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Abstract

In the field of large scale Internet of Things(IoT) networks using the LoRaWAN protocol, The
Things Network(TTN) is a very popular global, crowd-funded, decentralized network operat-
ing on the principle of openness. TTN has experienced an exponential growth in popularity
with more than 47000 developers, 4500 active gateways, routing close to 6 million messages
every day (as of the writing of this document). The Things Network has two variants i.e., a
public community network offered free of charge to its users and commercial networks for
industrial customers.

However, the current iteration of The Things Network stack (ttnV2) and the process of
deploying it for customers has two major points of concern. First, the process of deploying
a dedicated instance for each customer and maintaining a separate instance for the public
community is not scalable with regards to installation, management and modification. Second,
there is presently no mechanism to exchange traffic between these instances which results in
a fragmented ecosystem.

This thesis demonstrates how, using architectural description techniques, two or more ar-
chitectures can be compared for relative advantages. This provides meaningful insights into
potential issues in the architectural design of the new stack. It also identifies how the Software-
as-a-Service (SaaS) design paradigm offers solutions to scalability issues in the microservice
based TTN software stack, by proposing deployment schemes that attempt to balance various
(often opposing) requirements. This project also evaluates different state-of-the-art tools such
as Kubernetes that facilitate these deployment schemes. Furthermore, the project demon-
strates how the TTN instances can seamlessly exchange traffic with each other, by the design
and implementation of a Publish-Subscribe based system called the Peering Broker, and pro-
vides arguments as to why this design is more scalable compared to peering mechanisms
provided by the LoRaWAN specifications. And finally, this project also demonstrates how
the exchange of traffic between networks can be quantified to facilitate a fair and transparent
exchange.
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1 Introduction

The ever-increasing need for connectivity has driven technology to new heights. Smartphones and
their complimentary wireless network infrastructure have placed the internet and all its features
at our disposal, for better or for worse. The next logical phase of this technology is the Inter-
net of Things (IoT), defined as “the domain that is working to connect devices to communicate
with each other without human intervention”. Traditionally, the construction and maintenance of
wireless network infrastructure is dominated by big corporations, usually establishing monopoly
over large regions and imposing their own terms on their customers. To prevent monopoly and
centralization in the IoT domain, The Things Network (TTN) was created as a free, open source,
distributed IoT network solution that could be created by anyone, anywhere . The technology is
an open IoT Network leveraging LoRaWAN (a long range low power Internet of things protocol)
that promotes decentralization and interoperability between a multitude of devices and networks.
These networks are usually paid for and maintained by multiple parties including crowd-sourced,
public networks making the reach global and the possibilities endless. Presently, TTN is based on
a dual licensing model with the free, open source public networks and on-demand custom private
networks, supported by the Things Industries (TTI), the commercial entity that provides the solu-
tions (including software) for the TTN.
Though the concept of open, decentralized IoT networks is a great step to prevent monopoly and
promote interoperability, the existing version of TTN (ttnV2) has its drawbacks. Firstly, the sep-
aration of the public and private network deployments does not scale well. It is necessary to
separately install, configure, monitor and maintain each private network. This creates numerous
individual points of failure due to its localized approach. Secondly, this model is geographically
restrictive and creates redundancy as the same geographical region may be served by networks
from multiple customers. These restrictions lead to the fact that data cannot be exchanged/peered
between different networks, which defeats the vision of global interoperability. And finally, in-
dividuals and businesses who host public networks need to be compensated when their resources
are used by other customers.
In order to achieve true decentralization and interoperability and to solve the aforementioned prob-
lems, TTN is being redesigned to ease its usage as a SaaS (Software as a Service) platform and to
allow peering (or the exchange of data between networks).
In this project, we explore how the redesigned software stack supports new requirements, how
peering can be realized for IoT networks with large throughput to allow seamless exchange of
traffic between them, how SaaS-based tools and techniques enable scalability and ease mainte-
nance and finally how the exchange of data between networks can be quantified.
Consequently, the rest of this introductory chapter is devoted to broadly setting the context and
stating the problems that will be elaborated through the rest of the document.

1.1 Context and background

Before stating the problem, it is essential to describe the company, its product and its processes in
order to contextualize the problem. The rest of this section is dedicated to this description. The
concepts and terms broadly outlined here will be examined in more detail in subsequent chapters.

1.1.1 The Things Network

The Things Network identifies itself as ”a global, crowd-sourced, open, free and decentralized
Internet of Things Network.”[1]. It is an eco-system of IoT devices and software and a vibrant
global community driven by a collective ideology amongst its users and developers, aiming to be
mutually beneficial.
The Things Network comprises of two symbiotic entities, specifically:
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• The Things Network Foundation (TTN):
A non-profit foundation dedicated to providing software and support to create communities
of geographically localized networks that are initiated and maintained by local communal
efforts. The foundation operates on the principles of transparency and decentralization while
the communities are expected to adhere to the The Things Network manifesto [2] and honor
the principles of Fair-Use.

• The Things Industries B.V. (TTI):
A commercial entity that, in addition to developing the software and providing the necessary
support to The Things Network Foundation, develops and distributes customized software
and services to industrial customers. A major part of the revenue derived by this entity is
invested in maintaining the The Things Network Foundation (the services of which are free
of cost to the community members).

The seamless coordination between the two entities preserves the ecosystem and ensures its con-
tinuity.

1.1.2 The Product

TTI develops and maintains a specific software implementation of the LoRaWAN network server
(to be explored in detail in the next chapter), which is a middle-ware that provides routing services
between IoT devices placed in the field and the software applications that use the data from the
devices. Presently, TTI uses version 2 (herein referred to as ttnV2) of its software stack which
is currently used for both the public community network and private commercial networks. It is
quite interesting to note that 90% of the software stack is open-source and is open for developers
to modify and improve. As a matter of fact, the backbone of the TTN Ecosystem is the active
developer community who provide bug-fixes and feature updates as well as serving as lead users
for new features. TTI offers this software along with a few closed-source proprietary components,
installation and operational support and makes it available as a premium package to industrial
clients. TTI also supports certain customer-specific features in these installations that are not
available in the public network.

1.1.3 The Process

As mentioned earlier, the software stack that is developed by TTI (i.e., ttnV2) needs to be installed
onto machines (either real or virtual) and maintained for proper functioning. Though this process
will be dealt with in depth in a subsequent chapter, it is vital to understand the diversity of these
installations and their consequence. A few instances of the ttnV2 software stack are installed for
public use on certain virtual machines, each instance serving a particular region (ex: ttn eu, ttn us
etc). These installations are called Public Community Networks and are hosted and maintained
free of cost to the users. TTI offers its commercial customers similar installtions of the software,
either on a cloud VM or on customer defined machines for a pre-determined price. The process
of installing and configuring these networks to each customer’s requirements is referred to as a
Deployment. Currently, these installations are what is referred to as Single tenant installations as
each instance serves only one tenant (customer). Such a process cannot scale as the number of
customers increase for reasons that will become apparent in subsequent chapters.

1.1.4 Shortcomings

Every system has its deficiencies and the current TTN eco-system is no exception. The deficiencies
that are relevant to this project are listed below.

• The ttnV2 software stack is not extensible to include new requirements such as updated
LoRaWAN specifications (Ex: LoRaWAN 1.1).
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• The lack of peering (data-sharing) between the private networks and the between private-
public networks causes global isolation and redundancy as it is geographically restrictive
for each customer.

• The manual deployment and operation model is tedious to maintain and does not scale with
an increase in the number of customers.

• There is no mechanism to defray the gateway owners who contribute traffic to the network,
which curtails the mass adoption of TTN networks globally.

Please note that each item in this list will be elaborated in dedicated chapters subsequently in this
document.

1.2 Problem statement

The aforementioned deficiencies produce the following requirements for this project:

1. Identify and evaluate more efficient deployment schemes and evaluate tools that enable
them.

2. Design and implement a mechanism for peering between the networks to share traffic.

3. Identify and/or design a scheme to monitor and log metrics that can determine value pro-
vided by gateway owners to the network.

4. Analyse and document TTN’s new architecture to gain better insight into the TTN ecosys-
tem and to identify potential flaws (and suggest improvements).

