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Abstract

This work is concerned with obtaining control relevant process models and maintenance of these
models for nonlinear reaction systems. In general, there are two types of modelling approaches.
One approach is modelling based on physical laws (first principles) in which physical interpret-
ation of variables and parameters is feasible and this aspect is highly valued by the industrial
practitioners. However, this type of modelling can be very time consuming. The second approach
is the data driven process modelling which is less expensive in terms of time in comparison to first
principle models. But the physical interpretation of the parameters is not possible. In a recent
work, extent transformation is used to decouple the nonlinear reaction system into governing phys-
ical phenomena and the resulting model is a Linear Parameter-Varying (LPV) system. Motivated
with this LPV representation, in the first part of this graduation work, we have investigated the
use of Orthogonal Basis Functions for the identification reaction systems. We have shown that
this is indeed possible around a specific operating point. In the second part, we have focused on
the practical parameter sensitivity and identifiability of reaction systems. Such analysis helps to
rank the model parameters. Such information is useful in estimation of model parameters in align-
ing the process model with the process behavior. The applicability and reliability of the ranking
methods are demonstrated on a Reactive Batch Distillation Column.
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Summary

In this project, we have dealt with the modelling of reaction systems. A brief summary of this
thesis is given in the following. We first introduce the thesis in chapter 1. In the introduction, the
porblem statements and research questions are stated.

In Chapter 2, all the background information is explained in order to have a good understanding
of the rest of the thesis. In section 2.1, the difference between continuous and batch reactors
is explained. Section 2.2 introduces the notions of extents of reaction and flow and how these
can be used for the analysis of single phase and multiphase reaction systems. In section 2.3, the
theory of extents is used to express a general reaction system as an LPV representation under
some assumptions. The Reactive Batch Distillation Column system that is used in this thesis is
introduced in section 2.4. Section 2.5 is about the so-called incremental identification procedure.
This procedure facilitates the identification of reaction systems. An incremental identification
procedure is required to identify the reaction kinetics, due to the nonlinear nature of the process.
In this section, three different methods are introduced to perform this incremental identification.
These three methods are the differential method using rate laws, the integral method using rate
laws and the integral methods using extents. In the referenced literature, it is concluded that
the latter method provides the best identification results, at the expense of heavier computational
load. The example in this chapter demonstrates the identification procedure. By means of this
example, it is concluded that simultaneous identification of reaction and the variable β, yielded
the correct identified rate law. It is also concluded that signals with a low Signal-to-noise ratio,
deteriorate the identification results.

In Chapter 3, Orthogonal Basis Function are introduced. They provide a means to identify a
system and incorporate a priori knowledge. In section 3.1, the formulation of OBF’s is explained
and a example is provided that clarifies the use of OBF’s for identification of linear systems. Out
of multiple types of OBF’s, it is concluded that the Laguerre basis is suitable for the reaction
system in this thesis due to its low order transfer function. The theory behind LPV identification
is also explained in this section. It is concluded that this application of LPV identification is
unsuitable for the reaction system. The reason is that it is assumed that the scheduling variable
is known or measured, but this assumption is not valid for reaction systems. The second reason
is that the scheduling variable in these LPV systems is in either the B-matrix or C-matrix of the
state space representation, while the scheduling variable in reaction systems is in the A-matrix
of the state space representation, meaning it appears in the poles of the transfer function, rather
than in the zeros.
Section 3.2 is dedicated to investigating whether the extent transformation yields a unique OBF.
The conclusion here is that the extent representation does not yield a unique OBF. This is due to
the fact that the transfer function that is obtained by the extent transformation is not all-pass.
Besides the identification of linear systems, it is also possible to identify LPV systems using OBF’s.
In section 3.3, it is investigated if OBF identification is possible if reaction is viewed as a disturb-
ance to the system. This is tested on two situations applied on a CSTR; one being a situation where
the variable θ is controlled and one being a situation where mass is controlled. It is concluded
that for both situations in a CSTR reactor, OBF identification is possible. This is due to the fact
that the most impact of the disturbance is in the startup phase. In steady state the system can be
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approximated with the OBF’s. From the definition of α, it is concluded that the parameter cannot
be modelled as a constant; it exhibits dynamic behaviour. This provides excellent identification
results. The disadvantage is that physical interpretation is lost. Physical interpretation however,
is valued a lot in process industry. Therefore in section 3.3.3, an investigation is executed to see
if physical interpretation can be kept by writing out the explicit time responses. The conclusion
here is that it is possible to approximate how much α and γ are going to change due to a change
in inputs. It is however not possible to calculate what α and γ is in absolute values if there is no
possibility to measure concentration data. As future work it could be investigated how an estimate
of α and γ can be made without having concentration data. Section 3.4 suggests an identification
method that can be investigated in the future for slow reaction systems.

Chapter 4 is about the identifiability of parameters and how these parameters can be ranked
according to their contribution in outputs. Section 4.1 provides a method to verify if certain
parameters in a system can be structurally identified. The conclusion here is that almost all
parameters can be identified. It turned out that identifiability is not possible for parameters
which appear in the differential equations as a product or in a matrix. Parameter Sensitivity is
a method to identify which parameters have a large impact on certain outputs and rank those
parameters according to their impact. For a CSTR, parameter sensitivity is investigated in section
4.2.1. The conclusion here is that the ranking results depends on inputs. Scaling can remove this
difference in ranking for different situations. It is known that the ranking can also depend on initial
conditions, control strategy or initial approximate values of the parameters. How to circumvent
this can be investigated in future work.
Section 4.2.2 uses the same parameter sensitivity analysis to investigate the parameters of an RBD.
It turns out that an RBD is a highly parametrised model with a large number of outputs. This
makes the parameter sensitivity analysis difficult. Hence simplifications have to be made. This
means that only sensitivities for temperature are computed. Moreover, this process is in batch
regime and has no steady states. Therefore, time-varying parameters are present in this system.
To use the same parameter sensitivity method as before, average values of these parameters have
to be taken. The conclusion is that hvap,mix is the highest ranked parameter in every output.
The rankings of Cpmix,i in stage i more or less corresponded more or less with reality where the
highest ranked parameter is in the highest stage, being the reactor. Because this conclusion is not
true case for all outputs and situations, it is assumed that this result is due to the averaging of
the time-varying parameters. Therefore for future work it is necessary to investigate a parameter
sensitivity method based on time-varying parameters.
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Chapter 1

Introduction and Problem
Statement

The modelling of dynamic systems is an important practice in engineering. These models are
developed to gain insight of the underlying phenomena. Once these dynamics are modelled,
it is possible to manipulate the systems using controllers, in such a way that they behave as
desired. In modelling, we can distinguish two methodologies. The first methodology is First
Principle Modelling (FPM) which models are obtained using physical laws that govern the system’s
behaviour. Steps in this modelling process are as follows:

1. Develop a model using underlying physical laws.

2. Design experiments and perform the experiments

3. Acquire measurements from the experiment and process the measurements if necessary

4. Compare the measured data to the model and compute the unknown parameters.

Besides FPM, Data-Driven Modelling (DDM) is also possible. This type of modelling has become
popular since the introduction of computers. For this process, the modelling steps 2, 3 and 4 of
the FPM process are the same. The main difference between DDM and FPM is that in DDM the
underlying system is regarded as a black box, meaning there is no knowledge about the physics of
the system. Mostly linear models are used to approximate the dynamics of the underlying system.
The disadvantage of this method is that for some systems, such as chemical processes, a linear
model might not be sufficient for monitoring or to control the system in a wide operating regime.

In process industry, physical interpretation is greatly valued when modelling a reaction system.
Therefore, FPM is preferred over DDM. The problem arises when it is only possible to use DDM
instead of FPM; due to lack of measurements. The disadvantage is that by using DDM, generally
physical interpretation is lost. The main research question in this thesis is therefore: ”How can
we identify reaction systems using data at hand and preserve physical interpreta-
tion?”

In this thesis, a particular focus will be placed on the modelling and identification of reaction
systems using so called extent transformations. Reaction systems are chemical systems in which
one or multiple reactions occur. Interesting dynamics can be observed as the reaction dynamics,
in general, are nonlinear. These nonlinearities make it challenging to identify and control reaction
systems. The extents transformation decouples reaction systems into its governing physical phe-
nomena. The extent-based representations have gained popularity in the recent years due to their
excellent capabilities for identifying systems. These models can then be either used for the con-
trolling of reaction systems, as already researched in [13], but also for the monitoring of processes.

LPV Modelling and Parameter Estimation for Reaction Systems 1



CHAPTER 1. INTRODUCTION AND PROBLEM STATEMENT

For the latter, the model must be more accurately determined in comparison to control purposes.
The main motivation to investigate the control of reaction systems is the growing importance to
tightly control reaction systems in process industry. For increasing number of products, the purity
and quality is crucial. Hence, the operating conditions of these processes must be tightly regulated.

In [11] it is shown that extent transformation can yield LPV models if reaction is regarded as a
disturbance. The question here is whether this LPV model can be identified. Orthogonal Basis
Functions (OBF’s) can provide a means to do so. OBF’s are a tool to identify linear systems
using a priori knowledge of the system. Research into the approximation of linear systems using
OBF’s has been performed in [22] and [8]. The knowledge was extended to also use OBF’s for
the approximation of LPV systems [19],[20]. The latter research has broadened the opportunities
for identifying and ultimately controlling systems. The problem here is that the structure of the
model in these papers is different from the structure of the LPV model of reaction systems and
the scheduling variable is not always known. Therefore the first subquestion is: ”Is it possible
to approximate a general nonlinear model of reaction systems using OBF’s?”. Besides
being able to identify reaction systems using OBF’s, it is also interesting to see if there a relation
between extent transformation and OBF’s. Hence the second subquestion is: ”Do the extent
transformations form a set of unique OBF’s?”.

Figure 1.1: Outline of this thesis

A problem when modelling reaction systems is that this task can be expensive. Another problem
is that it is not always possible in practice to identify the system and its parameters with the
data at hand. Identifiability analysis provides a means to investigate whether systems are identi-
fiable. Identifiability is the possibility to identify a unique set of parameters for which the model
accurately describes the process. Hence if with the data at hand, the system is not identifiable,
it may not be possible to maintain physical interpretation. The third subquestion is: ”Which
parameters or combination thereof can be identified?”. There is substantial literature

2 LPV Modelling and Parameter Estimation for Reaction Systems



CHAPTER 1. INTRODUCTION AND PROBLEM STATEMENT

on model identifiability; see for example [24] and [14]. The identifiability of reaction systems is
challenging due to the nonlinear nature of them. It is necessary to investigate which parameters
influence a certain output the most. This can be done by ranking the parameters according to
their contribution to a certain output. The fourth subquestion here is: ”Which parameters are
more important to model?”.

