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Abstract

In the 3D printing industry, visual inspection
of the defects is necessary to ensure the qual-
ity of the products. The goal of the thesis
is to use deep learning to automate the vi-
sual inspection. However, the industrial data
is typically unbalanced where only a few im-
ages for each defects type can be obtained,
which makes traditional classifier hard to
train. Therefore, in this project, two gener-
ative methods are proposed for anomaly de-
tection, leveraging only images of good prod-
ucts. One is based on Generative Adversar-
ial Network(GAN), and the other is based on
Variational Autoencoder(VAE). We used the
generative models to reconstruct images, and
reveal the defects by comparing the original
images and their reconstruction. Their dis-
tance is measured on both pixel level and fea-
ture level where the feature level distance is
learned by Siamese Network. Visual results
show that both GAN and VAE can recon-
struct the good images well and not generate
the defects. The classification results are im-
proved by anomaly detection combined with
Siamese Network, compared with the base-
line, which is a modified pre-trained VGG16
classifier.

1. Introduction

In 3D printed products, defects normally take place on
the contact area between the foundation of the printer
and the surface of the products. It is important to
detect those defects as soon as possible to save inspec-
tion and maintenance cost. Furthermore, it is also
beneficial to classify those defects and capture their
unique features. Those features can be applied for fur-
ther use, such as improving the manufacturing process
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and the quality of the printers. However, the amount
of defective products is so small that it is difficult to
automatically distinguish those defects from the good
products.

Nowadays two methods are widely adopted for visual
inspection in the industrial field, namely statistical
method (Huang Jiexian, 2010) and spectral method
(Zhang Xuewu, 2011). The former uses the spatial dis-
tribution of pixels to describe the defects feature. In
the latter method, the defects feature can be described
by different filters such as Wavelet filters and Gabor
filters. However, the data is often high dimensional
and includes a lot of redundant information. And the
defects display a huge diversity, which brings the bot-
tleneck to both methods mentioned above.

Recently deep learning has gained great success in
computer vision. It uses a bionic neural network to
imitate how visual information is processed by the
human brain. Convolutional Neural Network (CNN)
(Alex Krizhevsky, 2012) is a typical example. It uses
iterative convolution and pooling operations to extract
features on different levels. What’s more, the increas-
ingly faster computational power enables the emer-
gence of variant deep and complicated networks such
as VGG (Karen Simonyan, 2014) and Inception model
(Christian Szegedy, 2015).

However, deep networks contain a massive number of
parameters which a large size of data is trained on.
Although nowadays it is easy to obtain a large vol-
ume of data, manual labeling still demands high ef-
fort. In reality, the data is often not well labeled, in
which semi-supervised and unsupervised learning play
an important role to capture the intrinsic feature of
the data.

1.1. Problem Statement

The goal of this thesis is to investigate algorithms
for visual inspections that are capable to distinguish
between proper surface and defective ones, using a
combination of state-of-the-art supervised and semi-
supervised image analysis methods.
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The proposed methods are evaluated on the industrial
dataset with the following properties:

Quantity The training data consists of 1784 sam-
ples, which is too little to train the parameters of any
state-of-art neural networks. Another problem con-
cerning the quantity of the dataset is the class imbal-
ance. From the reality of manufacturing, we observe
that defective products happen far less frequently than
good products. This situation is also reflected in our
dataset distribution. On the one hand, the proportion
of good images is much larger than any type of defec-
tive images. On the other hand, images of different
defect types are not evenly distributed.

Quality When we look into the dataset to observe
the defects it is not easy to visually distinguish be-
tween good images and some defects. For example
images with dirty spot defects usually have a blurred
line between good images because the dirty spot is
rare and small. The good images also have some flaws
which we do not consider as defects. Our image size is
224x224. However, what usually happens is that the
defect takes on a tiny part of the image. What’s more,
multiple types of defects can exist on the same im-
age, which can lead binary classification to multi-label
classification.

Research Points In this thesis, based on the prob-
lems mentioned above, we will investigate the following
research points for our industrial dataset.

o We will investigate the impact of the data imbal-
ance on the results of classification.

e We will compared the classification performance
of supervised learning and semi-supervised learn-
ing on the customized dataset.

e We want to learn the features of different types of
defects and visualize them.

1.2. Contributions

Corresponding to the research points mentioned
above, we present in this thesis the following contri-
butions:

e We used a modified pre-trained VGG16 to investi-
gate the impact of data imbalance on classification
performance.

e We proposed a pipeline of anomaly detection that
takes advantage of only good images, to avoid the
problem of data imbalance.

e We compared the results of anomaly detection

based on two generative models, namely VAE and
GAN.

o We extracted the features of the images and visu-
alized where the defects localize .

1.3. Evaluation Metrics

In this thesis, we use recall and precision on negative
samples to evaluate the performance of each model.
We consider good images as positive and defective im-
ages as negative. In the industrial field, to ensure the
products quality, it is important to recall all the defec-
tive products. However, using recall as the only metric
will lead the model to be biased to defective images,
and the model can not learn the accurate representa-
tion of those defect. Therefore, we also adopt the pre-
cision on defective images as our metric. To balance
between precision and recall we use the F1 measure as
described in Equation 1.

2 x preciston x recall
F — measure =

(1)

precision + recall

2. Background

In this section, we introduce some previous works
which are related to our thesis. The models that we
adopted are divided into two categories, namely dis-
criminative models (VGG16) and generative models
(GAN & VAE).

2.1. Terminology
e P.: Distribution of the training samples

e P, : Distribution of the generated images learned
by generator

e z : Input vector of generator in GAN and points
from latent space in VAE

e D(:) : Discriminator function
e G(-) : Generator function
e Enc() : Encoder function
e Dec(+) : Decoder function

e f(-) : The output of the last convolutional layer
in the Discriminator

e 2/X : Symbol for an image sample/ set of all im-
ages

e {/y : Predicted / target label of model input
e A(:) : Anomaly score

e « : Learning rate of gradient descent

e )\ : Proportion weight of feature-wise loss

e [ : Intensity of an image

e m,n : Length and width of the image
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e ¢ : The length of the embedding from the output
of £(-)

2.2. VGG16

In 2014 Oxford University has proposed VGG network
(Karen Simonyan, 2014) in order to improve the per-
formance of convolutional neural network using deeper
network . It uses multiple small filters of size 3 to re-
place a larger filter of size 7. Therefore, the model
has deeper layers and wider feature maps. On the one
hand, using a small-size filter significantly reduces the
calculation of convolutions. On the other hand, richer
feature maps enable the model to have a better dis-
cernibility.