1.3 Document Structure

The following table provides a global overview of the structure of this document.
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Table 1: Overview of this document
Chap. Main Theme Research Space Implementation Space

2 Understanding
LoRaWAN

Explain essential concepts of
LoRaWAN required for the rest

of this document.

-

3 Analysis of the V3
Architecture

Study of LoRaWAN based IoT
stacks, comparative study of
TTN v2 and v3 architectures,

Motivation for newer
architecture

Document new stack
using Arch description

techniques

4 Deployment Global Network sharing
considerations, Multi-tenancy,
Load distribution, scalability

Evaluation of tools, PoC
Implementation of

Shared deployments with
ease of scalability and
load balancing using

tools found

5 Collaboration
between Networks

Routing and Peering, Metering
of Traffic, Packet Delivery
strategies, Discovery and
Handoff considerations

Discovery,
Authentication, Secure

Data Routing to the
correct end point. [Opt]

Optimal Routing
strategies

6 Conclusions Summarize the project and
analyze the outcome

-
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2 Understanding LoRaWAN

This chapter briefs the reader through aspects of LoRaWAN that are necessary to understand the
rest of this document. Those who are already quite familiar with LoRaWAN may skip ahead to
the next chapter.

2.1 Overview

LoRa[3] is a long-range, low-power radio modulation protocol that is part of the LPWAN(Long
Range, Low Power Wide Area Network) class of modulation. LoRaWAN (LoRa Wide Area Net-
work) is a MAC (Medium Access Control) layer protocol designed on top of the LoRa modulation
scheme which is governed by the LoRa Alliance The following image explains the LoRaWAN
Software stack:

Figure 1: LoRa Stack
Source: [3]

When compared to the OSI model, LoRaWAN defines only the following layers:

LoRaWAN Specification ISO Model Specification
LoRa Radio Modulation Physical Layer
LoRaWAN MAC Protocol Data Link Layer
Application Covers the upper OSI layers namely Network, Transport, Session,

Presentation and Application.

Table 2: Comparison of OSI and LoRaWAN Software stack.

The Application layer is left to the user to implement as required by individual use cases.
The following image shows a typical LoRaWAN End-to-End Installation:
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Figure 2: Typical LoRaWAN End-to-End Installation
Source: [3]

2.2 Key terms

The standard implementation of the LoRaWAN network consists of the following parts:

• Device (End-Device):
A LoRaWAN-enabled piece of hardware that usually consists of some sensors and (in some
cases) actuators, that is deployed in various physical environments, usually to gather some
sensor data. The most important requirements for these devices are that they must be able to
communicate over long ranges (10km or more) and be able to operate with extremely low
power, often sustaining themselves on battery power for years.

• Application:
This is a software program that uses the data produced by the devices. Applications and end
devices are usually designed and developed together to cater to specific use cases.

• Gateways:
Gateways are specialized devices that have LoRaWAN and IP capabilities. They convert
data between LoRaWAN and IP-based protocol formats. Since end devices are low powered,
they transmit whenever data is available. This means that the Gateways must always be
listening to incoming traffic from the end devices. Most gateways handle only one downlink
(refer below) at at time due to power supply constraints and hence, downlinks must be
”scheduled” on a gateway by an upstream entity. It is interesting to note that devices can
work with any network but gateways must be configured to only one network at any given
time.

• Network Server/Backend:
This is a generic term for the hosted software that routes data between Devices and Applica-
tions. The network server also performs functions such as gateway/device management, De-
duplication1 of the same data from multiple gateways and encryption/decryption of MAC
data.

1In the field, the same uplink packet may be forwarded by different gateways to the Network Server, which then
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• Application Server:
This is a hosted server that stores and processes the data from the devices and makes it
available for the application. This is introduced so that the applications are not required to
be listening to the network at all times but can query the application server periodically for
the data.
The application Server and the Network server together form the Backend of the LoRaWAN
network.

• Device Identification:
Each Device that supports LoRaWAN is assigned a special Extended Unique Identifier;
DevEUI which is expected to be unique globally. However, to allow a device to freely
connect and re-connect to any network, the Network Server stores a relative identifier called
the Device Address (DevAddr) to which this DevEUI is mapped.

• Uplink: An uplink is the transmission of a Data Packet from the End Device to the Backend.
Uplink Data frames have a frame-counter that is used in tandem with the DevAddr to make
them uniquely identifiable.

• Downlink: A downlink is the transmission of a Data Packet from the Backend to the End
Device. Downlink need not be synchronous to Uplinks.

2.3 Important Design Considerations

While designing a system meant for Low Power Devices in real-world applications, there are a
number of factors that need to be considered. The most important of these factors are discussed
here, with focus on how they influence the design of LoRaWAN.

• Power restriction on End Devices and Gateways:
The Transmission (Tx) Power and Duty Cycle restriction on the LoRa Radio Modulation are
the most important constraints on LoRaWAN network. In order to meet regional regulations
[4] to operate in the unregulated ISM (Industrial, Scientific and Medical) Band, restrictions
are placed on the maximum transmission power and Maximum On Time (Max Duty Cycle)
of the LoRa Radio. Hence, the LoRaWAN network is designed such that only simple func-
tions such as device connection and transfer of uplink and downlink data are performed on
the LoRaWAN network and all the other complex functionality is delegated to the IP-based
Network Server.

• Topology:
Most medium to large scale IoT device deployments are meant for use-cases where real-
world data is periodically read and relayed to the applications for processing/decision mak-
ing. This property of these networks eliminates the need for the End Devices to communi-
cate amongst each other. As a result, the LoRaWAN Network is deployed in a hierarchal
star topology where a large number of devices communicate with a single gateway2 whereas
a large number of gateways are in-turn managed by a single Network Server.

• Security:
LoRaWAN uses encryption on Application Data so that only the intended applications can
use them. In addition, the MAC layer administration information is also encrypted to secure
the LoRaWAN radio behaviour. So, LoRaWAN employs a two-level encryption scheme
with the Application payload encrypted using Application Keys (shared between devices

uses the DevAddr and the frame-counter to keep track the metadata of all the uplink frames and forward only one copy
of the application data to the Application Server. This process is referred to as De-duplication.

2Though, it must be noted that since duplicate uplink packets may arrive via different gateways at the network
server, this is not a simple 1:n star network.
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and the Application Server only) and the whole network data encrypted using Network
Keys(shared between the devices and the Network Server only). Both are AES-128 sym-
metric keys. This also means that application servers can freely connect to any network
server and be sure that the data is secure on any network.

2.4 A note on the Specifications

As described in an earlier section, LoRaWAN provides a technical descriptions for the Physical
(Radio), MAC and Application layers. The v1.1 [5] specification is actually composed of three
documents namely:

1. LoRaWAN Network Specification (1.1):
This discusses the MAC layer and the new Join procedures including the generation of the
keys used by the various parts of the system.

2. LoRaWAN Backend Interfaces (1.0):
This document defines the design for Roaming between two networks and will be explored
in detail in the section on Peering.

3. LoRaWAN Regional Parameters (1.0.3):
This document discussed the various frequency bands and physical layer parameters such as
Tx Power and Air-time for different regions across the world. For the most part, the contents
of this document are beyond the scope of this thesis.

We explore the LoRaWAN Network Specification (1.1) and discuss the aspects that are most rele-
vant for this thesis.

2.5 Identifiers

The LoRaWAN Network Specification (1.1) specification defines and describes a list of Identifiers
that represent devices/networks/data that are a part of the network. The following table describes
them briefly:

Table 3: List of Keys Used in LoRaWAN 1.1
Identifer Length (bits) Purpose
DevEUI 64 This is a globally Unique value that identifies a specific device
JoinEUI 64 This is a globally Unique value that identifies a Server(Join)

where this device is registed to. This is used to register a device
to a network.

NETID 24 A Unique identifier that is assigned to a Network which is pur-
chased by the Network Operator from the LoRa alliance.

DevAddr 32 An ID that is assigned to a device once it is registered to a net-
work. This ID is temporary and can be reassigned. A portion
of the DevAddr is the NetID. This is similar to the concept of a
Dynamic IP address.

