
 Eindhoven University of Technology

MASTER

QoS-A ware deployment of lighting control behaviors

Zhao, Z.

Award date:
2018

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5485b478-0e8f-4d5e-a521-ebbf4bf7d24d

QoS-Aware Deployment
of Lighting Control

Behaviors

Master Thesis

Ziyuan Zhao

Department of Mathematics and Computer Science
System Architecture and Networking Research Group

Supervisors:
dr. Tanir Ozcelebi (TU/e)

dr. Ben Pronk (Signify)
dr. Qingzhi Liu (TU/e)

Committee:
dr. Tanir Ozcelebi (TU/e)

dr. Ben Pronk (Signify)
dr. Qingzhi Liu (TU/e)
dr. Majid Nabi (TU/e)

Eindhoven, September 2018

Abstract

The Internet of Things (IoT) has been called the next generation of the industrial revolution. By
blending the physical and digital realms, the IoT is profoundly changing the way we relate to our
environment and information. In a smart building, the IoT-based (connected) lighting system is
integrated with advanced Things (e.g. sensors, luminaries) and communication channels that help
develop new services and application domains. The lighting system as an IoT infrastructure can
support IoT applications in many areas.

The rise in connected lighting systems has drawn researchers’ attention in determining the op-
timal deployment of applications in a lighting system under functional and Quality of Service
(QoS) requirement. In this thesis, we propose a methodology for determining the optimal
deployment of the application in a lighting system that supports any network topo-
logy and network configuration. Latency and resilience are criteria in this thesis. Though
“resilience” is used in many different application domains, the quantification of it has not been
done well. Therefore, we also propose a methodology based on an automatic generation of
a fault tree to evaluate the resilience (dependability) of applications in the lighting
system, when permanent faults occur in distributed components in the application.

The proposed methodology was validated by using a Java-based platform developed by TNO,
we have done some implementation work on a Java-based platform named Cosim from TNO. We
developed a tool to evaluate deployment decisions and can automatically generate the optimal
deployment decision regarding requirements. The tool allows users to specify the application via
domain specific language (DSL) and manipulate parameters representing network configuration
as well as user requirements. The deliverables include a design matrix, an evaluation model and
a tool that assists users in making the deployment decision.

ii QoS-Aware Deployment of Lighting Control Behaviors

Preface

The research “QoS-Aware Deployment of Lighting Control Behaviors” has been conducted to ful-
fil the graduation requirements of the Master’s degree of Embedded Systems at the Eindhoven
University of Technology. My research questions have been formulated together with my super-
visor, dr. Tanir Ozelebi. The research has been conducted in the R&D department of Signify in
Eindhoven between January and August 2018 consisting of a 3-month-long preparation phase and
a 5-month-long graduation phase.

First of all, I would like to thank TU/e and Signify for the opportunity to study and work in
the field of IoT. I would like to thank dr. Tanir Ozcelebi and dr. Qingzhi Liu for their inspiration
and great help. I would like to thank dr. Ben Pronk for his guidance, patience and insight into
work, it was a very pleasure to work with him. I would like to thank ir. Jack Sleuters for his ideas
and feedbacks in the implementation work. I would like to thank dr. Majid Nabi for being my
exam committee.

I would like to thank my colleagues for their kind support. I would like to thank my friends,
including but not limited to, ir. Srikanth Sistu, ir. Yongmin Qiu, ir. Wenguang Feng, ir. Adam
Zika, ir. Benjamin Feleki, Tianyu Liu and Yuyang Qi for their encouragement and support. Fi-
nally, I am particularly indebted to thank my parents for their love.

QoS-Aware Deployment of Lighting Control Behaviors iii

Contents

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Current Design, Decision-making and Installation Process 3
1.2 Motivation . 4
1.3 Research Questions . 4
1.4 Outline . 4

2 Related Work 6
2.1 Network Abstraction . 6
2.2 QoS-aware Deployment of IoT Applications . 6
2.3 The DSLs in Lighting Systems . 7
2.4 Latency Evaluation . 7
2.5 Scenarios and Communication Load . 8
2.6 Multi-objective Optimization Problem . 8
2.7 Resilience . 8

2.7.1 Dependability, failures, failure probability, faults and time to failure 9
2.7.2 Self-Healing System . 10
2.7.3 Error handling, graceful degradation and redundancy 10
2.7.4 Analysis methods of dependability . 11
2.7.5 System response, resilience curve and metrics 12
2.7.6 Dependability in the lighting system . 12

3 System Overview and Problem Statement 13
3.1 Domain Knowledge . 13

3.1.1 Operational Concept and Lighting Control Application 13
3.1.2 Domain Specific Language (DSL) . 14
3.1.3 Networks . 15
3.1.4 Quality of Service . 16
3.1.5 Centralized and Distributed Deployment . 17

3.2 Simulation Platform . 18
3.3 Problem Statement . 18

4 Formalization 20
4.1 Infrastructure in Lighting Systems . 20
4.2 Lighting Control Behaviours . 21
4.3 Deployments . 21
4.4 QoS . 21

4.4.1 Latency . 21

iv QoS-Aware Deployment of Lighting Control Behaviors

CONTENTS

4.4.2 Resilience . 22

5 Deployment Decision Matrix 23

5.1 Optimal Decision . 24

5.2 Decision-making Process . 24

5.3 Criteria . 25

6 QoS Evaluation Methods 26

6.1 Assumption . 26

6.1.1 Hardware Capacity . 26

6.1.2 Communication Load . 26

6.1.3 Naive Network Model . 26

6.2 Latency . 27

6.3 Resilience . 28

6.3.1 Failure Condition of Lighting Control Behaviour 29

6.3.2 Failure Condition of Group Object . 29

6.3.3 Failure Condition of Application Object . 29

6.3.4 Construct the Fault Tree . 30

6.3.5 Duplication, Redundancy . 31

6.3.6 Resilience Indicators . 31

7 Implementation 33

7.1 Solution . 33

7.1.1 Algorithms . 33

7.2 Implementing Languages . 36

7.3 Cosim and Existing Work . 36

7.3.1 Cosim Architecture . 37

7.3.2 Simulator Generation . 37

7.4 Implementation . 38

7.4.1 Deployment DSL and node capacity check 39

7.4.2 Latency Evaluation . 39

7.4.3 Resilience Evaluation . 39

7.4.4 Multi-objective Optimization . 39

7.4.5 Message Types . 40

7.4.6 All Simulators . 40

8 Experiments and Results 42

8.1 Experiment One – Optimal Decision Generation 42

8.1.1 Test Setup . 42

8.1.2 Abstract Model . 43

8.1.3 Network Model . 45

8.1.4 Parameter Selection . 45

8.1.5 Benchmark . 45

8.1.6 Experiment . 46

8.1.7 Performance of Different Decisions . 47

8.2 Experiment Two – Distribution and Resilience . 48

8.2.1 Assumption for the Experiments . 48

8.2.2 Setup . 48

8.2.3 Deployment Network . 49

8.2.4 Visualization . 49

8.2.5 Analysis . 49

QoS-Aware Deployment of Lighting Control Behaviors v

CONTENTS

9 Conclusion and Future Work 51
9.1 Conclusion . 51
9.2 Future Work . 52

9.2.1 Improvement on Current Work . 52
9.2.2 Future Research on Resilience . 52
9.2.3 Future Research on Latency . 52

Bibliography 53

Appendix 54

A Deployment DSL 55

B The Visualization of Template DSL 56

vi QoS-Aware Deployment of Lighting Control Behaviors

List of Figures

1.1 Generic life cycle of IoT Application (Rahman, Ozcelebi, & Lukkien, 2017[20]) . . 2
1.2 A workflow for realising the IoT application lifecycle stages of construction, deploy-

ment and execution . 3

2.1 Dependability Tree . 9
2.2 Cumulative Distribution Function of Logic Combination 11
2.3 Urban Resilience . 12
2.4 Engineering resilience quantification . 12
2.5 Resilience in industrial control systems . 12

3.1 Operational Concept . 14
3.2 Template DSL, Building DSL, Control DSL and Deployment 15
3.3 Physical View of the Network [1] . 16
3.4 Centralized and Distributed Deployment . 17
3.5 Research questions in the flow diagram . 19

5.1 Decision Making Process . 23

6.1 Network naive model: 4 nodes . 27
6.2 Application Failure Condition . 29
6.3 DSL and Network Model used by constructing FTA 30
6.4 Failure Tree Analysis, single controller . 31
6.5 Failure Tree Analysis, duplicated controller . 32

7.1 DSL Framework[4] . 36
7.2 co-simulation environment . 37
7.3 Generating simulators from an abstract Lighting System model 38
7.4 Resilience Analyzer Simulator UML . 40
7.5 All simulators and test plan . 41

8.1 Test setup . 43
8.2 Things in the Building . 43
8.3 Object Mapping . 44
8.4 Events Schedule . 44
8.5 Cluster Networks . 45
8.6 Star Networks . 45
8.7 Failure probability values defined in OpenAIS[2] 46
8.8 4 Cluster random failure probability on links . 48
8.9 Distribution Test . 48
8.10 FLCB and Fctrl with duplicated controllers . 49
8.11 FLCB and FT with duplicated controllers . 50

A.1 Deplyment DSL, 10 Things, 10 nodes, 1 controller 55

QoS-Aware Deployment of Lighting Control Behaviors vii

LIST OF FIGURES

B.1 The control logic used in experiment . 57

viii QoS-Aware Deployment of Lighting Control Behaviors

List of Tables

1 Table of Notation My Research . xi

2.1 Problem Spaces and it addressed by the RoSES project 10

5.1 Sub-criteria and Metrics for latency and resilience 25

6.1 Latency between two end nodes LUT . 27
6.2 Communication Cost Symbols . 27
6.3 Failure Symbols . 30

7.1 Implementation Work in This Project . 38

8.1 decisions on cluster networks with identical weights 47
8.2 decisions on cluster networks with random link quality and identical node quality . 47
8.3 Decisions in the 4-clusters network and their QoS 47

QoS-Aware Deployment of Lighting Control Behaviors ix

Abbreviation

IoT Internet of Things

DSL Domain-Specific Language

QoS Quality of Service

WSN Wireless Sensor Network

QA Quality Attribute

FT Failure Tree

FTA Failure Tree Analysis

FP Failure Probability

CDF Cumulative Distribution Function

MTTF Mean Time to Failure

LUT Lookup Table

LCB Lighting Control Behavior

SPOF Single Point of Failure as known as One Point of Failure

x QoS-Aware Deployment of Lighting Control Behaviors

Notation Table

Table 1: Table of Notation My Research

si : physical sensor i
i : identifier

sci : the connect between the physical sensor i and the controller
sobji : logical sensor object i
sgi : sensor group i
ai : physical actuator i
aci : the connect between the physical actuator i and the controller

aobji : logical actuator object i
agi : actuator group i
Lsi : The latency from the sensor i to the controller
Lai : The latency from the controller to the actuator i
Lrsp : Response time. The end-to-end delay on a critical path
Lsyn : Synchronicity. The maximum difference on latency between actu-

ators
Fi(t) : The probability that component i would fail in (0, t]
Di(t) : The probability that component i continue functioning (doesn’t

fail)in (0, t].
Fi : The probability that component i would fail in (0, unit time]

MTTFdisrupt : Mean time to the system starting disruption
MTTFdegrade : Mean time to the system starting degrading

Fdegrade : The probability that the system would start degrading in (0, unit
time]

Fdisrupt : The probability that the system would start degrading in (0, unit
time]

Decision Variables

∀components on FTA =

{
1, failure

0, not fail

QoS-Aware Deployment of Lighting Control Behaviors xi

Chapter 1

Introduction

It is estimated that there will be 50 billion devices connected to the Internet by 2020[13]. The
Internet of Things (IoT) is the next evolution of the internet. An IoT system consists of services
distributed over distinct devices. In an IoT-based lighting system, the “Things” are normally lu-
minaires, sensors and dedicated devices, which are mostly constrained in one or more ways: They
are limited in resources like CPU, memory and battery. They may be challenged with unreliable
or lossy communication, as well as wireless technologies with limited bandwidth. They may be
integrated with dedicated functionality as sensing, actuating, data collecting and communicat-
ing. They may be placed in diverse settings such as in buildings or outside. In the system, they
collaborate with each other to fulfil the common goals of the lighting control but also other IoT
applications.

The control behaviour which is the primary application of the IoT-based lighting system is in-
creasingly complicated and prone to updates as new devices are integrated into existing systems.
In the current business, a modern professional lighting system for offices is sold as part of “project
business” where the final control system installed in a building is almost always unique. It would
involve core R&D teams when it faces extension or other changes. To support the increasing scale
of business and the demands for extensibility of the lighting system, the definition, creation, modi-
fication and maintenance of the lighting system requires a more concise and simple description.
Also, the deployment of application components requires more flexibility.

Confronted with the challenges from IoT, Signify has decided to implement a domain-specific
language (DSL) together with TNO for the lighting system domain. It aims at describing the
lighting system concisely and defining the lighting control behaviour in a technology-independent
way. It also aims at supporting users in the domain, who are not experts in software develop-
ment, to construct appropriate control applications. For example, a building manager without
full knowledge of the target platform can easily use the DSL to describe the lighting behaviour.
Currently, there is a simulation tool developed by TNO to simulate the lighting system and con-
trol behaviours specified by DSL. This work was carried out due to such requirements which is
interesting both academically and by Signify.