The outline of this thesis is displayed in Figure 1.1. Chapter 2 is the background information of
this thesis. It is explained what types of chemical reactors exist, what extents of reaction is and
how it is computed and how extent transformation yields an LPV representation. The case study
of the Reactive Batch Distillation Column (RBD) that is going to be worked with in chapter 4 is
explained. The incremental identification method is also introduced in this chapter to show which
possibility there is to identify nonlinear reaction systems.

Chapter 3 is the first chapter that is concerned with the research of this thesis. The chapter starts
by explaining how identification of linear and LPV systems is performed using Orthogonal Basis
Functions. The relation between the extent representation and a unique OBF is investigated and
the second subquestion is answered. Thereafter, it is investigated whether reaction systems can
be approximated using OBF’s in two different situations and the first subquestion is answered.
Another 2-step identification method is proposed in case when reaction systems with slow reaction
kinetics needs to be identified.

Chapter 4 is the second chapter that is concerned with the research of this thesis. First the notion
of identifiability is explained. Subsequently, the third subquestion is answered by analysing sev-
eral parameter sets of a Continuous Stirred-Tank Reactor (CSTR). Lastly, a parameter sensitivity
analysis is performed to answer the fourth and last subquestion. This analysis is performed on
both a CSTR and the RBD.

The thesis is concluded in Chapter 5, where besides conclusions, suggestions for possible future
work are given.

LPV Modelling and Parameter Estimation for Reaction Systems 3



Chapter 2

Modelling of Reaction Systems

This chapter provides background information on concepts and technologies used in this thesis.
The first section is about chemical reactors. Before starting to elaborate on the modelling of
reaction systems, a solid understanding of the different types of chemical reactors needs to be
acquired. Thereafter, the so called extents of reaction and reaction spaces are introduced to show
that reaction systems can be decoupled into their inherent physical phenomena. In the next
subsections, the computations of these extents for single phase and multiphase reaction systems
are given. Following this section of the extents of reaction and flow, the relevance of extent-based
identification is discussed. The extents transformation can be used to form an LPV representation
of reaction systems. The result of this is elaborated on in section 2.3. In this section, it will be
explained why LPV representations are useful. In the final section the identification of systems
using Orthonormal Basis Functions is addressed and the context in which they are used for in this
thesis.

2.1 Chemical Reactors

Chemical reactors are the heart of any chemical process. They are of great relevance because
material conversion takes place in this unit operation. Moreover, they are designed in such a way
that the chemical reactions are performed in an optimal and safe manner. The performance of
reactors dominate the economics of most processes. As a result, improving the performance of
them has a great impact on the total costs. In general, there are two types of reactors: batch
reactors and continuous reactors. The advantages of each of them is summarised as [17]:

• Continuous reactors have a better energy efficiency than batch reactors.

• Continuous reactors are easier to automate.

• Continuous reactors have a lower operation cost than batch reactors.

• Batch reactors are more versatile than continuous reactors.

• Batch reactors are used for small scale production (< 500 ton/year) while continuous reactors
are used for large scale production (> 5000 ton/year).

The most common types of reactors are given in [15]:

• Batch reactors. This type of reactors have an agitator and do not have any inlet or outlet
flows. The reactor is initially filled with components and under controlled conditions, the
chemical reactions take place. It is, for example, possible to externally add or dissipate
heat from the process. Batch reactors are often used because of their capability to produce

4 LPV Modelling and Parameter Estimation for Reaction Systems



CHAPTER 2. MODELLING OF REACTION SYSTEMS

components with a high purity. Because there are no inlet or outlet flows, the change in
moles is only due to reaction. This can be described mathematically as:

ṅ(t) = N>V(t)r(t) (2.1)

where n is the number of moles, N the stoichiometric coefficient matrix, V(t) the volume of
the mixture and r(t) the reaction rate vector.

• Semibatch reactors. These reactors are similar to the batch reactor but now an inlet or outlet
flow is present. Mathematically, the mole balance is:

ṅ(t) = N>V(t)r(t)± F (t) (2.2)

where F (t) is the inlet or outlet molar flow, depending on the type of semibatch reactor.

• Continuous Stirred-Tank Reactor (CSTR). CSTR’s are continuous reactors that have an
agitator, an inlet flow and an outlet flow. It is possible to extend the equation 2.1 as:

ṅ(t) = Fin(t)− Fout(t) +N>V(t)r(t) (2.3)

where Fin(t) and Fout(t) are respectively the molar inlet and outlet flow.

• Plug Flow Reactor (PFR). This type of reactor is a tubular reactor instead of a tank. The
propagation of the components along an axis is the same axis along which the concentrations
change. The mass balance equation of the PFR of specie j can be written as:(

4v

πD2

)
dCj
dz

= νjr (2.4)

where v is the volumetric flow, D the diameter of the tube, Cj the concentration and νj the
stoichiometric coefficient of specie j and r the reaction rate.

Figure 2.1: Schematic representation of different types of reactors

2.2 Extents of Reaction and Flow

2.2.1 Extents of Reaction

The concept of extents is introduced in [1]. To study the behaviour of chemical reactions, it can
be useful to use the extent of reaction. The extent of reaction can also be referred to as the
advancement of reaction. In a reaction, the change in extent of reaction is defined as the change
in the number of a specie divided by the corresponding stoichiometric coefficient.
In homogeneous reaction systems with S species, R independent reactions, p inlet streams and
one outlet stream, the mole balance equation can be written as:

ṅ(t) = N>V(t)r(t) +Winuin(t)− uout(t)

m(t)
n(t), n(0) = n0 (2.5)

where n(t) ∈ RS×1 is the number of moles, N ∈ RR×S the stoichiometric coefficient matrix, V(t)
the volume of the mixture, r(t) ∈ RR×1 the reaction rate vector, Win ∈ RS×p the inlet composition

LPV Modelling and Parameter Estimation for Reaction Systems 5



CHAPTER 2. MODELLING OF REACTION SYSTEMS

matrix, uin(t) ∈ Rp×1 and uout(t) the inlet and outlet mass flows and m(t) the mass of the mixture.
The extents of reaction is now defined as:

dξr :=
dns,r
νs,r

, ∀s = 1, ..., S, ∀r = 1, ..., R, ξr(0) = 0 (2.6)

where dξr is the change in extent of reaction for the rth reaction, dns,r the change in number
of moles of the sth species caused by the rth reaction and νs,r the corresponding stoichiometric
coefficient. In the case that there are no inlets nor outlets, which is the case in a batch reactor,
the extent of reaction is expressed as:

ξ̇r = V(t)rr(t), ξr(0) = 0 (2.7)

Or in case of a semi-batch reactor with no inlets but only one outlet:

ξ̇r = V(t)rr(t)−
uout(t)

m(t)
ξr, ξr(0) = 0 (2.8)

2.2.2 Reaction spaces

The space in which the number of moles evolve can be split into two reaction spaces:

• Reaction variant set. ”Any set of R linearly independent variables that evolve in the
reaction space constitutes a reaction variant set.” [1]

• Reaction invariant set. ”Any set of (S - R) linearly independent variables that evolve in
the space orthogonal to the reaction space constitutes a reaction invariant set.” [1]

These definitions could be used to directly define the extents of reactions for batch and semi-batch
reactors because they do not have an inlet flow. As soon as an inlet flow is present in a reactor, it
does not make sense to use this inlet flow in the reaction variant nor reaction invariant set. The
concept behind the extent of reaction is to describe the progression of solely the reaction. The
concept of extent is therefore developed further to extents of reaction and extents of inlet flow.
We therefore wish to look for the following transformation:

n 7−→

 zr
zin
zinv

 =

T >1T >2
T >3

n (2.9)

That leads to the following reaction variant zr, inlet flow variant zin and invariant zinv:

żr = T >1 N>︸ ︷︷ ︸
IR

V(t)r(t) + T >1 Win︸ ︷︷ ︸
0R×p

uin(t)− uout(t)

m(t)
zr, zr(0) = T >1 n0 (2.10)

żin = T >2 N>︸ ︷︷ ︸
0R×R

V(t)r(t) + T >2 Win︸ ︷︷ ︸
Ip

uin(t)− uout(t)

m(t)
zin, zin(0) = T >2 n0 (2.11)

żinv = T >3 N>︸ ︷︷ ︸
0(S−R−p)×R

V(t)r(t) + T >3 Win︸ ︷︷ ︸
0(S−R−p)×p

uin(t)− uout(t)

m(t)
zinv, zinv(0) = T >3 n0 (2.12)

where zr is expressed in kmol, zin in kg and zinv in kmol. These variants however cannot be
interpreted as extents of reaction and extents of inlets because the initial conditions are nonzero.
The definition of extents of reaction is the advancement of the reactions and by convention, the
advancement of reaction starts at zero for the extent variable.
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2.2.3 Computation of the Extents of Reaction and Inlet Flow

The expressions in section 2.2.2 can be interpreted as extents of reaction and inlet flow. A dis-
counting factor λ is introduced. This factor subtracts the influence of the initial conditions. The
transformation is then as follows [1]:

n 7−→

 xrxin
λ

 =

T >1,0T >2,0
τ>0

n (2.13)

with

T >1,0 = T >1 (IS − n0τ
>
0 ), T >2,0 = T >2 (IS − n0τ

>
0 ), τ>0 =

1>S−R−pT >3
1>S−R−pT >3 n0

(2.14)

The extent transformation for the CSTR then yields:

ẋr(t) = V(t)r(t)− uout(t)

m(t)
xr(t), xr(0) = 0 (2.15)

ẋin(t) = uin(t)− uout(t)

m(t)
xin(t), xin(0) = 0 (2.16)

λ̇(t) =
uout(t)

m(t)
λ(t), λ(0) = 1 (2.17)

It is also possible to define the extent of outlet as:

xout = 1− λ (2.18)

The number of moles is now given as:

n(t) = N>xr(t) +Winxin(t) + n0λ(t) (2.19)

Note that this transformation requires that rank([N> Win n0]) = R+ p+ 1 < S

2.2.4 Computation of Extents of Reaction, Mass Transfer and Flow for
Gas-Liquid Reaction Systems

In [3], the theory of section 2.2.3 is extended to gas-liquid systems. This information is introduced
because of the case study of the RBD in this thesis. Gas-liquid systems are common in process
industry and to extend the previous knowledge to this type will create opportunities for using the
extents of reaction.