As the neural network becomes deeper and more com-
plicated, it is difficult to interpret the model and reveal
the internal process. (Wei Yu, 2016) has used deconvo-
lutional layers to visualize the intermediate represen-
tations in VGG network. As is shown in this paper,
the features extracted by VGG are simple in the ini-
tial layers, and can be shared among different datasets.
Therefore, in the reality when the customized dataset
is small, we can transfer(Sinno Jialin Pan, 2009) the
feature extracted by a pre-trained model which has
been trained on millions of data to our own dataset.

Global Average Pooling Originally in CNN, the
fully connected layer contributes significantly to the
number of training parameters that the model is likely
to overfit. Global Average Pooling (Min Lin, 2013)
was proposed to reduce the training parameters, as il-
lustrated in Figure 1. Besides, the feature extracted
can be easily interpreted since the feature vector is di-
rectly connected to where the classification decision is
made.

Global Average Pooling

Figure 1. Global Average Pooling

2.3. Generative Model

The supervised learning, as mentioned in VGG16, is
to predict labels given data points. However, in the re-
ality, the given data is not usually well labeled. There-

fore, we have to learn the underlying hidden structure
of the dataset without labels. In unsupervised learn-
ing, the generative model attempts to generate new
samples (& ~ Ppode;) which come from the same dis-
tribution as the training data (x ~ Pj.,). That is, we
can say Ppoder is similar to Pyqt, based on the observ-
able samples Z and z. In the following, two models are
introduced to determine whether % is similar to x or
not.

2.3.1. GENERATIVE ADVERSARIAL NETWORKS
(GANS)

Generative adversarial networks (Goodfellow & Ben-
gio, 2014) is a generative model which is made up of
a generator G and a discriminator D. G maps the
latent space to actual data space while D assigns the
input data with the probability between [0, 1]. D gives
higher value if the input is from real distribution P,
and in the contrast gives lower value if the input is
from generator Pj. In other words, G tries to gener-
ate images which can fool D while D tries to tell the
difference between real images and generated images.
Therefore GAN’s objective is to find the binary classi-
fier that gives the best possible discrimination between
true and generated data and simultaneously encourag-
ing G to fit the true data distribution. The dynamics
between the generator and the discriminator are math-
ematically formulated in:

argmin argmax E..p, (log(D(z)))+
04 04 (2
E.~p,(log(1 — D(G(2))))

The first term is the assigned probability to the real
data and the second term is the assigned probability to
the generated data. The minmax in the loss function
reflects the adversarial training between the genera-
tor and the discriminator. Ever since the GAN came
out many GAN-based variants have been proposed
such as conditional GAN(Mehdi Mirza, 2014), Cycle-
GAN(Jun-Yan Zhu, 2017) etc., among which deep con-
volutional GAN (DCGAN)(Alec Radford, 2016) is rel-
evant to our project. DCGAN is a simple GAN built
up with convolutional layers so that large dimensional
data like images can be generated. DCGAN also pro-
vides some tricks for training the GAN since vanilla
GAN'’s performance suffers from instability and mode
collapse. It uses strided convolutional layer and decon-
volution layer instead of pooling layer. The DCGAN
also uses Batch Normalization(Sergey loffe, 2015) to
prevent the problem of vanishing gradients.

Speaking of the application of GAN, closely related
to our thesis, GAN has already been applied into
anomaly detection(Thomas Schlegl, 2017), which is re-
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ferred as Ano-GAN. It defines the Anomaly Score to
measure the distance between good images and de-
fective images, because the larger the distance is, the
more defective the image is. The anomaly score con-
sists of two parts: pixel-wise loss and feature-wise loss.

~Y e 3)

szO

Zlf GE @

A(.I', Z) = Ax* Lfeature(-ry Z) + Lpizel(-ra Z) (5)

Equation 3 sums up the difference over all the pix-
els, where m and n stand for the length and width
of the image. Equation 4 sums up the difference over
all the embedding, where e stands for the length of
flattened embedding. The function of A is to control
the value of feature-wise loss because the pixel-wise
loss is the major difference. The pixel-wise loss mea-
sures the visual dissmilarity between real images and
generated images. The idea of using feature-wise loss
is from (Salimans, 2016). It used a technique called
feature-matching which takes advantage of a richer in-
termediate feature representation from the discrimina-
tor, forcing the generator to generate realistic images.

pmel xZ, Z

Lfeature z, Z

2.3.2. VARIATIONAL AUTOENCODER (VAE)

In generative model, we can only observe the samples,
T ~ Pyutq and T ~ Ppo4e1, to measure the distance
between Ppoqer and Pggq. GAN directly uses neural
network to learn the distance between x and & without
defining Py,04ei. However, VAE(Diederik P Kingma,
2013) uses an explicit density with latent z to describe
the likelihood of the training data p(z).

p() = / plal2)p(2)dz (6)

Equation 6 explains the motivation of VAE, where
p(z|z) describes a model that uses z to generate x.
We can set p(z) to be simple such as N (0, 1). However,
the conditional probability p(x|z) is too complex that
it should be represented by a neural network, which
is called decoder. The posterior distribution, as is de-
scribed in Equation 7, is intractable because p(z) is
unknown. Therefore, an encoder ¢(z|x) (Equation 8)
is used to approximate the real posterior distribution.

p(z|2)p(2)

p(z|r) = ()

(7)

Therefore, the VAE consists of two probabilistic net-
works:

z ~ Enc(x) = q(z]z), & ~ Dec(z) = p(z|z) (8)
The Enc(-) is the encoder function that encodes a data
sample x to the latent representation z. The Dec() is
the decoder function that decodes the latent represen-
tation back to data space. The main insight of VAE is
that it can be trained by maximizing the variational
lower bound, which is Equation 9.

L(0, ¢, x) = =K L(go(2]2) [| po(2))+

By (21 log (P (]2))] (9)

0 is the parameters of decoder and ¢ is the parameters
of encoder.The first term is the KL divergence that
measures the distance between latent space and the
prior distribution. The second term is reconstruction
loss, which maximize the likelihood of original input
being reconstructed.

When it comes to the decoder p(z|z), which is a prob-
abilistic generator, we can construct distribution using
Bernoulli or Gaussian distribution. In our thesis, since
our images are in one-channel gray scale, we choose
Bernoulli distribution.

pl) = [ #1069

1=0,7=0
(10)

Equation 10 describes the generated probability of
Bernoulli distribution, where p(i,7) is the probabil-
ity of pixel at index (4,7). We can use logarithm to
explain the reconstruction loss of a single image.

m,n

i:OZj::O[ (4, )] - log(p(i, §)) a1)

+(1 - .’lﬁ(l,j)) : log(l - p(lvj))]

As Equation 11 shows, the reconstruction loss is in the
same form as cross-entropy. Therefore, we need to use
sigmoid at the end of the model to make sure the out-
put is in (0, 1), and use cross-entropy as loss function
for the second term of Equation 9. The reconstruction
loss of the whole image can be calculated by summing
up the reconstruction loss over all the pixels, where
m,n is the index of pixels within the image.

log(p(z|2)) =

2.4. Siamese Network

One extreme task of solving data imbalance is one-
shot learning, where in the dataset, only one image is
different from others. In this case, even pre-trained
model will be biased to the majority class. However,
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Siamese Network (Bromley & Shah, 1993) is an effi-
cient model to identify the image by pairing different
images as input, and assigning the pair either similar
or different. Symmetrical Siamese Network uses two
shared-weights network with two inputs and extracts
their features for comparison.