TU/e defines a generic life cycle model[20] for IoT application shown in Figure1.1. A specific
IoT-based system (lighting system) and IoT applications have their instantiation of the generic
life cycle. An instantiation includes stakeholders’ responsibility for activities in the life cycle and
the procedure for realising the life cycle stages. The workflow of the realisation of IoT application
consists of such stages as construction, deployment, execution and so on. In the lighting system,
the instantiation of those stages include compiling DSL code in the cloud, deploying converted
code to Things and executing the code on Things.

Figure 1.2 shows an example workflow of the realisation of the life cycle states including con-

QoS-Aware Deployment of Lighting Control Behaviors 1

CHAPTER 1. INTRODUCTION

struction, deployment and execution. In the construction stage, the cloud application compiles
DSL source code to a specific language code such as C, C++, Java. It may further compile the
code into either a machine code, a bytecode or an executable. Those applications are deployed
to end devices via the network in the deployment stage. Afterwards, end devices are responsible
for installation and the operation. During the execution, end devices upload the configuration
information for further use like reconstruction.

Figure 1.1: Generic life cycle of IoT Application (Rahman, Ozcelebi, & Lukkien, 2017[20])

2 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 1. INTRODUCTION

Figure 1.2: A workflow for realising the IoT application lifecycle stages of construction, deployment
and execution

1.1 Current Design, Decision-making and Installation Pro-
cess

The process for the creation of a lighting installation in a building can be divided into several
phases. A new lighting installation starts with a lighting design in which the required things (e.g.
sensors and luminaires) and their coordinators in the building are defined. This step defines the
visual aspects of the installation and considers customer preference, aesthetic considerations and
basic regulations. This step is followed by a physical design phase of the installation including
the properties (e.g. quantity, capabilities and location) of all infrastructure elements required for
the installation. Infrastructure elements are gateways, routers, network cables, power and so on.
After manufacturing and delivery, such a system is installed by installers that also installs cabling,
power, networks and performs a basic test of connectivity as well as functionality. Finally, a
commissioner deploys the system in which the required control behaviour, the grouping of sensor
and actuators per area, linking of behaviour between various areas is configured in the nodes. This
phase normally ends with the handover and signoff of the installation to the customer this phase
normally ends.

QoS-Aware Deployment of Lighting Control Behaviors 3

CHAPTER 1. INTRODUCTION

1.2 Motivation

Current practices based on experience and heuristics deliver a well-behaved system in most cases.
However, there is always a small percentage of systems that display problems after deployment
that require the attention of maintenance staff and updates to either the physical installation or
the deployment. With the increasing scale of business in connected systems, these still represent
an avoidable cost for the business. Also, with increasing deployment of sensors in lighting infra-
structure the communication load on the lighting system grows, potentially interfering with the
basic control functions and increasing the number of issues. Finally, it is unclear if the systems
that are already in the field now are optimal from a performance point of view. With increas-
ing size, complexity and scale of connected systems simple over-dimensioning of the system is
not a permanent solution. Because of these trends, Signify is interested in a more solid upfront
design of the lighting network and deployment. Deployment tooling that can adequately predict
the performance and other Quality of Service (QoS) parameters like the reliability for a certain
deployment is one of the research areas explored. The long-time vision being an automatic gener-
ation of the optimal deployment for a given installation.

From an academic perspective, this master thesis intends to make the deployment stage in Fig-
ure1.1 more concrete by looking into “Distribute application components via the network”. We
explore means to identify the optimal deployment decision, to model the deployment, to evaluate
deployment, and to abstract attributes from the application description and network configuration
to support this process. Different deployment decisions can yield different application perform-
ance. Metrics and evaluation schemes aim to quantify the application’s performance for these
cases. Multi-objective optimisation is used to facilitate the identification of an optimal deploy-
ment decision given multiple, sometimes conflicting, requirements. A tool is needed to provide
insights into different configurations and their quality attributes that influence the deployment
decision.

1.3 Research Questions

The research of this thesis focuses on determining the optimal deployment decision an IoT-based
lighting system that is aware of the functional requirement and QoS requirement, which are latency
and resilience in this project. The research questions are listed below:

1. How to make optimal deployment decisions?

(a) How to identify the deployment and optimal decision?

(b) What is a suitable decision making process?

(c) How to compare different deployment decision?

(d) What are the lighting control behaviour and its functional requirement?

2. Based on question 1, what are the suitable evaluation methods to compare deployment
decisions?

(a) What are the sub-criteria and their metrics?

(b) What is a mathematical model for computing QoS quantitatively?

(c) What information provided by the application specification and network configuration
can be extracted as factors in the calculation?

1.4 Outline

In chapter 2, we present a survey of existing research on deployments, network configuration mod-
els, QoS (latency and resilience) evaluation methods and optimisation. It points to the gap of

4 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 1. INTRODUCTION

work on deployments and resilience evaluation.

In chapter 3, we introduce the operational concept of lighting control behaviours, networks in
lighting systems, existing DSLs used in lighting systems, sub-criteria for QoS and a simulation
platform. A detailed problem statement is described in this chapter.

In chapter 4, the infrastructure, application as well as input of each evaluation function are math-
ematically defined.

In chapter 5, we present the decision-making matrix that includes criteria, metrics and a de-
cision process. Focus gradient in this project is described.

In chapter 6, we introduce the evaluation methods for performance yield by the deployment.
Evaluation methods used are aware of factors retrieved from application specification, the net-
work configuration and metrics of criteria.

In chapter 7, we introduce the implementation work and simulation environment.

In chapter 8, the evaluation of the tool is done, and the results are described

In chapter 9, future work and final conclusions are discussed.

QoS-Aware Deployment of Lighting Control Behaviors 5

Chapter 2

Related Work

In this chapter, we review existing work on network abstraction, IoT applications deployments,
QoS evaluation, multi-objective optimisation problem.

2.1 Network Abstraction

With a given topology and attributes assigned on nodes and links, many routing techniques can
find an optimal routing, build a virtual network or mask connectivity details in a physical network.
The attributes can be latency, bandwidth, reliability or other quality profiles. [3] presents a survey
of state-of-the-art routing techniques in WSNs.

In the context of IoT, formal modelling approaches have been recently proposed to achieve con-
nectivity and coverage optimisation of WSNs. [16] has proposed an algorithm to map virtual
network to the components of a physical network and [11] proposes an algorithm on node map-
ping and link mapping. The two approaches in [16] and [11] study network virtualisation and can
offer a communication link between two endpoints with quality profiles assigned. Furthermore, [9]
has done some work on network abstraction from the type of connection technologies employed at
the wireless sensor network (Bluetooth, Zigbee, RFID, etc.)

Based on those studies, qualities of a communication link such as latency, bandwidth, reliability
between two endpoints can be extracted from WSNs with any configuration in the media layers
denoted in the Open Systems Interconnection model (OSI model). This thesis will use a network
model, which stores the extracted information, to describe the networks in lighting systems.

2.2 QoS-aware Deployment of IoT Applications

There are existing approaches to model infrastructure, application and evaluation of deployment.
[9] proposes a model to support the QoS-aware deployment of multicomponent IoT application
to Fog infrastructure. This approach describes the network configuration in the infrastructure,
interactions among application components and Things. It defines a Fog infrastructure as a 4-
tuple 〈 T, F, C, L 〉, where T is a set of Things with functionalities, F is a set of Fog nodes with
software and hardware capabilities, C is a set of Cloud data centres and L is a set of available
communication links between nodes. It further defines an application as a triple 〈 Γ, Λ, T 〉
where Γ is a set of software components, Λ denotes interaction among components and T is a set
of Things requested by the application. Then it formalises the deployment procedure and offers
algorithms to find available deployments.

[30] formalises the QoS-aware deployment as a maximum weighted bipartite problem. Given

6 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 2. RELATED WORK

the user preferences and the matching score of applications on Things, it assigns weights to dif-
ferent deployment and presents an algorithm based on the Integer Linear Programming model to
find the optimal deployment.

[26] models and formulates the problem that function placement influences the latency, availability
or other qualities on a service chain, where “service chain” refers to how functions compose a ser-
vice. It uses accumulation to calculate the end-to-end latency and availability on a service chain.
Furthermore, the paper presents two QoS-aware deployment strategies that are based on Integer
Linear Programming and an efficient heuristic respectively to obtain the optimal deployment.

2.3 The DSLs in Lighting Systems

The DSL describes the infrastructure and IoT applications in the lighting system. DSLs in this
context are formal languages with formal syntax that can generate executable models (simulators)
for a particular application domain and thereby allowing static and dynamic validation of system
instances. TNO and Signify have created following DSLs before the start of this project:

1. Building DSL, describing a building and its physical components. The components have
such configuration parameters as name, type and coordinates.

2. Template DSL, describing the control functionality for a room or area that can be visualised
as a state machine. This describes the behaviour of logical objects.

3. Control DSL, mapping the logical objects required by Template DSL onto Building DSL’s
physical components.

The lighting system’s behaviour in physical space is described by Control DSLs, which combines
one or multiple Template DSLs that each independently describes a distinct control behaviour and
together yield a more complex control behaviour for the complete lighting system. A Template
DSL describes the lighting system’s behaviour for a control area abstractly without coupling the
control behaviour to an actual building topology.

These DSLs are coupled, and the simulators generated from the DSL’s can be executed in a
co-simulation framework developed by TNO, which addresses the timeliness of execution, syn-
chronicity, data exchange and coherency of simulation. These DSLs specify the function and
component mapping as shown in the operational concept 3.1. The simulation environment will be
further explained in this report. The objective of each DSL will be discussed in chapter 3

2.4 Latency Evaluation

OpenAIS[1] evaluates latency by taking the following aspects into account, which are the config-
uration parameter of physical layers:

• Bandwidth of the physical layer.

• Number of hops between nodes for multi-hop networks.

• Duty cycling delay.

• Average media access time.

• Average packet loss rate.

It further gives the formula to calculate the communication cost based on the listed configur-
ation attributes (quality profiles). Similarly, [26] has shown that the end-to-end latency is the
accumulation of communication cost on links and nodes on the communication path.

QoS-Aware Deployment of Lighting Control Behaviors 7

CHAPTER 2. RELATED WORK

2.5 Scenarios and Communication Load

Communication load (message load) plays an important role in latency evaluation. The Messages
sent over the network in lighting systems are generally generated by their sensors when events
happen or controllers when they act on actuators. The latter depends on the event from sensors
and the control logic defined by Template DSL

Given a Template DSL and statistics of events, it is feasible to estimate the communication
load over the network. The master thesis [31] studies the relationship of distribution of occupancy
event and network traffic in lighting systems given a control logic.

A scenario describes events with time stamps that happened on physical sensors in an area and
every event has its type (occupancy, vacancy or daylight). By following the consequent messages
delivered through the network, we can estimate the total communication load and further evaluate
the latency for different controller allocations.

2.6 Multi-objective Optimization Problem

Multiple criteria affect the decision on deployments. In addition, several criteria may be in conflict
with each other. [17] summarizes the methods of multi-criteria optimization into two fundamental
approaches: Single-objective methods and Pareto optimality. The former is to convert multi-
criteria back to single-criterion optimization. Weighted Sum is one of those methods. It requires
given information from the user to assign importance on every criterion.

Finding the Pareto Frontier is one of the latter (Pareto Approaches), which includes one or more
optimal solutions. A solution belongs to Pareto Frontier if no other solution can dominant it
regarding all criteria. This approach can provide all possible optimised solutions of all criteria
simultaneously, which can be studied and compared in depth. Using Pareto Frontier can filter
solutions to save workload for further process.

[17] found that there is no single approach is superior. The selection of specific methods de-
pends on the type of information provided, users’ preference, requirements on solutions and the
availability of software.

2.7 Resilience

Recently resilience has been studied in the field of communication networks[24]. Resilient com-
munication networks aim to provide and maintain service in view of the following occurrence of
faults:

• Enable user and applications to access information when needed such as sensor monitoring

• Maintain end-to-end communication association

• Provide distributed processing and networked storage

In this section, we review the fundamental concepts of fault-tolerant systems, the definition of
dependability as well as its sub-criteria and metrics. Then we address the similarity in problem
space between the lighting system and other projects. Finally, we address the current gap in
dependability evaluation in lighting systems. The resilience of an application in a lighting system
must be evaluated because of its physical network and logical objects. Most studies on resilience
are analysing networks configuration rather than considering both application’s properties and
networks configuration.

8 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 2. RELATED WORK

2.7.1 Dependability, failures, failure probability, faults and time to fail-
ure

[5] introduces dependability as a system property that integrates attributes such as reliability,
availability, safety, security, survivability, maintainability. It says that dependability consists of
three parts: the threat to, the attributes of, and the means by which dependability is attained,
as shown in Figure 2.1. The threats, availability, reliability and fault forecasting are of our
interests. The following attributes are defined as in[5]:

• Dependability of a computing system is the ability to deliver service that can justifiably
be trusted.

• The service delivered by a system is its behaviour as its user perceives it. Correct service
is delivered when the service implements the system function.

• A user is another system that interacts with the service.

• The function of a system is what the system is intended to do, and is described by the
functional specification.

• A system failure is an event that occurs when the delivered service deviates from correct
service.

• A failure is a transition from the right service to an incorrect service. It is an alternate
definition of dependability.

• A fault is the adjudged or hypothesized cause of an error. An error is a part of the system
state that may cause a subsequent failure.

Figure 2.1: Dependability Tree

Mean Time to Failure

Mean time to failure (MTTF) is one of the basic measures of dependability, which is the expected
value of the failure density function, and the mean time to repair (MTTR) is the expected value
of the repair density function.