To reduce the complexity of the model, a few assumptions are made:

• The gas and liquid phases are homogeneous.

• The reactor has a constant total volume.

• The reactions take place in the liquid phase only.

• The mass transfer phenomena are described by the two-film theory with no accumulation in
the boundary layer. This implies steady state mass transfer.

In Figure 2.2, a representation is given of the resulting system based on these assumptions. Because
of these assumptions, the mass transfer rate vector is given by:

ζ =

[
ζgl
−ζlg

]
(2.20)
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Figure 2.2: Visual representation of the gas-liquid reaction system [3]

where ζgl and ζlg represent the mass transfer rates from gas to liquid and liquid to gas respectively.
These variables can take only a non-negative value. By convention, the mass transfer from gas to
liquid is assigned with the positive sign. The mole balances can now be given as:

Gas phase

ṅg(t) = Win,guin,g(t)−Wm,gζ(t)− uout,g(t)

mg(t)
ng(t), ng(0) = ng,0 (2.21)

ṅg(t) = W̄in,gūin,g(t)−
uout,g(t)

mg(t)
ng(t), ng(0) = ng,0 (2.22)

Liquid phase

ṅl(t) = N>Vl(t)r(t) +Win,luin,l(t) +Wm,lζ(t)− uout,l(t)

ml(t)
nl(t), nl(0) = nl,0 (2.23)

ṅl(t) = N>Vl(t)r(t) + W̄in,lūin,l(t)−
uout,l(t)

ml(t)
nl(t), nl(0) = nl,0 (2.24)

with

W̄in,g =
[
Win,g −Wm,g

]
, W̄in,l =

[
Win,l Wm,l

]
, ūin,i =

[
uin,i
ζ

]
(2.25)

where ni is the Si-dimensional vector of the number of moles, Win,i the Si × pi inlet composition
matrix, Wm,i the Si× pm mass transfer matrix, uin,i the pi-dimensional inlet mass flow, uout,i the
outlet mass flow of the ith phase, i ∈ {g, l} and Vl the volume of the liquid phase.

Now we look for the following extents transformations for the liquid and gas phase:

nl 7−→

 xr
xin,l
λl

 =

T
>

(1,l)0
T >(2,l)0
τ>(l)0


︸ ︷︷ ︸
T(l)0

nl, ng 7−→
[
xin,g
λg

]
=

[
T >(2,g)0
τ>(g)0

]
︸ ︷︷ ︸
T(g)0

ng (2.26)

with
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T >(1,l)0 = T >(1,l)(ISl
− nl,0τ>(l)0) (2.27)

T >(2,l)0 = T >(2,l)(ISl
− nl,0τ>(l)0) (2.28)

τ>(l)0 =
1>Sl−R−pl−pmT

>
(3,l)

1>Sl−R−pl−pmT
>

(3,l)nl,0
(2.29)

T >(2,g)0 = T >(2,g)(ISg
− ng,0τ>(g)0) (2.30)

τ>(g)0 =
1>Sg−pg−pmT

>
(3,g)

1>Sg−pg−pmT
>

(3,g)ng,0
(2.31)

where pm is the dimension of the mass transfer vector, T >(1,l)0 is the transformation matrix of the

reaction, T >(2,i)0 is the transformation matrix of the inlet space in phase i, T >(3,i)0 is the transform-

ation matrix of the invariant space of phase i with discounted initial conditions ni, 0 and τ>(i)0 the
ratio between reaction and inlet invariant space at initial conditions in phase i. The computations
of these matrices can be found in [3]. These transformations yield the following extents:

Gas phase:

ẋin,g(t) = uin,g(t)−
uout,g(t)

mg(t)
xin,g(t), xin,g(0) = 0 (2.32)

ẋm,g(t) = ζ(t)− uout,g(t)

mg(t)
xm,g(t), xm,g(0) = 0 (2.33)

λ̇g(t) = −
uoutg (t)

mg(t)
λg(t), λg(0) = 1 (2.34)

Liquid phase:

ẋr(t) = Vl(t)r(t)−−
uout,l(t)

ml(t)
xr(t), xr(0) = 0 (2.35)

ẋin,l(t) = uin,l(t)−
uout,l(t)

ml(t)
xin,l(t), xin,l(0) = 0 (2.36)

ẋm,l(t) = ζ(t)− uout,l(t)

ml(t)
xm,l(t), xm,l(0) = 0 (2.37)

λ̇l(t) = −uoutl(t)
ml(t)

λl(t), λl(0) = 1 (2.38)
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2.3 LPV Model Representations of Reaction Systems

In section 2.2.3, it was shown how to compute the extents of reaction and flow. This section shows
how the extent transformation can be used to get LPV representations. The extent representation
in equations 2.15, 2.16 and 2.17, can be extended to include an energy balance. This is done in
order to make the model more general. The corresponding system of equations is given in [11]:

ẋr(t) = −θxr(t) + V(t)r(t) (2.39)

ẋin(t) = −θxin(t) + uin(t) (2.40)

λ̇(t) = −θλ(t) (2.41)

Ṫ (t) = −θT (t) + αuin(t)− βV(t)r(t) + γQin (2.42)

where θ = uout(t)
m , α =

Cpin
Tin

mCpmix
(t) , β =

∆H	f N
>

mCpmix
(t) , γ = 1

mCpmix
(t) ,∆H

	
f ∈ R1×S the vector of

standard enthalpy, Cpin ∈ RS×p the inlet heat capacity matrix, Cpmix(t) the heat capacity of
the mixture in the reactor and T (0) = T0. It is assumed here that α, β, γ, θ and m are con-
stant. These equations can be captured in three different Linear Parameter Varying (LPV) model
representations.
Time scale seperation. In this case it is assumed that the dynamics of xr is faster than the
dynamics of xin (ẋr = 0).[

ẋin
Ṫ

]
=

[
−θIp 0

0 −θ

] [
xin
T

]
+

[
Ip 0
α γ

] [
uin
Qin

]
+

[
0
βθ

]
xr (2.43)[

n
T

]
=

[
Win 0

0 1

] [
xin
T

]
+

[
N>

0

]
xr +

[
n0

0

]
λ (2.44)

Change of variable. In case xr is not faster than uin, a change of variables is required. Let

z = βxr + T (2.45)

then
ż = −θz + αuin + γQin (2.46)

and [
ẋin
ż

]
=

[
−θIp 0

0 −θ

] [
xin
z

]
+

[
Ip 0
α γ

] [
uin
Qin

]
(2.47)[

n
T

]
=

[
Win n0

0 0

] [
xin
λ

]
+

[
N> 0
0 1

] [
xr
T

]
(2.48)

Reaction rate as a disturbance. The reaction rate can also be seen as a disturbance. The LPV
representation then becomes:

ẋ = A(θ)x+Bu+ d1 (2.49) ẋrẋin
Ṫ

 =

−θIRI
0 0

0 −θIp 0
0 0 −θ

 xrxin
T

+

 0 0
Ip 0
α γ

[uin
Qin

]
+

IRI

0
β

Vr (2.50)

and

y = Cx+ d2 (2.51)[
n
T

]
=

[
N> Win 0
0 0 1

] xrxin
T

+

[
n0

0

]
λ (2.52)

where it is assumed that α, β and γ are constant. What we end up with is a LPV representation
where the B and C matrix are constant and A(θ) is parameter varying.
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2.4 Reactive Batch Distillation Column

Besides reaction, another major operation in process industry is distillation. Distillation is the
operation of seperating multiple species in a mixture based on their boiling points. This operation
can also be combined with a reactor in order to form a so called Reactive Batch Distillation
Column (RBD) as depicted in Figure 2.3. The RBD is capable of producing products with high
added value. In such an RBD, equilibrium reactions take place. An equilibrium reaction has the
following structure:

A+B ↔ C +D (2.53)

The balance of such a reaction is determined by the temperature. A balance to the right, signifies
a lot of production of specie C and D, while a balance to the left signifies little production of
specie C and D. The RBD steers the balance to the right hand side of an equilibrium reaction
by increasing the reaction temperature and then distilling the mixture to end up with the desired
product.

Figure 2.3: Reactive Batch Distillation Column [18]
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For the modelling of the RBD, the following assumptions are made:

• Reaction only occurs in the reactor in the liquid phase

• The model balance of the reactor is given by equation 2.5

• For the distillation process, a stage equilibrium model is assumed:

dMjxj,i
dt

= Fjfj,i + Lj−1xj−1,i + Vj+1yj+1,i − (Ljxj,i + Vjyj,i) (2.54)

where M is the total molar holdup, Fj , Lj and Vj are the total molar feed, liquid molar flow
and vapour molar flow in stage j respectively. fj , i, xj , i and yj , i are the compositions in
the feed, the liquid phase and the gas phase respectively in stage j of specie i.

For the remainder of this thesis, a specific RBD will be used [13]. It is defined by the following
characteristics:

• Number of species: S = 14

• Number of reactions: R = 17

• The general reaction is:

Maleic Anhydride (MA)+Propylene Glycol (PG)+Water (W)↔ Saturated Polymer (SP)+Water
(2.55)

• Initial conditions:

– MMA(0) = 20 kmol

– MPG(0) = 20 kmol

– MW (0) = 10 kmol

– T (0) = 373 K

• Number of stages: NT = 6

• One liquid phase inlet (p = 1) and one gas phase outlet (v = 1)

• Vapour holdup is negligable with respect to liquid holdup

• Constant atmospheric pressure

• Condenser (stage 2) is kept at constant temperature

For each stage of the process, the governing dynamics are:

Accumulator (j = 1) is the container where the top product is collected:

Total mass balance:
dMj

dt
= Lj (2.56)

Component mass balance:
dMjxj,i
dt

= Ljxj,i+1 (2.57)

Energy balance:
dMjhj
dt

= Ljhj (2.58)

Condenser (j = 2) is the stage where vapour is condensed to a liquid:
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Total mass balance:
dMj

dt
= Vj+1 − Lj (2.59)

Component mass balance:
dMjxj,i
dt

= Vj+1yj+1,i − Ljxj,i (2.60)

Energy balance:
dMjhj
dt

= Vj+1Hj+1 − Ljhj (2.61)

Internal stages (j = 3, 4 and 5)

Total mass balance:
dMj

dt
= Lj−1 + Vj+1 − (Lj + Vj) (2.62)

Component mass balance:
dMjxj,i
dt

= Lj−1xj−1,i + Vj+1yj+1,i − (Ljxj,i + Vjyj,i) (2.63)

Energy balance:
dMjhj
dt

= Lj−1hj−1 + Vj+1Hj+1 − (Ljhj + VjHj) (2.64)

Reactor (j = 6)

Total mass balance:
dMj

dt
= Lj−1 − Vj (2.65)

Component mass balance:
dMjxj,i
dt

= ml(t)N
>r(t) + Lj−1xj−1,i − Vjyj,i (2.66)

Energy balance:
dMjhj
dt

= Lj−1hj−1 − VjHj −∆Hr +Qin (2.67)

where Mj,i is the liquid molar holdup of the ith specie in the jth stage, xj,i and yj,i are the liquid
and vapour molar composition of the ith specie in the jth stage, respectivelt. hj and Hj are
the liquid and vapour molar enthalpy in the jth stage and Lj and Vj the liquid and vapour flow
respectively.

