantage is that

8

2.2. PHANTOM MODEL REPRESENTATION

everything in a voxelized model is blocky, because every voxel is actually a tiny cube. Therefore, it

is almost impossible for it to represent a free-form and curved model at a high spatial resolution.

FIGURE 2.5. A game character represented by voxels

2.2.2 Triangle meshed model

In the field of game rendering scenes, triangle mesh is commonly used thanks to its simplicity.

A triangle meshed object is a collection of triangles composed by several components (vertices,

edges, faces). The traditional way to visualize a model would first tessellate the curved surface

into triangle/triangle meshes in order to obtain a tight approximation of the surface. As shown in

Fig.2.6(right plot), tessellation is actually approximating the surface by filling small triangles.

The triangles generated by tessellation still occupy a large portion of memory when a high spatial

resolution is required. Besides, artifacts and cracks may result from errors in approximation

(Fig.2.7).

Triangle mesh is already a mature method and being widely used because of its flexibility

in expanding and appending more details. The gaming industry already provided efficient code

libraries for tracking. Additionally, the calculation with triangle is analytic and simple, with

no iterative approach required. On the other hand, dynamic scaling (i.e. zoom-in on-the-fly)

is difficult for triangle meshed scene because the fixed number of triangles indicates a fixed

resolution. When there are no sufficient number of triangles, objects’ surface would convert

original curvatures in edgy and tiled looking segments of planes.

9

CHAPTER 2. BACKGROUND

FIGURE 2.6. Sphere on the left is represented by NURBS, presenting free-form mathe-
matical surface. Sphere on the right is tessellated, presenting surface composed by
triangle segments.

FIGURE 2.7. Cracks appear when modeling the ground in the scene with Unreal 4 game
engine.

2.2.3 NURBS model

In the field of computer aided design (CAD), smooth free-form surfaces are commonly used to

represent complex industrial design models such as automobiles and air crafts[PT12]. Human

phantoms are also represented by them in the field of health care to obtain the highly precise

and free-form models[SW]. Non-uniform rational basis spline (NURBS) surface is favored due

to its compact representation and support for local control. With the upcoming of much higher

computation power and algorithmic experience in data segmentation, NURBS is becoming a

more promising option for its flexible usage of phantom. One of the advantages of NURBS is that

modifications with NURBS model can be implemented much more easily and independently on

spatial resolution. However, this is a complicated task for voxelized or triangle-meshed model.

For instance, visualizing the narrowing of vessels in different resolution requires voxelized or

triangle-meshed model apply changes constantly to all voxels/triangles. This is surely not a stable

usage of phantom data. On the other hand, it is flexible for NURBS to change particular objects

locally and combine them with the scene again.

10

2.2. PHANTOM MODEL REPRESENTATION

2.2.4 Model comparison

In terms of a free-form surface, the number of triangles that represents the surface influences

the error with the original shape. The error would be acceptable or even neglectable when

there are sufficient triangles representing an object. In the case of ray tracing, the efficiency of

representation by either NURBS or triangle mesh depends on the size of the image, the complexity

of the object, and the tolerated error. In general, NURBS can store the information of objects

more efficiently than triangle mesh, therefore lead to a smaller data size when comparable image

quality. NURBS can always represent free-form surface while triangle mesh needs sufficient

number of triangles to achieve it. The other advantage that NURBS has is its possibility of

dynamic scaling (varying spatial resolution on-the-fly). Nevertheless, the high mathematical and

computational complexity is a significant drawback that would lower the performance.

The artifact levels are reduced by using more triangles, while computational effort increases.

It is unknown for now which one is the more efficient representation given a certain level for

minimized artifact level and spatial resolution. The thesis will study the trade-off between those

two representations and determine if NURBS are worthy to represent human phantom with

expensive computation. Another possibility is combining the advantages of both approaches, to

be specific, using NURBS to dynamically create triangle meshes on-the-fly with optimal spatial

resolution. This method will overcome issues of static spatial resolution with triangle mesh and

computation complexity with NURBS, and theoretically provides the best performance. Fig.2.8

demonstrates the three discussed data models’ advantages and disadvantages from different

perspectives.

FIGURE 2.8. Comparison among three different data models on different aspects.

11

CHAPTER 2. BACKGROUND

2.3 NURBS basics

Implicit equation and parametric function are the two most common methods to represent curves

and surfaces in the field of geometric modeling. Parametric function is preferred to represent

free-form surfaces thanks to its intuitive geometrical properties[PT12]. the Non-Uniform Rational

B-Spline surface or NURBS surface is the most used type of parametric free-form surface.

A NURBS surface S(u,v) of degree p in u parameter direction and degree q in v parameter

direction defined in the parameter domain [a,b]× [c,d] is represented in 3D(x, y, z) space by the

following equation[PT12] Chapter 4:

(2.3) S(u,v)=
∑n

i=0
∑m

j=0 N p
i (u)Nq

j (v)wi, jCi, j∑n
i=0

∑m
j=0 N p

i (u)Nq
j (v)wi, j

where a ≤ u ≤ b, c ≤ v ≤ d, Ci, j ∈ R3 are control points and wi, j ∈ R are weights assigned to their

corresponding control points. The convex hull property is the most important property of the

NURBS surfaces, the entire NURBS surface is enclosed in the convex hull of its control mesh

formed by its (n+1)× (m+1) control points (Fig.2.9).

FIGURE 2.9. The original NURBS surface is on the right and its control mesh is shown
on the left.

Two knotvectors ([PT12] Chapter2.2) corresponding to u and v directions define the NURBS

surface as well:

(2.4)

r = n+ p+1; s = m+ q+1;

ui ≤ ui+1 for 0≤ i < r and vi ≤ vi+1 for 0≤ i < s;
−→u = {u0,u1, ...,ur}with ui = a for i ≤ p and ui = b for i ≥ r− p;
−→v = {v0,v1, ...,vs}with vi = c for i ≤ q and vi = d for i ≥ s− q;

where there are p+1 replicates of each of a and b respectively and q+1 replicates of each of

c and d respectively. Additionally, r = n+ p+1 and s = m+ q+1. All the elements in the knot

vectors are in an ascending sequence. Fig.2.10 shows the impact of different knot vectors on the

same set of control points of a NURBS curve.

12

2.3. NURBS BASICS

FIGURE 2.10. (a)The knot vector is {0, 0, 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 1, 1}. (b)The knot
vector is {0, 0, 0, 0.2, 0.2, 0.5, 0.8, 0.8, 1, 1, 1}. a produces smooth curve while b has
sharp corner visible.

N p
i (u) and Nq

j (v) are B-Spline basis functions of degree p and q, which are derived from

knot vectors using the Cox-de Boor Recurrence formula. Equation.2.5 demonstrates the Cox-de

Boor Recurrence formula for calculating Nk
i (u), which is similar to Nk

j (v). In the formula, k is

iteratively incremented from k = 0 to k = p or k = q. Furthermore mention that 0<=i<=r-p-1

(2.5)

Nk
i (u)=

1 if k = 0∩u ∈ [ui,ui+1)

0 if k = 0∩u ∉ [ui,ui+1)

ai(u) ·Nk−1
i (u)+ (1−ai+1(u)) ·Nk−1

i+1 (u) otherwise

where ai(u)=
0 if ui+k −ui = 0

u−ui
ui+k−ui

if ui+k −ui 6= 0

where ~u is the knot vector and [ui,ui+1) is the knot interval extracted from the knot vector. A

none zero degree basis function is the linear combination of its two lower degree basis functions,

and it is zero if u ∉ [ui,ui+p+1). This means that each control point Ci, j has local support on the

domain [ui,ui+p+1)× [v j,v j+q+1), moving the control points would not change the surface shape

globally.

The first-order derivatives of surface points are essential for Newton’s iteration (Section

2.4.1), and they are computed with the algorithm proposed by myself (See List.1) based on

Equation.2.6[PT12]. Despite the fact that [PT12] already provides general algorithm to calculate

derivatives of surface points of any order, it is complicated to be implemented and redundant

when only the first-order derivatives are required in Newton’s iteration.