An important property of Siamese Network is its abil-
ity to measure the similarity of two input images.
Firstly, the Siamese Network projects two images from
a pixel level to a feature level by extracting their rep-
resentations. Secondly, Contrastive loss such as Eu-
clidean distance or Cosine similarity are used to cal-
culate the distance between two embeddings. In this
thesis we use the Siamese Network to calculate the
distance between two images on feature level.

3. Methodology

In this section, we propose a pipeline of one class
anomaly detection, to distinguish defective images
from the good ones. The pipeline consists of two steps.
The first step is to reconstruct an input image, us-
ing generative models that are trained on only good
images. The second step is to classify the good and
defective images based on the distance between them-
selves and their reconstructions. Since the generative
models are trained on only good images, the model can
not recognize defective images well. Therefore, the dis-
tance between good images and their reconstructions
is smaller than the one between defective images and
their reconstructions. We will first describe the moti-
vation of one class anomaly detection with the choice of
two generative models, and then two types of metrics
are proposed that we can use to measure the distance
between the input images and their reconstructions.

3.1. One Class Anomaly Detection

Anomaly detection means recognizing the data points
which are very different from others. From Table 1 we
can see that the dataset is highly imbalanced, where
good images appear more frequently than other types
of defective images. Therefore, we can train a model to
learn the features and representations that only belong
to the good images, and ones that can not be recog-
nized by the model is considered as anomalies. From
a probabilistic perspective, we want to learn the dis-
tribution p(z) that can describe all the good images,
and any other image that is out of p(z) is an anomaly.
One class anomaly detection takes advantage of only
good images, and train the model that is able to fit
their distribution.

To capture the distribution of good images, we

adopted generative models. Because the genera-
tive models are able to map a simple distribution,
e.g.N(0,1), to the distribution of training data. In
this thesis, we adopted two typical generative models,
which are GAN and VAE.

3.2. General Pipeline

Figure 2 describes the general pipeline of one class
anomaly detection, which is made up of three compo-
nents. The first one is Reconstructor, which is already
trained on good images before the anomaly detection.
The reconstructor takes in a real image and tries to
reconstruct the image with minimal loss. In the fol-
lowing sections, we use GAN and VAE to perform as
the reconstructor respectively and then compare their
results.

The second component, the triangle in Figure 2, mea-
sures the distance between the input image and its
reconstruction. In the following sections, we measure
the distance in two levels respectively, namely pixel
level and feature level. In the pixel level, GAN uses
anomaly score (Thomas Schlegl, 2017) and VAE uses
reconstruction loss to measure the distance between
the input image and its reconstruction. In feature level
measurement, we use Siamese Network to learn the
distance between the input image and its reconstruc-
tion based on their extracted features.

The third component is the threshold based on the
output of distance measurement. Since the model is
trained on only good images, the good images are bet-
ter reconstructed, which means the output of distance
measurement (Figure 2) is smaller. From the prob-
abilistic perspective, the distance for good images is
more likely to be small, and for defective images is
more likely to be large. We define the distance as the
threshold, where the probabilities of the calculated dis-
tance belonging to good images and defective images
are equal. The threshold functions as a classifier to
give good or defective label to the input image. The
distance is calculated on both good and defective im-
ages in the training set and then evaluated on the test
set.

3.2.1. VAE BASED ANOMALY DETECTION

The idea of VAE based anomaly detection is that the
decoder of the VAE learns how to reconstruct the im-
age from an approximate posterior distribution, which
is learned by the encoder. The latent representation
captures the distribution of all the good images in the
training set. When feeding a defective image, the la-
tent representation deviates from the prior distribu-
tion, therefore, the decoder fails to reconstruct the de-
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Real Image
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Reconstructed Image

Good/

Distance Defective

Threshold

Figure 2. General pipeline of one class anomaly detection. The reconstructor is already trained on good images

fects.

Pipeline In the pipeline of VAE based anomaly de-
tection, as is shown in Figure 3, the VAE functions as
the reconstructor. The input image goes through the
encoder to the latent space, which is represented by
the mean p and the variance o. Then the decoder re-
constructs the image from the latent representation.
The distance measurement in Figure 3 is based on
Equation 11, which consists of the cross-entropy be-
tween the input image and its reconstruction, and the
KL divergence in the latent space as well. Therefore,
apart from the inputs of the real image and its recon-
struction, another input of KL divergence in the latent
space is added to the reconstruction loss.

Image Reconstruction In Equation 11, the poste-
rior distribution py (z|x) is intractable that we can use
Monte Carlo sampling (Haugh, 2004) to approximate
the expectation. The Monte Carlo sampling states
that the more samples the model uses, the more likely
the model will reach the optimum solution. Therefore,
during the training process, we train the model with
large batch size and multiple epochs, thus we only need
to sample from the latent distribution once for each im-
age batch. However, in the testing phase when we only
input a single query image, we need to sample multiple
times from the latent space. Because in Equation 11,
we need to calculate the integral of complex continues
function, thus we normally use Monte Carlo sampling
to approximate the integral. The detailed process of
image reconstruction is described in Algorithm 1.

After we calculate the reconstruction loss for each im-
age in the training dataset, as is shown in Table 1, we
build up a histogram of reconstruction loss for good
images and defective images respectively. In the his-
togram, we find the threshold where the frequencies
of reconstruction loss are equal for good images and
defective images. Then we apply this threshold on the
test set for evaluation.

Algorithm 1 VAE Based Anomaly Detection
Input: data =i ,, Trained VAE Dec,Enc
for i=1 ton do

Uiy Oy < Enc(zt]x?).
Lk = KL(Enc(2'z")||N(0,1))
draw samples from prior z1. 1 ~ N(0,1)
declare z,,;,, latent representation with least loss
for j=1to L do
20— Ui + 27 % O Reparameterization
Lyccon+ = logDec(z|27)
if logDec(x'|z7) < logDec(z|zy:y) then
Zmin ZAj
end if
end for
in =Lkr + % * Lrecpn
Output: L,:, Dec(z"|zmin)
end for

3.2.2. GAN BASED ANOMALY DETECTION

Via adversarial training, the generator learns the rep-
resentations of good images, with the ability to gen-
erate various good images. We can compare the real
images and the generated image to identify the defects
region.