[24] describes that dependability consists of two major aspects that are reliability and availab-
ility. Availability is the probability that service remains operable when needed, which requires the
knowledge of MTTF and MTTR. Reliability is a continuity of service, which is used to characterise
if a component/system/service remains operable for a specific period. [23] define reliability as the
probability that a component does not fail in the time interval (0, t]. Considering that the time
to failure of components, T, is a random variable defined by a cumulative distribution function
F(t) (CDF), the reliability R(t) is given by:

QoS-Aware Deployment of Lighting Control Behaviors 9

CHAPTER 2. RELATED WORK

Property RoSES Graceful Degradation

Fault
Model

Fault Duration Permanent
Fault Manifestation fail silent components, potentially correlated
Fault Source All non-malicious sources
Granularity Component failure in distributed embedded systems
Fault Profile
Expectations

Random; arbitrary

System
Response

Fault Detection State variable staleness
Degradation fail-operational; Maximize system utility
Fault Response Reconfigure SW based on data and control flow graphs
Recovery Reconfigure SW & reboot system
Time constants Long time between failures;Can handle multiple failures
Assurance Future work; reliability-driven

Table 2.1: Problem Spaces and it addressed by the RoSES project

R(t) = Pr[T > t] = 1− F (t)

which is the probability of no failure in [0, t]. We use this probability to represent dependability
and to evaluate the resilience of the service.

Fault Forecasting

[5] Fault forecasting is one of the means to attain dependability, which aims at estimating the
present number and the likely consequence of faults. It is conducted by evaluating the system
behaviour concerning fault occurrence. Evaluation has two aspects:

• Qualitative Evaluation which aims to identify, classify, rank the failure modes, or the
event combinations (component failures or environmental conditions) that would lead to
system failures.

• Quantitative Evaluation which aims to evaluate, concerning probabilities, the extent to
which some of the attributes of dependability are satisfied. those attributes are then viewed
as measures of dependability

2.7.2 Self-Healing System

One of the potential approaches to achieving dependable system operation is to incorporate so-
called “self-healing” mechanisms into system architectures and implementations. The lighting
system has similar properties to a self-healing system that has similar goals to the general area
of dependable computing systems, and many “self-healing techniques” ultimately are dependable
computing techniques.

[15] proposes a taxonomy for describing the problem space of self-healing systems including fault
models and system response listed in Table2.1. This paper also points out that any fault-tolerant
system should have a specified fault model. Furthermore, three projects are described in this pa-
per, and one of them is RoSES, which is a project that is exploring graceful degradation as a means
to achieve dependable systems. We find many similarities between RoSES and a lighting system,
the properties and description listed in Table2.1 helps identify faults and system’s response in a
lighting system.

2.7.3 Error handling, graceful degradation and redundancy

[1] describes error handling as an essential property of software-intensive systems as software
and systems are never error-free and hardware, as well as communication malfunction, happens

10 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 2. RELATED WORK

sometimes. Degradation on performance happens when a system does not restore complete func-
tionality after a fault[15]. The degree of degraded operation provided by a self-healing system is
its resilience to damage.

Regarding the description in [1], in a lighting system, malfunction of a logical object should leave
all functionality not involving that object operational. For example, the group behaviour should
continue if one of the actuators (sensors) belonging to the group fails. Though one luminaire fails
to act according to the control logic, the rest continues their group activities. This is considered
as graceful degradation[10].

There are several graceful degradation measures, for instance, compensation, redundancy and
buffering. We focus on redundancy, which is a technique by masking faults to hide the occurrence
of failures by making a system fault tolerant. With physical redundancy[25], extra equipment or
processors are added to make it possible for the system as a whole to tolerant the loss or mal-
functioning of some components. Extra processors can be added to the system so that if a small
number of the crash, the system can still function correctly.

2.7.4 Analysis methods of dependability

Fault tree (FT) and Markov chain are two common analysis methods used in modelling fault-
tolerant systems. [6] gives a comparison of the two. The two analysis methods are used in two
approaches to modelling complex system, which are structural decomposition and behavioural
decomposition. The first one divides the system into smaller subsystems, analysing the depend-
ability and then combining the subsystem solution to obtain the system solution. The second
decomposes fault-occurrence/repair behaviour into relatively infrequent events.

[19] discusses the dependability evaluation methods of fault tree analysis (FTA) and the effect
of active redundancy on the dependability of a system with calculation. The redundancy of units
in this paper is similar to the duplication of controller introduced before.

[6] points out that a FT representation of the system is often more concise than the corresponding
Markov chain, but a Markov chain can model more complex behaviours. [21] has introduced the
FT as a graphical model that represents the combination of events that lead to a system failure.
The model uses a tree-like structure composed of events and logic gates, where events represent
either normal or faulty conditions and gates represent the relationship among events. The inputs
of these gates are single or combination of events resulted from the output of other gates. The
process of building a FT is performed deductively and starts by defining the TOP event repres-
enting the system failure condition. From the TOP event, the possible root causes are identified
by proceeding backwards. Events at the bottom are referred to as basic events. There are several
types of gates, such as AND and OR, shown in Figure2.2[21].

From a probabilistic point of view, the assessment of a FT consists of calculating the probab-
ility of the TOP event starting from the probabilities of the basic events. Assume a gate with
n independent inputs, where the occurrence of event i is described by means of a cumulative
distribution function Fi(t), then the gate output Ffc(t) is shown in Figure2.2.

Figure 2.2: Cumulative Distribution Function of Logic Combination

QoS-Aware Deployment of Lighting Control Behaviors 11

CHAPTER 2. RELATED WORK

2.7.5 System response, resilience curve and metrics

A lot of work has been on done describing several stages of a system’s response when facing faults
in engineering, social science and ecology. The stages and related performance usually include:

1. Reliable state: The system operates normally.

2. Unreliable state: Performance degrades

3. Disrupted state: Performance reaches its bottom

4. Recovery state: Recovery procedure starts

5. Recovered steady state: Recovery completes

Those stages in different domains are discussed in [8] [27] [29]. Those studies illustrate the stages
shown in the figures2.3 2.4 2.5. The illustrations show the similarity of system responses in different
domains. The vertical axis shows the performance of a system when the horizontal axis denotes
the timeline. Each ‘t’ on the timeline represent the moment when the system state changes. These
papers point out that those moments and duration of states can indicate the dependability of a
system.

Figure 2.3: Urban Resilience
Figure 2.4: Engineering resili-
ence quantification Figure 2.5: Resilience in indus-

trial control systems

2.7.6 Dependability in the lighting system

Threats for the dependability in lighting system come from either the physical network layer or
the application layer. [2] Failure report for OpenAIS uses failure modes as states to denote the
manner where an item fails, which tells in which way an item is no longer able to fulfil a required
function.[2] states that for each level of item or function analysed, the failure modes should be
identified and analysed. Also, an effect of a failure mode at a lower level may become a cause of
failure in the next higher level.

There is substantial research on the dependability of networks. [18] discusses common methods and
proposes a method that is based on event-tree to consider node failures in network-dependability
calculation.[23] proposed a methodology using FTA evaluate dependability of WSN, which sup-
ports different levels of network configuration and arbitrary failure condition

At a low level, failure can come from hardware malfunction, network function loss and software
failure. [2] lists such examples of failure modes of a sensor as wearing out, wrong sensitivity, failing
to trigger, false positive, etc. However, a calculation of dependability, which concerns node failure
at the application level or system response that fits the IoT lighting system domain, has not been
found.

12 QoS-Aware Deployment of Lighting Control Behaviors

Chapter 3

System Overview and Problem
Statement

This chapter introduces the domain knowledge including the operational concept of the lighting
control behaviour, the domain specific language (DSL), the network configuration in the lighting
system and QoS. It also introduces the simulation platform and the problem statement for this
project.

3.1 Domain Knowledge

This section introduces existing DSLs, which are used to specify the application, the local networks
and QoS. It helps readers understand the functional requirement by introducing the application
components constituting the lighting control behaviour (LCB) and its provided service.

3.1.1 Operational Concept and Lighting Control Application

The operational concept of lighting control behaviour is based on the process workflow shown in
Figure 3.1. Basic components in the workflow comprise a sensor, controller and actuator. The
definition and functionality of those components vary slightly for different views.

In the physical view, a sensor signals the controller after detecting a physical effect. Then the
controller may send signals to the actuator according to its control logic. The actuator then acts
physically by enabling the light. Sensors in the IoT lighting system are generally buttons, occu-
pancy sensors and daylight sensors while actuators are usually luminaries. A simple example of
control logic is that a sensor detects an occupancy in a room, then the lighting system responds
by illuminating the luminaires in the room.

The logical view presents the functional decomposition of the workflow into various logical ob-
jects. There is a group object situated between the control object and sensor objects. The group
object collects all information from sensor objects and sends to the control object. Every sensor
object sends a message to the sensor group object when there is an event as input. Those multiple
messages are aggregated at the sensor group object to generate one event message at the control
object. After processing it, the control object sends an action message to the actuator group object
that distributes the action message to multiple actuator objects. Sensors or actuators mapped to
the same group are assumed to be homogeneous in their behaviours.

The integration view represents the Things in the lighting infrastructure. They are networked
devices integrating functionality as sensors, actuators (luminaires) and controllers. In many cases,
a Thing is capable of multiple functionalities shown in Figure 3.1.

QoS-Aware Deployment of Lighting Control Behaviors 13

CHAPTER 3. SYSTEM OVERVIEW AND PROBLEM STATEMENT

Dotted lines in the figure denote the mapping of the relationship. Objects in the logical view
are finally be mapped to devices in the integration view via components in the physical view. The
main question for making a deployment decision is in which device in the integration the control-
ler should be allocated. A physical sensor can become a controller when the control function is
deployed on it.

Figure 3.1: Operational Concept

3.1.2 Domain Specific Language (DSL)

Signify and TNO have created some DSLs to specify lighting systems and lighting control beha-
viours [12]. Building DSL, Template DSL and Control DSL are studied in this thesis which are
studied below.

The Building DSL describes the topology of a building by indicating the perimeter of the building,
its floors and rooms on every floor. It indicates the type of physical devices and the coordinates
of their installation. We use “area” to refer to a physical space in a building, for instance, a room,
a corridor or a corner.

In the Template DSL, sensors or actuators are combined in application groups, where those sensors
and actuators are assumed to be homogeneous for their behaviours. Actuation specifications spe-
cify the actuator group to be controlled and its setting depending on a condition. Transitions
indicate what events cause a state transition and what action is taken depending on current state.
The structure of Template DSL consists of three parts shown in 3.2: required application groups
and variables declaration, actuation specification, and the transitions that can be visualized as
state machines.

The Control DSL deploys template DSLs onto Building DSL, which maps logical objects required

14 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 3. SYSTEM OVERVIEW AND PROBLEM STATEMENT

by template DSL onto physical Things described by Building DSL.

Example of the DSLs in Figure3.2, there are two states in the state machine specified by Tem-
plate DSL, which can be “Vacant Area” and “Occupied Area” respectively. Event 1 and Event
2 triggering transitions can be “Occupancy Detected” and “Vacancy Detected” that are sensed
by occupancy sensors “Sensor Group 1”. Action 1 is switching the light on, which is applied
on luminaires “Actuator Group 1” while Action 2 is switching the light off. Control DSL relate
“things” in building to logical objects required by DSL concerning types and coordinates of things.

In this context, the term “deployment” is used to describe the manner of mapping the control
function, which executes the state machine, on to available “things” in the building. To support
the deployment, an abstract network model describing the configuration of connectivity between
“Things” is required as well.

Figure 3.2: Template DSL, Building DSL, Control DSL and Deployment

3.1.3 Networks

Lighting systems support both wired and wireless network. Typical physical components connec-
ted by the network include luminaires, sensors, area (floor, building) controllers, IT-infrastructure
components, cloud computing and management systems. Figure3.3 shows an example physical
view of an OpenAIS [1] system with luminaires and sensors that are connected to a local field
network using wired and wireless networks. In this project, we are mainly interested in the local
wireless network from Figure3.3, which connects to the backbone network through a border router.
Within a local wireless network, all devices use the same network technology and cannot be sep-
arated geographically.

Local networks in the lighting system are sensor-actuator networks (SANETs)[7] which is a new
generation of the wireless-sensor network (WSN). Some nodes implement sensor functionality sens-
ing the environment while some implement actuator functionality was acting on the environment.
Nodes with only a network function (e.g. specialised gateway and router) are obscured from the

QoS-Aware Deployment of Lighting Control Behaviors 15

CHAPTER 3. SYSTEM OVERVIEW AND PROBLEM STATEMENT

network view as well as our consideration in this thesis.

Local network in this project is considered to be static with only high-level information on nodes,
links and routings. Abstraction of hardware capabilities and link qualities are of interest while
network function, protocols and communication technologies are not taken into account to keep
the QoS evaluation simple. The deployment decision shall be independent of communication tech-
nologies. Thus we focus on the configuration in media layers (physical layer, data link layer and
network layer) referring to the forementioned OSI model.

Figure 3.3: Physical View of the Network [1]

3.1.4 Quality of Service

Quality of services define the criteria for applications’ performance. Among the many possible
criteria, latency and resilience are the most interesting indicators to evaluate the application’s
performance in a lighting system, and therefore these will be considered in this project. The
approach in this project is generic, and more criteria may be added to the process in the future.
Considering the performance of lighting systems, users should see reliable and well synchronised
visible action of lights in a reasonably short time. Furthermore, the waiting time before visible
action should also be consistent and short [1].