2.6 Key Handling

Security is one of the most important features of LoRaWAN which includes encryption and in-
tegrity checks. There are two levels of encryption namely MAC layer encryption and Application
layer encryption. The keys used for this purpose and their details are found in the table below.
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Key Type Function
AppKey RootKey Used to derive the Application Session Keys
NwkKey RootKey Used to derive the Derive the Network Session Keys
JSEncKey Derived

Key
Device: Encrypt Join Request, decrypt Join accept, Network: En-
crypt Join Accept, decrypt Join Request

JSIntKey Derived
Key

Used by the Network to check the integrity of the Join Request

FNwkSIntKey Derived
Key

Used to perform integrity checks during Roaming (Explained
later)

SNwkSIntKey Derived
Key

Used to perform integrity checks during Roaming (Explained
later)

NwkSEncKey Derived
Key

Used to Encrypt Network Payloads

AppSKey Derived
Key

Used to encrypt Application Payloads

Note: All the keys mentioned above are AES-128 symmetric keys.

2.7 Summary

In this chapter, we looked at some key concepts of LoRaWAN including its architecture,
important entities in a typical installation, design considerations, specification documents,
identifiers and encryption keys. Knowledge of the above concepts should be sufficient to read
through the rest of this document. Now that this groundwork is established, in the next chapter,
we look at the first part of this project, i.e, analysis of the ttnV3 stack.
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3 Analysis of the V3 Architecture

With the fundamentals of LoRaWAN in place, we now commence the discussion of the first part
of this project. TTI redesigned their network stack with a newer architecture and are currently in
the process of realizing this in software. However, it is crucial to analyze this new architecture,
understand the motivation behind this redesign and compare it with other LoRaWAN based stacks.
This serves two main purposes; identification of potential flaws and detailed documentation of the
stack using standard architectural description methods, both of which are dealt with in this chapter.

3.1 Problem Context

The Things Network V2 stack is a middleware that is constructed using the microservices architecture[6],
which is a design paradigm that advocates the decomposition of large functional software mono-
liths into smaller, inter-connected functional components (services). The various services that
ttnV2 is comprised of is shown in the image below.

Figure 3: TTN-V2 Backend structure
Source: [7]

Please note that in the above diagram, Segment 1: End Devices (as described in the chapter on
LoRaWAN) is not explicitly displayed but it does indeed exist as part of the TTN ecosystem.
Each service performs a set of vital functions that are listed in the table below:
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Table 4: Key functions of microservices in ttnV2
Service Key Responsibilities

[LoRaWAN]
Gateway

A device that performs protocol translation between LoRaWAN and IP (Inter-
net Protocol)

Bridge A service that does protocol translation between the gateway’s legacy UDP
protocol running on most LoRa gateways and the Protocol Buffers over gRPC
are used in TTN

Router Handles all gateway related functions such as uplink, downlink management,
gateway scheduling and storing gateway metadata.

Broker Decides if a device is to be served or not based on its Device Address, De-
duplicates Application packets and gateway metadata, forwards uplinks to han-
dler, and chooses the best downlink path.

Network
Server

Maintains device state and MAC layer configuration, Checks message integrity
checks (MICs) for downlinks.

Discovery
Server

A server through which components find each other (follows Service Oriented
Architecture Principle).

Handler Handles all Application related functions including encrypting/decrypting ap-
plication payloads, providing a server for Applications to subscribe to the Up-
links.

Application A user defined Software components that is the destination of all uplinks and
the source of all downlinks.

TTI discovered certain short-comings in the ttnV2 stack that triggered a complete re-design of
their architecture (and an inevitable re-implementation). In order to explain these short-comings,
the description presented above needs further elaboration, which is done in the first part of this
chapter.

3.2 Requirements

The requirements of this chapter are as follows:

• Explore the ttnV2 stack to understand the motivation for the newer architecture.

• Analyze and document the ttnV3 stack using architectural description methods.

• Compare the two architectures to identify potential issues in ttnV3.

• Explore the architecture of other LoRaWAN based networks and contrast them with TTN.

3.3 The Current (ttnV2) stack

The functioning of the ttnV2 stack is best explained with an example use case. Firstly, consider
a temperature sensor equipped with a LoRaWAN Radio. The values read by this device are of
interest to an application. This device is placed at a suitable location where the temperature is
to be measured. This device joins the network(TTN) using its Device ID or DevEUI (Device
Extended Unique Identifier) which is used to identify this device. The device sends this DevEUI
as part of the network join message, depicted in the fig 4.
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Figure 4: Join Flow in ttnv2

Table 5: Explanation of ttnV2 Device Join Procedure
No Component Action

1 End Device The Temp sensor value (application data) is read, packaged into Lo-
RaWAN packets (Uplink Messages) and transmitted over LoRa Radio
Modulation.

2 Gateway The uplink messages from the devices are demodulated from LoRa and
packaged as IP packets along with device meta-data such as RSSI (Re-
ceived Signal Strength Index) and SNR (Signal to NoiseRatio of the
received signal).

3 Router The IP packets are routed to the correct broker based on the Device
Address(DevAddr)* of the End Device as each broker handles packets
only from a specific list of devices.

4 Broker Since multiple gateways may forward the same uplink message, the bro-
ker de-duplicates these messages by retaining all the metadata and for-
warding only one copy of the actual application data. In Addition, the
Uplink integrity is verified by the Broker.”

5 Network
Server

The Network Server maps the devices to the application and returns this
mapping when requested by the broker so that the uplink packet is sent
to the correct application.

6 Handler The end-to-end encrypted application data is decrypted here and con-
verted to a format required by the application

7 Application The application is a program that is the final recipient of the application
data (Temperature Value).

Once the device has joined the network, it sends temperature value as Uplink messages which is
then processed by the TTN backend and forwarded to the the application as described in the image
below:

19



Figure 5: Uplink Flow in ttnv2

ED refers to the End Device, in this case, the temperature sensor. The various steps depicted in
the above image is explained in the table below:

Table 6: Steps involved in routing an Uplink Message in ttnV2
No Component Action

1 End Device The Temp sensor value(application data) is read packaged into Lo-
RaWAN packets (Uplink Messages) and transmitted over LoRa Radio
Modulation.

2 Gateway The uplink messages from the devices are demodulated from LoRa
and packaged as IP packets along with device meta-data such as
RSSI(Received Signal Strength Index) and SNR(Signal to Noise Ratio
of the received signal).

3 Router The IP packets are routed to the correct broker based on the Device
Address(DevAddr)* of the End Device as each broker handles packets
only from a specific list of devices.

4 Broker Since multiple gateways may forward the same uplink message, the bro-
ker de-duplicates these messages by retaining all the metadata and for-
warding only one copy of the actual application data. In Addition, the
Uplink integrity is verified by the Broker.

5 Network
Server

The Network Server maps the devices to the application and returns this
mapping when requested by the broker so that the uplink packet is sent
to the correct device.

6 Handler The end-to-end encrypted application data is decrypted here and con-
verted to a format required by the application.

7 Application The application is a program that is the final recipient of the application
data (Temperature Value).

Now, let us consider another case where a device capable of some actuation (Ex: An automatic
lighting system). In this case, the User’s Application triggers a Downlink message to the End
Device. The various steps involved in delivering the Downlink message are shown in Table 6:
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Figure 6: Downlink Flow in ttnv2

Please refer to the table 7 for an explanation of the steps.

Table 7: Steps involved in routing a downlink in ttnV2
No Component Action

1 Application The application needs to send an actuation message to the device. It
sends this message to the handler along with the DevEUI of the target
device.

2 Handler The Handler encrypts the actuation message after performing a format
conversion if necessary. It then passes on this message to the broker.

3 Broker The Broker forwards the downlink message to the Network Server for
integrity calculation. Once it receives the updated downlink message
from the Network Server, it forwards it to the router.

4 Network
Server

The Network Server updates the Device state and generates the Message
Integrity Code (MIC) which will be used by the device to check the
downlink integrity. This is then added to the downlink message. Then,
this data is sent back to the broker.

5 Router Most gateways can hold only one downlink message at a time. Hence,
the router buffers the downlink until it can pass it on to a gateway that is
free.

6 Gateway The gateway transmits the downlink message over LoRa radio to the
End Device during the Rx cycle of the device. Each device has two
receive windows defined in the specification.