2.5 Incremental Identification of Reaction Systems

Chemical process models contain information about stoichiometry, kinetics, mass transfer and op-
eration conditions (initial conditions, inlet and outlet flows, operational constraints). Particularly
reaction kinetics and mass transfer are difficult to identify in models, because of nonlinearities
and not being able to measure important physical quantities. The identification of these para-
meters can by executed by either a simultaneous or and incremental approach. The simultaneous
approach chooses a candidate reaction rate expression from a library of rate expressions. The ex-
pression is then evaluated and compared to the measured data. This procedure has to be repeated
for every candidate rate expression. Properties such as parameter and structural identifiability are
crucial for determining parameter estimates[14]. The main advantage of simultaneous identifica-
tion is that it leads to optimal parameter values [4]. This method however is computationally more
costly because of the repetitive comparison of rate expressions and data. Choosing suitable initial
parameter values can be problematic and yield convergence problems. Besides the simultaneous
approach, the incremental approach can be used for the identification of the model which decom-
poses the problem into a set of subproblems [2],[6]. The first step in this process is to identify the
reaction stoichiometry. The next step is to compute the rate profiles of reaction and mass transfer
from measured data and the previously determined stoichiometry. This last step can be executed
in three possible manners as described in Figure 2.4:

Differential method using rate laws. In this procedure, concentrations of the components are
measured and differentiated. Besides the data about the concentrations, data about the inlet and
outlet flows is obtained as well. Rewriting the equation 2.5, we can get:

−N>r(t) =
1

V(t)

(
− ṅ+Winuin(t)− uout(t)

m(t)
n(t)

)
(2.68)

LPV Modelling and Parameter Estimation for Reaction Systems 13



CHAPTER 2. MODELLING OF REACTION SYSTEMS

Figure 2.4: Visual representation of identification methods. Path 1 depicts the integral method,
path 2 the differential method and path 3 the extent-based method. [4]

where the concentration is defined by the number of moles per volume. This equation shows that
the reaction rate can be approximated by the differentiation of the concentrations. The estimated
reaction rate is then compared to candidate rate laws by means of a least-squares method. The
rate law that yields the smallest error is the final rate law. This rate law is then used for a global
identification for parameters. Note here that the differentiation of noisy concentration measure-
ments can cause problems for the identification procedure.

Integral method using rate laws. This procedure is similar to the differential method but the iden-
tification procedure is reversed. First a set of candidate rate laws are integrated and compared to
the measured concentrations. The rate law that yields the smallest error in the least-squares sense
is chosen as the rate law. The integral method is less vulnerable for noise, but is computationally
more expensive.

Integral method using extents of reaction and mass transfer [4]. The concept of extents of reaction
and mass transfer has been thoroughly explained in [1] and [3]. In this identification method, the
extents are used for identification. The first step in the identification procedure is to identify the
stoichiometry. Thereafter, the extents are computed from measured data as in section 2.2.1. In
the next step, the nonlinear optimization problem is formulated as:

min
θr,i

(xr,i − x̂r,i(θr,i))>Wr(xr,i − x̂r,i(θr,i)) (2.69)
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subject to

˙̂xr,i(t) = Vl(t)ri(cl(t), θr,i)−
uout,l(t)

ml(t)
x̂r,i(t) (2.70)

x̂r,i(0) = 0, θLr,i ≤ θr,i ≤ θUr,i (2.71)

where xr,i and x̂r,i(θr,i) are the H-dimensional vectors of respectively the computed and simulated
extent of reaction as a function of the unknown parameters θr,i, Wr is an H × H-dimensional
weighting matrix, ri(cl(t), θr,i) the for θr,i evaluated rate expression as a function of measured
concentrations and θLr,i and θUr,i the lower and upper bound of the parameters respectively. For
the mass transfer, the nonlinear optimization problem is similar:

min
θm,j

(xm,l,j − x̂m,l,j(θm,j))>Wm(xm,l,j − x̂m,l,j(θm,j)) (2.72)

subject to

˙̂xm,l,j(t) = ζj(cl(t), cg(t), θm,j)−
uout,l(t)

ml(t)
x̂m,l,j (2.73)

x̂m,l,j(0) = 0, θLm,j ≤ θm,j ≤ θUm,j (2.74)

where xm,l,j and x̂m,l,j(θm,j) are the H-dimensional vectors of respectively the computed and
simulated extents of the jth mass transfer in the liquid space, Wm is an H × H-dimensional
weighting matrix, ζj is the rate expression for the jth mass transfer and θLm,j and θUm,j the lower and
upper bound of the parameters respectively. The integration of the differential equation requires
information about the concentration. Because this data is needed continuously, the sampled data
must be interpolated with continuous basis function φh(t) as follows:

c(t) =

H∑
h=0

c(th)φh(t) (2.75)

where c(t) is the interpolated concentration data and c(th) is the sampled concentration data.
Global parameter identifiability implies that there is a unique set of parameters for which the
model resembles the actual system best. Checking the parameter identifiability can be done
beforehand. These methods have been investigated in [7], [9] and [24]. Parameter sensitivity can
also be investigated to see which parameters affect the system dynamics the most [21].
In [5], an extensive research has been conducted on the performances of both the rate-based and
extent-based identification. The following conclusions are drawn:

• The extent-based appraoches give parameter estimates with tighter confidence intervals com-
pared to rate-based approaches.

• Both extent-based and rate-based approaches can lead to biased estimates.

• Extent-based approaches can better distinguish rate law candidates than rate-based ap-
proaches.

• Extent-based approaches are computationally more costly than rate-based approaches.

2.5.1 Example of incremental identification on a batch reactor

In this example, the incremental identification will be demonstrated on a batch reactor. Assume
a reaction system with balanced reaction:

A+B ↔ C +D (2.76)
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with

N> =


−1
−1
1
1

 (2.77)

r(t) = kfe
−

Eaf
RT (t)CA(t)CB(t)− kre−

Ear
RT (t)CC(t)CD(t) (2.78)

Ċ(t) = N>r(t) (2.79)

Ṫ (t) = −βV (t)r(t) (2.80)

The data that is used for identification is concentration data of all species and the volume of the
reactor. The data is sampled at 0.1 s with a total of 2500 samples. The first step in an incremental
identification procedure is to determine the stoichiometric matrix. For this case, this step is not
necessary, as we assume it is known. Next, four different candidate rate laws are formulated:

• Candidate 1: r(t) = kfe
−

Eaf
RT (t)CA(t)CB(t)− kre−

Ear
RT (t)CC(t)CD(t) (true system)

• Candidate 2: r(t) = kfe
−

Eaf
RT (t)C2

A(t)C2
B(t)− kre−

Ear
RT (t)CC(t)CD(t)

• Candidate 3: r(t) = kfe
−

Eaf
RT (t)CA(t)CB(t)− kre−

Ear
RT (t)C2

C(t)C2
D(t)

• Candidate 4: r(t) = kfe
−

Eaf
RT (t)C2

A(t)C2
B(t)− kre−

Ear
RT (t)C2

C(t)C2
D(t)

Figure 2.5: Incremental identification with no noise

The candidate rate law that matches the measured response best is chosen as rate law for the
model. For this identification procedure, use was made of the integral method using concen-
trations, not extents. The identification results are displayed in Figures 2.5, 2.6, 2.7 and 2.8.
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Figure 2.6: Incremental identification with a low SNR

This identification was performed with the MATLAB function nlgreyest.m. There are alternatives
for identification such as least squares, but for simplicity, this method and function was used.
nlgreyest.m estimates the parameters of a nonlinear grey-box model. The used measure for
assessing the performance is the Normalized Root Mean Square (NRMS) which is the default
measure for this function. The NRMS is defined as:

fit =

(
1− ||y − ŷ||
||y −mean(y)||

)
· 100% (2.81)

where y is the measured data and ŷ is the fitted data. The numerical values of the fit are displayed
in the legends of the Figures 2.5, 2.6, 2.7 and 2.8. For the ideal situation where there is no noise
present, it is clear that the candidate rate law of the true systems reflects the true system best. In
Figures 2.6 and 2.7 it is visible that for an decreasing Signal-to-Noise Ratio (SNR), the distinction
between the candidate rate law becomes less. When concentration and temperature are both
identified simultaneously with no noise as in Figure 2.8, the distinction between the rate laws
is better. Table 2.1 provides the true systems parameter values and the estimates under the
different circumstances. It shows that even though the distinction between rate laws is better for
simultaneous identification, the estimated parameters are further away from the true system than
the individual identification of the concentrations. The reason for this may also be that the value
for β is estimated as a constant value, while it is a function of the number of moles in the reactor.
It is therefore advised to first identify the rate law and subsequently determine β independently.
The general conclusion here is that incremental identification is possible for the estimation of
parameters related to reaction.
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Figure 2.7: Incremental identification with a high SNR

Parameter True system Low SNR High SNR No noise No noise, simultaneous

kf 6.060 · 105 5.695 · 105 5.465 · 105 5.207 · 105 9.860 · 105

kr 9.840 · 106 6.564 · 106 7.301 · 106 8.161 · 106 5.786 · 105

Eaf 6.380 · 104 6.359 · 104 6.347 · 104 6.331 · 104 6.528 · 104

Ear 7.171 · 104 7.040 · 104 7.076 · 104 7.111 · 104 6.270 · 104

β - - - - −3.539 · 101

Table 2.1: Parameter estimation results for various circumstances for candidate rate law 1
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Figure 2.8: Incremental identification with no noise, simultaneously identifying concentrations and
temperature
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Chapter 3

Extent representation and
Orthogonal Basis Functions

This chapter is concerned with the main research of this thesis. In section 2.3, three LPV represent-
ations were formulated using the extent transformation. The most suitable representation for this
thesis is when reaction is regarded as a disturbance. In that LPV representation it was assumed
that the parameters α, β and γ are constant. As a result, the A(θ) is varying with parameter θ
and the B and C matrices are constant. Identifying the parameters α, β and γ can be done using
system identification. Besides that, the model can also be approximated using Orthogonal Basis
Functions (OBF’s) [22],[8]. This yields a linear model. The problem here is that the reaction
is a disturbance in identification of reaction systems. The parameter β is associated with this
disturbance and can only be identified using the nonlinear method of incremental identification.
The parameters α and γ are associated with the linear part of reaction systems. Therefore we
would like to know if it is possible to identify reaction systems, namely α and γ, using OBF’s.
Hence our first subquestion is: ”Is it possible to approximate a general nonlinear model
of reaction systems using OBF’s?”. It might also be convenient for identification to investig-
ate whether there is a relation between extent transformations and OBF’s. This poses the second
subquestion of this thesis: ”Do the extent transformations form a set of unique OBF’s?”.