Originally, the term “resilience” was studied in the fields of ecology and psychology. A Canadian
ecologist[14] first described the concept of it in ecological systems in order to draw attention to
trade-offs between constancy and change, or between predictability and unpredictability. Criteria
for resilience in lighting systems include:

• the system should work with high availability and continue functioning when faults appear.

• the system should be capable of error-handling.

16 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 3. SYSTEM OVERVIEW AND PROBLEM STATEMENT

3.1.5 Centralized and Distributed Deployment

The “deployment” in this context refers to the deployment of the controller from physical view
to things in the integration view in Figure3.1. In other words, it refers to the deployment the
controller (as denoted by Control DSL) onto Things (as described by Building DSL), where the
Template DSL defines the control logic.

In a centralised deployment, there is only one controller (the thing with control logic) that can
be the critical component in the lighting control behaviour (LCB). Allocation of the controller
would yield different QoS performance, which is the problem in a centralised deployment. Besides
allocation, the distribution will influence the QoS of the LCB. There are three approaches to the
distribution that we will consider: centralised deployment, decomposition and duplication of the
controller.

Figure 3.4: Centralized and Distributed Deployment

• In a centralized deployment, the controller receives messages from every sensor and sends
messages to every actuator. This is the simplest allocation (deployment). The only variation
that still exists is the selection on which of the nodes the controller function is allocated.

• In a decomposed deployment, the control logic is partitioned and distributed to different
physical components. This can generate partitioned controllers that each of which consumes
fewer resources. However, various parts (distributed control logic) need to interact with
each other to fulfil the control logic. The decomposition of DSL is out of the scope for
this project. Also, it requires estimating the communication volume caused by interaction
between partitioned controllers and a partitioning evaluation function. Mechanisms for such
decomposition requires the design of cost function[22] involving negotiation with the DSL-
design team, which is not feasible concerning time constraints of the project.

• In a duplicated deployment, each controller has the complete control logic as specified in
the template DSL. However, each has been assigned a smaller control scope (less controlled
actuators) compared to a centralised controller. Duplication is a feasible approach. Every
duplication inherits the control logic from the centralised controller (same template DSLs).
The duplication and distribution plan will influence the QoS.

QoS-Aware Deployment of Lighting Control Behaviors 17

CHAPTER 3. SYSTEM OVERVIEW AND PROBLEM STATEMENT

3.2 Simulation Platform

TNO-ESI, a partner of Signify, has developed a simulation tool that can simulate the lighting con-
trol behaviour on Things in any given building and validate some critical aspects of the lighting
system. It enables users to describe a lighting systems’ physical view and its control behaviour by
DSLs (see Figure 3.1 and Figure 3.2).

It simulates the workflow and components from the operational concept in Figure 3.1. Users
can configure components at different views of the workflow and denote their mapping relation-
ship. The configuration is done by modifying relevant DSL’s mentioned earlier. The platform
translates the DSL source code and converts the configuration to simulators. It provides a graph-
ical tool where a user can observe the simulation of lighting behaviours for various scenarios.

With the help of the simulation tool, designers can gain an insight into the relationship between
different DSLs and pay more attention to aspects which cannot be verified or validated in the desig-
nated timeframe. It supports DSL syntax check, object mapping, simulators generation regarding
DSLs, group communication simulation, functional simulation of the lighting control behaviour.

By using this tool, our implementation can parse DSL into identified attributes required by eval-
uation models. Furthermore, we can simulate the lighting control behaviour (LCB) in different
scenarios to get stochastic information representing the communication load, which is used for
latency evaluation. We will further introduce this simulation tool in chapter 7.

3.3 Problem Statement

In a lighting system, Things (e.g. luminaires, sensors) are often connected by restricted networks.
They implement task-engines that enable them to realise the lighting control behaviour (LCB)
specified by application specification as known as DSLs. A question raising researchers’ interest
is how to decide on the optimal deployment of the controller based on the information of the DSL
source codes and network configuration.

As a first step, it must be identified that what is an optimal deployment decision. In the Sys-
tem Overview, we have introduced the concept of “deployment” in this context. In the Related
Work, there is existing research about deploying applications onto IoT systems, which formalise
the property of application, infrastructure and the activity of deployment.

There is also research on finding an optimal decision, which is stated as a multi-objective op-
timisation problem (MOOP). General approaches are to find a decision belonging to a Pareto
frontier or a decision with optimal (maximum or minimum) score.

To select the optimal decision, we have introduced some criteria, metrics and evaluation methods
that can be used to calculate and compare different decisions. Then, we have introduced some
network models and the DSLs in the domain. What information can be extracted from them
as factors in QoS calculation is one of our interests. Furthermore, what information should be
provided beside DSL and network configuration is also an interesting aspect.

Though there is a lot of existing work which propose methodologies of deployment, they can-
not be directly applied in the lighting system due to the operational concept of LCB in Figure
3.1. In addition, evaluation methods for QoS cannot be directly applied as they should be aware
of the concept of LCB as well.

For resilience, some methodologies for identifying, analysing and evaluating it are introduced in
the Related Work, which supports most industrial applications and network reliability. However,

18 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 3. SYSTEM OVERVIEW AND PROBLEM STATEMENT

a quantitative evaluation method that considers network configuration, application specification,
and functional requirement of LCB (three views in the Figure 3.1) has not been done well.

The problems to be solved in this master thesis can be summarized as components in the flow
diagram in Figure 3.5. Colored blocks are problems solved in this work and explained in next
sections. As we have known the optimisation components in the decision-making matrix, we focus
on what are the decision-making process, the evaluation methods, the attributes from the input
and other influences or configurations. We intend to develop a deployment tooling that allows
users to manipulate some parameters and assist users to make deployment decisions.

Figure 3.5: Research questions in the flow diagram

QoS-Aware Deployment of Lighting Control Behaviors 19

Chapter 4

Formalization

In this chapter, we formally define the infrastructure, applications, deployment in lighting systems
by considering the aspects considered in work [9].

4.1 Infrastructure in Lighting Systems

The infrastructure in this context refers to Things and networks connecting them. We describe
the physical network by using a graph model (i.e. G=(V,E)), where V is a set of vertices denoting
hardware nodes (end-node devices) in a network and E is a set of edges representing communication
links between those nodes. We describe Things T as a set of physical devices with hardware
capability and functionality required by lighting control behaviour. Then a Infrastructure is a
4-tuple 〈 V, E, T, L 〉

• A network node n = 〈 i, q 〉 where i is its identifier, q is its network quality.

• An network link e is e = 〈 n1, n2, q 〉 where (n1, n2)∈(V×V) and q is the quality of the
communication link.

• A thing t = 〈 i, ty, H 〉, where i is its identifier, ty is its type and H is its hardware capacity.
The type is either an actuator or a sensor.

• l is the end-to-end communication between two t. l∈ L ⊆ {〈t1, t2, q 〉 | (t1, t2)∈(T×T) and
q is the quality of the communication between the two things }

Assuming each t from T is mapped to a n in V, then the l = 〈t1, t2, q 〉 is a combination of e
connects n1 and n2 directly or indirectly. And the q of the l is a combination of those q on those e.

Some observations result in the choices of attributes made above. First of all, identifiers are
needed to distinguish nodes as different physical nodes may be homogeneous at application level
(e.g. same application object in the application group). Types help distinguish nodes in aspect
of its functionality (e.g. sensors, luminaires or others). Hardware capability of a node decides if
the node is one of the alternatives to be deployed of the control function regarding its CPU and
memory. The quality profile can be the reliability or communication cost or other parameters
related to evaluation.

Second, we hide the type of communication technology (Zigbee, WiFi, and so on) described in the
host layer in OSI model, but abstract attributes from the media layers in the OSI model[28]. This
abstraction leaves a quality profile assigned to each communication link.

Third, the model does not deliberately bind to any particular standard for hardware and software
capabilities specification. The definition of hardware and communication links can be extended

20 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 4. FORMALIZATION

by additional attributes such as software capabilities (e.g. platforms) of the nodes and bandwidth
of links. Finally, the extension on augments in the definition is relevant to evaluation schemes and
stakeholders, which is not bounded to the mathematical model.

4.2 Lighting Control Behaviours

The lighting control behaviour (LCB) is an application consisting of several application compon-
ents. The components in LCB at the application level are logical objects, groups and the control
function, which have been discussed in 3. We define LCB as a 5-tuple = 〈 Γ, B, Λ, Θ 〉 where:

• Γ is a set of logical objects, each denoted by γ=〈 i, ty 〉 where i is the identifier and ty is
the type of things needed by the γ.

• Θ is a set of logical groups, each denoted by θ = 〈 i, Γ 〉. Each group is a aggregation of
logical sensors or logical actuators.

• B is a set of controllers, each b = 〈 i, H 〉 where i is the identifier and H is the hardware
capacity required for deploying controller. The requirement includes CPU and memory.

• Λ is a set of interactions between logical groups. An interaction λ = 〈 (θ1,θ2), in, out 〉
where (θ1,θ2)∈(Θ × Θ). in is an event triggering the interaction and out is an output from
the interaction.

Template DSL specifies the control logic which is the interaction Λ between sensor groups and
actuator groups. Control DSL specifies the application the controller B, components Γ and the
aggregation of Γ to Θ.

4.3 Deployments

We can remove this formalises the notion of deployment of control logic over a physical network.
Assuming all T are mapped to nodes in N, the deployment is to bind B to T. There are constraints
that an eligible deployment must meet.

• checks that hardware of the t satisfy the hardware requirement H of the b.

• ensuring that all logical objects Γ have been bound to T, and there is l connects each of the
γ to b.

4.4 QoS

In this section, we describe two QoS parameters that are latency and resilience as follows:

4.4.1 Latency

To compute the latency in this work, we used the latency evaluation scheme as discussed in
section 2 of chapter2. The computed latency is L = 〈 V, E, Γ, Λ, T, L 〉. It is the accumulation
of communication cost by nodes and links in the network. It requires that:

• For every sensor objects and actuator objects belonging to Γ, they should be bound to T
that have been bound to V.

• For each λ ∈ Λ, the interaction should be bound to a L where each l is a combination of
one or multiple e. The binding depends on the binding of logical objects to things, and the
combination depends on the routing of the network.

QoS-Aware Deployment of Lighting Control Behaviors 21

CHAPTER 4. FORMALIZATION

For attributes required by the calculation, node quality and link quality are attributes from the
physical network configuration. Things representing source and destination of communication
in the network are determined through the binding of logical objects and nodes in the network.
Furthermore, communication volume is obtained through the statistics of events in of λ happened
in selected scenarios.

4.4.2 Resilience

In our work, resilience evaluation depends on the combination of application components and the
quality of their bound Things as well as links. Similar to latency, resilience is F = 〈 V, E, Γ, T,
Θ, L 〉. The aggregation Γ of components can be used to describe the dependency of components
in the operational concept and failure conditions of LCB. The quality in Θ as well as L, which is
determined by V, E and deployment, can be used to describe the failures of Things and connects
which are the basics of the LCB.

22 QoS-Aware Deployment of Lighting Control Behaviors

Chapter 5

Deployment Decision Matrix

This chapter discuss the solutions to questions addressed in diagram in Figure 3.5 in Problem
Statement in chapter 3. Based on the diagram and the formalization in chapter 4, this chapter
explains the optimal decision as the output of the decision maker and proposes a decision-making
matrix including a decision making process and evaluation components.

Figure 5.1: Decision Making Process

QoS-Aware Deployment of Lighting Control Behaviors 23

CHAPTER 5. DEPLOYMENT DECISION MATRIX

5.1 Optimal Decision

One aspect (sub-criterion) of the service does not necessarily lead to a decision on deployment.
The decision depends on a comprehensive analysis considering all aspects of the service and user
preference. The user decides whether there is a priority level between different sub-criteria. If
there is, the user shall assign weights to every sub-criterion.

A final score based on the weighted sum of scores for all criteria will guide the decision-making
process. In this project, there is no weighting nor constraints on criteria given from the user. The
weights and constraints used in this project are not based on research but assumed. The aim is
to validate the correctness of the proposed process and evaluation components used in the process.

Without user preference, Pareto efficiency is a sufficient method to find optimal decision. In
this project, we focus on decisions belonging to the Pareto frontier, which are equally optimal but
would yield different performance to the lighting control behaviour.

5.2 Decision-making Process

Based on related work in chapter 2, we propose a model for the deployment decision-making pro-
cess shown in Figure 5.1 as an extension of the realization model in Figure 1.2. It guides the
deployment design cycle through the process including identifying inputs, evaluating alternatives,
comparison of solutions and selecting an optimal solution.

We divide the decision-making mdel into several components (sub-models) that are two inter-
preters, three criteria evaluation components and one optimal decision computing component:

• T0 and T1 are interpreters that extract attributes from the information provided by the
network configuration and DSL source code. They transfer this information into the required
input for the model.

• M0 validates if the capacity of any node meets the application requirement on this hard-
ware. This is used to restrict the number of alternatives from candidates in the network.
Furthermore, it helps to evaluate the extensibility of deployment concerning the application
utilisation ratio within the network.

• M1 and M2 together evaluate the timing performance. M1 estimates the communication
load among nodes in the network by executing control logic for selected scenarios (events
happening with time stamps). With this communication load and communication cost on
network paths, M2 calculates the end-to-end latency between each pair of sensor and actu-
ators as well as the synchronicity among the actuators.

• M3 evaluates the resilience (fault tolerance) of the application deployed. Based on the
hierarchy of objects declared in the DSL and the dependability of the network, it can evaluate
the dependability of the application this deployment.