Pipeline: The pipeline of GAN based anomaly de-
tection is shown in Figure 4, where the reconstructor
and the distance measurement are radically modified.
Firstly, only the generator of the GAN performs as the
reconstructor. Secondly, we adopt the anomaly score
in Equation 5, which consists of pixel-wise loss and
feature-wise loss, to measure the distance between the
input image and its reconstruction. The feature-wise
loss, as is shown in Equation 4, is based on the output
of the last convolutional layer in discriminator. Last
but not least, the data flow in the pipeline is not uni-
form, where we need to backpropagate the anomaly
score from the current iteration to update the latent
representation z. Because the GAN does not have an
inference procedure, so we have to iteratively return
to the latent space.
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Reconstructed Image
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Defective

Threshold

Figure 3. Pipeline of VAE based anomaly detection. The VAE is already trained on good images. Enc is the encoder and
Dec is the decoder of VAE. Lr means the reconstruction loss that is used to measure the distance between input image

and its reconstruction.

Z G

Reconstructed Image D

_§

Real Image

Figure 4. Pipeline of GAN based anomaly detection.

_§

Good/

Threshold Defective

Ano

The GAN is already trained on good images.D represents the

discriminator and G represents the generator. Ly measures feature distance based on the output of discriminator. L,
means the pixel-wise distance between the input image and its reconstruction. ANO is the anomaly score that combines
the pixel-wise loss and feature-wise loss. The red arrow implies that the latent representation z is updated based on the

anomaly score from previous iteration.

Iterative searching within generated manifold
The goal of iteratively returning to the latent space
is to find the reconstructed image that is closest to
the query image. Since the GAN is trained on only
good images, it learns the representations and under-
lying structures of only good images. The generator
of GAN can generate a manifold that contains all the
good images, as is shown in Figure 5. We need to find
the closest image within the manifold in order to re-
construct the query image. We use anomaly score de-
fined in Equation 5 to measure the distance between
the image from the generator and the query image.
If the query is a good image, the closest image within
the manifold is itself. Otherwise, for a defective image,
the closest image should be one that produces minimal
anomaly score in the pipeline (Figure 4). A random
point in the latent space is unlikely to generate the
closest image for a certain query image. Therefore,
we can iteratively search the next closet image based

on the previous anomaly score by updating the latent
representation:

d (L izel + Ax L )
k+1 k pire feature
z =z o *x zk ( )

When the z converges, that is to say when the anomaly
score produced by z does not reduce any more, the
closest image is reached and we can obtain a resid-
ual image by pixel-wise subtraction between the real
image and generated image. The detailed process of
reconstructing images based on GAN is described in
Algorithm 3.

After we calculate the anomaly score for each image in
the training dataset, as shown in Table 1, we find the
threshold between good images and defective images in
the same way of VAE based anomaly detection. Then
we evaluate this threshold on test set.
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4 . {C:generated manifold

J‘ 1 © defectimage
Ao /@ initial point
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Figure 5. The dotted ellipse demonstrates a generated
manifold that contains all the possible good images. The
defects is outside this scope, the closest image should be
near the edge. Each iteration depends on the loss and
learning rate as well as the optimizer’s momentum.

Algorithm 2 GAN Based Anomaly Detection
Input: data x;, Trained GAN G, f from D
Random initialization in latent space z ~ N (0, 1).
Initialize closest image tMmgciosest = 2€T08
counter k =0
repeat

Lfeature = Z |f (I) - f (G (Zk))|
Lpizer =3 |2 — G(21)|
gradient = U(L"i”’f:zsz”‘”C)
update mean and variance of Adam optimizer
imgclosest = G(Zk)
Zk+1 = 2k — Adam(learning_rate, gradient)
until z converge

Output:

Z.Tngclosest

Z'Tngresidual = |imgclosest - xz|

anomaly_score = Lpize (TiyiMGeiosest) + 7 *

Lfeature (l‘i, Z-’rn/gclosest)

3.3. Distance on Feature Level

So far GAN and VAE based anomaly detection use
different approaches to reconstruct images. For each
image, the distance measurement in Figure 2 outputs
a score, which is the distance between the image and
its reconstruction. Then we find the threshold between
good images and defective images based on the score.
However, both GAN and VAE measure the distance
between the query image and its reconstruction on the
pixel level. Anomaly score (Equation 5) in GAN fo-
cuses on L1 distance over all the pixels, and recon-
struction loss (Equation 11) in VAE sums up cross-
entropy of all the pixels. As is mentioned in the general
pipeline of anomaly detection, we not only measure the
distance on the pixel level but also on the feature level.

Pipeline: Figure 6 and Figure 7 describe the pipeline
of VAE and GAN based anomaly detection with dis-
tance measurement on feature level. The features of

the query image and its reconstruction are extracted
by Siamese Network, which consists of two shared-
weights VGG16. We use global average pooling to
generate 1 — D vector from the feature map of the last
convolutional layer in modified VGG16. The sigmoid
assigns the probability of whether the input images are
similar or not. The Siamese Network, together with
global average pooling and sigmoid, function as the
distance measurement in the general pipeline (Figure
2). The output from sigmoid for good images is higher
than the one for defective images, which means that
the probability of a good image being similar to its
reconstruction is higher than a defective image. Since
the output of sigmoid is between [0, 1], the threshold
here is 0.5.

Distance Learned by Siamese Network Unlike
distance on pixel level such as anomaly score (Equa-
tion 5) and reconstruction loss (Equation 11), the dis-
tance on feature level does not have a explicit expres-
sion. The feature distance is learned by the Siamese
Network with the following loss function.

n

1 .
L(z,Tree) = - ; [§xIn (S (zi, Trec)) + (13)

(I1—=9)*xIn(1—S(zi,Trec))
x is the query image and ... is its reconstructed im-
age. S (-) represents the predicted output of Siamese

Network, which is the probability between [0,1]. The
target label g is 1 if x; in X 50q and 0 otherwise.

4. Experiment
4.1. Data Description & Preprocessing

In this section, the dataset built for this project is de-
scribed. The images in the dataset are in the same
shape, an arc-shaped ring, which represents a part of
the product that needs to be inspected. Multiple types
of defects can exist in a same slice with different loca-
tions, different forms as well as different levels.

Gamma Correction We capture the image by
scanning the products in a black box. Due to the
over-exposure of scanning, the displayed images will
have a luminance bias compared with the real images.
Gamma correction is a technique that can non-linearly
modify the luminance of the image by enlarging or nar-
rowing the contrast between darkness and brightness.
It adds an power index gamma to all the pixel values.
If gamma < 0 then the contrast is narrowed. Other-
wise the contrast is enlarged. In this project we set
the gamma = 6.