(2.6) Nk
i (u)′ = k

ui+k −ui
Nk−1

i (u)− k
ui+k+1 −ui+1

Nk−1
i+1 (u)

13

CHAPTER 2. BACKGROUND

float3 SurfaceDerU(float u, float v, size_t index_object)
{
//initialize basis functions for u and v
float Nu[10];
float Nv[10];
//calculate basis functions for u and v
unsigned int uspan = FindSpan(number_points_n, degree_p, u, knot_u);
DerBasisFuns(uspan, u, degree_p, knot_u, Nu);
unsigned int vspan = FindSpan(number_points_m, degree_q, v, knot_v);
BasisFuns(vspan, v, degree_q, knot_v, Nv);
//iteratively sum up to 1st order derivative on u
unsigned int uind = uspan - degree_p;
float3 surface_der_u = optix::make_float3 (0);
for(int i = 0; i <= degree_q; i++)
{
unsigned int vind = vspan - degree_q + i;
for(int j = 0; j <= degree_p; j++)
{
surface_der_u=surface_der_u+Nv[i]*Nu[j]*control_points[(uind+j)*number_points_m+vind];
}
}
return(surface_der_u);
}

Listing 1: The function that calculates the first-order derivatives of surface points on u. The
calculation on v is similar.

2.4 Ray tracing

2.4.1 Ray tracing for visible optics

Since X-rays are related to visible light (both is physically described by electromagnetic radiation),

it is worth looking into the much more common usage of ray tracing for visible optical light

simulations. Ray tracing is a relatively simple algorithm, which can generate an image by tracing

the path of light from light sources and simulate visual effects when encountering objects in

between. By ray tracing, pixel values can be calculated directly from the model, through which

the memory usage is reduced and artifacts are avoided (Fig.2.12).

The principle of ray tracing is shown in Fig.2.11(a). The color of each pixel is determined by

shooting a primary ray from the camera passing the pixel and calculating the nearest intersection

with an object. If no object appears as an obstacle on the path of the ray, the color of the

corresponding pixel will be set to the default background color. If the ray intersects an object, the

color of the corresponding pixel will be calculated by spawning secondary rays. For a realistic

image, the simulation of interface physics (reflection and refraction) is mandatory.

14

2.5. RAY TRACING NURBS

2.4.2 Ray tracing for X-ray

Nevertheless, tracing X-rays is different from tracing common optical rays. First of all, an X-ray

will not spawn any secondary X-ray when encountering a surface. (X-ray scattering might occur

in the volume. However, its treatment is not part of this thesis due to its physical complexity.)

Instead, it transmits straight forward through the whole object (see Fig.2.11(b)). Therefore, X-ray

tracing does not generate any significant visual effects like reflection or refraction. The other

difference is that the information of depth is the key in X-ray tracing as discussed in X-ray system,

in which depth is the distance that a X-ray travels on its path inside an object. Eventually, the

depth list for each pixel in the detector plane will be used to generate a depth image. Equation.2.1

already shows the definition of X-ray attenuation and Equation.2.2 explain the case of multiple

overlapping objects, indicating that segment lengths (depths) along a straight trajectory are

needed.

(a) (b)

FIGURE 2.11. (a) The principle of ray tracing in optical world. (b) The X-ray tracking
in the X-ray world.

2.5 Ray tracing NURBS

Since ray tracing does not require extra information and preprocessing, NURBS surface can

be directly traced. However, NURBS represents free-form looking curved surfaces with direct

mathematical formulas and ray tracing would need a mathematical formula to find intersection

between ray and surface. It turns out that an inverse calculation of the formulas (i.e. a derivation

of the u and v from a given (x,y,z) point in space) is analytically not possible. With such math-

ematical complexity, the current approach is iterative via root finding. Using this method, the

rendered image can be visualized without any artifact (see Fig.2.12)., however requires a huge

computation power. This process can be speed up by two approaches: reducing the number of

ray-patch intersection calculation and optimizing calculation of intersection. Such two approaches

15

CHAPTER 2. BACKGROUND

together with acceleration data structure are discussed in the following sections.

FIGURE 2.12. A model of Volkswagen POLO from different viewing distances. The
details of the model remains perfectly curved due to direct ray tracing of NURBS.
This figure is retrieved from [AGM06] and [Val10].

2.5.1 Ray-patch intersection

The most important part of ray tracing NURBS surface is an intersection test between a ray and

the surface. For standard primitives like triangles and quadrilaterals, the intersection calculation

can be done analytically with low computational effort. However, for NURBS, the analytic formula

to solve the intersection calculation is too complicated to be implemented and the method for fast

intersection test is still open. The numerical method is discussed below:

Numerical method The approach is the numerical method to approximate the intersection

iteratively, also known as Newton’s iteration [PTVF96]. This method iteratively finds better ap-

proximation of the root of a non-linear function. For each subsequent iteration, the error between

the approximation and the actual root decreases quadratically (Fig.2.13) and the computation of

each iteration only depends on the previous one. The algorithm needs the function, its derivative

and an initial guess as the inputs (Equation 2.7). Moreover, a good initial guess that is close

enough to the actual root is extremely important for Newton’s iteration converging to the correct

solution.

(2.7) xn+1 = xn − f (xn)
f ′(xn)

16

2.5. RAY TRACING NURBS

FIGURE 2.13. In Newton’s iteration, approximation become closer to the actual root in
each subsequent iteration.

Error measurement in Newton’s iteration The idea of calculating of error function in

Newton’s iteration approach refers to [NSK90] as shown in Fig.2.14. The author devised that

every ray is represented as the intersection of two orthogonal planes. In each Newton’s iteration,

a candidate point is proposed by the algorithm. The error function of such point between the

actual root is calculated by summing the distances from the candidate points to both orthogonal

planes. Then, the error function will be used as the reference to calculate the candidate point for

the next iteration.

FIGURE 2.14. Figures retrieved from [EHS05]. (a) The ray is represented as the inter-
section of two orthogonal planes. (b) The topview along the X-ray trajectory. (c) The
error function of a candidate point is calculated by summing the distance towards
both planes.

17

CHAPTER 2. BACKGROUND

2.6 General-purpose GPU computing

The performance of graphics processing unit (GPU) has significantly grown during recent years.

Modern GPUs provide not only computation parallelism in multiple processing cores, but also

offer a considerable bandwidth, can be up to 600GB/s or more. A huge amount of GPU memory

(up to 12GB) together with such high bandwidth can provide a dramatic computation power[Nvi].

Fig.2.15 gives the performance trends of latest GPUs and CPUs. The main reason for fast

evolution of GPUs is that they are specially designed for highly parallel computation and has a

more simplified processing model than typical CPUs (Fig.2.16)

FIGURE 2.15. Performance trend of latest CPUs and GPUs[Rup]

FIGURE 2.16. GPU has a simplified processing model.

A GPU is especially suitable for applications that require the same set of operations for each

data point. With single instruction multiple data (SIMD) style, the requirement for flow control is

lower and the memory access latency can be hidden with calculations instead of big data caches.

A GPU can be programmed by using special programming language or API such as OpenGL,

18

2.6. GENERAL-PURPOSE GPU COMPUTING

DirectX, CUDA. CUDA are considered to be used in this thesis due to the wide range of GPUs it

supports and the functions it contains.

2.6.1 CUDA programming model

A GPU is built around an array of Streaming Multiprocessors (SMs). A multithreaded program

is partitioned into blocks of threads that execute independently from each other, so that a GPU

with more multiprocessors will automatically execute the program in less time than a GPU with

fewer multiprocessors.

The key of the CUDA parallel programming model is a hierarchy of thread groups that

are simply exposed to the programmer as a minimal set of language extensions. The hierarchy

provides fine-grained data parallelism and thread parallelism, nested within coarse-grained

data parallelism and task parallelism. They guide the programmer to partition the problem into

coarse sub-problems that can be solved independently in parallel by blocks of threads, and each

sub-problem into finer pieces that can be solved cooperatively in parallel by all threads within

the block.

Blocks are respectively organized into a one-dimensional, two-dimensional, or three-dimensional

grid of thread blocks (2.17(b)). The number of thread blocks in a grid is usually dictated by the

size of the data being processed or the number of processors in the system, which it can greatly

exceed.

(a) (b)

FIGURE 2.17. (a) A compiled CUDA program can execute on any number of multipro-
cessors, concurrently or sequentially base on schedule of blocks of threads. (b) The
hierarchy of grid, block and thread.