7 End Device The end device receives the downlink, decrypts it, checks its integrity
and takes appropriate action (Ex: actuation)

3.3.1 Motivation for a new Architecture

The Things Industries (TTI) made a decision to redesign their network stack to satisfy the follow-
ing requirements:

• Adoption of LW1.1:
The LoRa alliance released a newer version of its specifications namely , LoRaWAN1.1[5]
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which introduced the concept of Roaming (exchanging data between Networks), modified
the Network design to incorporate a designated server to maintain keys (Join Server), added
more flexibility in the MAC layer (padding of MAC commands) and proposed the inclusion
of Wireless bands for more regions. TTI decided to redesign their Network stack to incor-
porate all these changes while at the same time providing backwards compatibility to older
LoRaWAN versions within the same Network stack.

• Introduction of Peering:
One of the major changes in LoRaWAN 1.1 is the Roaming feature. This allows networks
to exchange traffic between each other to cover broader regions and make LoRaWAN more
accessible to its users. The ttnv2 stack was not designed for this feature and hence needed a
new design and the introduction of Peering mechanisms to realize Roaming.

• Facilitation of SaaS based Hosting:
In order to scale up the number of customers served and to ease the burden of managing
the networks for these customers, TTI decided to move from a distributed (per-customer) to
a shared deployment scheme. The ttnv2 stack is not capable of taking full advantage of a
shared infrastructure and hence needs a re-design.

• Address design issues in V2:
The ttnv2 was designed as an SOA(Service Oriented Architecture), where all components/services
had to register with the Discovery Server and used it to connect to each other. This resulted
in the discovery server being a Single Point Of Failure (SPOF) that caused the entire system
to fail with it. This needed to be overcome by using a network clustering and inter-network
discovery strategies which are incorporated in ttnV3. In addition, some bugs that could not
be fixed in ttnV2 due to the volume of the change involved, are fixed in ttnV3.

3.4 Analysis of Other LoRaWAN based stacks

Most LoRaWAN based stacks that are currently active are commercial and closed-source. A no-
table exception is the LoRaServer, an open-source standard implementation of the LoRaWAN
Network Backend created with the intention of serving as an evaluation server. The LoRaServer
implementation uses a monolithical architecture, that makes it interesting to analyze. Its architec-
ture is described in the image below:

Figure 7: Architectural Overview of the LoRaServer

In the above figure, it is interesting to note the following things:

• There is a Bridge component that connects the gateway to the rest of the network.

22



• The entire network backend is a single service (LoRa Server); hence this architecture is
referred to as a monolithical architecture.

• The LoRa App Server is analogous to the Handler in ttnV2, which handles all the functions
related to applications.

• The LoRa Server supports only one method of connecting applications, via an MQTT bro-
ker. Applications need to listen to the MQTT broker on specific topics to get uplinks and
publish to the same broker to push their downlinks.

3.5 Architectural Description of ttnV3

And now, we finally describe the architecture of ttnV3, starting with the overview, shown in the
image below:

Figure 8: Architectural Overview of ttnV3

At first glance, certain aspects are evident in the newer architecture. With the exception of the
Network Server component, all the others components have been replaced with alternatives. Also,
new components have been introduced. The Join Server (JS) is one such component that is now
responsible for securely maintaining the root keys of the devices. The Peering Broker (PB) (which
is the focus of the next chapter) is introduced to enable exchange of traffic between networks. The
PB is not deployed within the ttnV3 stack along with the rest of the components and hence, a
Peering Proxy component is introduced as part of the stack to interact with the peering broker.
The key responsibilities of each of the components of the new architecture are described in the
following table:
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Table 8: Main Responsibilites of ttnV3 microservices
Service Key Responsibilities

[LoraWAN]
Gateway

A device that performs protocol translation between LoRaWAN and IP (Inter-
net Protocol).

Gateway
Server

Handles all gateway related functions such as uplink, downlink management,
gateway scheduling and storing gateway metadata.

Network
Server

Decides if a device is to be served or not based on its Device Address, De-
duplicates Application packets and gateway metadata, forwards uplinks to the
handler, and chooses the best downlink path. Maintains device state and MAC
layer configuration, Checks message integrity checks(MICs) for downlinks.

Application
Server

Handles all Application related functions including encrypting/decrypting ap-
plication payloads, providing a server for Applications to subscribe to the Up-
links.

Join Server A special server introduced in LoRaWAN 1.1 that is reponsible for Securely
providing keys for encryption and integrity checks.

Identity
Server

A server that manages users and their access to the Applications and Devices.

Application A user defined Software components that is the recipient of all data uplinks
and the initiator of all data downlinks.

Peering
Proxy

A micro-service available only in the Proprietary version of the TTN stack
responsible for inter-network peering.

Peering Bro-
ker

A regionally hosted message broker for inter-cluster peering.

3.5.1 Functional View

• Join:
Fig 9 and table 9 explain the Join procedure for the V3 LoRaWAN 1.1 OTAA(Over the Air
Activation) device join procedure:
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Figure 9: ttnv3 OTAA LW1.1 Join Sequence

3

Table 9: Join Sequence for TTNV3 (OTAA devices)
No Action

1 Every End Device needs to send a Join Request to connect to a Network Server. The
End Device sends it Device Identifier (DevEUI) and a Network Identifier (JoinEUI)
in the Join Message. Both these are pre-programmed in the device.

2 The Gateway picks up the Uplink Message on the LoRa Radio, demodulates it to an
IP packet and sends it to the Gateway Server, along with some metadata.

3 The Gateway Server is the first component of the ttnv3 stack. It picks up the up-
link message from the Gateway and stores the device and gateway metadata. It then
forwards the Uplink Message to the Network Server.

4 The Network server de-duplicates the message (if necessary) and filters out the MAC
Info. Then it forwards the message to the Join Server.

5 The Join Server Verifies the DevEUI and JoinEUI and decides if this device would
be served or not. This decision is communicated via the Join Response message. If
the decision is positive, the Join Response contains the Device Address (DevAddr)
assigned to this device, and the secret keys needed for communication.

6 The NS adds necessary MAC info to the Join Response and sends it to the GS.
7 The GS will schedule the downlink on a gateway.
8 & 9 The End device receives the Join Response via the gateway.

3De-duplication is not necessary in-case there are no duplicates.
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• Uplink:
Now we consider the same temperature sensor that we discussed earlier. The new network
stack does not affect the operation of End Device. It still sends encrypted Uplink Messages
to the gateway which now forwards it to the Gateway Server. The entire process is explained
in the image below:

Figure 10: ttnv3 OTAA LW1.1 Uplink Sequence
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Table 10: Steps involved in routing an Uplink in ttnV3
Step Action

1 The End device sends an Uplink Message (Ex: Temperature Data) along with its
Device Address. The Application data (Temperature) is secured by an application
key(AppSKey) and the MAC info is secured by a Network Key(NwkSEncKey). This
is broadcast for any gateway in its vicinity to receive.

2 The Gateway receives the Uplink Message on the LoRa Radio, demodulates it to an
IP packet and sends it to the Gateway Server, along with some metadata.

3 ”The Gateway Server picks up the uplink message from the Gateway and stores the
device and gateway metadata. It then forwards the Uplink Message to the Network
Server.

4 ”The Network server de-duplicates the message (if necessary) and filters out the MAC
Info. Then it forwards the message to the Application Server.

5 The Application Server then decrypts the Uplink message and sends it to the appli-
cation.

6 to 9 The End device can optionally request a confirmation for the uplink which is then
triggered by the AS and is sent via the NS, GS and finally the GTW to the device.

• Downlink:
Similarly, the operation of the Users application remains unaffected by the new network
stack. A downlink intended for a device (Ex: An actuating Device) is still initiated by
the Application and Received by the Application Server. The sequence of handling the
downlinks in the ttnv3 stack is shown in the image below:

Figure 11: ttnv3 OTAA LW1.1 Downlink Sequence
Source: adapted from [5]
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Table 11: Steps involved in routing a Downlink in the ttnV3 stack
Step Action

1 All Downlinks are initiated by the application and a request is placed on the Appli-
cation Server.

2 The application Server encrypts the message and forwards it to the network server.
3 The Network Server adds the necessary MAC Inforamation and forwards it to the

Gateway Server.
4 The Gateway server then schedules the Downlink on an appropriate gateway.
5 The Gateway sends the Downlink message to the end device over LoRa Radio.
6 to 9 The Application may optionally request for a confirmation message that is initiated

by the End Device and relayed across the network back to the Application.