To answer these questions, it needs to be explained how identification of linear and LPV systems is
performed. This is explained in section 3.1. Section 3.2 is the investigation to answer the second
subquestion. In section 3.3, the first subquestion is investigated. Section 3.4 suggests a topic
to investigate in the future in case when identification needs to be performed for slow reaction
systems.

3.1 Identification of linear and LPV systems using OBF’s

Every stable system has a unique series expansion in terms of a specific basis. Hence it is possible
to approximate a system by a finite-length series expansion using basis functions [22]. Questions
that are relevant for this research are the length of the series expansion and the selection of optimal
orthogonal basis functions. In [22] it is concluded that the accuracy of the chosen basis functions
can substantially improve the identification results in both bias and variance. The flexibility of
the basis functions provide a possibility to use uncertain a priori knowledge into the procedure.
As a result, the better the a priori knowledge is, the accuracy of the model is higher.

Consider a stable discrete transfer function G(z). According to [22], there exists a unique series
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expansion:

G(z) =

∞∑
k=0

Lkfk(z) (3.1)

with fk(z) a sequence of orthonormal basis functions and Lk the corresponding expansion coeffi-
cients. The basis functions are orthogonal because of the property:

1

2π

∫ π

−π
fk(eiω)fl(e

−iω)dω =

{
1 (k = l)
0 (k 6= l)

(3.2)

The transfer function G(z) can be approximated with a finite number of coefficients and basis
functions:

G(z) ≈
n∑
k=0

Lkfk(z) (3.3)

The power of this expansion is that with a relatively low order for the expansion, a good approx-
imation can be given.

There exist several possibilities for orthogonal basis functions such as Takenaka-Malmquist, Hambo,
Kautz, Laguerre and Pulse [19]. The system that is worked with in this thesis does not have com-
plex poles or a large order transfer function. Therefore this thesis is restricted to the simpler
OBF’s like Laguerre or Pulse basis. The Pulse basis is the OBF fk(z) = z−k. The Laguerre
orthogonal basis function is given by [23]:

fk(z) =
K

z − a

(
1− az
z − a

)k
, K =

√
(1− a2)Ts (3.4)

An important assumption here is that G(∞) = 0, meaning that the transfer function is strictly
proper. Another assumption is that the transfer function is stable. The variable a is a design
variable. The value of a reflects the pole locations of the Laguerre basis functions and hence it
should hold that |a| ≤ 1.

Example: Identifying a first order transfer function. Assume a data generating system with the
true transfer function as follows:

G0(s) =
10

s+ 1
(3.5)

It now possible to approximate the transfer function G(z) for a finite number of coefficients and
basis functions. In this example, the Laguerre basis is used and the order n is chosen to be 4. For
the variable a, a value of 0.8 is chosen. The sampling time is 0.1 second.

For the identification procedure, a white noise input signal is generated because it contains all the
frequencies in the frequency spectrum. The following matrix equality can then be formed using
the basis functions:

[
Φ0(t) . . . Φn(t)

] L0

...
Ln

+

ε0

...
εn

 = ŷ(t) (3.6)

[
f0(z, a)u(t) . . . fn(z, a)u(t)

] L0

...
Ln

+

ε0

...
εn

 = ŷ(t) (3.7)

This equality can the be solved in Matlab. The results of the approximation can be found in
Figure 3.1. What is clearly visible is that for an increasing value of n, the resemblance to the
original system’s frequency response improves.
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Figure 3.1: Bode magnitude diagram of the identification result using OBF’s

It is also possible to identify an LPV system using fixed OBF’s. For the identification procedure
assume that the state space of the underlying system is given by:[

Ad Bd
Cd(p) Dd

]
or

[
Ad Bd(p)
Cd Dd

]
(3.8)

where p is the scheduling variable. For the identification of the left state space system the Wiener-
LPV OBF structure is used as in Figure 3.2. The identification of the right state space system
is done with the Hammerstein-LPV OBF structure as in Figure 3.3 [19]. The procedure for
identification is now demonstrated using an example. An important assumption here is that the
data of input u, scheduling variable p and output y is known or can be measured.

Figure 3.2: Wiener LPV OBF model structure

Example: Cd varying LPV model. Assume an LPV system as follows:[
Ad Bd
Cd(p) Dd

]
=

[
−0.9 1
p2 0

]
(3.9)

The approximation is given by:

ŷ(t) ≈
n∑
k=0

Lk,l(p(t))fk(z, a)u(t) (3.10)

22 LPV Modelling and Parameter Estimation for Reaction Systems



CHAPTER 3. EXTENT REPRESENTATION AND ORTHOGONAL BASIS FUNCTIONS

Figure 3.3: Hammerstein LPV OBF model structure

where Lk,l(p(t)) is modelled seperately as:

Lk,l(p(t)) =

m∑
l=0

wk,lψl(t) (3.11)

where ψl(t) is an arbitrary continuous function with the property that ψ0(t) = 1. In this case, the
polynomial function ψl(t) = (p(t))l is used. The solution can now be computed by the following
matrix equation:


y(0)
y(1)

...
y(M)

 =


Φ0(0) . . . Φ0(0)(p(0))l . . . Φn(0) . . . Φn(0)(p(0))m

Φ0(1) . . . Φ0(1)(p(1))l . . . Φn(1) . . . Φn(1)(p(1))m

...
...

...
...

...
...

...
Φ0(M) . . . Φ0(M)(p(M))l . . . Φn(M) . . . Φn(M)(p(M))m





w0,0

w0,1

...
w1,0

w1,1

...
wn,m


(3.12)

Where M is the number of samples, n the number of basis functions and m the polynomial
order. The coefficients wk,l can then be computed by solving the matrix equality Ax = b. The
approximation of the system in equation 3.9 is then given Figure 3.4 where n = 4, a = 0.8,m =
2 and M = 500. What can be seen here is that for a relatively low order of OBF, a good
approximation is given by the identification procedure.
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Figure 3.4: Result of LPV identification procedure. Red line is both the input and scheduling
variable. The blue line is the original output. The yellow line is the approximation of the output
using a fourth order OBF approximation with the pole of the OBF in 0.8.

3.2 Extents representation and a unique OBF

In this section, we investigate whether the extent representation yields an unique orthogonal
basis function and thus answering the second subquestion. The continuous case where the extent
representation is given by: ẋr(t)ẋin(t)

λ̇(t)

 =

−θ(t)IR 0 0
0 −θ(t)Ip 0
0 0 −θ(t)

 xr(t)xin(t)
λ(t)

+

 0 IR
Ip 0
0 0

[ uin(t)
V(t)r(t)

]
, (3.13)

n(t) =
[
N> Win n0

]  xr(t)xin(t)
λ(t)

 (3.14)

and θ = uout(t)
m(t) , which is assumed to be constant. V(t)r(t) is regarded as a disturbance d and

uin(t) as an input u. In the frequency domain, the relation is given by:

n(s) =
Win

s+ θ
u(s) +

N>

s+ θ
d(s) (3.15)

The most important requirement for a function to be used as basis function is that the function
is all-pass. This means that the magnitude of the transfer function must be equal to 1 for all
frequencies:

||G(jω)|| = 1 ∀ω (3.16)

where G(jω) is an all-pass transfer function. If the matrices Win and N>in the transfer functions
in 3.15 are neglected, the transfer function is H(s) = 1

s+θ . The transfer function H(s) is not equal
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to 1 for all frequencies. The only way a function is all-pass is when the frequencies of the zero and
pole are mirrored in the imaginary axis of the complex plane:

G̃(s) =
s− θ
s+ θ

(3.17)

where G̃(s) is a first order all-pass transfer function.

3.3 Identification of reaction systems using OBF’s with re-
action as disturbance

In this section, an investigation whether identification is possible if the reaction is regarded as a
disturbance, is conducted. This section is therefore an investigation of the first subquestion. If
the reaction is regarded as a disturbance, the state space system is given by equations 2.49 and
2.52. The accompanying transfer functions are then given by:

n(s)

uin(s)
=

Win

s+ θ
(3.18)

T (s)

uin(s)
=

α

s+ θ
(3.19)

T (s)

Qin(s)
=

γ

s+ θ
(3.20)

It is worthwhile to investigate what the impact of the disturbance is in this setting, if one desires
to identify the parameters α and γ. Therefore we assume a reaction system with equilibrium
reaction:

A+B ↔ C +D (3.21)

with

Win =


1
MA

0

0 1
MB

0 0
0 0

 , N> =


−1
−1
1
1

 (3.22)

r(t) = kfe
−

Eaf
RT (t)CA(t)CB(t)− kre−

Ear
RT (t)CC(t)CD(t) (3.23)

Note here that the reaction vector uses dynamic reaction coefficients to make the situation more
realistic. The nominal values of the parameters are given in Table A.1. The measured quantities
are:

• Volume V
• Reactor temperature T
• Stoichiometric matrix N
• Inlet composition matrix Win

• Inlet mass flow uin
• Heat duty Qin
• Inlet temperature Tin
• Inlet flow heat capacity Cpin
• Volumetric outlet flow Fout

The only quantities that are generally not measured are the concentrations of each species or the
number of moles of each species. This absence of measurements obliges the identification of the
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parameters α and γ. In an ideal situation, where concentration could be measured, α and γ could
be calculated by means of the following relations:

α(t) =
CpinTin

m(t)Cpmix
(t)

=
CpinTin
CpMwn(t)

=
CpinTin

CpMwC(t)V(t)
(3.24)

γ(t) =
1

m(t)Cpmix
(t)

=
1

CpMwn(t)
=

1

CpMwC(t)V(t)
(3.25)

n(t) =


nA(t)
nB(t)
nC(t)
nD(t)

 , C(t) =


CA(t)
CB(t)
CC(t)
CD(t)

 , Cp =


Cp,A
Cp,B
Cp,C
Cp,D


>

(3.26)

Cpin = Cp


1 0
0 1
0 0
0 0

 , Mw =


MA 0 0 0

0 MB 0 0
0 0 MC 0
0 0 0 MD

 (3.27)

3.3.1 Identification of a CSTR with controlled θ

We would like to investigate the identification for a case where θ is constant. Unfortunately, a
realistic situation where θ can be fixed does not exist. Besides that, it is undesireable to have
θ constant due to possible disturbances. A better alternative is to control θ. In our original
definition, θ is given as:

θ(t) =
uout(t)

m(t)
(3.28)

Looking at this equation from a practical point of view this would mean that data about uout(t)
and m(t) should be measured in order to control θ. Measuring the mass in a reactor can be
cumbersome. Also measuring outlet mass-flow is more difficult than measuring volumetric outlet
flow. Rewriting the previous equation for θ yields a beneficial result:

θ(t) =
uout(t)

m(t)
=

Fout(t)
ρmix

V (t)
ρmix

=
Fout(t)

V (t)
(3.29)

where Fout(t) is volumetric outlet flow and V (t) is the volume of the tank. These quantities are
most often measured in industry. V (t) is determined from the level controllers of the reactor and
the physical design of the reactor. Volumetric outlet flow can be measured by flow meters. It is
now possible to control θ using these quantities.