• M4 defines the Pareto space for the deployment, scores every alternative deployment re-
garding its score on criteria and user preference, and then generates an optimal solution
satisfying all constraints and non-functional requirements.

Instead of implementing T1, we propose a naive network model offering attributes required by
the evaluation. The model is in form of a look-up table that is able to be filled qualities with
communication cost (latency), link dependability and other attributes. We will further explain
this point.

24 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 5. DEPLOYMENT DECISION MATRIX

5.3 Criteria

A decision making process for the deployment starts with identifying critical aspects of the service.

In this section, we define each criterion in the context of a lighting system and break down of these
into sub-components. We use sub-criteria for those sub-components, where each sub-criterion is
rated by its own metric. The weighted sum score of each sub-criterion reflects the the score of
actual criteria. The weighted sum will be introduced later.

In this project, the sub-criteria for latency are response time and synchronicity while the sub-
criteria for resilience are reliability and degradability. Their metrics are show in Table 5.1.

Besides latency and resilience shown in the table, the footprint of the control function on devices
is also a criteria, where the sub-criteria are CPU capability and memory capability. To simplify
the the question, we define the metrics is to compare the capability of devices with the requests
from control function. The result is either satisfaction or dissatisfaction, which are used to filter
deployment decisions instead of being considered in MOOP.

Criteria Sub-criteria Metrics
Response
time

End-to-end latency of the total chain.
(e.g. “press button” to “light on”)

Performance
(Latency) Synchronicity

Difference on message communication in groups.
(e.g. “the first light on” to “the last light on”)

Reliability The ability that the application runs without error.Resilience
(fault tolerant) Degradability The ability to handle errors until human intervention.

Table 5.1: Sub-criteria and Metrics for latency and resilience

QoS-Aware Deployment of Lighting Control Behaviors 25

Chapter 6

QoS Evaluation Methods

This chapter introduces the evaluation methods of latency and resilience that are components M2
and M3 aforementioned in chapter 5. The evaluation methods are originally proposed by existing
work cited in chapter 2, but we adapt them to fit the lighting system based on the definition in
chapter 4 and metrics selected in chapter 5.

Also, we introduce the assumption on device capacity, network model and communication load,
which are components M0, M1, and T1 for the use of evaluation methods.

6.1 Assumption

In this section, we introduce the assumption we make on hardware capacity, communication load
and the network model converted from network configuration.

6.1.1 Hardware Capacity

CPU and Memory capacity of a device should meet the hardware requirement of control function
before it to be deployed. If both capacities meet the requirements, a node is one of the altern-
atives for deployment. In the other case, it will not be processed in further evaluation to reduce
computation load.

6.1.2 Communication Load

The number of packets transmitted or received for each message is not equal among sensors and
actuators. It would cause different latency for messages with different loads travelling on the same
path. Therefore, communication load is one of the attributes in latency evaluation. Predefined
configuration and distribution of events in a scenario can yield different communication load among
devices. We assume the communication load in the latency evaluation is given and constant.

6.1.3 Naive Network Model

Since we focus on end-to-end connections, we need a network model providing the quality of com-
munication links between any two end-nodes in the network. In this project, we use a look-up
table (LUT) based network model to provide attributes required by the latency evaluation and
resilience evaluation. The attributes stored in the lookup table can represent communication cost,
link dependability and other qualities. The weights represent the quality of connectivity influ-
enced by network configuration listed in chapter 2. Information stored in the naive model can be
extracted from a more complicated model that is not considered in this work.

Table6.1 gives an example showing a naive network model with given routing, weights on links,

26 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 6. QOS EVALUATION METHODS

the identity of nodes and the type of each node. In the example, we distinguish the upload links
and download links, which includes the case where these are identical. A lookup table is built
regarding the network. Nodes listed in the row are the source of messages while those listed in the
column are the destination of messages. We can observe that the communication cost from node
1 to node 3 is different to the other way round. Node identity of sensors and actuators should
also be provided along the LUT.

Figure 6.1: Network naive model: 4 nodes

Latency node 1 node 2 node 3 node 4
node 1 0 3 1 2
node 2 3 0 1 2
node 3 2 2 0 1
node 4 3 3 1 0

Table 6.1: Latency between two end nodes LUT

6.2 Latency

Referring to the definition in [1], latency is the end-to-end delay from the a sensor in a sensor
group to the an actuator in an actuator group. Some examples are given on page 102 in OpenAIS
D2.7[1], one of which we have discussed in Related Work

Factors in this functions are the number of hops on a network route, bandwidth, physical link
quality and node computation power that are attributes assigned to nodes and links in the net-
work model. Source and destination of the route and communication volume can be derived from
template DSL and the selected scenario.

The evaluation function is the accumulation of all attributes on the route from source to destin-
ation. The result of the latency evaluation function must satisfy the non-functional requirements
as following:

Csi Csci Cai Caci Msi Mai

Communication
cost by sensor i.

Cost by
the connect
to sensor i.

Cost by
actuator i.

Cost by
the connect
to actuator i.

Message load
of sensor i.

Message load
of actuator i.

Table 6.2: Communication Cost Symbols

• The latency from sensor 1 to the controller: Ls1 = (Cs1 + Csc1) ∗Ms1

• The latency from the controller to the actuator 1: La1 = (Ca1 + Cac1) ∗Ma1

QoS-Aware Deployment of Lighting Control Behaviors 27

CHAPTER 6. QOS EVALUATION METHODS

Response time

We consider the response time on the critical path. It is the sum of the longest path from sensors
to the controller and the longest from the controller to actuators. The response time depends on
the allocation of Things on the network, the communication cost on path and

The critical response time: LRsp = MAX(Ls1 , ...Lsn) +MAX(La1 , ...Lan)

Synchronicity

We consider the difference between the longest path and shortest path among actuators belonging
to a group. The lower the difference obtained, the higher the synchronicity is.

The synchronicity: LSyn = MAX(La1 , ...Lan)−MIN(La1 , ...Lan)

6.3 Resilience

The network in a lighting system can be considered to be built up from two layers, where the
physical network is considered to be the under-layer network while the logical objects constitute
the upper-layer network. We analyse the resilience of an application given the logical (upper)
layer, where attributes are based on the configuration of the physical network. Some work has
been done on analysis of dependability or fault tolerance of physical networks. We are focusing
on the logical network that is defined by DSL, allocation and network configuration. Regarding
the comparison and discussion in Related Work, we make the following decisions on assumptions
of the problem space and measures of the resilience.:

• Fault: arbitrary permanent failures on components.

• System response: degradation of performance

• Analysis Methods: failure tree analysis for evaluation

• Evaluation Indicators: mean time to start degradation on service and the mean time to the
moment when no function in the service works

• Improving technique: redundancy on control function with distributed control scope.

[23] has introduced the definition and calculation of dependability regarding availability and
reliability. It also addresses the relationship among dependability, failure probability and means
time to failure (MTTF). Based on its research, we have the following definition:

• D(t) = 1 - F(t), D(t) represents the probability of the application delivering correct service
without failure in a time interval (0, t], which also reflect the dependability of the lighting
control behaviour in this context. F(t) is the cumulative distribution function of failures.
They are probabilities with values between 0 and 1.

• The smaller the F(t), the longer the application operating without failure and the better the
performance on resilience.

• For simplicity, we use D and F instead of D(t) and F(t) when there is a give t. We will define
the t before starting calculations.

We select two moments mentioned in Chapter 2 to indicate the performance on resilience: the
moment when the system changes from a reliable state to unreliable state and the moment when
the system changes from the unreliable state. By considering the concept MTTF, we name the
first moment as “time to degrade” and the second moment as “time to disrupt” In this section,
we explain how to generate an FTA based on the DSL’ specification and the naive network model
to evaluate the two moments (two sub-criteria)

28 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 6. QOS EVALUATION METHODS

6.3.1 Failure Condition of Lighting Control Behaviour

The failure condition for Lighting Control Behavior (LCB) defines which combination of compon-
ents may lead to further failure. In this methodology, we support any combination that can be
expressed using boolean operators (i.e. AND, OR). The failure condition associated with logical
objects obj i is defined as group i. The cause of logical objects failure will be described in the next
section. A combination of logical objects lead to a group object failure defined as group n, where
n is the identification of combination and is represented by the boolean AND of the failure

Figure 6.2: Application Failure Condition

6.3.2 Failure Condition of Group Object

Regarding the Operation Concept introduced before, the control function interacts through group
objects instead of each application objects individually instead of each application object. A group
object is operational as long as there is an application object belonging to the group operates. Ac-
cording to the operational concept, the application objects are identical to the group objects. That
is, from the perspective of the controller, sensors (or actuators) are homogeneous on operation
when they are mapped to the same group. Objects mapped to the same group are homogeneous
and thus redundant to each other.

In the proposed model, components are based on the failure event. The boolean AND repres-
ents the failure event of a group object whereas a basic failure event represents the failure of an
application object.

6.3.3 Failure Condition of Application Object

After obtaining expression of the control behaviour failure condition, it is necessary to define the
conditions that may lead to the failure of control behaviour. We consider two possibilities for an
application object failure:

• Node Failure: Hardware malfunction or software crash. The device cannot provide service
as a sensor or actuator.

• Connectivity failure: There is no path between the object allocated node and the controller.

In the latter case, though the application itself does not fail, it is considered non-operational
from a network perspective because it is no longer possible to communicate with the node. As
aforementioned, the failure condition of an application object is split into two parts involving
hardware and connectivity problems, where the latter is more dependent on the deployment of
the control function. If a node along the path fails, the network may have required mechanisms to
reconfigure itself to use other paths. Self-healing routing protocols do this type of reconfiguration,
and similar mechanisms have been introduced in chapter 2.

QoS-Aware Deployment of Lighting Control Behaviors 29

CHAPTER 6. QOS EVALUATION METHODS

6.3.4 Construct the Fault Tree

We will use an example to describe constructing based on the DSLs and the network model from
the top to down deductively. Consider the DSLs and the network model in Figure6.3.

1. The Template DSL specifies the control logic. One transition requires sensor group 1 and
actuator group 1 (luminaire group 1) whereas the other requires sensor group 2 and actuator
group 2. The application failure is a combination, expressed using OR, of logical groups and
the controller.

2. Control DSL specifies the mapping relationship between physical thing given by Building
DSL and logical groups. The network model provides the dependability represented by
failure probability of every node and the end-to-end communication between two nodes.
The failure of a group objects is represented by the boolean AND of the failure condition of
logical objects.

3. As mentioned before, the failure of a logical application object can be caused by two pos-
sibilities that the hardware failure or the connectivity failure. We use OR to represent the
failure condition of a logical object. The failure happened on the physical device or con-
nectivity is the basic event in the FTA, where the naive network model provides the means
of a cumulative distribution function. The failure of a controller object is only due to the
failure of the physical controller as there is no connectivity needed.

Figure 6.3: DSL and Network Model used by constructing FTA

Figure 6.4 shows the combination of events in LCB. The basic events at the bottom of the tree are
failures of Things, and their connects to the controller. The events depending on those are failures
of the logical objects bound to the Things. Events at the upper layer are the failures of groups
where those logical objects aggregate. The top event is the failure of the application representing
the disruption of LCB. The boolean equation describing the event in FTA can be converted to
CDF for calculating the failure probability. The equations are shown as following

Fs 1 Fsc 1 Fctrl Fa 1 Fac 1

F
of sensor 1

F
of sensor
connectivity 1

F of
the controller

F of
actuator 1

F
of actuator
connectivity 1

Table 6.3: Failure Symbols

• F of a logical sensor object: Fsobj1 = 1− (1− FS1) ∗ (1− Fsc1)

30 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 6. QOS EVALUATION METHODS

Figure 6.4: Failure Tree Analysis, single controller

• F of a sensor group object: FSG1
=

∏n
i=1 Fsobji

• F of the lighting control behavior: Fservice = 1−
∏2

i=1(1− FSGi
) ∗

∏2
i=1(1− FLGi

) ∗ FCtrl

6.3.5 Duplication, Redundancy

We have introduced redundancy as a technique to achieve fault tolerance (lowering failure probab-
ility of the control application). In lighting systems, we adapt redundancy technique by duplicating
controllers and distributing actuators to control the scope of each controller whereas they share
common sensors. Those controllers are identical and independent units working in parallel and
that a single unit is capable of supplying the required service. If a controller fails, actuators belong
to the control scope, which connected to the controller, will not act while the rest of the actuators
continue.

A simple example of a fault tree with duplicated controllers is illustrated in Figure 6.5. The
tree with duplicated controllers is constructed based on the tree with a single controller. The
difference is that two more conditions representing the failure of control scope are added to the
tree. The failure of the application is a combination of the failures of sensor groups and the control
scopes. The failure of a controlled scope is a combination of its controller and actuators controlled
by the controller. The CDF converted from the FTA are as follows:

• F of the control scope 1: FCtrlSP1
= 1−

∏2
i=1(1− FLGi

) ∗ FCtrl1

• F of the control scope 2: FCtrlSP1
= 1−

∏4
i=3(1− FLGi

) ∗ FCtrl2

• F of the total control scope: FCtrlSP =
∏2

i=1 FCtrlSpi

• F of the lighting control behavior:Fservice = 1−
∏2

i=1(1− FSGi
) ∗ (1− FCtrlSP)

6.3.6 Resilience Indicators

We have identified the problem space in the lighting system (self-healing system), where faults are
permanent, and the system degrades its performance. Since the system recovery mechanism is not
in our consideration, we focus on the “reliable state”, “unreliable state” and “disrupted state” of
the lighting control behaviour. The mean time from “reliable state” to “unreliable state” as well

QoS-Aware Deployment of Lighting Control Behaviors 31

CHAPTER 6. QOS EVALUATION METHODS

Figure 6.5: Failure Tree Analysis, duplicated controller

as the mean time from “unreliable state” to “disrupted state” are sub-criteria for the resilience.
Failure probability can be converted to represent the two meantime in this context.