19

CHAPTER 2. BACKGROUND

2.6.2 Optimization with GPU

The ray tracing algorithm is perfectly suitable to be implemented on GPU because it can be fully

adapted with GPU parallelism. For example, the tracing of a beam consisting of rays from source

to each detector pixel, i.e. Nx ∗Ny rays, can be distributed on each core of GPU and executed by

parallel. Since there is not data dependency among rays’ tracing, this approach is already much

more effective than a CPU version.

2.7 Related Work

This section includes a literature review on topics which are not further used in the main part of

the thesis, but nevertheless are noted to get a better understanding. Those related works focus

on ray tracing algorithm and NURBS surface, and some of them include GPU usage.

State of the Art in Ray Tracing Animated Scenes[WMG+09] This paper is useful for

determining which acceleration data structure to be used although it is not applied in this

thesis. It discusses the general design decisions in ray tracing algorithms and their trade-offs

of acceleration data structures with different types of scenes (static or dynamic), however with

respective of surfaces composed of triangles. The general idea is compatible for NURBS.

Efficient Ray Tracing of Trimmed NURBS Surfaces[Efr05] The trade-off between per-

formance and image quality of the two root-finding approaches could be the reference of determi-

nation of the root finding method in my thesis. The author presents two influential methods to

find root of intersection between ray and rational Bezier surface: Bezier clipping and Newton’s

iteration. It proposes an efficient choice for termination criteria for Bezier clipping, which makes

the algorithm more intelligent. However, both of its approaches require pre-transformation from

NURBS to rational Bezier surface due to its faster evaluation routines. Hierarchical axis aligned

bounding boxes are used as bounding volume for acceleration data structure. Its test shows that

Newton’s iteration is faster than Bezier clipping, however is unacceptable for complex scenes

because it produces image artifacts.

Interactive Ray Tracing of NURBS Surfaces by Using SIMD Instructions and GPU
in Parallel[Abe05] This thesis discusses about the memory layout for SIMD and GPU use,

which could be useful for my GPU implementation. Its tests show that ray tracing a non-rational

variant is faster than ray tracing a rational one. Moreover, the author compared the results on

different PCs and different bounding box hierarchy creation strategies. This would be a nice

reference for us to choose how to construct acceleration data structure.

Ray Tracing NURBS Surfaces using CUDA[Val10] This thesis is the first one directly

ray tracing NURBS using CUDA, providing some effective techniques, among which measurement

of errors in Newton’s iteration is applied in my thesis. Instead of tracing rays sequentially, the

author traces a packet of rays each time to take the advantage of memory coherence among rays.

He also developed a CPU/GPU hybrid variant, which accelerating the primary intersection stage,

20

2.7. RELATED WORK

which is highly relevant to our topic. Tiling is applied as the technique for efficiently using GPU

memory by dividing images into evenly-sized rectangular pixel blocks, which can be taken as a

optimization technique for our GPU implementation. Results show that the version of CPU/GPU

hybrid by tracing packets of rays with cache has the best performance with primary rays in

low-complexity images.

Acceleration Data Structure Construction for Ray Tracing[Vin13] Construction of

acceleration data structures both on CPU and GPU is discussed in the paper, which is helpful for

future implementation of acceleration data structure in my topic. This is a thesis proposal that

specializes in acceleration data structure construction, however its follow-up thesis is not found.

It deeply discusses three most influential acceleration data structures: grid, kd-tree, bounding

volume hierarchy.

Interactive Rendering of NURBS Surfaces[CAPD14] A new approach to refine NURBS

surfaces is proposed in the paper despite the fact that refinement and subdivision is not applied

in my thesis. Intersections of smaller NURBS surfaces after refinement and subdivision can be

faster calculated. An interesting concept called KSQuad is introduced in this paper to replace

the knot refinement technique (NURBS surface are decomposed into rational Bezier patches)

as the partitioning technique for subdividing NURBS surface. KSQuad requires less memory

usage and can achieve interactive speed of deforming NURBS surface, which is suitable for GPU

implementation. It is valuable when partitioning NURBS is needed in our thesis.

Direct and Fast Ray Tracing of NURBS Surfaces[AGM06] Replacement of formulas

with SIMD instructions is helpful for implementation on CPU since only a limited number of

SIMD instructions are available in CUDA. The most inspiring point of this paper is that the

author has found out a way to rewrite the Cox-de Boor recursion formula2.5 into a more efficient

and memory-friendly form using SIMD instructions. The co-efficient in the formula are called

CBDItem which is dealt in the preprocessing stage.

Practical Ray Tracing of Trimmed NURBS Surfaces[MCFS00] Another subdivision

method is proposed in the paper to help Newton’s iteration converge faster, which is constructive

for future development. The author employs a flattening step to subdivide the control mesh such

that each knot span meets some flatness criteria, by which the Newton’s iteration can converge

swiftly. Additionally, their bounding volume hierarchy is built based on the newly refined control

mesh generated in the flattening step. Their implementation have achieved interactive frame

rates with scenes with moderate complexity.

Robust and Numerically Stable Bezier Clipping Method for Ray Tracing NURBS
Surfaces[EHS05] The alternative of Newton’s iteration called Bezier clipping is proposed here.

Part of the approach is deployed in the error measurement of Newton’s iteration in my thesis. The

author of this paper choose to transform NURBS into rational Bezier patches in the preprocessing

stage due to its faster evaluation routine. The Bezier clipping method is introduced to help speed

up the root finding of intersections. Rays are represented by intersection of two orthogonal planes

21

CHAPTER 2. BACKGROUND

and error can be easily calculated from that.

22

C
H

A
P

T
E

R

3
DEVELOPMENT

Two new methods regarding realization of X-ray simulation with NURBS object are proposed in

this chapter. The first method applies techniques related to ray tracing NURBS (discussed in

related work) for reference, realizing direct X-ray tracking NURBS object. However, it involves

a huge amount of computation for intersection calculation between each ray and the surface of

the object, due to the complexity of NURBS. The second method is a fully innovative approach

that reduces the amount of intersection calculations and achieves the flexibility to adjust image

quality. This approach is essentially an approximation of the original object by interpolation

among sampled surface points, which has two main procedures: projection and rendering. It can

effectively cooperate with GPU thanks to the high parallelism in the algorithm.

3.1 X-Ray tracking NURBS surface with Newton’s iteration

3.1.1 Introduction

As discussed in Section 2.5.1, even the equations of the rays from X-ray source to detector

and the mathematical definitions of the NURBS surface are known, no direct mathematical

approach (analytic formula) is available since 3rd-degree polynomials is not practically invertible.

Thus, the algorithmic approach (Newton’s iteration) is taken. In this section, the approach

using a conventional ray tracing technique combined with Newton’s iteration root finding is

proposed. Since the output image quality is vital in this thesis, the advantage of ray tracing that

produces realistic image quality is considered. However, the calculation of intersection between

ray and NURBS surface could be computationally expensive and become the bottleneck of the

entire application. After investigation, OptiX developed by Nvidia[Opt], a ray tracing framework

cooperating with Nvidia GPU, is used to avoid redundant coding.

23

CHAPTER 3. DEVELOPMENT

FIGURE 3.1. The pipeline of X-ray tracking algorithm using Newton’s iteration.

Virtually, ray generation program, intersection program, any-hit program and miss program

of OptiX framework[Opt] are deployed in our algorithm. For example, closest hit program is not

necessary since it is only effective when it comes to an optical application like a game engine.

Otherwise, finding the closest intersection is trivial. Programs and procedures for traversal are

not fully used because every provided NURBS object is represented by a whole NURBS patch. It

is only worthy to spend effort to take advantage of traversal acceleration when the intersection

calculation does not limit the performance. The pipeline of this approach is shown in Fig.3.1, in

which there are four steps.

The pipeline for the X-ray tracking algorithm is relatively simple: the ray generation program

is called to spawn a ray for each pixel of the detector plane, variables like ray direction and

camera setting are calculated.

Next, the intersection program is invoked to calculate the intersection between ray and

NURBS object. By applying Newton’s iteration root finding, an intersection is normally calculated

in at most three iterations. However, there must be an essential prerequisite: a reasonable initial

guess as the input for Newton’s iteration. The detail of how the initial guess is obtained is

described in the next section. The surface points are computed according to the algorithms in

[PT12] Chapter 2 including the knot span finding and basis function calculation.

If no intersection is found, the miss program is called to render the pixel with the background

depth. Otherwise, the any hit program is called to register the depth of the intersection (distance

between X-ray source and the intersection) into the depth list of the corresponding pixel. Fig.2.2

provides an example of overlapping objects, which is the reason why a depth list is necessary.