The most important parameters that we need to approximate using identification in 3.19, 3.20
and 3.20 are α and γ. Win tends to be known, so does not need to be identified. α and γ
both appear in the differential equation of energy balance, so temperature data is used for the
identification procedure. In the simulation of the identification procedure, three step inputs are
applied simultaneously at t = 0, resulting in a startup phase. The identification is performed
on the data after the startup phase for t ≥ 1500 s. For the identification of α and γ the inputs
of Figure are applied to the system. The temperature response of these steps can be seen in
Figure 3.7. In the first attempt to estimate α and γ, a first order approximation is made for the
transfer function in equation 3.20, hence assuming α and γ are constant. The identification result
is displayed in Figure 3.8. The approximation of γ as a constant is fairly well. The identification
of α is not good enough. There appears to be a peak upward after a step is applied, signifying
non-minimum phase behaviour. The reason for this can be found in the definition of α in equation
3.24. The variable α is related to the number of moles in an inverse relation. The effect of this
inverse relation is related to the non-minimum phase behaviour. In theory it should therefore
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Figure 3.5: Inputs applied to the system

be possible to identify α as a dynamic variable. This is done in Figure 3.9, where the transfer
functions in 3.20 and 3.20 are modelled as being second-order transfer functions. Now the fit in
the time domain is more accurate as the non-minimum phase behaviour is captured. The benefit is
that the transfer function in 3.19 can be approximated locally. The downside is that the physical
interpretation of this transfer function is lost. The identified bode plots are given in Figure 3.13.
One characteristic that is striking is significant decrease of mass in Figure 3.6 due to a controlled θ.
This is a situation that is undesireable in practice. Therefore in the next section, the identification
will be executed in a situation with controlled mass.
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Figure 3.6: Input signals, time response for θ and reactor mass

Figure 3.7: Temperature response for controlled
θ

Figure 3.8: First order identification result
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Figure 3.9: Second order identification result
Figure 3.10: Second order identification result
(error)

Figure 3.11: Second order identification result
(error, no noise)

Figure 3.12: Second order identification result
for γ
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Figure 3.13: Second order identification results (Bode plots). ’tf1’ corresponds to transfer function
3.19, ’tf2’ corresponds to transfer function 3.20 and ’tf3’ corresponds to transfer function 3.20.
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3.3.2 Identification of a CSTR with controlled mass

The situation where mass is controlled is more common in process industry than the situation
where θ is controlled. As a result, θ is not constant anymore. The fluctuations in θ however
are not that significant so identification could still be possible with a fixed θ. The first order
identification result is displayed in Figure 3.16 and the second order identification result is displayed
in Figures 3.17, 3.18 and 3.20. One observation here is that the non-minimum phase behaviour
that was encountered in the controlled θ situation is not observed. Another observation is that
the difference between first order and second order is not significant. The difference between the
estimated γ and the actual measured γ is significant. But this yields no significant mismatch in
the time response. This is due to the very small value of γ. The bode plots of the three transfer
functions are given in Figure 3.21. The conclusion here is that controlling the mass is also a viable
solution for identifying the parameters. The condition then is that the larger the magnitude of
the applied inputs, the larger the variations in θ will be and hence the identification result will
deteriorate.

Figure 3.14: Input signals, time response for θ and reactor mass
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Figure 3.15: Temperature response for controlled
mass

Figure 3.16: First order identification result

Figure 3.17: Second order identification result
Figure 3.18: Second order identification result
(error)

Figure 3.19: Second order identification result
(error, no noise)

Figure 3.20: Second order identification result
for γ
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Figure 3.21: Second order identification results (Bode plots). ’tf1’ corresponds to transfer function
3.19, ’tf2’ corresponds to transfer function 3.20 and ’tf3’ corresponds to transfer function 3.20.
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3.3.3 Estimation of α and γ by explicit expressions

In sections 3.3.1 and 3.3.2, it was concluded that approximating transfer functions 3.20 and 3.20
as a second order transfer functions improves the identification result. The disadvantage is that
physical interpretation is lost when using this method. The physical interpretation however, is
important in understanding the reactor dynamics. In this section, the physical interpretation will
be searched for by writing out the explicit expressions for the time responses of the quantities that
define α and γ. This is done using the Laplace transform.
If the reaction part of equation 2.5 is neglected, the explicit time response to a step input is as
follows:

L
{
ṅ(t)

}
= L

{
Winuin(t)− uout(t)

m(t)
n(t)

}
(3.30)

s · n(s)− n0 = Winuin(s)− θn(s) (3.31)

n(s) =
Win

s+ θ
uin(s) +

n0

s+ θ
(3.32)

L
{
n(s)

}−1

= L
{
Win

s+ θ

κ

s
+

n0

s+ θ

}−1

(3.33)

n(t) =
Winκ

θ

(
1− e−θt

)
+ n0e

−θt (3.34)

where L{·} and L{·}−1 are the Laplace and inverse Laplace transform, respectively. κ ∈ Rp×1

is a vector of magnitudes of the step inputs. The interest lies now in the first term of equation
3.34, which is the forced response due to the step inputs. The reason why the second term is not
important is because this term signifies the number of moles at t = 0. Since the startup phase is
discarded as in sections 3.3.1 and 3.3.2, the identification starts at t = 1500 s and hence focus is
placed on the first term. If this first term is subsituted in expressions 3.24 and 3.25, the deviation
in α and γ due to the forced input is expressed as:

∆α(t) =
CpinTinθ

CpMwWinκ(1− e−θt)
(3.35)

∆γ(t) =
θ

CpMwWinκ(1− e−θt)
(3.36)

Figure 3.22: Time response of α Figure 3.23: Approximation results of 1
∆α

The question now is whether this simplification is accurate enough to do identification. To test
this, the same example as in section 3.3.1 is used with two inputs and a controlled θ. The time
response for α is given in Figure 3.22. The expressions for ∆α and ∆γ gives infinite or NaN result
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because of the division by 0 at t = 0. To circumvent this problem, analysis is performed on 1
∆α .

The results for γ are omitted because apart from a constant CpinTin, the results are the same. The
time window for which we analyse the approximation is 1500 ≤ t ≤ 3000 s. In Figure 3.23, the
approximation results are displayed. With this simplification it is visible that the approximation
is good. The error is caused by the reaction that shifts the balance of the reaction and causes
different concentrations. Now, the change in α is displayed but not the absolute value of α. This
has to be known prior to applying the step input. In this case, it is assumed that the value is
known from one concentration sample that was taken just before applying the step. If this data
is unknown then it is not yet known how to calculate α via explicit expressions. This can be
investigated in the future.
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3.4 2-step Identification method

In our identification situation in the previous section, it turned out that reaction was not a signi-
ficant disturbance on the temperature. It is questionnable whether the reaction is a disturbance
in the first place. It was stated that the reaction is a disturbance because it is the only dynamics
that makes the state space representation nonlinear. After all, if one neglects the reaction in the
state space representation, one ends up with a linear system representation. It is also not possible
to identify reaction using OBF’s. But actually the reaction does not need to be seen as a dis-
turbance if one looks at the structure of the reaction vector in equation 2.78. The concentration
data can be measured or derived from experiment data of the number of moles and volume. The
only unknown parameters are kf , kr, Eaf and Ear. But these can be identified by an incremental
identification procedure as explained in section 2.5.

Hence in this section, a 2-step identification method is proposed. This method is proposed in a
situation where a slow reaction systems needs to be identified. The first step is to perform the
incremental identification procedure as explained in section 2.5. Once the parameters kf , kr, Eaf
and Ear are known, the disturbance can be estimated in real-time. With the following input
signals:

uin(t) = −W+
inN

>V(t)r̄(t) + ũin(t) (3.37)

Qin(t) =

(
αW+

inN
>+β

)
V(t)r̄(t)

γ + Q̃in(t) (3.38)

where r̄(t) is the estimated disturbance vector, the state space simplifies to:

ṅ(t) = −θn(t) +Winũin(t) (3.39)

Ṫ (t) = −θT (t) +αũin(t) + γQ̃in(t) (3.40)

Which is linear system that can easily be identified. The only problem is that the controller is
dependent of α, β and γ which are also the parameters that need to identified. How to further use
this 2-step identification method can be investigated in future work.
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Chapter 4

Identifiability, Parameter
Estimation and Sensitivity

One of the problems when modelling reaction systems is that modelling is expensive. Besides that,
it is not always possible to identify the system with the data at hand. Therefore, in this chapter we
will investigate which parameters are identifiable and hence answer subquestion three: ”Which
parameters or combination thereof can be identified?”. This is investigation is done in
section 4.1. It is necessary to investigate which parameters are most influential on a certain output.
This can be done by ranking the parameters according to their output contribution. Ranking
parameters according to their influence is referred to as parameter sensitivity. In sections 4.2.1
and 4.2.2, the parameter sensitivity will be investigated of a CSTR and an RBD, respectively. This
will answer the fourth subquestion: ”Which parameters are more important to model?”.