Time to degrade

We use Td to represent the moment when a failure occurs after a continuous time without fault of
any application component in the workflow. After Td, the performance of service starts to degrade.

Referring to FTA, the performance starts to degrade when there is a basic failure event hap-
pens. Failure probability of this condition: Fdegrade = 1 −

∏n
i=1(1 − FSn

) ∗
∏m

i=1(1 − FA) ∗∏n
i=1(1− FSCn

) ∗
∏m

i=1(1− FACm
) ∗ FCtrl

Time to disrupt

We use Tb to represent the moment when the service cannot be degraded anymore regarding the
severity of service.

Referring to FTA, the performance starts to disrupt when the TOP event happens. Failure
probability of this condition: Fdisrupt is the probability of the top event described by the FTA,
which depends on the failure of logical groups.

32 QoS-Aware Deployment of Lighting Control Behaviors

Chapter 7

Implementation

This chapter introduces the implementation of deployment tooling. It includes deployment DSL,
latency evaluation component, resilience evaluation component on the cosim platform and MOOP
on matlab.

To assist the decision-making process, the tool has to include the following capabilities:

• gets the configuration of the network and specifications of the DSL as input.

• validates the capabilities of candidates for the deployment.

• generates and evaluate the performance and resilience result from all validated deployment
candidates.

• compares evaluation of deployments and deliver the proposed one to users

7.1 Solution

Our solution is an Eclipse-based software application. Users of the tool have to only provide net-
work configuration and some domain knowledge. The network configuration is provided in a form
of lookup table concerning the quality of nodes and links among them. The domain knowledge
includes control behaviour, object mapping and building topology.

This chapter will introduce the implementation of each component from the model proposed.
The implementation concerns interfaces, algorithms and the platform

7.1.1 Algorithms

This section introduces the algorithms used in the implementation. They include the validation
of node capacity among deployment candidates, critical latency calculation, maximum differential
latency (synchronicity) and failure probability representing the meantime to disruption of the
lighting control behaviour.

Node Capacity Validation

The input of the Algorithm1 is the set of nodes N and the profile of the controller. Only if both
the CPU and memory provided by the nodes are greater than those required by the controller,
the node becomes one of the deployment candidates.

QoS-Aware Deployment of Lighting Control Behaviors 33

CHAPTER 7. IMPLEMENTATION

Algorithm 1: Capacity Validation

Input: N, controller
Output: VN Validated Nodes

1 for each node in N do ;
2 if node.CPU > Controller.CPU then ;
3 if node.mem > Controller.mem then ;
4 VN.insert(node) ;
5 return VN ;

Latency

LSC is the set of latency from sensors to the controller while LAC is the set of latency from the
controller to every actuators. The critical latency is the sum of the maximum values from both
sets. The maximum differential latency (synchronicity) is the difference between the maximum
and the minimum of LAC where the actuators belong to a same actuator group. AG is the set of
actuator groups. LSY N is the set of Lsyn.

Algorithm 2: Latency Critical Latency

Input: LSC , LAC

Output: Response time
1 Lrsp = max(LSC) + max(LAC) ;
2 return Lrsp ;

Algorithm 3: Latency Differential Latency

Input: LAC , AG
Output: Max Differential Latency

1 for each ag in AG do ;
2 LSY N = max(LAC) - min(LAC) ;
3 LSY N .insert(Lsyn);
4 return max(LSY N) ;

Resilience

There are two types of failure of the lighting control behaviour where the failure probability of
degradation (mean time to degradation) is the product of everything and connects that are shown
on a network view while failure probability of disruption (mean time to disruption) is shown in
Algorithm4.

The input of Algorithm4 is the information of sensor groups (SG), actuator groups (AG), sensor
logical objects (Ss), actuator logical objects (As) and the failure probability of the controller. The
output is the failure probability of lighting control behaviour. According to the hierarchy of FTA
and computation rule of the logical gate, the algorithm calculates the failure probability of each
logical groups and the combination of them.

The Algorithm5 calculate the failure probability when there are duplicated controllers connec-
ted to the lighting control behaviour. It calculates the failure probability of each controller and
its control scope. Then it calculates the failure probability of the lighting control behaviour based
on the control scope and sensor groups.

34 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 7. IMPLEMENTATION

Algorithm 4: Failure Probability of Disruption (Mean Time to Disruption)

Input: SG, AG, Ss, As, cs
Output: Fdisrupt

1 for each sg in SG do ;
2 for each in SG do ;
3 if ss belongsto sg then ;
4 Fsg.multiply(Fss) ;
5 DSG.multiply(1 - Fsg) ;
6 for each sg in SG do ;
7 for each in SG do ;
8 if ss belongsto sg then ;
9 Fsg.multiply(Fss) ;

10 DSG.multiply(1 - Fsg) ;
11 Ddisrupt = DSG * DAG * Dcs ;
12 return Fdisrupt = 1 - Ddisrupt ;

Algorithm 5: Failure Probability of Disruption (Mean Time to Disruption) with
duplicated controllers

Input: SG, AG, Ss, As, cs
Output: Fdisrupt

1 for each sg in SG do ;
2 for each in SG do ;
3 if ss belongsto sg then ;
4 Fsg.multiply(Fss) ;
5 DSG.multiply(1 - Fsg) ;
6 for each scp in Scope do ;
7 for each AG belongto scp do ;
8 for each ag in AG do ;
9 for each as in AS do ;

10 if as belongsto ag then ;
11 agf.multiply(asf) ;
12 DAG.multiply(1 - Fsg) ;
13 scpD = Dcs*DAG;
14 F(ControLSCope) = product of each control scope;
15 Ddisrupt = DSG * D(ControLSCope) ;
16 return Fdisrupt = 1 - Ddisrupt ;

QoS-Aware Deployment of Lighting Control Behaviors 35

CHAPTER 7. IMPLEMENTATION

7.2 Implementing Languages

Since the programming language we use is Java, we develop the DSL in Xtext which has an ad-
vanced Java integration. Xtext is a framework for the development of programming languages
and domain-specific languages. It covers all aspects of a complete language infrastructure, from
parsers, linker, compiler or interpreter to Eclipse IDE integration.

[4] explains how DSL is defined and used and that is illustrated in Figure 7.1. DSL infrastructure
is constructed in a meta-model workplace where the syntax and code transformation is defined.
Shown in the upper part of Figure7.1, A DSL implementation starts by defining the concrete
syntax, Then the Xtext framework is used to generate a parser, an Ecore-based metamodel[4] and
a textual editor for Eclipse. The Ecore-based metamodel represents the Abstract Syntax, and the
textual editor is using for Textual Input in Figure7.1. Not only the syntax but also transformation
is defined in the meta-level workplace. Generated Code (Java in our project) of an instance is
generated in the instance-level.

In our implementation, we focus on the concrete syntax (.xtex), code generation (.xtend), tex-
tual input(.deploymentDSL) and generated code (.Java) in the the Figure 7.1 that shows the
transformation of the implementation work.

Figure 7.1: DSL Framework[4]

7.3 Cosim and Existing Work

We have introduced following DSLs in this thesis:

• Building DSL, to specify a building and its properties including the geometry and location
of sensors as well as actuators in the building.

• Template DSL, to specify light behaviour consisting of state machines, transitions, actions
and related logical objects.

36 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 7. IMPLEMENTATION

• Control DSL, to specify control behaviours by mapping logical objects to devices in the
building (Building DSL).

Using these languages helps one develops models that represent an abstract model of a building
and its commissioned lighting control behaviour. When this abstract model has been created,
it can be used to generate artefacts for many different goals, one of which is the creation of a
co-simulation environment for which simulators for sensors, controllers and so on are generated.

7.3.1 Cosim Architecture

TNO-ESI has developed a simulation toolchain called co-simulation framework for simulating and
verifying functional behaviour. It can simulate the behaviour of many nodes in any given building
layout. Also, it is integrated into a framework allowing: scenario playing and logging, visualisation,
integration with network model and extension to energy usage prediction. A Java implementation
of the Co-sim framework is used as the simulation environment. The co-simulation environment
consists of two parts shown in B.1:

• The Cosim framework that provides the timing and PublishSubscribe services to connec-
ted simulators. The framework forms the static part of the simulation environment and is
used for each abstract lighting system model.

• Simulators that interact with the co-simulation framework through publishing messages
and being notified by messages they subscribed. A number of the simulators has been
created and instantiated:

– A sensor simulator for each sensor

– An actuator simulator for each actuator.

– A sensor group simulator for each sensor group

– An actuator group simulator for each actuator group

– A controller simulator for each controller.

Figure 7.2: co-simulation environment

7.3.2 Simulator Generation

A transformation component, shown as T in figure7.3, has created that uses the abstract model
DSL to generate required simulators to simulate the behaviour of the modelled lighting system.

The transformation T has to be developed only once, but can be applied to any Lighting System
abstract model.

Such DSLs as Building DSL, Template DSL and Control DSL is essential for the generation

QoS-Aware Deployment of Lighting Control Behaviors 37

CHAPTER 7. IMPLEMENTATION

of simulators. Building model provides a runtime for the building DSL, same in the cases of
Template DSL and Control DSL. The transformation T has to be developed only once and can
be applied to any Lighting System abstract model

In Cosim, Building DSL, Template DSL and Control DSL are textual input at Instance level
shown in 7.1. The syntax is defined by xtext file and the transformation(T) is defined in xtend
file. The generated simulator are Java file.

Figure 7.3: Generating simulators from an abstract Lighting System model

7.4 Implementation

In this section, we will introduce the implementation of the proposed decision-making process
including evaluation components in CoSim and multi-objective optimisation in Matlab. We have
done some extensions on co-simulation environment which are listed in Table 7.1.

Extension Work File Type Short Description
Deployment DSL syntax .xtext node functionality define; node capacity configure
Deployment Validation .xtend functionality duplication check; node capacity check

Pub/sub messages on Cosim .Java
retrieve NodeID from DSL;
add nodeID as an augment to published messages

Communication Monitor Simulator .Java
counter messages published by
sensors and subscribed by actuators

Latency Evaluation .Java
naive network model (with communication cost);
evaluate latency regarding network model,
messages counter and deployment

Resilience Analyzer Dynamic .xtend
retrieve system structure from DSL to
generate fault tree

Resilience Analyzer Static .Java
naive network model (with dependability);
evaluate dependability regarding network
model, FTA and deployment

Pareto .matlab
score performance find Pareto frontier from
deployment alternatives

Weighted Sum .matlab
assign weight (user preference) to criteria
and determine the optimal deployment

Duplication and Resilience .matlab
calculate the failure probability when there are
multiple controllers

Table 7.1: Implementation Work in This Project

38 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 7. IMPLEMENTATION

7.4.1 Deployment DSL and node capacity check

To integrate the deployment, we design a simple deployment DSL. The simple deployment DSL is
at Instance level of DSL structure in Figure7.1 that denote Functionalities and capacities of each
node. Functionalities are presented by the name of sensors and luminaires defined by building
DSL. Capacities are CPU and Memory which is used to validate if the node is capable of deploy-
ment. Control DSL defines the name and requirement on capacities of the controller.

The syntax used in capacity validation and node functionality assignment are defined in de-
ployment.xtext File. It checks if the user deploys the functionality on nodes with the correct
name. It also checks if the node to be chosen has enough CPU as well as Memory.

The translation syntax is defined in deploymentGenerate.xtend. Every generated luminaire
and sensor simulator is assigned the nodeID regarding deployment.dsl. Evaluation simulator is
aware of this information.

The result capacity validation reminds the user of the compatibility before generating simulat-
ors. It makes sure that all nodes processed later don’t have the problems on compatibility. Hence
it reduces unnecessary computation.

7.4.2 Latency Evaluation

There are two components in the latency evaluation, which are message estimation and latency
evaluation. The interaction style of Cosim is Publish/subscriber. By counting the number of the
messages published by sensors and it subscribed by actuators, we can record the network load
with given lighting control behaviour and scenario. Applying a typical scenario, we can estimate
the communication load yield by the control logic and the use of the building.

The next component is used to calculate the critical latency and the maximum differential latency,
which are described in the last chapter. The algorithms are shown below.

The differential value between departure time and arrival time is determined by the weights
provided by network LUT.

7.4.3 Resilience Evaluation

As introduced in the evaluation design, FTA and CDF are used to calculate the probability of
failure of lighting control behaviour. We have introduced the combination of event based on the
property of the operational concept of lighting control behaviour and the generation of CDF from
FTA description.

In the resilience evaluation component, following the rule of FTA and specification of control
DSL, the order of CDF is generated. The value of each variable in the CDF is assigned referring
to the weight in the network configuration LUT.

7.4.4 Multi-objective Optimization

The multi-objective optimisation can be divided into two components that are the Pareto Frontier
component and Weighted Sum component. The former works as a filter selecting the non-dominant
set while the latter according to user’s preference computing the optimal solution.