Such a pipeline is executed on GPU in parallelism for every pixel.

Eventually, after all pixels on the detector plane are rendered (all intersections’ depth are

registered into depth lists), a sorting algorithm is applied in order to generate an sorted depth

24

3.1. X-RAY TRACKING NURBS SURFACE WITH NEWTON’S ITERATION

map. The organized depth map includes every pixel’s depth list, and the depth in the list is sorted

in a ascending order, with a pointer to indicate which object the intersection is entering or exiting.

An simulated X-ray image can be generated with the sorted depth map using the existing X-ray

simulation software of Philips.

3.1.2 Initial guess finding

For Newton’s iteration method root finding, a reasonable initial guess is a must. The definition of

"reasonable" here is that the guess should have an acceptable error with actual root so that the

Newton’s iteration could converge. The error between the ray and the initial guess is measured

with the technique in [EHS05] and [Val10], representing a ray by two perpendicular planes and

calculating the distance of the initial guess and those two planes respectively (see Section 2.4.1).

Such error measurement is applied in the Newton’s iteration as well.

Currently, the initial guess is obtained by spatial-equally sampling 100*100 surface points on

the UV region and picking the least-error one. Fig.3.2 demonstrates a mesh composed of sampled

surface points that equally distributed in the UV parametric region. By sampling the points

on the mesh and calculating their errors to the ray, the point with least error will be used as

Newton’s iteration initial guess.

FIGURE 3.2. Sampling over the object surface to find out the initial guess. Red arrow
represents the ray and black dots represent the sampled surface points in the
region. The algorithm calculates the errors for all black dots, and use the red dot
(the least error one) as the initial guess for Newton’s iteration.

Nevertheless, even sampling 100*100 surface points still cannot provide a reliable guess. It

is mainly because of the complexity of the human body organs formed by the NURBS surfaces.

First, the function of NURBS surface is two-dimensional based on U and V. Second, the function

could be non-linear as shown in Fig.3.3 and it is almost impossible for Newton’s iteration to

converge to a root of a close-spaced local function where minimum and maximum locate close to

25

CHAPTER 3. DEVELOPMENT

each other. One solution would be increasing sampling density to obtain a more accurate initial

guess. This will definitely increase the workload of GPU and further lower the performance.

FIGURE 3.3. The figure on the left shows a normal linear function that Newton’s
iteration can easily converge in two or three iterations. The figure on the right
shows a possible non-linear function of NURBS surface. Even when the initial
guess is close to the actual root, the Newton’s iteration can hardly converge to it.

3.1.3 Discussion

This approach is highly restrained by initial guess finding. First, Newton’s iteration only sup-

ports single-root finding, which means it converges to only one intersection even when a ray

hits multiple objects. Therefore, a correct number of initial guesses exactly as the number of

intersections should be provided, in order to calculate all the intersections. Such a problem

makes the X-ray tracking even more complicated unless the NURBS object is partitioned into

patches to ensure only one intersection exists for a ray and a patch. Second, obtaining the initial

guess costs a large portion of computation power. [Val10] used the center of the bounding volume

from his acceleration data structure as the initial guess for Newtons’ iteration and provided a

decent accuracy. Such method will also require the algorithm to preprocess NURBS data such as

partition of objects and construction of a acceleration data structure. Due to limited time, the

version without adaption with preprocessing will be used for comparison with the other approach.

3.2 Direct mathematical projection of NURBS surface

3.2.1 Introduction

In this section, a new approach is discussed which is completely different with the previously

discussed methods regarding intersection calculation. The idea is to generate a depth map as a

mathematical projection directly on the detector plane for a single NURBS object, in which every

pixel contains a list of depth of intersections that a ray hits on its path.

26

3.2. DIRECT MATHEMATICAL PROJECTION OF NURBS SURFACE

The first step of such approach is sampling 2D points by sampling 3D surface points equally in

the object’s parametric region and projecting them onto the detector plane as 2D points (Fig.3.4),

e.g. 100*100 sampling density in the [0.0,1.0]× [0.0,1.0] UV region. Each projected 2D point

contains information of the depth of the sampled surface point.

FIGURE 3.4. Projection of 3D formula into 2D formula on the detector plane.

The second step is to generate a depth map for each detector pixel by interpolating the depth

of neighboring projected 2D points. Those points may irregularly and non-equidistantly distribute

on the detector plane even they are sampled equally in the object’s parametric region. Thus, for

each pixel, several projected points may be located around the center of it. And the depth of

this pixel is calculated by interpolating those neighboring projected 2D points. Fig.3.5 shows an

example of a 4*4 pixel-size plane, on which pixel centers resides inside the triangles formed by

neighboring projected 2D points. The other possibility is that multiple pixel centers reside in the

same triangle region depending on the sampling density and the detector plane size.

27

CHAPTER 3. DEVELOPMENT

FIGURE 3.5. Top view of interpolation that renders pixels’ value on a 4*4 pixel size
plane. Red triangles are centers of pixels and blue dots are projected points located
on the surface represented by blue curves. A mesh is constructed by connecting
projected points. The pixel will be rendered by interpolation if the center of it is
located inside of the triangle formed by neighboring projected points.

3.2.2 Pipeline

In this section, an execution pipeline for the X-ray tracking algorithm using direct mathematical

projection is proposed (see Fig.3.6). The setting of X-ray source and detector plane as well as the

parameters of NURBS object including knot vectors, control points, degrees are loaded before the

pipeline.

FIGURE 3.6. Overview of the algorithm stages and their relation to GPU.

A data structure called sampled_payload (see List.2) is responsible of carrying all the

necessary data of each sampled surface point through the pipeline and it is transferred to GPU

as well. Two essential parameters are contained in such a structure: pro jected_coordinate,

28

3.2. DIRECT MATHEMATICAL PROJECTION OF NURBS SURFACE

the coordinate of a sampled surface point projected on the detector plane; depth, the distance

between the X-ray source and the sampled surface point.

struct sampled_payload{
float3 projected_coordinate;
float depth;

}

Listing 2: Definition of sampled_payload struct.

The sampling program calculates the surface points in the object’s parametric region based

on the arbitrary sampling density, which further influences the rendering process. Here the

advantage of NURBS is taken: the sample density can be dynamically (on-the-fly) defined such

that the projected points can already get a suitable distance from each other on the detector plane.

The surface points are computed according to the algorithms in [PT12] Chapter 2 including the

knot span finding and basis function calculation.

The projection program is the key of such approach since it maps surface points onto the

detector plane based on sampling in the parametric region. An array of 2D projected points with

corresponding depth is generated from the projection program and then transferred to GPU.

The rendering program is regarded as the kernel of GPU execution which searches triangle

regions formed by three consecutive projected 2D points from the array, for instance array[i,j],

array[i+1,j], array[i,j+1], checking if there is any pixel center residing in such a region. If no, the

pixel will not be rendered. If yes, it will be rendered the interpolation value among those three

points’ depth and this intersection is added to a list of already calculated depths of other layers.

After all triangle regions from the array are searched and corresponding pixels are rendered,

an output array containing all pixels’ depth lists is transferred back to the output program. For

example (see Fig.3.7), 2D projected points predefined as P (i,j) corresponding to UV pairings

(ui,v j) are stored in an array and triangle is assigned to (i,j) by the points P (i,j), P (i-1, j) and P

(i, j+1). In the case of Fig.3.7, it is P (3,1), P (3,2) and P (4,1). For a detector plane of 18*12 pixels

size, there are three pixel centers that reside in the region. Eventually, they are rendered with

corresponding 2D projected points’ depth and the depth will be added into the depth list of each

pixel.

29

CHAPTER 3. DEVELOPMENT

FIGURE 3.7. An example of rendering program searching the triangle region formed by
three projected 2D points.

With the output array, the output program applies a sorting algorithm to generate an orga-

nized depth list for each pixel which indicates all intersections’ depth and whether an intersection

is entering an object or exiting an object.