4.1 Identifiability

In this section, we are going to investigate the identifiability of parameters in a dynamic model
of chemical processes. This will eventually give insights in whether a model is structurally and
qualititatively identifiable. The first notion means that a parameter can be uniquely identified in
the first place. The second notion is related to how good an estimate of the parameter can be
given. Only the first notion is treated in this thesis.

In [12], a method is given to determine if a system is structurally identifiable. Assume an under-
lying system that is described by the set of differential equations:

dx

dt
= f(x, u, p) (4.1)

where f(x, u, p) are a set of parametric functions that are described in terms of states (x), inputs
(u) and parameters (p). In the following example, which is used to demonstrate the structural
identifiability, a CSTR is used with the following dynamics:

f(x, u, p) =

[
ṅ(t)

Ṫ (t)

]
=

[
−θn(t) +N>V(t)r(t) +Winuin(t)

−θT (t) + αuin(t)− βV(t)r(t) + γQin(t)

]
(4.2)

and the reaction as in 3.23. It is now possible to formulate a sensitivity matrix R as follows:

R =


∂f(x,u,p)
∂p1

. . . ∂f(x,u,p)
∂pn

∂ḟ(x,u,p)
∂p1

. . . ∂ḟ(x,u,p)
∂pn

...
...

...

 (4.3)
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The columns of R have an infinite length in theory but after a certain amount of differentiations,
the rank of the matrix is not increasing anymore. With a weighting matrix Q the matrix F can
be formulated by:

F = R>QR (4.4)

The rank of this matrix determines whether a parameter set is fully identifiable or not. If the
rank of this matrix is less than the number of parameters, not all parameters are identifiable. For
several parameter sets, the identifiability is established through the method explained above. For
this, 5 different parameter sets are distinguished:

• Situation 1:

p1 =
[
kf kr Eaf Ear α β γ

]
→ Rank(F ) = 7 (4.5)

• Situation 2:

α =
CpinTin
D1

(4.6)

β =
D2

D1
(4.7)

γ =
1

D1
(4.8)

D1 = mCpmix
(4.9)

D2 = ∆H	f N
> (4.10)

p2 =
[
kf kr Eaf Ear D1 D2

]
→ Rank(F ) = 6 (4.11)

• Situation 3:

α =
CpinTin
mCpmix

(4.12)

β =
D2

mCpmix

(4.13)

γ =
1

mCpmix

(4.14)

D2 = ∆H	f N
> (4.15)

p3 =
[
kf kr Eaf Ear D2 Cpmix

]
→ Rank(F ) = 6 (4.16)

• Situation 4:

α =
CpinTin
mCpmix

(4.17)

β =
∆H	f N

>

mCpmix

(4.18)

γ =
1

mCpmix

(4.19)

∆H	f =
[
Ha Hb Hc Hd

]
(4.20)

p4 =
[
kf kr Eaf Ear Cpmix

Ha Hb Hc Hd

]
→ Rank(F ) = 6 (4.21)
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• Situation 5:

α =
CpinTin
CpMwn(t)

(4.22)

β =
D2

CpMwn(t)
(4.23)

γ =
1

CpMwn(t)
(4.24)

D2 = ∆H	f N
> (4.25)

p5 =
[
kf kr Eaf Ear D2 Cp,a Cp,b Cp,c Cp,d

]
→ Rank(F ) = 8 (4.26)

The definitions for Cpin , Cp and Mw are as in section 3.3.

In the first situation, the rank is equal to the number of parameters. Hence all the specified
parameters of p1 are identifiable. In situation 2, it is assumed that Cpin and Tin are known and
that parameters D1 and D2 need to be identified besides the four parameters from the reaction.
The full rank of F , proves that structural identifiability is guaranteed in this situation. Situation
3 is an extension of situation 2 where besides data about Cpin and Tin also data about the mass
is measured. Again there is full rank. In Situations 4 and 5, structural identifiability is not
guaranteed. When Cpin , Cp and D2 are written terms of matrices, and the elements of these
matrices are in the parameter sets, the system is not structurally identifiable. This is due to
the fact that the product of matrices in which these parameters appear, yields a number such as
mCpmix and ∆H	f N

>. From this number, the matrix ∆H	f cannot be calculated.

4.2 Parameter Estimation and Sensitivity

In the previous section, an analysis was performed to establish whether certain parameters can
identified or not. This notion is referred to as structural identifiability. In this section, the para-
meter sensitivity is analysed. In certain industries, such as process industry, the modelling of
systems is costly. The amount of parameters in such systems can be vast. To reduce the com-
plexity of the model and the amount of parameters, parameter sensitivity analysis is performed to
investigate which parameters are most important in the dynamics of the underlying system. This
section contains two parameter sensitivity analyses of a CSTR and the Reactive Batch Distillation
Column (RBD).

The parameter sensitivity analysis can be decomposed into the following steps:

1. Obtain a parameter set with approximate values of the parameters.

2. For each parameter i in the parameter set, the model is simulated with small deviations in
the approximate value of the parameter. Then the response of the jth output is collected
for a deviation with a higher value than the approximate value yj(p0,i · (1 + ∆), t) and for a
deviation with a smaller value than the approximate value yj(p0,i · (1−∆), t), where p0,i is
the approximate value of the ith parameter and ∆ is the deviation in the parameter.

3. Compute the following derivative:

∂yj(pi, t)

∂pi
≈ yj(p0,i · (1 + ∆), t)− yj(p0,i · (1−∆), t)

2∆
(4.27)
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4. Obtain a parameter sensitivity matrix, similar to the sensitivity matrix of section 4.1:

S =



∂y1(p1,t0)
∂p1

. . . ∂y1(pk,t0)
∂pk

...
...

...
∂yl(p1,t0)

∂p1
. . . ∂yl(pk,t0)

∂pk
...

...
...

∂y1(p1,tm)
∂p1

. . . ∂y1(pk,tm)
∂pk

...
...

...
∂yl(p1,tm)

∂p1
. . . ∂yl(pk,tm)

∂pk


=
[
S1 . . . Sk

]
(4.28)

with k parameters, l outputs and m time samples.

5. Rank the parameters by the orthogonalization method explained in [10].

The orthogonalization method is a method that ranks the parameters on their norm and linear de-
pendence simultaneously. The procedure occurs as follows: Assume a sensitivity matrix, composed
of the column vectors a, b and c:

S =
[
a b c

]
(4.29)

If a has the largest norm, a normalised vector q1 = a1/||a1|| is subtracted from b and c to create
two orthogonal vectors to a:

b̃ = b− (q′1b)q1, c̃ = c− (q′1c)q1 (4.30)

Out of these two vectors, the vector with the largest norm is selected again and subtracted. In
this case the largest norm is from c̃:

b̄ = b̃− (q′2b̃)q2, q2 = c̃/||c̃|| (4.31)

where || · || is the Euclidean norm. The following decomposition can be performed:

SE = QR (4.32)

S

1 0 0
0 0 1
0 1 0

 =
[
q1 q2 q3

] q′1a q′1c q′1b
0 q′2c q′2b
0 0 q′3b

 (4.33)

which can be further reduced to:

E′S′SE = R̄′D′DR̄ (4.34)

E′S′SE =

 1 0 0
q′1c
q′1a

1 0
q′1b
q′1a

q′2b
q′2c

1


(q′1b)

2 0 0
0 (q′2c)

2 0
0 0 (q′3b)

2


1

q′1c
q′1a

q′1b
q′1a

0 1
q′2b
q′2c

0 0 1

 (4.35)

The E matrix can be interpreted as the ranking of the parameters. The column that has a 1 in
the first row belongs to the parameter that is most sensitive to changes. The column that has
the 1 in the last row belongs to the parameter that is least sensitive to parameter changes. The
coefficients in R relate to how much the parameters correlate. Coefficients with a value close to 1,
have a high positive correlation while coefficients with a value close to -1 have a strong negative
correlation. Coefficients close to 0 have almost no correlation.
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4.2.1 Parameter Sensitivity of a CSTR

In this section, the parameter sensitivity of a CSTR is investigated. As an example, the same
situation as in section 3.3.1 is used. The only difference is that in this case, no step are applied for
t > 0 s. For the analysis, a distinction is made between the parameter sensitivity ranking for the
number of moles En and for the temperature ET . The main motivation for this is scaling. The
range of values for temperatures are of a different order of magnitude than the number of moles.
The result can be found in Tables 4.1 and 4.2 in the column of situation 1.

Sit. 1 Sit. 2 Sit. 1(Scaled) Sit. 2(Scaled)

Ha Cp,c kf kf
Cp,c Cp,d Eaf Eaf
kr kr Cp,a Cp,a
kf Cp,a Ear Ear
Hc Cp,b Cp,b Cp,b
Ear kf Cp,c Cp,c
Cp,a Ear Ha Ha

Cp,d Ha Cp,d Cp,d
Eaf Eaf Hb Hb

Hd Hb Hc Hc

Hb Hc Hd Hd

Cp,b Hd kr kr

Table 4.1: Parameter sensitivity rankings for number of moles for different situations

Sit. 1 Sit. 2 Sit. 1(Scaled) Sit. 2(Scaled)

Hb Cp,c Hb Cp,c
Cp,d Hb Cp,d Hb

Ear Ear Ear Ear
Cp,a Cp,b Cp,a Cp,b
Eaf Cp,a Eaf Cp,a
Hc kr Hc kr
kf Eaf kf kf
Cp,b Ha Cp,b Ha

kr kf kr Eaf
Hd Hd Hd Hd

Ha Hc Ha Hc

Cp,c Cp,d Cp,c Cp,d

Table 4.2: Parameter sensitivity rankings for temperature for different situations

From these rankings it is not possible to draw conclusions about which parameters are more im-
portant. The first problem is that the time response of the number of moles is not independent
of the time response of the temperature. The temperature influences the reaction and hence the
number of moles indirectly.