Let us once again consider our example of a user with some temperature sensors installed in
some location. The user (Ex: Web interfaces) registers the Application and the corresponding
devices (temperature sensors) to an Application Server(AS) (either hosted by TTI or others). This
Application Server needs to be connected to a Network Server(NS) that is operating in the region
where the device is installed. This is usually done beforehand by the operators of the Application
Server. This application now subscribes to uplinks from the device. The uplinks from the NS are
now pushed to the AS which will either push it to the application or buffer it if necessary. The user
can then login to the Application and access the temperature data.
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Figure 12: ttnv3 User Flow

3.6 Comparison of Responsibilities

The table 12 provides a concise comparison of the responsibilities of each of the components in
ttnV2 and ttnV3 and the LoraServer.

29



Table 12: Comparison of responsibilities of micro-services in ttnV2 v/s ttnV3 v/s LoRa Server
Key Responsibilities ttnV3 ttnV2 LoRa-Server

A device that performs protocol translation between
LoRaWAN and IP(Internet Protocol).

[LoraWAN]
Gateway

[LoraWAN]
Gateway

[LoraWAN]
Gateway

Handles all gateway related functions such as up-
link, downlink management, gateway scheduling
and storing gateway metadata.

Gateway
Server

Router LoRa Server

Decides if a device is to be served or not based on
its Device Address, forwards uplinks to handler, and
chooses the best downlink path.

Network
Server

Broker LoRa Server

Checks message integrity checks(MICs) for down-
links.

Network
Server

v2 Network
Server

LoRa Server

Maintains device state and MAC layer configuration Network
Server

v2 Network
Server

LoRa Server

De-duplication of Uplinks Network
Server

v2 Network
Server

LoRa Server

Handles all Application related functions including
encrypting/decrypting application payloads.

Application
Server

Handler LoRa App
Server

Buffers the uplinks for an application. Application
Server

Handler LoRa App
Server

Provides Keys for Encryption and Integrity checks. Join Server v2 Network
Server

LoRa Server

A server that manages users and their access to the
Applications and Devices.

Identity
Server

Account
Server

LoRa App
Server

A user defined Software components that is the re-
cipient of all data uplinks and the initiator of all data
downlinks.

Application Application Application

A microservice available only in the Proprietary ver-
sion of the TTN stack responsible for inter-network
peering.

Peering
Proxy

Not avail-
able

Not avail-
able

A regionally hosted message broker for inter-cluster
peering.

Peering Bro-
ker

Not avail-
able

Not avail-
able

3.7 Summary

In this chapter, we explored three LoRaWAN based stacks with the objective of creating a plane
of reference to analyze the ttnV3 stack. These stacks, namely the LoRa-Server, ttnV2 and ttnV3
itself are each designed with a different architectural pattern based on their requirements. The
insights thus gained are listed below.

• The ttnV3 stack does not contain any single points of failure with the removal of the ttnV2
discovery server.

• Since the stack was designed with LW1.1 in mind, it can be easily extended to provide
backwards compatibility to LW1.0 since LW1.0 is a subset of LW1.1

• The introduction of a special component to handle the exchange of traffic (the peering
proxy) means that ttnV3 can support the LoRaWAN Device Roaming functions (explained
in the next chapter).

• The detailed architectural and behavioral models documented in this chapter are a good
reference point to understand the working of the newer architecture.
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4 Deployment

Deployment is a vital phase of the software development life-cycle. It’s defined as a list of steps
performed in order to get software running and available to users. In this chapter, we discuss
(in great depth) the current deployment process used by TTN and the issues that arise from it.
We then explore alternative deployment schemes and the various architectural considerations that
need to be made for those schemes. This results in a model architecture that balances some of
the key concerns. We then analyze several tools that facilitate this model and test them for their
functioning. And finally, we list some limitations and provide an outlook on future work in this
regard.

4.1 Context

Deployment is a multi-step process involving software packaging, target preparation and instal-
lation and configuration. TTN currently employs a single tenant, dedicated deployment scheme,
where each instance of the software stack (ttnv2) is dedicated to only one tenant(customer). There
are public instances dedicated to the public community and, as of Aug 29 2018, about 25-30 single
deployed instances each serving a private customer. All of these deployed instances are managed
by TTI. The taxonomy of deployed instances is shown in figure 13.

Figure 13: Taxonomy of Deployed Instances of the ttnV2 stack.

Note: Private handlers are special deployments where only the Handler component is privately
managed but the rest of the network uses the public infrastructure.

4.1.1 Step 1: Pre-installation (Preparation)

This step is also referred to as Software Packaging or containerization. The micro-service de-
sign pattern advocates the decomposition of large software functions into logical sub-services
(micro-services). These micro-services are then then packaged into containers. Containers are
”abstractions at the app layer that packages code and dependencies together. Multiple containers
can run on the same machine and share the OS kernel with other containers, each running as
isolated processes in user space”[8]. This is different from Virtual Machines(VMs) as they are
abstractions directly over the hardware layer with a separate operating system(guest OS) running
on top of a host. The difference between the two is evident in the image below.
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Figure 14: Figure explaining the difference between Containers and Virtual Machines
Source:[8]

Docker [9] is the most widely accepted utility to create containers and is used in ttnV2 deploy-
ments, which will be retained in the ttnV3 deployment process.

4.1.2 Step 2: Installation

In order to run the software, Virtual Machines have to be prepared with the appropriate OS image,
supporting packages and configured with sufficient memory. There are two currently possible
targets for deployments based on the type of resource used:

• Cloud VMs
In this case, the ttnv2 runs on compute resources provided by a commercial cloud provider.
Most of the Public networks run on Microsoft Azure while in private networks, AWS is pre-
ferred by clients. The VM instances are managed either by TTN or by the client themselves.

• On-Premise
Here, the stack runs on a private server where the customer provides access to. In this case,
the servers are managed by client themselves.

The installation of the software is a multi-stage process involving:

• Installation of the OS and support packages with appropriate permissions.

• Installation of Secret Keys and certificates for Secure discovery and communication.

• Initiation of supporting services such as Databases and Message Brokers.

• Initiation of individual micro-services.

• Basic tests for connectivity and functionality.

For ttnv2, installation and configuration performed manually for each installation using handwrit-
ten scripts. This process is tedious and requires manual supervision. On average, an hour’s worth
of effort is necessary to configure a new network and this method is not scalable when there are
hundreds of customers.
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4.1.3 Step 3: Post-Installation (Operations)

Software Operations (Ops) is the process of monitoring and maintaining a software installation in
production. Due to the distributed nature of ttnV2 deployments, the operations become complex
and tedious. A few important operational considerations are outlined here.

• Monitoring and Logging:
An essential component of any system in production the ability to monitor various run-
time parameters and store these logs for debugging purposes. Monitoring and logging are
separate operations themselves requiring a multitude of components as shown in the image
below:

Figure 15: Enhanced View of a ttnV2 installation with Logging support
Source:[7]

The above diagram represents the key type of metrics namely gauges (scales) which can
increment or decrement and counters (meter) which can only increment. Due to diverse
deployment scenarios, each instance needs to be monitored separately, which cannot be
scaled apart from scaling up the man-power.

• Fault Diagnosis and Recovery:
In the event of system crashes or alerts as reported by the monitoring mechanisms, it is
essential to locate the cause of the issue and provide run-time fixes. The current method is
to enter into a remote shell (using ssh) on the target VM, check the logs and restart or update
the particular service/s that is/are failing. This technique is tedious and requires manual
intervention by Ops engineers, which will not scale as the number of clients increase.