3.2.3 Discussion

This approach is an approximation of the NURBS surface projected on the detector plane. The

sampling density of surface points directly influences the accuracy of the approximation, which

enables the approach to be flexible to adjust the image quality. The other advantage is that

the computation of intersection between ray and NURBS surface in a conventional ray tracing

approach is avoided, therefore the performance is highly increased. The bottleneck of the approach

could be the computation in the rendering program that checks whether pixel centers reside in

the triangle region. The sorting algorithm could be another potential bottleneck, because the

size of the depth list for each pixel must scales with the number of objects in the scene and

the complexity of the scene (objects overlapping randomly each other). The bottlenecks are not

issues with image quality but only with performance. In addition, memory usage would not be

the concern either for the rendering program or the sorting algorithm. The rendering program

only accesses three elements of the projected points every time. For the sorting algorithm, the

maximum number of objects in the depth list of each pixel could be 50, and the total memory

usage would not exceed 500MB.

30

C
H

A
P

T
E

R

4
RESULTS

In this chapter, the run-time performance and output image quality of the X-ray tracking

algorithm in different approaches will be tested and compared.

4.1 Experimental Setup

In the tests, two different approaches are investigated, namely X-ray tracking NURBS surface

with Newton’s iteration and direct mathematical projection of NURBS surface. The results will be

compared to the conventional X-ray simulation using voxelized model and the popular ray tracing

using triangle mesh. In total, there will be four different approaches to be tested. Experiments

using same scene setting and hardware configuration will be performed.

4.1.1 Test platform

The operation system for testing is Window 10 Enterprise 64bit with Microsoft Visual Studio

2017 as the IDE. Intel Xeon W-2125 Processor is used as the CPU and NVIDIA Quadro P5000 is

selected as the GPU for experiment due to its large amount of CUDA cores and memory. Table

4.1 shows more specifications of the GPU.

31

CHAPTER 4. RESULTS

Quadro P5000 Xeon W2125
Compute Capability 6.1 Cores 4
CUDA Cores 2560 Threads 8
Core Clock 1.73GHz Base frequency 4.00GHz
Memory 16GB Cache 8.25MB
Memory Bandwidth 288GB/s Memory Bandwidth 85.3GB/s
CUDA Driver 9.3
CUDA Toolkit 9.3

TABLE 4.1. The technical specifications of NVIDIA Quadro P5000 GPU and Intel Xeon
W-2125 Processor.

4.1.2 Test scene

The raw data of NURBS objects is provided by Duke University[SW], in which a heart model

(dias_pericardium.obj) and a human phantom (male_pt146.obj) are considered to be the test

objects. The test scene is composed of X-ray source, detector plane, and the test object. The

rotation and relocation of X-ray source and detector plane creates a different perspective of the

output image. Fig.4.1 and Fig.4.2 demonstrates the NURBS heart model and the NURBS human

phantom visualized in Rhino (a 3D modeler software[Rhi]) respectively. The NURBS degree of

both objects is three here. The triangle meshed model data is transformed from NURBS data via

Rhino. The specifications are shown in Table4.2, NURBS has much smaller data size to represent

the models compared voxels and triangles.

FIGURE 4.1. The heart model (dias_pericardium.obj) rendered with Rhino.

32

4.2. IMAGE QUALITY

FIGURE 4.2. The human phatom (male_pt146.obj) rendered with Rhino.

dias_pericardium (heart) male_pt146 (whole human body)
Number of NURBS patches 1 588
Number of triangles 288/780/2600 3974143
Number of voxels 200×200×200 (0.5mm) 267×1062×1767 (1mm)
NURBS data 44KB 61.79MB
Triangle meshed data 13KB/32KB/103KB 337MB
Voxel data 15.26MB 1.8GB

TABLE 4.2. The two test scene objects: dias_pericardium and male_pt146.

4.2 Image Quality

Currently, there are no standard X-ray images from the same NURBS objects as the reference.

Therefore, the image quality can not be quantified using methods such as image subtraction and

comparison of histogram. The artifact level of the output image remains to be the only option

now for analyzing image quality. The artifact level includes the occurrence of unsmoothness,

curvatures and blocky edges. Eye vision is applied in order to examine those artifacts, despite the

fact that different people might have different opinions regarding artifacts.

33

CHAPTER 4. RESULTS

4.2.1 X-ray tracking voxelized model

Since there is no voxelized model data of the heart model available, the test of image quality

is performed by simulating the region of the heart in a voxelized phantom as shown in Fig.4.3.

Each voxel has the volume of 0.5mm*0.5mm*0.5mm. After enlargement of the region of edges

and borders, blocky structures and stripe artifacts show up. The acceptable image quality can

be achieved only when there are sufficient voxels and their size is at least equal to the pixel

pitch (which ultimately is planned to be 50 µm) on the detector. Nevertheless, the enlargement of

specific region in the image still can reveal artifacts due to voxel’s property. The following tests

are performed in the case that detector size is 512*512 pixels.

FIGURE 4.3. The X-ray image simulated with voxelized model of 0.5mm. The region of
the heart is simulated from different phantom data. Blocky structure and stripe
artifact is obvious in the image.

4.2.2 X-ray tracking triangle meshed model

The algorithm that simulates triangle meshed object is written by myself, the resulting image

quality is promising while the performance should not be referred as the performance of the

standard algorithm in state of the art or in the market.

Fig.4.4 shows three variants of the heart model represented by different number of triangles

and Fig.4.5 shows their corresponding output depth images. The left image displays the depth

image of the model composed of 288 triangles, showing obvious curvatures as indicated in the

figure. Additionally, when viewing the image from a long distance, the unsmoothness of the

34

4.2. IMAGE QUALITY

surface can be noticed. After increasing the number of triangles to 780, the unsmoothness and

curvatures are hardly visible unless enlarge some specific region. Compared to 288 triangles

and 780 triangles, 2600 triangles present a satisfying image quality, with no unsmoothness and

curvatures even after zoom-in. Also to be mentioned, in all three images, there are several white

dots randomly appearing on the surface, which I believe is the artifact of my algorithm.

FIGURE 4.4. The heart model transformed from NURBS data, composed of different
number of triangles: 288 triangles (left), 780 triangles (middle), 2600 triangles
(right).

35

CHAPTER 4. RESULTS

FIGURE 4.5. The depth image simulated with the heart model represented by different
number of triangles: 288 triangles (top), 780 triangles (middle), 2600 triangles
(bottom).

36

4.2. IMAGE QUALITY

4.2.3 X-ray tracking NURBS surface with Newton’s iteration

The algorithm of X-ray tracking NURBS surface with Newton’s iteration cannot produce a depth

image due to the problems discussed in Section 3.1.3. Therefore, the algorithm is adapted to

generate an image that indicates whether there is intersection found for each pixel. Fig.4.6

shows the experiment result of tracking the heart model represented by one NURBS object

with Newton’s iteration to calculate the intersection. In the figure, the pixel rendered with red

indicates at least one intersection between the corresponding ray and the NURBS object is found

and calculated, while the pixel rendered with gray indicates no intersection is found for the

corresponding ray. There are severe artifacts (the surface of the object is not completely rendered)

due to the intersections that are not found in the process of Newton’s iteration. The image quality

of this approach is far from satisfactory.

FIGURE 4.6. The resulting image of X-ray tracking NURBS surface with Newton’s
iteration. Pixels that are rendered gray indicates no intersection is found between
rays and NURBS object, pixels that are rendered red indicates intersection is found.
The holes in the clippings are non-found intersections.

4.2.4 Direct mathematical projection of NURBS surface

Fig.4.7 demonstrates the three result depth images of the heart model represented by one NURBS

object with direct mathematical projection, each one of those is simulated with different sampling

density in the sampling program. Sampling density refers to the number of surface points that are

sampled and projected in the parametric region UV. The left image displays the depth image with

37

CHAPTER 4. RESULTS

sampling density of 20*20, image artifacts are barely visible when viewed from a long distance.

However, some curvatures of the surface can be noticed after enlargement. When increasing the

sampling density to 40*40 and 60*60, no image artifact is found even when enlargement and

the image quality is satisfying. Additionally, the image quality remains as such if the sampling

density is further increased. In the three depth images, a white dot appears at the left part of the

heart, which is identified as the pole (u = v = 1.0) of the NURBS patch. The definition of [PT12]

does not cover the pole, therefore resulting this non-existing pole in the image. This artifact can

be fixed by defining a special case for u = v = 1.0 in the algorithm.

38

4.2. IMAGE QUALITY

FIGURE 4.7. The depth image simulated with the heart model by setting different
sampling density: 20*20 (top), 40*40 (middle), 60*60 (bottom).