The second problem is that this method relies on absolute differences in signals, rather than re-
lative changes. Therefore, absolute differences in the time responses can have a large impact on
the sensitivity. The conditions that influence this absolute sensitivity are for example the inputs.
To prove this, a second sensitivity analysis is performed on a situation with different inputs than
in the first situation. The result can be found in Tables 4.1 and 4.2 in the column of situation 2.
What can be seen is that for different inputs, the ranking in parameters is different.
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Figure 4.1: Nominal time responses of relevant signals (Situation 1)

So far, it is visible that for this parameter sensitivity method for absolute differences, it is difficult
to draw sound conclusions that are valid under different circumstances. The input signals have
an impact on the ranking of the parameters. It is known that also other conditions influence the
ranking. These are:

• Initial conditions

• Control strategy

• Initial approximate values of the parameters

How to solve this problem and get a more sound conclusion can be investigated in a future work.
It is worthwile to investigate whether scaling can give a more sound ranking that is valid under
multiple situations. In Tables 4.1 and 4.2, the sensitivity matrices of situation 1 and 2 are scaled
as follows:

S̄n =
Sn
n(t)

, S̄T =
ST
T (t)

(4.36)

where S̄n is the absolute sensitivity matrix of number of moles divided by the nominal time re-
sponse of n(t) and S̄T is the absolute sensitivity matrix of temperature divided by the nominal
time response of T (t). The nominal responses are the responses for nominal values of the para-
meters. In this way, the changes are relative rather than absolute. What can be seen in Table
4.1 is that for both situation with different inputs, the rankings are the same. For the ranking of
the temperatures in Table 4.2, this is not the case. What is noteworthy is that some parameters
appear high in the ranking for the different situations. Examples of high ranking parameters in
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Figure 4.2: Nominal time responses of relevant signals (Situation 2)

temperature are Ear, Cp,a and Cp,b. Examples of low ranking paramaters in temperature are Ha

and Hd.

In general it is difficult to find a numeric parameter ranking method that ensures one ranking that
applies for numerous different situations. It is for now unknown whether this is the case for all
systems or specific systems. This system is coupled through the temperature dependent reaction
coefficients and concentration dependent coefficients such as α, β and γ. Some kind of decoupling
of this system might give a more unified ranking for the parameters.
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4.2.2 Parameter Sensitivity of a RBD

In this section, the parameter sensitivity analysis will be performed on the Reactive Batch Dis-
tillation Column. For the RBD, the parameter set is the same as in section 4.2.1, because the
distillation process does not yield any extra parameters. The number of outputs is large. As spe-
cified in section 2.4, there are 14 species hence 14 concentrations or number of moles. Besides that,
every stage has a different temperature. This means that in total there are (14 + 1) · 6 = 90 pos-
sible outputs and sensitivities to analyse. To simplify the analysis, the concentration outputs are
ignored. The reason for this is that concentration is difficult to gain measurements of in industry.
Therefore only temperatures are considered for parameter sensitivity analysis of the RBD. Rather
than performing the analysis on the same parameters as in section 4.2.1, analysis is performed on
the variables:

pRBD =



hvap,mix
Cpmix,1

Cpmix,2

Cpmix,3

Cpmix,4

Cpmix,5

Cpmix,6


(4.37)

where hvap,mix is the heat of vaporisation of the mixture and Cpmix,i
is the heat capacity of the

mixture in stage i. The parameters kf , kr, Eaf and Ear are related to reaction and, hence, to
the number of moles and concentrations. Because these outputs are neglected for the parameter
sensitivity, these parameters are also neglected. The parameters related to temperature such
as heat enthalpies and capacities are neglected because this would mean that the analysis has
to be performed for at least 2 · 14 = 28 parameters. With the system that is discussed here,
the simulation would last too long. Regarding equation 2.42, the variables Cpmix,i

are the most
important variable for temperature response. Therefore the heat capacity of the mix in each stage
is chosen as parameter. This implies that the analysis is done with time-varying parameters.
For time-varying parameters it is not possible to apply a method as in section 4.2.1, where the
outputs are simulated for approximate parameter values. Therefore, the first step in the analysis
is to obtain averaged values of the parameters in equation 4.37, denoted as pRBD,0:

pRBD,0 =



44000 (J/mol)
122.68 (J/K)
135.95 (J/K)
177.57 (J/K)
197.24 (J/K)
225.29 (J/K)
245.42 (J/K)


(4.38)

The second step is now to perform the same parameter analysis as in section 4.2.1. The selected
outputs are the temperature in stages 3 (top tray of distillation) and the temperature in the re-
actor. The ranking are as follows: What can be seen here is that hvap,mix is the most important

Temperature stage 3 (top tray) Temperature stage 6 (Reactor)

hvap,mix hvap,mix
Cpmix,6 Cpmix,6

Cpmix,4
Cpmix,4

Cpmix,2
Cpmix,3

Cpmix,5
Cpmix,5

Cpmix,3
Cpmix,2

Cpmix,1 Cpmix,1

Table 4.3: Parameter sensitivity rankings for different temperature locations
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parameter in both stages. Besides that, the ordering of the Cpmix is more or less from bottom to
top. This means that the most important Cpmix is in stage 6 (reactor) and the least important
in stage 1 (the accumulator). This conclusion is realistic in reality as the property of flows are
from reactor to the accumulator. What is remarkable is that this line of reasoning is not true for
all stages because Cpmix,5

is ranked lower than Cpmix,4
in both sensitivities of temperature. The

reason for this is unclear. The only explanation is that it is due to taking the average of the Cpmix

in all stages.

In [16], a similar sensitivity analysis is performed but with some scaling. The sensitivity is calcu-
lated as follows:

S̃i,j =
pi

yj(pi, t)

dyj(pi, t)

dpi
(4.39)

This implies a multiplication with the approximate value of the parameter and division over the
nominal time response of the output. The result of the sensitivity analysis with this scaling can
be found in Table 4.4.

Temperature stage 3 (top tray) Temperature stage 6 (Reactor)

hvap,mix hvap,mix
Cpmix,6

Cpmix,6

Cpmix,4
Cpmix,4

Cpmix,2 Cpmix,3

Cpmix,5 Cpmix,5

Cpmix,3
Cpmix,2

Cpmix,1
Cpmix,1

Table 4.4: Parameter sensitivity rankings for different temperature locations (Scaled according to
scaling of [16])

The ranking in Table 2.52 is exactly the same ranking as in Table 4.3, meaning that the scaling
has no effect in this situation.

What has been done in the parameter sensitivity for the RBD is that time-varying parameters are
taken as constant parameters and that the analysis is performed around the mean values of the
time-varying parameters. What has not been investigated is a method which facilitates parameter
analysis on time-varying parameters, rather than mean values. This can be investigated in the
future.
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Conclusions and Future Work

For each of the four subquestions, the conclusions will be repeated and possible future work is
suggested.

Is it possible to approximate a general nonlinear model of reaction systems using
OBF’s?
If reaction is viewed as a disturbance, OBF identification is possible. Due to the definition of α, it
can not be modelled as a constant, but should be modelled as a dynamic variable. If α is modelled
as a dynamic variable, physical interpretation is lost. Physical interpretation can be kept to a
certain level if the step responses are written explicitly. Then it is possible to approximate how
much α and γ are going to change due to a step input, but it is still unknown what the absolute
change of these parameters is, if there is no information about the concentrations. As a future
work, it is therefore possible to investigate how to estimate α and γ if concentration data is not
available and physical interpretation must be kept. Another suggestion that was made for future
work is the 2-step identification procedure. This procedure can create possibilities to identify slow
reaction systems using OBF’s.

Do the extent transformations form a set of unique OBF’s?
The conclusion here is that the extent transformation does not yield a unique OBF. This is because
the transfer function is not all-pass and can therefore not be extended.

Which parameters or combination thereof can be identified?
Almost all parameters can be identified. It is however not possible for parameters that appear in
the differential equations as a product or in a matrix.

Which parameters are more important to model?
For a CSTR is was concluded that the ranking of parameters depends on the chosen inputs. Scaling
provides a solution in getting a more consistent result for different situations. It is known that
initial conditions, control strategy or initial approximate values of the parameters also play a role
on the ranking. In future work it can be investigated how a more consistent ranking can be given.
Because RBD is a highly parametrised model with a large number of outputs, parameter sens-
itivity analysis is difficult. Therefore, only sensitivities for temperature are computed. Because
this process is in batch regime and has no steady states, time-varying parameters are present in
this system. To use the same parameter sensitivity method as before, average values of these
parameters have to be taken. The conclusion is that heat of vaporisation is the most important
parameter. The rankings of Cpmix,i

in stage i corresponds more or less with reality where the
highest ranked parameter is in the highest stage. Because this conclusion is not consistent for
all cases, it is suggested that for future work it is necessary to investigate a parameter sensitivity
method based on time-varying parameters.
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[20] Roland Tóth, Peter S.C. Heuberger, and Paul M.J. Van den Hof. Asymptotically optimal
orthonormal basis functions for LPV system identification. Automatica, 45(6):1359–1370,
2009. 2
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Appendix A

A.1 Computation of transformation matrices

• Using SVD, the matrix [N> Win] can be decomposed:

[
N> Win

]
=
[
U1,1 U1,2

] [Σ1

0

]
V >1 (A.1)

T3 = U1,2

• Using SVD, the matrix [N> T3] can be decomposed:

[
N> T3

]
=
[
U2,1 U2,2

] [Σ2

0

]
V >2 (A.2)

T2 = U2,2(WinU2,2)+

• T1 = (N>+(Is −WinT >2 ))>

A.2 Table of parameters with nominal values
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Parameter name Symbol Nominal value Unit

Forward activation energy Eaf0 6.380 · 104 J ·mol−1

Reverse activation energy Ear0 7.171 · 104 J ·mol−1

Pre-exponential forward reaction coefficient kf 6.060 · 105 m3 · kmol−1 · s−1

Pre-exponential reverse reaction coefficient kr 9.840 · 106 m3 · kmol−1 · s−1

Gas constant R 8.314 · 100 J ·mol−1 ·K−1

Heat capacity specie A Cp,A 2.043 · 100 J ·K−1

Heat capacity specie B Cp,B 2.510 · 100 J ·K−1

Heat capacity specie C Cp,C 1.973 · 100 J ·K−1

Heat capacity specie D Cp,D 4.190 · 100 J ·K−1

Standard heat enthalpy specie A HA −4.845 · 105 J
Standard heat enthalpy specie B HB −2.394 · 105 J
Standard heat enthalpy specie C HC −4.459 · 105 J
Standard heat enthalpy specie D HD −2.858 · 105 J
Inlet temperature Tin 3.000 · 102 K
Density specie A ρA 1.050 · 103 kg ·m−3

Density specie B ρB 7.920 · 102 kg ·m−3

Density specie C ρC 9.320 · 102 kg ·m−3

Density specie D ρD 1.000 · 103 kg ·m−3

Molecular weight specie A MA 6.005 · 101 kg · kmol−1

Molecular weight specie B MB 3.204 · 101 kg · kmol−1

Molecular weight specie C MC 7.418 · 101 kg · kmol−1

Molecular weight specie D MD 1.800 · 101 kg · kmol−1

Table A.1: System parameters and their nominal values
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