From Figure 8 we can see that the original image on
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Figure 6. Pipeline of VAE based anomaly detection with distance measurement on feature level.

VGG

E—
- G

Good/
Defective

d¥9

Threshold

plowfs

The VAE is already

trained on good images. Enc is the encoder and Dec is the decoder of VAE. VGG is convolutional layers in the modified

pre-trained VGG16. GAP is global average pooling.

VGG

J

d¥O

Reconstructed Image

VGG

J

Real Image

Figure 7. Pipeline of GAN based anomaly detection with distance measurement on feature level.

Good/

Threshold  pafective

plowbis

The GAN is already

trained on good images. G is the generator. VGG is the convolutional layers in modified pre-trained VGG16. GAP is
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Figure 8. Comparison between original image and image
after gamma correction. The example is a good image
which has small imperfections

the left is too bright that some small stains are not
explicitly revealed. The gradual change of the pixel
value on the downside border blurs the edge of the
slice, which affects the ability of the generator. After
gamma correction, we can visually observe the unusual
parts on the slice and a more obvious border.

Dataset Categories The dataset is divided into good
and defective groups. Within the defective group, the
images are subdivided into 5 classes of defects. From
the Figure 9 we can see that each defect has its own
feature such as shape, position and defect level. How-
ever, the labelling procedure is subjective, for example
it is hard to distinguish between good images and dirty
spot defects since the good images are not perfectly
clean. Furthermore, the dataset is highly imbalanced
that defective images appear much less than the good
images.

4.2. Supervised Learning for Data Imbalance

One of the major problems we target is data imbal-
ance. Therefore we want to measure how the data im-
balance influences the results. We set different imbal-
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Image class Sample quantity | Train | Test
Ok 619 495 124
Shrinked hole 138 117 21
Dirty spot 75 54 21
Discoloered line 24 17 7
Edge erosion 239 183 56
Printed line 190 154 36

Table 1. Image class and train-test split

——————m—w

) Good ) Shrinked hole ¢) Dirty spots

Coa

(f) Printed lines

(d) Discolored line (e) Edge erosion

Figure 9. 6 categories of images

ance ratio for each defects class in the range of [0, 0.5].
Considering the small amount of the training data we
did not use much larger ratio. To build up the training
dataset for each defect ratio, we simply over-sample
the defectives images or down-sample the good images
from the original dataset.

Modified Pre-trained VGG16 To investigated the
influence of imbalance ratio on the classification deci-
sion, we used a modified pre-trained VGG16 to dis-
tinguish between good images and images in a specific
defect class. Thus we use a supervised learning as a
baseline.

Architecture The original VGG16 has 5 convolu-
tional blocks with the number of filters gradually in-
creasing. The output of each convolution layer has
different semantic meaning. As illustrated in related
work, the deeper the layer is, the more complex the
feature it represents.

The modification is implemented on top of the network
where we discard all fully connected layers and the last
3 convolutional layers and the last max pooling layer.
The size of the dataset we use is quite small, with 1184
images in total. Such amount of data will not cover
millions of trainable parameters. Therefore, we used
a pre-trained model which has been trained on the

ImageNet dataset, and transfer the learned feature to
our target domain. In this experiment, we only trained
the last convolutional block and fix the rest layers for
fine-tuning.

224x224x64

112){112:(128
56x56x256
28x28x512

4x14x1024
@ Ddxmu 1

D Convolutional layer
D Max pooling layer
D Global average pooling

Fixed [[] sigmoid

Figure 10. Detailed architecture of modified pre-trained
vggl6. Activation layer is not included in the figure. The
first 3 blocks are fixed

Results of VGG16 From Figure 11 we can observe
that with the increase of defects proportion the preci-
sion drops while the recall rises with small fluctuations.
It indicates that the classification decision gradually
deviates from good images to defective images until
the model overfits because it learns too much noise
from the defective images.

The Figure 11 shows that for different defects class the
optimal imbalance ratios are different. One exception
is discoloredline. In the training set, they only have
24 samples, which is only 3% of the good images. Even
if we oversample them, the performance remains the
worst.

4.3. GAN Based Anomaly Detection

The overall anomaly detection includes GAN train-
ing, finding the closest image and calculating anomaly
score. The challenge here is to generate images with
large size of 224x224x1. So far the DCGAN can stably
generate images with size of 64x64x3. The convolu-
tional layers and deconvolutional layers have strides of
2, so we need a deeper network because our image size
is larger. To cope with this challenge, we use fewer
filters in the convolutional layers, because the images
in our dataset do not have complex features.

Architecture We adopted the basic structure of DC-
GAN. First, unlike conventional CNN structure, the
DCGAN combines the convolutional layer and pool-
ing layer as a strided convolutional layer. Second,
the DCGAN uses batch normalization to stabilize the
training process by ensuring that the gradient can be
propagated to the next layer. Third, the DCGAN uses
LeakyReLU layer to prevent dead neurons and sparse
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Figure 11. Precision, recall and F1 for different imbalance ratio using model pre-trained VGG16. The x axis means the
proportion of defective images within the whole training set. Different colors represent different classes of defects.

representations in the network.
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Figure 12. Detailed architecture of DCGAN. Activation
layer is not included in the figure. Batch normalization
is excluded in the end of generator and the input of dis-
criminator.

Training process The training set has, according
to Table 1, only 493 good images. We augmented the
dataset by horizontally flipping. The main point in
the training process is to make sure that the genera-
tor always has something to learn, which means the
gradient from the discriminator should not decrease
fast. Otherwise, the generator will not have enough
gradient to update its parameters and learn how to
generate realistic images. Therefore, we use two tricks
to make the discriminator’s task harder, which are la-
bel smoothing (Gabriel Pereyra, 2017) and instance
noise (Lars Mescheder, 2018).

Label smoothing is a regularization trick to reduce
overfitting by preventing a network from assigning the
full probability to each training example. In our exper-
iment we reduce the target label of real images from
1 to 0.8. We also apply instance noise on both of the
generated images and real images before feeding them

into discriminator. Both tricks contribute to confusing
the discriminator. The discriminator does not conver-
gent quickly, and always provides loss to the generator.