39

CHAPTER 4. RESULTS

4.2.5 Evaluation

According to the test results on image quality, X-ray tracking NURBS surface with Newton’s

iteration has the most significant image artifacts because of its difficulty to efficiently find

intersections. Simulation with voxelized model produces blocky structures and stripe artifacts

especially at the edge of objects. Simulation with triangle-meshed model and direct mathematical

projection both give some unsmoothness on the surface when the number of triangles/sampling

density is low. However, simulation with triangle-meshed model requires a great number of

triangles to achieve the comparable image quality as direct mathematical projection with a

medium sampling density. In general, direct mathematical projection presents the best image

quality when the triangle-meshed model has an average number of triangles.

4.3 Performance

The performances of different approaches are compared based on the usage of CPU and GPU. To

be noted, X-ray tracking NURBS surface with Newton’s iteration has only GPU version since

it used Nvidia OptiX framework at the beginning. And the algorithm that simulates triangle-

meshed object is written by myself, the resulting image quality is reliable while the performance

should not be referred as the performance of the standard algorithm in state of the art or in the

market. The following tests are performed with the heart model in the case that the detector size

of 512*512 pixels with 0.2mm pixel pitch. Only direct mathematical projection of NURBS surface

would be tested with the human phantom.

4.3.1 X-ray tracking voxelized model

The simulation of voxelized model is already developed and optimized on CPU. The performance

of simulating a full human voxelized phantom of 1mm is measured with different pixel numbers

as shown in Fig.4.8. The execution to render the X-ray image on a 1024*1024 pixel detector takes

around 0.65 second. However, with the linear scalability, the simulation time would reach 6.5

seconds when rendering a image on a 3000*3000 pixel detector by estimation. The calculation

time for Fig.4.3 takes 2.6 seconds considering the shrinking size of voxels. As compared to the

0.21 seconds calculation time for 5122 pixels in Fig.4.8, this is roughly a factor of 12 slower,

however also the voxel size is a factor of 2 smaller, 0.5mm to be specific. And voxel size of factor

2 means voxels number of factor 8. What’s more, the performance scales dependently on the

viewing angle (due to memory access effects), and the phantom inner structure complexity.

40

4.3. PERFORMANCE

FIGURE 4.8. The performance measurement of simulation with voxelized phantom of
1mm, which scales withe the number of pixels on the detector.

4.3.2 X-ray tracking triangle meshed model

The algorithm to simulate triangle meshes model is adapted from a standard ray tracing algo-

rithm by calculating all intersections on a ray instead of the nearest intersection. No further

optimization technique is applied to improve the performance except porting onto GPU. The GPU

simply makes each thread to track a ray corresponding to each pixel. Figure.4.9 demonstrates the

performance of X-ray tracking triangle meshed heart model (dias_pericardium.obj) represented

by different number of triangles. The detector size is set as 512*512 with 0.2mm pixel pitch. From

the figure, we can tell the performance of X-ray tracking voxelized model has linear scalability

with the number of triangles representing the object.

41

CHAPTER 4. RESULTS

FIGURE 4.9. The performance simulated with the heart model represented by different
trianlge numbers: 180, 288, 780, 2600 respectively.

4.3.3 X-ray tracking NURBS surface with Newton’s iteration

Since Nvidia OptiX does not provide any library or tool for low-level profiling yet, the time

measurement of specific function can only be realized by the following code (List.3):

clock_t start_time = clock ();
//function to be measured
clock_t stop_time = clock ();
int time = (int) (stop_time - start_time);
rtPrintf ("time in func: \%f\n", time / clockRate);

Listing 3: The code that shows the time measurement of function inside of an OptiX kernel. The
clock rate refers to the GPU core clock in Table.4.1.

The performance of X-ray tracking NURBS surface with Newton’s iteration simulating the

NURBS heart model is 5217.97ms on average. Furthermore, profiling over single GPU kernel

would provide extra information on how the initial guess finding performs in the approach.

Fig.4.10 shows the average time consumption of kernel with low and high workload. Both

indicates that the initial guess finding occupies a huge portion of the entire kernel execution

time, approximately 99%. The figure verifies that the initial guess finding is the biggest difficulty

when implementing Newton’s iteration approach. It also shows that the converge of Newton’s

iteration takes only 1.5ms approximately to finish or terminate. This method provides at least a

42

4.3. PERFORMANCE

minimum required processing performance, so a full generation of (multiple) intersections list

should be a multiple of the measured calculation time.

FIGURE 4.10. The profiling of the initial guess finding function in each GPU kernel.

4.3.4 Direct mathematical projection of NURBS surface CPU version

Direct mathematical projection of NURBS surface as the newly proposed method in this thesis

are tested from different aspects to show its advantages and disadvantages. Profiling is done as

well in order to show the bottleneck of this approach. The testing focuses on the CPU version.

Performance
The performance of direct mathematical projection of NURBS surface is tested with both test

objects, dias_pericardium.obj (heart) and male_pt146.obj (whole human body) respectively. The

test setting with human body model is different because it is huge in the simulation 3D space

compared to the heart model. Normally, the length of a detector in the real life would not exceed

40cm. Nevertheless, to make sure most components of the human body model are contained in the

generated depth image, both the detector size and pixel patch are increased for testing. Table.4.3

shows the performance regarding total execution time for the whole object and calculation time

for each NURBS patch. Fig.4.11 demonstrates the result depth image of male_pt146.obj from the

test.

43

CHAPTER 4. RESULTS

FIGURE 4.11. The depth image rendered by direct mathematical projection of NURBS
surface approach with male_pt146.obj. The test setting refers to Table.4.3.

sampling projection rendering sorting
22.5% 2.5% 66% 9%

TABLE 4.4. The profiling of time consumption of programs in direct mathematical
projection of NURBS surface approach.

dias_pericardium
(heart)

male_pt146 (whole
human body)

Detector size 512*512 1024*1024
Pixel pitch 0.2mm 2mm
Sampling density 60*60 60*60
Number of NURBS patch 1 588
Average performance 104.23ms 78039.40ms
Average performance per
NURBS patch

104.23ms 132.70ms

TABLE 4.3. The test setting and result of direct mathematical projection of NURBS
surface.

Profiling
This section briefly discusses on the distribution of the time consumption of each function, and the

44

4.3. PERFORMANCE

bottleneck of the program based on the profiling result. Table.4.4 displays the average percentage

of time spent on different stages of the program.

As shown Table.4.4, more than half of the time is consumed in the rendering program.

Sampling the surface points costs more than 20% of the time (depending on sampling density).

Such that, the rendering program has the top priority to be ported and optimized on GPU.

However, the algorithm still samples the surface points of all NURBS objects even when they

are not in the scope of the detector plane after projection. In that case, the rendering program

would be terminated and the sampling program could spend a huge portion of time on calculating

equations regarding NURBS. Therefore, it is essential to port the NURBS calculation part onto

GPU as well.

Sampling density
In this part, the influence of different sampling density on the performance of simulating single

NURBS patch is investigated regardless of image quality. The detector size and its pixel pitch

are fixed as 512*512 and 0.2mm respectively. By varying the sampling density from 20*20 to

120*120, the change of the performance can be observed as shown in Fig.4.12. Despite the fact

that the graph presents a quadratic growth of performance when increasing sampling density,

the image quality remains unimproved once reach 60*60 in the case of this test.

FIGURE 4.12. The performance of direct mathematical projection of NURBS surface
when varying the sampling density in the algorithm.

45

CHAPTER 4. RESULTS

FIGURE 4.13. The performance of direct mathematical projection of NURBS surface
when varying the pixel pitch on the detector.

Detector pixel pitch
In the real life, the size of a detector plane is normally not bigger than 40cm*40cm. Therefore,

in this test, the influence of varying pixel pitch on a detector of fixed size (40cm*40cm) on the

performance is investigated. The sampling density is set as 60*60 in this test. The graph shows a

quadratic growth of performance when decreasing the pixel pitch.