• Rolling updates and upgrades:
There are a few instances where the services running on VMs need updates, such as bug
fixes, license updates and memory expansion to accommodate an increase in traffic. Un-
fortunately, in the current process, these updates have to be performed manually by Ops
engineers which is not scalable.
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4.1.4 Problems

As we have analyzed the ttnV2 deployment and operation processes, the following problems were
discovered:

• Each instance of the software stack needs to be installed (deployed) and configured on the
target machine separately, which scales poorly as more tenants are added.

• Each instance has to be monitored independently for proper functioning. This process is
tedious as it requires dedicated manpower which, once again, does not scale.

• When bugs/issues are found that affect the common software for all the instances, bug-fixes
need to be applied individually to each instance, which then needs to be monitored to make
sure that the fixes are properly working.

This lack of scalability of single-tenant distributed systems is the motivation to explore a different
deployment scheme/s for the new ttnV3 software stack. This chapter is dedicated to exploring and
defining a new deployment scheme based on the SaaS (Software As A Service) paradigm.

4.2 Research Questions

The following questions are derived from the shortcomings of the existing process explained in
the previous section. The rest of this chapter is dedicated to finding answers to these questions.

• What architectural patterns exist for SaaS deployments?

• How are micro-services coordinated in a SaaS architecture?

• What are the chief concerns that need to be addressed while designing a SaaS system with
micro-services?

• Which are the possible deployment schemes for ttnV3 stack based on its concerns?

• What tools/frameworks are available to deploy and manage these micro-services?

• How can the various concerns be tested and what tools exist to do so?

4.3 Inputs from Literature Study

In order to design a new deployment scheme based on the Software-As-a-Service(SaaS) principle,
it is essential to understand it in the first place, to which the rest of this section is dedicated to.
SaaS is defined in [10] as ”a form of Cloud computing in which applications are hosted by a
service provider and made availability to customers over a network, typically the Internet”.

4.3.1 Related Work

There is an ocean of literature available on SaaS architectures. A very good overview of the
architectural concerns in SaaS systems is presented in [11] and in [12]. [13] defines and discusses
models that help in achieving configurability is SaaS systems. The authors of [14] present a
thorough framework for application customization, whereas [15] presents an algorithmic approach
for the placement of tenants based on their resource utilization. [16] presents an overview of CPU
utilization in a multi-tenant cloud whereas [17] provides useful insights into SaaS architectures
based on micro-services. And finally, [18] and [19] provide mathematical results on handling
databases in multi-tenant clouds.
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4.3.2 Classification of SaaS Architectures

With the aforementioned literature serving as a reference, this paper identifies three major SaaS
architectural patterns. Before discussing these patterns, key concepts such as tenants and multi-
tenancy need to be defined. Tenants are merely customers who use the SaaS service(software)
and Multi-tenancy is defined in [12] as ”an architectural pattern in which a single instance of
the software is run on the service provider’s infrastructure, and multiple tenants access the same
instance”. The software in this context refers to a service, in this case the overall routing service
provided by the TTN Stack. With this context set, the three major SaaS architectural patterns are
described below:

1. Single Tenant Single Instance(STSI):
This is the simplest form of a SaaS system where there is only one tenant connected to a
SaaS service, which is hosted by the software provider. A single server in ttnV2 deployment
can be considered as a single tenant centralized deployment. This scheme is mentioned here
only for the sake of completeness and will not be further explored in this text.

2. Multi Tenant Single Instance(MTSI):
In this scheme, a single instance of the software stack serves multiple tenants. Each tenant
connects to the same server and it is the responsibility of the server to be able to handle the
load of the requests from the tenants without sacrificing the performance to any particular
tenant. In reality, systems use proxies as a front end which route requests to servers that
may themselves be distributed in nature.

3. Multi Tenant Multi Instance(MTMI):
In this scheme, several multi-tenant instances are deployed in a distributed manner and any
particular tenant may choose any one of these servers based on factors such as geographical
proximity or shortest response time. An example of the former are regionally distributed
services such as regional Amazon Web Service consoles and as for the latter, a good example
is the Peering Broker using a discovery service to find the best server to serve a proxy.

4.3.3 SaaS and Containers

At this juncture, it is crucial to set the scope of the discussion for this chapter. Since the services
are packaged into containers which are then installed onto machines (real or virtual), the focus of
this chapter is on how these containers can be properly managed. The authors of [20] provide a
good example of how containers can exist on top of SaaS infrastructure, though they stray into
implementation details in their analysis. Fig 16. is abstracted from their analysis at a higher
architectural level.
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Figure 16: Containers over an IaaS Provider

4.3.4 Important definitions

• Clustering:
This paper defines clustering as the process of logically grouping containers and defining
the communication methods between them.

• Cluster Management:
Cluster Management is concerned with handling with the clusters of containers as defined
above.

4.4 Design

Using the inputs from the literature, we can now explore a design for the SaaS deployment scheme
for the ttnV3 stack. In order to do so, we must first understand how the microservices detailed in
Chapter 3 are mapped into Docker containers, which factors (concerns) influence this mapping
and which amongst them have the highest priorities.

4.4.1 Mapping of ttnV3 services to containers

In terms of Architectural Descriptions, software packages are referred to as components and the re-
sulting diagram is called a component diagram. The following image shows the components(micro-
services) for ttnV3 systems and their interaction. This figure builds up on the architectural descrip-
tion made in Chapter 3 by treating each service as a component. End Device and Gateways are
physical entities whereas the peering broker (as described in chapter 4) is made up of multiple
components itself. Therefore these entities are not considered as components. As for the micro-
services that are actually considered as components in the diagram(ex: JS or NS), they are directly
packaged into a docker containers, one for each micro-service. This packaging is done by defin-
ing a configuration file (.yaml file) and invoking the Docker utility with this file as an input. A
sample configuration file along with the commands to invoke the docker utility are available in the
appendix. It must be noted that this process is exactly the same as for ttnV2 micro-services.
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4.4.2 Architectural Concerns for ttnV3 SaaS

Based on the literature research and technical discussions with the cloud architects at TTI, there
are two types of concerns that affect the architectural decisions, namely Properties and qualities.
The following tables lists some important properties and qualities of a SaaS system along with the
desired states.

Table 13: Properties of a SaaS system and the desired states
Property Description Desired State

Affinity Defined as the binding of
Users(tenants) to particular
instances.

Affinity should be low and dynamic for
better resource utilization.

Performance Isola-
tion

Defined as the degree of impact
on a tenant due to over-usage by
another tenant.

Should be kept to a minimum.

Customization Defined as the degree to which a
tenant can tailor the performance
of the system to a certain degree
to suit its needs

Customization depends usually on the
specific use-case.

Resource Sharing Defined as the degree to which
resources such as OS/Memory
are shared between tenants.

Must optimally balance resource con-
sumption and complexity in resource
sharing schemes.

The following table lists the various qualities of a SaaS system and their desired levels.

Quality Description Desired Level
Updatability Defined as the ability of the sys-

tem to easily rollout software
updates without affecting perfor-
mance.

It’s more beneficial to have different
staging and production environments
to isolate the testing of newer versions.

Scalability Defined as the ability of a system
and supporting tools to seam-
lessly allow the extension of the
services to new tenant.

The average cost per tenant must re-
main constant (with some tolerance)
with elasticity of tenants.

Observability Defined as the ability of the sys-
tem to provide a monitor with
fine-grained metrics and logs
that can be used to improve per-
formance and detect issues.

There are various levels of information
which will be discussed later in this
chapter.

Meterability Defined as the ability of the sys-
tem to store fine-grained usage
data per-tenant for the purposes
of billing.

Since ttnV3 currently employs a per-
device billing scheme, there only needs
to be metrics on devices per-tenant and
that can easily achieved by querying a
database.

4.4.3 Proposed Schemes

Considering the requirements above, this paper proposes three clustering schemes on the SaaS
infrastructure. In table 14, the different clustering schemes proposed above are evaluated against
the requirements and provided a label that is relative to each other. Most requirements are assigned
”high, intermediate or low” relative to each other and others are assigned ”easy, intermediate or
difficult”, again relative to each other.
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Table 14: Evaluation of proposed Clustering schemes against the requirements
Requirement Tenant-Affine Non-Affine Split-Affine

Affinity High Low Intermediate
Performance Isolation High None Low
Customization High None Intermediate
Resource Sharing Low High Intermediate
Software Updates Easy Easy Easy
Scalability difficult easy intermediate
Observability easy difficult intermediate
Metering easy difficult intermediate

4.5 Practical Considerations

Up to this point in the document, we concerned ourselves only with theoretical analysis. In this
section, we look at some practical considerations which includes evaluation potential tools for
creating, managing and updating container clusters.