Algorithm 3 DCGAN training

Input: training data =
initialize parameters wg,wp
epoch =0
repeat
randomly fetch batch size data x1. s
random augmentation x; + N (0, tepocn) for j C
(1)
sample batch noise z ~ N (0, 1)
Zgen — G(2)
instance noise Zgen+N (0, ftepoch ) T+N (0, tepoch)

real_target < 1 % o, label_smoothing
l08Sreq1; 108S pare < D(z,real_target), D(G(z),0)

update wp
fix wp, lossg + D(G(z),1)
update wg
epoch + 1
until wp,wq converge
Output: G(z — X) , D(-)

Visual Results of GAN As is illustrated in 3.2.2,
after the GAN is trained, we can use it to generate a
manifold with infinite number of good images. For a
query image, we can find the closest image within this
manifold. As is shown in Figure 13, the right column is
the pixel-wise subtraction between the original image
and its corresponding closest image. For good images
there should not be any red region, while for defec-
tive images the defects should be exaggerated, marked
with red. However, from the right column we can see
there are small regions where the pixel values on the
original image are larger than on the generated image.
It means the generator does not perfectly fit the non-
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Figure 13. The left column is the original images, in the
middle is the closest image found in the generated man-
ifold, and in the right column is subtraction between the
left and middle column and mapping to the original image.
The top row is the good image while the rest are defective.
On the right column the red part implies the pixel value on
the generated image is larger than on the original image,
which means there is a defect. The blue part implies the
pixel value on the generated image is smaller than on the
original image, which means the model does not perfectly
reconstruct the good areas.

defective parts, which has an impact on calculating the
anomaly score.

4.4. VAE Based Anomaly Detection

The VAE based anomaly detection includes training
the VAE with only good images, reconstructing the
query image and calculating the reconstruction loss.
The challenge is that generally for one image the de-
fects take up a small area, which means the distance is
not large enough when we use reconstruction loss over
all the pixels as the measurement of anomaly detec-
tion.

Architecture The model consists of an encoder and
a decoder with latent space transformation in the mid-
dle. We take the same hyper-parameter as adopted in
GAN for the VAE, such as filter size and the number
of convolutional layers. Experiments showed that the
KL divergence in the latent space can be influenced by
the output length of last convolutional layer. There-
fore, unlike GAN, we directly connect the latent space
to the flattened output of last convolutional layer, in
VAE we add an extra dense layer with 256 length to

control the value of KL divergence.

Q [#991% 104

smamazs 18XEZE 2523012

SexsEess
11211232

220020 s2eaecs
(TP stride convolution + BN
59 stride deconvolution BN
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~— Dense Layer

Figure 14. Detailed architecture of VAE. Activation layer
is not included in the figure. Batch normalization is ex-
cluded in the end of encoder and the input of decoder.

Training process The goal of VAE training is to op-
timize the lower-bound of log-likelihood of x. The
model should balance between reconstruction accuracy
and the KL divergence. For the parameter estima-
tion of decoder p(x|z) we maximize the log-likelihood
log(pe(x)). Since we can not directly optimize the log-
likelihood, we turn to optimize its lower-bound.

In the training process, we need to sample from the
latent space, e.g. N(u, o). However, the sampling pro-
cess is non-differentiable so we can not backpropagate
the gradient by chain-rule. In the standard VAE train-
ing mechanism, Reparameterization is used to sample
from a standard normal distribution € ~ N(0,1) and
then build the latent space by z = € * p + o. This lin-
ear operation is differentiable, and standard stochastic
gradient descent (SGD) algorithm can be used for op-
timization.

Algorithm 4 VAE training

Input: training data x

initialize parameters 6,¢

epoch =0

repeat
randomly fetch batch size data x1. ps
random augmentation x; + N (0, tepocn) for j C
(1)
Z « pg + 2z % 0, Reparameterization
Lir = Y15 —Dics(a(zla))l[p(2))
Lrecon = Zfil lng(xi|2)
L= i * (Lrecon + LKL)
update 6 ¢ + L
epoch + 1

until 0,¢ converge

Output: FEy , Dy

Visual Results of VAE As is shown in Figure 15,
the reconstructed images from VAE are more blurred
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Figure 15. The left column is the original images, in the
middle is the reconstruction image with minimum loss and
in the right column is subtraction between the left and
middle column and mapping to the original image. The
top row is the good image while the rest are defective. On
the right column the red part implies the pixel value on
the generated image is larger than on the original image
which mean there is a defect.

compared with the visual result of GAN, and the tex-
ture details are not well reconstructed. The defects
revealed by the residual images are not as clear as the
one shown in Figure 13.

4.5. Determine the Threshold

In this section, we introduce the approach how we de-
termine the threshold of VAE and GAN based anomaly
detection, which calculate the distance between the in-
put image and its reconstruction on pixel level. After
the GAN and VAE are trained on the good images,
they can reconstruct images based on the pipeline pro-
posed in Section 3. The distance calculator assigns ei-
ther anomaly score or reconstruction loss to the input
image. The outputs of distance calculator are divided
into two categories based on the label of the input
image, namely good and defective. The dataset for
determining the threshold is the same for training the
supervised learning (VGG16) in order to compare the
performance.

After the reconstruction loss or anomaly score for each
image in the training set is obtained, we drew the his-
tograms for good images and defective ones respec-
tively as is shown in Figure 16. Those histograms ap-

proximately follow a normal distribution. We calcu-
lated the mean and variance for each subplot and fit
the distributions to all histograms. Figure 17 shows
the merged distribution of reconstruction loss and
anomaly score. The intersection point of two distribu-
tions is the threshold. As can be seen from Figure 17,
the performance of VAE is better than GAN when the
distance is calculated on pixel level. Because the dis-
tribution of defective images based on reconstruction
loss are more separated from the good ones compared
with the distribution based on anomaly score.

4.6. Distance on Feature Level

Architecture To project the distance of two images
on feature level, we use a Siamese network with the
input of original images and their reconstructions that
are either from GAN or VAE. The architecture of
our proposed Siamese Network simply uses two shared
weights modified VGG16 mentioned in Figure 10 as
a feature extractor with two inputs channels. Then
we concatenate the outputs of the two channels into a
single vector and feed this vector to the last sigmoid
node to decide whether two input images are similar
or not.

Learned Feature Comparison To visualize if the
model is capable of capturing the features of different
defects we can build salience map for each query image.
The salience map is generated by the weighted sum of
the output feature map of the last convolutional layer
where the weights are the connections between the fea-
ture vector and the last neuron with sigmoid output.
This implies that the output of the feature extractor
can capture the most distinctive features which are
only relevant for classification decision.

We visualize the feature maps in both simple VGG16
and our Siamese Network. The Figure 20 shows
salience maps for three defective images, all of which
are correctly predicted in both VGG16 and Siamese
Network. The Figure 19 shows salience maps for other
three defective images, but they are only correctly pre-
dicted in Siamese network. We can observe that fea-
tures captured in VGG16 are finer compared with ones
in Siamese Network. For the same defects, the feature
maps of VGG16 fit more accurately than Siamese Net-
work, while the activation regions in Siamese network
are broader. However, for defects printed line that dif-
fuse in the image the Siamese network can capture the
complete feature of the defects while VGG16 focuses
only on a small region.
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Figure 16. Histograms of good and defective images. The upper row is the histograms of reconstruction loss. The lower
row is the histograms of anomaly score. The blue parts are the histograms of good images. The pink parts are the

histograms of defective images.