The inputs of Pareto are quality profiles of each deployment decision. The quality profiles contain
the evaluation result of each criterion that lies in four dimensions. By comparing every nodes’
quality profiles, the Pareto components output the Pareto Frontier (non-dominant set) where each

QoS-Aware Deployment of Lighting Control Behaviors 39

CHAPTER 7. IMPLEMENTATION

Figure 7.4: Resilience Analyzer Simulator UML

deployment decision is equivalent optimal.

By assigning weight to each quality profile, the evaluation component outputs the decision that
yields the most fitting performance.

7.4.5 Message Types

All simulators on Cosim interact through publishing and subscribing messages, names of the
message are extended when there are new simulators connected to the Cosim, or there is new
topic created.

7.4.6 All Simulators

Our implementation work is integrated with existing work regarding the model in Figure7.5. The
user decides the deployment of the controller and denotes the binding of Things to the controller
through Deployment DSL. The translator generates augments (i.e. node identity) that are used
by simulators. Network configuration is stored in the “Resilience Analyzer” and “Performance
Analyzer”, which are M1 and M3. Though network topology, routing and link quality and the
binding are constant, different deployment decision would yield different paths from the node,
where the controller is, to nodes, where Things are.

The MOOP components use the evaluation results calculated by the two evaluation components
in Matlab. It compares results yield by all eligible deployments and outputs optimal decisions.

40 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 7. IMPLEMENTATION

Figure 7.5: All simulators and test plan

QoS-Aware Deployment of Lighting Control Behaviors 41

Chapter 8

Experiments and Results

This chapter introduces two types of experiment that are optimal decision generation and resili-
ence with the distributed controller. The former is to verify if the proposed evaluation methods
can evaluate decisions and if the tool can find the optimal decision. The latter aims at further
testing the output from FTA by observing the influence of distributed control on system resilience

We use two sections to introduce the experiments and analyse the results respectively. This
chapter explains the experimental methods that were to compare the generated deployment de-
cision from designed decision maker with the manual deployment decision from domain expert as
well as to evaluate the FTA.

Our main goal is to highlight some of the capabilities of the proposed methodology including
being aware of application specification, network configuration, scenarios, and QoS requirements.

8.1 Experiment One – Optimal Decision Generation

This experiment is to verify the methodology proposed in this paper which is to compare the QoS
of different deployment decision and to find the optimal one. To validate if the tool is aware of the
network configuration and able to evaluate as well as compare QoS yield by different decisions,
we used different network configuration to test with and compare the generated decision with
the benchmark. In this section, we will introduce the process of this test, the input material,
the benchmark, the platform. Also, we will present some results obtained to compare with the
benchmark.

8.1.1 Test Setup

The test setup is shown in Figure 8.1. The input is an abstract model specifying the lighting con-
trol behaviour, a scenario describing the events, a network model and deployment DSL designed in
this project. Those model are transformed to simulators on the Cosim platform. By executing the
simulation and evaluation, QoSs of a deployment decision is obtained. After executing the process
iteratively with different deployment decision each time, containing QoS of all available deploy-
ment decisions are recorded in a table. Then this table is transferred to the MOOP component
on Matlab. The component generates a Pareto frontier set first and then output the optimal one
from the set considering the user preference.

In the experiment, we focus on that which deployment decision belongs to the Pareto frontier
in different network configurations with a fixed abstract model and scenario.

42 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.1: Test setup

8.1.2 Abstract Model

We will introduce the building described by building DSL, the control logic specified by Template
DSL, object mapping specified by Control DSL, and events described by scenario DSL.

Things and the Building

In this experiment, a “thing” is either a sensor or a luminaire, and there are two types of sensor
that are occupancy and button. There are ten Things which are four occupancy sensor, two
buttons and four luminaires. The overview of the building is visualised in the Figure8.2.

Figure 8.2: Things in the Building

Control Function

We use one control function in this experiment that is specified by a template DSL. Its control
logic (state machine) is attached to the appendix. It has such property

• It requires two sensor groups Occupancy sensors and Button sensors.

• It requires two actuator groups Window luminaires and corridor luminaires.

• five states that “StateOff”, “StateOn”, “StateHold”, “StateManualVacant” and “StateM-
anualOccupied”.

The idle state is “StateOff”, it will turns “StateOn” when occupancy is detected or “StateManu-
alOccupied” when switching on the button. It will become “StateHold” when vacant is detected
or “StateManualVacant” when switching off the button. The details of the state machine can be
found in the appendix.

QoS-Aware Deployment of Lighting Control Behaviors 43

CHAPTER 8. EXPERIMENTS AND RESULTS

Object Mapping

The control DSL maps Things in the building to logical groups required by the control function.
Shown in the Figure8.3, there are four groups, where one is a fat group containing four sensors.

Figure 8.3: Object Mapping

Events Schedule

We use one scenario file denoting the event happened in the building on every sensor. We assume
that the scenario file describes a typical use case in the room in the building. It should be noticed
that the number of events happened on sensor four is greater than it on any other sensors, which
would yield a certain message ratio between devices.

Figure 8.4: Events Schedule

44 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 8. EXPERIMENTS AND RESULTS

8.1.3 Network Model

In this experiment, we assume that every network nodes are “things” in the building DSL, which
means each node is a sensor or actuator, and there are ten nodes in a network. We test star
networks and cluster networks, their topology are shown in Figure8.5 and Figure8.6.

By assigning weights, which represent link qualities, on each link, we can generate a commu-
nication LUT storing all qualities for every end-to-end path.

(a) 2 clusters, 2 gateway (b) 3 clusters, 3 gateway (c) 4 clusters, 4 gateway

Figure 8.5: Cluster Networks

(a) hub on node 0 (b) hub on node 1 (c) hub on node 2

Figure 8.6: Star Networks

8.1.4 Parameter Selection

Referring to OpenAIS2.7[1], the communication cost for the transmission of a packet depends on
the packet length, duty cycling, bandwidth, efficiency of encryption and decryption, and so on.
The document gives some examples on calculating the end-to-end communication cost consider-
ing all those factors. In one of those examples, the communication cost of a packet for one hop
distance approximates 9 milliseconds, which is used as the parameter in our experiment.

OpenAIS4.2[2] offers a table showing the occupancy ranking of failures and corresponding failure
probability. We assign parameters representing the failure probability from the table in Figure
8.7.

8.1.5 Benchmark

Current deployment decisions at Signify are based on guideline and heuristics accumulated over
time that includes factors like a number of node per gateway, layout of the network, distances
between nodes and gateways. Over time a multitude of guidelines for the various systems has
been developed to support the deployment. Yet personal and regional practice may still differ

QoS-Aware Deployment of Lighting Control Behaviors 45

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.7: Failure probability values defined in OpenAIS[2]

somewhat.

Examples of deployment used are fully distributed with each control function having a controlled
scope of a single actuator, fully centralized with a single control function deployed to a clearly
identified gateway, which connects several, and a combination with a central control deployment
per area, in which the control is being deployed to one of the luminaires (quite randomly selected).

8.1.6 Experiment

We have two trials for the experiment. In the first trial, we assign identical weights including
communication cost and failure probability on every links and node. In the second trial, we assign
failure probability representing “low”, “media”, “high” failure modes in Figure 8.7 randomly on
links, and repeat the experiment 8 times, then compare the deviation of deployment decision with
results from the first trial.

First Trial – Identical Link Quality and Node Quality

For every star network in Figure 8.6, deploying the controller on the hub (center) yield minimized
Lrsp , Lsyn , Fdegrade, Fdisrupt.

Deployment decisions on cluster networks are shown in Figure 8.1. The analysis of the result
is as following:

• Though the 2 clusters are symmetric to each other in Figure 8.5a, decisions on node one
yield less Lrsp, as node 1 is closer to node 3, which is sensor 4 transmitting more messages
due to the scenario in Figure 8.4

• In 3-clusters network, node 2 is closer to node 3, so that the decision on node 2 would yield
a minimum Lrsp.

• In the 4-clusters network, though there is no communication cost between the sensor 4 and
controller as they are allocated on the same Thing. The critical path is from a sensor in
another cluster through this controller to an actuator in another cluster.

Second Trial – Random Link Quality and Identical Node Quality

In the second trial, the communication cost of links keeps identical while the failure probability
on links is randomly assigned. The hub in a star network is the optimal decision which yields
minimum failure probability.

46 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 8. EXPERIMENTS AND RESULTS

Cluster Networks
2 clusters 3 clusters 4 cluster

Min Lrsp Node 1. Node 2. Node 0, 1, 2, 3.
Min Lsyn Node 0, 1. Node 0, 1, 2. Node 0, 1, 2, 3.
Min Fdegrade Node 0, 1. Node 2. Node 0, 1.
Min Fdisrupt Node 0, 1. Node 0, 1. Node 0, 1.
gateway ? Yes Yes Yes

Table 8.1: decisions on cluster networks with identical weights

There are some deviations in the results for the cluster network. In a case of the 3 cluster
network, where the links sub-cluster network has higher failure probability, decisions on node two
would not yield an optimal failure probability.

Cluster Networks
2 clusters 3 clusters 4 cluster

Min Fdegrade Node 0, 1. Node 0. Node 0, 1.
Min Fdisrupt Node 0, 1. Node 1. Node 1.
gateway? Yes Yes Yes

Table 8.2: decisions on cluster networks with random link quality and identical node quality

8.1.7 Performance of Different Decisions

In this section, we study a case from the second trial of the experiment, where links have random
failure probability and same communication cost. The communication cost for one packet on one
hop is nine milliseconds where the failure probabilities are shown in Figure 8.8 Assuming nine
nodes all satisfy the hardware requirement, there are 9 decisions in the network. We compare the
nodes representing gateways with the other two nodes. The QoS calculation result are shown in
the table 8.3. Decisions on gateways, such as node 0, 1, 2, 3, yield equal Lrsp and Lsyn that are
smaller than those yield by decisions on node 4 and node 5. The decision on node 0 yields the
minimum Fdegrade and the decision on node 1 yields the minimum Fdisrupt. Node 0 and node 1
are gateways connecting more nodes compared with node 2 and 3.

Decision node 0 node 1 node 2 node 3 node 4 node 5
Fdegrade 0.1207 0.1287 0.1740 0.1277 0.2397 0.1479
Fdisrupt 0.006024 0.006008 0.007211 0.006122 0.007528 0.006256
Lrsp (ms) 180.0 180.0 180.0 180.0 288.0 288.0
Lsyn (ms) 144.0 144.0 144.0 144.0 216.0 216.0

Table 8.3: Decisions in the 4-clusters network and their QoS

QoS-Aware Deployment of Lighting Control Behaviors 47

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.8: 4 Cluster random failure probability on links

8.2 Experiment Two – Distribution and Resilience

This experiment aims at observing the relationship between duplication level and resilience of
the lighting control behaviour This experiment aims at observing the influence of distributed
deployment (duplication in this context) on the resilience of the system that is the two types of
failure probability of the lighting control behaviour.

8.2.1 Assumption for the Experiments

To exclude the influence of deployment, which is the allocation of the control function, we assume
that reliability of each link in the network is ideal (∀links, Flink=0). With this assumption,
connects from a controller to every device are ideal. So that, referring to the FTA, the failure
condition of each logical objects depends only on its device. Hence, in this experiment, the two
types of failure probability depend on the failure probability of devices and their combination.

8.2.2 Setup

This experiment is done in Matlab. There are 12 things in this experiment, where four Things are
sensors and eight Things are luminaires. The distribution is shown in Figure8.9. In a centralised
deployment, every sensor groups have two sensors, and every actuator groups have two actuat-
ors. In a distributed deployment with two controllers, every actuator groups have fewer actuators
compared with those in the centralised deployment.

In this experiment, we calculate the Fdegrade and Fdisrupt based on CDF when there one, two,
three, four controllers in the deployment.

Figure 8.9: Distribution Test

48 QoS-Aware Deployment of Lighting Control Behaviors

CHAPTER 8. EXPERIMENTS AND RESULTS

8.2.3 Deployment Network

Firstly Assuming the failure probability of each link is 0, the failure probability of any end-to-end
connect (any path) is 0. Thus, referring to the FTA, the failure condition of each logical object
equals the condition of the device. Secondly Assuming the failure probability of the controller is
constant, and each controller has equal failure probability. The two assumptions help establish
that the deployment of the controller will not yield different resilience performance. Also, the
influence on the resilience is caused by the number of duplication and distribution of luminaires.

8.2.4 Visualization

With a constant failure probability of each sensor and luminaire, we increase the failure probab-
ility of the controller and observe the failure probability of LCB. Figure8.10 shows the growth of
Fdegrade and Fdisrupt with a increasing Fctrl. The Fdegrade with distributed deployment is higher
than it with centralized deployment. Furthermore, the more duplicated controllers, the faster the
Fdegrade grows when Fctrl increases. Contrarily, the Fdisrupt with centralized deployment is the
highest. And the more duplicated controllers, the slower the Fdisrupt grows.

With a constant Fctrl, we increase the failure probability of Things and observe the FLCB . Sim-
ilarly to Figure8.10, Figure8.11 shows that the duplication would make Fdegrade higher and make
Fdisrupt lower. However, these Fdegrade yield by different number of controllers approach when FT

increase, so do these Fdisrupt.

(a) Fdegrade with increasing Fctrl (b) Fdegrade with increasing Fctrl

Figure 8.10: FLCB and Fctrl with duplicated controllers

8.2.5 Analysis

The four scatters in Figure 8.10 and Figure 8.11 show that duplication technique have cons and
pros influence on resilience. And the effect varies when the failure probability of components
change. The observation and analysis are listed as follows:

• More controllers deployed in the lighting system would increase the Fdegrade, which means
a fault is more likely to appear when there are more non-ideal components connected to the
system. On the other hand, duplication technique help to lower the Fdisrupt as the influence
of failures of a controller and its connected actuator is limited to local control scope.