4.3.5 Direct mathematical projection of NURBS surface GPU version

Only the rendering program of direct mathematical projection of NURBS surface is implemented

due to limited time. GPU porting will fully take advantage of the parallelism inside the algorithm,

and further accelerate the program to meet the requirement of real-time (30fps for 9megapixel

detector). Two points should be the highest priority when hand-optimizing a GPU kernel: the

occupancy should be maximized by exploiting GPU parallelism and the memory latency should

be avoided by reducing local memory usage. The algorithm is adapted such that each block is

responsible of constructing a triangle and set up the region to be searched (currently a 10*10

pixel square region), and each thread is responsible of searching one pixel in the region to check

whether it is located in the triangle or not. Additionally, shared memory is used to store variables

that are frequently used by threads in each block. Table.4.5 shows an performance gain of ×18.7

for the heart model and ×8.67 for the full human phantom respectively compared to the CPU

46

4.3. PERFORMANCE

version.

dias_pericardium
(heart)

male_pt146 (whole
human body)

Detector size 512*512 1024*1024
Pixel pitch 0.2mm 2mm
Sampling density 60*60 60*60
Number of NURBS patch 1 588
Average performance 5.57ms 9002.28ms
Average performance per
NURBS patch

5.57ms 15.31ms

Speedup compared to CPU
version

×18.7 ×8.67

TABLE 4.5. The performance after rendering program is ported onto GPU with the
same configuration as Table.4.3.

GPU fine tuning
The CUDA programming model is introduced in Section 2.5.1 and the aim of tuning is to maximize

the occupancy of each streaming multiprocessor by configuring the grid and block size. Nvidia

Visual Profiler is applied here to profile the usage of GPU. Table.4.6 shows profiling result with

different grid and block sizes with the rendering program. The result shows that the GPU kernel

favors the grid size close to its sampling density and block size close to its search area. Thus, the

configuration of the grid and block size would be dynamically done by assigning themselves the

multiple of 32 that is close to the sampling density and search area. 32 is the warp size of the

GPU and the performance would be improved when the block size it the multiple of it.

grid size block size occupancy (sampling density = 60) occupancy (sampling density = 100)
128*128 16*16 45.0% 43.4%
128*128 8*8 48.4% 51.0%
64*64 8*8 48.7% 50.6%
64*64 4*4 42.0% 39.9%

TABLE 4.6. Different configuration of grid and block size. Occupancy donates the occu-
pancy per streaming multiprocessor, shared memory donates the shared memory
usage of variables in the same block.

Table.4.7 demonstrates the percentages of calculation time spent on sampling program,

projection program and rendering program. The next step will be porting the sorting program

onto GPU as well and determining the bottleneck.

47

CHAPTER 4. RESULTS

sampling projection rendering
0.05% ≤ 0.01% ≥ 99%

TABLE 4.7. The profiling of time consumption of programs in direct mathematical pro-
jection of NURBS surface approach on GPU. The sorting program is not measured.

Figure.4.14 shows the performance with varying pixel pitch size with GPU usage. Only the

sampling, projection and rendering program are measured here, because the porting of the sorting

algorithm is not done yet and the sorting on CPU occupies approximately 85% of the entire

execution time.

FIGURE 4.14. The performance of direct mathematical projection of NURBS surface
with GPU usage when varying the pixel pitch on the detector. Tested with the
heart model.

4.3.6 Evaluation

X-ray tracking NURBS surface with Newton’s iteration gives the worst performance even executed

on GPU, with almost all of the execution time spent on initial guess finding. For the other

approaches on CPU version, simulation with voxelized model has the best performance which

can simulate a whole human phantom in 0.65s on a 1024*1024 detector. There is no remarks

regarding performance of triangle-meshed model since the algorithm is not state-of-the-art yet.

Direct mathematical projection on GPU achieves a ×8.67 speedup compared to its CPU version,

however still does not outperform simulation with voxelized model on a 1024*1024 detector. The

48

4.4. DISCUSSION

bottleneck of direct mathematical projection indeed lies in the rendering program and sorting

algorithm as discussed in Section 3.2.3. Contrast to the approach of tracking voxelized model,

the code still can be well optimized (which was not possible given the limited time for the thesis

work) to gain speedup, this is valid for the rendering as well as for the sorting code.

4.4 Discussion

4.4.1 Image quality

From the perspective of image quality of resulting depth image, among the four approaches that

has been tested, X-ray tracking NURBS surface with Newton’s iteration can hardly produce

a satisfying result due to the fundamental mathematical difficulty in finding suitable initial

guess for Newton’s iteration. The drawback makes it complicated to generate a depth image

since it adds even more complexity when calculating multiple intersections along a single ray.

X-ray tracking voxelized model is able to produce satisfying image quality when the voxels are

even much smaller than a pixel on the detector, however resulting in an incredibly large data

size (over 10TB) and therefore low performance. Normally, the human phantom is represented

by 0.5mm*0.5mm*0.5mm voxels and the result X-ray image has visible artifacts due to voxel’s

property. The conventional approach, namely X-ray tracking triangle meshed model, is able to

produce a decent image quality at the price of constructing the object with sufficient number of

triangles at the pre-processing stage. Additionally, the performance of this approach scales with

the increase of the number of triangles. Direct mathematical projection of NURBS surface can

generate a depth image without artifacts when a enough sampling density is reached (depending

on the pixel pitch, detector size and its distance to X-ray source). Normally, the sampling density

is dependent on object size, it would make sense to adapt the sampling density to intervals

matching the pixel pitch. During my tests, under the condition of comparable image quality,

direct mathematical projection has a better performance than triangle meshed approach. Since

the code of triangle meshed approach is not state-of-the-art or from the market, it remains

questionable which approach would outperform the other.

4.4.2 Performance

From the perspective of performance, X-ray tracking NURBS surface with Newton’s iteration still

performs poor again because its initial guess finding is the biggest bottleneck, costing over 95%

of the time consumption. On the other hand, the GPU version direction mathematical projection

of NURBS surface has achieved at most ×18.7 speed up compared to the CPU version. Mean-

while, the GPU version is able to simulating the heart model at 30fps on a 9megapixels detector

(40cm*40cm) as well. Nevertheless, its performance scales quadratically both with sampling

density and number of pixels on the detector (also known as increasing detector resolution).

Currently, only the rendering program is ported onto GPU. Fig.4.15 reveals the performance com-

49

CHAPTER 4. RESULTS

parison between simulation of voxelized model and GPU version direct mathematical projection.

Only sampling program, projection program and rendering program are measured in order to

avoid the time spent on sorting algorithm which is not ported onto GPU yet. As can be seen in

the figure, the human phantom is simulated at least 3 times faster with the new approach on a

9megapixel detector. Additionally, the simulation with voxelized model scales much faster with

the number of pixels as well. The reason why direction mathematical projection approach scales

slowly with the pixel number and have an offset around 1 second might be there are parts in

the algorithm that compute regardless of pixel numbers and the calculation time of the actual

rendering procedure already has a good scalability with pixel number.

FIGURE 4.15. The performance comparison of simulating a human phantom between
simulation of voxelized model and GPU version direct mathematical projection
(only sampling program, projection program and rendering program). The simu-
lation of voxelized model scales much faster than direct mathematical projection
with the increasing size of the detector. The latter one has approximately ×3 speed
up compared to the former one on a 9megapixel detector.

50

C
H

A
P

T
E

R

5
FUTURE WORK

Further algorithm and GPU optimization
The rendering program in direct mathematical projection of NURBS surface is not fully optimized

yet. There are still some repeated calculation and unnecessary search in the algorithm to be

optimized. In addition, more parallelism in the sampling program and projection program can

be fully adapted onto GPU. The sorting algorithm which is essential for generation of the depth

image can also be ported onto GPU. Despite the fact that plenty of C++ Standard Template

Library (STL) code is used, Thrust as a C++ template library for CUDA can provide some help.

Dynamic adjustment of sampling density
Actually, there is no necessity to manually set the sampling density since the size of the detector

is fixed (normally 40cm*40cm) in the real world. Once we know the position of the X-ray source

and the NURBS patch to be projected, the size of the NURBS patch projected on the detector can

be easily calculated considering the magnification factor. The sampling density can be decreased

when the patch size is small and vice versa. Since lower sampling density leads to higher

performance, the overall performance will increase when small NURBS patches are contained.

Acceleration data structure
Currently, the proposed methods have not applied any acceleration data structure yet. Compo-

nents of human phantom such as bones, muscles and vessels are represented by single NURBS

patches. Acceleration data structures (ADSs) like grid, KD-tree and bounding volume hierarchy

(as [Vin13] introduced) can effectively skip the NURBS patches that are not in the scope of the

detector, therefore save a large portion of computation effort. Another approach regarding ADS is

portioning the NURBS patches into smaller pieces and bounding them with volumes[Val10], the

center of the volumes can be taken as reliable initial guess for the Newton’s iteration. Therefore,

the problem of X-ray tracking NURBS surface with Newton’s iteration can be solved.