4.7. Quantitative Results

In this section, we compare the quantitative results of
GAN and VAE, with combinations of pixel level dis-
tance and feature level distance. Regarding the pixel
level distance, VAE using reconstruction loss performs
better than GAN using anomaly score. Regarding the
feature level distance, Siamese Network together with
results of GAN performs better than Siamese Network
together with results of VAE. From the table 2 we
can see that the feature level distance is more effective
than pixel level distance. For defect shrinkedhole,
although the defects recall remains the same but we
improved the precision. For dirtyspot,edgeerosion
and printedline feature level distance significantly im-
proved the defects recall with only a little trade-off of
precision.

However, the quantity of sample also influence the
results. For defects discolored line, all of the meth-
ods perform very poorly. Because the images are ex-
tremely rare in the training set, with only 14 samples,
and the defects are not so distinctive compared with
good images.

5. Discussion
5.1. Impact of Data Imbalance

From Figure 11 we can observe the impact of the data
imbalance on the classification results. We fix the total
amount of the overall dataset and vary the proportion
of defective images. We use the F-measure to balance
between precision and recall because either metric can
be extreme because of the imbalance ratio. For binary
classification the ideal distribution is 1 : 1 so the net-
work will not bias to either of the classes. From data
level perspective we can either over-sample the defec-
tive image or under-sample the good images to change
data distribution.

Normally as the defects ratio increases, the F-measure
will rise and then drop again after reaching the optimal
point, which is shown in defects classes shrinked hole
and dirty spot. Because extreme over-sampling can
lead to overfitting on the defective images.

If we look at the defects class printed line, the F-
measure always stays high. Because the printed line
defects cover more areas than other defects. This im-
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GAN VAE
Precision | Recall | F1 Precision | Recall | F1
Shrinked hole(21) | 0.14 0.18 0.16 | 0.4 0.7 0.52
Dirty spot(21) 0.09 0.12 0.1 0.22 0.43 0.3
Discoloered line(7) | 0.08 0.43 0.14 | 0.08 0.29 0.125
Edge erosion(56) | 0.34 0.46 0.39 | 0.65 0.7 0.67
Printed line(36) 0.09 0.02 0.04 | 0.48 0.56 0.61
Siamese Network + GAN | Siamese Network + VAE
Precision | Recall | F1 Precision | Recall | F1
Shrinked hole(21) | 0.83 0.71 0.765 | 0.79 0.71 0.75
Dirty spot(21) 0.83 0.69 0.754 | 0.67 0.47 0.55
Discoloered line(7) | 0.18 0.14 0.157 | 1 0.14 0.25
Edge erosion(56) | 0.82 0.93 0.872 | 0.86 0.93 0.89
Printed line(36) 0.81 0.97 0.883 | 0.82 0.9 0.86

Table 2. The results of GAN, VAE, GAN + Siamese Network, VAE+Siamese Network
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Figure 17. The upper figure is the distribution of recon-
struction loss obtained from VAE. The figure below is
the distribution of anomaly score obtained from GAN.
The blue line represents good images which the pink line
represents defective images. The intersection points are
threshold. The threshold for reconstruction loss is 993, for
anomaly score is 2484
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Figure 18. Detailed architecture of metric learning using
modified pre-trained vggl6. Activation layer is not in-
cluded in the figure. Two VGG16 are weights shared.

Fixed

plies that besides the imbalance ratio, how distinctive
the defect is also plays a role in classification that large
difference does not necessarily requires much data to
train. In future work, we should collect more defective
images which contain non-distinctive defects, in order
to make up to the small quantity.

5.2. Transfer Learning and VGG16
Modification

The pre-trained VGG16 is trained on the ImageNet
which contains millions of data among 1000 classes.
When we freeze the model and adapt it to our dataset,
we try to capture the features which are unique for
our dataset. From previous work of visualization of
VGG network (Wei Yu, 2016), we can see that the
captured feature become more complicated when the
model develops deeper. The feature in the first several
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Figure 19. The first column is the salience map generated
by VGG16. The third column is the salience map generated
by Siamese network. The second and the last column map
the salience map back to the original image. Each row
represents a certain defective images. The second row is
classified as edge erosion. The third row is edge erosion.
The first row is printed line.

convolutional layers are usually lines, edges and simple
shapes which can be widely adapted to different image
domain. Therefore we only freeze initial layers in the
model, and train the top layers with our dataset.

Global Average Pooling Global Average Pooling
has the following advantages. On the one hand, it re-
places the fully connected layer and reduces the train-
ing parameters. On the other hand, it reserves the
spatial information, and we can use it to determine the
area in the image where the classification decision is
made. However, the Global Average Pooling is a rough
operation since a lot of information is lost. Without
fully connected layer the network can not correlate the
features in different areas.

However, the simplicity of our dataset can ease this
problem. Firstly the image in our dataset does not
contain complex features like faces or animals. It
consists of an arc-shaped ring and a simple texture.
Therefore we do not need to capture complex features.
Secondly, VGG16 is very deep, and the last several
convolutional layers have feature-length of 512 which
contains a lot of combination possibilities. We do not
even need the whole VGG16 during the experiment.
From the Figure 21 we can compare the feature map
from the last convolution block and the second last
convolutional block. Features from the last layer are
sparser, and they do not focus on the defects region.
However, features from the shallower layer are more

(a) Salience (b)
VGG16 VGG16

Blend (c)

Siamese

Salience (d) Blend

Siamese

Figure 20. The first column is the salience map generated
by VGG16. The third column is the salience map generated
by Siamese network. The second and the last column map
the salience map back to the original image. Each row
represents a certain defective images. The first row and the
third row is edge erosion. The middle row is categorized
as printed lines.

(a) Examples of feature (b) Examples of feature
map of layer 11 map of layer 15

Figure 21. Comparison between feature maps of two con-
volutional layers

centralized on the defects areas and a lot of repetitive
features maps imply that the capacity of the VGG16
is more than enough for our dataset.

5.3. Supervised vs Semi-supervised Learning

In this section we compare the results of supervised
learning and semi-supervised learning. The supervised
learning is the first step in experiment, where we used
the VGGI16 to evaluate the data imbalance. The semi-
supervised learning is the one class anomaly detection
using GAN and VAE, combining with distance mea-
surement on pixel and feature level. Here we present
the Fl-measure for each defect class respectively.