• Comparing Figure 8.10b By comparing Figure 8.10a with Figure 8.10b and by comparing
Figure8.11a with Figure 8.11b , we observe that FLCB with different number of duplications
approach, which means the effect of duplication becomes little, when the controller turns
reliable or things (i.e. sensors and luminaires) becomes unreliable.

QoS-Aware Deployment of Lighting Control Behaviors 49

CHAPTER 8. EXPERIMENTS AND RESULTS

(a) Fdegrade with increasing FT (b) Fdisrupt with increasing FT

Figure 8.11: FLCB and FT with duplicated controllers

Based on the observation, we conclude that the time interval between the moment of start degrad-
ing and the moment to start disrupting becomes longer on a resilience curve when the distribution
technique is applied. The duplication technique help delay the moment of start disrupting sig-
nificantly when the controller has greater failure probability than other components, which is
considered as one point failure in the lighting control behaviour.

50 QoS-Aware Deployment of Lighting Control Behaviors

Chapter 9

Conclusion and Future Work

In this chapter, we conclude the thesis work based on the results obtained. Also, possible extensions
of this work are discussed which can be used in future.

9.1 Conclusion

The main contributions of this work are

1. Proposed a methodology to find the optimal deployment decision in an IoT system.

2. Proposed a methodology to evaluate resilience in a system considering the network config-
uration and application properties.

3. Designed a tool that assists users in making the deployment decision. Also, the tool can
potentially support deployment design automation.

We reviewed existing work on deployment, considering the features of the lighting system, we
identified and formalised the deployment problem and relate to software property and network
configuration. Secondly, we identified suitable sub-criteria and metrics for the resilience and pro-
posed evaluation methods. The method is aware of the network configuration (topology, link
quality, node quality) and the system (application components dependency).

We also defined the process flow and interface between inputs and evaluation components as
well as between evaluation components and the MOOP. With the defined interface, evaluation
components can be further developed to improve the efficiency, accuracy. Evaluation of other QoS
parameters can follow this pattern. We formalised a deployment decision problem related to the
IoT-based lighting systems domain. Deployment is a problem faced by different domains including
Internet of Things and virtualised network. Generalization of the solution is a concern of domain
experts at Signify which was proposed at the very beginning of this project. To be able to describe
different networks and applications specified by DSL, we defined general concepts in chapter 4.

The tool developed allows users to represent the network configuration in a look-up table formed
model and the control behaviour via the Domain Specific Language. Also, the tool validates some
critical aspects of the deployment and predicts the QoS, so that users can pay more attention to
aspects which cannot be easily verified and validated. Furthermore, the tool offers the possibility
to support comparison of QoS with distributed controllers and automatic generation of QoS-aware
deployment. After giving the network configuration information and DSL description, a user only
needs to provide the user preference, non-functional requirements. This help to eliminate human
intervention in the current design process.

Based on the result of the experiments we found that:

QoS-Aware Deployment of Lighting Control Behaviors 51

CHAPTER 9. CONCLUSION AND FUTURE WORK

• For QoS-aware centralised deployment, some QoS obtained by a decision can be a conflict
with each other with a network configuration.

• For distribution, duplication as a manner of redundancy can improve an aspect of resilience
that is MTTFdisrupt, especially when the controller is unreliable that is a single point of
failure. However, the technique provides less effect when the Things in the control scope are
also unreliable because homogeneous actuator in the same group is redundant to each other,
distribution of them decrease the effect of redundancy of actuators.

9.2 Future Work

There can be some improvement on current work and research questions for future study.

9.2.1 Improvement on Current Work

• Different importance on functions and users preference on criteria can influence the optimal
results. The relationship can be further studied.

• Current implementation on Cosim work does not support multiple controllers. It can be
further developed

• Boolean is used to describe the validation of node capacity. we can use other data types, for
instance integer, to describe the controllers’ consumption of resource on Things.

9.2.2 Future Research on Resilience

• We assumed that controllers have same failure probability and actuators have same failure
probability. It is interesting to observe what the optimal distribution plan will be if those
failure probabilities are not identical

• we considered that the MTTFdegrade and MTTFdisrupt are on the resilience curve. Also,
there are other criteria can be used to evaluate the resilience. For example, further research
can study the quantification of the degradation interval.

• In the fault hypothesis used in this work, failures of components are permanent and inde-
pendent. What evaluation methods are suitable when the components are recoverable, and
the failure events are dependent?

9.2.3 Future Research on Latency

• In this project, we assumed that there is no synchronicity need among multiple controllers
and we did not consider the influence of distribution on latency. So it is interesting to study
the evaluation of latency considering distributed deployment.

52 QoS-Aware Deployment of Lighting Control Behaviors

Bibliography

[1] Final reference architecture of openais systems. pages 102–102, 2014. viivii, 7, 10, 11, 15, 16,
27, 45

[2] Fmea and hazard analysis report for openais systems. page 18, 2015. viivii, 12, 45, 46

[3] Jamal N Al-Karaki and Ahmed E Kamal. Routing techniques in wireless sensor networks: a
survey. IEEE wireless communications, 11(6):6–28, 2004. 6

[4] Jozef Hooman Arjan Mooij. Creating a domain specific language (dsl) with xtext. 2015.
viivii, 36

[5] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Fundamental concepts of de-
pendability. 9, 10

[6] Salvatore J Bavuso, JoAnne Bechta Dugan, Kishor S Trivedi, Elizabeth M Rothmann, and
W Earl Smith. Analysis of typical fault-tolerant architectures using harp. IEEE Transactions
on Reliability, 36(2):176–185, 1987. 11

[7] Zoran Bojkovic and Bojan Bakmaz. A survey on wireless sensor networks deployment.
WSEAS Transactions on Communications, 7(12):1172–1181, 2008. 15

[8] Anna Bozza, Domenico Asprone, and Francesco Fabbrocino. Urban resilience: A civil engin-
eering perspective. Sustainability, 9(1):103, 2017. 12

[9] Antonio Brogi and Stefano Forti. Qos-aware deployment of iot applications through the fog.
IEEE Internet of Things Journal, 4(5):1185–1192, 2017. 6, 20

[10] V. Cherkassky. A measure of graceful degradation in parallel-computer systems. IEEE Trans-
actions on Reliability, 38(1):76–81, April 1989. 11

[11] NM Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba. Virtual
network embedding with coordinated node and link mapping. In INFOCOM 2009, IEEE,
pages 783–791. IEEE, 2009. 6

[12] Qingzhi Liu Tanir Ozcelebi Emi Mathews, Salih Serdar Guclu and Johan J. Lukkien. Review:
The Internet of Lights: An Open Reference Architecture and Implementation for Intelligent
Solid State Lighting System, 2017. 14

[13] D Evans. The internet of things: How the next evolution of the internet is changing everything.
1:1–11, 01 2011. 1

[14] Crawford S Holling. Resilience and stability of ecological systems. Annual review of ecology
and systematics, 4(1):1–23, 1973. 16

[15] Philip Koopman. Elements of the self-healing system problem space. 2003. 10, 11

[16] Jens Lischka and Holger Karl. A virtual network mapping algorithm based on subgraph
isomorphism detection. In Proceedings of the 1st ACM workshop on Virtualized infrastructure
systems and architectures, pages 81–88. ACM, 2009. 6

QoS-Aware Deployment of Lighting Control Behaviors 53

BIBLIOGRAPHY

[17] R.T. Marler and J.S. Arora. Survey of multi-objective optimization methods for engineering.
Structural and Multidisciplinary Optimization, 26(6):369–395, Apr 2004. 8

[18] Victor A Netes and Boris P Filin. Consideration of node failures in network-reliability calcu-
lation. IEEE Transactions on Reliability, 45(1):127–128, 1996. 12

[19] G.W.E. Nieuwhof. An introduction to fault tree analysis with emphasis on failure rate eval-
uation. Microelectronics Reliability, 14(2):105 – 119, 1975. 11

[20] Leila Fatmasari Rahman, Tanir Ozcelebi, and Johan Lukkien. Understanding iot systems: a
life cycle approach. Procedia computer science, 130:1057–1062, 2018. viivii, 1, 2

[21] Marvin Rausand and HÃ Arnljot. System reliability theory: models, statistical methods, and
applications, volume 396. John Wiley & Sons, 2004. 11

[22] H. Narayanan Rupesh S. Shelar, Madhav P. Desai. Decomposition of Finite State Machines
for Area, Delay Minimization, 1999. 17

[23] Ivanovitch Silva, Luiz Affonso Guedes, Paulo Portugal, and Francisco Vasques. Reliability
and availability evaluation of wireless sensor networks for industrial applications. Sensors,
12(1):806–838, 2012. 9, 12, 28

[24] James PG Sterbenz, David Hutchison, Egemen K Çetinkaya, Abdul Jabbar, Justin P Rohrer,
Marcus Schöller, and Paul Smith. Resilience and survivability in communication networks:
Strategies, principles, and survey of disciplines. Computer Networks, 54(8):1245–1265, 2010.
8, 9

[25] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles and paradigms.
Prentice-Hall, 2007. 11

[26] Petra Vizarreta, Massimo Condoluci, Carmen Mas Machuca, Toktam Mahmoodi, and
Wolfgang Kellerer. Qos-driven function placement reducing expenditures in nfv deployments.
In Communications (ICC), 2017 IEEE International Conference on, pages 1–7. IEEE, 2017.
7

[27] D. Wei and K. Ji. Resilient industrial control system (rics): Concepts, formulation, metrics,
and insights. In 2010 3rd International Symposium on Resilient Control Systems, pages 15–22,
Aug 2010. 12

[28] Wikipedia. OSI model , 2017. 20

[29] Nita Yodo and Pingfeng Wang. Engineering resilience quantification and system design im-
plications: a literature survey. Journal of Mechanical Design, 138(11):111408, 2016. 12

[30] Shih-Yuan Yu, Chi-Sheng Shih, Jane Yung-Jen Hsu, Zhenqiu Huang, and Kwei-Jay Lin.
Qos oriented sensor selection in iot system. In Internet of Things (iThings), 2014 IEEE
International Conference on, and Green Computing and Communications (GreenCom), IEEE
and Cyber, Physical and Social Computing (CPSCom), IEEE, pages 201–206. IEEE, 2014. 6

[31] Lingling Zhang. Message Obfuscation for Networked Lighting Systems. Master’s thesis,
Eindhoven University of Technology, 2017. 8

54 QoS-Aware Deployment of Lighting Control Behaviors

Appendix A

Deployment DSL

The deployment.DSL. The deployment DSL is able to validate if the hardware capacity satisfy the
requirement of the controller, and to check if all Things are bound to nodes as well as if a Thing
is bound to multiple nodes.

Figure A.1: Deplyment DSL, 10 Things, 10 nodes, 1 controller

QoS-Aware Deployment of Lighting Control Behaviors 55

Appendix B

The Visualization of Template
DSL

56 QoS-Aware Deployment of Lighting Control Behaviors

APPENDIX B. THE VISUALIZATION OF TEMPLATE DSL

Figure B.1: The control logic used in experiment

QoS-Aware Deployment of Lighting Control Behaviors 57

	Contents
	List of Figures
	List of Tables
	Introduction
	Current Design, Decision-making and Installation Process
	Motivation
	Research Questions
	Outline

	Related Work
	Network Abstraction
	QoS-aware Deployment of IoT Applications
	The DSLs in Lighting Systems
	Latency Evaluation
	Scenarios and Communication Load
	Multi-objective Optimization Problem
	Resilience
	Dependability, failures, failure probability, faults and time to failure
	Self-Healing System
	Error handling, graceful degradation and redundancy
	Analysis methods of dependability
	System response, resilience curve and metrics
	Dependability in the lighting system

	System Overview and Problem Statement
	Domain Knowledge
	Operational Concept and Lighting Control Application
	Domain Specific Language (DSL)
	Networks
	Quality of Service
	Centralized and Distributed Deployment

	Simulation Platform
	Problem Statement

	Formalization
	Infrastructure in Lighting Systems
	Lighting Control Behaviours
	Deployments
	QoS
	Latency
	Resilience

	Deployment Decision Matrix
	Optimal Decision
	Decision-making Process
	Criteria

	QoS Evaluation Methods
	Assumption
	Hardware Capacity
	Communication Load
	Naive Network Model

	Latency
	Resilience
	Failure Condition of Lighting Control Behaviour
	Failure Condition of Group Object
	Failure Condition of Application Object
	Construct the Fault Tree
	Duplication, Redundancy
	Resilience Indicators

	Implementation
	Solution
	Algorithms

	Implementing Languages
	Cosim and Existing Work
	Cosim Architecture
	Simulator Generation

	Implementation
	Deployment DSL and node capacity check
	Latency Evaluation
	Resilience Evaluation
	Multi-objective Optimization
	Message Types
	All Simulators

	Experiments and Results
	Experiment One – Optimal Decision Generation
	Test Setup
	Abstract Model
	Network Model
	Parameter Selection
	Benchmark
	Experiment
	Performance of Different Decisions

	Experiment Two – Distribution and Resilience
	Assumption for the Experiments
	Setup
	Deployment Network
	Visualization
	Analysis

	Conclusion and Future Work
	Conclusion
	Future Work
	Improvement on Current Work
	Future Research on Resilience
	Future Research on Latency

	Bibliography
	Appendix
	Deployment DSL
	The Visualization of Template DSL