4.5.1 Overview of Tools

The following table lists the tools chosen for different stages and the rationale for the choice.

Table 15: Tools for the various stages of deployment
Purpose Tool/Service Rationale

Container Creation Docker Docker is widely accepted and is almost syn-
onymous with containers.

Container Storage Gitlab Reg-
istry

Gitlab registry is free to use and is a private
repository.

Cluster Deployment and
Management

Kubernetes Kubernetes is the current front-runner in con-
tainer management.

Rolling Updates Spinnaker Spinnaker was built to integrate well with Ku-
bernetes.

Monitoring/Metrics Prometheus Prometheus is a well known open-source
highly configurable metrics aggregator.

Visualization Grafana Grafana is highly configurable dashboard
with various templates and works well with
prometheus.

4.6 Results

As a result of the analysis in this chapter, we have the following

• A clear understanding multi-tenancy on SaaS, its properties and qualities.

• Three SaaS deployment options to choose from based on tenancy.

• Various tools to assist in the deployment lifecycle have been identified and evaluated (details
in the appendix).

4.7 Summary

In this chapter we examined the ttnV2 deployment process, identified its issues. We explored the
architectural concerns of ttnV3, including the study of various properties and qualities of a
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multi-tenant SaaS system. Using this analysis, three schemes were proposed based on the type of
affinity. Finally, we explored various tools that would facilitate the deployment process. The next
chapter explores mechanisms to exchange traffic between networks.
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5 Collaboration between networks

The Things Network is in fact a collection of multiple network instances, each serving a specific
purpose. However, as described in the introductory chapter, since the instances serving individual
customers are isolated from one another (and from the Public Community Network) and since
there is no mechanism to exchange traffic between networks, the notion of one global network
does not yet exist. In this chapter we discuss the design and implementation of a system called the
Peering Broker (peering is the TTN terminology for traffic exchange between networks) to enable
collaboration between networks.

5.1 Problem Context

The Things Network(and LoRaWAN in general) is an open network aiming for global coverage
and connectivity. The success of the network is directly proportional to the number of partici-
pants and the cooperation between them. However, neither the ttnV2 stack nor the supporting
LoRaWAN 1.0 specifications provided any mechanism for Networks to exchange data. This re-
sulted in a fragmented system where each network served only a dedicated number of devices.
This isolation is depicted in the figure below:

Figure 17: ttnv2 Deployment scenarios

Consequently, devices can operate only if they are present in a location covered by the net-
work (home network) which handles those devices. But field data suggests that regions of (pri-
vate/public) networks typically overlap. This restricts the operation of the device only to certain
regions and the networks themselves have redundant overlap in certain geographical area. The
LoRa Alliance has addressed this short-coming in the latest version of the specification by intro-
ducing the concept of Roaming. The rest of this chapter will examine these specifications and their
consequences in the ttnV3 design in detail. Before doing so however, it is essential to define the
term Network Server.
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5.1.1 Disambiguation of the Network Server

The LoRaWAN Specifications refer to the Network (Backend) as the Network Server. As ex-
plained in the previous section, the ttnv3 stack refers to the component (service) that handles the
network layer of a device as the ”Network Server”. For the sake of disambiguation, in this doc-
ument, the term ”Network Server” is reserved for the ttnv3 component. The LoRaWAN Network
Server will be referred to plainly as the ”Network”.

5.2 Requirements

The Requirements for the TTN Peering Infrastructure are as follows.

1. Functional:

(a) Support LoRaWAN 1.1 Roaming functionality (explained in detail later in this sec-
tion).

(b) Implement a mechanism to calculate the number of packets transmitted between net-
works.

(c) The traffic that is exchanged must be encrypted and integral.

2. Non-functional:

(a) The system must be easily scalable i.e., it must be easy to add/remove networks with-
out affecting performance.

(b) The system must be tolerant to faults.
(c) The system must be observable, i.e., it must be easy to monitor and log events during

run-time.

3. The Roaming functions maybe optionally extended to include LoRaWAN 1.0 devices as
well.

5.3 LoRaWAN Literature

In this section, we discuss the LoRaWAN Backend Interfaces (1.0) [21] to understand the pre-
scribed specifications on Roaming of Devices, which in-turn is facilitated by Peering between
consenting networks.

5.3.1 Roaming

The LoRaWAN Specification defines three states for a Network Back-end (refered to as Network
Server/NS in the specification) with regards to handling a particular device:

1. Home NS (hNS):
This the NS which the device and the application is registered to. This is the final destination
of Device uplink messages. This NS also is connected to the Join Server where the device’s
keys are held. When a device is connected to this NS directly, there is no notion of Roaming
involved.

2. Forwarding NS (fNS):
In this state, the NS simply forwards uplink/downlink packets to the Home NS. It does not
maintain any state nor does it control the device’s activity.

3. Serving NS (sNS):
In this state, the NS handles the complete MAC layer operations of the device including
maintenance of Device state, control of device operations, encryption and decryption of
Network commands and Integrity checks.
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5.3.2 Types of Roaming

The LoRaWAN Backend Interfaces 1.0[21] defines two types of roaming based on the state of the
NS to which the device is connected:

1. Passive Roaming:
In this case, the NS connected to the device acts only as a Packet Forwarder (fNS). The
device state and control information is held by another NS (sNS/hNS)

2. Handover Roaming:
In this case, the NS (sNS) connected to the device takes over the Network control of the
device and only the application packets are routed to the home NS.

The Fig 22 is borrowed from the LoRaWAN spec:

Figure 18: Network server states during Peering as defined LoRaWAN Backend Interfaces
Source:[21]

5.3.3 Device Activation while Roaming

When a device moves from one region to another, it must send a Join request to create a new
session i.e., every kind of Roaming must start with a Join request. This is also a trigger the network
servers involved to enter into a roaming arrangement with each other to best serve the device.

5.3.4 Session State while Roaming

The section on LoRaWAN explained the fact that every Join/Rejoin Request created a new session
for the device and this is stored in the Network Server. During passive roaming, the session of
the device is maintained in the Home Network since the forwarding Network does not maintain
device state. However, in the case of the handover roaming, the serving Network, maintains the
state of the device, which gets reset upon every Join/Rejoin request.

5.3.5 LoRaWAN Reference Architecture

The LoRaWAN Backend Interfaces(v1.0) [21] defines the following standard implementation of
Networks during Roaming:
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Figure 19: LoRaWAN roaming reference implementation archtitecture
Source: LoRaWAN Backend Interfaces(v1.0)[21]

5.3.6 Issues with reference Architecture

The proposed LoRaWAN roaming reference implementation archtitecuture has the following draw-
backs.

• Common Join Server (JS):
In order for devices to join the serving network backend, the devices have to send a Join
Request which has to be routed to the correct Join Server (JS) to validate the device. The
Specifications propose that all the Network Backends that support roaming be connected to
a particular JS that holds the keys to that particular device. This makes the JS a Single Point
of Failure (SPOF). Furthermore if this JS is compromised, then all the networks that use
keys from it are vulnerable.

• 1:1 connections:
The reference implementation proposes that the Network backends that enter into a roaming
arrangement create 1:1 data streams for sharing data. LoRaWAN packets are designed to be
short and periodic and it is a waste of resources to maintain persistent connections for such
data. Also, these connections are not scalable as the number of backends increase.

5.4 Design

The fact that common Join Servers are a threat to the security of the LoRaWAN networks and
that maintaining persistent connections between networks is not optimal for LoRaWAN networks
encouraged us to rethink the design for our peering system.
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5.4.1 PubSub Architectural Pattern

The Publish-Subscribe (PubSub) as described in [22] is an Event-Based coordination pattern
which is best suited for systems where there is a notion of entities that create data (Produc-
ers/Publishers) and entities that use this data (Consumers/Subscribers) and where there is a need
to decouple the two entities. Since this pattern closely fits the requirements for the ttnV3 peering
system, we introduce a new entity called the Peering Broker (PB), which works in accordance
with the PubSub pattern.