From Figure 22 we can see that the results of tradi-
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Figure 22. Comparison of F1 between different methods for each defect class. Blue line stands for VGG16. Pink line
stands for GAN using anomaly score. Yellow line stands for VAE using reconstruction loss. Green line stands for Siamese
Network based on GAN. Orange line stand for Siamese Network based on VAE.

tional classification vary a lot with the defect ratio.
Furthermore, even the training process of the recon-
structor does not have a problem of data imbalance,
the defects ratio has a strong influence over the thresh-
old determination. In most cases, the VAE/GAN plus
Siamese Network perform the best, while the perfor-
mance of GAN using anomaly score stays at bottom.
In the extreme imbalance case, the supervised learn-
ing performs better as semi-supervised learning. From
Figure 22 we can also tell the best performer at dif-
ferent defect ratios, which can be used later to de-
cide which method should be adopted, when we come
across dataset with different defect proportions.

5.4. Feature Learned in VAE & GAN

Both GAN generated images 244, and the VAE re-
constructed images .. can reconstruct good im-
ages, which means their positions and shapes are well
learned. However, the x,4. loses the details of texture
that make the images vivid while the 44, can generate
the gradual change of shades. One problem that influ-
ences the verisimilitude of the x4, is the checkerboard
effect(Odena et al., 2016). In general, the generated
images of both models are cleaner than the original
good images.

Reconstruction Images in GAN & VAE The

good images are not perfectly clean where there ex-
isting minor flaws which may affect the classification
results. Especially some imperfections are not consid-
ered as defects because of their small defect level, even
if they have the similar feature as the real defects.

The reconstruction image can be considered as clean
images, as is shown in the first column of Figure 13,
where the small imperfection is not reconstructed by
the generator. In Figure 15, the generated images from
VAE are even cleaner than ones from GAN, which
means the GAN and VAE did not learn the texture
details of good images. Lacking of detail is also a pos-
sible reason why pixel level distance performs poorly.
While the image size is so large that summing up minor
difference overall the pixels overwhelms the difference
brought by the defects.

5.5. Problem of Definition Closest

When we reconstruct the image based on GAN, we
observe an interesting problem that the reconstructed
image does not fit perfectly the area where the product
should be. The situation can be considered within
error range if the non-fitting area is not significant.
However, they appear very often, and are sometimes
significant enough to influence the anomaly detection.

The problem lies in the definition of the Closest. When
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) Blend after re-
constructlon

a) Input image

Figure 23. The left column is the Input image for recon-
struction. The top row is the original image with edge ero-
sion defect. The second row is when we mask the defect.
Here to visualize we use different color.The right column
is blending of residual image and the original image after
subtraction

we reconstruct the image, we want to find the closest
image to the original image. According to Equation 3
and 4 we defined the pixel-wise and feature-wise loss
where pixel-wise loss takes dominant place. Because
in the training set the position of the product varies as
well as the width of the product slice. Therefore the
generator will have the ability to adapt to the defects
and try to balance the loss brought up by the defects.

To validate our hypothesis we masked the defects
(which is pink in the Figure 23) and input the im-
age into the generator for reconstruction. It means we
will reconstruct the defects based on the context of the
rest of the image. In the experiment we modified the
loss function backpropagated to the latent space.

Lyizei(z,z,b(h, W/, w,w")

9 SR

1=0 5=0
oW (14)
Y S
i=h j=w
Equation 14 is a modified pixel-wise loss. The first

term is the same as Equation 3. The second term is
the pixel-wise loss within the defective region, where
h,h',w,w’ indicate the lower and upper index of the
bounding box within the image. We use only the rest
of the image by backpropagating the loss outside the
bounding box.

As shown in Figure 23 when we reconstruct the orig-

inal image, there is a blue margin appearing on the
top of the edge. This implies that the generator tries
to enlarge the width of the slice to balance the loss
occurred by defects. When we mask the defects, the
margin disappears.

ﬁﬁ

ﬁﬁ

(a) Input image

(b) Blend after re-

construction

Figure 24. The left column is the Input image for recon-
struction. The top row is the original image with edge
erosion defect. The second row is when we mask the a
region instead of defect. The third row is when we mask
defect.The right column is blending of residual image and
the original image after subtraction

Another example to explain the adaptability of the
generator is shown in Figure 24. The original image
has a large gap in the lower edge while the recon-
structed image displays only a small difference region.
The generator tries to fit this gap by partially raising
the edge in the gap area. When we mask the defects,
the generated image follows the arc of the remaining
edge and displays the full defects.

Masking the defects and reconstructing based on the
remaining part shows a better accuracy to reveal the
defects. However, pre-knowledge of where the defect
lies is indispensable. This leads to future work to come
up with an effective masking strategy for reconstruc-
tion.
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6. Conclusion

In this thesis, we proposed a pipeline that uses gen-
erative models (GAN and VAE) for anomaly detec-
tion, in order to avoid the problem of data imbalance
where good images take the majority of the dataset.
The generative models are used to reconstruct images
and reveal the defects based on the distance between
the original images and their reconstructions. Further-
more, we measured the distance between the images
and their reconstructions on both pixel level and fea-
ture level. We also compared the anomaly detection
with traditional supervised learning. The results show
that, in most cases, anomaly detection using feature
level distance performs the best.

From the visual results, both GAN and VAE are able
to reconstruct good images and reveal the defects.
However, the anomaly score defined in formula 3 and
the reconstruction loss defined in formula 11 are un-
able to distinguish between good images and defective
images. Because the defects only take up small area of
the whole image and the image size is large(224x224),
sum up all the pixel difference decreases the salience
of defects.

In the feature level, The Siamese Network using pre-
trained VGG16 can capture the distinctive features of
different defects. Compared with a baseline of single
VGG16, Siamese Network improves the recall of de-
fects in all defect classes. Furthermore, using Global
Average Pooling can build up a salience map for de-
fects localization.

During the experiment, we observed that defects can
be more accurately revealed when we reconstruct im-
ages, with defects being masked. However, masking
strategy that does not based on the pre-knowledge
of defects location is the future work of this project.
What’s more, in this thesis, we only experiment on
the binary classification, ignoring the fact that multi-
ple defects can exist on the same image.

6.1. Future Work

In this thesis, we only experiment with the binary clas-
sification, ignoring the fact that multiple defects can
exist on the same image. In the future, we would like
to investigate how each class of defects differentiates
from each other, using multi-labelling classification.
Besides, we would like to investigate an efficient mask-
ing strategy to reconstruct images more accurately.

For training the GAN, there are several things which
are missing in our experiments. There are few vari-
ants of GAN that have been proposed recently, claim-
ing better performance than the simple GAN. Partic-

ularly Wasserstein GAN (WGAN)(Martin Arjovsky,
2017), which uses Wasserstein distance to solve insta-
bility and mode collapse of GAN. Besides, during the
experiment, we observed a mild checkerboard-effect
brought out by the deconvolution operations (Odena
et al., 2016), which could have influenced pixel level
distance between original images and their reconstruc-
tions. We could later directly up-pooling of feature
maps instead of deconvolutional layer, and see if the
performance improves.
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