51

CHAPTER 5. FUTURE WORK

Packet-based ray tracing
In [WSBW01], a performance increase by a factor of ten had been achieved by tracing packets of

rays in parallel instead of tracing each ray sequentially. By taking advantage of the coherence of

rays (the same memory address is accessed multiple times for rays intersecting the same primi-

tive), multiple rays are grouped to form a packet of rays and the memory is accessed only once for

the whole packet. The main bottle-neck of this approach is the memory bandwidth[WSBW01].

This issue would be solved using the advanced GPU from this thesis.

52

C
H

A
P

T
E

R

6
CONCLUSION

The current X-ray image simulation realized by tracking voxelized model presents an unsatisfac-

tory image quality where blocky structures and stripes artifacts appear, with limited real-time

performance. The data size of voxelized model will increase cubically with higher resolution as

well. Triangle-meshed model might be able to improve the computation performance, however

with limited usage of modification for human phantom in the future.

The wishes for the X-ray image simulation are: First, enabling the real-time simulation speed.

Second, a highly realistic image quality at 50µm resolution.

In this thesis, an existing algorithm that directly calculates intersections with NURBS using

numerical approach for X-ray physics has been applied. Then, a novel method called direct

mathematical projection of NURBS surface is proposed, which promises higher computation

efficiency and better image quality. Besides, an algorithm that tracks triangle-meshed models for

X-ray physics is adapted from ray tracing algorithm. This algorithm is mainly used for image

quality testing. Finally, comparison among voxelized model, triangles-meshed model and the novel

method (direct mathematical projection of NURBS surface) on image quality and performance

has been conducted.

Simulation with voxelized model
This approach still has the best performance on a average size detector, nevertheless produces im-

age artifacts. In addition, the data size of voxelized model scales cubically with image resolution.

Simulation with triangle-meshed model
This approach requires sufficient number of triangles to give decent image quality. The perfor-

mance scales linearly with the number of triangles in the scene.

X-ray tracking NURBS surface with Newton’s iteration
This approach produces the worst performance as well as image quality due to its mathematical

53

CHAPTER 6. CONCLUSION

complexity. The bottleneck of this approach is the initial guess finding.

Direct mathematical projection of NURBS surface
The GPU version of this approach achieves the best image quality and best scalability with the

number of pixels. It has the flexibility to adjust the image quality. However, The computation

algorithm is still the bottleneck that drags down the performance.

In conclusion, direct mathematical projection of NURBS surface with the usage of GPU is

the best approach in this thesis. This method not only has a promising computation efficiency,

but also scales slower with the number of pixels on performance. What’s more, it is flexible to

provide realistic image quality.

In the future development, the method of direct mathematical projection of NURBS surface

can be improved by further algorithm and GPU optimization. Acceleration data structure is

strongly recommended as well such that NURBS data can be accessed more efficiently and

unnecessary computation can be avoided.

54

BIBLIOGRAPHY

[Abe05] Oliver P Abert.

Interactive ray tracing of nurbs surfaces by using simd instructions and the gpu in

parallel.

Diss. Nanyang Technological University, 2005.

[AGM06] Oliver Abert, Markus Geimer, and Stefan Muller.

Direct and fast ray tracing of nurbs surfaces.

In Interactive Ray Tracing 2006, IEEE Symposium on, pages 161–168. IEEE, 2006.

[CAPD14] Raquel Concheiro, Margarita Amor, Emilio J Padrón, and Michael Doggett.

Interactive rendering of nurbs surfaces.

Computer-Aided Design, 56:34–44, 2014.

[Efr05] Alexander Efremov.

Efficient ray tracing of trimmed nurbs surfaces.

Master’s thesis, Computer Graphics Group, Max-Planck-Institut für Informatik, Saar-

brücken, Germany.–2005.–162 p, 2005.

[EHS05] Alexander Efremov, Vlastimil Havran, and Hans-Peter Seidel.

Robust and numerically stable bézier clipping method for ray tracing nurbs surfaces.

In Proceedings of the 21st spring conference on Computer graphics, pages 127–135.

ACM, 2005.

[MCFS00] William Martin, Elaine Cohen, Russell Fish, and Peter Shirley.

Practical ray tracing of trimmed nurbs surfaces.

Journal of Graphics Tools, 5(1):27–52, 2000.

[NSK90] Tomoyuki Nishita, Thomas W Sederberg, and Masanori Kakimoto.

Ray tracing trimmed rational surface patches.

ACM SIGGRAPH Computer Graphics, 24(4):337–345, 1990.

[Nvi] Nvidia.

Nvidia titan v gpu.

https://www.nvidia.com/en-us/titan/titan-v/ (Oct. 2018).

55

BIBLIOGRAPHY

[Opt] OptiX.

Nvidia optix 5.1 — programming guide.

http://raytracing-docs.nvidia.com/optix/guide/index.html#guide#.

Accessed: 2018-09-10.

[PT12] Les Piegl and Wayne Tiller.

The NURBS book.

Springer Science & Business Media, 2012.

[PTVF96] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery.

Numerical recipes in C, volume 2.

Cambridge university press Cambridge, 1996.

[Rhi] Rhino.

Rhino, the 3d modeller software.

https://www.rhino3d.com// (Oct. 2018).

[Rup] Karl Rupp.

Cpu, gpu and mic hardware characteristics over time.

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

(Oct. 2018).

[SW] Mendonca S Grimes J Tsui BM Segars WP, Sturgeon G.

4d xcat phantom for multimodality imaging research.

https://www.ncbi.nlm.nih.gov/pubmed/20964209 (Oct. 2018).

[Tat07] Natalya Tatarchuk.

Real-time tessellation on gpu.

SIGGRAPH Advanced Real-Time Rendering in 3D Graphics and Games Course, 37,

2007.

[Val10] EEJ Valkering.

Ray tracing nurbs surfaces using cuda.

Master’s thesis, Delft University of Technology, 2010.

[Vin13] Marek Vinkler.

Acceleration Data Structure Construction for Ray tracing.

PhD thesis, Masarykova univerzita, Fakulta informatiky, 2013.

[WMG+09] Ingo Wald, William R Mark, Johannes Günther, Solomon Boulos, Thiago Ize, Warren

Hunt, Steven G Parker, and Peter Shirley.

State of the art in ray tracing animated scenes.

56

http://raytracing-docs.nvidia.com/optix/guide/index.html#guide#

BIBLIOGRAPHY

In Computer graphics forum, volume 28, pages 1691–1722. Wiley Online Library,

2009.

[WSBW01] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner.

Interactive rendering with coherent ray tracing.

In Computer graphics forum, volume 20, pages 153–165. Wiley Online Library, 2001.

[PT12] [Tat07] [WMG+09] [Efr05] [Abe05] [Val10] [Vin13] [CAPD14] [AGM06] [MCFS00] [EHS05]

57

	Introduction and problem statement
	Problem statement
	Contributions of the thesis

	Background
	X-ray system simulation
	X-ray systems
	Human phantom

	Phantom model representation
	Voxelized model
	Triangle meshed model
	NURBS model
	Model comparison

	NURBS basics
	Ray tracing
	Ray tracing for visible optics
	Ray tracing for X-ray

	Ray tracing NURBS
	Ray-patch intersection

	General-purpose GPU computing
	CUDA programming model
	Optimization with GPU

	Related Work

	Development
	X-Ray tracking NURBS surface with Newton's iteration
	Introduction
	Initial guess finding
	Discussion

	Direct mathematical projection of NURBS surface
	Introduction
	Pipeline
	Discussion

	Results
	Experimental Setup
	Test platform
	Test scene

	Image Quality
	X-ray tracking voxelized model
	X-ray tracking triangle meshed model
	X-ray tracking NURBS surface with Newton's iteration
	Direct mathematical projection of NURBS surface
	Evaluation

	Performance
	X-ray tracking voxelized model
	X-ray tracking triangle meshed model
	X-ray tracking NURBS surface with Newton's iteration
	Direct mathematical projection of NURBS surface CPU version
	Direct mathematical projection of NURBS surface GPU version
	Evaluation

	Discussion
	Image quality
	Performance

	Future work
	Conclusion
	Bibliography