5.4.2 Architecture

Figure 20: TTN V3 Peering Architecture

The Peering Broker is itself composed of multiple MicroServices, the most vital amongst them
being the PubSub Broker. This is the component that mediates between the Publishers and sub-
scribers. The Publishing Network publishes data to the this PubSub Broker and other Networks
that are interested in this data subscribe to this data. The data is bifurcated based on a Topic, which
serves as the reference for publishing and subscribing data. The other microservices of the PB are
constructed to support the PubSub broker. The main functions of each micro-service is described
in table 16.
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Table 16: Overview of the Components in the Peering Broker
Component Main Function
PubSub Bro-
ker

A message broker that works on the Publish-Subscribe principle.

Manager Manages the connection of networks, stores and retrieves keys.
Monitoring Retrieves application and network metrics from various components.
Metering Keeps track of the number of messages passed between networks.
(Broker)
Discovery

Acts as a fixed end-point which networks can query for the location of the
Broker making the broker instances dynamic. This service can either be hosted
on the same machine as the other services or separately.

Look-Up Used to store and retrieve network information.
Peering
Proxy

An component that is part of the ttnV3 stack that interacts with the Peering
Broker and the other components in the stack, thus enabling inter-network
peering.

5.5 Implementation Details

5.5.1 Api Definitions

The micro-services design enforces loose coupling between services by the use of APIs. We
prefer to use Protobuf[23] to define the interface between the services. An example of a proto api
is shown in Fig 30

Figure 21: Protobuf definition of an uplink message

This interface is then used in a service call using gRPC (google Remote Procedural Call) [24]. The
protobuf compiler can automatically create the underlying code in any of the supported languages
(golang being one of them). This generated code is then used in the service to call the RPC and
pass the data as defined in the message.

5.5.2 Metering

All publishes/subscribes are logged by the Broker using the Metering component. This data is
stored in a separate database and can be queried for the quantity of inter-network traffic, which
can be used for billing between the networks.
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5.6 Additional Considerations

5.6.1 Data Security

The system uses a combination of asymmetric and symmetric encryption schemes in order to allow
flexibility and also to ensure data security.

5.6.2 Integrity Check

Standard cryptographic signature schemes are used to ensure integrity of messages exchanged
between the networks.

5.6.3 Isolation

Since the PubSub does not explicitly restrict networks from subscribing from Topics, Networks
can technically subscribe to packets intended for other networks. Though the packets are en-
crypted, the time of arrival of packets and their length can be used to perform analytics on the
peering networks which can reveal some interesting information. This is not handled in this im-
plementation.

5.7 Validation

5.7.1 Test Setup

The Peering Broker and the Proxy are tested using a tester, which is a software component that
simulates the rest of the stack. The Peering Proxy API is called with test inputs its results are
logged in Docker as well as on the dashboard.

Figure 22: Peering Test Setup
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5.7.2 Sample Results

The following figure shows the final results of a simulation with two networks with randomized
inputs as reported by the dashboard. For a more detailed explanation of this simulation, please
refer to the appendix.

Figure 23: Sample Test Result as seen on the Dashboard

5.8 Summary

In this chapter we examined the TTN Peering Broker, a system designed to enable the exchange
of traffic between networks. Its PubSub based design addresses the issues with the LoRaWAN
standard reference implementation. Networks can exchange traffic without needing to connect to
a single Join Server and without maintaining persistent 1:1 connections. This improves the scala-
bility, load-handling capability and fault-tolerance of the system as demonstrated by the tests. The
Peering Broker also maintains peering metrics that can be used by networks for billing purposes
and the use of a symmetric encryption scheme aided by the asymmetric security scheme meant
that the networks can exchange data securely.
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6 Conclusions

This project was executed with the goal of improving the scalability and connectivity between
various instances of The Things Network software stack, while leveraging the upcoming version
three (ttnV3) of the architecture. In order to attain this goal, it was essential to, at the outset, un-
derstand ttnV3 from an architectural point of view. We did this by first investigating the existing
stack (ttnV2) and its shortcomings to sketch the motivation for ttnV3. Then we modeled ttnV3
structurally and behaviorally to scrutinize its design and compared it with a monolithic LoRaWAN
network implementation (LoRaServer), as well as ttnV2 to appreciate the benefits offered by its
architecture. The resulting models and the analysis documented here serve as a reference to un-
derstand ttnV3.
Upon gaining a clear understanding of the architecture of ttnV3, the next step was to analyze the
current deployment process used for ttnV2, address its scalability issues, and propose solutions to
improve this process for ttnV3. We did so by first dissecting the ttnV2 deployment process into
three stages and diagnosing the problems in each stage. This led to the conclusion that the single
tenant, multi-instance approach currently used was not conducive to scalability, and hence, a new
approach was needed. Consequently, we explored the Software As A Service (SaaS) paradigm for
potential solutions. Since ttnV3 uses the micro-service design paradigm, additional considerations
needed to be made to garner the benefits of SaaS. We then elucidated three SaaS architectures, their
qualities and properties, which led to the proposal of three clustering schemes. Recognizing the
fact that advanced tool support is necessary to realize SaaS with microservices, we explored state
of the art tools to support our deployment including Kubernetes, the current leading solution in
container management. Though the ttnV3 stack is not yet available, this research has laid the
groundwork necessary for easing the deployment process when the stack is available.
The next important phase in making TTN scalable is to introduce cooperation between the net-
work instances. The LoRa Alliance paved the way for this feature by introducing the concept of
Roaming in the latest specifications (v1.1). But, the analysis of these specs soon revealed archi-
tectural issues that would inhibit scalability in networks implementing these specifications. As a
result, we redesigned the peering architecture using the Publish-Subscribe paradigm by introduc-
ing a service called the Peering Broker. The various stages of designing and implementing this
system were documented here. This system was validated by creating a simulation network to
provide test inputs to the Peering Broker and its proxy and the results were visualized on a dash-
board. These results demonstrated how the pubsub mechanism is able to handle high loads, how
the peering broker is able to seamlessly add or remove networks, and how the system as a whole
can be monitored using detailed logging mechanisms.
The final ingredient in making ttnV3 truly scalable is the quantification of the messages passed
between networks in order to estimate the volume of traffic exchanged between them. This was
easily accomplished by the metering component in the broker which subscribes to all the data that
is passed between the networks and keeps a detailed log of the messages transferred.

6.1 Future Work

The information presented and the results demonstrated in this project serve as the basis for the
future work which is summarized below.

• SaaS Deployment
As of writing this document, the team at TTI is working hard on creating a Minimum Viable
Product (MVP) of the ttnV3 stack, which includes the most basic functions needed by device
and gateways. Once this MVP is available, the data presented in this document can be used
to implement different clustering mechanisms to obtain statistics to validate the theoretical
arguments and to use the tools analyzed here with these clusters.
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• Peering in ttnV3
The Peering Broker (and the peering proxy) implemented in this project is currently tested
in isolation with test inputs for its functioning. However, once the MVP is available this
system can be integrated with the ttnV3 stack to test with real inputs. Subsequently, both
ttnV3 and the peering broker can be hosted on a suitable cloud to ease their maintenance.

• Compensation
Finally, the metering information that is collected and stored by the metering component can
be extended with other metrics, such as gateway usage information, in order to compensate
the gateway owners for their contribution to the network. This would involve placing such
statistics on an open platform such as a blockchain and using mechanisms such as smart
contracts to automate the compensation process.
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Appendix

Appendix 1: Container Management Platforms

Most container management solutions can be placed in two broad categories.

• Tool-based:
They are usually open-source software which need to be manually integrated into/packaged
with the ecosystem of systems under question and manually managed by the software team.
The advantage with using tools is their flexibility and the ability to customize them for the
use case.

• Service-based:
Services are usually closed-source, fully integrated solutions that are built using the tools
provided to the software team as a service. The advantage of this approach is that there is no
need to maintain the container management software in addition to the rest of the software
components.

Figure 24: Classification of Container Management Solutions

The following table provides an overview of the most popular container management solu-
tions:
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Figure 25: Comparison of Container Management Platforms
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